TUDelft

Modular Float Glass Systems Designed for Reuse

Novel connections designed for reusability and sustainability of laminated glass

P4 Presentation

by Minoo Motedayen

Mentors:

Prof. James O'Callaghan Dr. Ing Marcel Bilow

Glass Structures

- Strength
- Transparency
- Elegance

Glass Structures

- Transparency
- Elegance

Lifecycle & Recyclability

Costly and Environmentally taxing

Modularity

Research Question

"How might we achieve a modular glass structure that allows for easy disassembly and reuse of its components with minimum use of other materials?"

Objectives

 Modular float glass system

Adaptability

Aim

Boundary Conditions

Versatility

Two configurations of Pavilion Design

 Structural performance

• End-of-life

Stability Safety

Modul's Size Simple Joints

Modul's Size Simple Joints

Approach

- 1. Connection-to-system approach
- 2. System-to-connection approach

Approach

- 1. Connection-to-system approach
- 2. System-to-connection approach

Approach

- 1. Connection-to-system approach
- 2. System-to-connection approach

Inspiration

Reciprocal Structures

Mutually supporting elements arranged in a closed circuit, where each

component both supports and is supported by its neighbors.

Relatively Simple Elements

Defining Module Process

Defining Module Process

• Exploitative Connection Design : Slot joint

Embedded Steel plate

• Exploitative Connection Design : Slot joint

• Reciprocal Roof Structure as the Basis for Design

Forests of Venice Pavilion, Venice Architecture Biennale 2016. Source: Kjellander Sjöberg, Arvet

• Reciprocal Roof Structure as the Basis for Design

Reciprocal Roof, 2014, Outdoor Covering | Reutlingen | Germany, Source: Aalto University Design of Structures. https://www.ads-aalto.fi/reciprocal-roof

• Reciprocal Roof Structure as the Basis for Design

left, Glass house, Milan, Italy, By Carlo Santambrogio and Ennio Arosio. right, Apple store, new york, by Eckersley O'Callaghan

Define Module

Design System

Context Scope

Design

Context Scope

Design

Connection Design
 Alternatives

Connection Design

Inspiration

Connection Design

Material Choice

Connection Design

Material Choice

Primary criteria - must have

- Young's modulus ≤ 70 GPa (slightly less than glass)
- Tensile/compressive strength ≥ design load × safety factor
- Thermal expansion close to glass ($\approx 3-10 \times 10^{-6} \text{ K}^{-1}$)
- Can be machined or molded into smooth dog-bone geometry with $r \ge 1.5$ t fillets

Secondary criteria - nice to have

- Low embodied CO₂ per kg
- · Competitive material and processing cost
- High recycled content / easy to recycle
- Durability against water, UV and fire

Material	Typical E (GPa)	Strength (MPa)	Pros	Watch-outs
6061/6082 aluminium	69 – 70	150 – 290	Near-perfect modulus match; easy CNC; mature fatigue data	CTE 22 × 10 ⁻⁶ K ⁻¹ —add 0.5–1 mm PU/PTFE washer
Magnesium alloys	≈ 45	160 – 240	Very light; E safely below glass; CNC + anodise	Needs coating against corrosion; limited façade record
Short-carbon-fibre PEEK	18 – 25	160 – 200	High temp, chemical and creep resistance; matte black finish	Expensive; mould-only, anisotropic if fibres mis-aligned
Hardwood oak (quartered, kiln- dried)	20 – 25	70 – 100 (parallel grain)	Renewable, very low CO₂; easy to machine; warm look	Anisotropic; moisture-sensitive —seal well; fire rating needs treatment

Revise Modules

Context Scope

Design

Context Scope

Design

• Design System

Design

Design

System

Define

Module

Longitudinal Direction

Compressive Strength Oak:80 MPa

Shear Strength Oak:18 MPa

Transversal Direction

Compressive Strength Oak:20 MPa

Shear Strength Oak:55 MPa

Choosing Direction of wood

Design Structure

Context Scope

Ms = F * Length of beam /4 0.285 KN * 0.6 M /4 = 0.042 KNm f1 = f2 = Ms / L1 or L2 0.042 KNm / 0.1m = 0.42 KN

Preload = f1/0.4

0.42 KN / 0.4 = 1.068 KN

The parts of wooden connectors resisting maximum loads

$$T = K imes F imes d$$

- F = normal force
- \bullet T = torque
- ullet = torque coefficient
- d = bolt diameter

Design Structure

Context Scope

 In reality, safety factor by doubling the nominal glass thickness to 16 mm—to account for accidental breakage and unforeseen loads

Governing formulae

$$C_t = rac{F}{\Delta}, \qquad C_r = rac{2\,\mu N r}{ heta}, \qquad heta = rac{\Delta}{2r}$$

where

Design Structure

Context Scope

 $\mu = 0.40$ (static friction glass–oak)

N = 3.5 kN (bolt preload from 5.5 N·m tightening torque)

r = 57.5 mm (half the 115 mm pad spacing)

Macro Analysis

Alternative Three:

Pergola Design Span

4.2 * 4.8m

Legend

Allowable deflection Span/300: 480 / 300 = 1.6 cm Actual deflection: 1.43 cm 1.6 > 1.4 Safe

Macro Analysis

Alternative Three:
Pergola Design Span
4.2 * 4.8m

Allowable deflection
Span/300: 480 / 300 = 1.6 cm
Actual deflection: 0.238 cm

1.6 > 0.238 Safe **3**

Macro Analysis

Alternative Three:
Pergola Design Span
4.2 * 4.8m

Allowable Stress: 60MPa = 6

KN/cm2

Actual Stress: 1.78 KN/cm2

6 > 1.78 Safe 🗹

Macro Analysis

Alternative Four: Pergola Design Span 6.6 * 6.4m

Macro Analysis

Alternative Four:
Pergola Design Span
6.6 * 6.4m

| Allowable Stress: 60MPa = 6 | KN/cm2

Actual Stress: 1.93 KN/cm2

6 > 4 Safe 🗹

Macro Analysis

• Increasing glass thickness to 24 mm with 50 cm depth, or 32 mm with 30 cm depth, to meet allowable deflection

Better Strategy:

• Deeper modules placed at mid-span to resist higher bending moments

Centre: 50 cm depth + 24 mm glassEdges: 20 cm depth + 16 mm glass

Structural Analysis
 Macro Analysis

Macro Analysis

Alternative Three:
Pergola Design Span
4.2 * 4.8m

C Colour	res.disp.[cm]
	8.56e-03
	1.57e-01
	3.05e-01
Tags	4.53e-01
	6.01e-01
	7.49e-01
	8.98e-01
	1.05e+00
C Rectangle	1.19e+00
	1.34e+00
	1.49e+00

Allowable deflection Span/300: 660 / 300 = 2.2 cm
Actual deflection: 1.43 cm
2.2 > 1.49 Safe

|Allowable Stress: 60MPa = 6 |KN/cm2

Actual Stress: 1.93 KN/cm2

6 > 1.39 Safe

Macro Analysis

Alternative Three:

Pergola Design Span

Macro Analysis

Alternative Three:

Pergola Design Span

Micro Analysis

Micro Analysis

Assembly variation

Micro Analysis

Linear Joint Simulation

L600mm module

Micro Analysis

Equivalent stress

Allowable max Stress: 60MPa Model Max Stress: 5.92 MPa

Micro Analysis

Equivalent stress and shear

Allowable max Stress: 20MPa

Model Max Stress: 13.5 MPa

C: Static Structural Shear Stress 4

Time: 12 s

11/05/2025 11:03

4,3159e6 3,0236e6 1,7312e6 4,3879e5

-8,5359e5 -2,146e6 -3,4383e6

Type: Shear Stress(XY Component)

Global Coordinate System

6,9007e6 Max 5,6083e6

Micro Analysis

Total deformation

Allowable max Displacement: 600/300= 2mm

Simulation Max

Displacement: 0.27 mm

Experiment Max

Displacement: 0.24 mm (driven from excel data sheet

as out put rom lab facilities

Micro Analysis

Micro Analysis

Total deformation

Allowable max Displacement: 600/300= 2mm

Simulation Max Displacement: 0.00489 mm

Micro Analysis

Linear Joint Simulation
L1200mm module

Equivalent stress

Allowable max Stress: 60MPa Model Max Stress: 10.8 MPa

Micro Analysis

Linear Joint Simulation L1200mm module

Equivalent stress in glass

Allowable max Stress: 60MPa

Model Max Stress: 10 MPa

Equivalent stress in wood

Allowable max Stress: 20MPa

Model Max Stress: 17 MPa

Micro Analysis

Linear Joint Simulation
L1200mm module

Total deformation

Allowable max Displacement:

1800/300= 4mm

Simulation Max

Displacement: 0.1133 mm

Micro Analysis

Linear Joint Simulation
L1800mm module

Allowable max Displacement: 1800/300= 6mm

Simulation Max

Displacement: 0.2 mm

Micro Analysis

Linear Joint Simulation
L1800mm module

Equivalent stress in glass

Allowable max Stress: 60MPa

Model Max Stress: 9.5 MPa

Micro Analysis

Micro Analysis

Allowable max Displacement: 600/300= 2mm

Simulation Max

Displacement: 0.3 mm

Micro Analysis

T shape Joint Simulation L600mm module Equivalent stress in glass

Allowable max Stress: 60MPa

Model Max Stress: 7.2 MPa

Micro Analysis

T shape Joint Simulation L600mm module Equivalent stress in glass

Allowable max Stress: 60MPa

Model Max Stress: 7.2 MPa

Equivalent stress in wood

Allowable max Stress: 20MPa

Model Max Stress: 16.6 MPa

Micro Analysis

T shape Joint Simulation L600mm module

Equivalent stress in wood

Allowable max Stress: 20MPa

Model Max Stress: 16.6 MPa

Shear stress in wood

Allowable max Stress: 18 MPa (parallel)

and 50–55 MPa (perpendicular

Model Max Stress: 4 MPa

Micro Analysis

Cross shape Joint Simulation

Equivalent stress in glass

Allowable max Stress: 60MPa

Model Max Stress: 8.4 MPa

Micro Analysis

Cross shape Joint Simulation L600mm module

Total deformation

Allowable max Displacement: 600/300= 2mm

Simulation Max

Displacement: 0.3 mm

Micro Analysis

Cross shape Joint Simulation

L600mm module

Equivalent stress in wood

Allowable max Stress: 20MPa

Model Max Stress: 2.4 MPa

Micro Analysis

Cross shape Joint Simulation L600mm module

Equivalent stress in wood

Allowable max Stress: 20MPa

Model Max Stress: 16 MPa

Plexiglass & Meranti

Test set up

Test set up

Key Observations

Stage 1:
Fmax:
285 N
dL at Fmax:
0.3 mm

Stage 2:
Fmax:
1032 N
dL at Fmax:
2.6 mm

Stage 3: Fmax: 2484N dL at Fmax: 8.3 mm

Stage 4: Ultimate Fmax: 3050N dL at Fmax: 20 mm

ExperimentKey Observations

Point Load Behaviour

Revised configuration for applying the point load to prevent failure of the steel pin and to obtain more accurate results in identifying failure points and potential maximum local stress concentrations.

Key Observations

Design Structure Test

Context Scope

Load Response: 2.5 mm, manually measured

Key Observations

Asymmetric Deformation

Torque-controlled bolt tightening to ensure uniform pretension and prevent asymmetric deformation.

Key Observations

Hole Precision & Fit

Bolt Deviation Under Point Load

Tolerances, space needed for bolt fastening and reduce stress concentrations.

Glass & Oak

Fabrication and Prototyping

Change in set ups

Change in set ups

Fabrication and Prototyping

Change in set ups

Test Setup and Procedure Revised from pretest:

- 1. Larger bolt holes in the glass panels
- 2. Revised configuration for applying the point load
- 3. Torque-controlled bolt

Final set ups Loading condition

Step 1: 0.285KN Step 2:1.032KN Step 3: 2,484KN Step 4: 2,688KN Step 5: 5,800 KN

ExperimentKey Observations

Key Observations

Stage 3:
Fmax:
2484N
dL at Fmax:
2.9 = 3 mm

Stage 6: Ultimate
Fmax:
5900N
dL at Fmax:
17.2 mm

- Experiment
 - Test Results & Improvements

The design performed well under the tested loads, showing promising mechanical behavior.

• Accuracy limitation: smaller modules were tested under loads meant for longer modules.

Bolt & Fastening Insights:

- 1. Current method required tools to pass through glass holes—not ideal.
- 2. Suggestion: use bolts accessible from the side elevation.
- 3. Torque wrench head was too large \rightarrow a ring/open spanner would allow better preload control.
- 4. Bolt rotation caused wood cracking; solved by pinning the bolt head \rightarrow slower application is safer.

Glass & Oak

Change in set ups

Fabrication and Prototyping

Glass & Oak

Stage 1:

Fmax: 285 N

dL at Fmax:

1.1mm

Stage 2: Fmax:

1032 N dL at

Fmax:

3.4 mm

Stage 3: Fmax:

2484N dL at Fmax:

5.3 mm

Stage 4: Fmax:

2688N dL at

Fmax:

5.6 mm

Stage 5:

Fmax:

5800N. dL at

Fmax:

Stage 6: Ultimate

Fmax: 5009N dL at

Fmax:

13 mm

ExperimentKey Observations

Comparisom

• Test 3

Context Scope Design Structure Test

Final design : Use cases
 Pergola

Final design : Use cases
 Pergola

Final

Design

Test

Context Scope Design Structure

Walk way shade or Pergola

Walk way shade or Pergola

Final design : Use cases Exhibition pavilion

Exhibition pavilion

Exhibition pavilion

Final

Design

Test

Context Scope Design Structure

Exhibition pavilion

Exhibition pavilion

Final design: Use cases

Walk way shade

or Pergola

Walk way shade

or Pergola

Walk way shade or Pergola

Final

Design

Test

Context Scope Design Structure

Patio glass reciprocal roof structure

Patio glass reciprocal roof structure

Final

Design

Patio glass reciprocal roof structure

Assembly order

Assembly and Transport

Final

Design Assembly

Test

Context Scope Design Structure

Assembly order

Assembly and Transport

Assembly order

Assembly and Transport

 Assembly order Assembly and Transport

Assembly order

Assembly and Transport

Assembly order

Assembly and Transport

Context Scope Design Structure

Test

Design Assembly

Assembly sequence of line connection

Assembly sequence of T shape connection

• Assembly sequence of T shape connection

• End of life scenario sketch

Final Reflection

- Reimagines glass as a reusable, modular element
- Used a research-through-design method with iterative loops between design and testing.
- Integrated tools: Rhino, Grasshopper, Karamba, ANSYS for design + simulation.
- Designed interlocking systems inspired by wood joinery and cabinetry techniques.
- Prototyped with Plexiglass & Meranti, finalized with heat-strengthened glass & oak.
- ANSYS results **aligned** with real-world tests → **validated simulation reliability**.
- System showed redundancy and resilience even after partial connector failure.
- Ethical choice: used locally sourced, sustainable hardwood to reduce embodied carbon.

Societal Impact & Relevance

- Enables disassembly, reconfiguration, and reuse of glass units.
- Reduces material waste, energy use, and supports circular building strategies.
- Demonstrates synergy between glass, wood, and steel in sustainable design.
- Proposes a new architectural language of reversibility and modularity.

Limitations

- The project successfully achieved its initial goals and validated the proposed modular system.
- Only four module variations were tested; many other combinations exist and must be checked by future users.
- Physical testing was limited to the smallest module size due to lab constraints.
- Structural simulations using ANSYS covered additional module sizes and connection types to compensate.
- Lateral loading was only tested once; future outdoor applications require more in-depth analysis.
- Although designed as a pure shear joint, the system behaved more like a moment connection under load.
- Oak connectors performed well for moderate spans; longer spans may require stiffer materials like aluminium or titanium.
- Wood was chosen for being cost-effective, predictable in failure, and 50× cheaper than aluminium for CNC fabrication.
- Bolt access and preload application posed practical challenges; specialised tools could improve this.
- Manufacturing was sensitive to moisture and precision tolerances but manageable with proper storage.
- Even after partial connector failure, the system stayed stable—demonstrated through Karamba simulation.

Nexr steps

- Further testing of new connection types and module sizes, potentially in collaboration with civil engineering.
- Testing of alternative materials like aluminium or titanium for higher structural capacity.
- Exploration of new module shapes, such as curved or connector-specific geometries.
- Design refinements:
- More connection points to increase system capacity.
- Larger bolt holes (aesthetically balanced) to reduce local stress.
- Bigger bolts and added wooden caps to improve preloading and reduce slippage.
- Stronger spacer materials between glass panels to increase load transfer.
- Adapting the design for broader applications like facades, furniture, or shading systems.
- Using this project as a foundation for future research in modular and reversible glass systems.
- Advancing parametric tools in Grasshopper and Karamba to automate design and structural evaluation based on constraints and goals.

THANK YOU!