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Abstract 

 

With the development of projector technology, portable projectors called 

pico-projectors are emerging on the market. To achieve a high quality 

projection, multiple pico-projectors can be used to display the same video, 

where accurate synchronization is required. 

The target of this thesis is to design and implement a Linux-based application 

which can synchronize multimedia playback over a WPAN with high accuracy. 

By analyzing the synchronization requirements, the synchronization problem is 

decomposed into playback synchronization and clock synchronization. To 

achieve a synchronized playback based on synchronized clocks, we explore 

several open source projects and eventually build a synchronized player which 

can play video with frame-by-frame level synchronization. For clock 

synchronization, the principles of a typical computer clock and the most 

popular time synchronization – NTP are studied. Based on that, a new time 

synchronization protocol with quick-start and anti-interference properties is 

designed. 

We also conduct a survey to test if the application meets the users’ 

requirement of synchronized playback. The final results show that our 

application provides a synchronized playback with the accuracy which is 

acceptable for most users. 
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Chapter 1 Introduction 

1.1 Project Overview 

With the development of projector technology, portable projectors called 

pico-projectors are emerging on the market. A pico-projector has a size that fit 

inside a typical mobile phone. Early pico-projectors were pure projectors with 

the same function as traditional projectors. Currently, they are being 

embedded into portable devices, such as mobile phones and digital cameras. 

With its portability and the data communication ability of such devices, new 

applications can be designed around the projection function. 

 

Figure 1.1 
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Compared with a normal projector, the resolution and illumination are worse. 

To compensate this disadvantage, multiple pico-projectors can be utilized in 

the following approaches: 

1) Tiling 

Multiple pico-projectors can be used to build a video wall, where each 

pico-projector is in charge of a specific part of the screen. Therefore, the 

resolution is increased. Thereby, a movie in full HD format can even be 

presented by pico-projectors.  

2) Superposition 

Multiple pico-projectors can also be used in the way of superposition. All 

the pico-projectors are in charge of the whole screen, but a specific 

pico-projector only projects specific video frames. For example, if two 

pico-projectors are used, one of them projects odd frames and the other 

one projects even frames. Therefore, the illumination is increased. 

Besides, this application can be extended. In the future, devices could request 

the multimedia content from a media server located in the Internet via cellular 

networks. The media content are preprocessed in the media server and 

streamed to the devices. Figure 1.1 shows such a scenario. 

To achieve either of the approaches above, the playback needs to be 

synchronized. Therefore, a WPAN is used for the synchronization. This thesis 

focuses on the synchronization of playback over a WiFi [1] network. The goal 

is to achieve synchronized playback by using two computers through 

designing and implementing an application on the Linux platform. 

1.2 Final Target 

The synchronization of multimedia playback is an entertainment application. 

Typical target users are the people who have no background knowledge about
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computer and telecommunications technology. Therefore, the whole 

application should be easily set up. Figure 1.2 shows our experimental setup. 

 

Figure 1.2  The experimental setup 

For the users, they are happy when synchronized screens appear shortly after 

the application starts. Long time waiting should be avoided. Thus, the 

application should have a quick-start property. The maximum start time should 

be controlled within several tens of second. 

Since the project is aiming to have video streaming via cellular networks in the 

future and the number of wireless devices is significantly increasing, the 

interference of the WPAN signal cannot be ignored. Therefore, the application 

should have the ability to cope with a relative strong interference. 

The last and the most important requirement is synchronized playback. The 

application should have a good synchronization accuracy that is acceptable by 

the users. Therefore a bound of the synchronization accuracy should be set. 

Within this bound, the playback can be considered in sync by most users. To 

find the bound is a challenge. Then I conduct a users’ feeling survey. Through 

the survey, we find the users’ acceptance threshold for the playback 

synchronization is around 8 ms. Thus, we set 8 ms as the final accuracy target 

of the synchronization over WiFi networks. The details of the survey will be 
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described in Chapter 6. During the implementation of the application, I tried to 

minimize all error factors. 

1.3 Synchronization Basics 

What people are interested in is when the frames eventually be put on screen 

regardless of how long time the frames are being processed inside the video 

player. In order to achieve a synchronized playback among devices connected 

over a WPAN, the moment when a frame appears on the screen, must be 

exactly the same on all devices. Several factors are involved in achieving that, 

such as, the playback rhythm, local clock synchronization and system 

response time synchronization. The most simple and reasonable approach is 

to make all the factors above synchronized rather than use additional delay in 

one factor to compensate out-of-sync in other factors. Let us briefly look into 

every factor: 

1. The first factor is the playback rhythm. All video formats are based on 

picture frames. A video player sending sequential frames in turn onto the 

screen gives people the feeling of dynamic image due to the persistence of 

vision effect. The frames must appear on the screen in a fixed rhythm in 

order to truly reflect the content of the video. Playback that is too fast or too 

slow must be avoided. In almost all the video formats, timestamps are 

included in every frame that gives the player the information about when to 

put the frames onto the screen. Usually, timestamps are the relative time 

with respect to the beginning time of the video. Once the playback starts, 

the video player records the starting time of the playback, then convert all 

the relative timestamps into absolute timestamps. The player compares the 

absolute timestamps with the local clock to decide when to put the frames 

to the screen. Thus, the local clock determines the rhythm of the playback. 

2. The second factor is the synchronization of the local clocks. From the 

playback rhythm factor, we know that, the players use the absolute 
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timestamps to present each frame. Hence, to have synchronized local 

clocks is the prerequisite for realizing synchronized playbacks. Here, both 

the frequency of the clock, i.e. the speed of the clock, and the accumulative 

offset error, i.e. the instant indication of the clock, need to be the same. 

Clock frequency synchronization guarantees the playbacks have the same 

rhythm. Clock offset synchronization ensures that there is no time offset 

between the two playbacks when they have the same rhythm. 

3. The third factor is the response time of the system. The response time is 

the time a system takes to react to a given input. Actually, the time 

difference between the response times of any two modern electronic 

devices are getting smaller and smaller, especially, when they are 

equipped with multi-core processors and have multi-threading ability. 

However, we are going to make an application which is various devices 

oriented. We cannot make the hypothesis that the devices are from the 

same vendor, with the same hardware configuration and have the same 

software installed. Therefore this factor still needs to be considered, 

otherwise, we will risk having playbacks which are out of sync although the 

local clocks are synchronized.

We can see that, to realize synchronized playbacks, several related factors 

need to be taken into consideration. Now, let us do some modeling to make the 

problem clear. 

First of all, we need to make some definitions. Let us call the moment when a 

frame eventually appears on screen, the presentation time of the frame. The 

moment when the player starts to play is called trigger time. Each frame has its 

own presentation time. However, the trigger time can be discussed in different 

scales depending on the approach we use to make the player. If we are using 

a ready-made video player, the trigger time represents the time when the 

player is triggered to start. If we can manipulate the video player and operate it 
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at a frame-by-frame level, e.g. using some codec APIs, the trigger time 

represents the time when a specific frame is sent to the screen.  

Based on the concepts of trigger time and presentation time, we can define the 

response time. Generally speaking, the response time is the period of time 

between the trigger time and the presentation time. Again, the concept of 

response time can be defined in different scales. In the situation which a 

ready-made player is utilized, the response time is the time period between the 

trigger time of the player application and the presentation time of the first frame. 

In this case, we have only one trigger time and one response time. However, 

for an arbitrary frame in the frame-by-frame case above, it should refer to the 

period of time between the trigger time of a frame and the corresponding 

presentation time. Now, the numbers of trigger times and that of presentation 

times are equal to the number of frames. 

Figure 1.3 gives the timing diagram of the case using a ready-made video 

player for a two devices playback circumstances and Figure 1.4 shows that of 

doing the playbacks at a frame-by-frame level. 

 

Figure 1.3 Using ready-made player for synchronized playback 
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For the case of Figure 1.3, we can notice that, the player has the ability to 

maintain the rhythm of the playback based on the local clock. To make the two 

playbacks synchronized, the corresponding trigger times must be aligned and 

the two response times must have the same length. Since on each device, the 

player can only know its local time as time reference, the synchronization of 

the local clocks is a requirement of making the trigger times and the response 

times in sync. 

 

Figure 1.4 Using frame level tool for synchronized playback 

In Figure 1.4, we are at the frame level. In this situation, to achieve 

synchronized playback, we need to make all the corresponding trigger times 

and all the corresponding response times aligned on the time axis. Due to the 

same reason as above, the clocks of the devices still need to be synchronized 

to supply reliable absolute time references.  

The two situations above clearly show that, no matter what kind of tool we use 

to make the video player, to achieve synchronized playbacks, two aspects 

must be guaranteed. One is the clock synchronization; the other is 

synchronization of playback based on synchronized clocks. The latter one can 
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be divided into trigger time synchronization and response time synchronization. 

To synchronize the trigger times is not a difficult task as long as we have the 

clocks well in sync. Hence, the key of synchronization of playbacks is to make 

sure that response times have the same length. 

 

Figure 1.5 Abstracted timing diagram 

Figure 1.5 gives an abstraction of the problem.    and    correspond to the 

zero points of the time axes which show the relative clock offset of the clocks. 

     and     are the trigger times. At these times, the devices received their 

playback instructions. The clock offset is, 

          

The difference between     and     is the same as the clock offset. Hence, 

we can easily synchronize the trigger time if we have synchronized clocks (    

is small). 

    and     are the response times of the devices respectively. The response 

time difference is, 

            

    and     are the final presentation times. The presentation time difference 

can be as bad as the sum of the two time differences, 

            

Let us go back to the beginning of this section, people can only say that the 
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playbacks are in sync when the absolute presentation time of the playbacks 

are the same. That means, the presentation time difference, i.e. the total time 

difference is close enough to zero. Thus, the task is to minimize the total time 

difference to a tiny level which is not noticeable by people. Since     is bound 

by the sum of     and    , an easy way to minimize     is to minimize both 

    and    . So far, our final job has been divided into two parts, the 

minimization of clock offset and the minimization of the response time 

difference, i.e. the synchronization of clocks and the synchronization of 

playbacks. In the following chapters, these two aspects will be discussed in 

detail. 

1.4  Outline of the Thesis 

The thesis is organized as follows: Chapter 2 will describe how a synchronized 

playback is achieved based on synchronized clocks and how the response 

time is minimized by exploring several open source projects. Chapter 3 will 

give the principles of a typical computer clock and the most popular time 

synchronization – NTP. Besides, the performance of NTP will be studied as 

well. In Chapter 4, the design and the implementation of a new time 

synchronization protocol – Fast Clock Adjustment Protocol will be given. 

Chapter 5 will show the measurement setup and the measurement results of 

the time synchronization protocols. Chapter 6 will describe how the users’ 

feeling survey is conducted, as well as the analysis of the survey results. 

Chapter 7 will conclude the thesis and will give the suggestions for future 

works. 
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Chapter 2 Synchronized Playbacks 

As mentioned in section 1.3, achieving the minimization of clock offset and the 

minimization of the response time difference is a reasonable approach to 

realize synchronized playbacks. In this chapter, we will focus on the 

minimization of the response time difference. In details, we will discuss how to 

use various tools to make a video player with the ability to play something in 

sync on multiple devices based on synchronized local clocks. During the 

development, we explored two open source projects which are related to 

media playback. They are VLC and FFmpeg. 

2.1 Utilizing VLC 

The VideoLAN project was initially started in 1996 in the French engineering 

school École Centrale Paris by students there [2]. Their original intention was 

to watch television on their computers based on media steaming. Two 

programs, VLS (VideoLAN Server) and VLC (VideoLAN Client), were planned 

to be made. After the negotiation with the school’s Director, the license of the 

project was agreed to change to open source (GPL). From then on, VLS has 

been subsumed into VLC and programmers from all over the world joined the 

development of the project. 

Today, VLC is an open source cross-platform multimedia player and 

multimedia playback framework. It consists of a media player and a 

development library – libVLC. The player can be used with a GUI interface. It 

can also be used in command line mode with or without the GUI interface. The 

libVLC library has some API functions which can used to set up the connection 

between VLC and another program. Then the programmer can use VLC’s 

functionality in his own program, for example, making a new multimedia player 

with a totally newly designed interface and VLC’s playback functionality. 
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2.1.1 Using VLC Console Tool for Synchronized Playback 

Now that VLC has a multimedia player, the first attempt was directly using 

VLC’s player in command line mode without any interface.  

 

Figure 2.1 Using VLC command line tool 

Figure 2.1 is the timing sequence chart of the first attempt. The two computers, 

‘Left’ and ‘Right’, are now working in a client/server mode. Their clocks have 

already been synchronized by a time synchronization protocol. What we need 

to do is to make the two computers start to play at the same absolute time. In 

another word, synchronize the trigger times of the player applications. Strictly 

speaking, we are expecting that the first frame of the video clip on both 

computers would appear on the two screens at the same time when we make 

the applications start at the same time. So, next, we will make the trigger times 

synchronized. 

The server keeps working in a listening state. The playback can only be 

initiated by the client. When the client plans to play the video, it firstly captures 

a timestamp of the current time   , and then adds a fixed period of time to the 
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just captured timestamp. Thus, it generates a new timestamp    of a moment 

in the near future. The newly generated timestamp    denotes the trigger time 

of the player application on both the client and the server. The client then 

sends the new timestamp to the server to inform when to start the application. 

After sending the timestamp message, the client will suspend the current 

thread execution for a while until   . At the server side, when it receives the 

timestamp, it will capture a local timestamp immediately. Then a comparison 

between the received timestamp and the local timestamp is made. The time 

difference between those timestamps is the period of time which the server 

needs to suspend its thread execution for. When the pre-set trigger time is 

reached, both the client and the server will stop their thread suspension and 

launch the VLC media player application. So far, the trigger times are 

synchronized. 

It is worth to notice that the fixed period of time we added to the first timestamp 

should be chosen carefully. If it is set too long, the user would feel that the 

program is slow to start. And if we set it too short that is shorter than the 

transmission time of the timestamp message, the comparison of the 

timestamps at the server will have a negative value. As a result, the launch of 

the VLC will start at the client before the timestamp message arrives at the 

server and the playback will be out of sync. 

Recall the definition of the response time in section 1.3. Here we are 

encountering the case of using a ready-made player. The response time is the 

period of time between the launch of the VLC media player application and the 

moment when the first frame of the video appear on the screen. However, the 

response time strongly depends on the hardware configuration and the current 

CPU load. Under the worst situation, a slower computer has a response time 

longer than a faster computer by several hundred milliseconds.  

The reason for such a huge response time difference is that we are utilizing a 
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ready-made player; we lose the control of the application after the trigger time. 

The VLC player application has its own scheduling mechanism internally to 

initialize the player base on the current CPU load. There are a series of jobs 

needed to be done during initialization, such as creating a new thread for 

playback, loading the media file into memory, setting up a proper display 

format for the screen, etc. Each of the steps would have an independent 

unpredictable response time. The whole initialization procedure sums up all 

the small response times which amplifies the uncertainty of the response time. 

In a test we did with two different computers, we noticed this approach doesn’t 

meet our real-time requirement. 

2.1.2 Using the VLC API Functions for Synchronized Playback 

By analyzing above, we know that the first approach to make a synchronized 

player failed due to leave too many series jobs to the system. Hence, we need 

to go deeper into the execution of the initialization of the application and try to 

control the whole initialization procedure step by step. Then the uncertainty of 

the response time will be reduced. Since VLC has a development library which 

provides external APIs for other application to use most of the VLC’s features, 

the second attempt was to use the VLC API functions to decompose the initial 

procedure of the player application.  

There are dozens of functions in the libVLC library. To start the playback, a few 

API functions need to be called to accomplish the initialization. However, what 

we are interested in is the actual play function. Figure 2.2 shows the timing 

sequence chart of the second attempt. 
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Figure 2.2 Using VLC API functions 

In the figure, we can notice that is almost the same as the one using the 

ready-made player. The only difference is that some functions, such as setting 

up the playing environment, and loading the media file, have been executed 

before the client captures its first timestamp. Those functions were included in 

the initialization and executed after the trigger time in the first attempt. Here, 

the timestamp for the trigger time is used just before the execution of the play 

function. Hence, the response time is the period of time between the trigger 

time of the play function and the moment when the first frame appears on the 

screen. 

Compared to the first attempt, the response time of the second attempt is only 

a small part of that of the first one. In theory, it should be significantly smaller. 

Since we are using the API functions, we measure the response time. Let’s 

capture two measurement timestamps. One is got just before the execution of 

the play function, or we can use the timestamp of the trigger time instead for 

simplicity. The other one is captured when the play function returned from VLC. 

And we make the play function run for a fixed period of time. Then the time 

difference between the two timestamps should be a little bit longer than the 

running time of the play function. Thus, the exceeded part is the response 

time. 
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Figure 2.3 shows the measurement results (PDF) for the response time of 

repeating the initialization for 50 times. The playback duration was 1 second. 

 

Figure 2.3 Result for response time using VLC APIs 

The result shows that the response times are mainly distributed in the range 

between 27 ms and 41 ms already on the same system. It means they are still 

affected by the CPU load and other unpredictable events. Thus, we need to 

decompose the response time further to a frame-by-frame level and for this we 

need to switch from VLC to FFmpeg. 

2.2 FFmpeg 

Most multimedia playback systems can be considered as a layered stack 

structure. The following figure is a simple example. 

 

Figure 2.4 Layered playback system structure 

It consists of 2 layers. The lower layer is the codec layer. It is in charge of 
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encoding and decoding the media streams. It is the fundamental and core 

function of the playback system. The upper layer is the application layer. It 

utilizes the service of the codec layer to build the application’s own features. 

According to this layered structure model, VLC works on the application layer. 

The best we can do in the application layer is to use the application’s API 

functions which was our second attempt. In order to decompose the response 

time further, some manipulations on the codec layer is required. Inside VLC, 

the encoding and decoding works rely on a codec library with the name 

FFmpeg [3]. 

FFmpeg is a cross-platform open source project. It also supplies API functions, 

however, at the codec level. There are two main libraries in FFmpeg: 

libavcodec and libavformat. The former one contains the codecs and the latter 

contains the file format handling. These two libraries work together with 

several other assistance libraries. 

Since FFmpeg is a codec layer library, we need to use the services it supplies 

to make a totally new media player application. However, to make a player with 

complete popular functions is a giant project. In order to implement 

synchronized playback on time, we will only deal with the video streams in the 

multimedia files and not audio. The only two functions of the player that we will 

implement are synchronized play and stop. So it can be called ‘Synchronized 

Video Player’. However, the mechanism of the synchronization for audio 

playback is almost the same as that for video.  

Some concepts with respect to multimedia data will be involved in the following 

discussion:[4] 

Container - The multimedia file itself is a container. It contains the 

metadata and all the encoded media data. 

Stream – Media data is stored in container in the form of streams. A 
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stream is a succession of encoded data element. Normally, a multimedia file 

has at least one video stream and one audio stream. 

Frame – A data element in the stream is called one frame. 

Packet – A packet is a piece of stream. Depending on the data format, a 

packet can be decoded into a part of a frame, a complete frame or a few 

complete frames.  

2.2.1 Synchronized Playbacks Using FFmpeg APIs 

Based on the concept above, our synchronized video player works in the 

following way: 

 

00 INITIALIZATION 

01 OPEN video_stream 

02 WHILE video_stream IS NOT FINISHED 

03    READ packet FROM video_stream INTO frame 

04    IF frame NOT COMPLETE GOTO 02 

05    SYNCHRONIZED PLAY frame 

 

Actually, line 01 should be part of line 00. Here I separate Line 01 from line 00 

since the player will only deal with the video streams. The code is written in a 

multithreading style. The decode function and the play function work in two 

independent threads since those two functions are asynchronous. But then, 

we prefer to use multithreading rather than use multi-process because the two 

functions still need to share the same memory space. The play function 

requires the decoded data from the decode function. If multi-process technique 

is used, each process has its own memory space. Then inter-process 

communications are required for delivering the decoded data to the play 

function. Obviously, it’s more complicated than making the two functions share 
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the same memory space. Thus, multithreading is the choice. 

The speed of the playback is determined by the video format and is recorded 

in the metadata. (25 and 30 frames per second are typical values.) However, 

the speed of the decoding is determined by the computer’s computational 

capability. It will decode packets into frames as fast as possible.  

In order to display the decoded frames on screen, another library with the 

name SDL (Simple DirectMedia Layer) [5] is also used. It provides low level 

access to audio, keyboard, mouse, joystick, 3D hardware via OpenGL, and the 

2D video framebuffer. Thus, we can use it to implement the input and output 

interfaces of the player application. We use its video functions to display 

decoded frames and use its keyboard event functions to terminate the 

application. 

Our whole synchronized player application also works in client/server mode 

and consists of two separated applications for the ‘Left’ and ‘Right’ computers. 

The general structures of the two applications are basically the same. Both of 

them have three threads, a decode thread, a play thread and an event 

handling thread.  
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a. decode thread              b. play thread              c. event thread 

Figure 2.5 Flow chart of the player using FFmpeg APIs 

Figure 2.5 is the flow chart for one of the applications. The only difference 

between the client and the server is the Synchronization Signaling part. It will 

be discussed later. 

2.2.2 The Decode Thread 

In the decode thread, which is also the main thread, all the initializations and 
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preparations are done. The timestamp indicated the display time of the first 

frame is generated. And, the packets from the video stream are decoded. 

 

-Initialization FFmpeg and SDL 

av_register_all(); 

avcodec_register_all(); 

SDL_Init(SDL_INIT_VIDEO | SDL_INIT_AUDIO | SDL_INIT_TIMER); 

All the formats and codecs which are supported by FFmpeg are registered. 

When a media file is loaded, FFmpeg would detect its format and choose a 

proper codec for decoding. Then SDL is also initialized by using its own 

initializing function.  

 

-Prepare video stream 

if(av_open_input_file(&(is->pFormatCtx), filename, NULL, 0, NULL)!=0)  

printf("Couldn't open file!\n"); 

if(av_find_stream_info(is->pFormatCtx)<0) 

printf("Couldn't find stream information!\n"); 

First, the application opens the media file and reads the header of the file to 

find out the format and stream information. Then it writes the information into 

the pFormatCtx structure. 

for(i=0; i<is->pFormatCtx->nb_streams; i++) 

      if(is->pFormatCtx->streams[i]->codec->codec_type==CODEC_TYPE_VIDEO) 

      { 

          is->videoStream=i; 

          break; 

} 

if(is->videoStream==-1)  

return -1; // Didn't find a video stream 

is->video_st=is->pFormatCtx->streams[is->videoStream]; 

nb_streams is the number of the streams in the file including audio and video 

streams. The loop above checks the type of each stream to find the video 
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stream we need. 

pCodec=avcodec_find_decoder(is->video_st->codec->codec_id); 

if(pCodec==NULL) 

{ 

     fprintf(stderr, "Unsupported codec!\n"); 

     return -1; // Codec not found 

} 

// Open codec 

    if(avcodec_open(is->video_st->codec, pCodec)<0) 

return -1; // Could not open codec 

Then FFmpeg tries to find a proper codec for the found video stream and open 

it. 

is->timebase=av_q2d(is->video_st->time_base); 

Another important thing about the stream is the time base. Time base is a 

quantity that indicates the speed of the playback. It is a rational number with 

the unit of second. In each frame, there is a field called PTS (Presentation 

Timestamp). The PTS are natural numbers, which count time bases. Thus, the 

product of time base and a PTS is the presentation time of the frame as an 

offset compared to the first frame. The function above converts the fraction 

form time base into a real number. 

screen = SDL_SetVideoMode(is->video_st->codec->width, 

is->video_st->codec->height, 0, 0); 

Finally, the display size of the screen is set to match the resolution of the video 

stream. 

 

-synchronization signaling 

This part is different between client and server. 

gettimeofday(&tv,NULL); 

tv.tv_sec++; 

n = sendto(sockfd, &tv, sizeof(tv), 0, (struct sockaddr *)&rightaddr, sizeof(rightaddr)); 
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In the client, a current timestamp is captured. Then a one second lag is added 

to the timestamp. Thus the timestamp now indicates a moment in the near 

future which is the planned display time of the first frame. Finally, the 

timestamp is sent to the server in a UDP packet to inform the server the 

display time. 

n = recvfrom(sockfd, &tv1, sizeof(tv1), 0, (struct sockaddr *)&leftaddr, &leftaddr_len); 

In the server application, the execution is suspended and waiting for the 

timestamp message from the client. Once the message is received, it will 

continue to execute. At this point in time, both the client and the server have 

the same timestamp for presenting the first frame. 

 

-Initiate the play thread and the event thread 

SDL_CreateThread(play_thread,is); 

SDL_CreateThread(event_thread,NULL); 

Here, the other two threads are initiated. They will run in parallel and are 

scheduled by the CPU. 

 

-The decode loop 

A loop is used to decode packet into frames. 

while(!av_read_frame(is->pFormatCtx, &packet)) 

    { 

        if(packet.stream_index==is->videoStream) 

        { 

            ... 

            pts_convert(is->timebase,packet.pts,&tv_tmp); 

 

avcodec_decode_video(is->video_st->codec, tmp_frame->pFrame, 

&frameFinished, packet.data, packet.size); 

            if(frameFinished) 

            { 

                timeradd(&tv,&tv_tmp,&(tmp_frame->pts)); 
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                SDL_LockMutex(is->p_mutex); 

while(is->qsize>=MAX_Q_SIZE) 

                    { 

                        SDL_UnlockMutex(is->p_mutex); 

                        usleep(1000); 

                        SDL_LockMutex(is->p_mutex); 

                    } 

                ...//Add to frame queue 

                SDL_UnlockMutex(is->p_mutex); 

             } 

        } 

        av_free_packet(&packet); 

} 

Firstly, a packet is read from the video stream, whose return value is the enter 

condition of the loop. If the read packet is the last one in the stream, the loop 

stops. Secondly, inside the loop, the packets should be checked if it’s from a 

video stream since the read packet may be from an audio stream.  

pts_convert() converts the natural number form packet’s timestamp into a real 

number timestamp in the unit of second. Now, the timestamps are relative to 

the beginning of the playback. Then, avcodec_decode_video() actually decode 

the packets into frames. After that, the decoded frame will be added to a frame 

queue which is a linked list. Each element of the queue consists of a 

timestamp of the frame and the data of the frame. Here, the timestamp in the 

queue element is converted to absolute time by adding the relative timestamp 

and the timestamp captured in the synchronization signaling part. 

 

 

Figure 2.6  The frame queue 

The frame queue is also read by the play thread. Since it is a queue, it has a 

FIFO data structure. The decode thread only adds elements to the rear end of 

the queue and the play thread only get elements from the front end. Then, 

there may be a risk that both the two threads use the queue simultaneously. To 

PTS    Data PTS    Data PTS    Data PTS    Data 
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avoid that, I use a mutex lock. 

Assuming that the decode speed is faster than the playback speed, the length 

of the queue continuously grows without any limitation. The application will run 

out of memory eventually. So, the frame queue has a maximum length 

MAX_Q_SIZE. When the length reaches the maximum value, the decoding will 

be suspended for a while until the queue length is reduced below the 

maximum value. 

The decode loop continuously executes until the all the packets of the stream 

is decoded or the user terminates the application. 

2.2.3 The Play Thread 

The play thread presents the decoded frames on the screen based on their 

presentation timestamps and the internal computer clock. 

bmp=SDL_CreateYUVOverlay(is->video_st->codec->width, 

is->video_st->codec->height, 

SDL_YV12_OVERLAY,screen); 

At the beginning, a SDL overlay is introduced. An overlay is a frame carrier. A 

decoded frame needs to be mounted to an overlay, and then it can be 

displayed on the screen. 

for(;;) 

{ 

        ... 

        SDL_LockMutex(is->p_mutex); 

        if(is->q_first_end==NULL) break; 

        tframe=is->q_first_end->pFrame; 

      tpts=is->q_first_end->pts; 

is->q_first_end=is->q_first_end->next; 

        SDL_UnlockMutex(is->p_mutex); 

   ... 

        img_convert_ctx = sws_getContext(is->video_st->codec->width, 

is->video_st->codec->height, 

is->video_st->codec->pix_fmt, 

is->video_st->codec->width, 

is->video_st->codec->height, 
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PIX_FMT_YUV420P,SWS_BICUBIC, 

NULL, NULL, NULL); 

                          sws_scale(img_convert_ctx,tframe->data,tframe->linesize,0, 

is->video_st->codec->height,pict.data,pict.linesize); 

        sws_freeContext(img_convert_ctx); 

        ... 

        gettimeofday(&tv_now,NULL); 

        timersub(&tpts,&tv_now,&tv_sleep); 

        TIMEVAL_TO_TIMESPEC(&tv_sleep, &ts); 

        nanosleep(&ts,NULL); 

        SDL_DisplayYUVOverlay(bmp, &rect); 

        av_free(tframe); 

        ... 

   } 

Then a loop is introduced for the playback. First, the thread retrieves a frame 

from the queue to a temporary queue element tframe. Second, the decoded 

data of tframe is mounted to the predefined overlay. Third, a new timestamp 

(tv_now) of current time is captured. The absolute PTS of tframe should 

indicate sometime in the near future, because the decode speed is faster than 

the play speed. By comparing tv_now and the absolute PTS of the frame, the 

period of time until the presentation of tframe is easily calculated. Then the 

play thread suspend for that period of time. After that, 

SDL_DisplayYUVOverlay() eventually put the decoded frame onto the screen. 

Finally, the temporary frame is released. If the queue has more frames to play, 

the loop will continue to run. 

2.2.4 The Event Thread 

    for(;;) 

    { 

        SDL_WaitEvent(&event); 

        switch(event.type) 

        { 

        case SDL_KEYDOWN: 

            if(event.key.keysym.sym==SDLK_f){ 

              SDL_WM_ToggleFullScreen(screen); 

              kill(0,SIGINT);} 

            break; 
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        default: 

            break; 

      } 

   } 

 

There are lots of events predefined by SDL for the control of the application. 

Here, we only wait for SDL_KEYDOWN event. When the key ‘f’ is pressed, the 

application will be terminated.  

2.2.5 Response Time Measurements 

The description above shows how the synchronized player works. Recalling 

the definitions and discussions in the previous sections, we can find the trigger 

time and the response time for this implementation. Now, we are working in a 

frame-by-frame level. Hence, we have multiple trigger times and response 

times. The final presentation of the frames is done by the 

SDL_DisplayYUVOverlay() function. So the trigger time is the moment that the 

function is executed. 

To accurately measure the response time is not practical. However, we can 

measure the time difference between the execution moment and the return 

moment of the function. It is a little longer than the actual response time, so it 

gives us the upper limit. We call it pseudo response time.  

 

Figure 2.7 CDF of pseudo response time 
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Figure 2.7 is the measurement result of the pseudo response time of a video 

clip with 5434 video frames. Thus, there are 5434 measurement samples. The 

95-percentile value is 1.85 ms. Since the precision requirement for the 

synchronized playback is 8 ms, this approach leaves around 6 ms to the clock 

synchronization protocol as the maximum synchronization error in the worst 

case. Thus, using FFmpeg APIs to make a synchronized player is a feasible 

approach. 

2.3 Preparation of the Media Files 

For synchronized playback in the approach of tiling, a normal media file needs 

to be processed by splitting the screen into several parts, for example, two 

parts in our project. A ready-made application named ffmpeg is available in the 

FFmpeg project. This application can process media file in many approaches, 

such as decoding and encoding through different codecs, setting aspect ratio 

and changing resolution. We used the following commands to process media 

files for our application: 

$ffmpeg –i video.avi –cropright 640 –s 427x480 –sameq left.avi 

$ffmpeg –I video.avi –cropleft 640 –s 427x480 –sameq right.avi 

The ffmpeg application firstly decodes the input file into raw frames. Then, it 

encodes the decoded frames according to the user’s requests to generate the 

output file. The meanings of the arguments are as follows: 

 ‘-i’ indicates the media file to be processed.  

 ‘left.avi’ and ‘right.avi’ are the file names of the output files. 

 ‘-cropright’ and ‘-cropleft’ indicate how to crop the screen of the input file. 

Our input file has a resolution of 1280x720 and we need the input file to 

be spitted into two parts. Therefore, we cut off the right part of the screen 

by 640 pixels for ‘left.avi’ and the left part of the screen by 640 pixels for 

‘right.avi’ as well. 
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 ‘-s’ indicates the resolution of the output file. The resolution of the cropped 

screen is 640x720. Since our pico-projector has a resolution of 640x480 

(VGA), we need to reduce the resolution of the cropped screens. To keep 

the aspect ratio constant, we set the resolution of the output file in 

427x480. 

 ‘-sameq’ tells the ffmpeg application to keep the image quality of the 

output file the same as the input file. 
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Chapter 3 Clock Synchronization 

In this chapter, we will focus on the synchronization of clocks. Firstly, basic 

working principle and synchronization principles of computer clock will be 

introduced. Secondly, we will discuss the most widely used time 

synchronization protocol – NTP (Network Time Protocol) [6]. 

3.1 Computer Clocks 

Inside a typical computer, time is stored in a specific register in the form of 

discrete timestamps. The addition operation applied to the register makes the 

time tick on. The number of bits the register uses is hardware dependent and 

determines the range of the time value and the resolution of the time. Using 

more bits could widen the range or increase the resolution. The origin of the 

time is called ‘epoch’. The epoch of our Linux-based development environment 

is the midnight (0 hour) of January 1, 1970.  

The addition operation to the register is done in an interrupt service routine. 

The interrupt is triggered by a timer chip automatically. Therefore the clock 

advances. The value added every interrupt is called a ‘tick’.  

The accuracy of a clock is the closeness between the indication of its own and 

that of the time reference. We use the concept of accuracy to describe the 

quality of a clock. However, it is impossible to find any two clocks with exactly 

the same frequency that makes clocks advance, since they may use different 

numbers of bits, different ticks, and even different oscillator frequencies in the 

CPUs. Since time is a cumulative quantity, a tiny frequency difference will 

result in a large indication difference. For example, a frequency error of 0.0012% 

would cause an indication error of about 1 second per day. Therefore, we use 

a fine measure, PPM (Part per Million) to describe the clock accuracy, i.e. the 

frequency error. 1 PPM is 0.001% (1E-6). In the example above, 0.0012% 

equals to 12 PPM. Normally, a computer clock has a frequency error of tens of 
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PPM.  

3.2 Clock Synchronization Principles 

Any clock has a finite accuracy with respect to the true time. In clock 

synchronization, a clock could not be more accurate than its reference clock. 

The purpose of a time synchronization protocol is to make a clock as close to 

its reference clock as possible. To make a clock synchronized with its 

reference clock, we need to analyze the relations between the two clocks. 

 

Figure 3.1 Clock relations classification [7] 

Figure 3.1 classifies the relations without synchronization into several 

categories. 

 Perfect synchronization 

This is the ideal case where the two clocks are perfectly synchronized. The 

line also shows the target of the synchronization protocol. 
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 Constant clock offset error 

Two clocks with exactly the same frequency and different indications 

setting result in a parallel straight line with respect to the ideal line. In this 

case, a step operation applied to the clock would make the clocks 

synchronized. 

 Constant frequency error 

If the frequencies of the clocks have a constant difference, there is a 

constant intersection angle between the result line and the ideal line. Then 

the clock offset is linearly increasing. To synchronize these two clocks, 

both the frequency and the clock need to be reconfigured. 

 Variable frequency error 

This is the common case since the frequency of an oscillator is affected by 

the change of temperature and other environmental effects. However, this 

effect is notable only in a long-term observation. In a short period of time, 

the variety of the frequency is tiny. Therefore, in a short-term observation, 

we can consider the frequency as constant.  

To sum up, a time synchronization protocol uses a combination of frequency 

adjustment and clock offset adjustment to reconfigure the clock based on the 

relation between the two clocks. However, frequently using a big step to 

correct the clock offset error should be avoid since that can disturb some 

application. For example, after a huge backward step, the generation time of 

some newly generated files may represent some time in the future; 

applications may not recognize a file generated in the future. Instead, gradual 

adjustment with frequent small steps is a better way to correct the clock offset 

error which reduces the risk of making the system fall into chaos. 

A time synchronization protocol should have a way to collect the information of 

the relations between the clocks. Obviously, that procedure would cost some 



32 

 

time. We call the time from a protocol starts until the clocks are in sync the start 

time of the protocol. It is clear that more frequent communications between the 

computers lead to a shorter start time. 

3.3 NTP 

NTP stands for Network Time Protocol and is an Internet protocol for time 

synchronization [6]. It is one of the oldest Internet protocol and is designed by 

Dave Mills of the University of Delaware.  

 

Figure 3.2 NTP time synchronization network 

NTP works based on a network with layered structure (Figure 3.2). Each layer 

is called a stratum. A computer in stratum n uses one or few computers in 

stratum n-1 as its synchronization reference. Stratum 0 computers have the 

most accurate timing devices in the network. Normally, they have very 

accurate clocks, such as atomic clocks and GPS clocks. 

The reference computer provides time source, therefore it is a time server. The 

computer which is being synchronized is the client. The synchronization 

consists of several packet exchanges. In each exchange, the client sends a 

request; then the server sends back a reply. After a few exchanges, the client 

would have the information about relation between the two clocks. With that 

information, corresponding operations (mentioned in Section 3.2) would be 

applied to the client’s clock. Detailed descriptions of the packet exchange will 
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be discussed in Chapter 4. 

3.3.1 The Clock Discipline Algorithm of NTP 

A NTP client use the information obtained from time packet exchange to 

discipline its local clock. The discipline algorithm can be abstracted as in 

Figure 3.3, 

 

 

 

 

 

 

 

 

Figure 3.3 Clock discipline algorithm [8] 

This is a typical PLL (Phase Lock Loop). The meaning of each module is as 

follows: 

 Phase Detector 

Time can be considered as phase since time move on due to crystal 

oscillating. Therefore,    is the phase of the server’s clock; and    is the 

phase of the client’s local clock. The phase detector compares the two 

phases and output the difference   . The inputs of the detector are the 

clock times, and the output is the clock offset. Therefore, the packet 

exchange procedure is functioning as the phase detector. 

 Clock Filter 

As mentioned above, a computer may have multiple reference clocks. 

Clock filter would use the clock selection; clustering and combining 

algorithms to combine the clock offset data to generate a more accurate 
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phase difference   . 

 Loop Filter 

In the loop filter, a predictor uses     to generate a phase correction   

and a frequency correction   for the Clock Adjust module. 

     

  
   

   
 

where   is packet exchange interval and    is called the loop time 

constant. As mentioned before, a huge clock time step should be avoid. 

Therefore, the clock adjust module generate clock corrections gradually 

with respect to   and   at rate 
 

  
. 

The expression of   results in a transfer function [9] 

     
  
 

  
   

 

  
  

Where    
 

  
 and     

 

   
.   is the complex frequency. From 

elementary theory, this is a linear, time-invariant transfer function. Hence, it 

drives both the frequency and clock offset error to zero [8]. 

 VFO (Variable-frequency Oscillator) 

The VFO here represents the local clock of the client. It uses the 

corrections    which are generated by the Loop Filter to adjust its 

frequency and clock time. 

3.3.2 Performance of NTP 

NTP is designed for time synchronization over Internet and for long-term 

usage. Therefore, it occupies as small bandwidth as possible to exchange the 

time packets since it is not necessary to guarantee a short start time and that 

saves bandwidth. However, it has some disadvantages. We know that, the 
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more frequently the time packets are exchanged, the faster the clocks can 

synchronize. The packet exchange interval of NTP can be configured by users. 

Normally, the exchange interval can be set within a range from 16s to 1024s. It 

means, in the most frequent case, a NTP client exchanges time packets with 

its server every 16s. This means that it may take hours to reach 

synchronization. 

 

Figure 3.4 Initial run of NTP 

Figure 3.4 shows a typical case of the initial run of NTP. With the help of the 

transfer function of the software loop filter, both the clock offset error and the 

frequency error is driven to zero eventually. Each clock has an own frequency 

origin. Thus, the frequency offset converges to around -80 ppm instead of 0 

ppm. We assume that the frequency offset of the server’s clock is 0 ppm. 

Therefore, the difference between the frequency origins is about 80 ppm. 

The two clocks starts with no clock offset error but frequency error. At the very 

beginning, the clock offset increases significantly. That is because both the 

clock offset and the frequency are adjusted gradually. At the beginning, there is 

still a noticeable frequency difference between the two clocks. At this time, the 

clock offset is under adjustment as well. However, the frequency difference is 

too large. The clock offset adjustment cannot cope with the large frequency 
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difference. Thus, the clock offset continuously increases. With the frequency 

adjusted, the frequency difference decreased. When the frequency difference 

is small enough, the clock offset starts to decrease gradually. 

 

Figure 3.5 Frequency difference impact on initial run 

We can notice that, the start time is mainly spent on eliminating the frequency. 

Figure 3.5 gives the clock offset error of the initial runs with three different 

initial frequency differences. Larger initial frequency difference results in a 

longer start time.  

However, the accuracy of NTP after it reaches the steady state is great. The 

following table gives some statistical result for the clock offsets in Figure 3.5 

after they became steady. 

Table 3.1 Clock offset error statistics in steady state of NTP 

Mean Median Variance 
Standard 

Deviation 
95-percentile 

0.06 ms 0.05 ms 0.003 ms 0.05 ms 0.15 ms 

To summarize, NTP has a long start time when there is a large initial frequency 

difference. However, thanks to its NTP’s PLL algorithm, it has good 

synchronization accuracy in the steady state.  
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3.3.3 Suggestions for Improving the Performance 

Our project requires a time synchronization protocol that synchronizes the 

clocks quickly. NTP’s long start time does not meet that requirement. NTP is 

designed for using over Internet. However, in our project, a dedicated WiFi 

network is used for synchronization. Bandwidth resource is not too critical in 

our case. Thus, we can make an assist protocol for NTP. The assist protocol is 

launched before the NTP starts. It uses a larger bandwidth to exchange more 

time packets. Thus, it could collect the information about the relations between 

the clocks as soon as possible. Then a fast estimation is used to estimate the 

frequency difference and step the frequency of the client’s clock to eliminate 

the frequency error. After that, NTP starts with near zero initial frequency and 

offset differences. Therefore, the total start time should be significantly 

reduced. 

With the idea above and the time packet exchange mechanism of NTP, we can 

even design a new light weight time synchronization protocol. The new 

protocol could achieve quick start and accurate synchronization by more 

frequent time packets exchange than NTP does. The principles of the new 

protocol will be detailed in the next chapter. 
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Chapter 4 Fast Clock Adjustment Protocol 

The clock synchronization precision of NTP gradually increases. So it works 

well in a long-term usage. However, what we need is a time synchronization 

protocol with quick-start and anti-interference properties. In this chapter, a Fast 

Clock Adjustment Protocol is introduced. 

As mentioned in Section 3.3, time synchronization protocols discipline clocks 

according to the samples which are generated from exchanging timestamps 

between the server and the client.  

In theory, if two clocks with different oscillating frequencies run without 

synchronization, the clock offset between them would drift apart linearly. So, 

the basic idea of the Fast Clock Adjustment Protocol is to generate some 

samples on the clock offset – time plane and use linear regression algorithm to 

estimate the drift rate and the instant clock offset. With that information, the 

client’s clock can be adjusted. 

The more samples the client has in a unit time, the more information about the 

server’s clock it gets. We can exchange more timestamps than NTP does by 

reducing the exchanging interval. And then, the client could be acquainted with 

the server’s clock as early as possible. Thus, the quick start can be realized.  

4.1 Timestamp Exchange 

Timestamp exchanging is the way to generate the samples on the clock offset 

– time plane. The server’s clock is the synchronization reference for the client. 

The client could use the samples to trace the server’s clock. 

4.1.1 PCAP (Packet Capture) 

The PCAP is a packet capture library for unix and Linux [10]. It is able to 

capture any type of packet on the network and provide related information 

about the packet and the capturing such as the capture time. We use its API 
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functions to capture the synchronization messages and use the capture time 

as the timestamps. 

4.1.2 Timestamp Exchange 

The timestamp exchanging procedure is divided into rounds. After each round, 

a sample is generated at the client by using the information collected during 

the last round. The samples will be used to estimate the feature of the server’s 

clock later. 

 

Figure 4.1  A timestamp exchange round 

Figure 4.1 shows the process of a round. The client sends a packet to the 

server. At both sides, PCAP captures the packet and records the capturing 

times. After that, the server sends another packet back to the client as a 

response. PACP records the times as well. Thus, we have four timestamps. 

They can be used to calculate the instant clock offset as follows: 

 
          
          

  

where   is the clock offset and   is the packet transmission delay. It is the 

absolute time between the two capturing of a packet transmission. If the two 

transmissions have the same delay, i.e.      , they are symmetric. So, the 

clock offset is expressed as, 
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However, the forward and the backward transmissions are not always 

symmetric due to different delays. So we need the information about the delay 

as well to distinguish the reliability of the samples. 

  
           

 
 

So far, we have all the information to generate a sample. A sample is like 

follows: 

time offset delay 

The offset field and the delay field are calculated above. The time field can be 

filled using the time of any of the four timestamps. This will introduce some 

error. But the error can be ignored since each round of timestamp exchanging 

is accomplished within a short period of time. 

4.2 Samples Read-out Technique 

The four timestamps generated during the forward and backward packet 

transmissions are distributed at the client and the server. They need to be 

gathered at the client to generate the sample. 

The packets have two missions. One mission is to be transmitted as a probe to 

be captured by the PCAP to generate the timestamps. Another mission is 

carrying the request information from the client to the server and fetching the 

captured timestamps at the server back to the client. 

The packets are UDP packets and the formats are the same for all 

transmissions: 

Int int struct Timestamp struct Timestamp 

direction seqnum timestamp A timestamp B 
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The direction field is an integer. It indicates whether the packet is a request 

packet or a response packet. The seqnum field is also an integer. It gives the 

sequence number of the round. The two timestamps belongs to a custom 

structure Timestamp. The definition is as follows, 

struct Timestamp 

{ 

      int seqnum; 

      int stamp_num; 

      struct timeval tv; 

} 

In Timestamp, seqnum is also the sequence number of the round. stamp_num 

indicates which of the four timestamp it is since there are four timestamps 

generated in one round. tv is the time data of the timestamp. 

Figure 4.2 is the flow chart that shows how the timestamps are gathered at the 

client. On both sides, the packet transmission and the packet capturing are 

running in two processes. The IPC (Inter-process communication) is achieved 

by using unix pipes. 

When the client transmits a packet, only the first two fields are used. The 

server needs to be informed the round sequence number and the packet 

capturing process needs the type of the packet and the round sequence 

number to fill stamp_num and seqnum. The two timestamp fields are filled with 

two empty Timestamp structures. 
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Figure 4.2  Timestamps gathering 

On the server side, all the four fields are filled. The functions of the first two 

fields are the same as the client side. The latter two fields are used to carry the 

timestamps captured in the last round back to the client. 
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the server and reading from the pipe, all the timestamps are gathered in a 

sample buffer. The buffer has a format like, 

Sequence 

Number 
1 2 3 4 … 99 100 

T1 101 1108 2110     

T2 5004 6007 7008     

T3 5009 6016      

T4 112 1116 2122     

The buffer can hold the timestamps of the last 100 rounds and is used 

circularly. The four timestamps within the same round sequence number 

cannot be gathered to the buffer in the same round. The table above is an 

example of pattern shows that. T1 and T4 are captured at the client, so they 

can be moved to the buffer within the current round. T2 is captured at the 

server before the server sends the response packet. Normally, T2 can be 

gathered within the same round as well. However, T3 is captured after the 

server sent the response packet, so T3 can reach the buffer in the next round 

at the earliest. T2 also has the risk of reaching the buffer after the current 

round if it has not been written to the pipe before the server sends the packet. 

Anyway, the application on the server would read the captured timestamps in 

turn from the pipe and send two timestamps back to the client. When all of the 

four timestamps with the same sequence number are gathered, they can be 

used to calculate a sample. However, the sequence number they have 

represents several rounds ago. That is the reason for using a buffer to 

temporarily store the timestamps. 
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4.3 Adjusting the Clock Using Linear Regression 

With the samples, we can estimate their trend line one the clock offset – time 

plane. Since we can assume that the clock offset drifts apart linearly, the trend 

line should be a straight line, so we can use linear regression to estimate the 

line. The trend line has the form of         , where the y-axis represents the 

clock offset and the x-axis represents the time. The formula for the estimation 

is, 

   
                
   

          
   

 

           

where    is the estimation of the slope,    is the estimation of the intercept,    

is the time of the ith sample and    is the offset of the ith sample. The estimated 

line is updated every 10 samples in order to trace the variation of the 

transmission environment. 

Now we can use the trend line to adjust the client’s clock. The operations we 

can apply to the clock are to set the clock’s indication and to change its running 

frequency by using some system calls. 
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                                      (b) 

Figure 4.3 Linear regression example 

Figure 4.3 (a) is an example of the estimated trend line and (b) is the 

abstraction of (a). We can obtain two aspects of information from the curve. 

- The instant offset. Point    represents the current time on the client; point 

   represents the current time on the server.    is the projection of    on 

the time axis. So the distance d between them is the current clock offset. 

- The clock frequency difference. The indications of the two clocks drift apart 

because there is a constant frequency difference. So the estimated slope 

(       ) reflects the frequency difference. 

To synchronize the clock, firstly, we step the clock forward or backward 

according to the current offset. See the flow chart in Figure 4.4. 
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Figure 4.4 Adjusting the clock offset 

Secondly, we adjust the frequency to make it the same as the server. The 

system call adjtimex() is the tool. As mentioned before, the frequency is 

presented in the unit of ppm. adjtimex() uses a scaled ppm as the unit for the 

frequency. And it has a tolerance value for the frequency adjustment to limit 

the frequency changing range. The value is 500 ppm and can be read by 

adjtimex() in the unit of scaled ppm. On the offset – time plane, both the axes 

are in the unit of millisecond. So, the variation of the frequency should be, 

               
                                

        
 

After the offset and frequency adjustment, the two clocks have the same 

frequency and no offset. Thus, they are synchronized. However, it is 

unnecessary to adjust the offset and the frequency at the same time. For the 

purpose of synchronized playback that the clocks indicate the same time is 

more important. Hence, we can apply the offset adjustment more frequently 

than the frequency adjustment, which can increase the efficiency of the 

protocol to some extent. Actually, I set a threshold of 1 ms for the clock offset. 

In each timestamps exchange round, the client checks the offset. If the offset 

exceeds the threshold, the offset adjustment is applied. The frequency 

adjustment is applied only when the sample buffer is full (after 100 samples). 

Capture the current time 

CC=gettimeofday() 
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Step the clock 
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4.4 Utilization of Old Samples 

After the clock adjustment, the running features of the client’s clock are 

changed. The old samples in the buffer cannot be used for the estimation any 

more. However, to increase the efficiency of the protocol, we can change the 

old samples’ positions as well according to the adjustments. The target is to 

make the old and the new lines collinear. 

 

 

Figure 4.5 

The Figure 4.5 shows three cases after the clock adjustment. For clarity, we 

only show the trend lines without the samples. 

a) Applying only offset adjustment. 

After the offset adjustment, the new trend line will be parallel to the old line, 

however, with different intercepts. Applying the same offset value to the old 

samples as just used in the adjustment makes the two lines collinear.  
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b) Applying only frequency adjustment. 

The frequency adjustment introduces an intersection angle between the 

two lines. Rotating the old line by         makes it collinear with the new 

line. 

c) Applying both adjustments. 

This case is the combination of the previous two. To make the two lines 

collinear, firstly, we rotate the old one by        ; secondly, the offset value 

just used is applied to the rotated line. 

4.5 Error Analysis 

All the discussions in the previous sections are based on the assumption that 

the two packet transmissions have the same delay, i.e.      . That is the 

case when there is no interference during the transmission and it works well. 

However, we cannot guarantee that the transmission environment is always 

idle. Especially, when the video is streamed to the computers, there should be 

some interference in the environment. So we need to take that into account. 

When      , the expression of the clock offset becomes, 

  
                 

 
 

So the offset has an error of 
     

 
. With that error, the samples are more 

dispersive on the offset – time plane. That introduces more estimation error of 

the trend line. The ideal approach to eliminate the error is to find the 

asymmetry, i.e. the value of    and   . Unfortunately, that approach is 

infeasible. What we can obtain from the four timestamps is just the sum of 

them, 

  
           

 
 
     

 
 

Now we try to minimize the error. We know that, 
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offset (ms) delay (ms) 

time (ms) 

 

    
    

             

  

Hence, if 
     

 
 is small enough, the impact of 

     

 
 on the offset can be 

ignored. That is the reason why we introduce a delay field to the sample 

structure. Generally speaking, a sample with a small delay value is considered 

as a good sample; a sample with a large delay value is a poor one. If the poor 

samples are removed, then the error of the offset is minimized and then the 

estimation error is also minimized. Figure 4.6 shows a comparison between 

the estimations of the same sample set with and without removing the poor 

samples. 

 

 

Figure 4.6 

(blue: complete sample set, red: sample set without poor samples, thin black: trend line of blue, 

thick black: trend line of red, green: corresponding delay 
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4.5.1 The Valid Samples Filtering Threshold 

Now we need a criterion to select good samples. Figure 4.7 shows a typical 

delay distribution with a strong interference. 

 

Figure 4.7 Delay distribution 

The distribution always has a long tail. We use the 20-percentile of the delay 

(the red line in Figure 4.7) as the threshold to select samples. All the samples 

with a delay value smaller than the threshold is considered valid. The threshold 

is updated periodically together with the update of the estimated line to trace 

the variation of the channel. See Figure 4.8. 

We only use the valid samples to estimate the trend line. Thus the impact of 

the asymmetric packet transmission is minimized. 

 

 

 

 

 

 

 

0

0.005

0.01

0.015

0 100 200 300 400 500 600 700 800

P
D

F

delay (ms)



51 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8  Update the valid threshold 

4.5.2 Quick Start 

In the initial phase of the protocol, the client needs to collect enough samples 

for the first estimation. Originally, the packet transmission rate of the client is 1 

packet per second. It means the client could obtain 1 sample per second on 

average which is a relative high rate for time synchronization protocol. Since 

the usage of the bandwidth does not matter in our dedicated WiFi network, we 

make the client collect enough samples for the initial estimation in a short 

period of time by increasing the sample rate. The quick start is achieved. 
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However, if there is interference during the transmissions, the samples 

become unreliable. Hence, introducing a sample selecting mechanism to the 

initial phase is still necessary. However, in the initial phase, the number of 

samples in the buffer is quite few. Sorting the samples with respect to the 

delays and using the 20-percentile of the delay to filter the samples are not 

reasonable. Instead, the samples are selected in the following way in the initial 

phase (see Figure 4.9). 

At the beginning, the client always uses 1.5 times the minimal delay it has 

encountered so far as the valid threshold and counts the number of the valid 

samples. When there are enough valid samples, the initial phase is finished 

and the client executes the first estimation. In an environment without or with 

light interference, that can be achieved quickly. 

In an environment with strong interference, the delay values are dispersed. 

The client is unable to collect enough valid samples for a long time. Hence, it is 

possible that sample buffer becomes full (100 samples). When that happens, 

the samples are sorted and filtered by the 20-percentile delay value. This sets 

an upper bound for the length of the initial phase. Thus the quick start property 

is guaranteed even when there is severe interference. 
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Figure 4.9 Sample filtering in initial phase 

4.5.3 Anti-interference (Approaches for Increasing Precision) 

The interference makes the samples disperse on the offset – time plane. The 

samples are distributed within a band on the plane and the interference 

increases the width of the band.  
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Figure 4.10 Anti-interference 

Figure 4.10 shows how a wider band can affect the accuracy of the regression 

line. From the figure we can see that, the regression line reflects the trend of 

the sample band. With a narrower band (4.10a), the estimated slope is limited 

within a smaller range. However, with a wider band (4.10b), the range for the 

estimated slope is increased. The line could rotate in a wider range. Then the 

estimation error of the slope is increased. If the length of the band can be 

increased (see 4.10c), the possible range for the regression line to rotate will 

be reduced to the same level as a narrow band has. Then the estimation error 

is reduced. 

To increase the length of the band means to use more samples for the 

estimation. Obviously, a larger buffer is needed and there are two approaches 

to fill the larger buffer: 

1) Using a longer observation time. 
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The buffer size was 100 samples originally. For instance, we can use a 

larger buffer with 400 samples. If the transmission rate is kept at 1 packet 

per second, 400 seconds is needed to fill the whole buffer. To fulfill the 

quick start requirement, the first estimation is done when we get the first 

100 samples. So the precision gradually increases after the first estimation. 

When the whole buffer is full, the precision reaches the highest level. By 

using this way, the precision of the synchronization is a little bit poor at the 

beginning. The advantage is the saving of bandwidth resources. 

2) Increasing the packet transmission rate 

Another option is to increase the transmission rate. For instance, we can 

use a rate of 4 packets per second to generate the samples. Then, the 

initial estimation can be done within the same period of time as the original 

version. The advantage of this approach is that the precision reaches the 

highest level after the first estimation, however, at the cost of utilizing more 

bandwidth resources. 

In our final version of the protocol implementation, we use a buffer with the 

size of 400 samples and we name it the main buffer. Besides, we introduce a 

secondary buffer with the size of 400 samples as well to increase the 

observation time in a more efficient way. The generated samples are filled into 

the main buffer. Whenever the last position of the main buffer is filled, we sort 

all the samples in the main buffer with respect to the delays and copy the best 

40 samples into the secondary buffer. The packet transmission rate is 4 

samples per second. Therefore, the samples in the whole buffer cover an 

observation time of 
   

 
 
   

  
      seconds. 
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Chapter 5 Measurement Results 

In this chapter, the measurement results of the Fast Clock Adjustment Protocol 

and the comparison with NTP are presented. Firstly, the tools used to measure 

the performance of the time synchronization protocols are described. 

5.1 Test Environment Setup 

 

 

Figure 5.1  The test environment 

Figure 5.1 shows the basic configuration of the test environment of this project. 

Since the pico-projectors we currently have are the 1st generation products, 

they are just tiny conventional projectors. Therefore, two computers are used 

as the data processing part and communication part representing future 

devices with embedded pico-projectors. We name the two computers ‘Left’ and 

‘Right’ as indicated in the figure. The two computers set up an ad-hoc Wi-Fi 

network in order to exchange time synchronization messages and 

synchronized playback signaling messages. The test video clips are stored 
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locally in the two computers. 

A third computer (BG) is on the same Wi-Fi network and is introduced as an 

interference source to simulate background traffic. The interference source 

continuously generated background traffic in different intensities. The purpose 

of intentionally introducing background traffic is that we need the time 

synchronization protocol to perform well not only in an interference free 

environment, but also in a complex radio propagation environment with 

interfering nodes. 

Finally, a fourth computer (Test) is used as the test-bed controller for testing 

the time synchronization protocols. Specifically speaking, the test-bed 

controller measured the time difference, i.e. the clock offset, between the 

clocks from an onlooker’s point of view. The test-bed controller basically is 

working based on capturing and comparing timestamps. The delay of a 

message between either Left or Right and the test-bed controller should be 

very small in order to achieve a high precision measurement. Thus, the 

measurement messages are exchanged via a dedicated Ethernet due to its 

delay is rather small and predictable. The principles of the generation of 

background traffic and the test-bed will be detailed in Chapter 5. 

Since the interference source is using its WLAN interface to generate 

background traffic and the test-bed is using its wired Ethernet interface to 

measure the time difference, the two jobs above can be undertaken by the 

same computer via its different network interfaces. So, in practice, three 

computers and two pico-projectors are made use of during the testing. 

5.2 Test-bed 

To test the performance of time synchronization protocols, a test-bed is 

required. The test-bed should have the ability of measuring the time difference 

between clocks. It should take timestamps of the clocks respectively at the 

same absolute time. Since the PCAP library [10] can provide the capture time 
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of a received packet with a very high accuracy, we use it as the tool to build the 

test-bed. 

The application of Figure 5.2 (a) is the test-bed server application, which runs 

on ‘Test’; and that of Figure 5.2 (b) is the client application runs on all 

computers being tested, such as ‘Left’ and ‘Right’.  

The test-bed server application continuously sends broadcast message to the 

Ethernet link. The reception of a packet does not have any unpredictable 

delays, such as carrier sense or retransmissions. The received packet is 

handed over to upper layer immediately where PCAP captures packets in the 

MAC layer. A packet’s capture time is therefore very close to the real reception 

time. Besides, the propagation delay of Ethernet is tiny and deterministic. 

Therefore, using broadcast packets over Ethernet guarantees that the packets 

capturing at different computers are taken place at almost the same absolute 

time. After the transmission of a broadcast packet, the test-bed server waits for 

the test-bed clients to send back the captured timestamps.  

A test-bed client application is a multi-process application. In the main process, 

the application continuously receives the broadcast packets from the test-bed 

server application. When a test-bed client application receives the broadcast 

packet, PCAP which works in the other process captures the packet and 

records the capture time. Then, the capturing process will be suspended for a 

predefined period of time. After the suspension, the timestamps are sent to the 

server. Each client is assigned a unique integer identifier and a unique 

suspension time. The suspension time of a specific client in the unit of second 

equals to the numerical value of its identifier. The reason for this is that the 

clients must send the timestamps back to the server in a predefined order. 

Thus, the server can distinguish the timestamps of different clients. 

When the timestamps of all the clients are received, the server calculates the 

time difference between the timestamps which is the clock offset of the two 
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clocks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Server                                  (b) Client 

Figure 5.2 Flow chart of the test-bed 

5.3 Interfered Channel Simulation 

To test the anti-interference capability of the protocols, we need to intentionally 

simulate background traffic. The idea of the simulation of interference is to 

generate some traffic to occupy the WiFi channel. The occupation will 

introduce additional transmission delay when transmitting packets because of 

carrier sense and retransmissions. Therefore, we use the WiFi NIC (Network 

Interface Controller) of ‘Test’ to continuously broadcast UDP packets to the 

WiFi network. See Figure 5.3. 
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Figure 5.3 Flow chart of the interference application 

By default, the MTU of a WiFi MAC frame is 1500 bytes on most systems. To 

avoid fragmentation, the broadcasted packets have a fixed length which 

equals to the MTU. The size of an IP header is 20 bytes [11], and that of a UDP 

header is 8 bytes [12]. Therefore, the broadcasted packets have a payload of 

1472 bytes. 

The interference application adjusts the interference intensity by changing the 

broadcasting interval. The interval is calculated by 
            

                            
. 

We can present the effect by interference on packet round-trip delay by using 

the following formula: 

                             

Where   ,   ,    and    are the captured timestamps during timestamps 

exchange in Section 4.1.2. 

Figure 5.4 shows the delay under different interference intensity. 
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(a)                               (b) 

Figure 5.4 Round-trip delay 

Through Figure 5.4, we can notice that the delay values increased with the 

increment of the interference intensity. Figure 5.5 is the CDF of the delay which 

clearly shows the impact of the interference on transmission delay. 

 

Figure 5.5 CDF of delay in three interference levels 

5.4 Measurement Results 

In this section, the measurement results of the FCAP (Fast Clock Adjustment 

Protocol) are presented in order to show its synchronization accuracy. The 

measurements took place under three different interference levels which tests 

its performance under different circumstances. For each interference level, a 

comparative measurement of NTP was also done. 

In each measurement, firstly, the clock offset is presented in the time domain. 

Secondly, a corresponding histogram of the offset is given. At the end of this 
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section, some statistics are given in order to show the numerical results. 

5.4.1 Without Interference 

  

(a)                              (b) 

Figure 5.6 Measurement for FCAP without interference 

Figure 5.6 shows the measurement results of FCAP when the channel is near 

idle. It clearly shows that the clock frequency is adjusted whenever the sample 

buffer is full (1000 s). Clock offset is adjusted whenever it exceeds the step 

threshold (1 s). 

  

(a)                             (b) 

Figure 5.7 Measurement for NTP without interference 

Figure 5.7 shows the measurement results of NTP without interference. NTP 

starts with a clock offset error of 4 ms. The clock offset is continuously driven 

towards 0 ms. However, the start time is longer than FCAP. 
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5.4.2 With 0.1Mbps Interference 

  

(a)                              (b) 

Figure 5.8 Measurement for FCAP with 0.1Mbps interference 

Figure 5.8 shows the measurement results of FCAP with weak interference 

(0.1 Mbps). Since the WiFi channel is occupied by the background traffic, the 

transmission delay of the synchronization message is increased and the 

estimation error becomes greater. Therefore, the maximum clock offset error in 

Figure 5.8 is larger than that in Figure 5.6. 

 

(a)                             (b) 

Figure 5.9 Measurement for NTP with 0.1Mbps interference 

Figure 5.9 shows the measurement results of NTP with weak interference. Due 

to the interference, the clock offset drifts apart again after it converges to 

almost 0 ms. 
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5.4.3 With 1.0Mbps Interference 

  

(a)                                 (b) 

Figure 5.10 Measurement for FCAP with 1.0Mbps interference 

Figure 5.10 shows the measurement results of FCAP with strong interference 

(1.0 Mbps). Since FCAP has an observation time of 1000 s, it can collect 

enough valid samples although there is strong interference. Therefore, the 

performance of FCAP under this circumstance is not too much worse than with 

weak interference. 

  

(a)                               (b) 

Figure 5.11 Measurement for NTP with 1.0Mbps interference 

Figure 5.11 shows the measurement results of NTP with strong interference. At 

the beginning, the clock offset diverges due to the initial frequency difference. 

After the clock offset converges to 0 ms at around 2000 s, the strong 

interference drives it to diverge again. The maximum clock offset error caused 

by the strong interference is significantly larger than that under the weak 
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interference. 

5.4.4 Statistics 

Table 5.1 Statistics for the clock offset errors 

Protocol 

Interference 

(Mbps) 

Mean Median Variance 

Standard 

Deviation 

95-percentile 

FCAP 0.0 0.69 0.66 0.19 0.44 1.51 

NTP 0.0 2.28 2.80 1.02 1.01 3.58 

FACP 0.1 1.15 1.04 0.52 0.72 2.40 

NTP 0.1 3.71 3.90 1.52 1.23 5.38 

FCAP 1.0 1.11 1.14 0.39 0.62 2.57 

NTP 1.0 5.04 2.46 21.68 4.65 12.52 

Table 5.1 gives the statistical results of the clock offset errors. We define the 

clock offset error at time   as            , where      is the clock time of the 

server and      is the clock time of the client. 

5.5 Results Analysis 

From the measurement results in the previous sections, we can make the 

following observations, 

(i) Start time 

FCAP can make the clocks synchronized shortly after the protocol initiated 

regardless of offset and frequency error as well as the interference level due to 

its quick start property. However, NTP’s start time depends on the initial 

conditions. The initial frequency difference and the initial clock offset are totally 

random values. Therefore, the start time of NTP is unpredictable. 

(ii) Anti-interference 

Comparing the data in Table 3.1 and Table 5.1, NTP synchronizes the clocks 

more accurate in its steady state when no interference existing in the channel. 

For both protocols, the accuracy goes down with the increase of the 
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interference intensity. However, the accuracy of NTP deteriorates more 

significantly. Since the timestamp exchange interval of NTP is much larger 

than that of FCAP, when interference exists, NTP has more probability to get a 

worse sample. Therefore, the clock adjustment can be driven in the wrong 

direction. From Figure 5.9 (a), we can notice that, when there is light 

interference (0.1Mbps), the maximum clock offset error of NTP is around 5ms 

which has almost reached the bound of our project requirement. In the case of 

strong interference, the maximum clock offset is even worse. 

However, FCAP has a stronger anti-interference probability due to its short 

timestamp exchange interval. In all cases, the clock offsets are controlled 

within 3 ms. 

(iii) Shape of the offset curve 

NTP has a smoother clock offset curve than FCAP. NTP uses a PLL algorithm 

to adjust the clock, which avoids big steps in the adjustment. In order to meet 

the quick start requirement, FCAP sets up a step threshold for the clock offset. 

Therefore, the offset curve presents a zigzag pattern. The step threshold is 

currently set to 1ms. It means that the amplitude of each step is around 1ms. 

For the applications and the users, 1ms is not a huge value and it will not be 

conscious of. 

To summarize, NTP has excellent synchronization accuracy in its steady state 

and when the channel is idle. Therefore, it is suitable for long-term usage. 

However, for an application, which needs to start quickly and be resistant to 

interference, FCAP is a better choice.  
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Chapter 6 Users’ Feeling Survey 

We also conducted a survey to test if the application meets the users’ 

requirement of synchronized playback.  

6.1 Survey Method 

The general idea of the survey is to show the synchronized playbacks to the 

users and get the feedback of their feeling about the synchronization and how 

much synchronization error that can be tolerated. 

In order to conduct the survey as accurate as possible, we need to make sure 

the synchronization error is under our control. It means we can manually set 

the presentation time difference between the screens. Therefore, we use wired 

Ethernet to synchronize the clocks. Since the transmission delay of Ethernet is 

only a few hundreds of microseconds, the clocks could be synchronized very 

accurately.  

In the playback application, an additional delay is applied to the play thread. 

When a frame is about to be presented, the thread is suspended for an 

additional period of time and the additional time is manually set every time. 

Therefore, the playbacks can be out of sync at a specific time difference set by 

us. 

With the preparations above, the survey was conducted as follows. The survey 

was divided into 30 tests. For each test, a time difference value is picked 

randomly for the playback. The users have binary options. What they need to 

answer is just whether they feel the playback in sync or not. They would mark 

‘1’ for in sync and ‘0’ for out of sync. Ideally, after all the 30 tests, a user should 

have a result as presented in Figure 6.1 if the tolerable level is 10 ms. 
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Figure 6.1 Ideal survey result of a user 

If there are four users, by accumulating the answers of corresponding time 

difference values of all the users, we get the chart in Figure 6.2 which reflects 

the general feeling of all the users. The maximum value in the chart equals to 

the number of the users. 

Figure 6.2 Example of final survey result 

By applying polynomial regression, we can find the trend line of the chart. The 

final acceptance threshold can be found by analyzing the regression line. The 

analytical method will be described in Section 6.3. 

6.2 Factors Affecting the Results 

During the survey, I found that the survey results were affected by the following 

two factors: 

(i) The user’s sensitivity 

To reflect user’s true feeling on synchronization, they should have no 
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background knowledge about this project. Therefore, they judge the playback 

in sync or not totally based on their feelings. We call this approach the normal 

method. During the survey, I found that different people have different 

sensitivities. To find an acceptance threshold by using the method in the 

previous section, a bigger number of users are required. However, for our 

project, that is not practical. 

People’s sensitivities are proportional to the familiarities of the video content. 

To make users more familiar with a video could increase their sensitivities to a 

universal level. This approach eliminates the impact of background knowledge 

of the result. Playing the same video to the user for several times could 

increase the familiarities. Obviously, the threshold identified by the new 

method would be stricter. If our application meets this stricter threshold, it also 

meets the threshold generated by the normal method. 

(ii) The content of the video 

The video content also affects the users’ sensitivity. Objects on the screen with 

different velocities and brightness result in different feelings. A video with 

complex content will make different users focus on different details on the 

screen. However, a video with simple content will make users’ attentions 

focused. 

6.3 Final Results 

Based on the two factors above, I choose two HD and wide-screen videos with 

different complex level to do the survey. One of the video is a clip of a concert 

with actresses and flashing light on the screen (Figure 6.3a), which is a relative 

complex video. The other video introduces the universe with rotating stars on 

the screen (Figure 6.3b), which has simpler content. 
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(a)                              (b) 

Figure 6.3 Screenshots of test videos 

The number of users was 8. All of them are students of Tilburg University. 

Therefore, the results are as follows, 

max=7.0883, 
  

 
          , threshold=8.858 

Figure 6.4 Survey result of a complex video 

max=7.345, 
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Figure 6.5 Survey result of a simple video 
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The curves in the Figure 6.4 and 6.5 are the regression line generated by 

polynomial regression. By using the definition of half-power bandwidth in 

electric circuit theory, we can find the acceptance threshold [13]. The time 

difference with a corresponding value on regression line which is 
  

 
 of the 

maximum value is the threshold. 

Both of the results give the threshold around 8ms. Therefore, we can say that 

a synchronized playback with a time difference smaller than 8ms can be 

considered in sync by most users. 
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Chapter 7 Conclusions and Future Work 

In this chapter, all the results of the project are concluded. Based on the 

conclusions suggestions for the future works are given. 

7.1 Conclusions 

In this thesis, we have studied the synchronization of multimedia playback on 

WPAN devices over a WiFi network. 

Firstly, the final target of the project is raised. The project required an 

application that could achieve a synchronized play of videos with quick-start 

and anti-interference properties. 

Secondly, we analyzed the whole synchronization problem in detail. The whole 

problem was decomposed into two main factors, the synchronization of the 

playbacks and the synchronization of the clocks. Both the factors were 

discussed in detail. 

In the playback synchronization, the challenge is to minimize the response 

time. We explored the open source project VLC and utilized its command line 

tool and its APIs to make a synchronized player. However, the response times 

of those tools exceed the requirement of our project. Therefore, we switched to 

a lower layer tool – FFmpeg to play the video with frame-by-frame level 

synchronization. Its response time is limited well within a 2ms range, which 

meets the requirement. 

The basic principles of computer clocks and clock synchronization were 

introduced. Then we analyzed the most popular time synchronization protocol 

NTP and tried to use it to synchronize the clocks for our project. However, it is 

more suitable for long-term usage, since it cannot meet the requirements of 

quick-start and anti-interference although it has an excellent performance 

when it reaches its steady state. In order to meet all the requirements, a new 
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time synchronization protocol, the Fast Clock Adjustment Protocol, was 

designed. It uses a linear regression algorithm to estimate the clock frequency 

difference and clock offset. Its short timestamp exchange interval enables itself 

to have the properties of quick-start and anti-interference. 

Thirdly, we measured the performance of FCAP and NTP and analyzed the 

measurement results. 

Finally, a users’ feeling survey was conducted to find the tolerable level of 

out-of-sync. In the survey, we found that different people have different 

sensitivity about the synchronization of the playback. Their sensitivities are 

also affected by the content of the video. In order to find the acceptance 

threshold of most users, a huge size of the samples set is required. Therefore, 

we used a higher standard to do the survey to guarantee that the threshold we 

found is accepted by most of the users. Through the survey, we eventually 

found the threshold to be 8ms, which is greater than the maximum 

synchronization error of FCAP (3 ms). Therefore, the application meets the 

synchronization requirement of most of the users. 

7.2 Future Work  

Although synchronized playback is achieved, there are still some aspects of 

our project worthy to be improved in the future. 

(i) Synchronization of multiple clocks 

In the thesis, we focused on the synchronization of two clocks. If more devices 

are used to build a video wall, the synchronization of multiple clocks is required. 

For multiple clocks, the synchronization can be done in a more accurate way. 

We know that the synchronization error comes from the uncertainty of the 

transmission delay. The uncertainty is because of the carrier sense and the 

retransmission mechanism when transmitting a packet. In the multiple clocks 

case, if the server broadcasts a packet, all the clients should receive the 
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packet at exactly the same time regardless of carrier sense and 

retransmissions. The principle is the same as implementing the test-bed in 

Chapter 5. By exchanging the reception timestamps, the clients’ clocks can be 

synchronized more accurately. 

(ii) Virtual clock 

FCAP continuously adjusts the local clock of the client. However, the local 

clock is the only time source for all the local applications. Frequent 

adjustments may affect the execution of other applications. A better way is to 

set up a dedicated virtual clock for the playback application. The time 

synchronization protocol adjusts the parameters of the virtual clock, but not the 

real local clock. The virtual clock is only used for the synchronized playback 

application. 

(iii) Video streaming 

In the project, the video files were stored locally. In the future, the devices may 

request the video from a media server as well. Therefore, the video streaming 

and splitting are other parts which are worthy to be implemented. 
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