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Abstract: The free energy principle from neuroscience has recently gained traction as one of the most
prominent brain theories that can emulate the brain’s perception and action in a bio-inspired manner.
This renders the theory with the potential to hold the key for general artificial intelligence. Leveraging
this potential, this paper aims to bridge the gap between neuroscience and robotics by reformulating
an FEP-based inference scheme—Dynamic Expectation Maximization—into an algorithm that can
perform simultaneous state, input, parameter, and noise hyperparameter estimation of any stable
linear state space system subjected to colored noises. The resulting estimator was proved to be of the
form of an augmented coupled linear estimator. Using this mathematical formulation, we proved
that the estimation steps have theoretical guarantees of convergence. The algorithm was rigorously
tested in simulation on a wide variety of linear systems with colored noises. The paper concludes
by demonstrating the superior performance of DEM for parameter estimation under colored noise
in simulation, when compared to the state-of-the-art estimators like Sub Space method, Prediction
Error Minimization (PEM), and Expectation Maximization (EM) algorithm. These results contribute
to the applicability of DEM as a robust learning algorithm for safe robotic applications.

Keywords: free energy principle; system identification; linear time-invariant (LTI) systems; colored
noise; state space models; robotics

1. Introduction

The free energy principle (FEP) has emerged from neuroscience as a unifying theory
of the brain [1] and has begun to guide the search for a brain-inspired learning algorithm
for robots. Many attempts have been made in this direction, including the state and input
observer [2,3], the adaptive controller for robot manipulators [4–6], the body perception
and action scheme for humanoid robots [7], the robot navigation of ground robots [8] etc.
However, the design of a parameter estimation algorithm for linear systems with colored
noise remains unexplored. Since the design of an accurate parameter estimator for dynamic
systems sits at the core of control systems and robotics, the reformulation of FEP into a
brain-inspired estimation algorithm has an influential impact on the industry and applied
robotics.

A wide range of estimators have been proposed in the literature for linear time-
invariant (LTI) systems [9], including the blind system identification [10–12]. However,
most of them assume the noises to be temporally uncorrelated (white noise), which is
often violated in practice. This results in biased estimation for the least-square (LS)-based
methods [13], and an inaccurate convergence for the iterative methods [14]. Although
many attempts have been made to solve this problem, mainly through bias compensation
methods [15,16], none of them perform state, input, parameter, and noise estimation for
systems with colored noises [17]. The only method that does it is the Dynamic Expectation
Maximization (DEM) [18] algorithm, which uses FEP to invert a highly nonlinear and
hierarchical brain model from sensory data. However, the disconnect between neuroscience
and control system literature hinders the wide use of this method for practical robotics
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applications. Although FEP-based tools have already been applied to practical robotics
applications [2–8,19,20], there is a gap in the literature on the applications of DEM owing to
the mathematical formidability of the theory and its lack of formalism in the control systems
domain. Therefore, it is important to reformulate DEM for the control systems audience.
While DEM from computational neuroscience focuses on emulating the brain’s perception
through the hierarchical abstraction of a number of interacting non-linear dynamic systems,
our work focuses on reformulating it into a blind system-identification algorithm for an LTI
system with colored noise, which is a well-known challenge in robotics. In this attempt, we
keep all the brain-related approximations intact, thereby aiming for a biologically plausible
parameter estimation algorithm.

According to an FEP proposed by Karl Friston, the brain’s inference mechanism is a
gradient ascent over its free energy, where free energy is the information-theoretic measure
that bounds the brain’s sensory surprisal [21]. FEP emerges as a unified brain theory [22] by
providing a mathematical description of brain functions [23]; unifying action and percep-
tion [24]; connecting physiological constructs like memory, attention, value, reinforcement,
and salience [23]; and remaining consistent with Freudian ideas[25]. Similarities of FEP
with reinforcement learning [26], neural networks [21,27], PID controller [28], Kalman
Filter [2] and active learning [24] open up possibilities for biologically plausible parameter
estimation algorithms. Although FEP emerged as a brain theory, the recent works have
pushed the boundaries towards systems that survive over time, such as social and cul-
tural dynamics. Notable works include the variational approach to culture [29], collective
intelligence [30], cumulative cultural evolution [31], etc.

Numerous methods have been proposed based on the FEP framework. Predictive
coding [32] models perception through a hierarchy of dynamical systems [27] with the
brain’s priors at the top, minimizing the prediction error at each level of the hierarchy.
Bayesian message passing algorithms [33,34] use similar ideas for belief propagation.
Active inference [24,35] uses FEP to model the brain’s action and perception under one
framework. On the perception side, there are two main type of methods to deal with
dynamic systems: variational filtering and generalized filtering. Variational filtering [18,36]
uses mean-field approximation (conditional independence between densities), whereas
generalized filtering [37] does not. DEM [18] is a type of variational filtering that uses
a Laplace approximation [38] (a fixed-form assumption for the conditional density of
variables), whereas [36] uses ensemble dynamics to model the free form of the conditional
densities. We focus on DEM for this work.

DEM is an FEP-based variational inference algorithm that models the brain’s inference
process as a maximization of its free energy for state, input, parameter, and noise estimation
from data. Although the method shows high similarity to the variational inference [39],
the key difference is in the use of generalized coordinates, which enables DEM to track the
evolution of the trajectory of states instead of just the point estimates. This renders DEM
with the capability of gracefully handling colored noises, a feature that conventional point
estimators such as the Kalman Filter (KF) lacks. The modeling of noise color as analytic
using generalized coordinates results in an improved state estimation under colored noise
for LTI systems [2,3] and for nonlinear filtering [40], which directly improves the parameter
estimation accuracy, making DEM a topic of interest [20]. This work directly impacts
various sub-domains of robotics community: input estimation to the industrial automation
community for fault detection systems, state estimation to the control systems commu-
nity, parameter estimation to the system identification community, and hyperparameter
estimation to the signal processing community.

With this paper, we aim to present DEM to the robotics audience as a robot learning
algorithm for the blind system identification of LTI systems with colored noise. We elab-
orate on various components of DEM that are most relevant to the robotics community:
1) the derivation of the free energy objectives from Bayesian principles, 2) the modeling
of colored noise using generalized coordinates, and 3) the simplification of update rules
for LTI systems with colored noise. We reformulate DEM for LTI systems into a form that
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is widely used in the robotics domain and use this mathematical formulations to prove
that the estimation steps of DEM have theoretical guarantees of convergence [41]. In our
prior work, we have discussed the stability conditions of our DEM-based linear state and
input observer design [2]. This convergence guarantees and stability criteria are essential
for robot safety while in operation and is of high relevance to the robotics community.
Through extensive simulations on a range of random systems, we show that DEM is a
competitive estimator when compared to other benchmarks in the control systems domain.
The core contributions of the paper are:

1. Reformulating DEM into an estimation algorithm for LTI systems with colored noise
(Section 12).

2. Proving that the estimator has theoretical guarantees of convergence for the estimation
steps (Section 14).

3. Proving through rigorous simulation that DEM outperforms the state-of-the-art sys-
tem identification methods for parameter estimation under colored noise (Section
16).

2. Problem Statement

Consider the linear plant dynamics given in Equation (1), where A, B and C are
constant system matrices, x ∈ Rn is the hidden state, v ∈ Rr is the input and y ∈ Rm is the
output.

ẋ = Ax + Bv + w, y = Cx + z. (1)

Here, w ∈ Rn and z ∈ Rm represent the process and measurement noise, respectively.
The notations of the plant are denoted in boldface, whereas its estimates are denoted in
nonboldface letters. The noises in this paper are generated through the convolution of
white noise with a Gaussian kernel. The use of colored noise is motivated by the fact
that in robotics, the unmodelled dynamics and the non-linearity errors can enter the plant
dynamics through the noise terms, thereby violating the white noise assumption in practice
[20].

The goal of this paper is to reformulate DEM for an LTI system such that given the
output of the system y, the estimator computes the associated states x, inputs v, parameter
θ containing the matrices A, B and C, hyperparameters λ that model the noise precision
(Π = eλ), and the uncertainties of all its estimates (Σx, Σv, Σθ , Σλ), with the help of the
prior (learned) knowledge encoded in the robot brain, such that the estimate best predicts
the data. The schematic of the proposed robot brain’s inference process is given in Figure 1.

Figure 1. A simple block diagram of the robot brain’s inference process using DEM. It uses the
measurement data y generated from the environment (also called generative process). DEM enables
the direct fusion of the prior information into the inference process. The concept of generalized
coordinates will be detailed in Section 3.1.
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3. Preliminaries

To reformulate DEM into an estimation algorithm for LTI systems, this section intro-
duces the key concepts and terminologies that are familiar to the FEP audience.

3.1. Generative Model

The generative model (plant model) is the robot brain’s estimate of the generative
process in the environment that generated data. The robot brain infers this model via model
evidencing from the measurement data. The key idea behind DEM to deal with colored
noise is to model the trajectory of the time-varying components (states, for example) using
generalized coordinates. The use of generalized coordinates is new to the control systems
literature and is different from the familiar definition in classical mechanics. In mechanics,
it is the minimum number of independent coordinates that define the configuration of a
system, whereas in DEM, it is the vector defining the motion of a point using its higher
derivatives. In DEM, the emphasis is on tracking the trajectories of states, inputs and
outputs instead of their point estimates. The states are expressed in generalized coordinates
using its higher-order derivatives, i.e., x̃ = [x x′ x′′ ...]T . The generalized state vector x̃ with
an order of generalized motion of p will have p + 1 terms, with the copy of the state vector
as the first term, followed by its p derivatives. The variables in generalized coordinates are
denoted by a tilde, and its components (higher derivatives) are denoted by primes. The
evolution of states is written as:

x′ = Ax + Bv + w

x′′ = Ax′ + Bv′ + w′

...

y = Cx + z

ẏ = Cx′ + z′

...

(2)

The colored noises are modeled such that the covariance of noise derivatives z̃ = [z, z′, z′′, ...]T

and w̃ = [w, w′, w′′, ...]T are well defined (to be explained in Section 3.3). The generative
model representing the system is compactly written as:

˙̃x = Dx x̃ = Ãx̃ + B̃ṽ + w̃ ỹ = C̃x̃ + z̃ (3)

where Dx =

[ 0 1
0 1

. .
0 1

0

]
(p+1)×(p+1)

⊗ In×n, performs the block derivative operation, equiv-

alent to shifting up all components in generalized coordinates by one block. A similar
definition holds for Dv (appears later) with size r(d + 1)× r(d + 1), where p and d are
the order of generalized motion of states and inputs, respectively. Here, Ã = Ip+1 ⊗ A,
B̃ = Ip+1 ⊗ B, and C̃ = Ip+1 ⊗ C, where ⊗ is the Kronecker tensor product.

3.2. Parameters and Hyperparameters

To simplify the parameter estimation steps of DEM for LTI systems (Section 13.2) and
to facilitate the convergence proof (Section 14), we introduce an alternative generative
model which is the direct reformulation of Equation (3) given by:

˙̃x = Mθ + w̃, ỹ = Nθ + z̃, θ =

vec(AT)
vec(BT)
vec(CT)

 (4)

where

M =

 In ⊗ xT In ⊗ vT In ⊗O1×m
In ⊗ x′T In ⊗ v′T In ⊗O1×m

... ... ...

, N =

In ⊗O1×n In ⊗O1×r Im ⊗ xT

In ⊗O1×n In ⊗O1×r Im ⊗ x′T

... ... ...

. (5)
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Throughout the paper, θ represents the set of parameters, whereas λ =
[

λz

λw
]

represents the
hyperparameters that define the precision matrices (inverse covariance matrices) of the
observation noise and the process noise. For noise modelling, we parametrize the noise
precisions using an exponential relation with the hyperparameters, given by [18]:

Πw(λw) = eλw
Ωw, Πz(λz) = eλz

Ωz, (6)

where Ωw and Ωz represent constant matrices encoding how different noises are correlated.
Here Πw and Πz are the inverse covariances {(Σw)−1, (Σz)−1} or precisions of the noises.
This parameterization ensures the selection of positive definite noise precision matrices
through hyperparameter updates. We assume zero cross-correlation between w and z. We
also assume that θ and λ are time-invariant.

3.3. Colored noise

The next step towards handling the colored noise is to embed the noise correlation
between different components in the generalized noises w̃ and z̃ given in Equation (3).
DEM uses generalized coordinates, which models a correlation between noise derivatives
through the temporal precision matrix S (inverse of covariance matrix). The generalized
noise correlation is assumed to be due to a Gaussian filter, where S can be calculated as
[18]:

S(σ2) =


1 0 − 1

2σ2 ..
0 1

2σ2 0 ..
− 1

2σ2 0 3
4σ4 ..

.. .. .. ..


−1

(p+1)×(p+1)

(7)

where σ (from the Gaussian kernel) denotes the noise smoothness level. While σ2 → 0
denotes white noise, nonzero σ2 denotes colored noise. The covariance between noise
derivatives increases exponentially with the order of noise derivatives. Simulations show
that derivatives above 6 can be neglected [18]. The generalized noise precision matrices are
given by Π̃w = S(σ2)⊗Πw and Π̃z = S(σ2)⊗Πz, where Πw and Πz are the inverse noise
covariances.

3.4. Generalized Motion of the Outputs And Noises

The generalized motion of output ỹ is practically expensive and inaccessible to robotics
systems. Moreover, most sensors such as encoders operate with discrete measurements.
Therefore, as a pre-processing step for estimation (refer to Figure 1), ỹ should be computed
from discrete measurements. The goal is to first express the discrete measurements as a
function of output derivatives and then invert the function to compute the derivatives
from the discrete measurements. Given the p temporal derivatives ỹ at time t, the p output
sequence surrounding y can be approximated using Taylor series as follows [18]:

ŷ =


..

y(t− dt)
y(t)

y(t + dt)
..

 = (Y⊗ Im)ỹ, Yij =

[(
i− ceil

( p+1
2
))

dt
]j−1

(j− 1)!
, (8)

where i, j = 1, 2, ...p+ 1, ceil(.) is the smallest integer function and ŷ has the size m(p + 1)× 1.
Therefore, generalized motion of output ỹ at time t is:

ỹ = (Y−1 ⊗ Im)ŷ. (9)

Using ỹ embeds more temporal information about the plant into the data in the form of
conditional trajectories, with the disadvantage of a time latency of p

2 dt in estimation. For
robotic systems with high sampling rates, this latency in estimation is negligible [3,20]. The
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next section employs this generalized output along with the generative model for observer
designs.

3.5. Notations and conventions

Throughout the paper, the superscript notation will be used to represent the quantity
being referred to, and the subscript notation will be used to represent the derivative
operation. For example, Π̃w

λ represents the derivative of the generalized precision of the
process noise w with respect to the hyperparameters λ. The tilde operator (x̃) is used
to represent a quantity in its generalized coordinates, whereas the bar operator (F̄) is
used to represent the time integral of a quantity. All the probability distributions will be
represented by the p(.) notation, whereas its expectation will be represented by the 〈p(.)〉
notation.

4. Free Energy Objectives

With the preliminaries in place, we can build up towards the complete DEM algorithm.
Eventually, in Sections 8 and 12, we will see that it is an optimization algorithm that finds the
best estimates for states, inputs, parameters, and hyperparameters for given measurement
data. This result is achieved by optimizing two objective functions, which are the core
objectives under the entire Free Energy Principle: the free energy and the free action [1].
Here we derive and simplify this objective.

The derivation starts from the fundamentals of Variational Inference (VI) [39]. In VI,
the posterior distribution p(ϑ/y) of parameter ϑ, given the measurement y, is expressed as:

p(ϑ/y) =
p(y/ϑ)p(ϑ)

p(y)
=

p(ϑ, y)
p(y)

=
p(ϑ, y)∫
p(ϑ, y)dϑ

. (10)

However, the marginalization over ϑ to calculate p(y) is often intractable because the
search space of ϑ is large. A widely used technique is to introduce a variational distribution
q(ϑ) known as the recognition density, which acts as an approximate representation of the
posterior distribution with q(ϑ) ≈ p(ϑ/y). A common method used among variational
Bayes algorithms is to minimize the Kullback–Leibler (KL) divergence between both the
distributions, defined as:

KL(q(ϑ)||p(ϑ/y)) = 〈ln q(ϑ)〉q(ϑ) − 〈ln p(ϑ/y)〉q(ϑ), (11)

where 〈.〉q(ϑ) represents the expectation over q(ϑ). Substituting Equation (10) in Equa-
tion (11) and using

∫
q(ϑ)dϑ = 1 yields:

KL(q(ϑ)||p(ϑ/y)) = 〈ln q(ϑ)〉q(ϑ) − 〈ln p(ϑ, y)〉q(ϑ) + ln p(y). (12)

The rearrangement of terms yield:

ln p(y) = 〈ln p(ϑ, y)〉q(ϑ) − 〈ln q(ϑ)〉q(ϑ) + KL(q(ϑ)||p(ϑ/y)),

= 〈U(ϑ, y)〉q(ϑ) + H(ϑ)q(ϑ)︸ ︷︷ ︸
free energy

+KL(q(ϑ)||p(ϑ/y)), (13)

where ln p(y) is the log-evidence, U(ϑ, y) = ln p(ϑ, y) is the internal energy and H(ϑ)q(ϑ) =
−〈ln q(ϑ)〉q(ϑ) is the entropy of the density. The free energy term in Equation (13) is
defined as the sum of an energy term and its entropy. It acts as the lower bound on the
log-evidence because the KL divergence term KL(q(ϑ)||p(ϑ/y)) is always positive. The
maximization of free energy minimizes the divergence term in Equation (13) because
the log-evidence is independent of q(ϑ), thereby rendering the variational density q(ϑ)
as a close approximation of p(ϑ/y). Therefore, the difficult evaluation of an intractable
integral term in Equation (10) is converted into a much simpler optimization problem of
maximizing the free energy. This reduces the problem of inference to a direct optimization
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of its free energy objectives and is the fundamental idea behind variation inference. The
free energy term in Equation (13) is equivalent to the Evidence Lower Bound (ELBO) [39].
It can be simplified as:

F = 〈U(ϑ, y)〉q(ϑ) + H(ϑ)q(ϑ) =
∫

q(ϑ)U(ϑ, y)dϑ−
∫

q(ϑ) ln q(ϑ)dϑ

=
∫

q(ϑ) ln p(ϑ, y)dϑ−
∫

q(ϑ) ln q(ϑ)dϑ.
(14)

However, when the parameter set to be estimated includes both the time-variant and the
time-invariant parameters, the free action is used as the objective function to be maximized.
The free action is defined as the time integral of the free energy and is given by:

F̄ = V̄(ϑ) + H̄(ϑ) =
∫
〈U(ϑ, y)〉q(ϑ)dt +

∫
H(ϑ)q(ϑ)dt, (15)

where V(ϑ) = 〈U(ϑ, y)〉q(ϑ) is called the variational free energy (VFE).
The next sections will deal with two main assumptions used in DEM to simplify the

free energy objectives, namely the Laplace approximation and the mean-field assumption.
The aim is to derive the simplified free energy objectives for an LTI system under these
assumptions.

5. Laplace Approximation

The first common approach to simplify the free energy objective is to assume the
variational density q(ϑ) to be Gaussian in nature with variational parameters ϑ and Σθ

as its mode and covariance, respectively, [38]. Here, the inverse of Σϑ (denoted by Πϑ

and known as the conditional precision), represents the confidence in estimation. The
recognition density takes the following form:

q(ϑ) = N (ϑ : µϑ, Σϑ) =
1√

(2π)n|Σϑ|
e−

1
2 (ϑ−µϑ)TΠϑ(ϑ−µϑ). (16)

There are two main advantages with this approximation:

1. It simplifies the internal energy expression U(ϑ, y),
2. It facilitates an easy computation of the conditional precision Πϑ (derived in Section

7.2) as the negative curvature of the internal energy at it’s mode µϑ.

Therefore, the main aim of this section is to simplify the expression for internal energy
U(ϑ, y) using the Laplace approximation, for an LTI system with its states, inputs, and
outputs expressed in generalized coordinates.

The internal energy in Equation (13) can be expressed as the sum of log-likelihood
and prior terms as:

U(ϑ, y) = ln p(ϑ, y) = ln p(y/ϑ)︸ ︷︷ ︸
generative

model

+ ln p(ϑ)︸︷︷︸
prior

. (17)

The parameter set ϑ includes two types of parameters:

1. the states and inputs, which are time-varying and therefore expressed in generalized
coordinates,

2. the parameters and hyperparameters, which are time-invariant and not expressed in
generalized coordinates.

Equation (17) can be simplified by assuming the conditional independence of x̃ and ṽ with
θ and λ. This factorization separates the deterministic quantities from the stochastic ones,
thereby providing a separation of temporal scales. This is one of the core ideas behind
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DEM, which will be detailed in Section 6. With the redefinition of ϑ = {x̃, ṽ, θ, λ}, Equation
(17) simplifies to:

U(ϑ, y) = ln p(y/x̃, ṽ, θ, λ) + ln p(x̃, ṽ, θ, λ)

= ln p(y/x̃, ṽ, θ, λ) + ln p(x̃/ṽ, θ, λ) + ln p(ṽ) + ln p(θ) + ln p(λ).
(18)

DEM combines the new sensory information y coming from the environment with the
robot brain’s priors (refer to Figure 1) in a Bayesian fashion, through the internal energy
U(ϑ, y) expression given in Equation (18). The next sections will deal with simplifying
U(ϑ, y) and its action Ū by first modeling the probability distributions for the generative
model and the priors.

5.1. Generative Model

The probability distribution p(y/x̃, ṽ, θ, λ), given in Equation (18), represents the
generative model that predicts the output from the current parameter estimates. This
probability can be assumed to be Gaussian-distributed, centered around the model’s output
prediction C̃x̃ (from Equation (3)), with the same uncertainty as that of the measurement
noise Σ̃z. The distribution p(y/ϑ) becomes:

p(ỹ/ϑ) =
1√

(2π)m(p+1)|Σ̃z|
e−

1
2 (ỹ−C̃x̃)TΠ̃z(ỹ−C̃x̃). (19)

Since the robot cannot directly measure x̃ in Equation (3), we track the motion of the
generalized states through the approximation ˙̃x = x̃′ = Dx x̃. The prediction for motion is
Ãx̃ + B̃ṽ with an uncertainty of Σ̃w. The Gaussian distribution becomes:

p(x̃′/x̃, ṽ, ϑ, λ) =
1√

(2π)n(p+1)|Σ̃w|
e−

1
2 (Dx x̃−Ãx̃−B̃ṽ)TΠ̃w(Dx x̃−Ãx̃−B̃ṽ). (20)

5.2. Prior Distributions

The remaining distributions p(ṽ), p(θ) and p(λ) are the priors of the robot brain that
can be transferred from prior (learned) experiences to the inference process. Similar to the
previous section, a Gaussian prior is placed over the inputs p(ṽ) = N (ṽ : ηṽ, Lṽ) as well,
with mean ηṽ and prior covariance Lṽ = (Pṽ)−1, as:

p(ṽ) =
1√

(2π)r(d+1)|Lṽ|
e−

1
2 (ṽ−ηṽ)T Pṽ(ṽ−ηṽ). (21)

The prior distribution of parameters θ ∈ Rl is assumed to be a Gaussian-centred around
the prior parameter value ηθ , with the prior covariance Lθ = (Pθ)−1:

p(θ) = N (θ : ηθ , Lθ) =
1√

(2π)l |Lθ |
e−

1
2 (θ−ηθ)T Pθ(θ−ηθ). (22)

Similarly, a Gaussian prior is placed over the hyperparameters λ ∈ R2:

p(λ) = N (λ : ηλ, Lλ) =
1√

(2π)2|Lλ|
e−

1
2 (λ−ηλ)T Pλ(λ−ηλ). (23)

A higher value of Pṽ, Pθ and Pλ represents the robot’s higher confidence in its prior
estimates ηṽ, ηθ , and ηλ, respectively.
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5.3. Simplification of the Internal Energy Action Ū

This section aims at using the distributions from the previous sections to simplify Ū.
The logarithm of a Gaussian prior after dropping constants takes the general form:

ln p(θ) = lnN (θ : ηθ , Lθ) = −1
2
(θ − ηθ)T(Lθ)−1(θ − ηθ)− 1

2
ln |Lθ | (24)

Therefore, substituting Equations (19)-(23) in Equation (18) and simplifying it using the
prediction error terms εx̃ = Dx x̃− Ãx̃− B̃ṽ, εỹ = ỹ− C̃x̃, εṽ = ṽ− ηṽ εθ = θ − ηθ , and
ελ = λ− ηλ, after dropping constants, yields:

U(ϑ, y) =− 1
2

εθT Pθεθ +
1
2

ln |Pθ | − 1
2

ελT Pλελ +
1
2

ln |Pλ| − 1
2

ε̃TΠ̃ε̃ +
1
2

ln |Π̃|, (25)

where ε̃ =

εỹ

εṽ

εx̃

 =

 ỹ− C̃x̃
ṽ− ηṽ

Dx x̃− Ãx̃− B̃ṽ

, and Π̃ = diag(Π̃z, Pṽ, Π̃w). Here diag(., .) is

the block diagonal operator. Grouping the internal energy terms of the temporal and
nontemporal parameters yields:

U(ϑ, y) = U(t) + U(θ) + U(λ), (26)

where
U(t) = −1

2
ε̃TΠ̃ε̃ +

1
2

ln |Π̃|. (27)

Summing up the internal energy of all the temporal parameters over time yields the action
of internal energy as follows:

Ū = U(θ) + U(λ) + ∑
t

U(t)

= −1
2

εθT Pθεθ +
1
2

ln |Pθ | − 1
2

ελT Pλελ +
1
2

ln |Pλ| −∑
t

1
2

ε̃TΠ̃ε̃ +
1
2 ∑

t
ln |Π̃|.

(28)

It can be observed from Equation (28) that the robot’s priors (ηṽ, Pṽ, ηθ , Pθ , ηλ, Pλ) enter
the free energy objective through the internal energy term. Intuitively, this can be seen
as the direct influence of the robot’s prior beliefs on the inference process through the
mismatches in the robot’s predictions. These weighed prediction errors drive the robot’s
desire to maintain an equilibrium between its internal model and the generative process in
the environment. A large mismatch between the robot’s predictions and the data results in
a large prediction error, which gets precision-weighted and enters the free energy objective
through its internal energy.

6. Mean-Field Approximation

The second widely used assumption for the simplification of free energy objectives is
the factorization of parameters into independent subdensities for the recognition density
[18], given by:

q(ϑ) = ∏
i

q(θi) = q(x̃)q(ṽ)q(θ)q(λ). (29)

This approximation assumes the conditional independence between subdensities (states
and parameters, for example). The subdensities are assumed to interact with each other
only through the mean-field quantities. The strong biological plausibility of this approx-
imation in terms of biological brain’s inference process is delineated in [27]. The main
advantage of this approximation is the simplification of V̄ in Equation (15). However,
the mathematical proof for this simplification is missing from the DEM literature [18].
Therefore, this section aims to fill this gap by deriving these proofs by delineating all the
intermediate assumptions.
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6.1. Simplification of the Entropy Action H̄

The entropy of the density in Equation (14), given by H(ϑ)q(ϑ) = −〈ln q(ϑ)〉q(ϑ), can
be simplified for all parameters as:

H(ϑ)q(ϑ) = −
∫ ∫ ∫ ∫

q(x̃, ṽ, θ, λ) ln q(x̃, ṽ, θ, λ)dx̃dṽdθdλ (30)

Substituting the mean-field assumption given in Equation (29) in Equation (30) and using
the property of normalized recognition densities

∫
q(θi)dθi = 1 yields:

H(ϑ)q(ϑ) = H(θ) + H(λ) + H(t), (31)

where H(θ) = −〈ln q(θ)〉q(θ), H(λ) = −〈ln q(λ)〉q(λ) and H(t) = −〈ln q(x̃)〉q(x̃)−〈ln q(ṽ)〉q(ṽ).
We place the Laplace approximation over the marginals of the recognition densities of all
parameters as:

q(θ) =N (θ : µθ , Σθ) =
1√

(2π)l |Σθ |
e−

1
2 (θ−µθ)TΠθ(θ−µθ)

q(λ) =N (λ : µλ, Σλ) =
1√

(2π)2|Σλ|
e−

1
2 (λ−µλ)TΠλ(λ−µλ)

q(x̃) =N (x̃ : µx̃, Σx̃) =
1√

(2π)n(p+1)|Σx̃|
e−

1
2 (x̃−µx̃)TΠx̃(x̃−µx̃)

q(ṽ) =N (ṽ : µṽ, Σṽ) =
1√

(2π)r(d+1)|Σṽ|
e−

1
2 (ṽ−µṽ)TΠṽ(ṽ−µṽ).

(32)

The recognition densities given in Equation (32) might look similar to the priors distribu-
tions given in Equation (21)-(23), mainly due to the common Gaussian distribution. The
prior distributions are centered around the prior mean and prior covariances, whereas the
recognition density is centered around the mean µi and conditional covariance Σi of the
i-th parameter set.

The action of entropy can be calculated by substituting Equation (32) in Equation (31)
and summing up the entropy terms of time dependent parameters with respect to time.
Upon dropping the constant terms, it simplifies to:

H̄ = H(θ) + H(λ) + ∑
t

H(t) =
1
2

ln |Σθ |+ 1
2

ln |Σλ|+ 1
2 ∑

t
ln |Σx̃|+ 1

2 ∑
t

ln |Σṽ|, (33)

Equation (33) shows how the uncertainty in the robot’s inference directly enters the objec-
tive F̄, through H̄.

6.2. Mean-Field Terms

Given the simplified expressions for Ū and H̄, the next step towards finding F̄ in
Equation (15) is to evaluate V̄ given by:

V̄ =
∫
〈U(y, ϑ)〉q(ϑ)dt (34)

U(y, ϑ) can be simplified using the second-degree Taylor series expansion near the mean
µϑ = {µx̃, µṽ, µθ , µλ} as:

U(y, x̃, ṽ, θ, λ) =U(y, µϑ) +
4

∑
i=1

U(y, µϑ)θi (θi − µi) +
4

∑
i=1

4

∑
j=1

(θi − µi)TU(y, µϑ)θiθ j(θ j − µj),

(35)
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where we use the shorthand U(y, µϑ) = U(y, ϑ)|ϑ=µϑ and U(y, µϑ)ϑ = U(y, ϑ)ϑ|ϑ=µϑ . This
approximation of the internal energy has nontrivial implications in terms of the biological
brain’s decision-making process [21]. The second order approximation is justified because
the Laplace and mean-field approximations entail an internal energy that is quadratic in x̃,
ṽ, and θ, as given in Equation (25), thereby reducing all its higher-order derivatives to zero.
Moreover, the higher derivatives of U(y, µϑ) with respect to λ, reduce to zero because of the
assumptions made in Section 9. By differentiating Equation (25) at the mean µi, U(y, µϑ)θi

can be found to be all zeroes, which upon substitution in Equation (35) simplifies to:

U(y, ϑ) = U(y, µϑ) +
4

∑
i=1

4

∑
j=1

(θi − µi)TU(y, µϑ)θiθ j(θ j − µj). (36)

Substituting it in Equation (34), upon simplification yields:

V̄ = Ū(y, µϑ) +
∫

Wdt (37)

where

W =
1
2

4

∑
i,j=1
〈(θi − µi)TU(y, µϑ)θiθ j(θ j − µj)〉q(ϑi)q(ϑj)

=
1
2

4

∑
i,j=1
〈tr
(
(θi − µi)TU(y, µϑ)θiθ j(θ j − µj)

)
〉q(ϑi)q(ϑj)

=
1
2

4

∑
i,j=1
〈tr
(
(θ j − µj)(θi − µi)TU(y, µϑ)θiθ j

)
〉q(ϑi)q(ϑj)

=
1
2

4

∑
i,j=1

tr
[
〈(θ j − µj)(θi − µi)T〉q(ϑi)q(ϑj)U(y, µϑ)θiθ j

]
=

1
2

4

∑
i,j=1

tr
[
ΣijU(y, µϑ)θiθ j

]
Since the parameters ϑi are assumed to be independent of each other, the covariance
between them drops to zero, resulting in:

V̄ = Ū(y, µϑ) +
1
2

∫ 4

∑
i=1

tr
[
ΣiU(y, µϑ)θiθi

]
dt

= Ū(y, µϑ) +
∫ [

W x̃ + W ṽ + Wθ + Wλ
]
dt,

(38)

where
Wϑi

=
1
2

tr
[
ΣiU(y, µϑ)θiθi

]
(39)

is defined as the mean-field term. Equation (38) shows that V̄ is the sum of internal energy
action and the mean field terms. The simplification of V̄ is one of the main advantages
of using mean-field approximation. However, this approximation can be relaxed to build
Generalized Filtering [37,42], which is mainly relevant to nonlinear identification. It
involves the modeling of parameters and hyperparameters in generalized coordinates
(together with states) for online system identification. However, in this work, we take a
simpler approach.

7. Simplified Free Energy Objectives

This section aims at simplifying the free energy objectives using the results from
Sections 5 and 6.
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7.1. Simplification of Free Action

F̄ is simplified by substituting Equations (38), (28), and (33) into Equation (15), yield-
ing:

F̄ =− 1
2
(εθT Pθεθ)|ϑ=µϑ +

1
2

ln |Pθ | − 1
2
(ελT Pλελ)|ϑ=µϑ +

1
2

ln |Pλ| −∑
t

1
2
(ε̃TΠ̃ε̃)|ϑ=µϑ

+
1
2 ∑

t
(ln |Π̃|)|ϑ=µϑ +

1
2 ∑

t
(ln |Σx̃|+ ln |Σṽ|) + 1

2
ln |Σθ |+ 1

2
ln |Σλ|

+
1
2 ∑

t
tr
[
Σx̃U(y, µϑ)x̃x̃ + ΣṽU(y, µϑ)ṽṽ + ΣθU(y, µϑ)θθ + ΣλU(y, µϑ)λλ

]
.

(40)

We highlight three important terms in Equation (40): the combined prediction error of
(generalized) outputs, inputs, and states E = 1

2 (ε̃
TΠ̃ε̃)|ϑ=µϑ , the log determinant of noise

precision G = (ln |Π̃|)|ϑ=µϑ , and the mean field term Wϑi
= 1

2 tr
[
ΣiU(y, µϑ)θiθi

]
. These

terms will be used rigorously in the rest of the document.

7.2. Simplification of the Parameter Precisions

One of the main advantages of Laplace approximation is the simple evaluation of
the covariance associated with the parameter estimation. This is achieved by setting the
gradient of the free action with respect to individual parameter covariance as zero. The
free action gradients with respect to covariance of paramaters ϑi is given by:

∂F̄
∂Σi =

∂

∂Σi

(1
2

ln |Σi|+ 1
2 ∑

t
tr(ΣiU(y, µϑ)ϑiϑi ))

)
=

1
2
(
(Σi)−1 + Ū(y, µϑ)ϑiϑi

)
. (41)

The optimal parameter covariance is the covariance that maximizes the free action with
zero gradients. Assuming that the parameter covariances are time-invariant, and equating
the gradients to zero yields Πi = −Ū(y, µϑ)ϑiϑi , resulting in:

Πx̃ = −U(y, µϑ)x̃x̃, Πṽ = −U(y, µϑ)ṽṽ, Πθ = −Ū(y, µϑ)θθ , Πλ = −Ū(y, µϑ)λλ (42)

From Equation (42), it is clear that the precision of parameters can be estimated just by
evaluating the negative curvature of the internal energy at the conditional mode. These
precision values denote the confidence of the estimator in the parameter estimate. Ideally,
the parameter precision increases as the estimation process proceeds. Intuitively, the robot
is more confident about its estimates (higher precision) when its predictions on the sensory
data show the least variance.

7.3. Free Action at Optimal Precision

Substituting Equation (42) into Equation (39) at optimal precisions results in constant
mean field terms. Therefore, the mean field terms in the free action given in Equation (40),
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reduces to a constant under the optimal precision given by Equation (42). Therefore, the
free action at optimal precision for an LTI system reduces to:

F̄ =− 1
2 ∑

t

[
(ỹ− C̃x̃)TΠ̃z(ỹ− C̃x̃)

∣∣∣ϑ=µϑ︸ ︷︷ ︸
prediction error of outputs

+ (ṽ− ηṽ)T Pṽ(ṽ− ηṽ)
∣∣∣ϑ=µϑ︸ ︷︷ ︸

prediction error of inputs

]

− 1
2
(θ − ηθ)T Pθ(θ − ηθ)

∣∣∣ϑ=µϑ︸ ︷︷ ︸
prediction error of parameters

−1
2
(λ− ηλ)T Pλ(λ− ηλ)

∣∣∣ϑ=µϑ︸ ︷︷ ︸
prediction error of hyperparameters

− 1
2 ∑

t
(Dx x̃− Ãx̃− B̃ṽ)TΠ̃w(Dx x̃− Ãx̃− B̃ṽ)

∣∣∣ϑ=µϑ︸ ︷︷ ︸
prediction error of (generalized) states

+
1
2

nt ln |ΣX |︸ ︷︷ ︸
state and input entropy

+
1
2

nt [ ln |Π̃z|+ ln |Pṽ|+ ln |Π̃w|
]∣∣∣ϑ=µϑ︸ ︷︷ ︸

noise entropy

+
1
2

ln |Σθ Pθ |︸ ︷︷ ︸
parameter entropy

+
1
2

ln |ΣλPλ|︸ ︷︷ ︸
hyperparameter entropy

(43)

Note that the free action is not a function of the latent variables (ϑ = {x̃, ṽ, θ, λ}) but the
sufficient statistics (µϑ, Σϑ) of the approximate posterior. For example, the weighted output
prediction error term of F̄ is (ỹ − C̃x̃)TΠ̃z(ỹ − C̃x̃)

∣∣∣ϑ=µϑ = (ỹ − µC̃µx̃)TΠ̃z
∣∣∣λz=µλz (ỹ −

µC̃µx̃), where
∣∣∣ϑ=µϑ denotes the evaluation at ϑ = µϑ, (x̃ = µx̃, ṽ = µṽ, θ = µθ , λ = µλ). We

regroup the time-dependent components into one variable X =

[
µx̃

µṽ

]
, and use capital letters

for the mean estimates of time-independent components (Θ = µθ , Λ = µλ). Note that X, Θ,
and Λ are part of the generative model and are the mean estimate of the components of
plant dynamics.

7.4. Equivalence with the EM Algorithm

One of the most popular approaches to solve the Expectiation Maximization (EM)
algorithm for state space models is to use the Maximum Likelihood Estimation (MLE),
where the objective function is the log-likelihood of data, given by [43]:

ln L = −1
2 ∑

t
(xt − Axt−1 − But−1)

TΠw(xt − Axt−1 − But−1)−
nt

2
ln |Σw|

− nt

2
ln |Σz| − 1

2
ln |Σx| − 1

2
(x0 − µ)TΠx(x0 − µ)− 1

2 ∑
t
(yt − Cxt)

TΠz(yt − Cxt).
(44)

Comparing the objective functions of EM and DEM given by Equation (44) and Equa-
tion (43), respectively, DEM is equivalent to EM when:

• the mean field terms are neglected,
• the generalized motion is not considered, and
• the robot’s priors on ϑ are not considered.

Therefore, DEM can be considered as a generalized version of the EM algorithm with
additional capabilities.

The free action at optimal precision (Equation 43) is the sum of prediction errors
(PE) and entropy of generalized states, parameters, noise, and hyperparameters and is
independent of mean-field terms. Although the mean-field terms turns into a constant at
optimal precision, their gradients do not. This property is leveraged in Section 8 to account
for the uncertainties in the parameter estimation during state estimation and vice versa,
through the gradient of mean-field terms.



Entropy 2021, 23, 1306 14 of 33

8. Update Rules for Estimation

The Free Energy objectives (Section 4), together with the two simplifying approxi-
mations (Sections 5 and 6), will be combined with an optimization procedure to form the
ultimate DEM algorithm. The optimization procedure itself consists of the following two
sets of update rules:

1. a gradient ascent over its free action F̄ for the time invariant parameters θ and λ,
2. a gradient ascent over its free energy F for the time varying parameters X,

where F and F̄ are related through F = ∂F̄
∂t . The core idea is that the time varying parameters

x̃ and ṽ can be estimated online from the robot’s instantaneous free energy, whereas the
time-invariant parameters θ and λ can be estimated from its free action after observing a
sequence of data. Accordingly, the update rules for both the gradient ascends are given by

∂µi

∂a
= ki ∂F̄

∂µi , (45)

for the ath parameter update of the time invariant parameters and

∂µi

∂t
= Dµi + ki ∂F

∂µi , (46)

for the time=varying parameters, where ki is the learning rate. The presence of Dµi

term in Equation (46) differentiates the update rule from the general gradient ascent
equation used in machine learning. This is to accommodate the boundary condition that
when F is maximized, ∂F

∂µi = 0 and µ̇i = Dµi. In other words, when the free energy is
maximized, the motion of the generalized states becomes their generalized motion [44].
However, the update equations for the time-invariant parameters, θ and λ, do not require
the Dµi term. Therefore, the update equations at tth time, ath parameter update step, and
bth hyperparameter update step, after regrouping the (generalized) states and inputs as

X =

[
µx̃

µṽ

]
, is given by:

∂X
∂t

= DX + kX ∂F
∂X

,
∂Θ
∂a

= kΘ ∂F̄
∂Θ

,
∂Λ
∂b

= kΛ ∂F̄
∂Λ

, (47)

where D = diag(Dx, Dv). Note that the gradient update rules are written not on the latent
variables (x̃, ṽ, θ and λ), but on their mean estimates (X, Θ and Λ). Since the update rules
should be implemented in the discrete domain for robotics applications, Equation (47)
is discretized under local linearization with the corresponding Jacobians as JX = D +

kX ∂2F
∂X2 , JΘ = kΘ ∂2 F̄

∂Θ2 , and JΛ = kΛ ∂2 F̄
∂Λ2 . The (generalized) state and input update at time t,

parameter update at step a and hyperparameter update at step b are given by:

Xt+∆t = Xt +
(
eJX∆t − I

)
(JX)−1 ∂X

∂t
,

Θa+1 = Θa +
(
eJΘ − I

)
(JΘ)−1 ∂Θ

∂a
,

Λb+1 = Λb +
(
eJΛ − I

)
(JΛ)−1 ∂Λ

∂b
.

(48)

Equation (48) shows that the update rules are dependent only on the gradients and curva-
tures of the free energy objectives.

8.1. The DEM Algorithm

The DEM algorithm is an iterative model inversion algorithm that uses Equations (48)
and (42) to perform estimation on causal dynamic systems. It can be expressed using three
steps:
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1. D step: (generalized) state and input estimation,
2. E step: parameter estimation,
3. M step: noise hyperparameter estimation,

a nomenclature that is similar to the EM algorithm. Figure 2 shows an intuitive block
diagram that demonstrates the inference process of DEM as a coupled dynamics between D,
E, and M steps. The data from the environment and the robot brain’s prior distributions are
used to infer the generative process. The pseudocode given in Algorithm 1 demonstrates
how DEM performs estimation using only the gradient and curvatures of the free energy
objectives. The next sections will focus on deriving the algebraic expressions for these
quantities.

Figure 2. The DEM algorithm is represented using three coupled steps: D, E, and M steps. The
algorithm combines the data from the environment with the robot’s prior beliefs to infer the states,
inputs, parameters and hyperparameters of the system. For each parameter update in the E step,
the D step updates the (generalized) states and inputs for all times instances, and the M step
iterates until hyperparameter convergence, as demonstrated in Algorithm 1. The dynamic process
is the generative model in Section 3.1, the priors are the distributions given in Section 5.2 and the
generalized coordinates block is defined in Section 3.4. Section 13 will elaborate on the D, E, and M
blocks.

8.2. Updated Equations for Estimation

The free energy gradients in Equation (47) can be evaluated by differentiating Equa-
tion (40) with µi. Substituting the resulting expression in Equation (47), upon simplification
yields:

Ẋ = DX + kX
[
− EX + WX

X + WΘ
X + WΛ

X

]
∂Θ
∂a

= kΘ
[
− Pθεθ

∣∣∣ϑ=µϑ + ∑
t

(
− EΘ + WX

Θ + WΘ
Θ + WΛ

Θ

)]
∂Λ
∂b

= kΛ
[
− Pλελ

∣∣∣ϑ=µϑ + ∑
t
(−EΛ + WX

Λ + WΘ
Λ + WΛ

Λ + GΛ)
]
,

(49)

where Eµi = ∂E
∂µi = 1

2
∂(ε̃TΠ̃ε̃)

∣∣∣ϑ=µϑ

∂µi is the gradient of the prediction error with respect to

µi, Wµi

µj =
∂Wµi

∂µj = 1
2

∂
∂µj tr

[
ΣiU(y, µϑ)µiµi

]
is the gradient of the mean field term of µi with

respect to µj, and GΛ = 1
2

∂
∂Λ ln |Π̃|

∣∣∣ϑ=µϑ is the gradient of the log-determinant of the



Entropy 2021, 23, 1306 16 of 33

precision matrix with respect to Λ. From Equation (49), the Jacobians that are required for
the updates given in Equation (48) can be evaluated as:

JX = D + kX
[
− EXX + WX

XX + WΘ
XX + WΛ

XX

]
JΘ = kΘ

[
− Pθ + ∑

t

(
− EΘΘ + WX

ΘΘ + WΘ
ΘΘ + WΛ

ΘΘ

)]
JΛ = kΛ

[
− Pλ + ∑

t

(
− EΛΛ + WX

ΛΛ + WΘ
ΛΛ + WΛ

ΛΛ + GΛΛ

)] (50)

The Jacobians are employed in different loops corresponding to the D, E, and M steps in
the Algorithm 1.

Algorithm 1: Dynamics Expectation Maximization
Data: Time series data of output y
Result: X, Θ, Λ, Πx̃,ṽ, Πθ , Πλ

a = 0;
while Θ not converged do

for t = 0:∆t:T do . D step
∂X
∂t = DX + kX ∂F

∂X ;

JX = D + kX ∂2F
∂X2 ;

Xt+∆t = Xt + (eJX∆t − I)(JX)−1 ∂X
∂t ;

end
while Λ not converged do . M step

∂Λ
∂b = kΛ ∂F̄

∂Λ ;

JΛ = kΛ ∂2 F̄
∂Λ2 ;

Λ←− Λ + (eJΛ − I)(JΛ)−1 ∂Λ
∂b ;

end
F̄a ←− Equation (43) . F̄ at optimal precision
if F̄a > F̄a−1 then . update Θ if F̄ increased

∂Θ
∂a = kΘ ∂F̄

∂Θ ;

JΘ = kΘ ∂2 F̄
∂Θ2 ;

Θ←− Θ + (eJΘ − I)(JΘ)−1 ∂Θ
∂a ; . E step

end
a++ ;
Πx̃,ṽ = −U(y, µϑ)[ x̃

ṽ

][
x̃
ṽ

]; . update generalized state precision

Πθ = −Ū(y, µϑ)θθ ; . parameter precision
Πλ = −Ū(y, µϑ)λλ ; . hyperparameter precision

end

8.3. Update Equation for Precision of Estimates

The uncertainty in estimation is represented by the inverse of precision matrices Πϑi
.

Differentiating Equations (25) and (28) twice and substituting it into Equation (42) upon
simplification yield:

Πx̃,ṽ = −U(y, µϑ)[ x̃
ṽ

][
x̃
ṽ

] = EXX

Πθ = −Ū(y, µϑ)θθ = Pθ + ∑
t

EΘΘ

Πλ = −Ū(y, µϑ)λλ = Pλ + ∑
t

(
EΛΛ − GΛΛ)

) (51)
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The only unknowns in the DEM update equations given by Equations (49), (50), and (51)
are the gradients and curvatures of E, W, and G. Sections 9–11 will deal with evaluating
the simplified algebraic expressions for these gradients and curvatures. Using these
simplifications, Section 12 will proceed towards expanding Algorithm 1.

9. Gradients of (Log Determinant of) Precision

This section aims at evaluating the gradients of the log determinant of noise precision
(GΛ, GΛΛ) that are required for the hyperparameter update rules of the DEM algorithm.
The precision matrix for hyperparameter estimation is modeled as:

Π̃ = diag(Π̃z, Pṽ, Π̃w) = diag(eλz
(S⊗Ωz), Pṽ, eλw

(S⊗Ωw)), (52)

where S is the noise smoothness matrix given by Equation (7) and Ωz, Ωw are the constant
matrices given in Equation (6). Here the precision matrix is parametrized using λ =

[
λz

λw
]
,

which is the only unknown in Equation (52). Therefore, the log determinant of precision
and its gradients can be written as:

G = ln |Π̃|
∣∣∣ϑ=µϑ , GΛ =

1
2

[
tr(Π̃λz Π̃−1)
tr(Π̃λw Π̃−1)

]∣∣∣ϑ=µϑ ,

GΛiΛj =
1
2

tr(Π̃λiλj Π̃−1 − Π̃λi Π̃−1Π̃λj Π̃−1)
∣∣∣ϑ=µϑ ,

(53)

where λi is the ith element in λ. The gradients of precision in Equation (53) can be evaluated
by differentiating Equation (52) as:

Π̃λz = diag(eλz
(S⊗Ωz), O, O) = diag(Π̃z, O, O),

Π̃λw = diag(O, O, eλw
(S⊗Ωz)) = diag(O, O, Π̃z),

Π̃λzλw = O, Π̃λwλz = O.

(54)

Substituting Equations (54) and (52) in Equation (53) yields:

GΛ =
1
2

[
tr(InΠ̃z )
tr(InΠ̃w )

]
=

1
2

[
nΠ̃z

nΠ̃w

]
, (55)

where InΠ̃z is the identity matrix of size nΠ̃z
, which is the size of the Π̃z matrix. Πw

and Πz are modeled to have an exponential relation with λ, so that any updates on λ
would result in positive semi-definite precision matrices. However, this relation entails an
infinitely differentiable precision matrix with respect to λ, increasing the computational
complexity of the algorithm. Therefore, an approximation is made by forcefully setting
Π̃λzλz = Π̃λwλw = O, while maintaining the exponential relation between Π̃ and λ, thereby
ensuring that the optimization process proceeds along the correct gradients Π̃λ. Together
with Equation (54), this approximation results in Π̃λλ = O. This assumption has two direct
consequences:

• It simplifies all the update rules given in Equations (49) and (50),
• It simplifies the precision update rule for hyperparameters given in Equation (51).

A direct consequence of this approximation is in the simplification of GΛΛ in Equation (53),
expressed as:

GΛΛ = −1
2

[
tr(Π̃λz Π̃−1Π̃λz Π̃−1) tr(Π̃λz Π̃−1Π̃λw Π̃−1)
tr(Π̃λw Π̃−1Π̃λz Π̃−1) tr(Π̃λw Π̃−1Π̃λw Π̃−1)

]∣∣∣ϑ=µϑ , (56)
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which upon substitution of Equations (52) and Equation (54) yields:

GΛΛ = −1
2

[
tr(InΠ̃z ) O

O tr(InΠ̃w )

]
= −1

2

[
nΠ̃z

O
O nΠ̃w

]
, (57)

where nΠ̃z
= m(p + 1) and nΠ̃w

= n(p + 1) are the sizes of Π̃z and Π̃w, respectively. From
Equations (55) and (57), GΛ and GΛΛ are constants, and can be pre-computed in Algorithm
1.

10. Gradients of Prediction Error

As opposed to the result above, the gradients of the prediction errors are not constant,
as is shown in this section.

10.1. Gradients of Prediction Error Along (Generalized) States

The error in prediction of (generalized) outputs, inputs and states is represented
together by ε̃, which makes up the precision weighted prediction error defined by E =
1
2 ε̃TΠ̃ε̃

∣∣∣ϑ=µϑ , where Π̃ = diag(Π̃z, Pṽ, Π̃w). The error and its gradient are:

ε̃ =

 ỹ− C̃x̃
ṽ− ηṽ

Dx x̃− Ãx̃− B̃ṽ

, ε̃X

∣∣∣ϑ=µϑ =

 −C̃ O
O I

Dx − Ã −B̃

. (58)

The gradient of prediction error with respect to X can be simplified as:

EX = ε̃T
XΠ̃ε̃

∣∣∣ϑ=µϑ = A1X + B1

[
ỹ
−ηṽ

]
, (59)

where A1 =

[
C̃TΠ̃zC̃ + (Dx − Ã)TΠ̃w(Dx − Ã) −(Dx − Ã)TΠ̃w B̃

−B̃TΠ̃w(Dx − Ã) Pṽ + B̃TΠ̃w B̃

]∣∣∣ϑ=µϑ and

B1 =

[
−C̃TΠ̃z O

O Pṽ

]∣∣∣ϑ=µϑ . Since EX is linear in X, differentiating Equation (59) with

respect to X yields a simple expression for curvature EXX as:

EXX = ε̃T
XΠ̃ε̃X

∣∣∣ϑ=µϑ =

[
C̃TΠ̃zC̃ + (Dx − Ã)TΠ̃w(Dx − Ã) −(Dx − Ã)TΠ̃w B̃

−B̃TΠ̃w(Dx − Ã) Pṽ + B̃TΠ̃w B̃

]∣∣∣ϑ=µϑ .

(60)

10.2. Gradients of Prediction Error Along Parameters

To evaluate the gradients of prediction error along the parameters Θ, the reformulated
definition of ε̃ is used:

ε̃ =

 ỹ− Nθ
ṽ− ηṽ

Dx x̃−Mθ

, ε̃Θ = (ε̃θ)|θ=µθ =

−N
O
−M

, (61)
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where M and N are given in Equation (5). This is to ensure that the variable Θ can be
separated out of the expression for EΘ such that it is linear in Θ as follows:

EΘ = (ε̃T
θ Π̃ε̃)|ϑ=µϑ = −

[
NT O MT]Π̃

 ỹ− Nθ
ṽ− η̃

Dx x̃−Mθ

∣∣∣ϑ=µϑ

= (NTΠ̃zN + MTΠ̃w M)
∣∣∣ϑ=µϑ Θ−

[
NTΠ̃z MTΠ̃wDx]∣∣∣ϑ=µϑ

[
ỹ
µx̃

]
= A2Θ− B2

[
ỹ
µx̃

]
.

(62)

Since EΘ is linear in Θ, differentiating Equation (62) with respect to Θ yields a simple
expression for EΘΘ as:

EΘΘ = (ε̃T
θ Π̃ε̃θ)

∣∣∣ϑ=µϑ =
[
NTΠ̃zN + MTΠ̃w M

]∣∣∣ϑ=µϑ = A2. (63)

10.3. Gradients of Prediction Error Along Hyperparameters

The gradients of prediction error along the hyperparameters Λ is simpler, and is given
by EΛ = 1

2 ε̃TΠ̃λ ε̃
∣∣∣ϑ=µϑ , EΛΛ = 1

2 ε̃TΠ̃λλ ε̃
∣∣∣ϑ=µϑ , which upon using Π̃λλ = 0, gives:

EΛ =
1
2

tr(Π̃λ ε̃ε̃T)
∣∣∣ϑ=µϑ =

1
2

[
tr(Π̃z(ỹ− C̃x̃)(ỹ− C̃x̃)T)

tr(Π̃w(Dx x̃− Ãx̃− B̃ũ)(Dx x̃− Ãx̃− B̃ũ)T)

]∣∣∣ϑ=µϑ ,

EΛΛ =
1
2

ε̃TΠ̃λλ ε̃
∣∣∣ϑ=µϑ = 0.

(64)

In summary, Equations (59), (62), and (64) represent the gradients of the prediction error
term, whereas Equations (60), (63), and (64) represent its curvatures. The next section will
deal with evaluating the analytic expressions for all the gradients and curvatures of the
mean field term.

11. Gradients of Mean Field Terms

This section aims to derive the analytic expressions for the mean field terms and their

gradients: Wµi

µj and Wµi

µjµj , ∀ µ ∈ {X, Θ, Λ}.

11.1. Gradients of mean field terms along hyperparameters

In this section, we prove that all the gradients and curvatures of WΛ (namely WΛ
µi and

WΛ
µiµi ) are zeroes. The mean field term for hyperparameters Λ can be expressed as:

WΛ =
1
2

tr
[
ΣλU(y, µϑ)λλ

]
. (65)

To compute the gradients of WΛ, we need the curvature of internal energy with respect
to λ. This can be evaluated by first differentiating Equation (25) with respect to λ and
evaluating it at ϑ = µϑ, which yields:

U(y, µϑ)λ = U(y, ϑ)λ

∣∣∣ϑ=µϑ = −Pλελ
∣∣∣ϑ=µϑ −

1
2
(ε̃TΠ̃λ ε̃)

∣∣∣ϑ=µϑ + GΛ, (66)

where GΛ is given by Equation (55). Upon further differentiation, we get:

U(y, µϑ)λλ = −Pλ − 1
2
(ε̃TΠ̃λλ ε̃)

∣∣∣ϑ=µϑ + GΛΛ. (67)
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The assumption of Π̃λλ = 0 applied to Equation (67) yields:

U(y, µϑ)λλ = −Pλ + GΛΛ (68)

which contains only constants. Therefore, the assumption of Π̃λλ = 0 reduces all the
gradients and curvatures of mean field terms of Λ to zeros:

WΛ
µi =

1
2

tr
[
ΣλU(y, µϑ)λλµi

]
= 0, WΛ

µiµi = 0. (69)

Since the internal energy given in Equation (25) is quadratic in ϑi, and since Π̃λλ = 0, all
the gradients and curvatures of the mean field term of ϑi with respect to itself are zeros:

Wµi

µi =
1
2

tr
[
Σϑi

U(y, µϑ)ϑiϑiµi

]
= 0, Wµi

µiµi = 0. (70)

11.2. Gradients of Mean Field Terms Along Generalized States

The mean-field term of the combined generalized states X can be expressed as:

WX =
1
2

tr
[
ΣXU(y, µϑ)XX

]
. (71)

The curvature of internal energy with respect to X can be calculated by differentiating
Equation (25) with respect to X twice, resulting in U(y, µϑ)XX = − 1

2 ε̃T
XΠ̃ε̃X . Substituting it

in Equation (71) upon differentiation with Θ yields:

WX
Θi = −

1
2

tr(ΣX ε̃T
Xθi Π̃ε̃X)

∣∣∣ϑ=µϑ = −1
2

tr
(

ΣX

[
−C̃T

θi O −ÃT
θi

O O −B̃T
θi

]
Π̃

 −C̃ O
O I

Dx − Ã −B̃

)∣∣∣ϑ=µϑ

= −1
2

tr
[
ΣX

[
C̃T

θi Π̃zC̃− ÃT
θi Π̃w(Dx − Ã) ÃT

θi Π̃w B̃
−B̃T

θi Π̃w(Dx − Ã) B̃T
θi Π̃w B̃

]]∣∣∣ϑ=µϑ ,

(72)

where the gradient of the mean field with respect to Θ is given by WX
Θ =[

WX
Θ1 WX

Θ2 ... WX
Θi

]T
. Similarly, the elements of the curvature matrix of the mean field

term with respect to Θ is given by:

WX
ΘiΘj = −

1
2

tr(ΣX ε̃T
Xθi Π̃ε̃Xθ j)

∣∣∣ϑ=µϑ = −1
2

tr
[
ΣX

[
C̃T

θi Π̃zC̃θ j + ÃT
θi Π̃w Ãθ j ÃT

θi Π̃w B̃θ j

B̃T
θi Π̃w Ãθ j B̃T

θi Π̃w B̃T
θ j

]]∣∣∣ϑ=µϑ .

(73)

The gradient and curvature of the mean field term of X with respect to Λ can be evaluated
as:

WX
Λ = −1

2
tr(ΣX ε̃T

XΠ̃λ ε̃X)
∣∣∣ϑ=µϑ = −1

2
tr(Π̃λ ε̃XΣX ε̃T

X)
∣∣∣ϑ=µϑ

= −1
2

[
tr
(
Π̃zC̃ΣxC̃T)

tr(Π̃w[ (Dx−Ã), −B̃
]
ΣX[ (Dx−Ã)T

−B̃T

])]∣∣∣ϑ=µϑ

WX
ΛΛ = −1

2
tr(Π̃λλ ε̃XΣX ε̃T

X)
∣∣∣ϑ=µϑ = 0,

(74)

where Σx is a component of ΣX =
[

Σx̃ Σx̃ṽ

Σx̃ṽ Σṽ

]
. Here the curvature WX

ΛΛ vanishes due to the
assumption that Π̃λλ = 0.
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11.3. Gradients of Mean Field Terms Along Parameters

The mean-field term of the parameters Θ can be expressed as

WΘ =
1
2

tr
[
ΣθU(y, µϑ)θθ

]
=

1
2

tr
[
Σθ(−Pθ − ε̃T

θ Π̃ε̃θ)
]∣∣∣ϑ=µϑ . (75)

Differentiating Equation (75) with X and substituting Equation (61) in it yields the gradient
as:

WΘ
X = −1

2


tr
(

Σθ
(

NT
X1 Π̃zN + MT

X1 Π̃w M
))

tr
(

Σθ
(

NT
X2 Π̃zN + MT

X2 Π̃w M
))

...

∣∣∣ϑ=µϑ , (76)

and the elements of the curvature matrix as:

WΘ
XiX j = −

1
2

tr
(

Σθ
(

NT
Xi Π̃zNX j + MT

Xi Π̃w MT
X j

))∣∣∣ϑ=µϑ . (77)

Differentiating Equation (75) with respect to λ yields the gradient and curvature as:

WΘ
Λ = −1

2
tr(Σθ ε̃T

θ Π̃λ ε̃θ)
∣∣∣ϑ=µϑ = −1

2
tr(Π̃λ ε̃θΣθ ε̃T

θ )
∣∣∣ϑ=µϑ ,

= −1
2

[
tr(Π̃λz ε̃θΣθ ε̃T

θ )

tr(Π̃λw ε̃θ Σθ ε̃T
θ )

]∣∣∣ϑ=µϑ = −1
2

[
tr(Π̃z NΣθ NT)

tr(Π̃w MΣθ MT)

]∣∣∣ϑ=µϑ

WΘ
ΛΛ = −1

2
tr(Π̃λλ ε̃θΣθ ε̃T

θ )
∣∣∣ϑ=µϑ = 0.

(78)

Here, WΘ
ΛΛ vanishes due to the assumption that Π̃λλ = 0.

12. The Complete DEM Algorithm

By combining the gradients found from Sections 9, 10, and 11 with the Algorithm 1,
we can finalize the full DEM algorithm so that it can iteratively compute the estimates and
the associated precisions from data.

12.1. DEM Estimates

The main equations that are required to perform the update rules of DEM given in
Equation (48) can be summarized as:

Ẋ = DX + kX(−EX + WΘ
X ), JX = D + kX(−EXX + WΘ

XX)

∂Θ
∂a

= kΘ
[
− Pθεθ

∣∣∣ϑ=µϑ + ∑
t

(
− EΘ + WX

Θ

)]
, JΘ = kΘ

[
− Pθ + ∑

t

(
− EΘΘ + WX

ΘΘ

)]
∂Λ
∂b

= kΛ
[
− Pλελ

∣∣∣ϑ=µϑ + ∑
t
(−EΛ + WX

Λ + WΘ
Λ + GΛ)

]
, JΛ = kΛ(−Pλ + ntGΛΛ)

(79)

where EX , EXX , EΘ, EΘΘ, EΛ, WΘ
X , WΘ

XX , WX
Θ , WX

ΘΘ, WX
Λ , WΘ

Λ , GΛ, andGΛΛ are given by Equa-
tions (59), (60), (62), (63), (64), (76), (77), (72), (73), (74), (78), (55), and (57), respectively.
The hyperparameter update rule can be further simplified to reduce the computational
complexity as:

∂Λ
∂b

= −kΛPλελ
∣∣∣ϑ=µϑ +

kΛnt

2

[
nΠ̃z

nΠ̃w

]
− kΛ

2

[
tr(Π̃z A3)
tr(Π̃wB3)

]∣∣∣ϑ=µϑ (80)
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where

A3 = ∑
t

(
(ỹ− C̃x̃)(ỹ− C̃x̃)T + NΣθ NT + C̃Σx̃x̃C̃T)

B3 = ∑
t

(
(Dx x̃− Ãx̃− B̃ũ)(Dx x̃− Ãx̃− B̃ũ)T + MΣθ MT +

[
(Dx−Ã), −B̃

]
ΣX[ (Dx−Ã)T

−B̃T

])
.

Substituting Equation (57) to the expression for JΛ in Equation (79) yields:

JΛ = −kΛ(Pλ +
nt

2

[
nΠ̃z

O
O nΠ̃w

]
), (81)

which is independent of Λ. This reduces the algorithm’s computational complexity, as JΛ

can now be pre-computed.

12.2. Precision of Estimates

This section simplifies the precision for DEM’s estimates for an LTI system. The
confidence in the estimate of (generalized) states and inputs can be simplified using
Equations (51) and (60) as:

Πx̃,ṽ = EXX =

[
C̃TΠ̃zC̃ + (Dx − Ã)TΠ̃w(Dx − Ã) −(Dx − Ã)TΠ̃w B̃

−B̃TΠ̃w(Dx − Ã) Pṽ + B̃TΠ̃w B̃

]∣∣∣ϑ=µϑ . (82)

From Equation (82), the precisions for state and input estimation are Πx̃x̃ = C̃TΠ̃zC̃+(Dx−
Ã)TΠ̃w(Dx − Ã) and Πṽṽ = Pṽ + B̃TΠ̃w B̃, respectively. The cross-correlation between the
(generalized) states and inputs are given by −B̃TΠ̃w(Dx − Ã). Since Πx̃,ṽ is independent
of X, it can be updated outside the D step.

Combining the results of Equations (51) and (63) yields the precision of parameter
estimates Πθ , which is independent of Θ, as:

Πθ = Pθ + ∑
t

EΘΘ = Pθ + ∑
t

[
NTΠ̃zN + MTΠ̃w M

]∣∣∣ϑ=µϑ . (83)

From Equations (51), (64), and (57), the precision of hyperparameter estimation is:

Πλ = Pλ + ∑
t

(
EΛΛ − GΛΛ)

)
= Pλ +

nt

2
diag(nΠ̃z

, nΠ̃w
), (84)

which is a constant and hence is never updated in the algorithm. In conclusion, the estima-
tion using Equation (79), along with the precision of these estimates given by Equations (82),
(83), and (84) completely define the DEM algorithm for an LTI system with colored noises.
The complete DEM algorithm is given in Algorithm 2.
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Algorithm 2: Dynamics Expectation Maximization
Data: Time series data of output y
Result: (X, Θ, Λ), (Πx̃,ṽ, Πθ , Πλ)
a = 0;
Evaluate ỹ from y . Equation (9)
Precompute gradients Ãθi , B̃θi , C̃θi , NXi , MXi ;
Set all priors: ηṽ, Pṽ, ηθ , Pθ , ηλ, Pλ ;
Initialize Θ, Λ, ΠX , Πθ , Πλ with their priors ;
GΛ, GΛΛ ←− Equation (55) and (57) ;
Πλ ←− Pλ − ntGΛΛ ;
JΛ ←− kΛ(− Pλ + ntGΛΛ

)
;

while Θ not converged do . E step loop
Set EΘ, EΘΘ, E1 to zero ;
WΘ

XX ←− f indWΘ
XX(NX , MX , Π̃, Πθ) ; . Equation (77)

EXX ←− f indEXX(A, B, C, Π̃) ; . Equation (60)
JX ←− D + kX(−EXX + WΘ

XX);
for t = 0:∆t:T do . D step loop

// Perform D step ;
WΘ

X ←− Equation (76) ;
EX ←− Equation (59) ;
∂X
∂t ←− DX + kX(−EX + WΘ

X );
Xt+∆t ←− Xt + (eJX∆t − I)(JX)−1 ∂X

∂t ;
// Accumulate terms for E step ;

M, N ←− Equation (5); . use new X
A2, B2 ←− Equation (62) ;

EΘ ←− EΘ + A2Θ− B2

[
ỹ

µx̃

]
;

EΘΘ ←− EΘΘ + A2 ;
// Accumulate terms for M step ;

ε̃, ε̃X , ε̃Θ ←− Equation (58), (61) ;
E1 ←− E1 + ε̃ε̃T + ε̃XΣX ε̃T

X + ε̃ΘΣθ ε̃T
Θ;

end
while Λ not converged do . M step loop

∂Λ
∂b ←− kΛ(− Pλελ + GΛ − 1

2

[
tr(Π̃λz E1)

tr(Π̃λw E1)

])
;

Λ←− Λ + (eJΛ − I)(JΛ)−1 ∂Λ
∂b ;

Π̃←− Equation (52) ; . update with new Λ
end
F̄a ←− f indF̄(X, ΠX , Θ, Πθ , Λ, Πλ) ; . Equation (43)
if F̄a > F̄a−1 then . update Θ if F̄ increased

WX
Θ , WX

ΘΘ ←− Equation (72), (73) ;
∂Θ
∂a ←− kΘ[−PθεΘ − EΘ + ntWX

Θ ] ;
JΘ ←− kΘ[−Pθ − EΘΘ + ntWX

ΘΘ] ;
Θ←− Θ + (eJΘ − I)(JΘ)−1 ∂Θ

∂a ; . E step
A, B, C ←− Equation (4) ; . update with new Θ

end
a++ ;
Πx̃,ṽ = EXX ; . update generalized state precision
Πθ = Pθ + EΘΘ ; . update parameter precision

end
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13. Translation into Simplified Mathematical Form

Although the pseudocode derived in the previous sections is sufficient to replicate the
DEM algorithm for an LTI system with colored noise, it is not sufficient to analyze DEM
using the standard control systems tools for stability checks, convergence, etc. Therefore,
in this section we translate the algorithm into a simplified mathematical form that control
engineers can easily analyze. The following subsections aim at converting the DEM updates
into a coupled linear system.

13.1. State and Input Estimation as a Linear Observer

This section deals with reformulating the D step of DEM for an LTI system as a
(generalized) state and input observer. Substituting Equation (59) in Equation (79) with a
learning rate of kX = 1 yields [2]:

Ẋ =

[ ˙̃x
˙̃v

]
= (D− A1)X− B1

[
ỹ
−ηṽ

]
+ WΘ

X . (85)

We now aim to mathematically prove that the (generalized) state and input observer
of DEM can be reduced into an augmented LTI system, for which an exact discretization
can be performed. We proceed by simplifying the mean field terms in Equation (39) as:

WΘ
X =− 1

2

tr
(
Σθ(NT

X1 Π̃zN + MT
X1 Π̃w M)

)
tr
(
Σθ(NT

X2 Π̃zN + MT
X2 Π̃w M)

)
...

∣∣∣ϑ=µϑ

=− 1
2

 vec(ΣθT)T(I ⊗ (NT
X1 Π̃z)vec(N))+

vec(ΣθT)T(I ⊗ (MT
X1 Π̃w)vec(M))

...

∣∣∣ϑ=µϑ

=(ZN
X vec(N) + ZM

X vec(M))
∣∣∣ϑ=µϑ ,

(86)

where,

ZN
X = −1

2
(I ⊗ vec(ΣθT)T)

I ⊗ (NT
X1 Π̃z)

I ⊗ (NT
X2 Π̃z)

...

, ZM
X = −1

2
(I ⊗ vec(ΣθT)T)

I ⊗ (MT
X1 Π̃w)

I ⊗ (MT
X2 Π̃w)

...

.

(87)
Since M and N can be obtained from linear transformation of X, vec(M) and vec(N) can
be written as:

vec(M) = ZMX and vec(N) = ZN X, (88)

where ZM and ZN are matrices with elements 0 and 1. This leads to the mean field term
being expressed as a linear transformation of X:

WΘ
X = (ZN

X ZN + ZM
X ZM)

∣∣∣ϑ=µϑ X. (89)

Substituting Equation (89) into Equation (85) simplifies the observer as:

Ẋ = A4X + B4

[
ỹ
−ηṽ

]
,

A4 = D− A1 + (ZN
X ZN + ZM

X ZM)
∣∣∣ϑ=µϑ and B4 = −B1.

(90)

The (generalized) state and input observer given by Equation (90) is of the form of an
augmented LTI system. Therefore, an exact discretization can be used to solve it without
using the second order gradient JX as given in Equation (48). This reduces the algorithm’s
computational complexity because EXX and WΘ

XX for JX calculation are no longer necessary.
Figure 3 shows the simplified control diagram of the observer. The stability condition of
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this observer (under known θ and λ) and its similarity with the Kalman Filter is discussed
in our prior work [2]. To evaluate WΘ

X , one could either use Equation (89) or Equation (76).
Equation (90) is derived mainly for simplification and exact discretization.

Figure 3. The DEM algorithm for an LTI system, with the D step simplified as an augmented LTI
system given by Equation (90). The D-step block corresponds to the D-step loop in Algorithm 2 and
operates at a different frequency from the E and M blocks.

13.2. Parameter Estimation—System Identification

This section aims to mathematically prove that the E step can be reduced to an
augmented LTI system, for which an exact discretization can be performed. We proceed by
first simplifying the parameter update equation given in Equation (79):

∂Θ
∂a

= −Pθ(Θ− ηθ)
∣∣∣ϑ=µϑ + ∑

t
(−EΘ + WX

Θ ). (91)

Grouping all WX
Θi using Equation (72) yields:

WX
Θ = −1

2

(
I ⊗ vec(ΣXT)T

)I ⊗ ε̃T
Xθ1 Π̃

I ⊗ ε̃T
Xθ2 Π̃

...

vec(ε̃X)
∣∣∣ϑ=µϑ = Zε

θ vec(ε̃X)
∣∣∣ϑ=µϑ (92)

where

ε̃T
Xθi Π̃ = −

[
C̃T

θi Π̃z O ÃT
θi Π̃w

O O B̃T
θi Π̃w

]
, vec(ε̃X) = −vec

[ C̃ O
O O
Ã B̃

]
+ vec

[ O O
O I
Dx O

]
= −Zθθ + ZI .

(93)

Here Zθ and ZI are constant matrices with elements 0 and 1. Substituting vec(ε̃X) from
Equation (93) in Equation (92) yields:

WX
Θ = −(Zε

θ Zθ)|ϑ=µϑ Θ + (Zε
θ ZI)|ϑ=µϑ . (94)

Substituting Equations (94) and (62) in Equation (91), simplifies the parameter update
equation to

∂Θ
∂a

= A5Θ + B5,

A5 = −[Pθ + nt(Zε
θ Zθ)|ϑ=µϑ + ∑

t
A2], B5 = Pθηθ + nt(Zε

θ ZI)|ϑ=µϑ + ∑
t

B2
[ ỹ

µx̃
]
,

(95)
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where A2 and B2 are given in Equation (62). Equation (95) is a linear differential equation
in Θ for which an exact discretization can be computed. For each Θ update in Algorithm 2,
A2 and B2 are also updated, consequently updating A5 and B5. Therefore, Equation (95)
is equivalent to a linear time-varying system. Figure 4 shows the simplified parameter
estimation step of the robot brain. To evaluate WX

Θ , one could use either Equation (72) or
Equation (94). Equation (94) was derived mainly for the exact discretization and for the
convergence proof in Section 14.

Figure 4. The DEM algorithm for an LTI system, with the E step simplified as an augmented LTI
system given by Equation (95). The E-step block corresponds to the E-step outer loop in Algorithm 2
and operates at a different frequency when compared to the D and M blocks. The dotted lines
illustrate the flow of variables from other blocks and demonstrate the coupled nature of D, E, and M
steps. This diagram is illustrative and should not be confused with a control diagram.

13.3. Hyperparameter Update

The update equation in Equation (80) can be simplified as:

∂Λ
∂b

=kΛ
[
− Pλελ +

nt

2

[
nΠ̃z

nΠ̃w

]
− 1

2

[
eλz

tr((S⊗Ωz)A3)

eλw
tr((S⊗Ωw)B3)

]]∣∣∣ϑ=µϑ

=− kΛ

2

[
tr((S⊗Ωz)A3) O

O tr((S⊗Ωw)B3)

]
eΛ − (kΛPλ)Λ + (kΛPληλ +

kΛnt

2

[
nΠ̃z

nΠ̃w

]
)

=a1eΛ + a2Λ + a3,
(96)

where a1, a2, and a3 are constants that are independent of Λ. Since Equation (96) is nonlinear
in Λ, an approximate discretization like the conventional Gauss–Newton update scheme
given in Equation (48) should be used for the M step. In summary, the D and E steps follow
an exact discretization, whereas the M step follows an approximate discretization.

14. Convergence Proof for Parameter and Hyperparameter Estimation

In robotics, it is important that learning algorithms provide a stable solution, especially
when robot safety during operation is a concern. Therefore, a proof of convergence for DEM
is important for its widespread use in robotics as a learning algorithm. However, the DEM
literature lacks any such mathematical proof of convergence for the estimator. Therefore,
this section aims at providing one for the parameter and hyperparameter estimation step
on LTI systems.
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Since the update equation given by Equation (95) is a linear differential equation,
proving that A5 ≺ O is sufficient to prove that Θ converges to a stable solution. Substituting
the expression for A2 from Equation (62) to the A5 in Equation (95), yields:

A5 = −[Pθ + ntZε
θ Zθ + ∑

t
(NTΠ̃zN + MTΠ̃w M)]

∣∣∣ϑ=µϑ . (97)

Since the prior precision matrix can be chosen to be positive definite, Pθ � O. It is
straightforward to note from the expression for A2 in Equation (62) that ∑t A2 � O,
because Π̃z � O, Π̃w � O =⇒ NTΠ̃zN � O, and MTΠ̃w M � O. Therefore, the proof of
convergence is complete if we prove that Zε

θ Zθ � O. Simplifying the expressions for Zε
θ

and Zθ from Equations (92) and (93), after some nontrivial linear algebra [41], yields:

Zε
θ Zθ =

1
2

∂θ̃

∂θ

T

Z1Z2
∂θ̃

∂θ
(98)

where

Z1 = diag(Π̃w ⊗ I, Π̃w ⊗ I, Π̃z ⊗ I),
∂θ̃

∂θ
= diag(vecÃT

vecAT , vecB̃T
vecBT , vecC̃T

vecCT ),

Z2 =

I ⊗ Σx̃x̃T I ⊗ Σṽx̃T O
I ⊗ Σx̃ṽT I ⊗ ΣṽṽT O

O O I ⊗ Σx̃x̃T

.

It is straightforward from Equation (98) that Zε
θ Zθ � O because Z1 � O, and Z2 � O.

Combining all the results from this section, Pθ � O, Zε
θ Zθ � O and ∑t A2 � O, =⇒

A5 ≺ O. This completes the proof that the parameter estimation step of DEM converges
for an LTI system. Similarly, from Equation (81), JΛ ≺ O proves the convergence of
hyperparameter estimation step. For a detailed account of the linear algebra behind the
proof of convergence, readers may refer to [41].

15. A Demonstrative Example

This section aims to provide the proof of concept for DEM through simulation for the
estimation of an LTI system with colored noise. Since the algorithm can find an infinite
number of solutions for a black box estimation of x̃, ṽ, θ and λ from y, a black box estimation
is not ideal as a demonstrative example. Therefore, we restrict this section to the joint
estimation of x, A, B, Πw, and Πz from known y and C.

15.1. Generative Model

A stable LTI system of the form Equation (3) was selected, with randomly generated
parameters θi ∈ [−1, 1] having

A =

[
0.0484 0.7535
−0.7617 −0.2187

]
, B =

[
0.3604
0.0776

]
, C =


0.2265 −0.4786
0.4066 −0.2641
0.3871 0.3817
−0.1630 −0.9290

.

A Gaussian bump input signal of v = e−0.25(t−12)2
was centered around t = 12s and

sampled at dt = 0.1s till T = 32s was used. The colored noise was generated with a
smoothness value of σ = 0.5 for the Gaussian kernel. The noise precisions were Πw = e8 I2
and Πz = e8 I4, making λz = λw = 8. The embedding order of the generalized motion of
states and inputs were p = 6 and d = 2, respectively.

15.2. Priors for Estimation

As discussed in Section 5.2, three prior distributions are necessary for the algo-
rithm. Since the inputs are known, the input prior ηv is initialized with the known
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input v, and a tight prior precision of Pv = e32 I1 is used to restrict any changes in
v. Similarly, since the parameter C is known, the corresponding prior parameters in
ηθ are initialized with C, with tight priors of Pθi

= e32. The prior parameters ηθi
for

the unknown A and B matrices are randomly sampled from the range of [-2,2], and a
low prior precision of Pθi

= e6 is used to encourage exploratory behavior. In summary,
ηθ =

[
vec(rand(2, 2)T)T vec(rand(2, 1)T)T vec(CT)T]T and Pθ = diag(e6 I4, e6 I2, e32 I8).

Since the hyperparameters are unknown, their priors were set to zero λ = [0 0]T , with a
prior precision of Pλ = e3 I2 to encourage exploration.

15.3. Results of Estimation

The data y generated from the system in Section 15.1 was used to run the DEM
algorithm given in Algorithm 2. Figure 5a demonstrates the successful state estimation of
the algorithm. The results of parameter estimation (A and B) are shown in Figure 5b. The
updates began from randomly selected priors ηθ , marked by red circles, to finally converge.
Table 1 shows that the DEM’s estimate of A and B are close to the real values.

Table 1. DEM’s estimate of A and B converges to real value.

θ1 θ2 θ3 θ4 θ5 θ6

Real 0.048 0.753 −0.761 −0.218 0.360 0.077
Estimate 0.034 0.714 −0.769 −0.219 0.333 0.098

This confirms that the parameter estimation can converge close to the real parameters,
even when ηθ is randomly selected from the range ηθ ∈ [−2, 2] that is double the size
of the real parameter range θi ∈ [−1, 1]. Figure 5c shows the successful hyperparameter
convergence close to λz = λw = 8.
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(c) Hyperparameter estimation.

Figure 5. The results of DEM’s estimation process. (a) The estimated states in blue closely resembles
the real states in red. (b) The parameter estimation starts from randomly selected ηθ , marked by red
circles and converges with each E step iteration a. (c) Both the hyperparameters start from ηλ = 0,
and converge close to the correct value of 8.

DEM’s confidence on its estimates increase with the E step iterations, as can be seen
from Figure 6a, which demonstrates an increase in parameter precision Πθ . A similar trend
can be observed for ΠX. However, Πλ remains a constant during the entire algorithm,
as proved in Section 12.2. The key idea behind DEM’s inference is the maximization of
free energy objectives. Read together, Figure 5 and 6 demonstrates that DEM successfully
estimates x̃, θ and λ, with increasing confidence on its estimates as the estimation proceeds
by maximizing F̄ from Equation (40). In summary, DEM can be used for the joint estimation
of states, parameters and hyperparameters of an LTI system, subjected to colored noise.
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(b) Free action F̄(a)− F̄(0).
Figure 6. Maximization of F̄ improves the confidence on estimates.

16. Benchmarking

This section deals with benchmarking DEM against the state-of-the-art parameter
estimation methods such as Expectation Maximization (EM), Subspace method (SS), and
Prediction Error Minimization (PEM), for black-box estimation (fully unknown x, θ and λ).
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16.1. Evaluation Metric for Parameter Estimation

For the black box identification, with completely unknown x, θ, and λ, there are
infinite solutions with accurate input–output mapping. However, for LTI systems, there
exists a unique transformation for identical systems. We use the companion canonical
form to check the validity of parameter estimation by transforming both the real and the
estimated parameters into their companion canonical form and then using the (square of)
Euclidean distance between them as the sum of squared error (SSE) in parameter estimation.
This evaluation metric will be used for parameter estimation in the next section.

16.2. Simulation Setup

A total of 500 (5×100) different randomly generated stable systems were used with
five different noise smoothness values for parameter estimation. All systems were selected
with same number of parameters nθ = 14 (n = 2, m = 4 and r = 1), with each θi ∈ [−1, 1],
while ensuring that A matrix is stable. All the noises were generated with the precision of
e6(Πw = e6 I2×2, Πz = e6 I4×4), with the embedding orders of states and inputs as p = 6 and
d = 2. A Gaussian bump of v = e−.25∗(t−12)2

was used as the input signal with dt = 0.5s
and T = 32s. The prior parameter was randomly initialized such that all ηθi ∈ [−2, 2] with
a tight prior precision of Pθ = e4 I14×14. Both the hyperparameter priors ηλi

were set to
zero, with a prior precision of Pλ = e−4 I2×2.

The System Identification toolbox from MATLAB was used for SS (n4sid()) and PEM
methods. The solution of SS was used to initialize PEM. An implementation of EM algo-
rithm for state space models was written in MATLAB based on [45]. n4sid() is inherently de-
signed to handle colored noise, whereas the implemented EM algorithm is not. The code for
the DEM algorithm will be openly available at: https : //github.com/ajitham123/DEM_LTI.

16.3. Results

The results shown in Figure 7 demonstrate the superior performance of DEM in
comparison with EM, PEM, and SS, with minimum SSE during parameter estimation
across different noise smoothness. Additionally, EM and PEM exploded occasionally
(< 5% times), resulting in outliers in SSE, which were removed for better visualization.
DEM demonstrated a consistent performance without generating any such outliers or
exploding solutions, which could be explained by DEM’s convergence guarantees for
parameter estimation under colored noise [41], as proved in Section 14. In summary, DEM
is a competitive parameter estimator for LTI systems with colored noise.
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Figure 7. The sum of all SSE of Θ for 100 random systems each, for 5 different noise smoothnesses.
DEM outperforms EM, PEM, and SS with minimum SSE for parameter estimation under colored
noise.

17. Discussion

The quest for a brain-inspired learning algorithm for robots has culminated in the
free energy principle that postulates biological brain’s perception as an optimization over
its free energy objectives. FEP is of prime importance to robotics because of the use of
generalized coordinates that enables it to gracefully handle colored noises. Colored noises
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appear in real robotics systems through the unmodeled dynamics and the non-linearity
errors in the model, thereby providing an advantage for DEM during estimation when
compared to other estimators. An example could be the unmodeled wind disturbances
acting on an unmanned aerial vehicle while in flight, or the non linearity errors in the
dynamic model of a robotic manipulator arm involved in a pick and place operation. The
scope of this work spans across the blind system identification of such linear dynamic
systems with colored noise.

The fundamental difference between this work and the prior work is in the reformu-
lation of DEM for an LTI system. While DEM from computational neuroscience focuses
on emulating the biological brain’s perception through the hierarchical abstraction of a
number of non-linear dynamic systems that interact with each other, our work focuses on
reducing this method into an algorithm for the system identification of an LTI system with
colored noise, which is a well-known problem in robotics. This reformulation enables the
standard analysis for convergence, stability and unbiased estimation, which is an essential
analysis in practical robotics. It also enables DEM to be compared with other existing
estimation algorithms in a control systems domain. The widespread use of DEM in robotics
necessitates these mathematical analyses, especially when concerning the stable and safe
operation of robots in industry and during human–robot interaction.

An algorithm with proved convergence for estimation is preferred for safe robotic
applications. Therefore, one of the main contribution of this work was the reduction of
the estimation algorithm into a coupled augmented system to prove the convergence
of parameter and hyperparameter estimation steps. This work also demonstrated the
successful applicability of DEM for the estimation of a randomly selected LTI system.
Furthermore, we showed through rigorous simulations on a wide range of randomly
generated LTI systems that DEM is a competitive algorithm for system identification under
colored noise, thereby widening the scope of DEM to a large number of LTI systems in
robotics.

One of the main drawbacks of the algorithm is its higher computational complexity
when compared to the estimation algorithms that do not keep track of the trajectory of
states. Therefore, future work can focus on the online estimation using DEM with reduced
computational load. Future work can also focus on extending this algorithm for linear time
varying systems to deal with robots with changing system parameters while in operation—
a delivery drone dropping deliveries in mid-flight, for example. From a practical robotics
point of view, DEM’s parameter estimation module can be directly applied to a wide range
of robots such as quadrotors, robotic arms, wheeled robots, etc. for black-box system
identification, the input estimation module can be employed for fault-detection systems,
and the hyperparameter estimation module can be used for online noise estimation for
robust control. DEM can also be extended with a control loop for active inference to perform
simultaneous perception and action on robots. This would result in the development of
cognitive robots that can learn the generative model in the environment by interacting with
it and actively seeking new information (active learning) for uncertainty resolution. This
would influence multiple domains in robotics such as human–robot interaction for task
learning, swarm robotics for collective learning and distributed control, informative path
planning of aerial robots for environment monitoring, etc. The development of such brain-
inspired autonomous agents sits at the core of cognitive robotics research. In summary,
DEM has a huge potential to be the bioinspired learning algorithm for future robots.

18. Conclusion

The free energy principle from neuroscience has a great potential to be one of the most
prominent frameworks for learning and control for the autonomous systems in future.
Therefore, this paper converted the FEP-based inference scheme called DEM into a joint
state, input, parameter, and hyperparameter estimation algorithm for LTI systems with
colored noise. We derived the mathematical framework of DEM for LTI systems to prove
that the resulting estimator is a combination of linear estimators that are coupled. We
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provided the proof of convergence for the estimation steps. Through rigorous simulations
on randomly generated linear systems with colored noise at varying smoothness levels,
we demonstrated that the DEM algorithm outperforms EM, PEM, and SS methods for
parameter estimation with minimal estimation error. In light of the potential for DEM to
solve the parameter estimation problem, the future research will aim at applying DEM to a
quadcopter flying in wind.
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