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Abstract

In this work, we deal with the problem of reconstructing a complete bandlimited graph signal from par-
tially sampled noisy measurements. For a known graph structure, some efficient centralized algorithms
are proposed to partition the nodes of the graph into disjoint subsets such that sampling the graph sig-
nal from any of these subsets leads to a sufficiently accurate reconstruction. Furthermore, we consider
the situation when the graph has a massive size, where processing the data centrally is impractical
anymore. To overcome this issue, a distributed framework is proposed that allows us to implement
the centralized algorithms in a parallelized fashion. Finally, we provide numerical simulation results on
synthetic and real-world data to show that our proposals outperform state-of-the-art node partitioning
techniques.

iv





Contents

1 Introduction 3
1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 6
2.1 Graph Signal Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Graph Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Graph Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Graph Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.4 Graph Sampling Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Submodular Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Graph Node Selection Problem 15
3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Optimal Interpolation Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Scalarizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Problem formulation for set selection on graphs . . . . . . . . . . . . . . . . . . . . . . . 17
3.5 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.5.1 Greedy Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.5.2 Convex Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Problem Formulation and Related Work 20
4.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2.1 Problem Formulation Based on Optimizing the Worst Subset . . . . . . . . . . . 21
4.2.2 Problem Formulation Based on Maximizing the number of qualified subsets . . . 24

4.3 Benefits of Our Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Partitioning Algorithms 27
5.1 Deterministic greedy approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1.1 Two-Sided greedy algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.1.2 Recursive Two-Sided greedy algorithm . . . . . . . . . . . . . . . . . . . . . . . 29
5.1.3 A 1

2 -approximation greedy algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 Randomized rounding approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2.1 Simple randomized rounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2.2 Contention Resolution rounding . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6 Distributed Partitioning Framework 34
6.1 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7 Results and Discussion 39
7.1 Synthetic Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7.1.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.1.2 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7.2 French National Meteorological Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.2.1 Graph Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.2.2 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

8 Concluding Remarks 46
8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

vi



Contents vii

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

References 48





Nomenclature

Graph

W Graph weighted matrix

A Graph adjacency matrix

L Graph Laplacian matrix

G(V, E) Graph G with node set V and edge set E

Linear Algebra

(·)⊤ Transpose

(·)−1 Inverse

(·)† Inverse

Rn Real vector space of n-dimensional vectors

Rn×n Real matrices space of n by n matrices

I Identity matrix

1 All-one vector

diag{x} Diagonal matrix with x on the diagonal

tr{X} Trace of a matrix

Mathematical Object

x Scalar

x Vector

X Matrix

[x]i The i-th entry of a vector

xK The first K entries of a vector

xS The coefficients of a vector whoses indices are in set S

[X]i,j The (i, j)-th element of a matrix

[X]i,: The i-th row of a matrix

[X]:,i The i-th column of a matrix

XK First K columns of a matrix

S(i) The i-th element of set S

| x | Cardinality of vector x

Set

V Set

ix



Nomenclature x

2V Power set of set V

| V | Cardinality of set V

∈ Belongs to (element-wise)

⊆ Belongs to (set-wise)

∪ Union

∩ Intersection

∅ Empty set





List of Figures

2.1 An example of a graph: the Minnesota road network with 2642 nodes generated by the
GSPBOX toolbox [14] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Example of a high-frequency graph signal (left) and a low-frequency graph signal (right).
Different colors correspond to different signal values. . . . . . . . . . . . . . . . . . . . . 10

6.1 An illustration of the distributed partitioning framework with three processors and 15
nodes. The color of the node indicates which subset they are assigned to. . . . . . . . . 35

7.1 Sensor network from David(right) and the corresponding distribution of processors. . . . 40
7.2 Minnesota road graph(left) and the corresponding distribution of processors(right). . . . 41
7.3 The Brest weather stations graph(left) and its distribution of processors(right). . . . . . . 43

1



List of Tables

7.1 Performance of SIP and JIP on random sensor graph regarding the number of subsets. 39
7.2 Performance of SIP and JIP on random sensor graph regarding the cost function value. 40
7.3 Performance of SIP and JIP on Minnesota road graph regarding the number of subsets. 40
7.4 Performance of partitioning algorithms on the sensor network from David with P = 5. . . 41
7.5 Performance of partitioning algorithms on stochastic block model with P = 5. . . . . . . 42
7.6 Performance of partitioning algorithms on Erdos-Reyni graphs P = 5. . . . . . . . . . . 42
7.7 Performance of partitioning algorithms on French National Meteorological dataset. . . . 44

2



1
Introduction

A graph consisting of nodes and edges is a helpful data representation when some topology structures
exist in the data domain. The data on the graph node can be seen as a finite collection of samples
living on the graph as the domain. This signal-graph coupling structure is a graph signal [1].

In the emerging field of graph signal processing (GSP), roughly speaking, two essential topics are
being studied. In the first, we assume that the underlying graph structure is given and extend concepts
from classical signal processing, like filtering [2], sampling and interpolation [3], [4], and signal recovery
[5] to process graph signals. The second topic considers the casewhere the graph structure is unknown,
and from the receiving data, the goal is to learn the topology of graphs. Related works could be found
in [6], [7]. In this work, we focus on the first topic, to be more specific, the graph sampling theory.

Applications of GSP arise very often. Here are some examples. In transportation networks [1], we
may be interested in analyzing epidemiological data which suggests the spread of disease. In brain
networks, we are interested in finding ways of detecting the anomaly patterns that appear in the cerebral
cortex [8]. In movie recommendation systems, it is possible to predict users’ ratings from similar users,
i,e. their neighbors.

1.1. Problem Statement
In our study, we consider as graph an Internet of Things (IoT) sensor network, and the graph signal
some environmental characteristics measured by the sensors, such as temperature, humidity, etc. Due
to the massive size of many real-world sensor networks, observing all the sensor data in a graph is often
challenging. Moreover, sampling data on every sensor could be highly energy-consuming. To solve
this issue, one could sample a subset of the network and reconstruct the whole graph signal based on
that observation. Therefore, the objective is to partition the sensor nodes into several disjoint subsets
so that each sensor node can only be selected in one subset. In each sampling round, only a subset
of sensors is used to reconstruct the graph signal. Meanwhile, ensuring each subset’s reconstruction
error is sufficiently small is essential. Suppose we partition the graph into P disjoint subsets and sample
every subset in turn. In that case, each sensor has to transmit P times less frequently, reducing energy
consumption and extending the sensor’s life span by P times.

At first glance, this partitioning task looks similar to spectral clustering [9], [10], which also aims to
partition the graph into disjoint subsets. But to solve our problem, finding a partition based on spectral
clustering makes no sense, where nodes are clustered based on their similarity, i.e., nodes within a
cluster are similar. However, reconstructing the complete graph signal using a set of similar observa-
tions is never a good idea. The reason for this is that this will introduce too much redundancy. Instead,
intuitively speaking, we should put dissimilar nodes into a subset. Indeed, these are just some insights
into what the solution should look like. The formal problem formulation will be introduced in Chapter 4.

1.2. Outline
The thesis is organized as follows:

3



1.2. Outline 4

• Chapter 2-Background: We give the background related to this work, including some graph signal
processing concepts and the basics of submodular maximization

• Chapter 3-Greedy Graph Node Selection: We introduce the single subset selection problem as
our partitioning problem is based on that.

• Chapter 4-Related Work and Problem Formulation: We review the existing approaches for the
partitioning problem and explain why they are not good enough. Then, we formally formulate the
problem.

• Chapter 5-Partitioning Algorithms: New algorithms are provided in this chapter to tackle the prob-
lem defined in Chapter 4.

• Chapter 6-Distributed Partitioning Framework: We propose a distributed framework that allows
us to implement the algorithms from the previous chapters in parallel.

• Chapter 7-Results and Discussion: We show some results of our algorithms and give guidance
about how to use them in different scenarios.





2
Background

This chapter introduces two critical topics essential for the rest of this report: graph signal processing
and submodular maximization.

2.1. Graph Signal Processing
In this section, we go through some concepts in graph signal processing. The relevant theory gen-
eralizes classical signal processing from regular to irregular domains commonly described by graphs
[3].

2.1.1. Graph Representations
Before going to the graph signal, we briefly introduce different graph representation methods. In math-
ematics, a graph G = (N , E) is defined as a finite set of nodes N = {v1, v2, . . . , vN} and a limited set of
edges E [11], which is a generic data representation form that is useful for depicting the topological struc-
ture of data domains in various applications, including social networks, transportation networks(see Fig.
7.2), sensor networks, and brain networks, etc [1]. The weight associated with an edge usually implies
the similarity between the two vertices it connects, i.e., a high weight suggests that the corresponding
nodes are pretty similar. In contrast, a zero weight means that the pair of nodes are not connected.

In some applications, a graph structure is not explicitly given, so it must first be constructed from
the data. For a sensor network, this can be done by connecting every k nearest neighbors and setting
the weights to be

[W]m,n =
e−d2

n,m√∑
k∈Nn

e−d2
n,k
∑

ℓ∈Nm
e−d2

mℓ

, (2.1)

where [W]m,n denotes the weight between node n and nodem,Nn denotes the neighbors of node n and
dn,m denotes the geodesical distance between the nth and mth nodes [12]. Other graph construction
methods can be found in [13].

Algebraic matrices, for example, the adjacency matrix and the Laplacian matrix, can represent
graphs. In some literature, one can also use the incidence matrix to represent graphs, but here we
focus on the first two types of matrices. The (weighted) adjacency matrix of a graph G = (N , E) is
simply given by

[A]u,v =

{
[W]u,v, if (u, v) ∈ E
0, if (u, v) /∈ E .

(2.2)

For a directed graph, (u, v) ∈ E does not always imply that (v, u) ∈ E , so its adjacency matrix is
generally asymmetric. We assume that all the graphs mentioned in this report are undirected, i.e., their
corresponding adjacency matrices are symmetric. We can also introduce the Laplacian matrix for such
undirected as done next.

6



2.1. Graph Signal Processing 7

Figure 2.1: An example of a graph: the Minnesota road network with 2642 nodes generated by the GSPBOX toolbox [14]
.

Before introducing the Laplacian matrix, we define the degree matrix D = diag (d1, . . . , dN ), where

du :=

N∑
v=1

[A]u,v. (2.3)

Once we obtain the adjacency matrix and the degree matrix of a graph, its Laplacian matrix is then
given by

L = D− A (2.4)

2.1.2. Graph Spectrum
Spectral graph theory studies the eigenvalues and eigenvectors of matrices associated with graphs
[9]. A common choice of such a matrix for undirected graphs is the graph Laplacian matrix. It can be
decomposed as

L = UΛU⊤, (2.5)
whereΛ = diag (λ1, λ2, . . . , λN ) is a diagonal matrix collecting the eigenvalues λn andU = [u1,u2, . . . ,uN ]
is the matrix collecting the eigenvectors un. Without loss of generality, we assume these eigenvalues
are placed in increasing order for convenience. Notice that the smallest eigenvalue λ1 = 0, and the
corresponding eigenvector is given by u1 = [1, 1, . . . , 1]⊤/

√
N = 1/

√
N .

Clustering is a fundamental technique broadly used in data mining, unsupervised learning, etc.
Given the graph, it is possible to do clustering based on its spectrum.

A K-means based spectral clustering algorithm is given in Algorithm 1 [15], [16]. For more details
of the K-means algorithm, see [17].

We will see later that a preprocessing procedure like clustering might help to improve the efficiency
of our node partitioning problem.

2.1.3. Graph Signals
By assigning a scalar value to each graph node, we can define a signal on top of the graph, called
a graph signal. Note that in more general cases, we can map multiple values or a vector to a single
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Algorithm 1 Spectral Clustering
Input: Graph Laplacian L, number of clusters K
Output: K clusters
1: Compute the eigenvalue decomposition of L
2: Choose the first K eigenvectors corresponding to K smallest eigenvalues and form the N × K
matrix UK

3: Assign the ith node to the ith row of UK

4: Run K-means on the rows of UK

node, and the corresponding graph signal is then multivariate. In this paper, we restrict the node-signal
mapping to one-to-one. Once the order is fixed, we can stack the signal values into a vector

x = [x1, x2, . . . , xN ]⊤, (2.6)

where the ith value corresponds to node i. Note that the order of the nodes does not matter as long as
it is consistent with the order of the nodes in the Laplacian.

Graph Fourier Transform
In traditional Fourier theory, the frequency-domain signal corresponding to a time-domain signal is the
expansion of it in terms of complex exponentials [18]

f̂(ξ) =

∫ ∞

−∞
f(x)e−j2πξxdx. (2.7)

We denote the nth eigenvector of the Laplacian as un, hence its ith entry is denoted as [un]i. Anal-
ogously, we can define the graph Fourier transform x̂ of the graph signal x in this way:

[x̂]n = ⟨x,un⟩ =
N∑
i=1

xi[un]
∗
i . (2.8)

Likewise, the inverse graph Fourier transform is given by

[x]i =
N∑

n=1

[x̂]n[un]i. (2.9)

In vector form, the graph Fourier transform of x is given by

x̂ = U⊤x, (2.10)

and the inverse graph Fourier transform by

x = Ux̂. (2.11)

In classical Fourier analysis, complex exponentials associated with low frequencies, i.e., ξ close
to zero, tend to oscillate smoothly, while the complex exponentials associated with high frequencies
oscillate rapidly.

In the graph frequency domain, the frequencies of a graph signal are defined by the eigenvalues
of its Laplacian. Larger eigenvalues correspond to higher frequency components and vice versa. For
a connected graph, as mentioned above, the eigenvector associated with the smallest eigenvalue,
which equals zero, is a DC-valued vector and equals 1/

√
N at each node. For larger eigenvalues,

the corresponding eigenvectors oscillate more rapidly over the graph. This coincides with the theory
of classical Fourier analysis discussed above. We will discuss the topic of smoothness further in the
following section, which complements the graph Fourier transform theory.
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Graph Signal Smoothness
Let us start from the viewpoint of classical signal processing. In the time domain, a smooth signal
implies that its magnitude changes slowly over time. However, in the graph domain, because of its
irregularity, it is not appropriate to define the smoothness based on the order of the nodes, or else a
different ordering would lead to a different result, which is incorrect. It makesmuchmore sense to define
the smoothness of a graph signal based on the graph’s topological structure. To be more specific, for
a graph signal, if the signal values at adjacent nodes are very similar, then this graph signal is smooth.

Mathematically, for a graph signal x, the measure of smoothness could be formulated by the discrete
p−Dirichlet form [1] which is defined as

Sp(x) :=
1

p

∑
i∈N
∥∇ix∥p2 =

1

p

∑
i∈N

∑
j∈Ni

Wij [xj − xi]
2


p
2

, (2.12)

where ∥∇ix∥2 is called the local smoothness of x at node i, and is defined as ∥∇ix∥2 :=
[∑

j∈Ni
Wij [xj − xi]

2
] 1

2 .
It measures the local smoothness of the graph signal near node i. We can play with p according to
different requirements. When p = 2, then we have

S2(x) =
1

2

∑
i∈N

∑
j∈Ni

Wij [xj − xi]
2

=
∑

(i,j)∈E

Wij [xj − xi]
2 = x⊤Lx.

(2.13)

S2(x) is called the graph Laplacian quadratic form [9]. This value is small only when the signal has
similar values at neighboring nodes connected by an edge with a large weight.

Now we explain why the eigenvectors of the graph Laplacian corresponding to smaller eigenvectors
are more smooth. According to the Courant-Fischer theorem [19], the graph Laplacian eigenvalues and
eigenvectors could also be defined as

λn = min
x∈RN

∥x∥2=1
x⊥span{u1,...,un−1}

{
x⊤Lx

}
, n = 1, 2, . . . , N,

(2.14)

and the minimizer is given by un. From (2.13) and (2.14), we see again the strong relation between
the frequency and the eigenvalue of the graph Laplacian. If we go back to (2.8) and (2.9), it is clear
that the energy of a high-frequency signal concentrates on the high-frequency components, while the
energy of a low-frequency signal concentrates on the low-frequency components. Figure 2.2 shows
examples of high-frequency and low-frequency graph signals.

2.1.4. Graph Sampling Theory
In classical signal processing, perfect interpolation can be achieved if we sample a bandlimited signal
at Nyquist rate, i.e., twice the highest frequency of a bandlimited signal. Analogously, such perfect
interpolation is also possible in graph signal processing when specific requirements are satisfied. In
this section, we study the sampling theory in GSP.

Broadly speaking, there are two sampling approaches in GSP. The first is selection sampling, in
which a subset of nodes are collected and observed [3], [20]. Another approach is called aggregation
sampling, in which the signal is observed at a single node, and we apply the graph shift operator S
recursively [21]. In this work, only selection sampling is considered.

Sampling methods can be divided into two categories for selection sampling. The first builds on
spectral graph theory, where the bandwidth of the graph signal is determined by the values of graph
frequencies that correspond to the eigenvalues of the graph Laplacian matrix. The problem of finding a
sampling set of a bandlimited signal boils down to finding a uniqueness set for the Paley-Wiener space
[4], [22]. The second defines a signal’s bandwidth based on its GFT’s cardinality, which allows us to
solve complex sampling problems by using simple linear algebra tools [3]. The thesis is based on the
second, which we will discuss next. We first define what is a bandlimited graph signal.
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Figure 2.2: Example of a high-frequency graph signal (left) and a low-frequency graph signal (right). Different colors
correspond to different signal values.

Definition 1. A graph signal is called bandlimited if there exists aK (K < N ) such that its GFT satisfies

[x̂]k = 0 for all k > K, (2.15)

and the smallest such K is called the bandwidth of the signal.

In the remainder of this report, the term ”A K-bandlimited signal” refers to ”A signal with bandwidth
K.” Obviously, for a K-bandlimited graph signal, x = UK x̂K , where UK stacks the first K columns of
U and x̂K collects the first K entries of x̂.

Suppose that we sample M nodes of a graph signal x ∈ RN to produce a sampled signal xM ∈
RM (M < N), whereM = (i1, . . . , iM ) denotes the set of nodes that are sampled, and im ∈ {1, 2, . . . , N}.
We then interpolate xM to obtain x′ ∈ RN , which recovers x either exactly or approximately. The sam-
pling operator Φ is a linear mapping from RN to RM , defined as

[Φ]i,j =

{
1, j = im

0, otherwise
, (2.16)

and the interpolation operator Ψ is a linear mapping from RM to RN . In other words, we can write

sampling: xM = Φx ∈ RM ,

interpolation : x′ = ΨxM = ΨΦx ∈ RN .

We next show the sampling theorem for a bandlimited graph signal.

Theorem 1. Let Φ satisfy

rank (ΦUK) = K,

where UK ∈ RN×K denotes the firstK columns of U. For allK-bandlimited signals x, perfect recovery,
x̂ = ΨΦx, is achieved by choosing

Ψ = UK(ΦUK)†.

Such sampling operator is called a qualified sampling operator. Note that for aK-bandlimited graph
signal, there might exist multiple qualified sampling operators. Indeed, to satisfy the full-rank condition,
M ≥ K is a necessary condition. An interpretation is that according to Theorem 1, the sampling
operator should select at least K-linearly independent rows in UK , and to achieve this, M should at
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least be equal to K. When M > K, redundancy is introduced and can be exploited to increase the
robustness of the sampled signal.

Given the number of samples, there is generally an optimal sampling set for noisy cases. However,
this problem is generally an NP-hard problem [23]. Greedy algorithms [24] and convex optimization
[25] through relaxation are the two most popular ways to deal with such problems. In the following
chapters, we will discuss algorithms based on these approaches in detail.

2.2. Submodular Optimization
Submodularity is a property of set functions, which is of great significance asmany functions that appear
in practical problems turn out to be submodular functions, including graph cut functions [26], mutual
information [27], [28], etc. The submodular function is a type of set function analogous to both convex
and concave functions simultaneously. It is like a convex function in that some continuous extensions
like Lovász extension [29] turn the original discrete set function into a convex function. Therefore,
many submodular minimization algorithms build on its convex-like properties [30]. On the other hand, its
diminishing returns property which we will introduce next, is very similar to the non-increasing derivative
property of concave functions. Hence, this property is helpful in submodular maximization problems
[31]. In this work, we mainly focus on its concavity point of view. Formally, a submodular function is
defined as follows.

Definition 2 (Submodular function). A set function f : 2N → R is a submodular function if and only if
for all subsets A,B ⊆ N , we have

f(A) + f(B) ⩾ f(A ∪ B) + f(A ∩ B).

We mentioned before that submodular functions have a diminishing returns property. With this
property comes an equivalent yet different definition for submodularity.

Definition 3 (Diminishing returns). The set function f is submodular if and only if for all A ⊆ B ⊆
N , k /∈ B and k ∈ N , we have

f(A ∪ {k})− f(A) ⩾ f(B ∪ {k})− f(B)

Proof. Let A ⊆ B, and k /∈ B, we have

f(A ∪ {k})− f(A)− f(B ∪ {k}) + f(B) = f(C) + f(D)− f(C ∪ D)− f(C ∩ D) ⩾ 0,

with C = A∪ {k} and D = B, which implies that the condition is necessary. To show that the condition
is sufficient, we firstly show that if A ⊆ B and C ∩ B = ∅, then

f(A ∪ C)− f(A) ⩾ f(B ∪ C)− f(B),

which can be obtained by using telescoping sums:
m∑

k=1

(f (A ∪ {c1 · · · ck})− f (A ∪ {c1 · · · ck−1}) ⩾
m∑

k=1

(f (B ∪ {c1 · · · ck})− f (B ∪ {c1 · · · ck−1}) ,

where C = {c1, · · · , cm}. Then, for any P,Q ⊆ N , let A = P ∩ Q, C = P \ Q and B = Q, which is
equivalent to

f(P) + f(Q) ⩾ f(P ∪Q) + f(P ∩Q),

and the proof finishes.

Among all submodular functions, an important subclass is called monotone submodular functions.

Definition 4 (Monotonicity). A set function f : 2N → R is monotone if for every A ⊆ B ⊆ N ,

f(A) ⩽ f(B).

Note that when we say monotonicity in the context of set functions, we refer to monotone non-
decreasing functions by default.



2.2. Submodular Optimization 12

Definition 5. A set function is said to be normalized if

f(∅) = 0.

For monotone non-decreasing and normalized submodular function maximization under cardinality
constraints, i.e., for the problem

maximize
S⊆N

f(S) subject to |S| = K, (2.17)

the greedy algorithm is an efficient algorithm that provides a near-optimal performance guarantee [32],
[28] and thus is widely used. The greedy algorithm is presented in Algorithm 2, and its near optimality
is discussed next. Note that in Algorithm 2 and the rest of this section, Sk denotes the selected set in
the kth step.

Algorithm 2 Greedy algorithm for submodular maximization
Input: K, Sk = ∅
Output: SK
1: for k ← 1 to K do
2: s∗ ← argmaxs/∈Sk

f(Sk ∪ {s})
3: Sk ← S ∪ {s∗}
4: end for

Theorem 2. Let 2N → R be a normalized monotone submodular function, denote S∗ as the optimal
solution of (2.17), and denote the solution obtained by Algorithm 2 as SK . Then we have

f (SK) ≥
(
1− 1

e

)
f (S∗) , (2.18)

where e is Euler’s number.

Proof. We denote by∆(e | S) := f(S∪{e})−f(S) the discrete derivative of f at S with respect to e [28].
Ordering the the elements of S∗ arbitrarily as {v∗1 , . . . , v∗K}, then we have the following inequalities.

f (S∗)
(a)

≤ f (S∗ ∪ Sk)

(b)
= f (Sk) +

k∑
j=1

∆
(
v∗j | Sk ∪

{
v∗1 , . . . , v

∗
j−1

})
(c)

≤ f (Sk) +
∑
v∈S∗

∆(v | Sk)

(d)

≤ f (Sk) +
∑
v∈S∗

(f (Si+1)− f (Sk))

(e)

≤ f (Sk) +K (f (Si+1)− f (Sk))

Here, (a) comes from the monotonicity of f , (b) is the telescoping sum of f (S∗ ∪ Sk), (c) holds because
of the submodularity of f , (d) is true since Si+1 is selected greedily based on Si, and (e) obviously holds
due to the cardinality constraint |S| = K. Then we have

f (S∗)− f (Sk) ≤ K (f (Sk+1)− f (Sk)) , (2.19)

which can be rearranged as

f(S∗)− f(Sk+1)) ≤
(
1− 1

K

)
(f(S∗)− f(Sk)), (2.20)
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and hence f(S∗)−f(Sk ≤
(
1− 1

K

)k
(f(S∗)−f(∅)) =

(
1− 1

K

)k
f(S∗), because f is normalized. Then

we have

f(S∗)− f(Sk) ≤
(
1− 1

K

)k

f(S∗) ≤ e−k/Kf (S∗) . (2.21)

The second inequality holds because 1− x = e−x. Rearranging the inequality and substituting k = K,
we obtain the result shown in Theorem 2.

Besides monotone submodular functions, there is another particular class of submodular functions
called symmetric. The symmetry implies that the function values defined on a set and its complement
are equal. The definition is given as follows.

Definition 6. A set function f : 2N → R is called symmetric if

f(S) = f(N \ S).





3
Graph Node Selection Problem

In this chapter, we go over the problem of sampling the optimal subset on graphs to reconstruct the
whole graph signal because the set selection problem is highly relevant to our node partitioning problem.
This chapter is organized as this: We first specify the system model of the problem. After this, we give
the expression of the optimal interpolation operator for a given sampling subset. Then some ways of
scalarization of the error covariance matrix corresponding to the optimal interpolation are discussed.
Based on these scalarizations, we formulate the subset selection problem and present two essential
techniques to tackle this problem.

3.1. System Model
For the graph signal interpolation in the noisy case, we consider the model

y = x+w, (3.1)

where y, x,w ∈ RN , x is a K-bandlimited graph signal and [w]1, . . . , [w]N are independent identically
distributed N

(
0, σw

2
)
random variables treated as noise. Without loss of generality, we assume that

σw = 1, so the noise covariancematrixΛw = I. Denote the Laplacianmatrix of the graph corresponding
to the signal as L = UΛU⊤. We also assume that our graph signal is stationary [33][34][35], i.e.,
Λx̂ = Ex̂K x̂⊤K = diag {[λx̂]1, . . . [λx̂]K}, where Λx̂ ∈ RK×K , λx̂ ∈ RK and [Λx̂]i > 0, ∀i.

3.2. Optimal Interpolation Operator
We first derive for a given set S, the corresponding interpolation operator Ψ of signal x. As defined in
chapter 2, denote the sampling operator Φ ∈ {0, 1}|S|×N (the corresponding sampling set is obviously
S), so the sampled signal can be written as

yS = Φy, (3.2)

and thus the estimated signal x′ is given by

x′ = ΨyS = ΨΦy, (3.3)

for some Ψ ∈ RN×|S|. So the corresponding interpolation error covariance matrix K(x′) is thus

K(x′) = E(x− x′)(x− x′)⊤ = E(x−ΨΦy)(x−ΨΦy)⊤. (3.4)

So the objective becomes finding the optimal interpolation operator Ψ∗ such that K(x′) is minimized,
i.e., E(x−Ψ∗Φy)(x−Ψ∗Φy)⊤ ⪯ E(x−ΨΦy)(x−ΨΦy)⊤ for allΨ, where ⪯ denotes smaller or equal
to in the matrix inequality. This is a PSD matrix minimization problem that searches for the optimal Ψ∗

that minimizes the error covariance matrix K(x′). In general, minimizing a PSD cone needs not to have
a solution since the ordering of PSD matrices is partial; hence the optimal solution smaller than any
other matrix does not necessarily exist [36]. However, [24] shows this is not the case here by finding

15
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the dominant solution Ψ∗. This can be obtained by simultaneously minimizing the scalar cost function
below for all b [37], [38].

J(Ψ) = b⊤K(x′)b. (3.5)
Comebine (3.3), (3.4), (3.5), we obtain

J(Ψ) =b⊤E(x− x′)(x− x′)⊤b

=b⊤E (UK x̂K −ΨyS) (UK x̂K −ΨyS)⊤ b

=b⊤
[
UKΛx̂U⊤

K −ΨΦUKΛx̂U⊤
K − UKΛx̂U⊤

KΦ⊤Ψ⊤ +ΨΦ
(
UKΛx̂U⊤

K + I
)
Φ⊤Ψ⊤

]
b.

(3.6)

Set ∂J(Ψ)
∂b⊤Ψ

= 0, we have

Φ
(
UKΛx̂U⊤

K +Λw

)
Φ⊤Ψ⊤b = ΦUKΛx̂U⊤

Kb, (3.7)
which must hold for all b. Thus, the optimal interpolation operator Ψ∗ satisfies

Ψ∗Φ
(
UKΛx̂U⊤

K +Λw

)
Φ⊤ = UKΛx̂U⊤

KΦ⊤. (3.8)
Therefore,

Ψ∗ = UK

(
U⊤

KΦ⊤ΦΛ−1
w Φ⊤ΦUK +Λ−1

x̂

)−1

U⊤
k Φ

⊤. (3.9)

Then plug Ψ∗ into (3.4) and use matrix inversion lemma [19] we have

K (x′∗) = UK

(
Λ−1
x̂ + U⊤

KΦ⊤ΦΛ−1
w Φ⊤ΦUK

)−1

U⊤
K . (3.10)

Indeed, now the interpolation error covariance matrix can be expressed in terms of the sampling oper-
ator Φ solely. In other words, the error covariance matrix only depends on the sampling set chosen in
our setting since the interpolation operator is fixed for a given subset.

3.3. Scalarizations
This section introduces some scalarizations that allow us to evaluate the error covariance matrix ob-
tained above. Denote K (x′∗) as K∗ for simplicity. To qualify how good the subset S that is selected,
several scalarizations could be used [36], and we are interested in minimizing these scalarizations.

A-optimal design A-optimal design can also be referred to as mean square error (MSE):

tr{K∗}. (3.11)

D-optimal design D-optimal design is the most widely used scalarization, which can be interpreted
as the log volume of the confidence ellipsoid [36]. It is defined as

log det{K∗}. (3.12)

E-optimal design E-optimal can also be called the worst-case error variance [39], which refers to the
norm of the error covariance matrix, i.e., the maximum eigenvalue of K∗.

λmax{K∗}. (3.13)

If we look at the D-optimal design, the rank-deficiency issue exists for K∗ is always singular regard-
less of which subset is selected. Because of this, the determinant of the error covariance matrix of x′
is always zero.

To deal with the rank-deficiency issue, we show in Proposition 1 that for a given observed subset,
reconstructing x̂K using the optimal interpolation operator, and then interpolating x as x′ = UK x̂′∗K is
equivalent to interpolating x directly using Ψ∗, where x̂′∗K denotes the optimal estimator of x̂K . By the
proposition, finding the optimal subset for reconstructing x is equivalent to finding the optimal subset
for reconstructing x̂K , and because the error covariance matrix for x̂′K is always full rank, we can thus
overcome the rank-deficiency problem by working on the error covariance matrix for x̂′K instead of x′.
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Proposition 1. LetΨ0 denote the optimal interpolation operator (applied on yS ) for reconstructing x̂K ,
Ψ∗ denote the optimal interpolation operator for reconstructing x as defined in (3.8), then Ψ∗ = UKΨ0.

Proof. Again, consider the model defined in (3.1) y = x + w = UK x̂K + w, which can also be written
as

[y]i = ˜̃u⊤
i x̂K + [w]i, i = 1, . . . , N, (3.14)

where UK = [ũ1 · · · ũN ]
⊤, and the w is Gaussian white noise. Thus, the optimal estimator of x̂K is

given by [40]

x̂′∗K =

(∑
i∈S

ũiũ⊤
i +Λ−1

x̂

)−1∑
i∈S

[y]iũi, (3.15)

or equivalently,
x̂′∗K =

(
U⊤

KΦ⊤ΦΛ−1
w Φ⊤ΦUK +Λ−1

x̂

)−1

U⊤
k Φ

⊤Φy. (3.16)

Hence, the corresponding interpolation operator Ψ0 for reconstructing x̂K is given by

Ψ0 =
(
U⊤

KΦ⊤ΦΛ−1
w Φ⊤ΦUK +Λ−1

x̂

)−1

U⊤
k Φ

⊤. (3.17)

Combine (3.9) and (3.17), we obtain Ψ∗ = UKΨ0, which completes the proof.

According to (3.15), the error covariance matrix of x̂′∗K is then given by

E(x̂′∗K − x̂K)(x̂′∗K − x̂K)⊤ =

(∑
i∈S

ũiũ⊤
i +Λ−1

x̂

)−1

, (3.18)

which is full rank for all S. Thus in the remainder of this report, it is more convenient to scalarize the error
covariance matrix of x̂′K because the corresponding D-optimal design is well-defined then (A-optimal
and E-optimal are well-defined as well obviously).

3.4. Problem formulation for set selection on graphs
In the previous section, we show three optimal designs which can be used to evaluate the optimal inter-
polatorΨ∗ that minimizes the estimation error covariance matrix for a given sampling subset. However,
it is not guaranteed that there is no other sampling subset of the same size for which the interpolation
quality is better. To handle this problem, we investigate the set selection problem to find the optimal
subset for a given size. Formally, we formulate the sampling set selection problem in the following
manner.

minimize g(S)
subject to |S| = k.

(3.19)

We can vary function g according to the type of optimal design. Based on A-optimal design: g(S) =

tr{
(∑

i∈S ũiũ⊤
i +Λ−1

x̂
)−1}. Based onD-optimal design: g(S) = log det{

(∑
i∈S ũiũ⊤

i +Λ−1
x̂
)−1}. Based

on E-optimal design: g(S) = λmax{
(∑

i∈S ũiũ⊤
i +Λ−1

x̂
)−1}.

3.5. Algorithms
(3.20) is a combinatorial problem where obtaining the exact solution is NP-hard. In this section, we
review the two most commonly used methods, the greedy and the convex approaches, to find an
approximate solution for this problem. We take D-optimal design as an example for simplicity, but
extending these approaches to A-optimal and E-optimal is easy.
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3.5.1. Greedy Algorithm
For D-optimal design, we can rewrite the problem as

maximize f(S) = log det{Λ−1
x̂ +

∑
i∈S ũiũ⊤

i } − log det{Λ−1
x̂ }

subject to |S| = k,
(3.20)

where log det{Λ−1
x̂ } is a normalization constant such that f(∅) = 0.

The greedy set selection algorithm is presented in Algorithm 3, a straightforward application of
Algorithm 2. In [41], the authors show that f(S) is a submodular monotone function, and we present
their result in the following lemma. Therefore, by Theorem 2, a 1 − 1

e performance lower bound is
guaranteed by applying Algorithm 3.

Algorithm 3 Greedy algorithm for sensor selection
Input: k, S1 = ∅
Output: Sk
1: for i← 1 to k do
2: s∗ ← argmaxs/∈Si

log det{Λ−1
x̂ +

∑
j∈Si

ũjũ⊤
j + ũsũ⊤

s }
3: Si ← Si ∪ {s∗}
4: end for

Lemma 1. f(S) = log det{Λ−1
x̂ +

∑
i∈S ũiũ⊤

i } is a monotone submodular function.

Proof. See [41].

3.5.2. Convex Optimization
The second approach is based on thresholding the solution of the convex relaxation of the original prob-
lem. Though no performance guarantee is yet found for this approach, numerical results in [25] show
that the gap between the approximated and optimal solutions is small. To formulate the corresponding
convex relaxation more efficiently, we first rewrite the original problem as

maximize log det{
∑N

i=1 ziũiũ⊤
i +Λ−1

x̂ } − log det{Λ−1
x̂ }

subject to zi ∈ {0, 1},
∑m

i=1 zi = k.
(3.21)

The relaxed convex problem is thus given by

maximize log det{
∑N

i=1 ziũiũ⊤
i +Λ−1

x̂ } − log det{Λ−1
x̂ }

subject to 0 ≤ zi ≤ 1, i = 1, 2, . . . , N∑m
i=1 zi = k,

(3.22)

which can be solved by interior point method efficiently [25], [36]. Once we obtain the solution of (3.22)
(which is fractional in general), we threshold on the fractional solution to get the binary solution back.





4
Problem Formulation and Related

Work

In this chapter, based on the node selection problem, we first formulate the node partitioning problem.
Then we review some other problem formulations for the node partitioning problem and show some
existing algorithms that aim to solve these problems. We will discuss these algorithms in depth and
explain why they are inferior. After this, we compare our problem formulation with the problem for-
mulations in these literature and provide reasons why ours is more appropriate because near-optimal
solutions can be found due to the structure of our cost function.

4.1. Problem Formulation
In this section, we formally formulate the node partitioning problem. Our cost function is given by

maximize f (S1) + · · ·+ f (SP )
subject to S1 ∪ · · · ∪ SP = N

Si ∩ Sj = ∅, ∀i, j,
(4.1)

where f(Sp) = log det{Λ−1
x̂ +

∑
i∈Sp

ũiũ⊤
i } − log det{Λ−1

x̂ }, p = 1, · · · , P , N is the ground set of the
node, and log det{Λ−1

x̂ } is a normalized constant that guarantees that each part of the summation is
always non-negative. In [42], the term representative sampling subsets refers to these disjoint subsets
indicating that they are representatives for reconstructing the entire graph signal.

4.2. Related Work
As discussed in Chapter 3, for the graph node sampling problem, two typical approximated approaches
are widely used. The first is the greedy approach, where we select sensors sequentially and always
pursue the locally optimal one. The overall performance can be nicely guaranteed with a factor (1 −
1
e ) when D-optimal is used. Several literature are relating to this topic [43], [24], [41]. The second
heuristic is based on convex optimization, where binary constraints are relaxed to be convex, then
threshold the convex solution to give back the binary solution [25]. In this work, instead of finding
one subset, we aim to find a partition of the graph such that each disjoint subset is sufficiently good
for interpolation. Likewise, existing literature also attempts to tackle the problem following these two
types of heuristics: [44], [42] proposed greedy algorithms to solve the partitioning problem while [39]
used a convex optimization based method. We next show several partition algorithms proposed in
the above literature and have some comments about why they are not good enough, especially the
convex approach, which does not work. We remark here that though many of the algorithms use A-
optimal(MSE) design as the performance measure, they can be easily extended to D-optimal design by
replacing the tr{·} with log det{·}, which has no impact on the algorithm implementation. Hence these
algorithms can be adapted to compare our proposed algorithms, as we will show later.

20
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4.2.1. Problem Formulation Based on Optimizing the Worst Subset
In [39] and [42], the node partitioning problem is formulated as this

minimize t

subject to tr{(
∑
i∈Sp

ũiũ⊤
i +Λ−1

x̂ )−1} ≤ t ∀p = 1, . . . , P, (4.2)

i.e., minimizing the reconstruction MSE corresponding to the worst subset.
To the best of our knowledge, for problem (4.2), [39] relax the binary constraint of the original prob-

lem and try to obtain a sparse solution via iterative reweighted l1 technique; [42] propose a greedy
heuristic. We next discuss these two approaches in detail.

Iterative Reweighted l1 algorithm
We start with the convex-based approach, which does not work, as we will show later. For convenience,
let us define a partitioning matrix Z

Z =
[
z1 z2 . . . zP

]
∈ {0, 1}N×P , (4.3)

where entries in each column specify which nodes are sampled in each group. P columns implies that
we have P partitions in total. Since each node must be activated exactly once, Z is a binary matrix
with a single ”one” entry in each row, and the other entries are all zeros. Obviously,

∑
i∈Sp

ũiũ⊤
i =

U⊤
K diag{zp}UK , ∀p ∈ {1, · · · , P}, so we obtain the equivalent optimization problem as (4.2)

minimize
y,Z∈{0,1}N×P

y

subject to
P∑

p=1

zp = 1

tr
{(
U⊤

K diag {zp}UK +Λ−1
x̂
)−1
}
⩽ y, ∀p = 1, . . . , P.

(4.4)

The first constraint in (4.4) guarantees that each node is selected precisely once. The second constraint
introduces a slack variable, y, that helps to optimize the cost function. This problem is an NP-hard
mixed-integer semidefinite optimization problem and is hard to solve.

To make the problem convex, we relax the binary constraint.

minimize
y,Z∈[0,1]N×P

y

subject to
P∑

p=1

zp = 1

tr
{(
U⊤

K diag {zp}UK +Λ−1
x̂
)−1
}
⩽ y, ∀p = 1, . . . , P.

(4.5)

The solution of (4.5) is given by y∗ = tr{( 1
P I+Λ−1

x )−1}, and [Z∗]i,j =
1
P , ∀i, j = 1, · · · , N . Because all

the entries are the same, techniques such as thresholding fail to work here.
In [39], the authors add a weighted l1 penalty term the promote sparse solutions

minimize
y,Z∈[0,1]N×P

y + λ

P∑
p=1

w⊤
p zp

subject to
P∑

p=1

zp = 1

tr
{(
U⊤

K diag {zp}UK +Λ−1
x̂
)−1
}
⩽ y, ∀p = 1, . . . , P,

(4.6)

and to further promote sparsity hopefully, a reweighted l1 minimization method presented in [45] is used.
Here we briefly illustrate the idea behind this sparsity-enhancing algorithm.
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Consider an l0 minimization problem

min
x∈Rn

∥x∥0 subject to y = Φx, (4.7)

which is non-convex and extremely hard to solve. A common heuristic for such a problem is to replace
the l0 norm with an l1 norm so the problem becomes

min
x∈Rn

∥x∥1 subject to y = Φx, (4.8)

which also promotes sparsity of x [46]. However, these two problems are not equivalent in general.
A key difference is a dependence on magnitude [45]: larger entries are penalized more heavily than
smaller entries in the l1 norm. In contrast, in the l0 norm, all nonzero entries are penalized equally. The
solution of this issue could be solved by the following weighted l1 norm minimization problem

min
x∈Rn

∑
i=1

wi |xi| subject to y = Φx, (4.9)

if the weights are set properly. It is for sure that if we set the weights to be inversely proportional to the
corresponding entries of x, then the solution should exactly be the same as that of l0. But without any
knowledge of x, it is impossible to define such weights. The authors in [45] thus propose an iterative
algorithm that alternates between estimating x and redefining the weights. The algorithm is given by

Algorithm 4 Iterative reweighted l1 approach
Input: y, Φ, maximum number of iterations lmax, stability parameter ϵ
Output: x
1: Set l = 0 and w

(0)
i = 1, i = 1, . . . , n

2: while l < lmax or x has not been converged do
3: Solve the minimization problem

x(ℓ) = argmin
∥∥∥W(ℓ)x

∥∥∥
1

subject to y = Φx,

whereW(ℓ) = diag(w(ℓ)).
4: Update the weights

w
(ℓ+1)
i =

1∣∣∣x(ℓ)
i

∣∣∣+ ϵ

5: end while

To apply algorithm 4 to solve the node partitioning problem, the procedure is similar, we first initialize
the weighted matrix W = [w1, · · · ,wP ] given in (4.6) with some preset weights, then solve the convex
optimization problem (4.6). Once the solution is obtained, update the weights in the style shown in al-
gorithm 4 and solve the optimization problem again. We then repeat this procedure until some stopping
criterion is satisfied. This scheme is shown in algorithm 5.

In [39], they initialize the weights matrixW with all-one entries. However, this initialization will never
promote the sparsity of the solution. To bemore general, any all-constant initialization does not promote
sparsity, and here is the reason. Without loss of generality, we now assume that [W]i,j = 1, ∀i, j.
According to the first constraint of the problem (4.6),

P∑
p=1

zp = 1, (4.10)

which implies that every node is active only once. However, there is an implicit constraint∑
∀i,j

[Z]ij = N, (4.11)
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Algorithm 5 Iterative reweighted l1 approach based node partitioning
Input: total number of nodes m, number of partitions P , regularization parameter λ > 0, UK , ϵ, β
Output: indicator matrix Z ∈ {0, 1}N×P

1: Initialize the weights ofW with some values and denote asW(0)

2: Solve (4.6) with the weight matrixW(0), denote the solution as Z(0).
3: Updating the weights ofW(0) in the style of algorithm 4 and denote the updated one asW(1)

4: Solve (4.6) with the weight matrixW(1), denote the solution as Z(1).
5: let l = 1
6: while Z(l) − Z(l−1) ⩾ β do
7: Updating the weights ofW(l) in the style of algorithm 4 and denote the updated one asW(l+1)

8: Solve (4.6) with the weight matrixW(l+1), denote the solution as Z(l+1)

9: l← l + 1
10: end while
11: Threholding to make Z matrix binary.

which can be directly derived from (4.10). It is obvious that (4.11) is equivalent to

P∑
p=1

1⊤zp = N, (4.12)

which implies that if the weights are set to be constant, the l1 penalty term of (4.6) will always be
a constant as well, hence it is redundant and fail to promote sparsity (as we know from the previous
result, the solution is given by [Z∗]i,j =

1
P , ∀i, j = 1, · · · , N . On the other hand, if a non-constant valued

weighted matrixW is used as the initialization, Algorithm 5 can end up with a sparse solution. However,
doing so means that for each subset, we have some preference for each node. If the weights are badly
set, then the solution is probably bad as well; If the weights are properly set, then we must be cheating
since nobody knows whether an initialization of W matrix is good or bad without knowing the optimal
solution of the original problem (4.4). Hence, this approach is not a good choice for (4.2).

Simultaneous Iterative Partitioning
In Simultaneous Iterative Partitioning (SIP), the idea is to generate subsets such that the MSE of each
subset is balanced. Given the number of subsets P , at each iteration, SIP creates the representative
sampling subsets simultaneously. It works as this, let (1, 2, · · · , N) denote the set of nodeN as defined;
at the first step, we assort the nodes based on

MSE (s) = tr
{(

Λ−1
x̂ + ũsũ⊤

s

)−1
}
, ∀s ∈ {1, · · · , N}. (4.13)

The P nodes with the smallest MSE are first assigned the P representative sampling subsets, one for
each. Then at each iteration, for the subset with the largest MSE, say Sj , we add the best node m to
this set based on

v∗ = arg min MSE (Sj ∪ s) , ∀s ∈ {1, · · · , N}, (4.14)

and repeat the process until every node is assigned to one subset. The algorithm is shown below.
Now we discuss the problems of this algorithm. Combined with the results we got in the previous

section, this algorithm makes sense to some extent, as it promotes the function values f(Sp), ∀p to
be close. However, the solution obtained by this algorithm does not always perform well. Here is a
toy example to explain this. Assume that the signal is homoscedastic, i.e.,Λx̂ = σxI, the number of
subsets P is set to 2, and the bandwidth K = 2. Hence,

∑
i∈N ũiũ⊤

i = I ∈ R2×2. Under this setting,
assume we have two different partitions; the first is {X1,X2}, and the other is {Y1,Y2}, and indeed,

X2 = N \ X1, Y2 = N \ Y1. For the first partition, we have
∑

i∈X1
ũiũ⊤

i =
∑

i∈X2
ũiũ⊤

i =

[
1
2 0
0 1

2

]
;

for the second partition,
∑

i∈Y1
ũiũ⊤

i =

[
0.9 0
0 0.1

]
,
∑

i∈Y2
ũiũ⊤

i =

[
0.1 0
0 0.9

]
. Obviously, in both

cases, the cost function values for each subset are equal, i.e., f(X1) = f(X2) and f(Y1) = f(Y2).
However, it is for sure that f(X1) + f(X2) ⩾ f(Y1) + f(Y2) from the aforementioned results. However,
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Algorithm 6 Simultaneous Iterative Partitioning (SIP)
Input: P,Λw,Λx̂,U,UK

Output: {S1, · · · ,SP } the complete Partition
1: list of available nodes Lindex = {1, · · · , N}
2: generate L, where L(s) = MSE(s), ∀s ∈ Lindex

3: for i← 1 to P do
4: m = arg min(L)
5: Si ← ∅ ∪m
6: remove m from the list Lindex

7: end for
8: while Lindex ̸= ∅ do
9: j = arg maxMSE(Sj)
10: m = arg minMSE(Sj ∪ s), ∀s ∈ Lindex

11: Sj ← Sj ∪m
12: remove m from the list Lindex

13: end while

by SIP algorithm, we cannot make sure which types of solution it would return as it only focuses on
the cost value while does not consider how

∑
i∈S ũiũ⊤

i behaves for a subset S. Besides, SIP has no
performance guarantee.

4.2.2. Problem Formulation Based on Maximizing the number of qualified sub-
sets

In [44], the node partitioning problem is formulated as

maximizeP

subject to tr{(
∑
i∈Sp

ũiũ⊤
i +Λ−1

x̂ )−1} ≤ ϵ ∀p = 1, . . . , P, (4.15)

that is, given an MSE bound that every subset has to satisfy, we maximize the number of subsets.

Joint Iterative Partitioning
The algorithm proposed in [44] is called Joint Iterative Partitioning Algorithm provided in [44]. The idea
behind this approach is that we select nodes for a subset greedily until its MSE satisfies the bound we
set, then we move on to the next subset and repeat this procedure until every node is assigned. If MSE
corresponding to the nodes for the last subset is larger than ϵ, we split these nodes into the previous
groups. The pseudo-code is shown in Algorithm 7. The notations are defined as follows: ũi denotes
the transpose of the ith row of UK , Sp,j denotes the node set of the pth subset in the jth iteration, and
pop(L−index−1) denotes the operation that removes the last item in the list L and outputs that item. As
defined, MSE represents the function where the input is a set, and the output is the interpolation mean
square error corresponding to the input set.

Though this algorithm can give us a partition of the nodes, problems exist. Although this algorithm is
called Joint Iterative Partitioning, it partitions the nodes sequentially, as the best nodes are first selected
for the first subset. The best remaining nodes are selected for the second subset, and so on. Each
subset’s size in this pattern will become more extensive since the remaining nodes are not as good as
the selected one. Therefore, one phenomenon that is very likely to occur is that many ”bad” nodes are
left for the last subset. They cannot satisfy the preset MSE bound, so we have to split them into the
previous subset, which results in a tremendous waste of nodes. In addition, JIP has no performance
guarantee.

4.3. Benefits of Our Problem Formulation
Here we highlight some advantages of formulating the problem as (4.1) compared to the above two
problem formulations.

• We choose D-optimal as a subset’s performance measure because it is submodular in that set.
Hence properties of submodular functions can be leveraged in algorithm design.
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Algorithm 7 Joint Iterative Partitioning (JIP)
Input: Λw,Λx̂,U,UK , ϵ
Output: {S1, · · · ,SP } the complete Partition
1: K0 = Λx̂, p = 1, j = 1
2: L, where L(s) = MSE (s), ∀s = 1, . . . , N
3: Lindex = argsort(L) (smallest first)
4: while Lindex ̸= ∅ do
5: v = pop(Lindex(1))
6: Sp,j = v
7: while MSE (Sp,j) > ϵ and Lindex ̸= ∅ do
8: for i in Lindex do
9: if MSE (Sp,j ∪ vi) < ϵ then
10: Sp,j+1 = {Sp,j ∪ i}
11: j = 0, p = p+ 1, delete (L− index = i)
12: goto 4
13: end if
14: end for
15: Sp,j+1 = {Sp,j ∪ argmin(MSE(i ∪ Sp,j))} , ∀i ∈ Lindex

16: remove chosen node from Lindex, j = j + 1
17: end while
18: end while
19: if MSE (Sp,j ∪ vi) > ϵ then
20: Split the remaining nodes among the other sets uniformly
21: end if

• Instead of optimizing the worst subset as (4.2), we optimize the summation of the cost function for
each subset. Using this cost function simplifies the constraint since a slack variable is no longer
needed.

• We fix P instead of fix a bound as shown in (4.15). This is because for problem (4.15), the
optimal solution may not be unique. For example, for some certain bound, the maximum number
of subsets P = 5, there might be multiple partitions with size five that satisfy the criterion, and
all of them are the optimal solutions. However, if we fix P and maximize the cost function, the
solution is unique in general.





5
Partitioning Algorithms

In Chapter 4, we formulate the partitioning problem as maximizing the sum of several normalized sub-
modular monotone functions. Such formulation turns the partitioning problem into a combinatorial auc-
tions, or Submodular Welfare (SW) problem where we have N items and P players with some utility
functions, and the utility functions are assumed to be monotone and submodular. The goal is to find an
allocation of disjoint sets of items to maximize the sum of utility functions for all players [47], [48], [49],
[50]. In our case, the problem (4.1) is a particular SW problem where the ”items” are the nodes, the
”players” are the representative subsets, and the utility functions f are the same for all subsets. Hence,
we can extend algorithms for SW problems to our partitioning problem. In addition, we propose a new
greedy algorithm for approximating the problem (4.1).

Note that in the following of the report, we assume that f(S) = log det{Λ−1
x̂ +

∑
i∈S ũiũ⊤

i } −
log det{Λ−1

x̂ } by default. We call f(S) the utility function for subset S to avoid confusion with the
cost function, which is the sum of all the utility functions.

5.1. Deterministic greedy approaches
We introduce three deterministic greedy algorithms to tackle the partitioning problem (4.1). Algorithm
8 aims to tackle the problem from the perspective of maximizing a submodular function in the special
case where P = 2. It yields a 1

2 approximation ratio. Algorithm 9 is an extension of Algorithm 8 where
the bi-partitioning procedure is recursively implemented to achieve multi-way partitioning. Though no
performance guarantee can be found, numerical results show that this algorithm works well. Algorithm
10 aims to find the disjoint subsets jointly, which gives an approximation ratio of 1

2 for any P .

5.1.1. Two-Sided greedy algorithm
We first consider the particular case when P = 2. In this case, the problem becomes

maximize log det{Λ−1
x̂ +

∑
i∈S

ũiũ⊤
i }− log det{Λ

−1
x̂ }+ log det{Λ−1

x̂ +
∑
i/∈S

ũiũ⊤
i }− log det{Λ

−1
x̂ }. (5.1)

We denote the above cost function asF (S) = f(S)+f(N\S), where f(S) = log det{Λ−1
x̂ +

∑
i∈S ũiũ⊤

i }−
log det{Λ−1

x̂ }. To solve this problem, we first propose the following theorem.

Theorem 3. For any submodular function f , the function defined by g(S) = f(N \ S) is submodular.

Proof. Assume that A ⊆ B ⊆ N , k /∈ B and k ∈ N , denote the set N \ (A ∪ {k}) as C, denote N \ A
as C ∪ {k}. Analogously, denote N \ (B ∪ {k}) as D, and N \ B as D ∪ {k}. Obviously, D ⊆ C. Then
by the definition of submodularity, we have

f(C)− f(C ∪ {k}) ⩾ f(D)− f(D ∪ {k}),

rearrange the terms we obtain

f(D ∪ {k})− f(D) ⩾ f(C ∪ {k})− f(C),

27
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or equivalently,
f(N \ (A ∪ {k}))− f(N \ A) ⩾ f(N \ (B ∪ {k}))− f(N \ B),

replace f by g where g(S) = f(N \ S), we have

g(A ∪ {k})− g(A) ⩾ g(B ∪ {k})− g(B),

which is exactly the definition of a submodular function; hence the proof is finished.

Theorem 4. Let f(S) be a submodular function, and let N denote the ground set. Then function
F (S) = f(S) + f(N \ S) is symmetric submodular.

Proof. To see F (S) is symmetric, we just have to show that F (S) = F (N \ S). Indeed, F (N \ S) =
f(N \ S) + f(N \ (N \ S)) = f(N \ S) + f(S) = F (S), which complemetes the first half of the proof.

Now we show F (S) is submodular. Since f(S) is submodular,

f(A ∪ {k})− f(A) ⩾ f(B ∪ {k})− f(B), (5.2)

and according to theorem 4,

g(A ∪ {k})− g(A) ⩾ g(B ∪ {k})− g(B), (5.3)

where g(S) = f(N \ S). Take the sum of (5.2) and (5.3), we have

F (A ∪ {k})− F (A) ⩾ F (B ∪ {k})− F (B), (5.4)

which implies that F (S) is submodular.

Therefore, the problem (5.1) is an unconstrained submodular maximization problem, which can be
approximated by a deterministic linear time 1/2-approximation algorithm efficiently [51], [52].

Algorithm 8 Two-Sided greedy algorithm for graph bi-partitioning
Input: ground set N , X0 = ∅,Y0 = N
Output: partition {S1,S2}
1: for i← 1 to N do
2: ai ← F (Xi−1 ∪ vi)− F (Xi−1)
3: bi ← F (Yi−1 \ vi)− F (Yi−1)
4: if ai ⩾ bi then
5: Xi ← Xi−1 ∪ vi
6: Yi ← Yi−1

7: else
8: Xi ← Xi−1

9: Yi ← Yi−1 \ vi
10: end if
11: end for
12: S1 ← XN

13: S2 ← N \ XN

Theorem 5. Let S∗ and XN denote the optimal solution of the problem (5.1) and the solution obtained
by Algorithm 8, respectively. Then F (XN )/F (S∗) ⩾ 1

2 , where F (S) = log det{Λ−1
x̂ +

∑
i∈S ũiũ⊤

i } −
log det{Λ−1

x̂ }+ log det{Λ−1
x̂ +

∑
i/∈S ũiũ⊤

i } − log det{Λ−1
x̂ }.

Proof. See [52].
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Algorithm 9 Recursive Two-Sided greedy algorithm for graph multiway partitioning
Input: number of subsets P , ground set N , , X0 = ∅,Y0 = N
Output: partition {S1, · · · SP }
1: for i ∈ 1 to N do
2: ai ← F (Xi−1 ∪ vi)− F (Xi−1)
3: bi ← F (Yi−1 \ vi)− F (Yi−1)
4: if ai ⩾ bi then
5: Xi ← Xi−1 ∪ vi
6: Yi ← Yi−1

7: else
8: Xi ← Xi−1

9: Yi ← Yi−1 \ vi
10: end if
11: end for
12: S1 ← XN

13: S2 ← N \ XN

14: q = 2, indicating the current number of subsets
15: while q ⩽ P do
16: St = arg max f(Sj), j = 1, · · · , q
17: run Two-Sided greedy on St, and let Xt denote the output
18: St ← Xt

19: Sq+1 ← N \ Xt

20: q ← q + 1
21: end while

5.1.2. Recursive Two-Sided greedy algorithm
For larger P , We propose a recursive partitioning algorithm based on the two-sided greedy algorithm
shown above. Although there is no performance guarantee, numerical results in the following chapter
show that this algorithm works fine, especially when P equals the powers of 2. The idea of the algorithm
is this: we start by applying algorithm 8 to solve the problem (5.1), which results in 2 disjoint subsets
S1 and S2 where S1 ∪S2 = N . Then we view S1 and S2 as the two new ground sets and solve the (5.1)
problem using algorithm 8, then for each subset, we can further bi-partition it into two disjoint subsets.
We can keep partitioning until the number of subsets satisfies the requirement.

Note that although this algorithm can be applied to obtain a solution with any P value, it works
best when P = 2t, ∀t ∈ Z+, since in this case, the nodes for each subset are allocated in a relatively
balanced way.

5.1.3. A 1
2
-approximation greedy algorithm

In [50], Lehmann et al. give an 1
2 -approximation using a simple greedy algorithm, where performance

guarantee holds for any P . The idea is as follows: Initialize all subsets with empty. For each node, we
always add it to the subset which benefits the most from adding it to the current set, i.e., the one with
the maximal marginal gain. This algorithm is shown in 10.

Algorithm 10 Greedy Joint Partitioning
Input: ground set N
Output: partition {B1, · · · ,BP }
1: Bi ← ∅, i = 1, · · · , P
2: for i ∈ N do
3: j ← arg max

p
f(Bp ∪ {i})− f(Bp), ∀p = 1, · · · , P

4: Sj ← Sj ∪ {i}
5: end for

Theorem 6. Let opt denote the cost value corresponding to the optimal solution of the problem (4.1),
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{B1, · · · ,BP } denote the partition obtained by Algorithm 10, then∑P
i=1(log det{Λ

−1
x̂ +

∑
j∈Di

ũjũ⊤
j } − log det{Λ−1

x̂ })
opt

⩾ 1

2
. (5.5)

Proof. See [50].

5.2. Randomized rounding approaches
In the node selection problem, besides the greedy algorithm, we can also obtain a discrete approxima-
tion by thresholding the solution of the convex relaxation of the original problem. So it is natural to think
of the partitioning problem similarly. The convex relaxation of the problem (4.1) is given by

maximize
y,Z∈[0,1]N×P

P∑
p=1

(log det
{(
U⊤

K diag {zp}UK +Λ−1
x

)}
− log det{Λ−1

x })

subject to
P∑

p=1

zp = 1,
(5.6)

The solution is given by [Z∗]i,j = 1
P , ∀i, j = 1, · · · , N , where Z ∈ RN×K is the partition indicator

matrix as we defined in Chapter 4. Remark: Although the convex optimization problem shown in
(5.6) is different from the one in Chapter 4 ((4.5)), the optimal solutions for both problems are the
same. As discussed in Chapter 4, getting a binary solution from this balanced solution is impossible;
something useful still exists. The first is that we get an upper bound for the original problem (4.1), which
is presented in proposition 2.

Proposition 2. Let opt denote the optimal value of the problem (4.1), then opt ⩽ P log det{Λ−1
x̂ + 1

P I}.

Proof. The proof is trial since the solution of the original set problem must be within the feasible set of
the relaxed convex problem, so optmust be less or equal to the optimal value of the convex problem.

The second is that the cost function is maximized when the nodes are distributed to each repre-
sentative subset in a balanced way. By the term balance, we mean not only the cost values for all
subsets, which are f(Sp) = log det{Λ−1

x̂ +
∑

i∈Sp
ũiũ⊤

i } − log det{Λ−1
x̂ }, p = 1, · · · , P , are close, but

the Frobenius norm ∥
∑

i∈Sm
ũiũ⊤

i −
∑

i∈Sn
ũiũ⊤

i ∥F , ∀m,n ∈ {1, · · · , P},m ̸= n is small as well. Now
the question is, how do we promote the balance while keeping the solution binary? A reasonable way
is to treat the rows of Z matrix as a probability distribution for each node because all the rows of Z
sum up to one, and then use some randomized rounding techniques to make the solution balanced in
expectation.

With the above analysis, the randomized strategy is this: for each node j, we allocate it to each
subset with equal probability 1

P . However, there are many ways to achieve this; which is a good ran-
domized rounding strategy? [53] shows that if only value queries are available, then approximating
the Submodular Welfare problem within a ratio strictly better than 1 − 1

e is NP-hard. In this section,
we introduce some well-designed randomized algorithms that can approach this bound when N gets
larger and larger.

5.2.1. Simple randomized rounding
The first algorithm we propose is this: Assume that a special dice has P faces, and the probability of
landing facing up for each face is the same, i.e., 1

P . Embed each subset with each face of the dice,
and roll the dice for each node to decide which subset it is assigned to. Let Di denote the i-th (random)
subset obtained in this way. For all i = 1, · · · , P , the distributions of Di are identical because every
node can be assigned to every subset with equal probability 1

P , which promotes the balance in the
sense of taking expectation. This algorithm is presented in Algorithm 11. In parallel, [52] proves there
exists a 1−

(
1− 1

P

)P−1-approximation factor for Algorithm 11, as we show in Theorem 7.
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Algorithm 11 Simple randomized rounding Partitioning
Input: ground set N
Output: Partition {D1, · · · ,DP }
1: Di ← ∅, i = 1, · · · , P
2: for every node v ∈ N do
3: Randomly select an element i from the set {1, · · · , P} with identical probability 1

P
4: Di ← Di ∪ v
5: end for

Theorem 7. Let opt denote the cost function value corresponding to the optimal solution of the problem
(4.1), {D1, · · · ,DP } denote the partition obtained by Algorithm 11, then

E
[∑P

i=1(log det{Λ
−1
x̂ +

∑
j∈Di

ũjũ⊤
j } − log det{Λ−1

x̂ })
]

opt
⩾ 1−

(
1− 1

P

)P−1

(5.7)

Proof. See [52].

Observe theorem 7, when P goes to infinity, the performance bound goes to 1− 1
e .

5.2.2. Contention Resolution rounding
This chapter introduces a modified algorithm based on the fair contention resolution algorithm proposed
in [49], [54]. With a balanced solution, the algorithm runs as follows: each subset samples a random
subset independently, where each node is added with probability 1

P . Thus, we obtain P random subsets,
and with a high probability that disputed nodes exist in the sense that these nodes are added to more
than one subset. Then, we randomly assign these disputed nodes to one of the subsets with probability
1
P . In [49], it can be shown that this algorithm can achieve a 1−(1− 1

P )P approximation ratio. However,
this algorithm appears to have a considerable amount of slackness since many nodes may not be
added to any subset. Therefore, we add another stage to this algorithm: for nodes not allocated in
the first two rounds, each node is randomly added to one of the subsets with probability 1

P . Although
doing so does not improve the approximation ratio mentioned above, it gives better results than the
original algorithm (can never be worse) because f is monotone; adding any node to a subset can
never decrease its utility function value. The detailed algorithm is given in the following.

Algorithm 12 Contention Resolution rounding Partitioning
Input: ground set N
Output: Partition {F1, · · · ,FP }
1: Fi ← ∅, i = 1, · · · , P
2: Each subset Fi, ∀i = 1, · · · , P samples a random subset of N where each node appears indepen-
dently with probability 1

P .
3: C ←

⋃
Fi ∩ Fj , ∀i, j.

4: for i ∈ C do
5: Ri ← set of labels of subsets that request node i
6: randomly add i to one of the subset in Ri with probability 1

|Ri|
7: end for
8: for i ∈ N \

⋃
Fi, ∀i do

9: add node i randomly to Fi, ∀i with probability 1
P

10: end for

Theorem 8. Let opt denote the cost function value corresponding to the optimal solution of the problem
(4.1), {F1, · · · ,FP } denote the partition obtained by Algorithm 12, then

E
[∑P

i=1(log det{Λ
−1
x̂ +

∑
j∈Di

ũjũ⊤
j } − log det{Λ−1

x̂ })
]

opt
⩾ 1−

(
1− 1

P

)P

(5.8)
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Proof. The proof of the approximation ratio for the original 2-stage rounding algorithm can be found in
[49]. To see this also holds for our modified algorithm is trial. The only difference is the last rounding
stage, where nodes that are not allocated are added to each subset. Since the utility function for each
subset is monotone, the function value can never decrease when these nodes are added; hence the
performance of Algorithm 12 is at least as good as the 2-stage rounding algorithm.

Though the performance guarantee achieved by this rounding technique differs from the previous
one, the limit of the approximation ratio is 1

e as well when P goes to infinity.





6
Distributed Partitioning Framework

The algorithms we described in the last chapter have linear time complexity inN , which is quite efficient.
However, running such algorithms becomes impractical when N gets extremely large. To handle the
massive data, several distributed algorithms for submodular maximization have been proposed recently
[55], [56], [57], where a single representative subset is found. In this work, We propose a distributed
framework for the partitioning problem where disjoint representative subsets can be obtained by para-
lyzing some serial algorithms, including SIP, Recursive Two-Sided greedy, and randomized rounding
algorithms.

The MapReduce style computing model [58] has proven successful in many large-scale machine
learning and data mining algorithms [59], [60], [55]. The general idea of MapReduce that distributing
the data to independent processors, then all processors can process their allocated data in parallel.
Based on this idea, we propose a distributed graph partitioning framework. Likewise, we distribute all
nodes tom processors such that each node is assigned to one of the processors. Then each machine
partitions its allocated nodes using algorithms shown in the previous chapters, so we obtain m local
partitions. In the last step, we merge all location partitions obtained by the m processors to get the
global partition back. This process is illustrated in Fig. 6.1, and the details are shown in Algorithm 13.

Notations in the remaining of this chapter: denote by Sdp the p-th representative subset obtained by
the distributed algorithm, Vi the set of nodes allocated to the i-th machine, S(i)p the p-th local represen-
tative subset corresponding to the i-th machine. When we refer to function f , we always assume that
f(S) = log det{Λ−1

x̂ +
∑

i∈S ũiũ⊤
i } − log det{Λ−1

x̂ } as previous. Let opt(m) denote the optimal value
of the problem

maximize f (S1) + · · ·+ f (Sm)
subject to S1 ∪ · · · ∪ Sm = N

Si ∩ Sj = ∅, ∀i, j,
(6.1)

and indeed, opt(m) = opt as we defined in the last chapter when m=P.

Algorithm 13 Distributed node partitioning
Input: ground set N , number of processors m, number of subsets P
Output: partition {Sd1 , · · · SdP }
1: Phase 1: Distributed all nodes into m sets V1, · · · ,Vm, each corresponds to a machine
2: for i ∈ {1, · · · ,m} do in parallel
3: Phase 2: run some partitioning algorithms, output {S(i)1 , · · · S(i)P }
4: end for
5: Phase 3: Merge the partitions obtained by all the processors: Sdp ← S

(1)
p ∪ S(2)p ∪ · · · ∪ S(m)

p , ∀p =
1, · · · , P

34
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Figure 6.1: An illustration of the distributed partitioning framework with three processors and 15 nodes. The color of the node
indicates which subset they are assigned to.

6.1. Performance Analysis
In this section, we derive two lower bounds of Algorithm 13 when the nodes are distributed in the
manner of Algorithm 11 and Algorithm 12. We first introduce the following lemma.

Lemma 2. For any disjoint subsets S1,S2, · · · ,Sl,

f(S1 ∪ · · · ∪ Sl) ⩽ f(S1) + · · ·+ f(Sl), ∀l. (6.2)

Proof. Denote f (A | B) = f (A ∪ B)− f (B). Using submodularity,

f(A) + f(B) ⩾ f(A ∪ B) + f(A ∩ B). (6.3)

Since f is normalized, when A and B are disjoint, f(A ∩ B) = 0. Thus,

f(A | B) ⩽ f(A). (6.4)

Using telescoping sum, we have

f (S1 ∪ · · · ∪ Sl) = f (S1) + f (S2 | S1) + · · ·+ f (Sl | Sl−1 ∪ · · · ∪ S1) , (6.5)

combine (6.4) and (6.5), we see that Lemma 6 holds.

The following theorem and corollary are based on the result from theorem 7.

Theorem 9. If the nodes are distributed to the m processors V1, · · · ,Vm in the manner as Algorithm
11 in Phase 1, then for Algorithm 13, and regardless of how Phase 2 and 3 are implemented, for any
output {Sd1 , · · · ,SdP }, we always have

E

[
P∑

p=1

f(Sdp )

]
⩾
[
1−

(
1− 1

m

)m−1
]
· opt(m)

m
. (6.6)

Proof. By lemma 6, for any partition {S(i)1 , · · · ,S(i)P } of Vi, we have

f(S(i)1 ) + f(S(i)2 ) + · · ·+ f(S(i)P ) ⩾ f(S(i)1 ∪ S
(i)
2 ∪ · · · ∪ S

(i)
P )

= f(Vi), ∀i = 1, · · · ,m.
(6.7)
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Since f is monotone,

f(S(1)p ∪ S(2)p ∪ · · · ∪ S(m)
p ) ⩾ f(S(i)p ), ∀i = 1, · · · ,m, p = 1, · · · , P. (6.8)

Therefore,
P∑

p=1

f(Sdp ) =
P∑

p=1

f(S(1)p ∪ S(2)p ∪ · · · ∪ S(m)
p ) ⩾ f(S(i)1 ) + f(S(i)2 ) + · · ·+ f(S(i)P )

⩾ f(S(i)1 ∪ S
(i)
2 ∪ · · · ∪ S

(i)
P ) = f(Vi), ∀i = 1, · · · ,m.

(6.9)

Take expectation on both sides,

E[
P∑

p=1

f(Sdp )] ⩾ E[f(Vi)]. (6.10)

Because every node in Vi are independently assigned with probability 1
m , by Theorem 7, we have

E

[
P∑

p=1

f(Sdp )

]
⩾
[
1−

(
1− 1

m

)m−1
]
· opt(m)

m
. (6.11)

Corollary 10. If m ⩾ P and the nodes are distributed to the m processors V1, · · · ,Vm the manner as
Algorithm 11 in Phase 1, then for Algorithm 13, and regardless of how Phase 2 and 3 are implemented,
for any output {Sd1 , · · · ,SdP }, we always have

E

[
P∑

p=1

f(Sdp )

]
⩾
[
1−

(
1− 1

m

)m−1
]
· opt
m

. (6.12)

Proof. We have to prove that when m ⩾ P , opt(m) ⩾ opt. Without loss of generality, we assume
m = P + 1. Denote the optimal solution w.r.t. opt(m) by {V∗

1 , · · · ,V∗
m}, and the optimal solution w.r.t.

opt by {S∗1 , · · · ,S∗P }. For an arbitrary j = 1, · · · , P , we partition S∗j into Sj1 and Sj2. By lemma 6.2 we
have f(Sj1) + f(Sj2) ⩾ f(S∗j ) for any partition {Sj1,Sj2}. Therefore,

f(S∗1 ) + · · ·+ f(Sj1) + f(Sj2) + · · ·+ f(S∗P ) ⩾ f(S∗1 ) + · · ·+ f(S∗j ) + · · ·+ f(S∗P ) = opt. (6.13)

Since opt(m) is the optimal when the number of subsets is m, hence we have

opt(m) = f(V∗
1 ) + · · ·+ f(V∗

m) ⩾ f(S∗1 ) + · · ·+ f(Sj1) + f(Sj2) + · · ·+ f(S∗P ). (6.14)
Combining (6.13) and (6.14), we see the corollary holds.

Analogously, we have the following theorem and corollary, based on the result from theorem 8. Here
we omit the proofs since the same procedures are used.

Theorem 11. If the nodes are distributed to the m processors V1, · · · ,Vm in the manner as Algorithm
12 in Phase 1, then for Algorithm 13, and regardless of how Phase 2 and 3 are implemented, for any
output {Sd1 , · · · ,SdP }, we always have

E

[
P∑

p=1

f(Sdp )

]
⩾
[
1−

(
1− 1

m

)m]
· opt(m)

m
. (6.15)

Corollary 12. If m ⩾ P and the nodes are distributed to the m processors V1, · · · ,Vm the manner as
Algorithm 12 in Phase 1, then for Algorithm 13, and regardless of how Phase 2 and 3 are implemented,
for any output {Sd1 , · · · ,SdP }, we always have

E

[
P∑

p=1

f(Sdp )

]
⩾
[
1−

(
1− 1

m

)m]
· opt
m

. (6.16)
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The above performance bounds hold for any partitioning algorithm under certain conditions. How-
ever, for Algorithm 11, the centralized bound also holds in the distributed case regardless of the manner
of node assignment in step 1 of Algorithm 13. This is trivial because no matter how we allocate nodes
to processors, every node is added to each representative subset independently with equal probability
1
P . Thus the distribution of every representative subset obtained by the distributed version of Algorithm
11 remains precisely the same as the one obtained by the centralized one.

Theorem 13. If Algorithm 11 is used in Phase 3 of the distributed node partitioning framework, and let
{Dd

1 , · · · ,Dd
P } denote the output, regardless of how Phase 1 and Phase 2 are implemented, we always

have
E
[∑P

i=1(log det{Λ
−1
x̂ +

∑
j∈Dd

i
ũjũ⊤

j } − log det{Λ−1
x̂ })

]
opt

⩾ 1−
(
1− 1

P

)P−1

(6.17)





7
Results and Discussion

In this chapter, we run presented algorithms and compare their performance on synthetic and real-
world data. For synthetic data, four types of graphs are generated (random sensor network, Minnesota
road graph, graphs produced by stochastic block model, and Erdos-Renyi graphs). Though the original
SIP and JIP algorithm are based on A-optimal design, extending them to D-optimal design is trivial. In
the remainder of this chapter, SIP and JIP we used are based on D-optimal design. Moreover, we
normalize the cost function by the factor P (log det{Λ−1

x̂ + 1
P I} − log det{Λ−1

x̂ }) to force its range be
[0, 1], as by proposition 2, P (log det{Λ−1

x̂ + 1
P I}− log det{Λ

−1
x̂ }) is an upper bound of the problem 4.1.

7.1. Synthetic Dataset
7.1.1. Setup
For the remaining of this chapter, we have the following settings: the noise covariance matrix Λw = I,
andΛx̂ = Ex̂K x̂⊤K = σxI, where σx = 2. Different values are set in different scenarios for the bandwidth
K, the number of nodes N , and the number of subsets P .

7.1.2. Simulation results
JIP Vs. SIP
Among all these algorithms, JIP is a special one since P is not an input but the value it aims to maximize.
Therefore, we first compare it with SIP in this way: fix P and run SIP, set ϵ to be the function value
corresponding to the worst group, and use this ϵ to run JIP. Denote the number of disjoint subsets P ′,
we compare P and P ′ to see which algorithm performs better.

Sensor network We start with the sensor network from David generated by the GSPBOX toolbox,
where N = 64 and K are set to 5. The graph is shown in Fig. 7.1.

We see that when P = 2, 3, 4, 5, 7, P ′ has the same values. Therefore, we compare these cases’
(normalized) cost values.

value of P value of P ′

2 2
3 3
4 4
5 5
6 5
7 7
8 7

Table 7.1: Performance of SIP and JIP on random sensor graph regarding the number of subsets.
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Figure 7.1: Sensor network from David(right) and the corresponding distribution of processors.

SIP’s cost JIP’s cost
P/P ′ = 2 0.9858 0.9716
P/P ′ = 3 0.9780 0.9505
P/P ′ = 4 0.9697 0.9343
P/P ′ = 5 0.9584 0.9271
P/P ′ = 7 0.9085 0.9223

Table 7.2: Performance of SIP and JIP on random sensor graph regarding the cost function value.

Minnesota road graph We proceed with a Minnesota road graph where N = 2642 and K = 10. The
graph is shown in Fig. 7.2.

Results of the other algorithms
Here we show the results of algorithms given in Chapter 5, along with SIP as a baseline. The graphs
above are used here as well. For the distributed version of these algorithms, we letm = 4 and distribute
nodes to each processor uniformly randomly and fix this allocation for each graph. Since there are
randomized algorithms, we run them 1000 times on a graph, calculate the mean and standard deviation
of all their realizations, and denote them as Mean ± SD in the following tables. To show the robustness
of these algorithms over different graphs, 100 realizations of some random graphs are generated, e.g.,
graphs with the stochastic block model, and likewise, we compute the mean and the standard deviation
for all algorithms.

Sensor network We start with a random sensor network from David with N = 64 and K = 5. The
results for P = 5 are shown in Table 7.4.

value of P value of P ′

2 1
3 2
4 3
5 4
6 5
7 6
8 7

Table 7.3: Performance of SIP and JIP on Minnesota road graph regarding the number of subsets.
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Figure 7.2: Minnesota road graph(left) and the corresponding distribution of processors(right).

algorithm cost
SIP 0.7761
Double greedy 0.9563
Simple greedy 0.9699
Simple randomized 0.9314 ± 0.0113
Contention resolution 0.9312 ± 0.0112
Distributed SIP 0.9457
Distributed double greedy 0.9570
Distributed simple greedy 0.9641
Distributed simple randomized 0.9314 ± 0.0115
Distributed contention resolution 0.9324 ± 0.0109

Table 7.4: Performance of partitioning algorithms on the sensor network from David with P = 5.
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algorithm cost
SIP 0.6634 ± 0.0436
Double greedy 0.8980 ± 0.0176
Simple greedy 0.9077 ± 0.0183
Simple randomized 0.8769 ± 0.0163
Contention resolution 0.8768 ± 0.0163
Distributed SIP 0.8753 ± 0.0192
Distributed double greedy 0.8877 ± 0.0172
Distributed simple greedy 0.8917 ± 0.0172
Distributed simple randomized 0.8769 ± 0.0163
Distributed contention resolution 0.8769 ± 0.0163

Table 7.5: Performance of partitioning algorithms on stochastic block model with P = 5.

algorithm cost
SIP 0.5736 ± 0.0687
Double greedy 0.8492 ± 0.0359
Simple greedy 0.8573 ± 0.0378
Simple randomized 0.8275 ± 0.0327
Contention resolution 0.8274 ± 0.0327
Distributed SIP 0.8231 ± 0.0356
Distributed double greedy 0.8321 ± 0.0342
Distributed simple greedy 0.8380 ± 0.0351
Distributed simple randomized 0.8274 ± 0.0327
Distributed contention resolution 0.8274 ± 0.0326

Table 7.6: Performance of partitioning algorithms on Erdos-Reyni graphs P = 5.

Graphs produced by stochastic blockmodel Here we produce random graphs using the stochastic
block model by the GSPBOX toolbox with N = 100. The parameter of the graph is as follows: the intra-
cluster edge probability is set to 0.7 while the inter-cluster edge probability is set to 0.3, and the cluster
number is set to 5. The bandwidth of the graph signal is set to K = 10. The results for P = 5 are
shown in Table 7.5.

Erdos-Renyi graphs In this section, we test our algorithms on Erdos-Reyni graphs with N = 100.
The parameter of the graph is as follows: the probability of connection of a node with another is set to
0.1. The bandwidth of the graph signal is set to K = 10. The results of P = 5 are shown in Table 7.6.

7.2. French National Meteorological Dataset
In this section, we apply our algorithms to a humidity measurements dataset published by the French
national meteorological with hourly humidity measurements (744 time instances in total) on 22 weather
stations collected during with hourly humidity measurements (744 time instances in total) on 22 weather
stations collected during January 2014 in the region of Brest. This dataset is also used in [33].

7.2.1. Graph Construction
We construct the graph based on KNN as the authors did in [33]: Considering a weather station as a
node and connecting the five nearest stations with the weight function w(i, n) = e−d2

i,nτ , where di,n is
the euclidean distance between station i and n and τ is a tuning parameter. For our experiments, we
consider every time instant as an independent realization of a stationary graph signal.

7.2.2. Data Preprocessing
We first remove the humidity mean of each station independently. Thenwe remove the higher frequency
components of every time instance to force the graph signals for all frames to have a bandwidthK = 4.
We stack all the measurements into aN×F matrix X whereN = 22 and F = 724. Then the covariance
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Figure 7.3: The Brest weather stations graph(left) and its distribution of processors(right).

matrix of the signal can be estimated as Λ̂x = 1
F−1XX⊤. The Fourier transform of the covariance is

thus estimated by Λ̂x̂ = U⊤Λ̂xU. Then we add AWGN to X and denote by Y the noisy observation of
X, i.e., Y = X+ N, where the noise power is set to one.

7.2.3. Results
Parameters: number of subsets P = 2, number of processors m = 2, the bandwidth K = 4, and the
nodes are distributed to processors in an i.i.d manner. We show the results in Table 7.7 in terms of both
the D-optimal based cost value and the normalized Rooted Mean Square error (NRMSE), which we
defined as: NRMSE=

1
P

∑P
p=1∥X′

p−X∥
F

∥X∥F
, where X′

p denotes the reconstructed data corresponding to the
p-th representative sampling subset obtained by an partitioning algorithm. In Table 7.7, we also include
results of four types of exhaustive search. Here we explain what they stand for. Exhaustive searches
1 and 2 are based on the D-optimal cost function, while Exhaustive searches 3 and 4 are based on
NRMSE. Exhaustive search 1 shows the result of double the cost corresponding to the optimal subset
with eleven nodes; Exhaustive search 2 shows the result of the partition where the first subset is the
optimal subset with eleven nodes and the second subset is the complement set. Similar to 1 and 2,
Exhaustive searches 3 and 4 show the results in terms of the NRMSE.

7.3. Discussion
Comparing SIP with JIP, from Table 7.1 and 7.3, we see that for a given P , the corresponding P ′ is
always smaller or equal to P . From Table 7.2, except when P = P ′ = 7, SIP always performs better.
Hence, SIP is a more advanced algorithm compared to JIP. That is why we consider SIP as the current
baseline.

We first focus on centralized algorithms. From a performance perspective, Simple greedy is the
best algorithm for synthetic datasets. The performance of Double greedy is close yet slightly worse.
The two randomized algorithms perform a bit worse than double greedy but still work fine for their large
mean and relatively small standard deviation. Moreover, their performance is close. SIP is the most
inferior centralized algorithm among the five. For the real-world dataset, the performance situation
remains almost the same in terms of D-optimal cost. However, regarding NRMSE, the SIP exceeds
the two randomized algorithms.

For distributed algorithms, in the synthetic scenario, though not precisely the same, the performance
for each algorithm remains compared to their centralized counterpart in general, except SIP, whose
performance improves significantly. For the real-world dataset, the distributed framework decreases
the performance of these algorithms but at an acceptable level.
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algorithm Cost NRMSE
SIP 0.7610 0.1032
Simple greedy 0.9642 0.0987
Simple randomized 0.9175 ± 0.0395 0.1292± 0.0290
Contention resolution 0.9169 ± 0.0395 0.1296± 0.0290
Double greedy 0.9642 0.0987
Distributed SIP 0.8804 0.1494
Distributed double greedy 0.8909 0.1508
Distributed simple greedy 0.9591 0.0999
Distributed simple randomized 0.9174 ± 0.0394 0.1294± 0.0293
Distributed contention resolution 0.9171 ± 0.0397 0.1296± 0.0293
Exhaustive search 1 1.0857
Exhaustive search 2 0.8883
Exhaustive search 3 0.0727
Exhaustive search 4 0.1132

Table 7.7: Performance of partitioning algorithms on French National Meteorological dataset.

An interesting fact about the two randomized algorithms and their distributed extensions is that
although they have different performance bounds, their performance is almost identical.

From the results of four exhaustive searches and the fact that the cost value is close to one, we
conclude that our proposed algorithms are near-optimal.

Here we give some guidance about which algorithm to apply in different circumstances. Note that
although the two greedy approaches have higher performance, their complexity is higher since they
require the valuation of submodular functions, which requires polynomial time inK. On the other hand,
though the randomized algorithms perform worse, their complexity is just linear in N (O(N)) since they
do not have to access the objective function explicitly. So the key to applying the right algorithm is a
performance-efficiency trade-off, and here is the strategy we suggest:

• When only one central computer is available, if the graph size is large, run a randomized algorithm
r times and pick the best realization. The larger the graph is, the smaller r needs to be set. If the
graph size is small, then the two greedy algorithms are recommended for better performance.

• When there are m computers available, if N
m is small, meaning that each local computer needs

only access a small fraction of nodes, then two distributed greedy algorithms can be applied. The
distributed randomized algorithms are better if N

m is large.





8
Concluding Remarks

8.1. Conclusion
In this work, based on the graph node selection problem, we formulate the graph node partitioning
problem. Then we show that our problem formulation is a particular case of a Submodular Welfare
problem. Besides some current algorithms for the SW problem, we propose a recursive bi-partitioning
heuristic that performs well. Then a distributed framework is proposed, which allows us to parallelize
these algorithms by distributing the nodes to some local machines. We test our proposed methods on
synthetic and real-world datasets and show that these methods are near-optimal and outperform the
state-of-the-art algorithm(SIP).

8.2. Future Work
Here we list possible directions for future work�

• Under our current assumption, the graphs dealt with are static. However, in most real-world
applications, graphs are usually time-varying. Therefore, how to update the partitioning scheme
accordingly needs plenty of work.

• We assume that graph signals are stationary. This cannot but cannot be over a long time duration.
Therefore, some online change detection algorithms can be developed.

• We have derived a general lower bound for the distributed partitioning framework. However, it
is not as tight enough for our proposed algorithms to observe the results. So deriving a tighter
bound can also be a possible subject of future work.
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