<]
TUDelft

Delft University of Technology

Migrating Custom DSL Implementations To a Language Workbench (Tool Demo)

Denkers, Jasper; van Gool, Louis; Visser, Eelco

DOI
10.1145/3276604.3276608

Publication date
2018

Document Version
Accepted author manuscript

Published in
Proceedings of the 11th ACM SIGPLAN International Conference on Software Language Engineering

Citation (APA)

Denkers, J., van Gool, L., & Visser, E. (2018). Migrating Custom DSL Implementations To a Language
Workbench (Tool Demo). In Proceedings of the 11th ACM SIGPLAN International Conference on Software
Language Engineering (pp. 205-209). ACM. https://doi.org/10.1145/3276604.3276608

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1145/3276604.3276608
https://doi.org/10.1145/3276604.3276608

Migrating Custom DSL Implementations
to a Language Workbench (Tool Demo)

Jasper Denkers
Delft University of Technology
Delft, The Netherlands
j.denkers@tudelft.nl

Abstract

We present a tool architecture that supports migrating cus-
tom domain-specific language (DSL) implementations to a
language workbench. We demonstrate an implementation
of this architecture for models in the domains of defining
component interfaces (IDL) and modeling system behavior
(OIL) which are developed and used at a digital printer man-
ufacturing company. Increasing complexity and the lack of
DSL syntax and IDE support for existing implementations in
Python based on XML syntax hindered their evolution and
adoption. A reimplementation in Spoofax using modular lan-
guage definition enables composition between IDL and OIL
and introduces more concise DSL syntax and IDE support.
The presented tool supports migrating to new implementa-
tions while being backward compatible with existing syntax
and related tooling.

CCS Concepts - Software and its engineering — Do-
main specific languages;

Keywords domain-specific languages, migration

ACM Reference Format:

Jasper Denkers, Louis van Gool, and Eelco Visser. 2018. Migrating
Custom DSL Implementations to a Language Workbench (Tool
Demo). In Proceedings of the 11th ACM SIGPLAN International
Conference on Software Language Engineering (SLE ’18), Novem-
ber 5-6, 2018, Boston, MA, USA. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3276604.3276608

1 Introduction

Organizations developing software benefit from model-driven
development by introducing abstractions. Such abstractions

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SLE ’18, November 5-6, 2018, Boston, MA, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-6029-6/18/11...$15.00
https://doi.org/10.1145/3276604.3276608

Louis van Gool
Océ Technologies B.V.
Venlo, The Netherlands
louis.vangool@oce.com

Eelco Visser
Delft University of Technology
Delft, The Netherlands
e.visser@tudelft.nl

reduce boilerplate code and implementation complexity. Ad-
ditionally, they improve quality and developer effectiveness.
The digital printer manufacturing company Océ applies model-
based development for such reasons. First, Interface Defini-
tion Language (IDL) to define component interfaces and to
automatically generate interface code that connects several
target languages and that provides standardized logging of
all interface communication. Second, Océ Interaction Lan-
guage (OIL) to specify, analyze, and implement system be-
havior using state machines. Existing implementations for
these models consist of XML syntax based on XSD schemas
and Python scripts that perform analysis and code gener-
ation, packaged in command-line and web-based utilities.
Successful application for over 15 years proved IDL to be
a viable approach. The more complex OIL is under active
development and used in production software at a limited
scale only.

Continuous development and maintenance of custom model
implementations with well-known technologies is flexible,
but involves much boilerplate code and complexity grows
while implementations evolve. Still, developing tailor-made
implementations even for possibly non-unique domains is
justified, especially in an industrial setting where e.g. inte-
gration and usage circumstances are unique. However, pro-
viding a good environment for developers to work with such
models, including concise DSL syntax and interactive IDE
support, is expensive. Therefore, organizations need better
tools for their DSL implementations and maintenance. While
evolving to better tools, the new implementations need to
be backward compatible with existing implementations and
related tooling, and ideally provide migration solutions for
porting legacy code.

Language workbenches [3?, 4] are tools for implement-
ing DSLs and automatically provide IDEs. Spoofax [5, 7]
is a particular instance for developing textual DSLs. This
work presents an industrial tool migration of IDL and OIL
to implementations in Spoofax. First, we present a language
architecture that supports accepting multiple syntaxes si-
multaneously. We implement this architecture for IDL and
OIL and demonstrate how it enables transforming between
XML and DSL syntax. This enables automated migration
between existing XML programs and the new DSL format.
Additionally, new programs written in the DSL syntax are
backward compatible with existing tooling based on XML

https://doi.org/10.1145/3276604.3276608
https://doi.org/10.1145/3276604.3276608

SLE ’18, November 5-6, 2018, Boston, MA, USA

syntax. Second, we demonstrate how Spoofax supports im-
plementing this architecture using modular syntax definition,
transformations, and cross-language reference resolution.

2 IDL and OIL

This section describes the languages IDL and OIL and their
existing implementations.

2.1 IDL: Component Interfaces

IDL serves as a language-agnostic and modular method to
define types with constraints and interfaces based on such
types. From IDL definitions, code generators can generate
interfaces in several target languages like C++ and C#. Ad-
ditionally, generated code enforces the constraints on types
and logs all interface communication.

Modules are the top level units in IDL. By using imports,
one module can reuse types of another, thus enabling mod-
ular definitions. Types define either named aliases of stan-
dard primitive types such as numbers, strings, and lists, or
define instances of enums or structs. Types can optionally
define constraints that restrict their possible values. Such con-
straints are boolean expressions and translate to assertions
in constructors of generated code. IDL definitions contain
interfaces similar to those in languages such as Java or C#.
Interfaces contain a set of methods which define parameters
and return values, typed by primitives or the custom types
defined elsewhere in IDL.

2.2 OIL: System Behavior

OIL is a language for the specification, analysis, and imple-
mentation of system behavior. It presents a layer on top of
IDL in which IDL interfaces define the communication chan-
nels between components. Method calls and replies on these
interfaces represent events on the channels, triggering state
machines that model protocol specifications or component
behavior. Based on logging of events that pass the interfaces,
developers can analyze behavior in retrospect. Additionally,
OIL component specifications can automatically generate
fully functional code.

2.3 Existing Implementations

The existing implementations for both IDL and OIL follow
the same recipe. First, an XSD schema defines a subset of
XML as the model syntax. Second, Python scripts implement
parsing (using an existing XML parsing library), static anal-
ysis (using AST traversals and ad-hoc name binding and
type analysis) and code generation. Several tools operate
on the XML syntax, e.g. for separate (company-project spe-
cific) code generation or web-based visualization of OIL state
machines.

The existing implementations are tailored to code genera-
tion and do not provide interactive IDE functionality. Python

Jasper Denkers, Louis van Gool, and Eelco Visser

scripts implement heuristics to perform static checks. Recur-
sive traversal of expression ASTs gathers type information
bottom up and checks references and well-formedness. De-
velopers edit programs in their editor of choice and run the
scripts via the command line or web application to get anal-
ysis feedback as console output. Build systems include the
code generation scripts. Code generators do not check the
correctness of programs and thus incorrect programs can
lead to incorrect generated code without being noticed by
developers.

2.4 Analysis

Several problems arise with the existing implementations of
IDL and OIL. Both languages lack concise DSL syntax and
interactive IDE support. This causes inconvenient editing of
programs in XML syntax. Analysis results are only reported
after manually triggering scripts, whose output needs to be
manually traced back to the specification. The development
of OIL is hindered due to increasing complexity since e.g.
no trivial method for advanced features like cross-language
reference resolution are available. Therefore, migrating the
implementation to a language workbench is useful. Higher
levels of abstractions for implementing language compo-
nents help reduce complexity, and automatic derivation of
IDE support is provided for free.

Re-implementing DSLs in a language workbench leads
to several requirements regarding migration. First, when
introducing a new syntax, programs in this syntax must be
backward migratable to prevent having to update all existing
tooling. Additionally, existing programs must be forward
migratable to the new syntax. Finally, analysis and generated
code must be easily integratable in the build system and
developers’ workflow.

2.5 Approach

We focus on two aspects of migrating IDL and OIL. First, we
design a concise DSL syntax for the languages (Section 3).
Second, we define the architecture that support the migration
(Section 4). The work is performed in Spoofax [5, 7], the inte-
gration of several declarative meta-DSLs from which we use
SDF3 for syntax definition, NaBL2 for static analysis based
on scope graphs [1, 6] and Stratego for transformations [2]).

3 Language Design

This section describes and motivates the design of the in-
troduced DSL syntaxes for IDL and OIL. The objective is to
provide DSLs that are more concise and readable, that are
tailored towards domain concepts, and that do not have the
overhead XML syntax has. For IDL, the DSL syntax could
follow naturally from the concepts and hierarchy of the XML
schema. The new DSL mostly focuses on removing boiler-
plate syntax. For OIL the specification of the DSL was less
straightforward. Especially for transitions a more natural

Migrating Custom DSL Implementations to a Language Workbench

SLE ’18, November 5-6, 2018, Boston, MA, USA

[) @® workspace - oil.example/sle18/example.oilxml - Eclipse
i W @ R F-O0 Q& HEG By - Oy ® &
@ printeri.idlxml £2 & printeri.idl £ =
1<module name="printeri"> 1module printeri { o=
2 <interface name="printer"> 2 intefface printer {
3 <method name="turn_on"/> 3 turn_on() &
4 <method name="turn_off"/> 4 turn_offQ) =g
5 <method name="add_job"/> 5 add_job() 5]
6 <method name="remove_job"/> 6 remove_\job()
7 <method name="print_job"/> 7 print_jobQ E
8 </interface> 8 } reD
9 </module> 9% Ezf
(@
& example.oilxml 2 & example.bil X B
1<oil> 1region\status { =]
2 <region name="status"> 2 stdte off —
3 <state name="off"/> 3 state on N =
4 <state name="on"/> = 4 statg
5 <state name="ok"/> 5}
6 </region> 6
7 <scope name="illegal"> @ 7scope illegql[@]
038 <invariant>@</invariant> 8
9 </scope> Type mismatch: invariant must be boolean, got number gon [call] 1
10 <group type="ca 10 in off on turnLon() go on end
11 <transition mType: number /> 11 in on on) go off end
12 <transition method="turn_off" source="on" target="off"/> 12 in on on add_job() go ok end
13 <transition method="add_job" source="on" target="ok"/> 13 in ok on remove_job() go on end
14 <transition method="remove_job" source="ok" target="on"/> 14 in ok on print_job() go ok end
15 <transition method="print_job" source="ok" target="ok"/> 15 in on on print_job() go illegal end
16 <transition method="print_job" source="on" target="illegal"/> 16}
17 </group> 17
18 </oil> 18
Writable Insert g1

Figure 1. An example OIL program in the Eclipse environment of Spoofax. The left program is written in the existing XML
syntax. The right program is the same program migrated to the DSL syntax. The blue arrows indicate cross-language reference

resolution. Errors are reported interactively to the user.

reading was possible. To make the transition to the new
syntax easier for developers, the syntax looks similar to well-
known languages like C and Java by using curly braces. For
consistency, definitions follow the pattern of a type followed
by a name and then optionally additional information be-
tween curly braces. References to types start with a name,
then a colon and the type. Figure 1 contains an example
IDL and OIL program in XML and its translation to the DSL

Table 1. Comparison of XML and DSL file size for the biggest
IDL with and without constraints and OIL programs present.
Sizes are in lines of code (and number of characters).

XML DSL A
IDL without constraints 5 8134578969) 3 2142324746) (4147(7?)7
IDL with constraints (25 36713; (12 746911) (520%737
o a0 (r08e) (36

syntax. Table 1 indicates the conciseness of the DSLs by
comparison with their XML counterparts.

4 Migration Architecture

This section describes the implementation architecture of
IDL and OIL in Spoofax that enables language composition
and supports migrations.

4.1 Language Pipeline

For both IDL and OIL the same language pipeline architec-
ture is applied. The key characteristic of this architecture is
the introduction of a normalized AST format. Bi-directional
transformations from both syntaxes to the normalized AST
enable single definition of static analysis and code generation
that is applicable on both the XML and DSL programs. Addi-
tionally, this automatically derives support for migrating old
programs to the better readable DSL, and new programs writ-
ten in the DSL stay backward compatible with existing tools
since they can be transformed to the XML syntax. Figure 2
visualizes this pipeline used for both languages.

SLE ’18, November 5-6, 2018, Boston, MA, USA

Jasper Denkers, Louis van Gool, and Eelco Visser

Normalized Desugared Static
AST AST Semantics
DSL DSLAST |’ k@nj
\ 4
Code

Figure 2. The language pipeline implemented for both IDL and OIL. Rectangles indicate model instance components and
ellipses indicate transformations between them. SDF3 definitions generate parsers and pretty printers. Stratego definitions
implement the transformations (XML/DSL to and from normalized AST, desugaring, and code generation). NaBL2 definitions
generate static analysis code. Code generation uses static analysis results by e.g. taking type information into account.

idl-shared [€ oil-shared
idl-xml idl-dsl oil-xml oil-dsl
A A A A
idl-xml idl-dsl oil-xml oil-dsl
test test test test

Figure 3. The Spoofax projects hierarchy for the imple-
mentation of IDL and OIL, including separate definitions
of shared code and language variants for XML and DSL syn-
tax. Arrows indicate dependencies between projects.

4.2 Project Hierarchy

In total four Spoofax language projects implement the two
languages (IDL and OIL) in two formats (XML and DSL).
Additionally, each instantiation has a separate project for
testing. Since the two formats per language have a single
definition of static semantics and code generation, both lan-
guages have a parent project with shared definitions on
which the two formats depend. Figure 3 shows the hierarchy
of projects and their dependency relationships. OIL reuses
syntax, static semantics and AST signatures definitions for
keywords, expressions, and types from IDL, justifying the
dependency from OIL projects on the IDL shared project.

4.3 Composition

Composition between IDL and OIL happens on the level of
syntax and static analysis. OIL imports reuses syntax defini-
tion of expressions from IDL. Events in OIL correspond to
methods defined in IDL. We need cross-language reference
resolving to statically check whether the events used in OIL
are valid. Static analysis definition with NaBL2 is based on
scope graphs. We realize the composition of static analy-
sis by merging the two languages and their scope graphs,
thus enabling resolution in IDL modules from OIL. This is
a workaround; ideally Spoofax and NaBL2 would support
importing the root scope graph node from one language to
another.

5 Conclusions

We presented an architecture for implementing DSLs in a lan-
guage workbench that supports migrations from old to new
syntax and vice versa. The key characteristic of this architec-
ture is an intermediate normalized AST with bi-directional
transformations to and from both syntaxes. We implemented
an instance of this architecture for IDL and OIL in Spoofax. It
demonstrates how the introduction of improved DSLs with
concise syntax and IDE support can be adopted while be-
ing backward compatible with old syntax. This lowers the
boundary for industry to adopt language workbenches for
custom DSL implementations.

Acknowledgements

This research was funded by a grant from the Top Consortia
for Knowledge and Innovation (TKIs) of the Dutch Ministry
of Economic Affairs and from Océ. The authors would like
to thank Olav Bunte and the anonymous reviewers for their
feedback.

Migrating Custom DSL Implementations to a Language Workbench

References

(1]

(2]

—
w
—

(4]

Hendrik van Antwerpen, Pierre Néron, Andrew Tolmach, Eelco Visser,
and Guido Wachsmuth. 2016. A constraint language for static semantic
analysis based on scope graphs. In Proceedings of the 2016 ACM SIGPLAN
Workshop on Partial Evaluation and Program Manipulation. ACM, 49-60.

Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas, and Eelco
Visser. 2008. Stratego/XT 0.17. A language and toolset for program
transformation. Science of computer programming 72, 1-2 (2008), 52-70.

Sebastian Erdweg, Tijs Van Der Storm, Markus Vélter, Meinte Boersma,
Remi Bosman, William R Cook, Albert Gerritsen, Angelo Hulshout,
Steven Kelly, Alex Loh, et al. 2013. The state of the art in language
workbenches. In International Conference on Software Language Engi-
neering. Springer, 197-217.

Martin Fowler. 2005. Language workbenches: The killer-app for domain
specific languages. (2005).

(5]

(6]

(7]

SLE ’18, November 5-6, 2018, Boston, MA, USA

Lennart CL Kats and Eelco Visser. 2010. The spoofax language work-
bench: rules for declarative specification of languages and IDEs. In ACM
sigplan notices, Vol. 45. ACM, 444-463.

Pierre Neron, Andrew Tolmach, Eelco Visser, and Guido Wachsmuth.
2015. A theory of name resolution. In European Symposium on Program-
ming Languages and Systems. Springer, 205-231.

Eelco Visser, Guido Wachsmuth, Andrew Tolmach, Pierre Neron, Vlad
Vergu, Augusto Passalaqua, and Gabriél Konat. 2014. A Language De-
signer’s Workbench: A One-Stop-Shop for Implementation and Verifica-
tion of Language Designs. In Proceedings of the 2014 ACM International
Symposium on New Ideas, New Paradigms, and Reflections on Program-
ming & Software. ACM, 95-111.

	Abstract
	1 Introduction
	2 IDL and OIL
	2.1 IDL: Component Interfaces
	2.2 OIL: System Behaviour
	2.3 Existing Implementations
	2.4 Analysis
	2.5 Approach

	3 Language Design
	4 Migration Architecture
	4.1 Project Hierarchy
	4.2 Language Pipeline
	4.3 Composition

	5 Conclusions
	6 Demonstration Outline
	References

