

Design and Implementation of

Synchronization of WPAN Devices

for Multimedia Playback

By Xiaofei Tian

September 3rd , 2010

Committee Members:

Supervisor Dr. Martin Jacobsson

Responsible professor Prof. dr. ir. Ignas Niemegeers

Member Dr.ir. Anthony Lo

 Dr. Christian Doerr

ii

Acknowledgments

This thesis is the result of a 9 months master project. At the moment when the

project is finished, I would like to thank my mentor dr. Martin Jacobsson for

giving me the chance to participate this project. Thanks for the time he spent

on discussing the related works with me. I have learned a lot from his patient

explanations and professional programming skills.

I would like to thank prof.dr.ir. Sonia Heemstra de Groot and dr. Ertan Onur for

their kind suggestions when I was looking for my thesis work.

I would like to thank all the instructors of telecommunications department of TU

Delft. Thanks for giving me a wonderful academic life during the last two years.

At last, I would like to say thanks to my friends and my family, especially to my

dear mother. Your continuously support and encouragement made me

survived here.

iii

Abstract

With the development of projector technology, portable projectors called

pico-projectors are emerging on the market. To achieve a high quality

projection, multiple pico-projectors can be used to display the same video,

where accurate synchronization is required.

The target of this thesis is to design and implement a Linux-based application

which can synchronize multimedia playback over a WPAN with high accuracy.

By analyzing the synchronization requirements, the synchronization problem is

decomposed into playback synchronization and clock synchronization. To

achieve a synchronized playback based on synchronized clocks, we explore

several open source projects and eventually build a synchronized player which

can play video with frame-by-frame level synchronization. For clock

synchronization, the principles of a typical computer clock and the most

popular time synchronization – NTP are studied. Based on that, a new time

synchronization protocol with quick-start and anti-interference properties is

designed.

We also conduct a survey to test if the application meets the users’

requirement of synchronized playback. The final results show that our

application provides a synchronized playback with the accuracy which is

acceptable for most users.

iv

Content

Chapter 1 Introduction ... 1

1.1 Project Overview ... 1

1.2 Final Target .. 2

1.3 Synchronization Basics .. 4

1.4 Outline of the Thesis ... 9

Chapter 2 Synchronized Playbacks ... 10

2.1 Utilizing VLC .. 10

2.1.1 Using VLC Console Tool for Synchronized Playback 11

2.1.2 Using the VLC API Functions for Synchronized Playback 13

2.2 FFmpeg .. 15

2.2.1 Synchronized Playbacks Using FFmpeg APIs ... 17

2.2.2 The Decode Thread ... 19

2.2.3 The Play Thread ... 24

2.2.4 The Event Thread .. 25

2.2.5 Response Time Measurements ... 26

2.3 Preparation of the Media Files.. 27

Chapter 3 Clock Synchronization .. 29

3.1 Computer Clocks ... 29

3.2 Clock Synchronization Principles ... 30

3.3 NTP .. 32

3.3.1 The Clock Discipline Algorithm of NTP .. 33

3.3.2 Performance of NTP .. 34

3.3.3 Suggestions for Improving the Performance .. 37

Chapter 4 Fast Clock Adjustment Protocol ... 38

4.1 Timestamp Exchange .. 38

4.1.1 PCAP (Packet Capture) .. 38

4.1.2 Timestamp Exchange .. 39

4.2 Samples Read-out Technique .. 40

4.3 Adjusting the Clock Using Linear Regression .. 44

4.4 Utilization of Old Samples ... 47

4.5 Error Analysis .. 48

4.5.1 The Valid Samples Filtering Threshold .. 50

4.5.2 Quick Start ... 51

4.5.3 Anti-interference (Approaches for Increasing Precision) 53

Chapter 5 Measurement Results .. 56

5.1 Test Environment Setup .. 56

5.2 Test-bed ... 57

5.3 Interfered Channel Simulation .. 59

5.4 Measurement Results ... 61

5.4.1 Without Interference .. 62

5.4.2 With 0.1Mbps Interference ... 63

 v

5.4.3 With 1.0Mbps Interference ... 64

5.4.4 Statistics .. 65

5.5 Results Analysis ... 65

Chapter 6 Users’ Feeling Survey ... 67

6.1 Survey Method .. 67

6.2 Factors Affecting the Results ... 68

6.3 Final Results .. 69

Chapter 7 Conclusions and Future Work .. 72

7.1 Conclusions ... 72

7.2 Future Work .. 73

References ... 75

1

Chapter 1 Introduction

1.1 Project Overview

With the development of projector technology, portable projectors called

pico-projectors are emerging on the market. A pico-projector has a size that fit

inside a typical mobile phone. Early pico-projectors were pure projectors with

the same function as traditional projectors. Currently, they are being

embedded into portable devices, such as mobile phones and digital cameras.

With its portability and the data communication ability of such devices, new

applications can be designed around the projection function.

Figure 1.1

2

Compared with a normal projector, the resolution and illumination are worse.

To compensate this disadvantage, multiple pico-projectors can be utilized in

the following approaches:

1) Tiling

Multiple pico-projectors can be used to build a video wall, where each

pico-projector is in charge of a specific part of the screen. Therefore, the

resolution is increased. Thereby, a movie in full HD format can even be

presented by pico-projectors.

2) Superposition

Multiple pico-projectors can also be used in the way of superposition. All

the pico-projectors are in charge of the whole screen, but a specific

pico-projector only projects specific video frames. For example, if two

pico-projectors are used, one of them projects odd frames and the other

one projects even frames. Therefore, the illumination is increased.

Besides, this application can be extended. In the future, devices could request

the multimedia content from a media server located in the Internet via cellular

networks. The media content are preprocessed in the media server and

streamed to the devices. Figure 1.1 shows such a scenario.

To achieve either of the approaches above, the playback needs to be

synchronized. Therefore, a WPAN is used for the synchronization. This thesis

focuses on the synchronization of playback over a WiFi [1] network. The goal

is to achieve synchronized playback by using two computers through

designing and implementing an application on the Linux platform.

1.2 Final Target

The synchronization of multimedia playback is an entertainment application.

Typical target users are the people who have no background knowledge about

3

computer and telecommunications technology. Therefore, the whole

application should be easily set up. Figure 1.2 shows our experimental setup.

Figure 1.2 The experimental setup

For the users, they are happy when synchronized screens appear shortly after

the application starts. Long time waiting should be avoided. Thus, the

application should have a quick-start property. The maximum start time should

be controlled within several tens of second.

Since the project is aiming to have video streaming via cellular networks in the

future and the number of wireless devices is significantly increasing, the

interference of the WPAN signal cannot be ignored. Therefore, the application

should have the ability to cope with a relative strong interference.

The last and the most important requirement is synchronized playback. The

application should have a good synchronization accuracy that is acceptable by

the users. Therefore a bound of the synchronization accuracy should be set.

Within this bound, the playback can be considered in sync by most users. To

find the bound is a challenge. Then I conduct a users’ feeling survey. Through

the survey, we find the users’ acceptance threshold for the playback

synchronization is around 8 ms. Thus, we set 8 ms as the final accuracy target

of the synchronization over WiFi networks. The details of the survey will be

4

described in Chapter 6. During the implementation of the application, I tried to

minimize all error factors.

1.3 Synchronization Basics

What people are interested in is when the frames eventually be put on screen

regardless of how long time the frames are being processed inside the video

player. In order to achieve a synchronized playback among devices connected

over a WPAN, the moment when a frame appears on the screen, must be

exactly the same on all devices. Several factors are involved in achieving that,

such as, the playback rhythm, local clock synchronization and system

response time synchronization. The most simple and reasonable approach is

to make all the factors above synchronized rather than use additional delay in

one factor to compensate out-of-sync in other factors. Let us briefly look into

every factor:

1. The first factor is the playback rhythm. All video formats are based on

picture frames. A video player sending sequential frames in turn onto the

screen gives people the feeling of dynamic image due to the persistence of

vision effect. The frames must appear on the screen in a fixed rhythm in

order to truly reflect the content of the video. Playback that is too fast or too

slow must be avoided. In almost all the video formats, timestamps are

included in every frame that gives the player the information about when to

put the frames onto the screen. Usually, timestamps are the relative time

with respect to the beginning time of the video. Once the playback starts,

the video player records the starting time of the playback, then convert all

the relative timestamps into absolute timestamps. The player compares the

absolute timestamps with the local clock to decide when to put the frames

to the screen. Thus, the local clock determines the rhythm of the playback.

2. The second factor is the synchronization of the local clocks. From the

playback rhythm factor, we know that, the players use the absolute

5

timestamps to present each frame. Hence, to have synchronized local

clocks is the prerequisite for realizing synchronized playbacks. Here, both

the frequency of the clock, i.e. the speed of the clock, and the accumulative

offset error, i.e. the instant indication of the clock, need to be the same.

Clock frequency synchronization guarantees the playbacks have the same

rhythm. Clock offset synchronization ensures that there is no time offset

between the two playbacks when they have the same rhythm.

3. The third factor is the response time of the system. The response time is

the time a system takes to react to a given input. Actually, the time

difference between the response times of any two modern electronic

devices are getting smaller and smaller, especially, when they are

equipped with multi-core processors and have multi-threading ability.

However, we are going to make an application which is various devices

oriented. We cannot make the hypothesis that the devices are from the

same vendor, with the same hardware configuration and have the same

software installed. Therefore this factor still needs to be considered,

otherwise, we will risk having playbacks which are out of sync although the

local clocks are synchronized.

We can see that, to realize synchronized playbacks, several related factors

need to be taken into consideration. Now, let us do some modeling to make the

problem clear.

First of all, we need to make some definitions. Let us call the moment when a

frame eventually appears on screen, the presentation time of the frame. The

moment when the player starts to play is called trigger time. Each frame has its

own presentation time. However, the trigger time can be discussed in different

scales depending on the approach we use to make the player. If we are using

a ready-made video player, the trigger time represents the time when the

player is triggered to start. If we can manipulate the video player and operate it

6

at a frame-by-frame level, e.g. using some codec APIs, the trigger time

represents the time when a specific frame is sent to the screen.

Based on the concepts of trigger time and presentation time, we can define the

response time. Generally speaking, the response time is the period of time

between the trigger time and the presentation time. Again, the concept of

response time can be defined in different scales. In the situation which a

ready-made player is utilized, the response time is the time period between the

trigger time of the player application and the presentation time of the first frame.

In this case, we have only one trigger time and one response time. However,

for an arbitrary frame in the frame-by-frame case above, it should refer to the

period of time between the trigger time of a frame and the corresponding

presentation time. Now, the numbers of trigger times and that of presentation

times are equal to the number of frames.

Figure 1.3 gives the timing diagram of the case using a ready-made video

player for a two devices playback circumstances and Figure 1.4 shows that of

doing the playbacks at a frame-by-frame level.

Figure 1.3 Using ready-made player for synchronized playback

7

For the case of Figure 1.3, we can notice that, the player has the ability to

maintain the rhythm of the playback based on the local clock. To make the two

playbacks synchronized, the corresponding trigger times must be aligned and

the two response times must have the same length. Since on each device, the

player can only know its local time as time reference, the synchronization of

the local clocks is a requirement of making the trigger times and the response

times in sync.

Figure 1.4 Using frame level tool for synchronized playback

In Figure 1.4, we are at the frame level. In this situation, to achieve

synchronized playback, we need to make all the corresponding trigger times

and all the corresponding response times aligned on the time axis. Due to the

same reason as above, the clocks of the devices still need to be synchronized

to supply reliable absolute time references.

The two situations above clearly show that, no matter what kind of tool we use

to make the video player, to achieve synchronized playbacks, two aspects

must be guaranteed. One is the clock synchronization; the other is

synchronization of playback based on synchronized clocks. The latter one can

8

be divided into trigger time synchronization and response time synchronization.

To synchronize the trigger times is not a difficult task as long as we have the

clocks well in sync. Hence, the key of synchronization of playbacks is to make

sure that response times have the same length.

Figure 1.5 Abstracted timing diagram

Figure 1.5 gives an abstraction of the problem. and correspond to the

zero points of the time axes which show the relative clock offset of the clocks.

 and are the trigger times. At these times, the devices received their

playback instructions. The clock offset is,

The difference between and is the same as the clock offset. Hence,

we can easily synchronize the trigger time if we have synchronized clocks (

is small).

 and are the response times of the devices respectively. The response

time difference is,

 and are the final presentation times. The presentation time difference

can be as bad as the sum of the two time differences,

Let us go back to the beginning of this section, people can only say that the

9

playbacks are in sync when the absolute presentation time of the playbacks

are the same. That means, the presentation time difference, i.e. the total time

difference is close enough to zero. Thus, the task is to minimize the total time

difference to a tiny level which is not noticeable by people. Since is bound

by the sum of and , an easy way to minimize is to minimize both

 and . So far, our final job has been divided into two parts, the

minimization of clock offset and the minimization of the response time

difference, i.e. the synchronization of clocks and the synchronization of

playbacks. In the following chapters, these two aspects will be discussed in

detail.

1.4 Outline of the Thesis

The thesis is organized as follows: Chapter 2 will describe how a synchronized

playback is achieved based on synchronized clocks and how the response

time is minimized by exploring several open source projects. Chapter 3 will

give the principles of a typical computer clock and the most popular time

synchronization – NTP. Besides, the performance of NTP will be studied as

well. In Chapter 4, the design and the implementation of a new time

synchronization protocol – Fast Clock Adjustment Protocol will be given.

Chapter 5 will show the measurement setup and the measurement results of

the time synchronization protocols. Chapter 6 will describe how the users’

feeling survey is conducted, as well as the analysis of the survey results.

Chapter 7 will conclude the thesis and will give the suggestions for future

works.

10

Chapter 2 Synchronized Playbacks

As mentioned in section 1.3, achieving the minimization of clock offset and the

minimization of the response time difference is a reasonable approach to

realize synchronized playbacks. In this chapter, we will focus on the

minimization of the response time difference. In details, we will discuss how to

use various tools to make a video player with the ability to play something in

sync on multiple devices based on synchronized local clocks. During the

development, we explored two open source projects which are related to

media playback. They are VLC and FFmpeg.

2.1 Utilizing VLC

The VideoLAN project was initially started in 1996 in the French engineering

school École Centrale Paris by students there [2]. Their original intention was

to watch television on their computers based on media steaming. Two

programs, VLS (VideoLAN Server) and VLC (VideoLAN Client), were planned

to be made. After the negotiation with the school’s Director, the license of the

project was agreed to change to open source (GPL). From then on, VLS has

been subsumed into VLC and programmers from all over the world joined the

development of the project.

Today, VLC is an open source cross-platform multimedia player and

multimedia playback framework. It consists of a media player and a

development library – libVLC. The player can be used with a GUI interface. It

can also be used in command line mode with or without the GUI interface. The

libVLC library has some API functions which can used to set up the connection

between VLC and another program. Then the programmer can use VLC’s

functionality in his own program, for example, making a new multimedia player

with a totally newly designed interface and VLC’s playback functionality.

11

2.1.1 Using VLC Console Tool for Synchronized Playback

Now that VLC has a multimedia player, the first attempt was directly using

VLC’s player in command line mode without any interface.

Figure 2.1 Using VLC command line tool

Figure 2.1 is the timing sequence chart of the first attempt. The two computers,

‘Left’ and ‘Right’, are now working in a client/server mode. Their clocks have

already been synchronized by a time synchronization protocol. What we need

to do is to make the two computers start to play at the same absolute time. In

another word, synchronize the trigger times of the player applications. Strictly

speaking, we are expecting that the first frame of the video clip on both

computers would appear on the two screens at the same time when we make

the applications start at the same time. So, next, we will make the trigger times

synchronized.

The server keeps working in a listening state. The playback can only be

initiated by the client. When the client plans to play the video, it firstly captures

a timestamp of the current time , and then adds a fixed period of time to the

12

just captured timestamp. Thus, it generates a new timestamp of a moment

in the near future. The newly generated timestamp denotes the trigger time

of the player application on both the client and the server. The client then

sends the new timestamp to the server to inform when to start the application.

After sending the timestamp message, the client will suspend the current

thread execution for a while until . At the server side, when it receives the

timestamp, it will capture a local timestamp immediately. Then a comparison

between the received timestamp and the local timestamp is made. The time

difference between those timestamps is the period of time which the server

needs to suspend its thread execution for. When the pre-set trigger time is

reached, both the client and the server will stop their thread suspension and

launch the VLC media player application. So far, the trigger times are

synchronized.

It is worth to notice that the fixed period of time we added to the first timestamp

should be chosen carefully. If it is set too long, the user would feel that the

program is slow to start. And if we set it too short that is shorter than the

transmission time of the timestamp message, the comparison of the

timestamps at the server will have a negative value. As a result, the launch of

the VLC will start at the client before the timestamp message arrives at the

server and the playback will be out of sync.

Recall the definition of the response time in section 1.3. Here we are

encountering the case of using a ready-made player. The response time is the

period of time between the launch of the VLC media player application and the

moment when the first frame of the video appear on the screen. However, the

response time strongly depends on the hardware configuration and the current

CPU load. Under the worst situation, a slower computer has a response time

longer than a faster computer by several hundred milliseconds.

The reason for such a huge response time difference is that we are utilizing a

13

ready-made player; we lose the control of the application after the trigger time.

The VLC player application has its own scheduling mechanism internally to

initialize the player base on the current CPU load. There are a series of jobs

needed to be done during initialization, such as creating a new thread for

playback, loading the media file into memory, setting up a proper display

format for the screen, etc. Each of the steps would have an independent

unpredictable response time. The whole initialization procedure sums up all

the small response times which amplifies the uncertainty of the response time.

In a test we did with two different computers, we noticed this approach doesn’t

meet our real-time requirement.

2.1.2 Using the VLC API Functions for Synchronized Playback

By analyzing above, we know that the first approach to make a synchronized

player failed due to leave too many series jobs to the system. Hence, we need

to go deeper into the execution of the initialization of the application and try to

control the whole initialization procedure step by step. Then the uncertainty of

the response time will be reduced. Since VLC has a development library which

provides external APIs for other application to use most of the VLC’s features,

the second attempt was to use the VLC API functions to decompose the initial

procedure of the player application.

There are dozens of functions in the libVLC library. To start the playback, a few

API functions need to be called to accomplish the initialization. However, what

we are interested in is the actual play function. Figure 2.2 shows the timing

sequence chart of the second attempt.

14

Figure 2.2 Using VLC API functions

In the figure, we can notice that is almost the same as the one using the

ready-made player. The only difference is that some functions, such as setting

up the playing environment, and loading the media file, have been executed

before the client captures its first timestamp. Those functions were included in

the initialization and executed after the trigger time in the first attempt. Here,

the timestamp for the trigger time is used just before the execution of the play

function. Hence, the response time is the period of time between the trigger

time of the play function and the moment when the first frame appears on the

screen.

Compared to the first attempt, the response time of the second attempt is only

a small part of that of the first one. In theory, it should be significantly smaller.

Since we are using the API functions, we measure the response time. Let’s

capture two measurement timestamps. One is got just before the execution of

the play function, or we can use the timestamp of the trigger time instead for

simplicity. The other one is captured when the play function returned from VLC.

And we make the play function run for a fixed period of time. Then the time

difference between the two timestamps should be a little bit longer than the

running time of the play function. Thus, the exceeded part is the response

time.

15

Figure 2.3 shows the measurement results (PDF) for the response time of

repeating the initialization for 50 times. The playback duration was 1 second.

Figure 2.3 Result for response time using VLC APIs

The result shows that the response times are mainly distributed in the range

between 27 ms and 41 ms already on the same system. It means they are still

affected by the CPU load and other unpredictable events. Thus, we need to

decompose the response time further to a frame-by-frame level and for this we

need to switch from VLC to FFmpeg.

2.2 FFmpeg

Most multimedia playback systems can be considered as a layered stack

structure. The following figure is a simple example.

Figure 2.4 Layered playback system structure

It consists of 2 layers. The lower layer is the codec layer. It is in charge of

0

0.05

0.1

0.15

0.2

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

P
D

F

Response time (ms)

VLC or

Windows Media Player

Audio Codecs
(e.g. G.726, FLAC, MP3, ...)

Video Codecs
(e.g. H.264, WMV,

MPEG4, ...)

16

encoding and decoding the media streams. It is the fundamental and core

function of the playback system. The upper layer is the application layer. It

utilizes the service of the codec layer to build the application’s own features.

According to this layered structure model, VLC works on the application layer.

The best we can do in the application layer is to use the application’s API

functions which was our second attempt. In order to decompose the response

time further, some manipulations on the codec layer is required. Inside VLC,

the encoding and decoding works rely on a codec library with the name

FFmpeg [3].

FFmpeg is a cross-platform open source project. It also supplies API functions,

however, at the codec level. There are two main libraries in FFmpeg:

libavcodec and libavformat. The former one contains the codecs and the latter

contains the file format handling. These two libraries work together with

several other assistance libraries.

Since FFmpeg is a codec layer library, we need to use the services it supplies

to make a totally new media player application. However, to make a player with

complete popular functions is a giant project. In order to implement

synchronized playback on time, we will only deal with the video streams in the

multimedia files and not audio. The only two functions of the player that we will

implement are synchronized play and stop. So it can be called ‘Synchronized

Video Player’. However, the mechanism of the synchronization for audio

playback is almost the same as that for video.

Some concepts with respect to multimedia data will be involved in the following

discussion:[4]

Container - The multimedia file itself is a container. It contains the

metadata and all the encoded media data.

Stream – Media data is stored in container in the form of streams. A

17

stream is a succession of encoded data element. Normally, a multimedia file

has at least one video stream and one audio stream.

Frame – A data element in the stream is called one frame.

Packet – A packet is a piece of stream. Depending on the data format, a

packet can be decoded into a part of a frame, a complete frame or a few

complete frames.

2.2.1 Synchronized Playbacks Using FFmpeg APIs

Based on the concept above, our synchronized video player works in the

following way:

00 INITIALIZATION

01 OPEN video_stream

02 WHILE video_stream IS NOT FINISHED

03 READ packet FROM video_stream INTO frame

04 IF frame NOT COMPLETE GOTO 02

05 SYNCHRONIZED PLAY frame

Actually, line 01 should be part of line 00. Here I separate Line 01 from line 00

since the player will only deal with the video streams. The code is written in a

multithreading style. The decode function and the play function work in two

independent threads since those two functions are asynchronous. But then,

we prefer to use multithreading rather than use multi-process because the two

functions still need to share the same memory space. The play function

requires the decoded data from the decode function. If multi-process technique

is used, each process has its own memory space. Then inter-process

communications are required for delivering the decoded data to the play

function. Obviously, it’s more complicated than making the two functions share

18

the same memory space. Thus, multithreading is the choice.

The speed of the playback is determined by the video format and is recorded

in the metadata. (25 and 30 frames per second are typical values.) However,

the speed of the decoding is determined by the computer’s computational

capability. It will decode packets into frames as fast as possible.

In order to display the decoded frames on screen, another library with the

name SDL (Simple DirectMedia Layer) [5] is also used. It provides low level

access to audio, keyboard, mouse, joystick, 3D hardware via OpenGL, and the

2D video framebuffer. Thus, we can use it to implement the input and output

interfaces of the player application. We use its video functions to display

decoded frames and use its keyboard event functions to terminate the

application.

Our whole synchronized player application also works in client/server mode

and consists of two separated applications for the ‘Left’ and ‘Right’ computers.

The general structures of the two applications are basically the same. Both of

them have three threads, a decode thread, a play thread and an event

handling thread.

19

a. decode thread b. play thread c. event thread

Figure 2.5 Flow chart of the player using FFmpeg APIs

Figure 2.5 is the flow chart for one of the applications. The only difference

between the client and the server is the Synchronization Signaling part. It will

be discussed later.

2.2.2 The Decode Thread

In the decode thread, which is also the main thread, all the initializations and

no

no

no

yes

yes

yes

FFmpeg initialization

SDL initialization

Prepare video stream

Synchronization signaling

Initiate play thread & event thread

Read packet

Decode into frame

Add to frame queue

Read frame from queue

Mount to overlay

Timestamps comparison

& wait

Display

Last frame

Last packet

Wait for event

‘F’ pressed

Start

Start

Start

Terminate application

Return to main thread

Wait for play thread return

20

preparations are done. The timestamp indicated the display time of the first

frame is generated. And, the packets from the video stream are decoded.

-Initialization FFmpeg and SDL

av_register_all();

avcodec_register_all();

SDL_Init(SDL_INIT_VIDEO | SDL_INIT_AUDIO | SDL_INIT_TIMER);

All the formats and codecs which are supported by FFmpeg are registered.

When a media file is loaded, FFmpeg would detect its format and choose a

proper codec for decoding. Then SDL is also initialized by using its own

initializing function.

-Prepare video stream

if(av_open_input_file(&(is->pFormatCtx), filename, NULL, 0, NULL)!=0)

printf("Couldn't open file!\n");

if(av_find_stream_info(is->pFormatCtx)<0)

printf("Couldn't find stream information!\n");

First, the application opens the media file and reads the header of the file to

find out the format and stream information. Then it writes the information into

the pFormatCtx structure.

for(i=0; i<is->pFormatCtx->nb_streams; i++)

 if(is->pFormatCtx->streams[i]->codec->codec_type==CODEC_TYPE_VIDEO)

 {

 is->videoStream=i;

 break;

}

if(is->videoStream==-1)

return -1; // Didn't find a video stream

is->video_st=is->pFormatCtx->streams[is->videoStream];

nb_streams is the number of the streams in the file including audio and video

streams. The loop above checks the type of each stream to find the video

21

stream we need.

pCodec=avcodec_find_decoder(is->video_st->codec->codec_id);

if(pCodec==NULL)

{

 fprintf(stderr, "Unsupported codec!\n");

 return -1; // Codec not found

}

// Open codec

 if(avcodec_open(is->video_st->codec, pCodec)<0)

return -1; // Could not open codec

Then FFmpeg tries to find a proper codec for the found video stream and open

it.

is->timebase=av_q2d(is->video_st->time_base);

Another important thing about the stream is the time base. Time base is a

quantity that indicates the speed of the playback. It is a rational number with

the unit of second. In each frame, there is a field called PTS (Presentation

Timestamp). The PTS are natural numbers, which count time bases. Thus, the

product of time base and a PTS is the presentation time of the frame as an

offset compared to the first frame. The function above converts the fraction

form time base into a real number.

screen = SDL_SetVideoMode(is->video_st->codec->width,

is->video_st->codec->height, 0, 0);

Finally, the display size of the screen is set to match the resolution of the video

stream.

-synchronization signaling

This part is different between client and server.

gettimeofday(&tv,NULL);

tv.tv_sec++;

n = sendto(sockfd, &tv, sizeof(tv), 0, (struct sockaddr *)&rightaddr, sizeof(rightaddr));

22

In the client, a current timestamp is captured. Then a one second lag is added

to the timestamp. Thus the timestamp now indicates a moment in the near

future which is the planned display time of the first frame. Finally, the

timestamp is sent to the server in a UDP packet to inform the server the

display time.

n = recvfrom(sockfd, &tv1, sizeof(tv1), 0, (struct sockaddr *)&leftaddr, &leftaddr_len);

In the server application, the execution is suspended and waiting for the

timestamp message from the client. Once the message is received, it will

continue to execute. At this point in time, both the client and the server have

the same timestamp for presenting the first frame.

-Initiate the play thread and the event thread

SDL_CreateThread(play_thread,is);

SDL_CreateThread(event_thread,NULL);

Here, the other two threads are initiated. They will run in parallel and are

scheduled by the CPU.

-The decode loop

A loop is used to decode packet into frames.

while(!av_read_frame(is->pFormatCtx, &packet))

 {

 if(packet.stream_index==is->videoStream)

 {

 ...

 pts_convert(is->timebase,packet.pts,&tv_tmp);

avcodec_decode_video(is->video_st->codec, tmp_frame->pFrame,

&frameFinished, packet.data, packet.size);

 if(frameFinished)

 {

 timeradd(&tv,&tv_tmp,&(tmp_frame->pts));

23

 SDL_LockMutex(is->p_mutex);

while(is->qsize>=MAX_Q_SIZE)

 {

 SDL_UnlockMutex(is->p_mutex);

 usleep(1000);

 SDL_LockMutex(is->p_mutex);

 }

 ...//Add to frame queue

 SDL_UnlockMutex(is->p_mutex);

 }

 }

 av_free_packet(&packet);

}

Firstly, a packet is read from the video stream, whose return value is the enter

condition of the loop. If the read packet is the last one in the stream, the loop

stops. Secondly, inside the loop, the packets should be checked if it’s from a

video stream since the read packet may be from an audio stream.

pts_convert() converts the natural number form packet’s timestamp into a real

number timestamp in the unit of second. Now, the timestamps are relative to

the beginning of the playback. Then, avcodec_decode_video() actually decode

the packets into frames. After that, the decoded frame will be added to a frame

queue which is a linked list. Each element of the queue consists of a

timestamp of the frame and the data of the frame. Here, the timestamp in the

queue element is converted to absolute time by adding the relative timestamp

and the timestamp captured in the synchronization signaling part.

Figure 2.6 The frame queue

The frame queue is also read by the play thread. Since it is a queue, it has a

FIFO data structure. The decode thread only adds elements to the rear end of

the queue and the play thread only get elements from the front end. Then,

there may be a risk that both the two threads use the queue simultaneously. To

PTS Data PTS Data PTS Data PTS Data

24

avoid that, I use a mutex lock.

Assuming that the decode speed is faster than the playback speed, the length

of the queue continuously grows without any limitation. The application will run

out of memory eventually. So, the frame queue has a maximum length

MAX_Q_SIZE. When the length reaches the maximum value, the decoding will

be suspended for a while until the queue length is reduced below the

maximum value.

The decode loop continuously executes until the all the packets of the stream

is decoded or the user terminates the application.

2.2.3 The Play Thread

The play thread presents the decoded frames on the screen based on their

presentation timestamps and the internal computer clock.

bmp=SDL_CreateYUVOverlay(is->video_st->codec->width,

is->video_st->codec->height,

SDL_YV12_OVERLAY,screen);

At the beginning, a SDL overlay is introduced. An overlay is a frame carrier. A

decoded frame needs to be mounted to an overlay, and then it can be

displayed on the screen.

for(;;)

{

 ...

 SDL_LockMutex(is->p_mutex);

 if(is->q_first_end==NULL) break;

 tframe=is->q_first_end->pFrame;

 tpts=is->q_first_end->pts;

is->q_first_end=is->q_first_end->next;

 SDL_UnlockMutex(is->p_mutex);

 ...

 img_convert_ctx = sws_getContext(is->video_st->codec->width,

is->video_st->codec->height,

is->video_st->codec->pix_fmt,

is->video_st->codec->width,

is->video_st->codec->height,

25

PIX_FMT_YUV420P,SWS_BICUBIC,

NULL, NULL, NULL);

 sws_scale(img_convert_ctx,tframe->data,tframe->linesize,0,

is->video_st->codec->height,pict.data,pict.linesize);

 sws_freeContext(img_convert_ctx);

 ...

 gettimeofday(&tv_now,NULL);

 timersub(&tpts,&tv_now,&tv_sleep);

 TIMEVAL_TO_TIMESPEC(&tv_sleep, &ts);

 nanosleep(&ts,NULL);

 SDL_DisplayYUVOverlay(bmp, &rect);

 av_free(tframe);

 ...

 }

Then a loop is introduced for the playback. First, the thread retrieves a frame

from the queue to a temporary queue element tframe. Second, the decoded

data of tframe is mounted to the predefined overlay. Third, a new timestamp

(tv_now) of current time is captured. The absolute PTS of tframe should

indicate sometime in the near future, because the decode speed is faster than

the play speed. By comparing tv_now and the absolute PTS of the frame, the

period of time until the presentation of tframe is easily calculated. Then the

play thread suspend for that period of time. After that,

SDL_DisplayYUVOverlay() eventually put the decoded frame onto the screen.

Finally, the temporary frame is released. If the queue has more frames to play,

the loop will continue to run.

2.2.4 The Event Thread

 for(;;)

 {

 SDL_WaitEvent(&event);

 switch(event.type)

 {

 case SDL_KEYDOWN:

 if(event.key.keysym.sym==SDLK_f){

 SDL_WM_ToggleFullScreen(screen);

 kill(0,SIGINT);}

 break;

26

 default:

 break;

 }

 }

There are lots of events predefined by SDL for the control of the application.

Here, we only wait for SDL_KEYDOWN event. When the key ‘f’ is pressed, the

application will be terminated.

2.2.5 Response Time Measurements

The description above shows how the synchronized player works. Recalling

the definitions and discussions in the previous sections, we can find the trigger

time and the response time for this implementation. Now, we are working in a

frame-by-frame level. Hence, we have multiple trigger times and response

times. The final presentation of the frames is done by the

SDL_DisplayYUVOverlay() function. So the trigger time is the moment that the

function is executed.

To accurately measure the response time is not practical. However, we can

measure the time difference between the execution moment and the return

moment of the function. It is a little longer than the actual response time, so it

gives us the upper limit. We call it pseudo response time.

Figure 2.7 CDF of pseudo response time

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

C
D

F

Pseudo response time (ms)

27

Figure 2.7 is the measurement result of the pseudo response time of a video

clip with 5434 video frames. Thus, there are 5434 measurement samples. The

95-percentile value is 1.85 ms. Since the precision requirement for the

synchronized playback is 8 ms, this approach leaves around 6 ms to the clock

synchronization protocol as the maximum synchronization error in the worst

case. Thus, using FFmpeg APIs to make a synchronized player is a feasible

approach.

2.3 Preparation of the Media Files

For synchronized playback in the approach of tiling, a normal media file needs

to be processed by splitting the screen into several parts, for example, two

parts in our project. A ready-made application named ffmpeg is available in the

FFmpeg project. This application can process media file in many approaches,

such as decoding and encoding through different codecs, setting aspect ratio

and changing resolution. We used the following commands to process media

files for our application:

$ffmpeg –i video.avi –cropright 640 –s 427x480 –sameq left.avi

$ffmpeg –I video.avi –cropleft 640 –s 427x480 –sameq right.avi

The ffmpeg application firstly decodes the input file into raw frames. Then, it

encodes the decoded frames according to the user’s requests to generate the

output file. The meanings of the arguments are as follows:

 ‘-i’ indicates the media file to be processed.

 ‘left.avi’ and ‘right.avi’ are the file names of the output files.

 ‘-cropright’ and ‘-cropleft’ indicate how to crop the screen of the input file.

Our input file has a resolution of 1280x720 and we need the input file to

be spitted into two parts. Therefore, we cut off the right part of the screen

by 640 pixels for ‘left.avi’ and the left part of the screen by 640 pixels for

‘right.avi’ as well.

28

 ‘-s’ indicates the resolution of the output file. The resolution of the cropped

screen is 640x720. Since our pico-projector has a resolution of 640x480

(VGA), we need to reduce the resolution of the cropped screens. To keep

the aspect ratio constant, we set the resolution of the output file in

427x480.

 ‘-sameq’ tells the ffmpeg application to keep the image quality of the

output file the same as the input file.

29

Chapter 3 Clock Synchronization

In this chapter, we will focus on the synchronization of clocks. Firstly, basic

working principle and synchronization principles of computer clock will be

introduced. Secondly, we will discuss the most widely used time

synchronization protocol – NTP (Network Time Protocol) [6].

3.1 Computer Clocks

Inside a typical computer, time is stored in a specific register in the form of

discrete timestamps. The addition operation applied to the register makes the

time tick on. The number of bits the register uses is hardware dependent and

determines the range of the time value and the resolution of the time. Using

more bits could widen the range or increase the resolution. The origin of the

time is called ‘epoch’. The epoch of our Linux-based development environment

is the midnight (0 hour) of January 1, 1970.

The addition operation to the register is done in an interrupt service routine.

The interrupt is triggered by a timer chip automatically. Therefore the clock

advances. The value added every interrupt is called a ‘tick’.

The accuracy of a clock is the closeness between the indication of its own and

that of the time reference. We use the concept of accuracy to describe the

quality of a clock. However, it is impossible to find any two clocks with exactly

the same frequency that makes clocks advance, since they may use different

numbers of bits, different ticks, and even different oscillator frequencies in the

CPUs. Since time is a cumulative quantity, a tiny frequency difference will

result in a large indication difference. For example, a frequency error of 0.0012%

would cause an indication error of about 1 second per day. Therefore, we use

a fine measure, PPM (Part per Million) to describe the clock accuracy, i.e. the

frequency error. 1 PPM is 0.001% (1E-6). In the example above, 0.0012%

equals to 12 PPM. Normally, a computer clock has a frequency error of tens of

30

PPM.

3.2 Clock Synchronization Principles

Any clock has a finite accuracy with respect to the true time. In clock

synchronization, a clock could not be more accurate than its reference clock.

The purpose of a time synchronization protocol is to make a clock as close to

its reference clock as possible. To make a clock synchronized with its

reference clock, we need to analyze the relations between the two clocks.

Figure 3.1 Clock relations classification [7]

Figure 3.1 classifies the relations without synchronization into several

categories.

 Perfect synchronization

This is the ideal case where the two clocks are perfectly synchronized. The

line also shows the target of the synchronization protocol.

31

 Constant clock offset error

Two clocks with exactly the same frequency and different indications

setting result in a parallel straight line with respect to the ideal line. In this

case, a step operation applied to the clock would make the clocks

synchronized.

 Constant frequency error

If the frequencies of the clocks have a constant difference, there is a

constant intersection angle between the result line and the ideal line. Then

the clock offset is linearly increasing. To synchronize these two clocks,

both the frequency and the clock need to be reconfigured.

 Variable frequency error

This is the common case since the frequency of an oscillator is affected by

the change of temperature and other environmental effects. However, this

effect is notable only in a long-term observation. In a short period of time,

the variety of the frequency is tiny. Therefore, in a short-term observation,

we can consider the frequency as constant.

To sum up, a time synchronization protocol uses a combination of frequency

adjustment and clock offset adjustment to reconfigure the clock based on the

relation between the two clocks. However, frequently using a big step to

correct the clock offset error should be avoid since that can disturb some

application. For example, after a huge backward step, the generation time of

some newly generated files may represent some time in the future;

applications may not recognize a file generated in the future. Instead, gradual

adjustment with frequent small steps is a better way to correct the clock offset

error which reduces the risk of making the system fall into chaos.

A time synchronization protocol should have a way to collect the information of

the relations between the clocks. Obviously, that procedure would cost some

32

time. We call the time from a protocol starts until the clocks are in sync the start

time of the protocol. It is clear that more frequent communications between the

computers lead to a shorter start time.

3.3 NTP

NTP stands for Network Time Protocol and is an Internet protocol for time

synchronization [6]. It is one of the oldest Internet protocol and is designed by

Dave Mills of the University of Delaware.

Figure 3.2 NTP time synchronization network

NTP works based on a network with layered structure (Figure 3.2). Each layer

is called a stratum. A computer in stratum n uses one or few computers in

stratum n-1 as its synchronization reference. Stratum 0 computers have the

most accurate timing devices in the network. Normally, they have very

accurate clocks, such as atomic clocks and GPS clocks.

The reference computer provides time source, therefore it is a time server. The

computer which is being synchronized is the client. The synchronization

consists of several packet exchanges. In each exchange, the client sends a

request; then the server sends back a reply. After a few exchanges, the client

would have the information about relation between the two clocks. With that

information, corresponding operations (mentioned in Section 3.2) would be

applied to the client’s clock. Detailed descriptions of the packet exchange will

33

be discussed in Chapter 4.

3.3.1 The Clock Discipline Algorithm of NTP

A NTP client use the information obtained from time packet exchange to

discipline its local clock. The discipline algorithm can be abstracted as in

Figure 3.3,

Figure 3.3 Clock discipline algorithm [8]

This is a typical PLL (Phase Lock Loop). The meaning of each module is as

follows:

 Phase Detector

Time can be considered as phase since time move on due to crystal

oscillating. Therefore, is the phase of the server’s clock; and is the

phase of the client’s local clock. The phase detector compares the two

phases and output the difference . The inputs of the detector are the

clock times, and the output is the clock offset. Therefore, the packet

exchange procedure is functioning as the phase detector.

 Clock Filter

As mentioned above, a computer may have multiple reference clocks.

Clock filter would use the clock selection; clustering and combining

algorithms to combine the clock offset data to generate a more accurate

Vc

Vd Vs

 Loop Filter

 X

 y

Phase

Detector

Clock

Filter

Clock

Adjust Predictor

VFO

34

phase difference .

 Loop Filter

In the loop filter, a predictor uses to generate a phase correction

and a frequency correction for the Clock Adjust module.

where is packet exchange interval and is called the loop time

constant. As mentioned before, a huge clock time step should be avoid.

Therefore, the clock adjust module generate clock corrections gradually

with respect to and at rate

.

The expression of results in a transfer function [9]

Where

 and

. is the complex frequency. From

elementary theory, this is a linear, time-invariant transfer function. Hence, it

drives both the frequency and clock offset error to zero [8].

 VFO (Variable-frequency Oscillator)

The VFO here represents the local clock of the client. It uses the

corrections which are generated by the Loop Filter to adjust its

frequency and clock time.

3.3.2 Performance of NTP

NTP is designed for time synchronization over Internet and for long-term

usage. Therefore, it occupies as small bandwidth as possible to exchange the

time packets since it is not necessary to guarantee a short start time and that

saves bandwidth. However, it has some disadvantages. We know that, the

35

more frequently the time packets are exchanged, the faster the clocks can

synchronize. The packet exchange interval of NTP can be configured by users.

Normally, the exchange interval can be set within a range from 16s to 1024s. It

means, in the most frequent case, a NTP client exchanges time packets with

its server every 16s. This means that it may take hours to reach

synchronization.

Figure 3.4 Initial run of NTP

Figure 3.4 shows a typical case of the initial run of NTP. With the help of the

transfer function of the software loop filter, both the clock offset error and the

frequency error is driven to zero eventually. Each clock has an own frequency

origin. Thus, the frequency offset converges to around -80 ppm instead of 0

ppm. We assume that the frequency offset of the server’s clock is 0 ppm.

Therefore, the difference between the frequency origins is about 80 ppm.

The two clocks starts with no clock offset error but frequency error. At the very

beginning, the clock offset increases significantly. That is because both the

clock offset and the frequency are adjusted gradually. At the beginning, there is

still a noticeable frequency difference between the two clocks. At this time, the

clock offset is under adjustment as well. However, the frequency difference is

too large. The clock offset adjustment cannot cope with the large frequency

-100

-80

-60

-40

-20

0

-25

-20

-15

-10

-5

0

5

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Fr
e

q
u

e
n

cy
 o

ff
se

t
(p

p
m

)

O
ff

se
t

(m
s)

time (s)

Offset(ms) Frequency offset(ppm)

36

difference. Thus, the clock offset continuously increases. With the frequency

adjusted, the frequency difference decreased. When the frequency difference

is small enough, the clock offset starts to decrease gradually.

Figure 3.5 Frequency difference impact on initial run

We can notice that, the start time is mainly spent on eliminating the frequency.

Figure 3.5 gives the clock offset error of the initial runs with three different

initial frequency differences. Larger initial frequency difference results in a

longer start time.

However, the accuracy of NTP after it reaches the steady state is great. The

following table gives some statistical result for the clock offsets in Figure 3.5

after they became steady.

Table 3.1 Clock offset error statistics in steady state of NTP

Mean Median Variance
Standard

Deviation
95-percentile

0.06 ms 0.05 ms 0.003 ms 0.05 ms 0.15 ms

To summarize, NTP has a long start time when there is a large initial frequency

difference. However, thanks to its NTP’s PLL algorithm, it has good

synchronization accuracy in the steady state.

-0.5
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5

0.5 1 1.5 2 2.5

O
ff

se
t

(m
s)

Time (hour)

20 ppm

10 ppm

0 ppm

37

3.3.3 Suggestions for Improving the Performance

Our project requires a time synchronization protocol that synchronizes the

clocks quickly. NTP’s long start time does not meet that requirement. NTP is

designed for using over Internet. However, in our project, a dedicated WiFi

network is used for synchronization. Bandwidth resource is not too critical in

our case. Thus, we can make an assist protocol for NTP. The assist protocol is

launched before the NTP starts. It uses a larger bandwidth to exchange more

time packets. Thus, it could collect the information about the relations between

the clocks as soon as possible. Then a fast estimation is used to estimate the

frequency difference and step the frequency of the client’s clock to eliminate

the frequency error. After that, NTP starts with near zero initial frequency and

offset differences. Therefore, the total start time should be significantly

reduced.

With the idea above and the time packet exchange mechanism of NTP, we can

even design a new light weight time synchronization protocol. The new

protocol could achieve quick start and accurate synchronization by more

frequent time packets exchange than NTP does. The principles of the new

protocol will be detailed in the next chapter.

38

Chapter 4 Fast Clock Adjustment Protocol

The clock synchronization precision of NTP gradually increases. So it works

well in a long-term usage. However, what we need is a time synchronization

protocol with quick-start and anti-interference properties. In this chapter, a Fast

Clock Adjustment Protocol is introduced.

As mentioned in Section 3.3, time synchronization protocols discipline clocks

according to the samples which are generated from exchanging timestamps

between the server and the client.

In theory, if two clocks with different oscillating frequencies run without

synchronization, the clock offset between them would drift apart linearly. So,

the basic idea of the Fast Clock Adjustment Protocol is to generate some

samples on the clock offset – time plane and use linear regression algorithm to

estimate the drift rate and the instant clock offset. With that information, the

client’s clock can be adjusted.

The more samples the client has in a unit time, the more information about the

server’s clock it gets. We can exchange more timestamps than NTP does by

reducing the exchanging interval. And then, the client could be acquainted with

the server’s clock as early as possible. Thus, the quick start can be realized.

4.1 Timestamp Exchange

Timestamp exchanging is the way to generate the samples on the clock offset

– time plane. The server’s clock is the synchronization reference for the client.

The client could use the samples to trace the server’s clock.

4.1.1 PCAP (Packet Capture)

The PCAP is a packet capture library for unix and Linux [10]. It is able to

capture any type of packet on the network and provide related information

about the packet and the capturing such as the capture time. We use its API

39

functions to capture the synchronization messages and use the capture time

as the timestamps.

4.1.2 Timestamp Exchange

The timestamp exchanging procedure is divided into rounds. After each round,

a sample is generated at the client by using the information collected during

the last round. The samples will be used to estimate the feature of the server’s

clock later.

Figure 4.1 A timestamp exchange round

Figure 4.1 shows the process of a round. The client sends a packet to the

server. At both sides, PCAP captures the packet and records the capturing

times. After that, the server sends another packet back to the client as a

response. PACP records the times as well. Thus, we have four timestamps.

They can be used to calculate the instant clock offset as follows:

where is the clock offset and is the packet transmission delay. It is the

absolute time between the two capturing of a packet transmission. If the two

transmissions have the same delay, i.e. , they are symmetric. So, the

clock offset is expressed as,

40

However, the forward and the backward transmissions are not always

symmetric due to different delays. So we need the information about the delay

as well to distinguish the reliability of the samples.

So far, we have all the information to generate a sample. A sample is like

follows:

time offset delay

The offset field and the delay field are calculated above. The time field can be

filled using the time of any of the four timestamps. This will introduce some

error. But the error can be ignored since each round of timestamp exchanging

is accomplished within a short period of time.

4.2 Samples Read-out Technique

The four timestamps generated during the forward and backward packet

transmissions are distributed at the client and the server. They need to be

gathered at the client to generate the sample.

The packets have two missions. One mission is to be transmitted as a probe to

be captured by the PCAP to generate the timestamps. Another mission is

carrying the request information from the client to the server and fetching the

captured timestamps at the server back to the client.

The packets are UDP packets and the formats are the same for all

transmissions:

Int int struct Timestamp struct Timestamp

direction seqnum timestamp A timestamp B

41

The direction field is an integer. It indicates whether the packet is a request

packet or a response packet. The seqnum field is also an integer. It gives the

sequence number of the round. The two timestamps belongs to a custom

structure Timestamp. The definition is as follows,

struct Timestamp

{

 int seqnum;

 int stamp_num;

 struct timeval tv;

}

In Timestamp, seqnum is also the sequence number of the round. stamp_num

indicates which of the four timestamp it is since there are four timestamps

generated in one round. tv is the time data of the timestamp.

Figure 4.2 is the flow chart that shows how the timestamps are gathered at the

client. On both sides, the packet transmission and the packet capturing are

running in two processes. The IPC (Inter-process communication) is achieved

by using unix pipes.

When the client transmits a packet, only the first two fields are used. The

server needs to be informed the round sequence number and the packet

capturing process needs the type of the packet and the round sequence

number to fill stamp_num and seqnum. The two timestamp fields are filled with

two empty Timestamp structures.

42

a) Client

b) Server

Figure 4.2 Timestamps gathering

On the server side, all the four fields are filled. The functions of the first two

fields are the same as the client side. The latter two fields are used to carry the

timestamps captured in the last round back to the client.

In the main process, i.e. the packet transmission process, after receiving from

no

no

yes

yes

direction=0

Write TS to pipe

seqnum=packet.seqnum

stamp_num=1

Capture packet

Fill TSA &TSB

Send

Read TS from pipe

Receive

seqnum++

Write TS to buffer

Read TS from pipe

Receive

Send

Fill seqnum & direction

seqnum=packet.seqnum

stamp_num=4

direction=0

Write TS to pipe

seqnum=packet.seqnum

stamp_num=2

Capture packet

seqnum=packet.seqnum

stamp_num=3

43

the server and reading from the pipe, all the timestamps are gathered in a

sample buffer. The buffer has a format like,

Sequence

Number
1 2 3 4 … 99 100

T1 101 1108 2110

T2 5004 6007 7008

T3 5009 6016

T4 112 1116 2122

The buffer can hold the timestamps of the last 100 rounds and is used

circularly. The four timestamps within the same round sequence number

cannot be gathered to the buffer in the same round. The table above is an

example of pattern shows that. T1 and T4 are captured at the client, so they

can be moved to the buffer within the current round. T2 is captured at the

server before the server sends the response packet. Normally, T2 can be

gathered within the same round as well. However, T3 is captured after the

server sent the response packet, so T3 can reach the buffer in the next round

at the earliest. T2 also has the risk of reaching the buffer after the current

round if it has not been written to the pipe before the server sends the packet.

Anyway, the application on the server would read the captured timestamps in

turn from the pipe and send two timestamps back to the client. When all of the

four timestamps with the same sequence number are gathered, they can be

used to calculate a sample. However, the sequence number they have

represents several rounds ago. That is the reason for using a buffer to

temporarily store the timestamps.

44

4.3 Adjusting the Clock Using Linear Regression

With the samples, we can estimate their trend line one the clock offset – time

plane. Since we can assume that the clock offset drifts apart linearly, the trend

line should be a straight line, so we can use linear regression to estimate the

line. The trend line has the form of , where the y-axis represents the

clock offset and the x-axis represents the time. The formula for the estimation

is,

where is the estimation of the slope, is the estimation of the intercept,

is the time of the ith sample and is the offset of the ith sample. The estimated

line is updated every 10 samples in order to trace the variation of the

transmission environment.

Now we can use the trend line to adjust the client’s clock. The operations we

can apply to the clock are to set the clock’s indication and to change its running

frequency by using some system calls.

(a)

8091

8091.2

8091.4

8091.6

8091.8

8092

8092.2

8092.4

8092.6

8092.8

0 10 20 30 40 50

45

 (b)

Figure 4.3 Linear regression example

Figure 4.3 (a) is an example of the estimated trend line and (b) is the

abstraction of (a). We can obtain two aspects of information from the curve.

- The instant offset. Point represents the current time on the client; point

 represents the current time on the server. is the projection of on

the time axis. So the distance d between them is the current clock offset.

- The clock frequency difference. The indications of the two clocks drift apart

because there is a constant frequency difference. So the estimated slope

() reflects the frequency difference.

To synchronize the clock, firstly, we step the clock forward or backward

according to the current offset. See the flow chart in Figure 4.4.

offset

time

46

Figure 4.4 Adjusting the clock offset

Secondly, we adjust the frequency to make it the same as the server. The

system call adjtimex() is the tool. As mentioned before, the frequency is

presented in the unit of ppm. adjtimex() uses a scaled ppm as the unit for the

frequency. And it has a tolerance value for the frequency adjustment to limit

the frequency changing range. The value is 500 ppm and can be read by

adjtimex() in the unit of scaled ppm. On the offset – time plane, both the axes

are in the unit of millisecond. So, the variation of the frequency should be,

After the offset and frequency adjustment, the two clocks have the same

frequency and no offset. Thus, they are synchronized. However, it is

unnecessary to adjust the offset and the frequency at the same time. For the

purpose of synchronized playback that the clocks indicate the same time is

more important. Hence, we can apply the offset adjustment more frequently

than the frequency adjustment, which can increase the efficiency of the

protocol to some extent. Actually, I set a threshold of 1 ms for the clock offset.

In each timestamps exchange round, the client checks the offset. If the offset

exceeds the threshold, the offset adjustment is applied. The frequency

adjustment is applied only when the sample buffer is full (after 100 samples).

Capture the current time

CC=gettimeofday()

Check current offset

Step the clock

settimeofday(CC-d)

47

4.4 Utilization of Old Samples

After the clock adjustment, the running features of the client’s clock are

changed. The old samples in the buffer cannot be used for the estimation any

more. However, to increase the efficiency of the protocol, we can change the

old samples’ positions as well according to the adjustments. The target is to

make the old and the new lines collinear.

Figure 4.5

The Figure 4.5 shows three cases after the clock adjustment. For clarity, we

only show the trend lines without the samples.

a) Applying only offset adjustment.

After the offset adjustment, the new trend line will be parallel to the old line,

however, with different intercepts. Applying the same offset value to the old

samples as just used in the adjustment makes the two lines collinear.

48

b) Applying only frequency adjustment.

The frequency adjustment introduces an intersection angle between the

two lines. Rotating the old line by makes it collinear with the new

line.

c) Applying both adjustments.

This case is the combination of the previous two. To make the two lines

collinear, firstly, we rotate the old one by ; secondly, the offset value

just used is applied to the rotated line.

4.5 Error Analysis

All the discussions in the previous sections are based on the assumption that

the two packet transmissions have the same delay, i.e. . That is the

case when there is no interference during the transmission and it works well.

However, we cannot guarantee that the transmission environment is always

idle. Especially, when the video is streamed to the computers, there should be

some interference in the environment. So we need to take that into account.

When , the expression of the clock offset becomes,

So the offset has an error of

. With that error, the samples are more

dispersive on the offset – time plane. That introduces more estimation error of

the trend line. The ideal approach to eliminate the error is to find the

asymmetry, i.e. the value of and . Unfortunately, that approach is

infeasible. What we can obtain from the four timestamps is just the sum of

them,

Now we try to minimize the error. We know that,

49

offset (ms) delay (ms)

time (ms)

Hence, if

 is small enough, the impact of

 on the offset can be

ignored. That is the reason why we introduce a delay field to the sample

structure. Generally speaking, a sample with a small delay value is considered

as a good sample; a sample with a large delay value is a poor one. If the poor

samples are removed, then the error of the offset is minimized and then the

estimation error is also minimized. Figure 4.6 shows a comparison between

the estimations of the same sample set with and without removing the poor

samples.

Figure 4.6

(blue: complete sample set, red: sample set without poor samples, thin black: trend line of blue,

thick black: trend line of red, green: corresponding delay

)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

8137.5

8138

8138.5

8139

8139.5

8140

8140.5

8141

8141.5

0.00 10000.00 20000.00 30000.00 40000.00 50000.00 60000.00

50

4.5.1 The Valid Samples Filtering Threshold

Now we need a criterion to select good samples. Figure 4.7 shows a typical

delay distribution with a strong interference.

Figure 4.7 Delay distribution

The distribution always has a long tail. We use the 20-percentile of the delay

(the red line in Figure 4.7) as the threshold to select samples. All the samples

with a delay value smaller than the threshold is considered valid. The threshold

is updated periodically together with the update of the estimated line to trace

the variation of the channel. See Figure 4.8.

We only use the valid samples to estimate the trend line. Thus the impact of

the asymmetric packet transmission is minimized.

0

0.005

0.01

0.015

0 100 200 300 400 500 600 700 800

P
D

F

delay (ms)

51

Figure 4.8 Update the valid threshold

4.5.2 Quick Start

In the initial phase of the protocol, the client needs to collect enough samples

for the first estimation. Originally, the packet transmission rate of the client is 1

packet per second. It means the client could obtain 1 sample per second on

average which is a relative high rate for time synchronization protocol. Since

the usage of the bandwidth does not matter in our dedicated WiFi network, we

make the client collect enough samples for the initial estimation in a short

period of time by increasing the sample rate. The quick start is achieved.

yes

yes

no

no

Generate a sample

sample.delay>valid_thr

Sample invalid Sample valid

regression_count++

regression_count=10

Update trend line

Sort samples

Calculate 20-percentile

Set new valid_thr

regression_count=0

52

However, if there is interference during the transmissions, the samples

become unreliable. Hence, introducing a sample selecting mechanism to the

initial phase is still necessary. However, in the initial phase, the number of

samples in the buffer is quite few. Sorting the samples with respect to the

delays and using the 20-percentile of the delay to filter the samples are not

reasonable. Instead, the samples are selected in the following way in the initial

phase (see Figure 4.9).

At the beginning, the client always uses 1.5 times the minimal delay it has

encountered so far as the valid threshold and counts the number of the valid

samples. When there are enough valid samples, the initial phase is finished

and the client executes the first estimation. In an environment without or with

light interference, that can be achieved quickly.

In an environment with strong interference, the delay values are dispersed.

The client is unable to collect enough valid samples for a long time. Hence, it is

possible that sample buffer becomes full (100 samples). When that happens,

the samples are sorted and filtered by the 20-percentile delay value. This sets

an upper bound for the length of the initial phase. Thus the quick start property

is guaranteed even when there is severe interference.

53

Figure 4.9 Sample filtering in initial phase

4.5.3 Anti-interference (Approaches for Increasing Precision)

The interference makes the samples disperse on the offset – time plane. The

samples are distributed within a band on the plane and the interference

increases the width of the band.

yes no

yes

yes

no

no

Generate a sample

sample.delay<min_delay

min_delay=sample.delay

Count the number of sample.delay<mindelay*1.5

The number>20

Buffer is full

Initial linear regression

Adjust clock

54

Figure 4.10 Anti-interference

Figure 4.10 shows how a wider band can affect the accuracy of the regression

line. From the figure we can see that, the regression line reflects the trend of

the sample band. With a narrower band (4.10a), the estimated slope is limited

within a smaller range. However, with a wider band (4.10b), the range for the

estimated slope is increased. The line could rotate in a wider range. Then the

estimation error of the slope is increased. If the length of the band can be

increased (see 4.10c), the possible range for the regression line to rotate will

be reduced to the same level as a narrow band has. Then the estimation error

is reduced.

To increase the length of the band means to use more samples for the

estimation. Obviously, a larger buffer is needed and there are two approaches

to fill the larger buffer:

1) Using a longer observation time.

55

The buffer size was 100 samples originally. For instance, we can use a

larger buffer with 400 samples. If the transmission rate is kept at 1 packet

per second, 400 seconds is needed to fill the whole buffer. To fulfill the

quick start requirement, the first estimation is done when we get the first

100 samples. So the precision gradually increases after the first estimation.

When the whole buffer is full, the precision reaches the highest level. By

using this way, the precision of the synchronization is a little bit poor at the

beginning. The advantage is the saving of bandwidth resources.

2) Increasing the packet transmission rate

Another option is to increase the transmission rate. For instance, we can

use a rate of 4 packets per second to generate the samples. Then, the

initial estimation can be done within the same period of time as the original

version. The advantage of this approach is that the precision reaches the

highest level after the first estimation, however, at the cost of utilizing more

bandwidth resources.

In our final version of the protocol implementation, we use a buffer with the

size of 400 samples and we name it the main buffer. Besides, we introduce a

secondary buffer with the size of 400 samples as well to increase the

observation time in a more efficient way. The generated samples are filled into

the main buffer. Whenever the last position of the main buffer is filled, we sort

all the samples in the main buffer with respect to the delays and copy the best

40 samples into the secondary buffer. The packet transmission rate is 4

samples per second. Therefore, the samples in the whole buffer cover an

observation time of

 seconds.

56

Chapter 5 Measurement Results

In this chapter, the measurement results of the Fast Clock Adjustment Protocol

and the comparison with NTP are presented. Firstly, the tools used to measure

the performance of the time synchronization protocols are described.

5.1 Test Environment Setup

Figure 5.1 The test environment

Figure 5.1 shows the basic configuration of the test environment of this project.

Since the pico-projectors we currently have are the 1st generation products,

they are just tiny conventional projectors. Therefore, two computers are used

as the data processing part and communication part representing future

devices with embedded pico-projectors. We name the two computers ‘Left’ and

‘Right’ as indicated in the figure. The two computers set up an ad-hoc Wi-Fi

network in order to exchange time synchronization messages and

synchronized playback signaling messages. The test video clips are stored

57

locally in the two computers.

A third computer (BG) is on the same Wi-Fi network and is introduced as an

interference source to simulate background traffic. The interference source

continuously generated background traffic in different intensities. The purpose

of intentionally introducing background traffic is that we need the time

synchronization protocol to perform well not only in an interference free

environment, but also in a complex radio propagation environment with

interfering nodes.

Finally, a fourth computer (Test) is used as the test-bed controller for testing

the time synchronization protocols. Specifically speaking, the test-bed

controller measured the time difference, i.e. the clock offset, between the

clocks from an onlooker’s point of view. The test-bed controller basically is

working based on capturing and comparing timestamps. The delay of a

message between either Left or Right and the test-bed controller should be

very small in order to achieve a high precision measurement. Thus, the

measurement messages are exchanged via a dedicated Ethernet due to its

delay is rather small and predictable. The principles of the generation of

background traffic and the test-bed will be detailed in Chapter 5.

Since the interference source is using its WLAN interface to generate

background traffic and the test-bed is using its wired Ethernet interface to

measure the time difference, the two jobs above can be undertaken by the

same computer via its different network interfaces. So, in practice, three

computers and two pico-projectors are made use of during the testing.

5.2 Test-bed

To test the performance of time synchronization protocols, a test-bed is

required. The test-bed should have the ability of measuring the time difference

between clocks. It should take timestamps of the clocks respectively at the

same absolute time. Since the PCAP library [10] can provide the capture time

58

of a received packet with a very high accuracy, we use it as the tool to build the

test-bed.

The application of Figure 5.2 (a) is the test-bed server application, which runs

on ‘Test’; and that of Figure 5.2 (b) is the client application runs on all

computers being tested, such as ‘Left’ and ‘Right’.

The test-bed server application continuously sends broadcast message to the

Ethernet link. The reception of a packet does not have any unpredictable

delays, such as carrier sense or retransmissions. The received packet is

handed over to upper layer immediately where PCAP captures packets in the

MAC layer. A packet’s capture time is therefore very close to the real reception

time. Besides, the propagation delay of Ethernet is tiny and deterministic.

Therefore, using broadcast packets over Ethernet guarantees that the packets

capturing at different computers are taken place at almost the same absolute

time. After the transmission of a broadcast packet, the test-bed server waits for

the test-bed clients to send back the captured timestamps.

A test-bed client application is a multi-process application. In the main process,

the application continuously receives the broadcast packets from the test-bed

server application. When a test-bed client application receives the broadcast

packet, PCAP which works in the other process captures the packet and

records the capture time. Then, the capturing process will be suspended for a

predefined period of time. After the suspension, the timestamps are sent to the

server. Each client is assigned a unique integer identifier and a unique

suspension time. The suspension time of a specific client in the unit of second

equals to the numerical value of its identifier. The reason for this is that the

clients must send the timestamps back to the server in a predefined order.

Thus, the server can distinguish the timestamps of different clients.

When the timestamps of all the clients are received, the server calculates the

time difference between the timestamps which is the clock offset of the two

59

clocks.

(a) Server (b) Client

Figure 5.2 Flow chart of the test-bed

5.3 Interfered Channel Simulation

To test the anti-interference capability of the protocols, we need to intentionally

simulate background traffic. The idea of the simulation of interference is to

generate some traffic to occupy the WiFi channel. The occupation will

introduce additional transmission delay when transmitting packets because of

carrier sense and retransmissions. Therefore, we use the WiFi NIC (Network

Interface Controller) of ‘Test’ to continuously broadcast UDP packets to the

WiFi network. See Figure 5.3.

no

yes

Enable broadcast

Broadcast a packet

Receive timestamp

All timestamps

received?

Calculate clock offset

Suspend

Receive

Send timestamp

Suspend

Record timestamp

Capture

60

Figure 5.3 Flow chart of the interference application

By default, the MTU of a WiFi MAC frame is 1500 bytes on most systems. To

avoid fragmentation, the broadcasted packets have a fixed length which

equals to the MTU. The size of an IP header is 20 bytes [11], and that of a UDP

header is 8 bytes [12]. Therefore, the broadcasted packets have a payload of

1472 bytes.

The interference application adjusts the interference intensity by changing the

broadcasting interval. The interval is calculated by

.

We can present the effect by interference on packet round-trip delay by using

the following formula:

Where , , and are the captured timestamps during timestamps

exchange in Section 4.1.2.

Figure 5.4 shows the delay under different interference intensity.

Set interference intensity in Mbps

Calculation suspension interval

Broadcast

Suspend

61

(a) (b)

Figure 5.4 Round-trip delay

Through Figure 5.4, we can notice that the delay values increased with the

increment of the interference intensity. Figure 5.5 is the CDF of the delay which

clearly shows the impact of the interference on transmission delay.

Figure 5.5 CDF of delay in three interference levels

5.4 Measurement Results

In this section, the measurement results of the FCAP (Fast Clock Adjustment

Protocol) are presented in order to show its synchronization accuracy. The

measurements took place under three different interference levels which tests

its performance under different circumstances. For each interference level, a

comparative measurement of NTP was also done.

In each measurement, firstly, the clock offset is presented in the time domain.

Secondly, a corresponding histogram of the offset is given. At the end of this

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400

No interference

0.1Mbps

1.0Mbps

62

section, some statistics are given in order to show the numerical results.

5.4.1 Without Interference

(a) (b)

Figure 5.6 Measurement for FCAP without interference

Figure 5.6 shows the measurement results of FCAP when the channel is near

idle. It clearly shows that the clock frequency is adjusted whenever the sample

buffer is full (1000 s). Clock offset is adjusted whenever it exceeds the step

threshold (1 s).

(a) (b)

Figure 5.7 Measurement for NTP without interference

Figure 5.7 shows the measurement results of NTP without interference. NTP

starts with a clock offset error of 4 ms. The clock offset is continuously driven

towards 0 ms. However, the start time is longer than FCAP.

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

0 1000 2000

o
ff

se
t

(m
s)

time (s)

0

0.05

0.1

-1.5 -1 -0.5 0 0.5

P
D

F

offset (ms)

-5

-4

-3

-2

-1

0

0 1000 2000 3000

o
ff

se
t(

m
s)

time(s)

0

0.05

0.1

0.15

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5

P
D

F

offset (ms)

63

5.4.2 With 0.1Mbps Interference

(a) (b)

Figure 5.8 Measurement for FCAP with 0.1Mbps interference

Figure 5.8 shows the measurement results of FCAP with weak interference

(0.1 Mbps). Since the WiFi channel is occupied by the background traffic, the

transmission delay of the synchronization message is increased and the

estimation error becomes greater. Therefore, the maximum clock offset error in

Figure 5.8 is larger than that in Figure 5.6.

(a) (b)

Figure 5.9 Measurement for NTP with 0.1Mbps interference

Figure 5.9 shows the measurement results of NTP with weak interference. Due

to the interference, the clock offset drifts apart again after it converges to

almost 0 ms.

-3.5
-3

-2.5
-2

-1.5
-1

-0.5
0

0.5
1

0 1000 2000

o
ff

se
t

(m
s)

time (s)

0

0.05

0.1

-2.5 -2 -1.5 -1 -0.5 0 0.5

P
D

F

offset (ms)

-6

-4

-2

0

2

4

0 1000 2000 3000

o
ff

se
t(

m
s)

time(s)

0

0.05

0.1

0.15

0.2

-6 -5 -4 -3 -2 -1 0 1 2 3

P
D

F

offset(ms)

64

5.4.3 With 1.0Mbps Interference

(a) (b)

Figure 5.10 Measurement for FCAP with 1.0Mbps interference

Figure 5.10 shows the measurement results of FCAP with strong interference

(1.0 Mbps). Since FCAP has an observation time of 1000 s, it can collect

enough valid samples although there is strong interference. Therefore, the

performance of FCAP under this circumstance is not too much worse than with

weak interference.

(a) (b)

Figure 5.11 Measurement for NTP with 1.0Mbps interference

Figure 5.11 shows the measurement results of NTP with strong interference. At

the beginning, the clock offset diverges due to the initial frequency difference.

After the clock offset converges to 0 ms at around 2000 s, the strong

interference drives it to diverge again. The maximum clock offset error caused

by the strong interference is significantly larger than that under the weak

-4

-3

-2

-1

0

1

2

0 1000 2000

o
ff

se
t

(m
s)

time (s)

0

0.05

0.1

0.15

0.2

-2.5 -2 -1.5 -1 -0.5 0 0.5

P
D

F

offset (ms)

-15

-10

-5

0

5

10

15

0 1000 2000 3000

o
ff

se
t(

m
s)

time(s)

0

0.05

0.1

0.15

0.2

-10 -5 0 5 10

P
D

F

offset(ms)

65

interference.

5.4.4 Statistics

Table 5.1 Statistics for the clock offset errors

Protocol

Interference

(Mbps)

Mean Median Variance

Standard

Deviation

95-percentile

FCAP 0.0 0.69 0.66 0.19 0.44 1.51

NTP 0.0 2.28 2.80 1.02 1.01 3.58

FACP 0.1 1.15 1.04 0.52 0.72 2.40

NTP 0.1 3.71 3.90 1.52 1.23 5.38

FCAP 1.0 1.11 1.14 0.39 0.62 2.57

NTP 1.0 5.04 2.46 21.68 4.65 12.52

Table 5.1 gives the statistical results of the clock offset errors. We define the

clock offset error at time as , where is the clock time of the

server and is the clock time of the client.

5.5 Results Analysis

From the measurement results in the previous sections, we can make the

following observations,

(i) Start time

FCAP can make the clocks synchronized shortly after the protocol initiated

regardless of offset and frequency error as well as the interference level due to

its quick start property. However, NTP’s start time depends on the initial

conditions. The initial frequency difference and the initial clock offset are totally

random values. Therefore, the start time of NTP is unpredictable.

(ii) Anti-interference

Comparing the data in Table 3.1 and Table 5.1, NTP synchronizes the clocks

more accurate in its steady state when no interference existing in the channel.

For both protocols, the accuracy goes down with the increase of the

66

interference intensity. However, the accuracy of NTP deteriorates more

significantly. Since the timestamp exchange interval of NTP is much larger

than that of FCAP, when interference exists, NTP has more probability to get a

worse sample. Therefore, the clock adjustment can be driven in the wrong

direction. From Figure 5.9 (a), we can notice that, when there is light

interference (0.1Mbps), the maximum clock offset error of NTP is around 5ms

which has almost reached the bound of our project requirement. In the case of

strong interference, the maximum clock offset is even worse.

However, FCAP has a stronger anti-interference probability due to its short

timestamp exchange interval. In all cases, the clock offsets are controlled

within 3 ms.

(iii) Shape of the offset curve

NTP has a smoother clock offset curve than FCAP. NTP uses a PLL algorithm

to adjust the clock, which avoids big steps in the adjustment. In order to meet

the quick start requirement, FCAP sets up a step threshold for the clock offset.

Therefore, the offset curve presents a zigzag pattern. The step threshold is

currently set to 1ms. It means that the amplitude of each step is around 1ms.

For the applications and the users, 1ms is not a huge value and it will not be

conscious of.

To summarize, NTP has excellent synchronization accuracy in its steady state

and when the channel is idle. Therefore, it is suitable for long-term usage.

However, for an application, which needs to start quickly and be resistant to

interference, FCAP is a better choice.

67

Chapter 6 Users’ Feeling Survey

We also conducted a survey to test if the application meets the users’

requirement of synchronized playback.

6.1 Survey Method

The general idea of the survey is to show the synchronized playbacks to the

users and get the feedback of their feeling about the synchronization and how

much synchronization error that can be tolerated.

In order to conduct the survey as accurate as possible, we need to make sure

the synchronization error is under our control. It means we can manually set

the presentation time difference between the screens. Therefore, we use wired

Ethernet to synchronize the clocks. Since the transmission delay of Ethernet is

only a few hundreds of microseconds, the clocks could be synchronized very

accurately.

In the playback application, an additional delay is applied to the play thread.

When a frame is about to be presented, the thread is suspended for an

additional period of time and the additional time is manually set every time.

Therefore, the playbacks can be out of sync at a specific time difference set by

us.

With the preparations above, the survey was conducted as follows. The survey

was divided into 30 tests. For each test, a time difference value is picked

randomly for the playback. The users have binary options. What they need to

answer is just whether they feel the playback in sync or not. They would mark

‘1’ for in sync and ‘0’ for out of sync. Ideally, after all the 30 tests, a user should

have a result as presented in Figure 6.1 if the tolerable level is 10 ms.

68

Figure 6.1 Ideal survey result of a user

If there are four users, by accumulating the answers of corresponding time

difference values of all the users, we get the chart in Figure 6.2 which reflects

the general feeling of all the users. The maximum value in the chart equals to

the number of the users.

Figure 6.2 Example of final survey result

By applying polynomial regression, we can find the trend line of the chart. The

final acceptance threshold can be found by analyzing the regression line. The

analytical method will be described in Section 6.3.

6.2 Factors Affecting the Results

During the survey, I found that the survey results were affected by the following

two factors:

(i) The user’s sensitivity

To reflect user’s true feeling on synchronization, they should have no

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

0

1

2

3

4

5

0 5 10 15 20 25 30 35

69

background knowledge about this project. Therefore, they judge the playback

in sync or not totally based on their feelings. We call this approach the normal

method. During the survey, I found that different people have different

sensitivities. To find an acceptance threshold by using the method in the

previous section, a bigger number of users are required. However, for our

project, that is not practical.

People’s sensitivities are proportional to the familiarities of the video content.

To make users more familiar with a video could increase their sensitivities to a

universal level. This approach eliminates the impact of background knowledge

of the result. Playing the same video to the user for several times could

increase the familiarities. Obviously, the threshold identified by the new

method would be stricter. If our application meets this stricter threshold, it also

meets the threshold generated by the normal method.

(ii) The content of the video

The video content also affects the users’ sensitivity. Objects on the screen with

different velocities and brightness result in different feelings. A video with

complex content will make different users focus on different details on the

screen. However, a video with simple content will make users’ attentions

focused.

6.3 Final Results

Based on the two factors above, I choose two HD and wide-screen videos with

different complex level to do the survey. One of the video is a clip of a concert

with actresses and flashing light on the screen (Figure 6.3a), which is a relative

complex video. The other video introduces the universe with rotating stars on

the screen (Figure 6.3b), which has simpler content.

70

(a) (b)

Figure 6.3 Screenshots of test videos

The number of users was 8. All of them are students of Tilburg University.

Therefore, the results are as follows,

max=7.0883,

 , threshold=8.858

Figure 6.4 Survey result of a complex video

max=7.345,

 , threshold=8.516

Figure 6.5 Survey result of a simple video

y = -9E-05x4 + 0.0059x3 - 0.1169x2 + 0.4605x + 6.5778

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30 35

y = -3E-05x4 + 0.0026x3 - 0.0583x2 + 0.0769x + 7.319

0

1

2

3

4

5

6

7

8

9

0 5 10 15 20 25 30 35

71

The curves in the Figure 6.4 and 6.5 are the regression line generated by

polynomial regression. By using the definition of half-power bandwidth in

electric circuit theory, we can find the acceptance threshold [13]. The time

difference with a corresponding value on regression line which is

 of the

maximum value is the threshold.

Both of the results give the threshold around 8ms. Therefore, we can say that

a synchronized playback with a time difference smaller than 8ms can be

considered in sync by most users.

72

Chapter 7 Conclusions and Future Work

In this chapter, all the results of the project are concluded. Based on the

conclusions suggestions for the future works are given.

7.1 Conclusions

In this thesis, we have studied the synchronization of multimedia playback on

WPAN devices over a WiFi network.

Firstly, the final target of the project is raised. The project required an

application that could achieve a synchronized play of videos with quick-start

and anti-interference properties.

Secondly, we analyzed the whole synchronization problem in detail. The whole

problem was decomposed into two main factors, the synchronization of the

playbacks and the synchronization of the clocks. Both the factors were

discussed in detail.

In the playback synchronization, the challenge is to minimize the response

time. We explored the open source project VLC and utilized its command line

tool and its APIs to make a synchronized player. However, the response times

of those tools exceed the requirement of our project. Therefore, we switched to

a lower layer tool – FFmpeg to play the video with frame-by-frame level

synchronization. Its response time is limited well within a 2ms range, which

meets the requirement.

The basic principles of computer clocks and clock synchronization were

introduced. Then we analyzed the most popular time synchronization protocol

NTP and tried to use it to synchronize the clocks for our project. However, it is

more suitable for long-term usage, since it cannot meet the requirements of

quick-start and anti-interference although it has an excellent performance

when it reaches its steady state. In order to meet all the requirements, a new

73

time synchronization protocol, the Fast Clock Adjustment Protocol, was

designed. It uses a linear regression algorithm to estimate the clock frequency

difference and clock offset. Its short timestamp exchange interval enables itself

to have the properties of quick-start and anti-interference.

Thirdly, we measured the performance of FCAP and NTP and analyzed the

measurement results.

Finally, a users’ feeling survey was conducted to find the tolerable level of

out-of-sync. In the survey, we found that different people have different

sensitivity about the synchronization of the playback. Their sensitivities are

also affected by the content of the video. In order to find the acceptance

threshold of most users, a huge size of the samples set is required. Therefore,

we used a higher standard to do the survey to guarantee that the threshold we

found is accepted by most of the users. Through the survey, we eventually

found the threshold to be 8ms, which is greater than the maximum

synchronization error of FCAP (3 ms). Therefore, the application meets the

synchronization requirement of most of the users.

7.2 Future Work

Although synchronized playback is achieved, there are still some aspects of

our project worthy to be improved in the future.

(i) Synchronization of multiple clocks

In the thesis, we focused on the synchronization of two clocks. If more devices

are used to build a video wall, the synchronization of multiple clocks is required.

For multiple clocks, the synchronization can be done in a more accurate way.

We know that the synchronization error comes from the uncertainty of the

transmission delay. The uncertainty is because of the carrier sense and the

retransmission mechanism when transmitting a packet. In the multiple clocks

case, if the server broadcasts a packet, all the clients should receive the

74

packet at exactly the same time regardless of carrier sense and

retransmissions. The principle is the same as implementing the test-bed in

Chapter 5. By exchanging the reception timestamps, the clients’ clocks can be

synchronized more accurately.

(ii) Virtual clock

FCAP continuously adjusts the local clock of the client. However, the local

clock is the only time source for all the local applications. Frequent

adjustments may affect the execution of other applications. A better way is to

set up a dedicated virtual clock for the playback application. The time

synchronization protocol adjusts the parameters of the virtual clock, but not the

real local clock. The virtual clock is only used for the synchronized playback

application.

(iii) Video streaming

In the project, the video files were stored locally. In the future, the devices may

request the video from a media server as well. Therefore, the video streaming

and splitting are other parts which are worthy to be implemented.

75

References

[1] IEEE 1999 Part 11: Wireless LAN Medium Access Control (MAC) and Physical

Layer (PHY) Specifications. ANSI/IEEE Std 802.11, ISO/IEC 8802-11: 1999.

[2] VideoLAN, http://www.videolan.org

[3] FFmpeg, http://www.ffmpeg.org

[4] S. Dranger, An ffmpeg and SDL Tutorial, http://dranger.com/ffmpeg

[5] Simple DirectMedia Layer, http://www.libsdl.org

[6] D. L. Mills, “Network time protocol (version 3) – specification, implementation

and analysis,” IETF RFC 1305, Mar. 1992.

[7] J. Ridoux and D. Veitch, “Principles of Robust Timing over the Internet,”

Commun. ACM, vol. 53, no. 5, pp.54-61, 2010.

[8] D. L. Mills, “Adaptive hybrid clock discipline algorithm for the Network Time

Protocol,” IEEE/ACM Trans. Networking 6, 5, 505-514, October 1998.

[9] D. L. Mills, “Improved algorithms for synchronizing computer network clocks,”

IEEE/ACM Trans.Networks , 245-254, June 1995.

[10] TCPDUMP/LIBPCAP, http://www.tcpdump.org

[11] J. Postel, “Internet Protocol,” IETF RFC 791, Sep. 1981.

[12] J. Postel, “User Datagram Protocol,” IETF RFC 768, Aug. 1980

[13] Wikipedia, http://en.wikipedia.org/wiki/Bandwidth_(signal_processing)

