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Layman’s Abstract

This thesis explores how certain chemical reactions can show repeating patterns, called oscillations, by using
two well-known models: the Brusselator and the Oregonator. First, we checked and confirmed previous
findings on the Brusselator model, showing that under certain conditions, the chemicals involved can cycle
in a stable, repeating way. We then extended the model to include a setup where chemicals are continuously
added, making it more realistic. Using computer simulations, we found the specific conditions needed for the
oscillations to occur. These varying conditions include, for example, the speed of the chemical reactions or
the starting concentration of certain molecules. Lastly, we looked at the Oregonator model, proving again that
repeating cycles can happen and identifying the exact conditions for these cycles. In all cases, we discovered
the conditions under which the chemical reactions would display these periodic patterns.
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Abstract

This thesis aims to identify the parameter combinations necessary for the Brusselator and Oregonator mod-
els to exhibit oscillating behavior. Initially, the Brusselator model is reviewed, reproducing the results from
[1]. Using Bendixson’s Criterion and the Poincaré-Bendixson Theorem, the existence of stable limit cycles
is proven, and the Hopf-Bifurcation locations are derived analytically. The Brusselator model is then ex-
tended from a batch reactor to a Continuous Stirred-Tank Reactor to include the inflow of two components
previously considered constant. An extensive eigenvalue investigation in Matlab is conducted to determine
the parameter combinations that induce oscillating behavior, with Hopf-Bifurcation locations presented in
a three-dimensional plot. Lastly, the Oregonator model is introduced and analysed. The existence of limit
cycles is proven using similar methods, and an eigenvalue analysis yields the analytic expressions for the
Hopf-Bifurcation locations. Periodic solutions are found in all three models, and the necessary parameter
combinations are identified.
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Nomenclature

Abbreviations

BZ Belousov-Zhabotinsky
CSTR Continuous stirred-tank reactor

Symbols

[A], A Concentration of molecule A [mol L−1] or [M ]
vi Reaction rate of a chemical reaction i[mol L−1s−1] or [M s−1]
ki Rate constant of a chemical reaction i [variable]
f Stoichiometric coefficient [-]
t Time [s]
µ Varying parameter [-]
∇ Divergence [-]
Q In- and outflow rate [s−1]
T Trace of a Jacobian matrix [-]
D Determinant of a Jacobian matrix [-]
Si Sub-determinant of a Jacobian matrix [-]
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1
Introduction

In 1980, the two chemists B. P. Belousov and A. M. Zhabotinsky won the prestigious Lenin prize for the dis-
covery of oscillating chemical reactions. This oscillating behaviour in chemical reactions was long thought to
be impossible because of the second law of thermodynamics, but Belousov and Zhabotinsky turned the tide
and convinced the world of the idea of oscillating chemical systems. Out of their research a very complex the-
oretical chemical model surfaced: the Belousov-Zhabotinsky reaction mechanism. To simplify the analysis
of this mechanism, the essence of this system of reactions was captured in the Oregonator model, a system
of five chemical reactions displaying oscillating behaviour. Another theoretical chemical system introduced
around that time is the Brusselator model, which comprises only four reactions capable of generating oscil-
lating behaviour.

The Brusselator and Oregonator models are both very abstract versions of oscillating chemical reactions,
making them theoretical models. The aim of this thesis is to first establish both the models as such and look
for oscillating behaviour. This will be done by transforming the models into systems of differential equations
and evaluating the dynamics of these systems. This is done using the theoretical works of bifurcation theory,
the analysis of the behaviour of such a dynamic system. With this theory it is possible to find the necessary
conditions for oscillating behaviour. The models take place in a batch reactor, essentially a tank where every
component is put into. In practice, it is more realistic to evaluate these chemical systems in another form of
reactor: the continuous stirred-tank reactor (CSTR). In this reactor it is possible to add and remove compo-
nents at all times, essentially creating an inflow and outflow of fluids. The Brusselator will be modelled in a
CSTR after having been modelled in a batch reactor.

The objective of this thesis is to look for oscillating behaviour in two different theoretical chemical oscillators,
while enhancing the realism of the models. In each chapter the model will be introduced with its assump-
tions, followed by the creation of a system of differential equations. The system will be analysed and an
eigenvalue investigation will be conducted to find the conditions under which the system exhibits oscillating
behaviour. When possible, a proof is carried out to demonstrate the existence of periodic behaviour in the
models.

This report is structured as follows. First, in Chapter 2 an introduction on chemical oscillators is given, as well
as a short introduction on bifurcation theory with an emphasis on Hopf-Bifurcations. Secondly, in Chapter 3
the Brusselator model is introduced and a proof is given that there exists oscillating behaviour. An extension
of the model is given in Chapter 4, where the chemical reactions take place in the CSTR. This is a more realistic
set up of the Brusselator model. In Chapter 5 another theoretical oscillator is introduced and analysed: the
Oregonator. The same structure of proof is done on the Oregonator. Lastly, in Chapter 6 conclusions and
recommendations for further research are given.
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2
Background

Before we can dive into the mathematical modelling, there is some background information needed. To
model the behaviour of chemical reactions, we will use differential equations. In this chapter you will find a
short explanation on how to transform chemical reactions into a system of differential equation. You will also
find a short introduction to bifurcation theory, the analysis of the behaviour of a dynamic system.

2.1. From Chemical Reactions to Differential Equations

A chemical reaction describes how reactants are transformed into products. It transcribes the ratio of needed
reactants to generate a certain amount of products. The ratios are described in moles, a unit of measuring the
amount of a substance containing a fixed number of particles. You can compare this to the idea of a dozen.
In a dozen fit exactly twelve pieces, no matter the size or the weight of these pieces. In the chemical reaction
stated below (the combustion of methane), the molar ratio tells us that if we have 1 mole of CH4, we need to
add 2 moles of O2 to create 1 mole of CO2 and 2 moles of H2O.

CH4 +2O2 −−→ CO2 +2H2O (2.1)

These numbers stating the molar ratio are called the stoichiometric coefficients. Stoichiometry describes the
ratio between the reactants and the products of a chemical reaction. This relationship is based on the law of
conservation of mass.

Definition 2.1 (Law of Conservation of Mass) In a closed system mass is neither created or destroyed, thus the
total mass of the reactants equals the total mass of the products [2].

Because of this law, stoichiometric coefficients will always be positive integers. Stoichiometry states that the
number of atoms of a substance A should be the same on both sides of the reaction. The composition in
which the atoms exist can change (i.e. C-atoms first exist in CH4 and then in CO2).

When modelling a chemical system with differential equations, you model the change in concentration of the
molecules in time. The concentration is the amount of moles of a substance per reaction volume, (mol/L).
Meaning that if the volume of the reaction stays the same throughout your model process, you measure the
components in moles. As the differential equations depend on time, we need some way to know how fast
the chemical reaction takes place. For this we use a characteristic of chemical reactions: the rate constant
k, which quantifies the speed of the reaction in relation to the concentration of reactants. This rate constant
k is used in the reaction rate v, the speed of the reaction. The reaction rate v describes at what speed the
reactants are transformed into products (mol/L/s) for a given reaction. How the reaction rate is set up and is
determined, depends on the chemical reaction it is a characteristic of.

2



2.1. From Chemical Reactions to Differential Equations 3

To model the concentration, we need to know how fast the concentration changes in time. The law of mass
action states the following:

Definition 2.2 (Law of Mass Action) The rate of a chemical reaction is proportional to the concentrations of
the reactants.

Meaning that the reaction rate not only gives us the speed of the reaction but also the speed at which the
concentrations of the reaction components change. Now that we know how the reaction rate and the con-
centrations relate to each other, we can look at how to determine the reaction rate.

In general, v = k[A]x [B ]y ... where k is the rate constant, [A] and [B] are the concentrations of the reactants,
and x and y the stoichiometric coefficients. The unit of rate constant k depends on the chemical reaction. Lets
say we want to have the reaction rate of reaction (2.1). We have two reactants with different stoichiometric
coefficients. Suppose the rate constant of this reaction is k̂. Then v = k̂[C H4][O2]2. The unit of concentrations
is mol/L, which is also noted as M (the molar concentration or molarity). The unit of k̂ depends on the other
concentrations in the reaction rate expression. In this case k̂ has to navigate three molar concentrations per
time unit, resulting in [M−2s−1].

It is possible for chemical reactions to be reversible, meaning that there is not only a rate constant from
reactant to product, but also the other way around. The reaction then has k as rate constant for the forward
production and kr for the backward production.

2.1.1. Chemical Oscillators

First some background on the type of model we are going to look at. These models are called chemical oscil-
lators, meaning that the concentrations of the components in the model behave in an oscillating way. This
oscillating behaviour is also called periodic behaviour.

It was long thought that it was not possible for chemical reactions to showcase oscillating behaviour. To
explain why, we first need to state the second law of thermodynamics. For this law we need the definition of
entropy:

Definition 2.3 (Entropy) Entropy is the degree of randomness in a system.

In a chemical system you can see the entropy of the system as how random the components in your system
are distributed. The entropy is a sort of measurement for the chaos in a system. In the figure below you first
see two components, blue and red, in a reversible reaction. There is not much randomness here yet. Once
the components start mixing and transforming partly into the purple component, the randomness starts
increasing. As the two components mix, more chaos ensues. Everything is mixed together, nothing is sorted
anymore: ultimate chaos. This is the entropy of the system.

Figure 2.1: A chemical reaction approaching its equilibrium state.

The second law of thermodynamics tells us that the chronological order of the images in Figure 2.1 is possible,
but the other way around is not.



4 2. Background

Definition 2.4 (Second Law of Thermodynamics) The total entropy of a system never decreases in any pro-
cess. It either increases or stays constant.

This law states that the entropy of a system cannot become smaller. So, if you have achieved a certain level
of randomness you can’t reverse this. For a chemical reaction this means that once the components have
reached an equilibrium state, you can’t turn back. Periodic behaviour of concentrations of chemical compo-
nents would entail that the reaction deviates from its equilibrium state and thus has a decrease in entropy.
This should not be possible.

In 1917, two chemists W. C. Bray and A. L. Caulkins discovered periodic production of oxygen under very
specific conditions. They cautiously proceeded their research as to how this was possible, with the second
law of thermodynamics in the back of their mind. Their discovery was met with a lot of scepticism and their
result was questioned for years. In 1951 another researcher, B.P. Belousov, discovered a second oscillating
reaction. He too was questioned. A.M. Zhabotinsky heard of his work and began studying the newfound
reaction.

He discovered that oscillating behaviour is possible in a system of chemical reactions. Instead of just one
reaction, a cascade of different simple reactions makes up a system of reactions. In this system it is possible
that the concentrations of some intermediate reactions oscillate. In 1964 Zhabotinsky published a ground-
breaking paper, after which the idea of a chemical oscillator was finally accepted. Unfortunately, Belousov
died 10 years before getting awarded the Lenin prize in 1980, the Nobel Prize of the Soviet Union at the time
[3]. But their work paid of, there are now multiple great examples of chemical oscillators.

One of the most famous chemical oscillators now is the Belousov-Zhabotinsky (BZ) reaction itself. It is a fam-
ily of reactions describing this oscillating behaviour. The BZ mechanism is very complex and thus very hard
to analyse, it contains over 18 different steps. To simplify the system, the FKN mechanism was introduced by
Field and Noyes [4]. This mechanism still constist of 11 reactions. To simplify the mechanism even more, the
Oregonator was introduced. Its name is a blend of Oregon and oscillator, as it was found at a university in
Oregon.

The BZ reaction is an autocatalytic reaction [5]. Meaning that one of the reaction products is also a catalyst
for this reaction. A catalyst is a substance added to a chemical reaction that makes is proceed faster, without
being consumed itself. To see this autocatalytic behaviour, we can use the Oregonator. The Oregonator is
characterized by the following equations [6]:

A+Y
k1−−→ X+P,

X+Y
k2−−→ 2P,

A+X
k3−−→ 2X+2Z,

2X
k4−−→ A+P,

B+Z
kc−−→ 1

2
f Y.

(2.2)

A, B, P, X, Y and Z are all different components here. There are five reactions and thus five rate constants. In
the fifth reaction something interesting is going on, f is a yet undetermined stoichiometric coefficient. You
can see the autocatalytic characteristic in the third reaction, where component X is a reactant and a product
of the reaction. X is used in the reaction but not consumed. As X is produced in an earlier reaction of this
system, we have a component that is produced and used as a catalyst in the system.

Lastly, there is also the Brusselator. The name is a blend of Brussels and oscillator, as this reaction was discov-
ered at a university in Brussels. The Brusselator is a very simple version of system still showcasing oscillating
behaviour, also making it a very unrealistic model. The Brusselator is another great example of an autocat-



2.1. From Chemical Reactions to Differential Equations 5

alytic system. It is characterized by the following equations [1]:

A
k1−−→ X,

B+X
k2−−→ Y+D,

2X+Y
k3−−→ 3X,

X
k4−−→ E.

(2.3)

Here we have A, B, D, E, X and Y as components, with four rate coefficients (differing from those in the Oreg-
onator mechanism). In this system you see the use of self-produced component X as a catalyst in the third
reaction, the Brusselator is indeed an autocatalytic system.

2.1.2. Transforming

Let’s transform the Brusselator, as shown in (2.3), into a system of differential equations. Before converting
the reactions, we have to decide which components we would like to keep track of. All other components
are then assumed to be constants or to be redundant (e.g. too small to be of influence or present in such an
abundance that a change in concentration does not have an effect). We will keep track of components X and
Y, resulting in a system of two differential equations.

Before looking at a specific component yet, let’s first determine the reaction rate for all four reactions, where
vi belongs to reaction number i , with here i = 1,2,3,4.

Reaction i Reaction rate vi Rate coefficient ki

A
k1−−→ X v1 = k1 A k1 : [s−1]

B+X
k2−−→ Y+D v2 = k2B X k2 : [M−1s−1]

2X+Y
k3−−→ 3X v3 = k3X 2Y k3 : [M−2s−1]

X
k4−−→ E v4 = k4X k4 : [s−1]

Table 2.1: Reaction rates for all four reactions of the Brusselator.

When modelling the concentration of X, we need to look at all factors that influence X and take the system as
a whole. We look at all factors decreasing and increasing the concentration of X. First, X is produced propor-
tional to A, an increase in X substance. Then X is used to produce other components, entailing a decrease of
X. The third reaction effectively produces X and the fourth reaction uses X to make E. The X concentration is
then modelled as d X

d t = total increase - total decrease.

Combining the reaction rates correctly and doing a similar thing for component Y, yields the following system
of differential equations:

d X

d t
= k1 A−k2B X +k3X 2Y −k4X ,

dY

d t
= k2B X −k3X 2Y .

There is quite some similarity between the two equations, as the two components interact with each other.
As X produces Y and Y produces X, common terms have opposing signs.



6 2. Background

2.2. Introduction to Bifurcation Theory

A system of differential equations describes the change in time of multiple variables at once. If there is no
change in all variables at a certain point, the system ’stands’ still. This is called an equilibrium point, where
the differential equations are equal to zero. It is possible to have no equilibrium points, have one, or have
multiple. An equilibrium point is sometimes also called a fixed point.

Definition 2.5 (Equilibrium Point) Consider the n-dimensional system ẋ = F (x,µ) with µ ∈ R and x ∈ Rn .
Then x = x(µ) is an equilibrium point if F (x(µ),µ)) = 0. [7]

An equilibrium point can be attracting, meaning that the differential equations will eventually arrive at this
point of no change. The solutions (a sort of walk starting from a certain point in the plane of the variables)
starting near this point will move to the equilibrium point, it attracts the solutions. This is called a stable
point. An equilibrium point can also be repelling, meaning that the solutions starting near the point will
move away from the point. This is an unstable point, as all solutions that start there will immediately leave
there.

If you have a non-linear system of differential equations it is very hard to see whether the system will approach
the equilibrium point or if it will leave the point. To make this easier, we make use of the Jacobian matrix. The
Jacobian matrix is the change of the system at every point.

Definition 2.6 (Jacobian Matrix) The Jacobian matrix J is an m x n matrix with entries Ji , j = δ fi
δx j

, yielding the

following matrix:

J =


∂ f1
∂x1

∂ f1
∂x2

· · · ∂ f1
∂xn

∂ f2
∂x1

∂ f2
∂x2

· · · ∂ f2
∂xn

...
...

. . .
...

∂ fm
∂x1

∂ fm
∂x2

· · · ∂ fm
∂xn


This matrix is the best linear approximation of the non-linear system. If we fill in the equilibrium point into
the Jacobian matrix of the system, we get a good linear approximation of how the system behaves around this
point. The Jacobian predicts the behaviour close to an equilibrium point of a non-linear system. To get this
prediction, we need to compute the eigenvalues of the Jacobian evaluated at an equilibrium point.

Definition 2.7 (Eigenvalue) Suppose n x n matrix A and nonzero vector u. Then the scalars λi , i = 1, ...,n, are
the solutions to Au =λu. λi can be either real or complex.

These eigenvalues of the Jacobian tell us how the solutions close to the equilibrium point behave, whether
they grow (repelling point) or decay (attracting point) after time. Positive eigenvalues tell us it’s an repelling
equilibrium point and the solutions leave the point. Negative eigenvalues imply an attracting equilibrium
point where the solutions move to the point.

A system of differential equations has a certain amount of fixed points, with the Jacobian matrix we can
establish the stability of these points. Something interesting occurs when this system of equations depends
on a parameter. When varying this parameter, fixed points can be destroyed or created, or the stability of
them can change. If such a thing happens, this is called a bifurcation. We call the parameter values at which
this occurs the bifurcation points. There are several types of bifurcations classified, where we are especially
interested in the Hopf-Bifurcation. A Hopf-Bifurcation happens if a parameter is changed and as a result the
stability of the system changes (from stable to unstable, or the other way around) and a periodic solution
arises. In practice, a Hopf-bifurcation occurs if the eigenvalues of the system at this point cross the imaginary
axis. Meaning that when the parameter varies, either Re{λ} goes from being negative to positive (crossing the
imaginary axis from left to right) or Re{λ} goes from being positive to negative (crossing the imaginary axis
from right to left).
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Definition 2.8 (Periodic solution) A solution x(t ) with t ∈ R of a system of differential equations is a periodic
solution if there exists a T ̸= 0 such that x(t +T ) = x(t ), T ̸= 0.

Definition 2.9 (Hopf-Bifurcation) A system of differential equations can encounter a Hopf-Bifurcation if the
eigenvalues of the Jacobian, evaluated at an equilibrium point of said system, cross the imaginary axis. Mean-
ing that the eigenvalues are of the form λ1,2 =±bi , where b ̸= 0.

Figure 2.2: Eigenvalues crossing the imaginary axis from left to right. Adapted from ’Nonlinear dynamics and chaos’ by Strogatz, 1994, p.
251 [8].

To visualize the changes of the fixed point(s), you can make a bifurcation diagram. Here you plot your differ-
ential equation variables against the varying parameter. In the case of a Hopf-bifurcation it is often hard to
visualize. A solution for this would be to make different plots for different stages, as done in the figure below.
Where parameter µ is varied, resulting in two different cases.

Figure 2.3: Behaviour of a system for different cases of µ values. Adapted from ’Nonlinear dynamics and chaos’ by Strogatz, 1994, p. 250
[8].

As you can see in the figure above, the equilibrium point seems to vanish. It did not vanish, but it did change
from a stable to an unstable point. When µ< 0, we have a stable equilibrium point, meaning that it attracts.
The long term solution of the system will approach this point and eventually reach it. But then, when µ> 0,
the stabel equilibrium point seems to have disappeared and turned into a stable limit-cycle. The equilibrium
point is now unstable and repels the solutions, with an attracting cycle around it. This cycle stems from the
equilibrium point and grows bigger until a certain amplitude is reached. The cycle is attracting, meaning that
on the outside and inside everything approaches the cycle. We have a stable cycle. This is called a supercritical
Hopf-Bifurcation. If an unstable limit cycle surrounds a stable equilibrium point, it is a subcritical Hopf-
Bifurcation.

A simple example of a system with a Hopf-bifurcation are the following equations:

d y1

d t
=−y2 + y1(µ− y2

1 − y2
2 ),

d y2

d t
= y1 + y2(µ− y2

1 − y2
2 ).
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This system has an equilibrium point at (y1, y2) = (0,0), which yields the following Jacobian matrix, evaluated
at the equilibrium point:

Jeq =
[
µ −1
1 µ

]
.

Yielding that λ(1,2) = −µ± i . First, we have µ < 0, where we get a stable solution, already looking quite
spirally. The eigenvalues cross the imaginary axis if µ= 0. When µ= 0, the eigenvalues are purely imaginary,
yielding a centre as solution. In Figure 2.4 you can see that the center solution does not reach the equilibrium
point we had before. Then, when µ > 0, the equilibrium point becomes unstable. Meaning that we have
found a bifurcation, the behaviour of the system has changed. Now the cycles arise in the phase plots, as
visible in Figure 2.4. These cycles are stable surrounding an unstable equilibrium point, meaning that we
have supercritical Hopf-Bifurcations.

Figure 2.4: Behaviour of a system for different cases of µ values.



3
The Brusselator

In this chapter, we will create a model based on the Brusselator. This is a system of four chemical reactions,
as shown below. Here, A, B, X, Y, D and E are all concentrations [mol m−3] of certain components. k1,k2,k3

and k4 are the rate coefficients, determining the speed of the reaction. The dimension of rate coefficient
ki depends on reaction i. As there is only a rate coefficient from reactants to products, this means that the
reactions are irreversible. Once a product has been made, there is no way back using the same reaction. It’s
worth noting that in the second reaction, Y is generated from component X, while in the third reaction, X is
produced from Y. This reciprocal production could lead to oscillations.

A
k1−−→ X

B+X
k2−−→ Y+D

2X+Y
k3−−→ 3X

X
k4−−→ E

The Brusselator is a model in itself, as it is a theoretical model for autocatalytic
chemical reactions. A chemical reaction is autocatalytic if one of the reaction
products is also a catalyst for this same reaction. Meaning that this reaction
product helps to increase the speed of the reaction, while remaining intact. You
can see this in the Brusselator in the third reaction, where the component X is
produced as well as used as reactant, while remaining intact.

In practise, these chemical reactions have to take place somewhere. This is done
in a reactor, an enclosed space in which the reactions take place. In this chapter
we will model the Brusselator in a batch reactor. In Figure 3.1 you see a schematic
diagram of a batch reactor. In this reactor there is no possibility of putting in more
chemicals or retrieving already made products until all reactions are finished. The
reactor has a stirrer, which mixes all the present molecules. Because of the stirring
in the reactor the components are distributed evenly over the reactor.

Figure 3.1: A batch reactor
modelled.

3.1. The Model

To be able to see how the Brusselator behaves, we need a way to express the model and a way to implement
it. We will model the Brusselator using a system of differential equations. But before we can start we need to
establish some assumptions.

9
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3.1.1. Assumptions

The following assumptions are made:

• A, B, X, Y, D, E are in R≥0. As A, B, X, Y, D and E are all concentrations, they cannot be negative and have
continuous values.

• A and B are constants. In practise this means that there is an abundance present of A and B, making the
change in concentration of A and B almost zero.

• D and E are not of influence. Because D and E are only products of the reactions and not used further,
we do not consider them in the model.

• k1 = k2 = k3 = k4 = 1. Numerically we will not look at the influence of different ki values, but assume
they are all equal to 1. In practise this means that every reaction has the same rate, meaning that all
reactions produce their products at the same speed. In Section 3.2 we will drop this assumption and
work with nondimensional parameters instead.

• All components are homogeneously distributed over the reaction volume. Because of this we do not
have to consider where a reaction takes places and we can eliminate the dimension of space. The
stirrer in the reactor distributes all components evenly, making the concentration of all molecules the
same over the reactor.

• The reaction volume is constant. The batch reactor is a closed system, there is no in- or outflow. Be-
cause of the law of Conservation of Mass, as stated in Definition 2.1, the reaction volume will stay
constant.

3.1.2. System of Differential Equations

Now that we have established our assumptions, we can start to model the Brusselator. First, we need to
convert the chemical system into a system of differential equations. In section 2.1 you can see how to derive
a set of differential equations based on chemical reactions. This method results in the following system of
differential equations:

d X

d t
= k1 A−k2B X +k3X 2Y −k4X ,

dY

d t
= k2B X −k3X 2Y .

(3.1)

3.1.3. Behaviour

To see how the concentration changes in time, a numerical method is implemented in Matlab. The Matlab
code can be found in appendix A.1. Here we set A and B as constants and see what happens with X and Y. We
also set the starting conditions as X(0) = 0 and Y(0) = 0. We also assume k1 = k2 = k3 = k4 = 1 for the numerical
method.

The numerical approximation of the model is done with the Forward Euler method, the simplest way of com-
puting the concentrations at the next time step. We set time step ∆t = 0.01 and use predetermined values
for concentrations A and B. Meaning that with initial concentrations for x0 and y0 the implementation is the
following:

xn+1 = xn +∆t (k1 A−k2B xn +k3x2
n yn −k4xn),

yn+1 = yn +∆t (k2B xn −k3x2
n yn).
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From article [1] we know that if A = 1 and B = 3, the X and Y concentrations will be oscillating and thus creating
a periodic solution. Here we see the concentrations of X and Y over time in one plot and the phase plot of X
and Y in the other plot, for 2 different cases; the first case has A = 1 and B = 1.5. The second case has A = 1 and
B = 3.

(a) Concentration plot with A = 1 and B = 1.5. (b) Phase plot with A = 1 and B = 1.5.

(c) Concentration plot with A = 1 and B = 3. (d) Phase plot with A = 1 and B = 3.

Figure 3.2: Plots for two different cases.

The specific case of A = 1 and B = 3 shows indeed that there is a periodic solution. The concentration plot is
oscillating very clearly and the phase plot shows an inexhaustive cycle. An interesting question arises: when
do these cycles appear? If we plot phase plots for different combinations of A and B concentrations we see
that such a cycle is quite rare, as they only seem to arise in the case we specified earlier.

(a) Phaseplot with fixed A = 1. (b) Phaseplot with fixed A = 2. (c) Phaseplot with fixed A = 3.

Figure 3.3: Phaseplots of X and Y with varying B concentrations and a fixed A concentration.
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To answer the question of when certain behaviour arises, we need to analyse the system more rigorously.

3.2. Analysis

Before we can analyse the model, we would like to simplify it. After nondimensionalization, details to be read
in [1], we end up with the following simplified system:

d X

d t
= Ẋ =Q − (P +1)X +X 2Y ,

dY

d t
= Ẏ = P X −X 2Y ,

Q =
√√√√k2

1k3

k3
4

A,

P = k2

k4
B.

(3.2)

We now have reduced the amount of parameters from six (k1,k2,k3,k4, A and B ) to two parameters (P and
Q). To analyse the stability of the model, we first determine where the fixed points are. When equating the
differential equations to zero, we find one fixed point: (X ,Y ) = (Q, P

Q ). To say something about the stability,
we need the eigenvalues of the Jacobian matrix, evaluated at the found equilibrium point. The Jacobian of
equation (3.2) is given by:

J =
[−(P +1)+2X Y X 2

P −2X Y −X 2

]
.

Now, we evaluate the Jacobian at the found equilibrium point (X ,Y ) = (Q, P
Q ), this results in:

Jeq =
[

P −1 Q2

−P −Q2

]
. (3.3)

To get the eigenvalues of this Jacobian, we can use the following expression for the characteristic polynomial
of a 2 x 2 matrix J:

p(λ) = Det (J )−λ∗Tr ace(J )+λ2.

If we solve p(λ) = 0 , we get the following expression for the eigenvalues:

λ1,2 = 1

2
(Tr ace(J )±

p
∆), where ∆= Tr ace(J )2 −4∗Det (J ). (3.4)

From this expression of the eigenvalues we can derive a general way to determine the stability of a fixed point
and a way to determine a Hopf-Bifurcation possibility. We can conclude the following two conditions:

• λ1,2 ∈ C if ∆< 0; in expression (3.4) you see a square root. If the value in the square root is negative, we
get complex eigenvalues.

• a fixed point is stable if Tr ace(Jeq ) < 0; If the eigenvalues of the Jacobian, evaluated at a specific fixed
point, are all negative, the fixed point is stable.

This is especially interesting when analysing the behaviour of the whole system. After nondimensionalisa-
tion, we only have P and Q as parameters left. Now it would be interesting to see the changes of the system
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when we vary the values of P and Q. Looking at the system like this, is done in bifurcation theory. For some
background information, see section 2.2. To analyse the system using expression (3.4), we need the trace and
the determinant of the Jacobian evaluated at the equilibrium point ((3.3)). We have Tr ace(Jeq ) = P −1−Q2

and Det (Jeq ) =Q2.

3.3. Proof of Oscillating Behaviour

Before trying to find oscillating behaviour, one can confirm that this behaviour is possible. For this we will
introduce Bendixson’s Criterion. This criterion tells you when periodic behaviour cannot occur. Because
we have varying parameters in our system, this can be very interesting. The criterion can tell us for which
parameter values there is a possibility of oscillating behaviour. Bendixson’s Criterion is stated as follows:

Theorem 3.1 (Bendixson’s Criterion) Consider the system ẋ = g (x, y), ẏ = h(x, y) in R2. Suppose D is a simply

connected subset of R2 and (g,h) is continuously differentiable in D. If di v(g ,h) = ∇(g ,h) = d g
d x + dh

d y changes
sign in region D or if ∇(g ,h) = 0, only then can the system have periodic solutions. [9]

The Bendixson’s Criterion uses the divergence of a system. The divergence represents the flux of a system,
the flux of a system can be described as the movement of the system at every point. If a solution approaches
an attracting equilibrium point, the flux towards this point is positive: more movement is going towards the
point than there is movement leaving the point. For an unstable equilibrium point this would be the other
way around. If the divergence of a system on a certain domain D is equal to zero, there are two possibilities:
either there is no movement going in or out of the domain, every solution that is in the domain stays there,
meaning that there should be a limit cycle. Or exactly the amount leaving the domain is also the amount of
movement going into the domain. With the Bendixson’s Criterion you can conclude that if the divergence is
equal to zero either of these cases is true. Which is why you can only dismiss regions for which this is not true
and cannot conclude a definite case of limit cycles, as there is always still the option of having the same flux
into the domain as out of it.

Let us start applying the Bendixson’s Criterion. Let’s consider our nondimensionalised system again:

d x

d t
= ẋ =Q − (P +1)x +x2 y,

d y

d t
= ẏ = P x −x2 y.

(3.5)

We will apply Bendixson’s theorem to see whether there is a possibility of a periodic solution and if so, for
which P and Q values. We will do this for D(x,y) = R≥0. We first need the divergence of the dynamic system.
Let g (x, y) = ẋ and h(x, y) = ẏ , then:

∇(g ,h) = d g

d x
+ dh

d y
=−(P +1)+2x y −x2. (3.6)

Parameter Q is not represented in ∇(g ,h), meaning that we cannot say anything about the values of Q with
the Bendixson’s Criterion. If ∇(g ,h) = 0, we know that there is a possibility for oscillating behaviour. Unfortu-
nately, this is not the case. Now we need to investigate whether there occurs a sign change in ∇(g ,h) in (3.6).
Because we do not want to fix the P-value, we will have to do this in a more general way.

Let ∇(g ,h) = −(P +1)+2x y − x2 = f (x, y). Where f (x, y) = 0, we know there could be a sign change around
this set of points. Equating f (x, y) to zero yields the following:

f (x, y) = 0 → l : y = x2 +P +1

2x
.

In Figure 3.4 you see line l where f (x, y) = 0 with P-value 10. Because x an y represent concentrations in the
model, we only look at the first quadrant. We now need to show that the points crossing l switch signs. We’ll
show that the points under the line are all negative and all the points above the line are positive.
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Because x, y,P ≥ 0, we know that (x, y) = (0,0) will always be under line l. Filling in this point into (3.6) tells
us that f (0,0) =−P −1. This value is always negative. So, the points under l have negative values.

Now, to show that the value above line l are positive, we construct a new line h. This line is line l, but shifted
two to the right and two upwards. Meaning that line h is always above line k.

y = (x −2)2 +P +1

2(x −2)
+2 → h : y = x2 +P +1

2x −4

As h also depends on parameter P we can use this line to show that the points above line k are positive. Let’s
look on the line where x = 4, then h : y(4) = 4+ 1

4 (P +1). We now have coordinates still depending on P to
fill into equation (3.6), this yields: f (4,4+ 1

4 (P +1)) = P +1. This value is always positive, proving that points
above line k have positive values.

Figure 3.4: f(x,y) = 0 with P = 10.

We have now shown that there always is a sign change in R2
≥0. From Bendixson’s Criterion we can conclude

that a periodic solution is possible.

Now that we know oscillating behaviour is a possibility, we can prove that it exists. To do this, we will use the
Poincaré-Bendixson theorem. The idea of this theorem is to ’trap’ your system of equations in a certain region
and check if the solution of the system stays in this trapping region. If you have oscillating behaviour, you will
encounter a limit cycle. If such a cycle is in the trapping region, it cannot leave the trapping region. Important
to note is that there cannot be an equilibrium point in this trapping region. If an attracting equilibrium point
would be in the trapping region and you show that all solutions in the trapping region stay there, you have
shown that the attracting equilibrium point has attracted all solutions. This would not proof the existence of
a stable limit cycle.

Theorem 3.2 (Poincaré-Bendixson) Suppose that:

1. R is a closed, bounded subset of the plane;

2. ẋ = f(x) is a continuously differentiable vector field on an open set containing R;

3. R does not contain any fixed points, and

4. There exists a trajectory C that is ’confined’ in R; C starts in R and stays in R for all future time.

Then, either C is a closed orbit, or it spirals toward a closed orbit as t →∞. In either case, R contains a closed
orbit. [8]
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To prove that there exists a confined trajectory C, we will construct this trapping region R. We will show that
the vector field on the boundary of R always points inward, ensuring that all trajectories in R are confined. If
we remove any fixed points from region R, attracting solutions, we ensure that there is a closed orbit in R.

Consider again our nondimensionalised system (3.5). To apply the Poincaré-Bendixson theorem, we first
need to construct the trapping region R. We do this by determining the nullclines, as defined below, for system
(3.5):

Definition 3.3 (Nullclines for a 2d System) A nullcline is a line of points where the vector field changes direc-
tion along one vector component, the places where the slope of that directional vector component is equal to
zero. In a two dimensional system of two differential equations:

d x
d t = g (x, y), d y

d t = h(x, y)

We define two nullclines:

• x-nullcline: the set of points where ẋ = 0. The vector field is vertical on this set of points.

• y-nullcline: the set of points where ẏ = 0. The vector field is horizontal on this set of points.

The nullclines tell us where the vector field changes direction and gives us some directions of the vector field.
Let us determine the expressions of the nullclines of system (3.5).

ẋ = 0 → y = −Q + (P +1)x

x2 (3.7)

ẏ = 0 → y = P

x
(3.8)

On the x-nullcline (3.7) we have that the slope in the x direction is zero, meaning that the vector field is only
vertical on this line. For the y-nullcline (3.8) we only have horizontal vectors in the vector field. All this
information together gives us the following figure:

Figure 3.5: Nullclines of the system.

You can already see some hints to a trapping region in the vectors on the nullclines. Now consider the orange
dashed line as in Figure 3.6 as a possible option for a trapping region. To show that this is true, we need
to show that all vector field vectors on the boundary of this region point inward. We already have some
information. In Figure 3.5 we firstly have two vertical and two horizontal vectors. Secondly, we know how the
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derivatives behave in the four areas divided by the nullclines. For example, under the green line (ẏ = 0) and
above the blue line (ẋ = 0) we know that ẋ ≥ 0 and ẏ ≥ 0, meaning that the direction of the vectors here point
upward right. For all four different areas this gives us the direction of the vector field.

Figure 3.6: Trapping region of the system.

We know that all vectors point into the trapping region, except for the diagonal line from (Q, P+Q
Q ) to the x-axis

with slope -1. We want to show that the vector field here points inward too. For this, consider x very large.

Then Ẋ and Ẏ from (3.5) become ẋ ≈ x2 y andẏ ≈−x2 y , with the direction ẏ
ẋ =−1. So, for large x we know that

the vector field is almost parallel to the diagonal line of the trapping region. To actually know how parallel
this is, we compare ẋ and −ẏ . This to see the difference between the two equations, so we get: ẋ − (−ẏ) =
Q−(P +1)x+x2 y +P x−x2 y = Q−x. Meaning that −ẏ > ẋ if x >Q. For the whole of the diagonal line we have

that x > Q, meaning that −ẏ > ẋ and we thus have that ẏ
ẋ is more negative than -1. Implying that the vector

field points inward. Thus, we have constructed a trapping region!

One of the conditions of the Poincaré-Bendixson theorem is that there is no fixed point in the trapping region.
Let there be a very small hole in the trapping region at the fixed point (x, y) = (Q, P

Q ). If we have that this fixed
point is an unstable point, repelling the solution, we have satisfied all conditions for the Poincaré-Bendixson
theorem:

• All boundaries of the trapping region have inward pointing vectors, making sure that all trajectories
stay in the region.

• There are no fixed points in region R.

The only question left, is when this fixed point is unstable and thus when the Poincaré-Bendixson theorem is
applicable.
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From earlier analysis of the model we know that for the equilibrium
point (x, y) = (Q, P

Q ) we have λ1,2 = 1
2 (Tr ace(J )±p

∆) from (3.4) for the
Jacobian evaluated at this equilibrium point. The equilibrium point is
unstable if Tr ace(J ) > 0. Our fixed point is a repeller if Tr ace(J ) = P −
1−Q2 > 0. The dividing line for this is P = 1+Q2, giving us the line in the
figure on the right. Under this line we have a stable fixed point, where
the theorem is not satisfied and we do not have limit cycles. Above
the line we have satisfied all conditions of the theorem, thus proving
that there are stable limit cycles here. We have proved the existence of
oscillating behaviour in our model! Figure 3.7: P versus Q, location of stable

limit cycles.

3.4. Bifurcation Search

In figure 3.8a, P and Q are varied to see what happens to the eigenvalues of the system. This is done using the
two conditions that followed out of expression 3.4. The blue region shows where the eigenvalues are complex
applying the first condition, the orange region shows where the fixed point is stable, using the second con-
dition. There is some overlap between the regions, meaning that there are stable fixed points with complex
eigenvalues. The black line is interesting to look at. This line is plotted where Tr ace(J ) = 0 (1) and ∆< 0 (2).
In practise this translates to P −1−Q2 = 0 and (P −1−Q2)2 −4Q2 < 0. If P −1−Q2 = 0, the second expression
becomes −4Q2 < 0. This always holds. Meaning that the black line is plotted where P −1−Q2 = 0. On the
black line, the eigenvalues are purely imaginary. And thus there should be a Hopf bifurcation around there.
According to this plot, the eigenvalues are purely imaginary at (Q,P) = (1,2).

(a) Coloured regions for complex eigenvalues and for stable
eigenvalues and a line stating a Hopf bifurcation for various P and Q

values.
(b) The real and complex part of the eigenvalues of the model at its

equilibrium point, with fixed Q = 1 and a varying P value.

Figure 3.8: Combined stability and eigenvalue plots.

Let’s zoom in on this case of (Q, P) = (1,2). To do this, we fix Q = 1 and vary P from 0 to 6. In figure 3.8b we can
see that indeed at P = 2, the eigenvalues only have a complex part.

3.4.1. Oscillating Behaviour

We are looking for oscillating behaviour in the Brusselator model. While we verified one certain case of os-
cillating behaviour, we did not have a general idea of the behaviour of the model. By analysing the system
of differential equations we have now found that a Hopf bifurcation occurs when P −1−Q2 = 0. We found a
Hopf bifurcation at (Q,P) = (1,2). In the figure below we see the phase plot of the system at a fixed value of Q
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= 1, while P takes on the values 1.5, 2 and 3.

The equilibrium point of the system depends on the values of the parameters, so the equilibrium points
moves as parameters are varied. For P = 1.5 we see a stable equilibrium point. For P = 2, we know we have
a Hopf bifurcation and thus purely complex eigenvalues and thus a centre. Our bifurcation analysis is done
on a linearised system, which is a good approximation of the actual non-linear system we have. For P = 2 we
would expect there to be only a center, but because we also have a non-linear part in the system, the solution
already behaves like a limit cycle. Lastly, when B moves even further along to P = 3, we see a cycle. So we have
found oscillating behaviour and we now know when it occurs.

(a) Concentration plot with Q = 1 and P = 1.5. (b) Phase plot with Q = 1 and P = 1.5. (c) Concentration plot with Q = 1 and P = 2.

(d) Phase plot with Q = 1 and P = 2. (e) Concentration plot with Q = 1 and P = 3. (f) Phase plot with Q = 1 and P = 3.

Figure 3.9: Concentration and phase plots for Q = 1 and P varying from P = 1.5, 2, 3. The red lines in the concentration plots represent
the concentration of X, the blue line the concentration of Y.



4
Continuous Stirred-Tank Reactor Model

In Chapter 3 we looked at the behaviour of the Brusselator. The model that was analysed is a fairly simple
model, not entirely a realistic way of modelling the behaviour of such a system. We assumed that the model
was executed in a batch reactor, where we then assumed that there was a constant amount of components A
and B. As a result of this assumption we only tracked the concentration of X and Y in the time. In this chapter
we will expand the Brusselator model by changing the type of reactor the reactions take place in. Instead
of a batch reactor, a continuous stirred tank reactor will be used. This reactor type has a constant inflow of
products, so the concentrations of A and B are not constant anymore. We will try to find oscillating behaviour
in this newly updated model.

4.1. Continuous Stirred-Tank Reactor

A continuously stirred-tank reactor (CSTR) is a common used reactor
for chemical reactions. In this reactor, the fluids present are contin-
uously stirred. They are mixed sufficiently fast, that it doesn’t matter
where you measure the composition in the reactor. Everywhere in the
reactor the components are in the exact same composition. It is also
possible to let components flow in and flow out of the reactor, as visu-
alized in Figure 4.1. The inflow of new reactants influences the com-
position of the fluids, but does not influence one position in particular.
The composition differs in the inflow pipe, as the new substances are
added here. But because of the continuing stirring, the inflow is mixed
immediately into the already existing fluids. The outflow pipe has the
same composition of components as the mixture in the reactor [10].
In this model we will only make use of inflow. There will be an inflow
of certain components into the composition with a constant rate. As
there is one inflow pipe, we can have only one rate of inflow. We will
call the inflow rate Q ([s−1]), where Q is constant. All components be-
ing brought in the reactor will have an inlet rate of Q multiplied by the
initial amount of moles of the component. Because of the inflow and
no outflow, we will not have a constant reaction volume.

Figure 4.1: A CSTR modelled.

4.2. The Updated Model

The main change in the model is the reactor type, which translates to two changes in the mathematical model.
Firstly, we will model all four components (X, Y, A and B) instead of only X and Y. And secondly, we will add an

19
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inflow of components A and B with a constant rate. Before we can look at the differential equations, we need
to establish the assumptions of the model.

4.2.1. Assumptions

Some assumptions from Section 3.1.1 can be applied again. This, with our newly added assumptions, gives
us the following list of assumptions:

• A, B, X, Y, D, E are in R≥0. As A, B, X, Y, D and E are all concentrations, they cannot be negative and have
continuous values.

• D and E are not of influence. Because D and E are only products of the reactions and not used further,
we do not consider them in the model.

• k1 = k2 = k3 = k4 = 1. When looking at the model numerically before analysing it, we will assume all
reaction rates are equal to 1.

• All components are homogeneously distributed over the reaction volume. The reactor continuously
stirs the components, so we can assume all components are evenly distributed. Meaning that we can
eliminate the dimension of space.

• Q in R≥0 constant. Q, the inflow rate, is a continuous constant number, dictating the amount of inflow
of all components.

• The changes in reaction volume will be ignored.

4.2.2. System of Differential Equations

In Chapter 3 we modelled only the concentrations of X and Y, as we assumed all other components to have
a constant concentration. Now, we will model X, Y, A and B. This gives us a four dimensional system. The
equations for X and Y remain the same as in (3.1). We will add the equation for A and B using the same
method as in Section 2.1. This gives us the following system:

d X

d t
= k1 A−k2B X +k3X 2Y −k4X ,

dY

d t
= k2B X −k3X 2Y ,

d A

d t
=−k1 A,

dB

d t
=−k2B X .

We have not yet added the inflow of components A and B. We have already established that the flow rate Q
will determine the amount of new reactant. Q is a ratio, based on the initial amount of moles of a component
(inflow), in this case, A0 and B0. Meaning that for the concentration of inflow of A we have to add Q A0 to the
equation, modelling the constant inflow of A into the reactor. We do the same for B.

This yields the following system of differential equations:
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d X

d t
= k1 A−k2B X +k3X 2Y −k4X ,

dY

d t
= k2B X −k3X 2Y ,

d A

d t
=−k1 A+Q A0,

dB

d t
=−k2B X +QB0.

(4.1)

4.2.3. Behaviour

To get an initial idea of the model’s behaviour, we can numerically approximate the model again in Matlab.
Here we use our assumption of ki = 1 for all i = 1,2,3,4. We also assume that X (0) = 0, Y (0) = 0, A(0) = A0,
and B(0) = B0, where we can vary A0 and B0. We do not yet have an idea about the value of Q. Meaning that
we now have three uncertain parameters, A0, B0 and Q; and four assumed parameters k1 = k2 = k3 = k4 = 1.
Again the Forward Euler method is used, now with four equations instead of two. The equations are of the
same form as the equations in Section 3.1.3.

In Chapter 3 we knew where to look, now we will need to find the oscillating behaviour on our own.

(a) Concentration plot with Q = 0.5, A0 = 1 and
B0 = 1.

(b) Concentration plot with Q = 0.5, A0 = 2 and
B0 = 2.

(c) Concentration plot with Q = 1, A0 = 1 and
B0 = 3.

(d) Concentration plot with Q = 1, A0 = 2 and
B0 = 1.

(e) Concentration plot with Q = 1, A0 = 2 and
B0 = 3.

(f) Concentration plot with Q = 2.5, A0 = 3 and
B0 = 2.

Figure 4.2: Concentration plots for different inflow rates and initial values.

In Figure 4.2 you see six different cases with various values for inflow Q and initial conditions for A and B.
All these plots look different. The first plot contains oscillating behaviour for Q=0,5, but the plot next to it
with the same Q-value does not display the same behaviour. Other parameter value combinations generate
divergent behaviour, quickly converged behaviour and a single oscillation. There does not seem to be a logic
behind the oscillating behaviour, so we do not yet know where to look.
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4.3. Analysis

To get a better idea of where to look for the oscillating behaviour, we’ll analyse the model. Because the model
is four dimensional now instead of two dimensional, we cannot use the Bendixson’s Criterion or the Poincaré-
Bendixson theorem. We will have to find the behaviour using other techniques. First, let’s simplify the model.

4.3.1. Nondimensionalisation

Right now we have seven undetermined parameters in the model. To reduce this, we can nondimensionalise
the system. We first scale the concentrations and the time with the following scaling factors:

X ∗ = X
X0

, Y ∗ = Y
Y0

, A∗ = A
A0

, B∗ = B
B0

, t∗ = t
t0

.

After scaling and setting t0 = 1
k4

, we get the following equations:

d X ∗

d t∗
= k1 A0

k4X0
A∗− k2B0

k4
B∗X ∗−X ∗+ k3X0Y0

k4
X ∗2Y ∗,

dY ∗

d t∗
= k2B0X0

k4Y0
B∗X ∗− k3X 2

0

k4
X ∗2Y ∗,

d A∗

d t∗
= Q

k4
− k1

k4
A∗,

dB∗

d t∗
= Q

k4
− k2X0

k4
B∗X ∗.

(4.2)

To simplify this further, we need an expression for X0, Y0, A0 and B0. To do this, we will make the term

before X ∗2Y ∗ equal to 1. This results in an expression for X0 and Y0:
√

k4
k3

. If we then look at the differential

equations for X ∗ and A∗ in (4.2), we find that X0 should be equal to A0. This to get the k1 A0
k4 X0

A∗ from X ∗ to be

equal to the k1
k4

A∗ from A∗. To get an expression for B0, we equate the term containing B0 in the equation of

X ∗ to 1: k2B0
k4

.

This all yields the following expressions:

X0 = Y0 = A0 =
√

k4
k3

, B0 = k4
k2

.

Substituting these expressions yields the following simplified system:

d X

d t
= Ẋ = p A−X −B X +X 2Y ,

dY

d t
= Ẏ = B X −X 2Y ,

d A

d t
= Ȧ = r −p A,

dB

d t
= Ḃ = r − sB X ,

p = k1

k4
,

r = Q

k4
,

s =
√

k2
2

k4k3
.

(4.3)

4.3.2. Linearising the System

The system has three parameters now, instead of the seven we had before in (4.1). This is looking very nice.
To analyse the system, we first need the Jacobian matrix:
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J =


2X Y −B −1 X 2 p −X

B −2X Y −X 2 0 X
0 0 −p 0

−sB 0 0 −sX

 .

To be able to say anything about the stability, we need to evaluate the Jacobian at the equilibrium point(s) of
the system. When equating all equations to zero, we first get a possibility where X=0. But, when looking at the
equation for A, we see that this would mean that r = 0. r can only be 0 if Q = 0. By definition, Q cannot be zero.
Thus we disregard this option. One other point is found: (X ,Y , A,B) = (r, 1

sr , r
p , 1

s ). The Jacobian evaluated at
this point is then:

Jeq =


1
s −1 r 2 p −r
− 1

s −r 2 0 r
0 0 −p 0
−1 0 0 −r s

 . (4.4)

4.3.3. Assessment of Eigenvalues

In Chapter 3 we could express the eigenvalues of the Jacobian in a very convenient way. Expression (3.4)
made it easier to analyse the eigenvalues and to find out where the oscillating behaviour takes place. As the
Jacobian is a four dimensional matrix now, we need a different formula. For this, we define the following four
expressions, where S2 and S3 are sort of sub determinants:

S1 =λ1 +λ2 +λ3 +λ4 = Tr ace(Jeq ) = T,

S2 =λ1λ2 +λ1λ3 +λ1λ4 +λ2λ3 +λ2λ4 +λ3λ4,

S3 =λ1λ2λ3 +λ1λ2λ4 +λ1λ3λ4 +λ2λ3λ4,

S4 =λ1λ2λ3λ4 = Det (Jeq ) = D.

(4.5)

The following proposition is formulated with these expressions, to find where a Hopf bifurcation can arise:

Proposition 4.1 (Hopf Bifurcation in a 4-dimensional System) A Hopf bifurcation generally arises if and only
if

S2 = S3

T
+ DT

S3
(4.6)

and S3 and T have the same sign [11].

The exact proof for this proposition can be read in [11], but we can get a feeling of the idea of the proof
easily. The proof relies on using the characteristics of the eigenvalues at a Hop-Bifurcation. Suppose we
have eigenvalues λ1,λ2,λ3 and λ4, where λ1 and λ2 cross the imaginary axis, giving them the following form:
λ1,2 =±bi , with b ∈ R and b ̸= 0. Then we know that λ1 +λ2 = 0 and λ1λ2 = b2 > 0. We can update equations
(4.5) to the following:

S1 =λ3 +λ4 = T,

S2 =λ3λ4 +b2,

S3 = b2T,

S4 = b2λ3λ4 = D.

We can rewrite S2 = λ3λ4 +b2 to b2 + D
b2 . To make this an expression only containing T,S2,S3 and D instead

of b2, we rewrite it to the following: S2 = S3
T + DT

S3
. This expression only depends on the ’sub determinants’,

meaning that we could do a general analysis of Hopf-Bifurcation locations with undetermined parameters.
S3 and T have to have the same sign to make sure that the fraction S3

T representing b2 is always a positive
number.
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Because we are looking at a four dimensional system now, we get four eigenvalues out of the Jacobian. This
means that there is a possibility for two conjugate pairs of complex eigenvalues to cross the imaginary axis at
the same time, this would be a double Hopf bifurcation:

Definition 4.2 (Double-Hopf Bifurcation) A double Hopf bifurcation occurs in a four dimensional system if
λ1 = bi , λ2 =−bi , λ3 = di and λ4 =−di , with b,d in R [11].

A double Hopf-Bifurcation means that two Hopf-Bifurcation curves intersect. So, because of certain param-
eter values, you have two pairs of conjugate eigenvalues crossing the imaginary axis. The cycles these axis-
crossing pairs create, intersect with each other. So while one pair of eigenvalues is creating a limit cycle,
the other pair of eigenvalues generates another limit cycle at the same time. In the figure below you see the
concentration and phase plots of a system that has a case of parameters where there occurs a double Hopf-
Bifurcation.

(a) Concentration plot of a double Hopf-Bifurcation. All elements are
oscillating.

(b) Phase plot of a double Hopf-Bifurcation, showcasing the
concentration of three of the four molecules present. There is a clear

limit cycle visible.

(c) The same phase plot as before, but oriented differently. When only
looking at the concentration of components X and Y, you see the limit

cycle as we’ve always seen in a single Hopf-Bifurcation.

(d) The same phase plot, now oriented slightly different. Here you
can clearly see that there is a stable limit cycle, around which another

cycle oscillates. This is the double Hopf-Bifurcation.

Figure 4.3: In these (differently) oriented phase plots of a system with a double Hopf-Bifurcation you can clearly see how the double
Hopf-Bifurcation behaves. In the concentration plot you see that the concentrations of all components are oscillating.

As can be seen in Figure 4.3, a double Hopf-Bifurcation is one limit cycle around which another limit cycle
seems to circle. The chance of a double Hopf-Bifurcation is very small, as there has to be a parameter combi-
nation for which all four eigenvalues have a real part equal to zero. As can be seen in Jacobian (4.4), one of the
eigenvalues will always be λ=−p. As p is a real number, it is never possible to have eigenvalues as stated in
Definition 4.2. Thus there will never occur a double Hopf bifurcation in this system, no matter the parameter
changes.
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Because of the complexity of the Jacobian (4.4), we get too complex expressions for the eigenvalues to analyse
them. Fortunately, Matlab can help us with this.

4.4. Bifurcation Search

Looking for oscillating behaviour, we have three parameters we can vary: p, r and s, the parameters we found
in Section ((4.3.1)). We want to have two conjugate eigenvalues such that the real part is zero and the imagi-
nary part not equal to zero. Because we have a four dimensional system, there is no easy way to express the
eigenvalues like we did in Chapter 3 and to get a nice formula for the Hopf-bifurcation locations. To still be
able to analyse the eigenvalues, we use Matlab. You can find the Matlab code in Appendix B.2. The plots in
Figure 4.4 are generated using Proposition 4.1. For every combination of p, r and s the Jacobian matrix is set
up, the eigenvalues are computed and the proposition is checked. If the eigenvalues comply with the propo-
sition, there is a Hopf-bifurcation possibility and a black dot is put on this s, p, r combination. The stability
of the eigenvalues and whether they are complex or not is checked too. Because this analysis is done on a
generated grid, we get an estimation of all regions and points. Because of this we cannot draw a perfect line,
but place dots on the grid points as close to the correct values as possible. The parameter ranges for s, p and
r are visually determined, all necessary information is accessible when the parameters range from 0 to 4. All
this information together creates the following figures:

(a) Regions for s versus r with p = 1.

(b) The smallest eigenvalue, both the real and complex part,
for the specific case of s = 0.8. The real part of the eigenvalue
crosses the imaginary axis at the black dashed vertical line.

(c) Regions for s versus p with r = 1.

(d) The smallest eigenvalue, both the real and complex part,
for the specific case of s = 1. The real part of the eigenvalue
crosses the imaginary axis at the black dashed vertical line.

Figure 4.4: In the plots on the left, the orange region shows where the eigenvalues are stable, the blue region shows where (some)
eigenvalues are complex. When these two regions overlap, you get a brown colour. The black dots show where the real part of the

eigenvalues crosses the imaginary axis. The plots to the right show the eigenvalues for a specific case of the plots on the left.
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From these plotted Hopf-Bifurcation locations we can draw some conclusions. The most interesting plot is
parameters s versus r, as we can see a curve in this plot. On this black ’line’ the real part of the eigenvalues
is (almost) zero. Meaning that when eigenvalues cross from above this line to under this line, they cross the
imaginary axis and the stability of the equilibrium point shifts from stable to unstable. Thus creating the
possibility for a limit cycle. The second plot, parameters s versus p, tells us that the p-value does not matter
much for the Hopf-Bifurcation location. For r = 1 and s ≈ 0.75 we have a Hopf-Bifurcation for all p-values.
The placement of the black line is backed up by the plots of the eigenvalues in Figure 4.4. The real part of the
eigenvalues crosses from positive to negative when there appears a black dot in the region plots.

In Figure 4.4 we see the stability regions and Hopf-Bifurcation locations for either a fixed p-value or a fixed
r-value. What happens if this parameter is varied? To visualise this, in the figure below we see the region
and Hopf location plots with various p-values and r-values. These plots were generated with a much smaller
grid, meaning that they are less accurate about the actual Hopf-Bifurcation location placement. Despite the
inaccuracy, we can still see how the plots change when the fixed parameter is varied.

(a) r = 0.5 (b) r = 1 (c) r = 1.5 (d) r = 2

Figure 4.5: Stability regions and Hopf-Bifurcation locations on a small grid for parameters s versus p with varying r value.

In Figure 4.5 the r-value is varied to see the effect on the Hopf-Bifurcation locations. When r becomes larger,
the Hopf-line shifts to the left. From this plot we can conclude that the p-value really does not influence the
Hopf-Bifurcation locations. There is a correlation between r and s. In the figure below we see this verified,
where varying the p-value does not change the relation between s and r.

(a) p = 0.5 (b) p = 1 (c) p = 1.5 (d) p = 2

Figure 4.6: Stability regions and Hopf-Bifurcation locations on a small grid for parameters s versus r with varying p value.

Combining all the information of the two dimensional plots,
we can create a three dimensional plot containing all Hopf-
Bifurcation locations (Figure 4.7). Here we should still see
that the p-value does not influence these locations and see
a curved relation between parameters s and r.
In Chapter 3 an analytical solution was found as to when
the Hopf-Bifurcation takes place. Because the system is four
dimensional this has become much harder. In theory it is
possible to solve the characteristic polynomial of the eigen-
values generally and extract the information necessary for a
Hopf-Bifurcation, but the result would not be interpretable
anymore. Figure 4.7: Three dimensional space for parameters s,

p and r. The red dots represent a Hopf-Bifurcation
location.
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4.4.1. Oscillating behaviour

Now that we have done extensive research on the locations of oscillating behaviour, we can numerically find
the oscillating behaviour again. From Figure 4.7 we can extract the points where this oscillating behaviour
takes place. In Section 3.3 we have seen that after the eigenvalues cross the imaginary axis, the oscillating
behaviour takes place where the equilibrium point is unstable. Meaning that we have to look in the region
where not all of the eigenvalues have negative real part. In Figure 4.4 this would be the side of the black line
where the orange region has stopped. Here the eigenvalues are still complex, but not negative anymore. Let’s
choose some points from Figure 4.7 and plot the different cases of parameters numerically. Two cases of
oscillating behaviour would be (p, s,r ) = (1,1.5,0.2) and (p, s,r ) = (1,1,0.6). One case approaching the Hopf-
bifurcation line is (p, s,r ) = (1,0.75,1.2). The last case is not oscillating at all: (p, s,r ) = (1,2,1).

(a) Concentration plot; p = 1, s =
1.5, r = 0.2 (b) Phase plot; p = 1, s = 1.5, r = 0.2

(c) Concentration plot; p = 1, s =
1, r = 0.6 (d) Phase plot; p = 1, s = 1, r = 0.6

(e) Concentration plot; p = 1, s =
0.75, r = 1.2

(f) Phase plot; p = 1, s = 0.75, r =
1.2

(g) Concentration plot; p = 1, s =
2, r = 1.5 (h) Phase plot; p = 1, s = 2, r = 1.5

Figure 4.8: Four cases of parameter values and their concentration and phase plots. The first two cases (a - d) are oscillating. The third
cases (e - f) is approaching the Hopf-Bifurcation line. The last case (g - h) is not oscillating at all.

4.5. Modelling Outflow

Instead of only allowing inflow into the reactor, adding outflow would also be interesting. This would mean
that at all times at rate Q some fluids are led out of the reactor. In the case of our model we could add outflow
to A and B. The inflow and outflow rate is the same value Q, meaning that the inflow is going at the same rate
as the outflow. Adding this outflow gives us the following system of equations:

d X

d t
= k1 A−k2B X +k3X 2Y −k4X ,

dY

d t
= k2B X −k3X 2Y ,

d A

d t
=−k1 A+Q A0 −Q A,

dB

d t
=−k2B X +QB0 −QB .
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Using the exact same steps for nondimensionalising as in Section 4.3.1, we get the updated system:

d X

d t
= Ẋ = p A−X −B X +X 2Y ,

dY

d t
= Ẏ = B X −X 2Y ,

d A

d t
= Ȧ = r −p A− r A,

dB

d t
= Ḃ = r − sB X − r B.

This system has one equilibrium point: (X ,Y , A,B) = ( r
p+r , p+r

p+r+ps , pr
p+r , o2+2pr+r 2

pr 2+p2r+p2r s
). When analysing this

system with the same approach as in Section 4.4, there seem to only be stable eigenvalues. Meaning that the
real part of the eigenvalues always is negative and there is no possibility for a Hopf-bifurcation to occur. In
the figure below you only see an orange region, which indicates that all eigenvalues are real and negative.

Figure 4.9: Stability region plot for very small r value against s, with fixed p = 1. The orange region indicates that all eigenvalues for all
combinations of r and s are stable.

An apparent problem could be d A
d t . Molecule A is the initiator of the system; molecule A starts the production

of component X, which is half of the reason for the oscillating behaviour. With the newly added outflow to
d A
d t , the only adding factor of d A

d t is the inflow, now variable r. There seems to not be enough of molecule A
left over to initialize the production of X. Even when varying parameter r from 0 to 0.01, there is no unstable
eigenvalue in sight. Unfortunately, we do not find any oscillating behaviour when adding outflow to the
Brusselator model.
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Oregonator

In this chapter, we will model another theoretical model describing chemical reactions. The Oregonator is a
model describing an oscillating chemical system. It is a simpler form of the Belousov-Zhabotinsky reaction
still displaying oscillating behaviour. Six components make up the reactions: A, B, X, Y, Z and P. The following
five reactions describe the Oregonator:

A+Y
k1−−→ X+P,

X+Y
k2−−→ 2P,

A+X
k3−−→ 2X+2Z,

2X
k4−−→ A+P,

B+Z
kc−−→ 1

2
f Y.

(5.1)

The f in the fifth reaction is a yet undetermined stoichiometric coefficient, meaning that f ∈ N≥0. Setting f
determines how much of Y is produced by B and Z in the last reaction. In the Brusselator model it was easy to
see which reactions of the system cause the oscillating behaviour. Here it is less obvious. First, as initiator of
the cascade, Y produces X. Then X leads to Z and more X in the third reaction. The fifth reaction transforms Z
into Y again. As these three reactants all produce each other again, we can search for oscillating behaviour.

We will model the Oregonator in a batch reactor in this chapter. For more information on the batch reactor,
see Chapter 3.

5.1. Rate Constants

The Belousov-Zhabotinsky reaction is very complicated and contains over 18 different steps. To be able to
analyse this system, a simplified version was extracted: the FKN mechanism. The FKN mechanism still
contains 11 reactions and 12 different components. So, an even simpler version was created: the Orego-
nator. Only five reactions and six components left. Because the Oregonator is an extraction of the widely
researched FKN mechanism, we have some information about the parameters in the model. Field and Noyes,
two chemists, published their findings in [4]. From this we know the following:

k1 = 2M−3s−1[H+]2,
k2 = 3∗106M−2s−1[H+],
k3 = 42M−2s−1[H+],
k4 = 3∗103M−1s−1[H+].

Table 5.1: Rate coefficients for the Oregonator, retrieved from the FKN mechanism

29
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With these parameter ranges the Oregonator model is a pretty good approximation of the more complex BZ-
reaction mechanism. Here [H+] is the concentration of H+ in the FKN mechanism, a constant concentration.
From the article on the Oregonator itself [6] we know that realistically for the Oregonator the [H+] value
ranges from 0.1 to 2 M. All parameters ranges include [H+] ∈ (0.1−2)M , kc ∈ (0.1−10)M−1s−1, f = 0,1,2,3
and A,B ∈ (0.01−1)M . We will use these parameter ranges in the modelling of the Oregonator.

5.2. The Model

To see how the model behaves we will transform the system into differential equations again. We will model
the concentrations of components X, Y and Z. Before we can do this, we need some assumptions.

5.2.1. Assumptions

The following assumptions are made:

• A, B, X, Y, Z, P are in R≥0. As A, B, X, Y, Z and P are all concentrations, they cannot be negative and have
continuous values.

• A and B are constants. There is an abundance of these molecules present, meaning that the change in
concentration for A and B is almost zero over time.

• P is not of influence. P is a product of the reaction and is not used further.

• All parameters will be in the ranges as defined in Section 5.1.

• All components are homogeneously distributed over the reaction volume. The batch reactor stirs the
reaction, so all molecules are evenly distributed over the reactor. Because of this we can eliminate the
dimension of place from the system.

• The reaction volume is constant. The batch reactor is a closed system, there is no in- or outflow. Be-
cause of the law of Conservation of Mass, as stated in Definition 2.1, the reaction volume will stay
constant.

5.2.2. System of Differential Equations

We first need to convert the chemical reactions into differential equations. We do this in the same way as
we did for the Brusselator, which can be read in Section 2.1. From every chemical reaction a reaction rate is
derived:

Reaction i Reaction rate i Rate constant i

A+Y
k1−−→ X+P v1 = k1 AY k1 : [M−1s−1]

X+Y
k2−−→ 2P v2 = k2X Y k2 : [M−1s−1]

A+X
k3−−→ 2X+2Z v3 = k3 AX k3 : [M−1s−1]

2X
k4−−→ A+P v4 = k4X 2 k4 : [s−1]

B+Z
kc−−→ 1

2 f Y v5 = kc B Z kc : [M−1s−1]

Table 5.2: Reaction rates for all five reactions of the Oregonator.
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Which yields the following system of differential equations:

d X

d t
= k1 AY −k2X Y +k3 AX −2k4X 2,

dY

d t
=−k1 AY −k2X Y + 1

2
kc f B Z ,

d Z

d t
= 2k3 AX −kc B Z .

(5.2)

We assumed component P to not be of influence, which is why P is not represented in this system. The system
is quite straightforward, but let’s take a closer look at the −2k4X 2 in d X

d t and the 2k3 AX in d Z
d t . The reaction

rates are multiplied by two, this is because either two times the reactant is used (2X −−→ A+P) or two products
are produced (A+X −−→ 2X+2Z).

5.2.3. Behaviour

Let’s first look at a numerical approximation of the model. There are eight parameters and three initial con-
ditions to set before being able to get a result. In the article on the Oregonator model [6] parameters are
provided for a case of oscillating behaviour. For this we set the following parameter values: A = 0.06M ,
B = 0.02M , [H+] = 0.8M , kc = 1M−1s−1, f = 1 and X (0) = Y (0) = Z (0) = 1. With the value of [H+] and
the expressions from Table 5.2 the values for k1,k2,k3 and k4 can be computed. With these parameters we get
the following behaviour:

(a) Concentration plot of the Oregonator. (b) Phase plot of the Oregonator.

Figure 5.1: Plots of the Oregonator with certain parameter values.

In the concentration plot in Figure 5.1a you can clearly see the periodic behaviour of the concentrations. It is
interesting to note that the values are all very small in comparison to what we saw earlier with the Brusselator.
In Figure 5.1b you can see that the phase plot contains a three dimensional limit cycle. It starts a little above
this cycle, but eventually tends towards the cycle.

5.2.4. Numerical Method

The numerical method used on the Brusselator (Forward Euler method) does not work very well on the Oreg-
onator. We can classify (5.2) as stiff equations: differential equations for which a numerical method is unsta-
ble, unless a really small step size is taken. The result of the Forward Euler method for the Oregonator was
very unclear, it is an unstable method for this system of equations. To solve this problem, a stiff ordinary
differential equations solver is used in Matlab: ode15s.

Ode15s is an ordinary differential equations (ode) solver specifically for stiff ode’s. There are two major differ-
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ences towards the Forward Euler method. Firstly, the Forward Euler method is an explicit method: calculating
the next step based on the current step. Ode15s is an implicit method: solving the whole system based on the
current position and the next step. For every time step the system has to be solved again. This is computa-
tionally costly in comparison to an explicit method. Secondly, ode15s uses an adaptive step size. Instead of
always using the same fixed time step like the Forward Euler method, it adjusts the step size based on certain
thresholds. The user can set the tolerated relative and absolute error of the system. If the relative error or the
absolute error is higher than the set allowed threshold, the time step is taken smaller and the system is solved
again for this time step. Only if the error values are below the tolerated error value, the solver continues to
the next step. The relative error is the error relative to the magnitude of the solution. The error is estimated
by the estimated local truncation error, which is based on the step size. Meaning that if your estimated error
is too high, it will become smaller if the step size is smaller.

Ode15s is a trade-off between computational cost (small time steps mean more computations) and accuracy
(more time steps result in a better numerical method). The model we are approximating with this method is
not very complex and is not very computationally expensive, meaning that we can opt for accuracy.

5.3. Analysis

5.3.1. Nondimensionalisation

We have eight undetermined parameters in our model: five rate coefficients, two constant components and
one stoichiometric coefficient (f ). To reduce this, we nondimensionalise the system. We first scale the con-
centrations and the time with the following scaling factors:

X ∗ = X
X0

, Y ∗ = Y
Y0

, Z∗ = Z
Z0

, t∗ = t
t0

.

After scaling and setting t0 = 1
kc B = 1

[M−1s−1][M ]
= 1

[s−1]
, we get the following equations:

d X ∗

d t∗
= Ak3

Bkc
X ∗− 2k4X0

Bkc
X ∗2 − k2Y0

Bkc
X ∗Y ∗+ Ak1Y0

Bkc X0
Y ∗,

dY ∗

d t∗
= f Z0

2Y0
Z∗− Ak1

Bkc
Y ∗− k2X0

Bkc
X ∗Y ∗,

d Z∗

d t∗
= 2Ak3X0

Bkc Z0
X ∗−Z∗.

(5.3)

To simplify this further, we need an expression for X0, Y0 and Z0. Instead of equating the highest order to 1 like
before, two other parameters (ϵ and ϵ′) are introduced, to be read in [6]. We will use the following expressions
for X0, Y0 and Z0:

X0 = Ak3
2k4

, Y0 = Ak3
k2

, Z0 = (Ak3)2

Bk4kc
.

Substituting these expressions yields the following simplified system:

d X

d t
= ϵẊ = qY −X Y +X −X 2,

dY

d t
= ϵ′Ẏ =−qY −X Y + f Z ,

d Z

d t
= Ż = X −Z ,

q = 2k1k4

k2k3
,

ϵ= kc B

k3 A
,

ϵ′ = 2kc k4B

k2k3 A
.

(5.4)

5.3.2. From a 3-dimensional to a 2-dimensional System

Right now we have a three dimensional system, tracking the concentrations of X, Y and Z. The changes in
concentration of Y are all multiplied by ϵ′, as derived in (5.4). With the assumed parameter values and the
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definition of ϵ′, ϵ′ will become very small compared to the other parameters and variables in the system. The
expression of ϵ′ with filled in k2 and k4 values, becomes:

ϵ′ = 2kc k4B

k2k3 A
= 2k4

k2
ϵ= 2

103 ϵ.

Because ϵ′ is relatively small compared to ϵ, we can neglect the influence of Y and assume it is already in
steady state:

dY

d t
= 0 → Yeq = f Z

X +q
.

Substituting the steady state of Y into the nondimensionalised system (5.4) yields the following 2-dimensional
system:

d X

d t
= Ẋ = 1

ϵ

(
X (1−X )− f Z (X −q)

X +q

)
,

d Z

d t
= Ż = X −Z .

(5.5)

We will namely analyse the 2-dimensional system in this Chapter. In Section 5.2.3 we looked at a very specific
case of parameter values where oscillating behaviour arose. Let’s see if it still oscillates with the 2-dimensional
system.

(a) 2 dimensional concentration plot of the Oregonator. (b) 2 dimensional phase plot of the Oregonator.

Figure 5.2: 2 dimensional plots of the Oregonator with certain parameter values.

Because the influence of Y was already very small the 2-dimensional system still oscillates at these parameter
values!

5.3.3. Linearising

To analyse the system we will linearise it around its equilibrium points. Let’s first get the general Jacobian of
the system:

J =
[

1
ϵ

(
−2X + f Z

X+q − f Z (X−q)
(X+q)2

)
1
ϵ

(
f (X−q)

X+q

)
1 −1

]
.

Equating the differential equations generates the following three equilibrium points:

(xeq1 , zeq1 ) = (0,0),

(xeq2 , zeq2 ) =
(

1

2

(
−

√
2q −2 f +6 f q + f 2 +q2 +1−q − f +1

)
, xeq2

)
,

(xeq3 , zeq3 ) =
(

1

2

(√
2q −2 f +6 f q + f 2 +q2 +1−q − f +1

)
, xeq3

)
.
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As Z = X −Z , we always have that (xeq , zeq ) = (xeq , xeq ). So, there is only one equilibrium point relevant, the
last one. A point at the origin and a point with only negative X and Z values are chemically seen not interest-
ing. We will only look at the third point, which exists in the first quadrant and thus is a realistic equilibrium
point. The Jacobian evaluated at this point looks like:

Jeq =
 1
ϵ

(
f +q−S− f E1

E2
+ f E1E3

E 2
2

)
1
ϵ

(− f E3
E2

)
1 −1

 with

S =
√

f 2 +6 f q −2 f +q2 +2q +1,

E1 = S − f −q +1

2
,

E2 = S − f +q +1

2
,

E3 = S − f −3q +1

2
.

(5.6)

Because we still have three undetermined parameters we get a very complicated Jacobian.

5.4. Proof of Oscillating Behaviour

Before trying to find the oscillating behaviour, we can prove that the behaviour exists. We will first apply
Bendixson’s Criterion to see where there is a possibility for oscillating behaviour. We will then apply the
Poincaré-Bendixson Theorem on the region where we expect possible oscillating behaviour.

5.4.1. Bendixson’s Criterion

We will first apply Bendixson’s Criterion to see if it is even possible to have oscillating behaviour in our new
model. Recall the criterion as stated in Section 3.3:

Theorem 5.1 (Bendixson’s Criterion) Consider the system ẋ = g (x, y), ẏ = h(x, y) in R2. Suppose D is a simply

connected subset of R2 and (g,h) is continuously differentiable in D. If di v(g ,h) = ∇(g ,h) = d g
d x + dh

d y changes
sign in region D or if ∇(g ,h) = 0, only then can the system have periodic solutions.

The Bendixson’s Criterion only works on a two dimensional system. Thus we will only apply it to our two
dimensional version. Let’s consider our nondimensionalised two dimensional system:

d x

d t
= ẋ = 1

ϵ

(
x(1−x)− f z(x −q)

x +q

)
,

d z

d t
= ż = x − z.

(5.7)

We will apply Bendixson’s theorem to see whether there is a possibility of a periodic solution and if so, for
which f, ϵ and q values. We will do this for D(X,Z) = R2

≥0. We first need the divergence of the dynamic system.
Let g (x, y) = ẋ and h(x, y) = ż, then:

∇(g ,h) = d g

d x
+ dh

d y
= 1

ϵ

( − f z

x +q
+ f z(x −q)

(x +q)2 −2x +1−ϵ
)

. (5.8)

If ∇(g ,h) = 0, we immediately know that there is a possibility for oscillating behaviour. Unfortunately, this is
not the case. Now we need to investigate whether there occurs a sign change in ∇(g ,h) in (5.8). From Section
5.1 we know that q ∈ [0,0.1], f = 0,1,2,3 and ϵ ∈ (0,∞).

Let ∇(g ,h) = f̂ (x, z). To investigate occurrences of sign changes, we need to know where f̂ (x, z) = 0. Equating
f̂ (x, z) to zero yields:

f̂ (x, z) = 0 → l : z = −(2x +ϵ−1)(q +x)2

2q f
.
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Because of how line l is defined we cannot investigate where q = 0 or f = 0. All other cases are fine.

If we rewrite line l from a fraction to a polynomial we have l : z =
1

2q f (−2x3 + (1− 4q − ϵ)x2 + (2q − 2q2 − 2ϵq)x − ϵq2 + q2). This tells us
that the general form of line l, which is a negative cubic equation,
is of the form in Figure 5.3. We want to show that there is a sign
change in the first quadrant for certain parameter values. Because of
this cubic shape, we can conclude that if line l crosses the positive z-
axis, we can have a sign change. When crossing the positive z-axis,
we have x = 0. Let’s figure out when z(0) > 0 and thus crossing the
positive z-axis. From the polynomial form of z we can easily see that
z(0) = 1

f (q − ϵq) > 0 if ϵ < 1. If ϵ ≥ 1, there is no chance to have a sign
change in the first quadrant.

Figure 5.3: Shape of a negative cubic
equation.

We have narrowed down the parameters of looking for a sign change to q ∈ (0,0.1], f = 1,2,3 and ϵ ∈ (0,1).
Let’s find a point under line l and above line l to show that the points crossing line l change sign. We will show
that the points under the line are always positive and the points above the line always negative.

Let A : (x, z) = (0,1). Let’s first prove that point A is always above line l by showing that z(0) < 1. z(0) =
1
f (q −ϵq) < 1 → q < f

1−ϵ . As we assumed that q ∈ (0,0.1], this q-statement always holds. (x, z) = (0,1) is always

above line l. Let’s now fill in point A into (5.8). This yields: ∇(x, z) = ∇(0,1) = −2 f
qϵ + 1

ϵ −1. This expression is
always negative, given our assumed parameter values.

Lastly, let B : (x, z) = (0,0). We established earlier that z(0) > 0 if ϵ < 1. Which is assumed in the parameter
values. Meaning that point B is always under line l. ∇(x, z) =∇(0,0) = 1

ϵ −1, which is always positive.

We have now shown that with parameter assumptions q ∈ (0,0.1], f = 1,2,3 and ϵ ∈ (0,1) we always have a
sign change in the first quadrant, meaning that we could find oscillating behaviour here.

Let’s take a quick look at the cases where f = 0 or q = 0. Because of how we defined line l, we have not yet
concluded anything for these cases.

• If f = 0, ∇(x, z) becomes h : 1
ϵ (−2x +1− ϵ). This is a linear line, meaning that if h(0) > 0 there is a sign

change. h(0) > 0 if ϵ< 1. There is a sign change around line h for our assumed parameter values.

• If q = 0, ∇(x, z) becomes k : 1
ϵ

(− f z
x + f zx

x2 −2x +1−ϵ
)
. Simplifying line k gives line h, meaning that there

is also a sign change for q = 0.

5.4.2. Poincaré-Bendixson

Now that we know oscillating behaviour is a possibility, we can prove that it exists. Recall the Poincaré-
Bendixson theorem from Section 3.3:

Theorem 5.2 (Poincaré-Bendixson) Suppose that:

1. R is a closed, bounded subset of the plane;

2. ẋ = f(x) is a continuously differentiable vector field on an open set containing R;

3. R does not contain any fixed points, and

4. There exists a trajectory C that is ’confined’ in R; C starts in R and stays in R for all future time.

Then, either C is a closed orbit, or it spirals toward a closed orbit as t →∞. In either case, R contains a closed
orbit. [8]
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To prove that there exists a confined trajectory C, we will construct this trapping region R. We will show that
the vector field on the boundary of R always points inward, ensuring that all trajectories in R are confined. If
we then arrange that there are no fixed points in region R, attracting solutions, we ensure that there is a closed
orbit in R.

To construct the trapping region R, we want the nullclines of the nondimensionalised system (5.7). These
nullclines already provide us with some information about the vector field.

ẋ = 0 → z = (x +q)(x −x2)

f (x −q)
(5.9)

ż = 0 → z = x (5.10)

On the x-nullcline we know that the vector field is vertical, on the z-nullcline we know that the vector field is
horizontal. In the figure below you see the nullclines with their direction.

Figure 5.4: Nullclines of the system.

In Figure 5.4 you see that the nullclines cross three times, meaning that there are three equilibrium points. We
already saw this when analysing the model. Here you can see clearly that one equilibrium point has negative
x and z values and that one equilibrium point is located at the origin. We will only focus on the equilibrium
point located in the first quadrant.

We need to figure out how the derivatives behave around the nullclines, the orange dashed lines you see in
Figure 5.4. For this we take a point below and above each nullcline and check the sign of the derivative (5.7)
in those points. We use point C, D and E from Figure 5.4.

• C : (x, z) = (5,3); ż = 2 → ż > 0 and ẋ ≈−20−3 f → ẋ < 0.

• D : (x, z) = (5,7); ż =−2 → ż < 0.

• E : (x, z) = (0.1,0); ẋ ≈ x − x2 → ẋ > 0 for x ∈ (0,1). As the x-nullcline crosses the x-axis at x = 1, this
always holds.
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Now that we know how the vector field moves, we can start setting
up the trapping region. In Figure 5.5 you can see the trapping region
drawn by the orange dashed lines. The trapping cannot contain an
equilibrium point, we will need to keep this out of it. From Section 5.3
we know that the positive equilibrium point is (xeq , zeq ) = (xeq , xeq ) =
( 1

2 (
√

2q −2 f +6 f q + f 2 +q2 +1 − q − f + 1), xeq ). Let’s eliminate this
point from the trapping region. The circle around the equilibrium
point is very small, but is drawn somewhat larger for visual purposes.
In Figure 5.5 four points are shown: points P, Q, R and S. To make sure
that the vector field always moves inward, we need to check the deriva-
tives at these points, as these points are all located at a point of change
in direction of the trapping region. For all four points we need to check
whether the vector field moves inward here. Figure 5.5: Trapping region of the

system with points P, Q, R and S.

Let us look at ẋ and ż for the points P and Q. Because we are on the right of the trapping region, we will assume
x to be large.

• P: (x, z) = (x +1, z −1) = (x +1, x −1). Let x large, we then get a simplified ẋ.

ż = 2
ẋ = 1

ϵ

(
−x2 −x − f (x2 −qx +q −1)

x +q +1

)
ẋ ≈ −x2

ϵ

ż

ẋ
= 2ϵ

−x2

• Q: (x, z) = (x −1, z +1) = (x −1, x +1). Let x large.

ż =−2
ẋ = 1

ϵ

(
−x2 +3x −2− f (x2 −qx −q −1)

x +q −1

)
ẋ ≈ −x2

ϵ

ż

ẋ
= −2ϵ

−x2

Let us now look at point R and S, where point R and S are very close to the axes themselves with a distance of
ϵ̂. Let x then approach ϵ̂.

• R: (x, z) = (x + ϵ̂, z − ϵ̂) = (x + ϵ̂, x − ϵ̂). Let x → ϵ̂, we then get a simplified expression for ẋ. ż
ẋ becomes

slightly larger than 1, as we divide a number by itself plus a little addition.

ż = 2ϵ̂
ẋ = 1

ϵ
(x −x2 −2x ϵ̂+ ϵ̂− (ϵ̂)2 − f (x2 −qx +q ϵ̂− (ϵ̂)2)

x + ϵ̂+q

ẋ = 1

ϵ
(−4(ϵ̂)2 +2ϵ̂)

ż

ẋ
= 2ϵ̂

1
ϵ (−4(ϵ̂)2 +2ϵ̂)

• S: (x, z) = (x − ϵ̂, z + ϵ̂) = (x − ϵ̂, x + ϵ̂). Let x → ϵ̂. ż
ẋ becomes slightly smaller than -1.

ż =−2ϵ̂
ẋ = 1

ϵ
(x −x2 +2x ϵ̂− ϵ̂− (ϵ̂)2 − f (x2 −qx −q ϵ̂− (ϵ̂)2)

x − ϵ̂+q

ẋ = f

ϵ
2ϵ̂

ż

ẋ
= 2ϵ̂

f
ϵ 2ϵ̂



38 5. Oregonator

We now have the derivatives in both directions
for all four points. The derivatives in x-direction
of points P and Q are very large in the negative
direction, accompanied with a small z-direction.
Meaning that both these points point inward into
the trapping region. The derivatives for points R
and S are more subtle. ż

ẋ R is slightly larger than
1, meaning that the points follow the diagonal
orange dashed line between points S and R, but
slightly more inward. ż

ẋ S is slightly smaller than
-1, meaning that it points slightly more inward
too. To visualise this, the points and its place are
shown in Figure 5.6 with the directions of the vec-
tor field.

Figure 5.6: Magnified corners of the trapping region to showcase
the direction of the vector field at the four points P, Q, R and S. The
purple vectors show the separate directions of the x-derivative and
the z-derivative. The red vectors show the combined direction of

the vector field for said points.

We now know how the vector field behaves on all vertical and horizontal lines, and on the four points we
just investigated. We also have to make sure that we stay inward on the diagonal lines we used to make the
trapping region. Let the diagonal line between points P and Q be line v and the line between points R and S
be line w, as can be seen in Figure 5.7. If we show that the vector field points inward on lines v and w, we have
shown that the vector field stays inward on all boundaries of the trapping region we defined. To check this,
we need to set up the expressions of lines v and w.

Figure 5.7: Trapping region of the system with lines v and w.

• line v: (x,−x + x̂), x ∈ [x̂ −1, x̂ +1]. For x large we get the following:

ż = 2x − x̂
ẋ = 1

ϵ
(−x2 +x + f (x2 −x(q + x̂ + x̂q)

x +q
)

ẋ ≈ −x2

ϵ

ẑ

x̂
= ϵx̂

−x2 = ϵ

−x

• line w: (x,−x + ϵ̂), x ∈ [0, ϵ̂]. For x → ϵ̂ we get the following:

ż = 2x − ϵ̂
(x = 0) → ż =−ϵ̂
(x = ϵ̂) → ż = ϵ̂

ẋ = 1

ϵ
(−x2 +x + f (x2 −x(q + ϵ̂+ ϵ̂q)

x +q
)

ẋ = 1

ϵ
(−(ϵ̂)2 + ϵ̂)

(x = 0) → ż

ẋ
= −ϵ̂

1
ϵ (−ϵ̂2 + ϵ̂)

(x = ϵ̂) → ż

ẋ
= ϵ̂

1
ϵ (−ϵ̂2 + ϵ̂)
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Line v is always pointing inwards for large x on the trapping region. Line w has a sign switch in the line itself,
as it crosses the z-nullcline. For both sides of the line we see that the derivative points inward, as we have
ż
ẋ x→0 being slightly smaller than -1 and ż

ẋ x→ϵ̂
being slightly bigger than 1.

Now that we have shown that all boundaries of the trapping region point inward, we need to figure out when
the equilibrium point in the trapping region is an unstable point. Only if this equilibrium point is unsta-
ble we can have a stable limit cycle in our trapping region. The equilibrium point (xeq , zeq ) = (xeq , xeq ) =
( 1

2 (
√

2q −2 f +6 f q + f 2 +q2 +1−q− f +1), xeq ) has to be unstable. We know that an equilibrium point is un-
stable if the eigenvalues of the Jacobian evaluated at this equilibrium point have a positive real part. Because
we are working in a two dimensional system, this is the case if Tr ace(Jeq ) > 0. The Jacobian of the system
evaluated at our equilibrium point is stated in (5.6). The trace can be easily deduced. We will do the solving
of Tr ace(Jeq ) > 0 for every separate f-value, as this will make the computations more organised. To know
where the dividing line is between a stable and unstable equilibrium point, we will solve Tr ace(Jeq ) = 0. For
the expressions of the trace and the computations you are referred to Appendix C.1.

f-value Tr ace(Jeq ) = 0
f = 0 ϵ=−q2 −q −1

f = 1 ϵ= −q−5
p

q2+8q+4

q+
p

q2+8q+4

f = 2 ϵ= 1
8 (q2 − (q −11)

√
q2 +14q +1+18q +13)

f = 3 ϵ= 1
12 (q2 − (q +16)

√
q2 +20q +4+26q +28)

Table 5.3: Expression of Tr ace(Jeq ) = 0 to determine when the equilibrium point in the trapping region is unstable, separately for every
f-value with f = 0, 1, 2 and 3.

Now that we have the expressions of the dividing line between stable and unstable equilibrium point, we can
visualise the expressions for the parameter ranges we assumed. For f = 0 and f = 3 the necessary parameters
to fulfill the trace expressions are not the parameters we assumed. For f = 1 and f = 2 we can visualise the
lines nicely, as to be seen in the figure below.

(a) Dividing line for f = 1. (b) Dividing line for f = 2.

Figure 5.8: Parameters q versus ϵ and the dividing lines of a stable equilibrium point and a stable limit cycle. Separate plots for f = 1 and
f = 2 to clearly show where the oscillating behaviour can take place.

We have constructed a trapping region that contains no equilibrium points and shown that the vector field
of the system always moves inward of the trapping region. We have computed when the equilibrium point
that lays in the area of the trapping region (but is not in the trapping region) is an unstable equilibrium point,
showing that the vector field on the boundary around this point also moves inward of the trapping region.
We have shown that our system and the trapping region comply with the Poincaré-Bendixson Theorem and
that we thus have a stable limit cycle in our trapping region. We also have computed for which parameter
combinations this stable limit cycle can exist.
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5.5. Bifurcation Search

Now that we have proved the existence of oscillating behaviour, we can investigate where it takes place. We
are back to a two dimensional system, meaning that we can use expression (3.4) to analyse the eigenvalues. In
Chapter 3 we could easily find a formula representing the Hopf-Bifurcation locations. Because the Jacobian
found in Section 5.3.3 is more complex than the one we had in Chapter 3, this Hopf-Bifurcation locations
expression will become much harder to compute. We will first look at the stability and complex regions, like
done in Chapter 3 and Chapter 4 using the eigenvalues, then we will find the analytic formulas for the Hopf-
Bifurcation locations.

5.5.1. Assessment of Eigenvalues

We want to analyse the eigenvalues to see where a Hopf Bifurcation can take place. We have assumed that
f = 0,1,2 or 3. We will create a separate Jacobian for every f-value and analyse these Jacobians separately.
To create the stability and complex region plots, parameter grids are evaluated at every grid point. At every
parameter combination the eigenvalues of the Jacobian are computed and categorised, answering the ques-
tion whether they are all negative (creating a stable equilibrium point) or if at least one of them in complex
(imaginary eigenvalues). Also an approximation is done where the eigenvalues cross the imaginary axis, so
where the real part of the eigenvalues is zero. Because of the grid points this is an approximation and not the
exact points yet, but the plots created give a good idea of where the Hopf-Bifurcations can take place.

(a) Regions for f= 0 (b) Regions for f= 1

(c) Regions for f= 2 (d) Regions for f= 3

Figure 5.9: Stability (orange) and complex (blue) regions for all f-values. The black dots represent a Hopf Bifurcation. Because of a
threshold setting in Matlab we get some thicker lines.
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From Figure 5.9 we can conclude that if f = 0 or f = 3, there are no Hopf-Bifurcation possibilities. All eigen-
values seem to be stable, meaning that the trace of the Jacobian is always negative. f = 1 and f = 2 do have
Hopf-Bifurcation locations.

In Section 3.2 we concluded from the eigenvalues expression (3.4) that the model is stable if Tr ace(Jeq ) < 0
and that there can be a Hopf Bifurcation if Tr ace(Jeq ) = 0 and Det (Jeq ) > 0. We can then express the param-
eter q in the parameter ϵ and get an analytical function of where a Hopf Bifurcation can take place. In the
Table shown below the ϵ-value and q-value ranges are shown for which the trace is equal to 0 and the deter-
minant is greater than zero, per f-value. For the specific Jacobians, expressions for trace and determinant,
and conclusions you are referred to Appendix C.1.

f-value Tr ace(Jeq ) = 0 Det (Jeq ) > 0 Hopf-Bifurcation expression
f = 0 - ϵ> 0 -

f = 1 0 < q < 1
3 (5

p
7−13) 0 < q <p

97−4, ϵ> 0 ϵ= −q−5
p

q2+8q+4

q+
p

q2+8q+4

f = 2 3
p

7−8 < q < 3
39+16

p
6

q > 0, ϵ> 0 ϵ= 1
8 (q2 − (q −11)

√
q2 +14q +1+18q +13)

f = 3 - q > 0, ϵ> 0 -

Table 5.4: Parameter ranges for ϵ and q, where Tr ace(Jeq ) = 0 and Det (Jeq ) > 0 for all assumed f-values.

In Table 5.4 we see that for f = 0 and f = 3 there is no possibility of a Hopf-Bifurcation occurrence, as we
had seen in Figure 5.9. For both f = 1 and f = 2 there is a restriction on the q-value, but we have found
an expression for the Hopf-Bifurcation locations. We now know where to look for oscillating behaviour and
which parameter ranges can give us these results.

Plotting the expressions from Table 5.4 over the stability and complex regions plots, we get the following:

(a) Regions and Hopf-Bifurcation locations with the analytically
found line for Hopf locations, for f = 1.

(b) Regions and Hopf-Bifurcation locations with the analytically
found line for Hopf locations, for f = 2.

Figure 5.10: Stability (orange) and complex (blue) regions with either f = 1 or f = 2. The black dots represent a Hopf Bifurcation. The pink
line through the plot is the analytically found line of the Hopf-Bifurcation locations.

The lines nicely plot over the regions, meaning we have found where the Hopf-Bifurcations take place!

5.5.2. 3-dimensional Hopf Bifurcation

We started with a three dimensional system, which we simplified into a two dimensional system. This was
possible because of the relatively small value of ϵ′ that multiplied all Y-values in the three dimensional model
from Section 5.3.1. It is interesting to see whether this ϵ′ influences the Hopf-Bifurcation location. To analyse
this, a three dimensional analysis is done on the system. With the same strategy as in Section 5.5.1 stability
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and complex regions together with Hopf-Bifurcation location plots were made, but now also including the
influence of ϵ′. This yields the following result:

(a) f = 1, Hopf-Bifurcation line with different ϵ′ values.
(b) f = 1, Hopf-Bifurcation line with different ϵ′ values layered over

each other.

(c) f = 2, Hopf-Bifurcation line with different ϵ′ values.
(d) f = 2, Hopf-Bifurcation line with different ϵ′ values layered over

each other.

Figure 5.11: Stability (orange) and complex (blue) regions for f = 1 and f = 2. The black line represents the Hopf Bifurcation line.
Different ϵ′ values show that the influence of ϵ′ is negligible.

In Figure 5.11 you can see that the influence of ϵ′ is negligible. Especially in the plots where all Hopf-Bifurcation
location points are layered. They are plotted with a slight offset to clearly see the four different dots, which
explains the slight movement. But all in all there is no influence. To get the correct Hopf-Bifurcation locations
ϵ′ does not have to be taken into account.

5.5.3. Oscillating Behaviour

Now that we know where to look for oscillating behaviour, we can numerically make this behaviour visible.
Let’s choose some points from Figure 5.10. If we want to see oscillating behaviour, the parameter values
should be chosen under the pink line. Under the pink line the parameter-values result in eigenvalues that
have crossed the imaginary axis with an unstable equilibrium point, thus creating a stable limit cycle. For
f = 1, let us choose (q,ϵ) = (0.04,0.2) and (q,ϵ) = (0.02,0.3) to see oscillating behaviour. With parameter-
values (q,ϵ) = (0.06,0.3) we should not see this behaviour. For f = 2 let us look at (q,ϵ) = (0.02,0.1) and
(q,ϵ) = (0.01,0.1) for oscillating behaviour and (q,ϵ) = (0.06,0.4) for non-oscillating behaviour. To show that
the two-dimensional system behaves the same as the three-dimensional system, the concentration and phase
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plot for the three-dimensional system are showed next to the two-dimensional plots. The ϵ′ value is 2
103 ϵ, as

shown in Section 5.3.2. After numerical analysis we get the following figures:

(a) Two-dimensional plots with f = 1, q = 0.04, ϵ = 0.2 (b) Three-dimensional plots with f = 1, q = 0.04, ϵ = 0.2

(c) Two-dimensional plots with f = 1, q = 0.02, ϵ = 0.3 (d) Three-dimensional plots with f = 1, q = 0.02, ϵ = 0.3

(e) Two-dimensional plots with f = 1, q = 0.06, ϵ = 0.3 (f) Three-dimensional plots with f = 1, q = 0.06, ϵ = 0.3

Figure 5.12: Concentration plots and phase plots of three different cases of parameter values of the two- and three-dimensional systems
for f = 1. Oscillating behaviour can be seen in plots a - d. Non-oscillating behaviour can be found in plots e and f.
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(a) Two-dimensional plots with f = 2, q = 0.02, ϵ = 0.1 (b) Three-dimensional plots with f = 2, q = 0.02, ϵ = 0.1

(c) Two-dimensional plots with f = 2, q = 0.01, ϵ = 0.1 (d) Three-dimensional plots with f = 2, q = 0.01, ϵ = 0.1

(e) Two-dimensional plots with f = 2, q = 0.06, ϵ = 0.4 (f) Three-dimensional plots with f = 2, q = 0.06, ϵ = 0.4

Figure 5.13: Concentration plots and phase plots of three different cases of parameter values of the two- and three-dimensional systems
for f = 2. Oscillating behaviour can be seen in plots a - d. Non-oscillating behaviour can be found in plots e and f.

The model behaves exactly as we have predicted. The three-dimensional concentration and phase plots
clearly show that the influence of Y is negligible. The concentrations of X and Z do not seem to change at
all when Y is involved in the system. Lastly, the parameter values we had predicted to entail oscillating be-
haviour did so, and the parameter values for which we expected non-oscillating behaviour did not showcase
oscillating behaviour. We have found our Hopf-Bifurcation locations.



6
Conclusion and Discussion

The aim of this thesis was to examine two theoretical models of chemical oscillators to identify the parameter
combinations for which these models showcase oscillating behaviour, while enhancing the realism of these
models. First, the Brusselator model and the Oregonator model were analysed in a batch reactor. Secondly
the Brusselator model was considered in a Continuous Stirred-Tank Reactor (CSTR), to enhance the realism of
this model. Making for three models in total. To find the oscillating behaviour in these models, an extensive
eigenvalue investigation was done. Using the information of the eigenvalues, Hopf-Bifurcations could be
located in all three models, indicating oscillating behaviour.

6.1. Looking for Oscillating Behaviour

First, the Brusselator model was analysed in a batch reactor. Two of the components present in the Brussela-
tor were modelled as change of concentration in time. The results as seen in [1] were reproduced, yielding an
analytic expression indicating where the Hopf-Bifurcations took place. A proof of existence of periodic solu-
tions was given, making use of Bendixson’s Criterion and the Poincaré-Bendixson Theorem. The parameter
combinations for which oscillating behaviour can arise were found.

To make the Brusselator model somewhat more realistic, it was modelled in a CSTR instead of a batch reac-
tor. Instead of only modelling two of the components of the Brusselator, all four reactants were modelled. An
inflow of two of these molecules was added to the model too. These two changes make for a more realistic rep-
resentation of the Brusselator chemical reactions. Because four concentrations were modelled now instead
of two, the analysis of the eigenvalues became somewhat more complex. The analysis was done in Matlab,
making use of certain characteristics of eigenvalues for Hopf-Bifurcations in four dimensional systems. Again
the parameter combinations were found, unfortunately not as an analytical expression.

Lastly, the Oregonator model was analysed in a batch reactor. The model was reduced from a three dimen-
sional model to a two dimensional model. A proof of existence of limit cycles was carried out again, making
use of the same statements as for the Brusselator. An extensive eigenvalue investigation was done, finding
analytic expressions for Hopf-Bifurcation occurrences. Thus, oscillating behaviour was found again.

Thus, in all three models analysed oscillating behaviour was found and the parameter combinations for
which these periodic solutions can occur were presented as clearly as possible.

45
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6.2. Recommendations for Further Research

The object of this thesis was to extend the theoretical models to make them behave more realistically. When
an inflow of two out of four components of the Brusselator was added, oscillating behaviour was still found.
If an outflow of these molecules was added too, however, there seemed to be no possibility for periodic solu-
tions. An interesting question would be why this was the case and how the model could be changed. Another
addition could be to model a total outflow of all fluids instead of only the two newly modelled components,
to keep the total reaction volume constant.

The extension of the Oregonator model to a CSTR was also examined, but the system did not seem to have any
equilibrium points. Only when both inflow and outflow were added did some quite complicated equilibrium
points appear. This raises the question of how such equilibrium points arise and what potential solutions to
this issue could be.

Another realistic extension would be to add the reversed reactions to the model. Up till now we have mod-
elled irreversible reactions, but in practise these reactions are not all irreversible. An attempt was made for
the Brusselator model, but the differential equations did not behave as expected and oscillating behaviour
was not found. It would be recommended to make use of earlier published findings to get an idea of how
to approach such an addition to these models. An approach on how to extend the Oregonator model to a
reversible model could, for example, be read in [12].

Lastly, we assumed in all models that the contents in the reactor were perfectly mixed. If we would aban-
don this assumption and would add the dimension of space to the system, we could transform the models
into reaction-diffusion models. A reaction-diffusion model can track the change of concentration in time
and space, making the models far more realistic. This addition is possible for both the Brusselator and the
Oregonator. If the space dimension is added, interesting patterns arise. These patterns are the base of Turing
patterns and morphogenesis, the process of the shaping of organisms [13]. A great example of this would be
the forming of plants and their leaves and flowers. A reaction-diffusion model could, for example, explain
how a plant gets its specific flower shape [14]. It would be very interesting to add a spatial dimension to the
Brusselator and Oregonator models and examine the arising patterns.
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A
Appendix A

A.1. Brusselator - Code for Numerical Analysis

1 %% Concentration and phase plot
2

3 % Defining the variables
4 A = 0.5;
5 B = 1.5;
6 k = [1,1,1,1];
7 x0 = 0.2;
8 y0 = 0.2;
9 dt = 0.01;

10 steps = 5000;
11

12 time_grid = linspace (0,5000, steps);
13 x_grid = zeros(1,steps);
14 y_grid = zeros(1,steps);
15 xn = x0;
16 yn = y0;
17

18 % Forward Euler method for X and Y
19 for i = 1: steps
20 x_grid(i) = xn;
21 y_grid(i) = yn;
22 xn = next_x(xn, yn, A, B, k, dt);
23 yn = next_y(xn, yn, A, B, k, dt);
24 end
25

26 figure;
27 plot(time_grid , x_grid , ’r’, time_grid , y_grid , ’b’)
28 xlabel(’time’);
29 ylabel(’Concentration of X and Y’);
30 title(’Concentration plot of X and Y over time’);
31

32 figure;
33 plot(x_grid , y_grid)
34 xlabel(’X-concentration ’);
35 ylabel(’Y-concentration ’);
36 title(’Phase plot of the X-concentration versus the Y-concentration ’);
37

38 % Forward Euler functions for getting the next X and Y functions
39

40 function result = next_x(xn , yn , A, B, k, dt)
41 result = xn + dt*(k(1)*A - k(2)*B*xn + k(3)*xn^2*yn - k(4)*xn);
42 end
43

44 function result = next_y(xn , yn , ~, B, k, dt)

48
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45 result = yn + dt*(k(2)*B*xn - k(3)*xn^2*yn);
46 end
47

48 %% Concentration and phase plot , with Q and P
49

50 % defining the variables
51

52 P = 10;
53 Q = 1;
54 x0 = 0;
55 y0 = 0;
56 dt = 0.01;
57 steps = 5000;
58

59 time_grid = linspace (0,5000, steps);
60 x_grid = zeros(1,steps);
61 y_grid = zeros(1,steps);
62 xn = x0;
63 yn = y0;
64

65 % Forward Euler method for X and Y
66 for i = 1: steps
67 x_grid(i) = xn;
68 y_grid(i) = yn;
69 xn = next_x_sym(xn, yn, P, Q, dt);
70 yn = next_y_sym(xn, yn, P, Q, dt);
71 end
72

73 figure;
74 plot(time_grid , x_grid , ’r’, time_grid , y_grid , ’b’)
75 xlabel(’time’);
76 ylabel(’Concentration of X and Y’);
77 title(’Concentration plot of X and Y over time’);
78

79 figure;
80 plot(x_grid , y_grid)
81 xlabel(’X-concentration ’);
82 ylabel(’Y-concentration ’);
83 title(’Phase plot of the X-concentration versus the Y-concentration ’);
84

85 % Functions for getting the next X and Y values
86

87 function result = next_x_sym(xn , yn , P, Q, dt)
88 result = xn + dt*(Q - P*xn - xn + xn^2*yn);
89 end
90

91 function result = next_y_sym(xn , yn , P, ~, dt)
92 result = yn + dt*(P*xn - xn^2*yn);
93 end

A.2. Brusselator - Code for Eigenvalue Analysis

1 %% Plotting Q versus P with complex and stability regions.
2 % Marking the Hopf Bifurcations.
3

4 % Initialising a Q and P grid
5 q_limit = 5;
6 p_limit = 10;
7

8 q_grid = linspace(0, q_limit , q_limit * 100);
9 p_grid = linspace(0, p_limit , p_limit * 50);

10

11 [Q, P] = meshgrid(q_grid , p_grid);
12

13 % Setting up all other grids
14 imaginary = false(length(p_grid), length(q_grid));
15 stable1 = false(length(p_grid), length(q_grid));
16 stable2 = false(length(p_grid), length(q_grid));
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17

18 % Getting stability , and imaginary True/False for every (q,p) with
19 % eigenvalue expressions
20

21 for i = 1: length(q_grid)
22 for j = 1: length(p_grid)
23 if (( p_grid(j) - 1 - q_grid(i)^2)^2 - 4 * q_grid(i)^2) < 0
24 imaginary(j, i) = true;
25 end
26 if (p_grid(j) - 1 - q_grid(i)^2) + sqrt ((( p_grid(j) - 1 - q_grid(i)^2))^2 - 4 *

q_grid(i)^2) < 0
27 stable1(j, i) = true;
28 end
29 if (p_grid(j) - 1 - q_grid(i)^2) - sqrt ((( p_grid(j) - 1 - q_grid(i)^2))^2 - 4 *

q_grid(i)^2) < 0
30 stable2(j, i) = true;
31 end
32 end
33 end
34

35 stable = stable1 & stable2;
36

37 figure;
38 contourf(Q, P, imaginary , [1 1], ’LineWidth ’, 0.5, ’FaceColor ’, [0.2 0.2 0.8], ’

EdgeColor ’, ’none’, ’FaceAlpha ’, 0.5);
39 hold on;
40 contourf(Q, P, stable , [1 1], ’LineWidth ’, 0.5, ’FaceColor ’, [1 0.5 0], ’EdgeColor ’, ’

none’, ’FaceAlpha ’, 0.5);
41

42 % Plot the line P = 1 + Q^2
43 q_line = 0:0.1: q_limit;
44 p_line = min(1 + q_line .^2, p_limit);
45 h_line = plot(q_line , p_line , ’k’, ’LineWidth ’, 2);
46

47 xlabel(’Q-value ’);
48 ylabel(’P-value ’);
49 title(’Stability for certain Q and P values ’);
50 grid on;
51

52 % Making a legend
53 patch1 = patch([NaN NaN NaN NaN], [NaN NaN NaN NaN], ’b’);
54 patch2 = patch([NaN NaN NaN NaN], [NaN NaN NaN NaN], ’r’);
55 patch1.Visible = ’off’;
56 patch2.Visible = ’off’;
57

58 legend ([patch1 , patch2 , h_line], {’Imaginary region ’, ’Stable region ’, ’Stability line’
}, ’Location ’, ’SouthEast ’);

59

60 %% Eigenvalue plot (real and complex seperately) for fixed Q
61

62 % Setting up parameters
63 Q = 1;
64 p_limit = 6;
65 P = linspace(0,p_limit , p_limit *20);
66

67 eigenvalues = zeros(1, p_limit *20);
68

69 % Getting eigenvalues at all necessary points
70

71 figure;
72 count = 1;
73 for p = P
74 J_eq = [p-1 Q^2; -p -Q^2];
75 eigenwaarde = eig(J_eq);
76 eigenvalues(count) = min(eigenwaarde);
77 count = count + 1;
78 end
79

80 subplot (2,1,1);
81 plot(P, real(eigenvalues), ’b’);
82 hold on;
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83 line([min(P), max(P)], [0, 0], ’Color’, ’k’, ’LineStyle ’, ’--’);
84 hold off;
85 xlabel(’P-value ’);
86 ylabel(’Real Part’);
87 title ([’Q = ’ num2str(Q), ’, the eigenvalues ’]);
88

89 subplot (2,1,2);
90 plot(P, imag(eigenvalues), ’r’);
91 xlabel(’P-value ’);
92 ylabel(’Imaginary Part’);
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B.1. Brusselator with CSTR - Code for Numerical Analysis

1 %% Concentration and phase plots with original parameters
2

3 % Defining the variables
4 Q = 4;
5 A_0 = 1;
6 B_0 = 1;
7 k = [1, 1, 1, 1];
8 x0 = 0;
9 y0 = 0;

10 a0 = A_0;
11 b0 = B_0;
12 dt = 0.01;
13 steps = 2500;
14

15 time_grid = linspace (0,2500, steps);
16 x_grid = zeros(1,steps);
17 y_grid = zeros(1,steps);
18 a_grid = zeros(1,steps);
19 b_grid = zeros(1,steps);
20 xn = x0;
21 yn = y0;
22 an = a0;
23 bn = b0;
24

25 % Forward Euler method to get concentration vs time plot of X, Y, A and B;
26 % And a phase plot of X and Y.
27 for i = 1: steps
28 x_grid(i) = xn;
29 y_grid(i) = yn;
30 a_grid(i) = an;
31 b_grid(i) = bn;
32 xn = next_x(xn, yn, an, bn, k, Q, A_0 , B_0 , dt);
33 yn = next_y(xn, yn, an, bn, k, Q, A_0 , B_0 , dt);
34 an = next_a(xn, yn, an, bn, k, Q, A_0 , B_0 , dt);
35 bn = next_b(xn, yn, an, bn, k, Q, A_0 , B_0 , dt);
36 end
37

38 figure;
39 plot(time_grid , x_grid , ’r’, time_grid , y_grid , ’b’, time_grid , a_grid , ’g’, time_grid ,

b_grid , ’y’)
40 xlabel(’time’);
41 ylabel(’Concentration of X and Y’);
42 title(’Concentration plot of X and Y over time’);
43 legend(’X’, ’Y’, ’A’, ’B’);

52
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44

45 figure;
46 plot(x_grid , y_grid)
47 xlabel(’X-concentration ’);
48 ylabel(’Y-concentration ’);
49 title(’Phase plot of the X-concentration versus the Y-concentration ’);
50

51 % Forward Euler functions to get the next value
52

53 function result = next_x(xn , yn , an, bn, k, ~, ~, ~, dt)
54 result = xn + dt*(k(1)*an - k(2)*bn*xn + k(3)*xn^2*yn - k(4)*xn);
55 end
56

57 function result = next_y(xn , yn , ~, bn , k, ~, ~, ~, dt)
58 result = yn + dt*(k(2)*bn*xn - k(3)*xn^2*yn);
59 end
60

61 function result = next_a(~, ~, an, ~, k, Q, A_0 , ~, dt)
62 result = an + dt*(-k(1)*an + Q*A_0);
63 end
64

65 function result = next_b(xn , ~, ~, bn , k, Q, ~, B_0 , dt)
66 result = bn + dt*(-k(2)*bn*xn + Q*B_0);
67 end
68

69 %% Concentration and phase plot with parameters p r en s,
70 % the nondimensionalised system
71

72 % Defining the parameters
73 A_0 = 1;
74 B_0 = 1;
75 dt = 0.01;
76 steps = 10000;
77 x0 = 0;
78 y0 = 0;
79 a0 = A_0;
80 b0 = B_0;
81

82 % Set (s,p,r) values. You can set multiple.
83 s_values = 2;
84 p_values = [0.5, 1, 2];
85 r_values = 1.5;
86

87 % Iterate over parameter combinations
88

89 for p_index = 1:numel(p_values)
90 for s_index = 1:numel(s_values)
91 for r_index = 1:numel(r_values)
92 p = p_values(p_index);
93 s = s_values(s_index);
94 r = r_values(r_index);
95

96 % Initialize grids
97 time_grid = linspace(0, steps*dt , steps);
98 x_grid = zeros(1, steps);
99 y_grid = zeros(1, steps);

100 a_grid = zeros(1, steps);
101 b_grid = zeros(1, steps);
102 xn = x0;
103 yn = y0;
104 an = A_0;
105 bn = B_0;
106

107 % Forward Euler steps
108 for i = 1: steps
109 x_grid(i) = xn;
110 y_grid(i) = yn;
111 a_grid(i) = an;
112 b_grid(i) = bn;
113 xn = next_x_sym(xn, yn, an, bn, p, r, s, dt);
114 yn = next_y_sym(xn, yn, an, bn, p, r, s, dt);
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115 an = next_a_sym(xn, yn, an, bn, p, r, s, dt);
116 bn = next_b_sym(xn, yn, an, bn, p, r, s, dt);
117 end
118

119 figure;
120 plot(time_grid , x_grid , ’r’, time_grid , y_grid , ’b’, time_grid , a_grid , ’g’

, time_grid , b_grid , ’y’)
121 xlabel(’time’);
122 ylabel(’Concentration of X and Y’);
123 title ([’Concentration plot (p=’, num2str(p), ’, s=’, num2str(s), ’, r=’,

num2str(r), ’)’]);
124 legend(’X’, ’Y’, ’A’, ’B’);
125

126 figure;
127 plot(x_grid , y_grid)
128 xlabel(’X-concentration ’);
129 ylabel(’Y-concentration ’);
130 title ([’Phase plot (p=’, num2str(p), ’, s=’, num2str(s), ’, r=’, num2str(r)

, ’)’]);
131 end
132 end
133 end
134

135 % Forward Euler functions of the nondimensionalised system to get the next
136 % value
137

138 function result = next_x_sym(xn , yn , an, bn, p, ~, ~, dt)
139 result = xn + dt*(p*an - xn - bn*xn + xn^2*yn);
140 end
141

142 function result = next_y_sym(xn , yn , ~, bn , ~, ~, ~, dt)
143 result = yn + dt*(bn*xn - xn^2*yn);
144 end
145

146 function result = next_a_sym (~, ~, an, ~, p, r, ~, dt)
147 result = an + dt*(r - p*an);
148 end
149

150 function result = next_b_sym(xn , ~, ~, bn, ~, r, s, dt)
151 result = bn + dt*(r - s*bn*xn);
152 end

B.2. Brusselator with CSTR - Code for Eigenvalue Analysis

1 %% Stability analysis of the nondimensionalised system
2

3 % Symbolic variables
4 syms A B X Y p r s
5

6 % Nondimensionalized differential equations
7 equation_strings = { ’A*p - X - B*X + X^2*Y’, ...
8 ’B*X - X^2*Y’, ...
9 ’r - A*p’, ...

10 ’r - B*X*s’ };
11

12 equations = str2sym(equation_strings);
13

14 % Getting the Jacobian
15 Jacobian = jacobian ([ equations (1), equations (2), equations (3), equations (4)],[X, Y, A,

B]);
16

17 % Defining the system of differential equations to compute the equilibrium
18 % points
19 F(1) = A*p - X - B*X + X^2*Y;
20 F(2) = B*X - X^2*Y;
21 F(3) = r - A*p;
22 F(4) = r - B*X*s;
23
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24 % Solve the system of differential equations symbolically
25 sol = solve(F == 0, [A, B, X, Y]);
26

27 % Display the equilibrium points in terms of the constants
28 disp(’Equilibrium points:’);
29 disp(sol);
30

31 % Filling in the equilibrium point into the Jacobian matrix
32 equilibrium_point = [r, 1/(s*r), r/p, 1/s];
33 J_eq = subs(Jacobian , [X, Y, A, B], equilibrium_point);
34

35 %% Stability and complex regions plot with Hopf -Bifurcation location dots
36 % and eigenvalue plots where one of the two parameters is fixed , to
37 % visualise the crossing of the eigenvalues.
38

39 %% Plotting parameter s versus r, fixed p-value.
40

41 % Initialising all necessary variables and grids
42 syms p r s
43

44 s_limit = 4;
45 r_limit = 4;
46 p_var = 1;
47

48 s_grid = linspace(0, s_limit , s_limit *25);
49 r_grid = linspace(0, r_limit , r_limit *25);
50 s_grid = s_grid (2:end);
51 r_grid = r_grid (2:end);
52

53 eigenvalues = cell(length(s_grid), length(r_grid));
54 trace = zeros(length(s_grid), length(r_grid));
55 s_2 = zeros(length(s_grid), length(r_grid));
56 s_3 = zeros(length(s_grid), length(r_grid));
57 det = zeros(length(s_grid), length(r_grid));
58

59 % Looping through all combinations of parameters while computing the
60 % eigenvalues , and preparing all grids for checking the Hopf conditions.
61

62 for i = 1: length(s_grid)
63 for j = 1: length(r_grid)
64 J_eq_copy = J_eq;
65 J_eq_copy = subs(J_eq_copy , [p, s, r], [p_var , s_grid(i), r_grid(j)]);
66 J_eq_num = double(J_eq_copy);
67 eigenvalues{i,j} = eig(J_eq_num);
68 trace(i,j) = sum(eigenvalues{i,j});
69 if trace(i,j) == 0
70 trace(i,j) = 0.0001;
71 end
72 s_2(i,j) = eigenvalues{i,j}(1)*eigenvalues{i,j}(2) + eigenvalues{i,j}(1)*

eigenvalues{i,j}(3) + eigenvalues{i,j}(1)*eigenvalues{i,j}(4) + eigenvalues{i,j}(2)
*eigenvalues{i,j}(3) + eigenvalues{i,j}(2)*eigenvalues{i,j}(4) + eigenvalues{i,j
}(3)*eigenvalues{i,j}(4);

73 s_3(i,j) = eigenvalues{i,j}(1)*eigenvalues{i,j}(2)*eigenvalues{i,j}(3) +
eigenvalues{i,j}(1)*eigenvalues{i,j}(2)*eigenvalues{i,j}(4) + eigenvalues{i,j}(1)*
eigenvalues{i,j}(3)*eigenvalues{i,j}(4) + eigenvalues{i,j}(2)*eigenvalues{i,j}(3)*
eigenvalues{i,j}(4);

74 det(i,j) = eigenvalues{i,j}(1)*eigenvalues{i,j}(2)*eigenvalues{i,j}(3)*
eigenvalues{i,j}(4);

75 end
76 end
77

78 % Creating all grids necessary for the plot
79

80 imaginary = false(length(s_grid), length(r_grid));
81 stable = false(length(s_grid), length(r_grid));
82 hopf = zeros(length(s_grid), length(r_grid));
83 double_hopf = ones(length(s_grid), length(r_grid));
84

85 th = 0.05;
86

87 % Checking Hopf conditions with earlier computed information
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88

89 for i = 1: length(s_grid)
90 for j = 1: length(r_grid)
91 eigen = eigenvalues{i,j};
92 if all(isreal(eigen))
93 imaginary(i, j) = false;
94 else
95 imaginary(i,j) = true;
96 end
97 if all(real(eigen) < 0)
98 stable(i, j) = true;
99 end

100 expression = s_3(i,j)/trace(i,j) + det(i,j)*trace(i,j)/s_3(i,j);
101 hopf(i,j) = real(s_2(i,j) - expression);
102 if det(i,j) > -th && s_2(i,j) > -th && s_2(i,j)^2 >= (4*det(i,j) - th) && abs(

trace(i,j)) < th && abs(s_3(i,j)) < th
103 double_hopf(i,j) = 0;
104 end
105 end
106 end
107

108 % Plotting all found information
109

110 threshold = 0.05;
111 hopf_thresholded = hopf ’;
112 hopf_thresholded(abs(hopf) < threshold) = 0;
113

114 [s, r] = meshgrid(s_grid , r_grid);
115

116 [row , col] = find(hopf_thresholded == 0);
117

118 figure;
119 scatter(s_grid(col), r_grid(row), ’k’, ’filled ’);
120 hold on;
121

122 contourf(s, r, imaginary ’, [1 1], ’LineWidth ’, 0.5, ’FaceColor ’, [0.2 0.2 0.8], ’
EdgeColor ’, ’none’, ’FaceAlpha ’, 0.5);

123 contourf(s, r, stable ’, [1 1], ’LineWidth ’, 0.5, ’FaceColor ’, [1 0.5 0], ’EdgeColor ’, ’
none’, ’FaceAlpha ’, 0.5);

124 xlabel(’s-value ’);
125 ylabel(’r-value ’);
126 title(’Stability and Hopf Bifurcation Points ’);
127 grid on;
128

129 % Plotting the found eigenvalues for fixed s-value
130

131 s_vast = 0.8;
132 [~, index] = min(abs(s_grid - s_vast));
133 disp(index)
134

135 eigenvalues_list = zeros(1,length(r_grid));
136

137 for i = 1: length(r_grid)
138 real_eig = real(eigenvalues_sr{i,index});
139 min_eig = 10000;
140 index_min_eig = 0;
141 for j = 1: length(real_eig)
142 if abs(real_eig(j)) < min_eig
143 min_eig = real_eig(j);
144 index_min_eig = j;
145 end
146 end
147 eigenvalues_list(i) = eigenvalues_sr{i, index}( index_min_eig);
148 end
149

150 zero_real_indices = find(abs(real(eigenvalues_list)) < 0.05);
151

152 if isempty(zero_real_indices)
153 disp(’No values found within the tolerance range.’);
154 else
155 zero_real_index = zero_real_indices(end);
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156 zero_value = r_grid(zero_real_index);
157 end
158

159 figure;
160 subplot (2,1,1);
161 plot(r_grid , real(eigenvalues_list), ’b’);
162 hold on;
163 line([min(r_grid), max(r_grid)], [0, 0], ’Color’, ’k’, ’LineStyle ’, ’--’);
164 hold on;
165 line([zero_value , zero_value], ylim , ’Color ’, ’k’, ’LineStyle ’, ’--’);
166 hold off;
167 xlabel(’r-value ’);
168 ylabel(’Real Part’);
169 title ([’s = ’ num2str(s_vast), ’, the eigenvalues ’]);
170

171 subplot (2,1,2);
172 plot(r_grid , imag(eigenvalues_list), ’r’);
173 hold on;
174 line([zero_value , zero_value], ylim , ’Color ’, ’k’, ’LineStyle ’, ’--’);
175 hold off;
176 xlabel(’r-value ’);
177 ylabel(’Imaginary Part’);
178

179 %% Plotting parameter s versus p, fixed r-value. This code behaves exactly
180 % the same as the code for s versus r, but with switched parameters.
181

182 syms p r s
183

184 s_limit = 4;
185 p_limit = 4;
186 r_var = 1;
187

188 s_grid = linspace(0, s_limit , s_limit *25);
189 p_grid = linspace(0, p_limit , p_limit *25);
190 s_grid = s_grid (2:end);
191 p_grid = p_grid (2:end);
192

193 eigenvalues = cell(length(s_grid), length(p_grid));
194 trace = zeros(length(s_grid), length(p_grid));
195 s_2 = zeros(length(s_grid), length(p_grid));
196 s_3 = zeros(length(s_grid), length(p_grid));
197 det = zeros(length(s_grid), length(p_grid));
198

199 for i = 1: length(s_grid)
200 for j = 1: length(p_grid)
201 J_eq_copy = J_eq;
202 J_eq_copy = subs(J_eq_copy , [p, r, s], [p_grid(j), r_var , s_grid(i)]);
203 J_eq_num = double(J_eq_copy);
204 eigenvalues{i,j} = eig(J_eq_num);
205 trace(i,j) = sum(eigenvalues{i,j});
206 if trace(i,j) == 0
207 trace(i,j) = 0.0001;
208 end
209 s_2(i,j) = eigenvalues{i,j}(1)*eigenvalues{i,j}(2) + eigenvalues{i,j}(1)*

eigenvalues{i,j}(3) + eigenvalues{i,j}(1)*eigenvalues{i,j}(4) + eigenvalues{i,j}(2)
*eigenvalues{i,j}(3) + eigenvalues{i,j}(2)*eigenvalues{i,j}(4) + eigenvalues{i,j
}(3)*eigenvalues{i,j}(4);

210 s_3(i,j) = eigenvalues{i,j}(1)*eigenvalues{i,j}(2)*eigenvalues{i,j}(3) +
eigenvalues{i,j}(1)*eigenvalues{i,j}(2)*eigenvalues{i,j}(4) + eigenvalues{i,j}(1)*
eigenvalues{i,j}(3)*eigenvalues{i,j}(4) + eigenvalues{i,j}(2)*eigenvalues{i,j}(3)*
eigenvalues{i,j}(4);

211 det(i,j) = eigenvalues{i,j}(1)*eigenvalues{i,j}(2)*eigenvalues{i,j}(3)*
eigenvalues{i,j}(4);

212 end
213 end
214

215 imaginary = false(length(s_grid), length(p_grid));
216 stable = false(length(s_grid), length(p_grid));
217 hopf = zeros(length(s_grid), length(p_grid));
218 double_hopf = ones(length(s_grid), length(p_grid));
219
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220 th = 0.1;
221

222 for i = 1: length(s_grid)
223 for j = 1: length(p_grid)
224 eigen = eigenvalues{i,j};
225 if all(isreal(eigen))
226 imaginary(i, j) = false;
227 else
228 imaginary(i,j) = true;
229 end
230 if all(real(eigen) < 0)
231 stable(i, j) = true;
232 end
233 expression = s_3(i,j)/trace(i,j) + det(i,j)*trace(i,j)/s_3(i,j);
234 hopf(i,j) = real(s_2(i,j) - expression);
235 if det(i,j) > -th && s_2(i,j) > -th && s_2(i,j)^2 >= (4*det(i,j) - th) && abs(

trace(i,j)) < th && abs(s_3(i,j)) < th
236 double_hopf(i,j) = 0;
237 end
238 end
239 end
240

241 threshold = 0.05;
242 hopf_thresholded = hopf ’;
243 hopf_thresholded(abs(hopf) < threshold) = 0;
244

245 [s, p] = meshgrid(s_grid , p_grid);
246

247 [row , col] = find(hopf_thresholded == 0);
248

249 figure;
250 scatter(s_grid(col), p_grid(row), ’k’, ’filled ’);
251 hold on;
252

253 contourf(s, p, imaginary ’, [1 1], ’LineWidth ’, 0.5, ’FaceColor ’, [0.2 0.2 0.8], ’
EdgeColor ’, ’none’, ’FaceAlpha ’, 0.5);

254 contourf(s, p, stable ’, [1 1], ’LineWidth ’, 0.5, ’FaceColor ’, [1 0.5 0], ’EdgeColor ’, ’
none’, ’FaceAlpha ’, 0.5);

255 xlabel(’s-value ’);
256 ylabel(’p-value ’);
257 title(’Stability and Hopf Bifurcation Points ’);
258 grid on;
259

260 % Eigenvalues plot , with fixed p-value
261

262 p_vast = 1;
263 [~, index] = min(abs(p_grid - p_vast));
264 disp(index)
265

266 eigenvalues_list = zeros(1,length(s_grid));
267

268 for i = 1: length(s_grid)
269 real_eig = real(eigenvalues_sp{i,index});
270 min_eig = 10000;
271 index_min_eig = 0;
272 for j = 1: length(real_eig)
273 if abs(real_eig(j)) < min_eig
274 min_eig = real_eig(j);
275 index_min_eig = j;
276 end
277 end
278 eigenvalues_list(i) = eigenvalues_sp{i,index}( index_min_eig);
279 end
280

281 figure;
282 subplot (2,1,1);
283 plot(s_grid , real(eigenvalues_list), ’b’);
284 hold on;
285 line([min(s_grid), max(s_grid)], [0, 0], ’Color’, ’k’, ’LineStyle ’, ’--’);
286 hold off;
287 xlabel(’s-value ’);
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288 ylabel(’Real Part’);
289 title ([’p = ’ num2str(p_vast), ’, the eigenvalues ’]);
290

291 subplot (2,1,2);
292 plot(s_grid , imag(eigenvalues_list), ’r’);
293 xlabel(’s-value ’);
294 ylabel(’Imaginary Part’);
295

296 s_value = 0.75;
297

298 subplot (2,1,1);
299 hold on;
300 line([s_value , s_value], ylim , ’Color’, ’k’, ’LineStyle ’, ’--’); % vertical line at p =

0.75
301 hold off;
302

303 subplot (2,1,2);
304 hold on;
305 line([s_value , s_value], ylim , ’Color’, ’k’, ’LineStyle ’, ’--’); % vertical line at p =

0.75
306 hold off;
307

308 %% 3D plotting variables s, p, r, where Hopf -Bifurcations can take place
309

310 % First , getting all Hopf -Bifurcation locations using the same logic as for
311 % the 2 dimensional plots.
312

313 syms p r s
314

315 s_limit = 2;
316 p_limit = 2;
317 r_limit = 2;
318

319 s_grid = linspace(0, s_limit , s_limit *15);
320 p_grid = linspace(0, p_limit , p_limit *15);
321 r_grid = linspace(0, r_limit , r_limit *15);
322 s_grid = s_grid (2:end);
323 p_grid = p_grid (2:end);
324 r_grid = r_grid (2:end);
325

326 eigenvalues = cell(length(s_grid), length(p_grid), length(r_grid));
327 real_parts = zeros(length(s_grid), length(p_grid), length(r_grid));
328 imaginary = false(length(s_grid), length(p_grid), length(r_grid));
329 stable = false(length(s_grid), length(p_grid), length(r_grid));
330

331 for i = 1: length(s_grid)
332 for j = 1: length(p_grid)
333 for k = 1: length(r_grid)
334 J_eq_copy = J_eq;
335 J_eq_copy = subs(J_eq_copy , [p, r, s], [p_grid(j), r_grid(k), s_grid(i)]);
336 J_eq_num = double(J_eq_copy);
337 eigenvalues{i,j,k} = eig(J_eq_num);
338 [min_real_part , min_index] = min(abs(real(eigenvalues{i,j,k})));
339 real_parts(i,j,k) = min_real_part;
340 if imag(eigenvalues{i,j,k}( min_index)) == 0
341 real_parts(i,j,k) = 10000;
342 end
343 if any(imag(eigenvalues{i,j,k}) ~= 0)
344 imaginary(i,j,k) = true;
345 end
346 stable(i,j,k) = all(real(eigenvalues{i,j,k}) < 0);
347 end
348 end
349 end
350

351 % Plotting the Hopf -Bifurcation locations
352

353 [P, S, R] = meshgrid(p_grid , s_grid , r_grid);
354

355 % Approximating eigenvalues that have a zero real part
356 threshold = 0.015;
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357 real_parts_thresholded = real_parts;
358 real_parts_thresholded(real_parts_thresholded < threshold) = 0;
359

360 % Flatten the grid and the data matrix
361 P_flat = P(:);
362 S_flat = S(:);
363 R_flat = R(:);
364 real_parts_flat = real_parts_thresholded (:);
365

366 % Filter indices for zero real parts
367 hopf_indices = find(real_parts_flat == 0);
368

369 figure;
370 hold on;
371

372 % Plot Hopf bifurcation points as black dots
373 scatter3(P_flat(hopf_indices), S_flat(hopf_indices), R_flat(hopf_indices), ...
374 10, ’red’, ’filled ’, ’MarkerFaceAlpha ’, 0.5);
375

376 xlabel(’p-value ’);
377 ylabel(’s-value ’);
378 zlabel(’r-value ’);
379 title(’3D Hopf Bifurcation (Scatter Plot)’);
380 grid on;
381 view (3);
382 axis tight;
383

384 hold off;
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C.1. Oregonator - Eigenvalue Investigation Computations

• f = 0

– Jacobian with certain f value

J f =0 =
[ 1
ϵ (q −

√
q2 +2q +1) 0

1 −1

]
– With trace and determinant expressions:

Tr ace(J f =0) = 1

ϵ
(q − (2q +q2 +1))−1

Det (J f =0) =−1

ϵ
(q − (2q +q2 +1)

– With expressions of q in ϵ:
Tr ace(J f =0) = 0 → ϵ=−q2 −q −1

Det (J f =0) > 0 → ϵ> 0, q ∈R
The Trace will always be negative and will never be zero, meaning that the eigenvalues will always
be stable and there is no possibility of there being a Hopf Bifurcation.

• f = 1

– Jacobian at certain f value

J f =1 =
[

1
ϵ

(
q −S1 − S1−q

S1+q + (S1−q)(S1−3q)
(S1+q)2

)
1
ϵ

(−(S1−3q)
S1+q

)
1 −1

]
S1 =

√
q2 +8q

– With trace and determinant expressions:

Tr ace(J f =1) = 1

ϵ

(
q −S1 + q −S1

q +S1
+ (q −S1)(3q −S1)

(q +S1)2 +1

)
−1

Det (J f =1) =
(−q2S1 + (S1)3 −8q2 −q3 +qS1

)
ϵ
(
q +S1

)2

61
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– With expressions of q in ϵ:

Tr ace(J f =1) = 0 → ϵ= −q −5
√

q2 +8q +4

q +
√

q2 +8q +4
, 0 < q < 1

3
(5
p

7−13)

Det (J f =1) > 0 → 0 < q <p
97−4, ϵ> 0

Tr ace(J f =1) is equal to zero for approximately 0 < q < 0.76 for ϵ ∈ (0,1). Det (J f =1) > 0 for approx-
imately 0 < q < 5.85. Meaning that there can be a Hopf-Bifurcation on the whole line of ϵ where
Tr ace(J f =1) = 0.

• f = 2

– Jacobian at certain f-value

J f =2 =
[

1
ϵ

(
q −S2 + 2(q−S2+1)

S2+q−1 + 2(q−S2+1)(3q−S2+1)
(S2+q−1)2 +2

)
2(3q−S2+1)
ϵ(S2+q−1)

1 −1

]
S2 =

√
q2 +14q +1

– With trace and determinant expressions:

Tr ace(J f =2) = 1

ϵ

(
q −S2 + 2(q −S2 +1)

q +S2 −1
+ (2(q −S2 +1)(3q −S2 +1))

(q +S2 −1)2 +2

)
−1

Det (J f =2) = 1

ϵ

(
− (29q −S2)−S3

2 +q2S2 +16q2 +q3 −q(14q +q2 +1)+2

(q +S2 −1)2

)

– With expressions of q in ϵ:

Tr ace(J f =2) = 0 → ϵ= 1

8
(q2 − (q +11)

√
q2 +14q +1+18q +13), 3

p
7−8 < q < 3

39+16
p

6

Det (J f =2) > 0 → q > 0, ϵ> 0

Tr ace(J f =2) = 0 approximately for −0.062 < q < 0.038 for ϵ ∈ (0,1) and Det (J f =1) > 0 for all q and
ϵ, meaning that a Hopf-Bifurcation can occur on the whole line for ϵ where Tr ace(J f =2) = 0.

• f = 3

– Jacobian at certain f-value

J f =3 =
[

1
ϵ

(
q −S3 + 3(q−S3+2)

S3+q−2 + 3(q−S3+2)(3q−S3+2)
(S3+q−2)2 +3

)
3(3q−S3+2)
ϵ(S3+q−2)

1 −1

]
S3 =

√
q2 +20q +4

– With trace and determinant expressions:

Tr ace(J f =3) = 1

ϵ

(
q −S3 + 3(q −S3 +2)

q +S3 −2
+ (3(q −S3 +2)(3q −S3 +2))

(q +S3 −2)2 +3

)
−1

Det (J f =3) = 1

ϵ

(
−84q −4S3 −S3

3 +q2S3 +24q2 +q3 −qS2
3 +16

(q +S3 −2)2

)

– With expressions of q in ϵ:

Tr ace(J f =3) = 0 → ϵ= 1

12
(q2 − (q +16)

√
q2 +20q +4+26q +28), ,

1

2
(3
p

57−23) < q <− 10

79+11
p

51

Det (J f =3) > 0 → q > 0, ϵ> 0

Tr ace(J f =3) = 0 approximately for −0.175 < q < −0.06, which are q-values we assumed to not
have. Meaning that there is no possibility to have a Hopf-Bifurcation.
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C.2. Oregonator - Code for Numerical Analysis
1 %% Numerical analysis using a stiff ode solver for
2 % the 3-dimensional system , with original parameters
3

4 % Define the parameters
5 A = 0.06;
6 B = 0.02;
7 f = 1;
8 H = 0.8;
9 kc = 1;

10 k = [2*H^2, 3*(10^6)*H, 42*H, 3000*H];
11 eps = kc*B/(k(3)*A);
12 epsa = 2*kc*k(4)*B/(k(2)*k(3)*A);
13 q = 2*k(1)*k(4)/(k(2)*k(3));
14 x0 = 1;
15 y0 = 1;
16 z0 = 1;
17

18 % Define the initial conditions and time span
19 initial_conditions = [x0 , y0 , z0];
20 tspan = [0, 50];
21

22 % Define the ODE function
23 function dydt = odefun(~, y, eps , epsa , f, q)
24 dydt = zeros (3,1);
25 xn = y(1);
26 yn = y(2);
27 zn = y(3);
28 dydt (1) = (q*yn - xn*yn + xn*(1 - xn)) / eps;
29 dydt (2) = (-q*yn - xn*yn + f*zn) / epsa;
30 dydt (3) = xn - zn;
31 end
32

33 % Set solver options
34 options = odeset(’RelTol ’, 1e-8, ’AbsTol ’, 1e-10, ’MaxStep ’, 0.01);
35

36 % Solve the ODE system
37 [t, y] = ode15s(@(t, y) odefun(t, y, eps , epsa , f, q), tspan , initial_conditions ,

options);
38

39 % Extract the results
40 x_grid = y(:, 1);
41 y_grid = y(:, 2);
42 z_grid = y(:, 3);
43

44 % Plot the results
45 figure;
46 semilogy(t, x_grid , ’r’, t, y_grid , ’b’, t, z_grid , ’g’)
47 xlabel(’time’);
48 ylabel(’Concentration of X, Y and Z’);
49 title(’Concentration plot of X, Y and Z over time (Log Scale)’);
50 legend(’X’, ’Y’, ’Z’);
51 set(gca , ’YScale ’, ’log’);
52

53 figure;
54 plot3(log10(x_grid), log10(y_grid), log10(z_grid));
55 xlabel(’log10(X-concentration)’);
56 ylabel(’log10(Y-concentration)’);
57 zlabel(’log10(Z-concentration)’);
58 title(’Phase plot of log10(X) vs log10(Y) vs log10(Z)’);
59 grid on;
60 view (3);
61

62 %% Numerical analysis for the 2-dimensional system
63

64 % Define the parameters
65 A = 0.06;
66 B = 0.02;
67 f = 1;
68 H = 0.8;
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69 kc = 1;
70 k = [2*H^2, 3*(10^6)*H, 42*H, 3000*H];
71 eps = kc*B/(k(3)*A);
72 q = 2*k(1)*k(4)/(k(2)*k(3));
73 x0 = 1;
74 z0 = 1;
75

76 % Define the initial conditions and time span
77 initial_conditions = [x0 , z0];
78 tspan = [0, 50];
79

80 % Define the ODE function
81 function dzdt = odefun_2d (~, z, eps , f, q)
82 dzdt = zeros (2,1);
83 xn = z(1);
84 zn = z(2);
85 dzdt (1) = (xn - xn^2 -f*zn*(xn - q)/(q + xn)) / eps;
86 dzdt (2) = xn - zn;
87 end
88

89 % Set solver options
90 options = odeset(’RelTol ’, 1e-8, ’AbsTol ’, 1e-10, ’MaxStep ’, 0.01);
91

92 % Solve the ODE system
93 [t, z] = ode15s(@(t, z) odefun_2d(t, z, eps , f, q), tspan , initial_conditions , options)

;
94

95 % Extract the results
96 x_grid = z(:, 1);
97 z_grid = z(:, 2);
98

99 % Plot the results
100 figure;
101 semilogy(t, x_grid , ’r’, t, z_grid , ’g’)
102 xlabel(’time’);
103 ylabel(’Concentration of X and Z’);
104 title(’Concentration plot of X and Z over time (Log Scale)’);
105 legend(’X’, ’Z’);
106 set(gca , ’YScale ’, ’log’);
107

108 figure;
109 plot(log10(x_grid), log10(z_grid));
110 xlabel(’log10(X-concentration)’);
111 ylabel(’log10(Z-concentration)’);
112 title(’Phase plot of log10(X) vs log10(Z)’);
113 grid on;

C.3. Oregonator - Code for Eigenvalue Analysis

1 %% Stability analysis of the nondimensionalised 2-dimensional system
2

3 % Symbolic variables
4 syms X Z eps q f
5

6 % Nondimensionalized differential equations
7 equation_strings = { ’(X - X^2 -f*Z*(X - q)/(q + X))/eps’, ...
8 ’X - Z’ };
9

10 equations = str2sym(equation_strings);
11

12 % Getting the Jacobian
13 Jacobian = jacobian ([ equations (1), equations (2)],[X, Z]);
14

15 % Defining the system of equations to get the equilibrium points
16 F(1) = (X - X^2 -f*Z*(X - q)/(q + X))/eps;
17 F(2) = X - Z;
18

19 % Solving the system for equilibrium points
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20 sol = solve(F == 0, [X, Z]);
21

22 disp(’Equilibrium points:’);
23 disp(sol);
24

25 % Substituting the third equilibrium point into the general Jacobian
26

27 equilibrium_points = cell(numel(sol.X), 1);
28

29 for i = 1: numel(sol.X)
30 equilibrium_point = [sol.X(i); sol.Z(i)];
31 equilibrium_points{i} = equilibrium_point;
32

33 fprintf(’Equilibrium Point %d:\n’, i);
34 fprintf(’X = %s\n’, char(sol.X(i)));
35 fprintf(’Z = %s\n’, char(sol.Z(i)));
36 end
37

38 J_eq_filled = cell(numel(sol.X), 1);
39

40 for i = 1: numel(sol.X)
41 eq_point = equilibrium_points{i};
42 equilibrium_point = [eq_point (1), eq_point (2)];
43 J_eq_filled{i} = subs(Jacobian , [X, Z], equilibrium_point);
44 disp(J_eq_filled{i})
45 end
46

47 % Generating a seperate Jacobian with the third equilibrium point filled in
48 % for every seperate f-value , for f = 0, 1, 2 and 3.
49

50 f_values = [0,1,2,3];
51 J_eq_3_filled = cell (4,1);
52

53 syms f
54

55 for i=1: length(f_values)
56 J_eq_3_filled{i} = subs(J_eq_filled {3,1},f,f_values(i));
57 disp(J_eq_3_filled{i})
58 end
59

60 % Stability and complex region with Hopf -Bifurcation location dots for
61 % every seperate f-value
62

63 syms q eps
64

65 q_limit = 0.1;
66 eps_limit = 1;
67

68 q_grid = linspace(0, q_limit , 200);
69 eps_grid = linspace(0, eps_limit , 200);
70 q_grid = q_grid (2:end);
71 eps_grid = eps_grid (2:end);
72

73 eigenvalues = cell(length(q_grid), length(eps_grid), length(f_values));
74 real_parts = zeros(length(q_grid), length(eps_grid), length(f_values));
75

76 imaginary = false(length(q_grid), length(eps_grid), length(f_values));
77 stable = false(length(q_grid), length(eps_grid), length(f_values));
78 hopf = ones(length(q_grid), length(eps_grid), length(f_values));
79

80 for k=1: length(f_values)
81 for i = 1: length(q_grid)
82 for j = 1: length(eps_grid)
83 J_eq_copy = J_eq_3_filled{k};
84 J_eq_copy = subs(J_eq_copy , [q eps], [q_grid(i), eps_grid(j)]);
85 J_eq_num = double(J_eq_copy);
86 eigenvalues{i,j,k} = eig(J_eq_num);
87 disp(eigenvalues{i,j,k})
88 [min_real_part , min_index] = min(abs(real(eigenvalues{i,j,k})));
89 real_parts(i,j,k) = min_real_part;
90 if imag(eigenvalues{i,j,k}( min_index)) == 0
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91 real_parts(i,j,k) = 10000;
92 end
93 end
94 end
95

96 th = 0.015;
97

98 for i = 1: length(q_grid)
99 for j = 1: length(eps_grid)

100 eigen = eigenvalues{i,j,k};
101 if all(isreal(eigen))
102 imaginary(i,j,k) = false;
103 else
104 imaginary(i,j,k) = true;
105 end
106 if all(real(eigen) < 0)
107 stable(i,j,k) = true;
108 end
109 if abs(real_parts(i,j,k)) < th
110 hopf(i,j,k) = 0;
111 end
112 end
113 end
114 end
115

116

117 for k=1: length(f_values)
118 [row , col] = find(hopf(:,:,k)’ == 0);
119

120 [Q, Eps] = meshgrid(q_grid , eps_grid);
121

122 figure;
123 contourf(Q, Eps , imaginary (:,:,k)’, [1 1], ’LineWidth ’, 0.5, ’FaceColor ’, [0.2 0.2

0.8], ’EdgeColor ’, ’none’, ’FaceAlpha ’, 0.5);
124 hold on;
125 contourf(Q, Eps , stable(:,:,k)’, [1 1], ’LineWidth ’, 0.5, ’FaceColor ’, [1 0.5 0], ’

EdgeColor ’, ’none’, ’FaceAlpha ’, 0.5);
126 hold on;
127

128 scatter(q_grid(col), eps_grid(row), 10, ’k’, ’filled ’);
129 hold off;
130 xlabel(’q-value ’);
131 ylabel(’eps -value’);
132 title ([’Stability and Hopf Bifurcation Points , f= ’, num2str(f_values(k))]);
133 grid on;
134 end
135

136 %% Plotting analytical line of Hopf -Bifurcations over the region plots of f = 1
137

138 % Analytical line of Hopf -Bifurcations
139 eps_function = @(q) (-(q + 5*sqrt(q*(q + 8)) - 4)/(q + sqrt(q*(q + 8)) + 4));
140

141 [row , col] = find(hopf(:,:,2)’ == 0);
142

143 [Q, Eps] = meshgrid(q_grid , eps_grid);
144

145 figure;
146 contourf(Q, Eps , imaginary (:,:,2)’, [1 1], ’LineWidth ’, 0.5, ’FaceColor ’, [0.2 0.2

0.8], ’EdgeColor ’, ’none’, ’FaceAlpha ’, 0.5);
147 hold on;
148 contourf(Q, Eps , stable (:,:,2)’, [1 1], ’LineWidth ’, 0.5, ’FaceColor ’, [1 0.5 0], ’

EdgeColor ’, ’none’, ’FaceAlpha ’, 0.5);
149 hold on;
150

151 scatter(q_grid(col), eps_grid(row), 10, ’k’, ’filled ’);
152 hold on;
153

154 fplot(eps_function , [0, 0.1], ’Color ’, [1, 0.75, 0.8], ’LineWidth ’, 2);
155 ylim([0, 1]);
156

157 hold off;
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158 xlabel(’q-value ’);
159 ylabel(’eps -value’);
160 title ([’Stability and Hopf Bifurcation Points , f= ’, num2str(f_values (2))]);
161 grid on;
162

163 %% Now for f = 2
164

165 eps_function2 = @(q) ((q^2 -1*(q + 11)*sqrt(q^2 + 14*q + 1) + 18*q + 13) / 8);
166

167 [row , col] = find(hopf(:,:,3)’ == 0);
168

169 [Q, Eps] = meshgrid(q_grid , eps_grid);
170

171 figure;
172 contourf(Q, Eps , imaginary (:,:,3)’, [1 1], ’LineWidth ’, 0.5, ’FaceColor ’, [0.2 0.2

0.8], ’EdgeColor ’, ’none’, ’FaceAlpha ’, 0.5);
173 hold on;
174 contourf(Q, Eps , stable (:,:,3)’, [1 1], ’LineWidth ’, 0.5, ’FaceColor ’, [1 0.5 0], ’

EdgeColor ’, ’none’, ’FaceAlpha ’, 0.5);
175 hold on;
176

177 scatter(q_grid(col), eps_grid(row), 10, ’k’, ’filled ’);
178 hold on;
179

180 fplot(eps_function2 , [0, 0.1], ’Color ’, [1, 0.75, 0.8], ’LineWidth ’, 2);
181 ylim ([0 ,1]);
182

183 hold off;
184 xlabel(’q-value ’);
185 ylabel(’eps -value’);
186 title ([’Stability and Hopf Bifurcation Points , f= ’, num2str(f_values (3))]);
187 grid on;
188

189 %% Stability analysis as before , but now for the 3-dimensional system
190

191 % Symbolic variables
192 syms X Y Z eps epsa q f
193

194 % System of differential equations
195 equation_strings = { ’(q*Y - X*Y + X -X^2)/eps’, ...
196 ’(-q*Y - X*Y + f*Z)/epsa’, ...
197 ’X - Z’ };
198

199 equations = str2sym(equation_strings);
200

201 % Getting the Jacobian
202

203 Jacobian_3d = jacobian ([ equations (1), equations (2), equations (3)],[X, Y, Z]);
204

205 % Define the system of differential equations
206 F(1) = (q*Y - X*Y + X -X^2)/eps;
207 F(2) = (-q*Y - X*Y + f*Z)/epsa;
208 F(3) = X - Z;
209

210 % Solve the system of differential equations symbolically
211 sol = solve(F == 0, [X, Y, Z]);
212

213 % Display the equilibrium points in terms of the constants p_i and s_i
214 disp(’Equilibrium points:’);
215 disp(sol);
216

217 % Iterating over the equilibrium points
218 equilibrium_points_3d = cell(numel(sol.X), 1);
219

220 for i = 1: numel(sol.X)
221 equilibrium_point_3d = [sol.X(i); sol.Y(i); sol.Z(i)];
222 equilibrium_points_3d{i} = equilibrium_point_3d;
223 fprintf(’Equilibrium Point %d:\n’, i);
224 fprintf(’X = %s\n’, char(sol.X(i)));
225 fprintf(’Y = %s\n’, char(sol.Y(i)));
226 fprintf(’Z = %s\n’, char(sol.Z(i)));
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227 end
228

229 % Filling in the positive equilibrium point into the Jacobian
230

231 J_eq_filled_3d = cell(numel(sol.X), 1);
232

233 for i = 1: numel(sol.X)
234 eq_point = equilibrium_points_3d{i};
235 equilibrium_point_3d = [eq_point (1), eq_point (2), eq_point (3)];
236 J_eq_filled_3d{i} = subs(Jacobian_3d , [X, Y, Z], equilibrium_point_3d);
237 disp(J_eq_filled_3d{i})
238 end
239

240 % Getting the Jacobian evaluated at the equilibrium point for every
241 % seperate f-value , with f = 0, 1, 2 and 3.
242

243 f_values = [0,1,2,3];
244 J_eq_3_filled_3d = cell (4,1);
245

246 for i=1: length(f_values)
247 J_eq_3_filled_3d{i} = subs(J_eq_filled_3d {3,1},f,f_values(i));
248 disp(J_eq_3_filled_3d{i})
249 end
250

251 %% 3D plotting with parameters q, epsilon and epsilon ’ (to be called epsa),
252 % to plot the stability and complex regions with Hopf -Bifurcation location
253 % dots.
254

255 syms q eps epsa
256

257 q_limit = 0.1;
258 eps_limit = 1;
259 epsa_limit = eps_limit *2/1000;
260

261 q_grid = linspace(0, q_limit , 50);
262 eps_grid = linspace(0, eps_limit , 50);
263 epsa_grid = linspace(0, epsa_limit , 50);
264 q_grid = q_grid (2:end);
265 eps_grid = eps_grid (2:end);
266 epsa_grid = epsa_grid (2:end);
267

268 eigenvalues_3d = cell(length(q_grid), length(eps_grid), length(epsa_grid), length(
f_values));

269 real_parts_3d = zeros(length(q_grid), length(eps_grid), length(epsa_grid), length(
f_values));

270 imaginary_3d = false(length(q_grid), length(eps_grid), length(epsa_grid), length(
f_values));

271 stable_3d = false(length(q_grid), length(eps_grid), length(epsa_grid), length(f_values)
);

272

273 for h=1: length(f_values)
274 for i = 1: length(q_grid)
275 for j = 1: length(eps_grid)
276 for k = 1: length(epsa_grid)
277 J_eq_copy = J_eq_3_filled_3d{h};
278 J_eq_copy = subs(J_eq_copy , [eps epsa q], [eps_grid(j), epsa_grid(k),

q_grid(i)]);
279 J_eq_num = double(J_eq_copy);
280 eigenvalues_3d{i,j,k,h} = eig(J_eq_num);
281 [min_real_part , min_index] = min(abs(real(eigenvalues_3d{i,j,k,h})));
282 real_parts_3d(i,j,k,h) = min_real_part;
283 if imag(eigenvalues_3d{i,j,k,h}( min_index)) == 0
284 real_parts_3d(i,j,k,h) = 10000;
285 end
286 if any(imag(eigenvalues_3d{i,j,k,h}) ~= 0)
287 imaginary_3d(i,j,k,h) = true;
288 end
289 stable_3d(i,j,k,h) = all(real(eigenvalues_3d{i,j,k,h}) < 0);
290 end
291 end
292 end
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293 end
294

295 % Plotting the 3D Hopf bifurcation
296

297 [Q, Eps , Epsa] = meshgrid(q_grid , eps_grid , epsa_grid);
298

299 for h=1: length(f_values)
300 threshold = 0.05;
301 real_parts_thresholded = real_parts_3d (:,:,:,h);
302 real_parts_thresholded(real_parts_thresholded < threshold) = 0;
303

304 figure;
305 hold on;
306

307 isosurf = isosurface(Q, Eps , Epsa , real_parts_thresholded , 0);
308 p1 = patch(isosurf);
309 set(p1, ’FaceColor ’, ’red’, ’EdgeColor ’, ’none’);
310

311 xlabel(’q-value ’);
312 ylabel(’eps -value’);
313 zlabel(’epsa -value’);
314 title ([’3D Hopf Bifurcation , f = ’, num2str(f_values(h))]);
315 grid on;
316 view (3);
317 axis tight;
318 camlight;
319 lighting gouraud;
320

321 hold off;
322 end
323

324 %% 2 dimensional plot to show the negligible influence of epsilon ’ on
325 % the Hopf -Bifurcation locations for f = 1 and f = 2.
326

327 % Certain epsilon ’ values to see whether it has an influence on the system
328 epsa_index = [5, 11, 18, 24];
329 [Q, Eps] = meshgrid(q_grid , eps_grid);
330

331 % Plotting stability and complex region from the 3-dimensional system with
332 % Hopf -Bifurcation locations for the defined different epsilon ’ values.
333 figure;
334 for i = 1: length(epsa_index)
335 threshold = 0.1;
336 real_parts_thresholded = real_parts_3d (:,:, epsa_index(i) ,2) ’;
337 real_parts_thresholded(real_parts_thresholded < threshold) = 0;
338 [row , col] = find(real_parts_thresholded (:,:) == 0);
339

340 subplot(2, 2, i);
341 contourf(Q, Eps , imaginary_3d (:,:, epsa_index(i) ,2)’, [1 1], ’LineWidth ’, 0.5, ’

FaceColor ’, [0.2 0.2 0.8], ’EdgeColor ’, ’none’, ’FaceAlpha ’, 0.5);
342 hold on;
343 contourf(Q, Eps , stable_3d (:,:, epsa_index(i) ,2)’, [1 1], ’LineWidth ’, 0.5, ’

FaceColor ’, [1 0.5 0], ’EdgeColor ’, ’none’, ’FaceAlpha ’, 0.5);
344 hold on;
345

346 formatted_eps_value = [0.5*10^ -3 , 1*10^-3, 1.5*10^ -3 , 2*10^ -3];
347

348 scatter(q_grid(col), eps_grid(row), 7, ’black’, ’filled ’);
349

350 hold off;
351 xlabel(’q-value ’);
352 ylabel(’eps -value’);
353 title ([’f = ’, num2str(f_values (2)), ’, epsa = ’, num2str(formatted_eps_value(i))])

;
354 grid on;
355 end
356

357 % Plotting the Hopf -Bifurcation locations on top of each other with a
358 % slight offset to see the effect of the epsilon ’.
359 figure;
360 colors = [’r’, ’g’, ’b’, ’m’];
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361

362 for i = 1: length(epsa_index)
363 threshold = 0.1;
364 real_parts_thresholded = real_parts_3d (:,:, epsa_index(i) ,2) ’;
365 real_parts_thresholded(real_parts_thresholded < threshold) = 0;
366 [row , col] = find(real_parts_thresholded == 0);
367

368 scatter(q_grid(col), eps_grid(row) + i*0.01 , 17, colors(i), ’filled ’);
369 hold on;
370 end
371

372 hold off;
373 xlabel(’q-value ’);
374 ylabel(’eps -value’);
375 title ([’f = ’, num2str(f_values (2))]);
376 xlim([0, 0.1]);
377 ylim([0, 1]);
378 grid on;
379

380 legend(’epsa = 0.5 \times 10^{ -3}’, ’epsa = 1.0 \times 10^{ -3}’, ’epsa = 1.5 \times
10^{ -3}’, ’epsa = 2.0 \times 10^{ -3}’, ’Location ’, ’NorthEast ’);

381

382 % The same idea of code , for f = 2 instead of f = 1.
383

384 epsa_index = [5,11, 18, 24];
385 [Q, Eps] = meshgrid(q_grid , eps_grid);
386

387 figure;
388 for i = 1: length(epsa_index)
389 threshold = 0.1;
390 real_parts_thresholded = real_parts_3d (:,:, epsa_index(i) ,3) ’;
391 real_parts_thresholded(real_parts_thresholded < threshold) = 0;
392 [row , col] = find(real_parts_thresholded (:,:) == 0);
393

394 subplot(2, 2, i);
395 contourf(Q, Eps , imaginary_3d (:,:, epsa_index(i) ,3)’, [1 1], ’LineWidth ’, 0.5, ’

FaceColor ’, [0.2 0.2 0.8], ’EdgeColor ’, ’none’, ’FaceAlpha ’, 0.5);
396 hold on;
397 contourf(Q, Eps , stable_3d (:,:, epsa_index(i) ,3)’, [1 1], ’LineWidth ’, 0.5, ’

FaceColor ’, [1 0.5 0], ’EdgeColor ’, ’none’, ’FaceAlpha ’, 0.5);
398 hold on;
399

400 formatted_eps_value = [0.5*10^ -3 , 1*10^-3, 1.5*10^ -3 , 2*10^ -3];
401

402 scatter(q_grid(col), eps_grid(row), 7, ’black’, ’filled ’);
403 hold off;
404 xlabel(’q-value ’);
405 ylabel(’eps -value’);
406 title ([’f = ’, num2str(f_values (3)), ’, epsa = ’, num2str(formatted_eps_value(i))])

;
407 grid on;
408 end
409

410 figure;
411 colors = [’r’, ’g’, ’b’, ’m’];
412 for i = 1: length(epsa_index)
413 threshold = 0.1;
414 real_parts_thresholded = real_parts_3d (:,:, epsa_index(i) ,3) ’;
415 real_parts_thresholded(real_parts_thresholded < threshold) = 0;
416 [row , col] = find(real_parts_thresholded (:,:) == 0);
417 scatter(q_grid(col), eps_grid(row) + i*0.01 , 17, colors(i), ’filled ’);
418 hold on;
419 end
420

421 hold off;
422 xlabel(’q-value ’);
423 ylabel(’eps -value’);
424 xlim([0, 0.1]);
425 ylim([0, 1]);
426 title ([’f = ’, num2str(f_values (3))]);
427 grid on;
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428

429 legend(’epsa = 0.5 \times 10^{ -3}’, ’epsa = 1.0 \times 10^{ -3}’, ’epsa = 1.5 \times
10^{ -3}’, ’epsa = 2.0 \times 10^{ -3}’, ’Location ’, ’Best’);
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