
Delft University of Technology

Master’s Thesis

A Framework for the Implementation
and Comparison of Authenticated Data

Structures

Author:

Daniël Mast

Supervisors:

Zekeriya Erkin

Thijs Veugen

A thesis written in fulfilment of the requirements

for the degree of Computer Science

in the

Department of Intelligent Systems of

Delft University of Technology

March 2016



Abstract

Faculty Electrical Engineering, Mathematics and Computer Science

Delft University of Technology

Computer Science

A Framework for the Implementation and Comparison of Authenticated

Data Structures

by Daniël Mast

We present the design and implementation of a general framework that enables imple-

mentation and performance comparison of Authenticated Data Structures (ADSs). The

framework guarantees that an ADS supports initialization, updates, and verification of

queries. In the framework, we implemented the hash tree, skip list, and state-of-the-art

SeqHash, and extended their functionality to enable insertion and deletion of a list of

entries. We alleviate the task of a programmer by reducing insertion and deletion from

three core methods: create, merge, and split. We present the results of the performance

comparison. Our implementation of the skip list proves to outperform SeqHash, while

supporting the same operations, being more intuitive and easier to implement, and is

therefore a good alternative for practical use.



Acknowledgements

First of all, I would like to thank my thesis supervisor assistant professor Zekeriya Erkin

of the Cyber Security Group at the faculty of EEMCS from the Delft University of

Technology. Thank you for the great support throughout the graduation process, your

advice, and your valuable time.

Secondly, I want to thank the experts of the department of Cyber Security and Resilience

at TNO in The Hague, where I, as a graduate intern, could learn about the practice of

Cyber Security. In particular, I want to thank my internship supervisor Thijs Veugen,

who was greatly involved in my research.

Finally, I want to express my gratitude to all my friends and family that provided me

with support throughout my studies and graduation. I could not have done this without

you.

Daniël Mast

ii



Contents

Abstract i

Acknowledgements ii

Contents iii

1 Introduction 1

2 Authenticated Data Structures 4

2.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Updating an ADS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4 Merkle Hash Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4.1 Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4.2 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4.3 Updating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Authenticated Skip List . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5.1 Skip list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5.2 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5.3 Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5.4 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5.5 Updating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 SeqHash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6.2 Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6.3 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6.4 Updating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.7 Construction of Input Data . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.8 Confidentiality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Design and Implementation 19

3.1 The Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Implementation of an ADS with Input Data . . . . . . . . . . . . . . . . . 21

3.3 Usage of an ADS with Input Data . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Experimental Results 26

4.1 Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

iii



Contents iv

4.2 Updating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4 Code comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Discussion & Conclusion 31

5.1 Skip list and SeqHash comparison . . . . . . . . . . . . . . . . . . . . . . 31

5.2 General review on use of ADSs . . . . . . . . . . . . . . . . . . . . . . . . 32

5.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32



Chapter 1

Introduction

With the emergence of cloud computing, users are increasingly collaborating on remotely

stored data, without possessing a local copy of it [1]. A reader obtains data by sending

a query to a server, and receives a response. A writer sends an update, for which

the server updates the data accordingly. The reader however cannot always be sure

that the received response is correct. System failure, in the form of data becoming

corrupted in storage or transmission, may cause the data to be different than the writer’s

original version. This issue can be overcome by hashing the data, which deterministically

transforms data of an arbitrary size to a fixed size. The hash values can be used as

checksums. With this technique, storage or transmission errors are easily detected [3].

However, if the server owner may choose to deliberately send the wrong data to a reader,

the reader will have no possibility of detecting this kind of misbehavior. How can users

take advantage of the storage and computational capabilities of a cloud server, without

having to trust the server blindly?

Previous research has introduced so-called authenticated data structures (ADSs) [11].

These are structures that enrich the original data with authentication data, which allows

the server to prove that he sent the correct response, and allows the reader to verify

this proof, being guaranteed that the response is correct. In my literature report [8],

I introduce ADSs, and discuss the research where they stem from, including subjects

like auditing, provable data possession and proofs of correctness. Practical examples

in which ADSs can be applied are: the distribution of stock information, multi-user

collaboration on documents in the cloud, cloud email, and all other services on which

users communicate indirectly via a (potentially untrusted) cloud provider.

Existing research has come up with a wide variety of ADSs. In most cases, only a

single ADS is presented and explained, its time complexity is stated, and performance

results are given. Due to the differences in structure and supported operations, one ADS

1



Introduction 2

cannot be easily compared to another. It would however be very convenient to be able

to determine which ADS suits or performs best for which application. The research of

this thesis aims to answer exactly that question, by presenting a framework that pours

the different ADSs into a similar structure, which allows comparison of the performance

of the ADSs with it.

In this research, three ADSs from literature are analyzed and compared: the Merkle hash

tree [9], the authenticated skip list [2] [4] [5], and SeqHash [12]. The classical Merkle

hash tree is a well known and most basic type of ADS, of which the structure is intuitive

and straightforward. The authenticated skip list is a similar tree-like structure like the

Merkle tree, but instead consists of layers of linked lists, enables more efficient update

operations, and is used in applications concerning certificate revocation. SeqHash is a

state-of-the-art ADS that is efficient for storing a history of computations and detecting

server misbehavior. Its structure uses partial evaluation of the trees of which it con-

sists, to enable efficient data merging. We selected these particular selection of ADSs,

as they form a good representation of the existing ADSs, both in terms of complexity

and modernity, and therefore serve well to prove the usefulness of the framework. More-

over, we wanted to examine the efficiency of the state-of-the-art SeqHash. To be able to

perform a fair comparison, a single framework is created in which all ADSs are imple-

mented. The framework ensures that all ADSs support the following update operations:

inserting, deleting, and appending data blocks. Moreover, it guarantees that a proof of

correctness can be constructed for a given data block, and that the method to verify this

proof is defined. This set of update and verification operations forms the elementary

basis of each ADS. The design of each of these operations does not always follow directly

from the literature. Therefore, we often extended the existing structure, improving the

original design and its efficiency, to support all core operations. The performance of the

operations is benchmarked, and the results of the different ADSs are compared. We also

compare the ADSs on how complex the operations are, and how many lines of code are

needed to implement them. In these ways, our work contributes to the debate on the

real-world applicability of ADSs.

Apart from the ability to elegantly compare ADSs, the framework has additional benefits.

For the programmer, we provide a clear structure, in which only the specific functionality

of an ADS has to be implemented, and in which basic ADS functionality is already

included. This means that the framework is not only useful for comparing the above-

mentioned ADSs, but can be used in future research as well to implement and test

new ADSs. For the end-user, our framework provides a set of ADSs that he can use

instantly, without being required to have any knowledge about the specifics of the ADS

itself. Moreover, the framework overcomes the issue of dealing with various forms of

input data. The data can consist of numbers, text, DNA sequences, a file hierarchy, or



Introduction 3

anything else. When the user defines the blocks that the data consists of, each ADS in

the framework will instantly support this data without restrictions, allowing the user to

choose the ADS that he finds most suitable for the job.

In summary, our contributions are:

1. the construction of a framework for implementing and comparing ADSs;

2. the implementation and improvement of ADSs from state-of-the-art literature, and

extension to fully support update and verification operations;

3. a performance comparison of these ADSs;

4. a discussion on the real-world applicability of ADSs

The rest of this thesis is organized as follows: Chapter 2 explains in detail how an ADS

works. It describes the three different ADSs that we selected from literature, in which

way we improved them, and how we modified their structure to fit in the framework.

Chapter 3 discusses the design and implementation details of the framework and the

three ADSs. Chapter 4 presents the experimental results. Chapter 5 concludes with the

main outcomes of the research.



Chapter 2

Authenticated Data Structures

Authenticated data structures provide a way to guarantee integrity of outsourced data,

in a more efficient way than hashing the data set as a whole [11]. Hashing a data

set in this straightforward way would require the reader to download the entire data

set, compute its hash, and compare it to the hash received from the writer. ADS

provides a more efficient solution, by dividing the data set into blocks, which are hashed

separately, and combined in a tree-like structure, from which the root is used as a small-

sized authenticator value [6]. This structure allows the reader to verify the integrity of a

single queried block, which is much more efficient than having to verify the whole data

set every time. We describe the general ADS model in Section 2.1. In Section 2.2, we

explain how a reader can verify a publisher’s response. In Section 2.3, we discuss how

our framework supports updates of the ADS. In Sections 2.4, 2.5, and 2.6 , we discuss

the different implementations of this model in the form of the Merkle hash tree, the

authenticated skip list, and SeqHash respectively. For each of these ADSs, we describe

how they are created, verified, and updated. In Section 2.7, we explain in detail how an

arbitrary data set can be mapped to suitable input data for an ADS. We conclude the

chapter with Section 2.8, in which confidentiality of ADSs is discussed.

2.1 Model

ADS distinguishes three parties: the writer, the publisher and the readers [11]. The

writer maintains the data, and wishes that the readers can access this data. In practice,

the writer does not have the capability (or the means) to serve every reader. There-

fore, this job is outsourced to the publisher, that does possess these capabilities. The

capability issue is now resolved, but the publisher is untrusted. The writer and readers

cannot be sure that he will always send the correct data. The publisher may choose

4



Chapter 1. Authenticated Data Structures 5

to deliberately respond incorrectly to queries. The readers will then receive data that

does not match with what the writer sent to the publisher. ADS provides a scheme that

enables detection of this kind of misbehavior. Figure 2.1 shows which data is shared

between which parties. The writer maintains a local copy of the data, and performs

updates on it. After every update it sends the new authenticator value to the readers.

The update information is shared with the publisher, which updates his own copy of the

data accordingly. A reader sends a query to the publisher, and receives a response and

a proof. The reader uses the writer’s authenticator and the proof to verify correctness

of the response. 

Writer Publisher Readers Update 

Response + Proof 

Query 

Authenticator 

 
 

Figure 2.1: ADS scheme

2.2 Verification

The verification (Figure 2.2) proceeds as follows: First, the user computes the hash

of the response contents. The received proof often consists of a set of hashes of the

remaining data set. The response hash and the proof hashes can be combined to compute

the authenticator. The details of the proof contents and the combine method differ

per ADS. In general, hashing is the main technique used for verification. The main

advantage of hashing is that it provides a way to verify data with digests that are

constant-sized, independent of the data size. After computing the authenticator, the

reader verifies whether it matches with the authenticator received from the writer. The

writer’s authenticator represents the accumulated hash of the whole data set. If the

authenticators match, the reader is certain that the response is correct. If they do not

match, the reader knows that the publisher has sent an incorrect response or an invalid

proof.

2.3 Updating an ADS

In our framework design, an ADS only has to implement three methods in order to

support all update operations: insert, delete, and append. The methods are: create,



Chapter 1. Authenticated Data Structures 6

Response 

Proof 

Writer’s 
Authenticator 

Hash contents 

Combine 

Response hash 

Match 

Correct 
Yes/No 

Computed 
Authenticator 

Figure 2.2: User’s response verification method

merge, and split :

• create([block] → ads. Takes a list of blocks, and initializes an ADS for it.

• merge(ads1, ads2) → ads. Merges two ADSs into one.

• split(ads, index) → ads1, ads2. Splits one ADS into two at the given index location.

Merge and split are exact opposites: if we split an ADS a at any location, and merge

the two resulting ADSs, then we will obtain a again.

The following algorithms show how these methods can be used for ADS updates. To be

efficient in a practical setting, our design supports the insertion and deletion of a list

of blocks at once. Previous research often only supports single block updates. If a user

then wishes to insert a sequence of blocks, the ADS will update its hash values after

every block, instead of at the end only. Notice that our design supports single blocks as

well, as it is possible to provide a list containing a single block.

Insert takes a list of blocks, and inserts it in the given ADS at the given index location.

insert(ads, [block], index):

left, right = split(ads, index)

middle = create([block])

result = merge(left, middle)

result = merge(result, right)

return result

Delete deletes blocks from the given ADS, between index and (index + length).



Chapter 1. Authenticated Data Structures 7

delete(ads, index, length):

left, temp = split(ads, index)

unused, right = split(temp, length)

result = merge(left, right)

return result

Append is a special case of insertion, where it is not necessary to provide an index, as

the list of blocks are added at the end. This costs less than an insertion, because the

given ADS does not have to be splitted first.

append(ads, [block]):

right = create([block])

result = merge(ads, right)

return result

Throughout this chapter, the implementations of create, merge, and split, will be dis-

cussed for the specific ADSs.

2.4 Merkle Hash Tree

The Merkle hash tree is one of the first ADSs in literature, and forms the basis of many

other types of ADSs [11]. Variations on this structure exist to be more suitable for

certain applications, but in this section, the general version is explained. In Figure 2.3,

a Merkle hash tree is depicted. This section describes how such a hash tree is constructed

from the input data, and how a queried block can be verified. It will also be explained

why a Merkle hash tree is not suitable for updates.

B0 B1 B2 B3 

h0 h1 h2 h3 

h01 h23 

h0123 (authenticator) 

Figure 2.3: Merkle hash tree



Chapter 1. Authenticated Data Structures 8

2.4.1 Creation

We start with the set of input data blocks: D = {B0, ..., Bn}. For each block (bottom

row in Figure 2.3), the hash is computed, resulting into a new list: {h0, ..., hn}. Every

element of this list is set as a leaf node of the hash tree. Next, every two hashes are

combined into one hash on a higher level. Combining two hashes into one happens by

hashing the concatenation of the two hashes, as shown in Equation 2.1. In this equation,

h() denotes the hash function, and the || operator denotes concatenation of two values.

h01 = h(h0||h1) (2.1)

This process builds up a binary tree of hash nodes with a single root, the top hash. This

is the authenticator for the given set of data blocks. Here we can clearly see that altering

one randomly chosen bit in a randomly chosen input data block will always result the

authenticator value to change. This feature is very convenient for integrity checking.

The tree that is constructed from the data does not contain a reference to the blocks

itself anymore. This can clearly be seen in Figure 2.3. Instead, the tree is built on top

of the data. Only the hashes of the blocks are present in the leaves of the ADS, not

the block’s contents themselves. This holds for every type of ADS, implemented in the

framework. The list of blocks should therefore be stored separately, by the writer and

publisher, in order to update the data, and send the contents to the readers.

2.4.2 Verification

Say that a reader sends a query to the publisher, asking for the contents of B2. Then,

the publisher should put these contents in the response. The contents have to be ac-

companied by a proof of correctness. The proof will consist of the sibling hashes, all the

way from B2 to the root. The proof also contains the relative position of those siblings

(left or right), to be able to compute the correct hash. This is important, because a

different order will result into a different hash, as regular hashing is not commutative.

Equation 2.2 makes this clear:

h(a||b) 6= h(b||a) (2.2)

In Figure 2.3, the so-called sibling hashes are h3 and h01. The reader now computes the

hash of the received block: h(B2). If the publisher has sent the correct contents and

sibling hashes, then h(B2) equals h2. Next, the reader combines h(B2) with h3, which



Chapter 1. Authenticated Data Structures 9

should be equal to h23. That value is combined with h01, resulting in the top hash. The

reader should now check whether this final result equals the authenticator he received

from the writer. If so, the reader is certain that the response content is correct.

2.4.3 Updating

An ADS should support the same basic update operations as performed on the input

data. This means that an ADS should support insertion and deletion of blocks. A

Merkle hash tree does not support these operations in an efficient way. We can show

this with an example. Say that in Figure 2.3, we want to insert a block between B0

and B1. In this case, B1, B2, and B3 will have to shift one place to the right. Due to

the binary structure, an insertion of an odd number of blocks will require every block

hash to be combined with the other neighbour. This requires recomputation of the hash

values of all nodes in the tree structure above these blocks. In the worst case, when a

block is inserted before B0, the cost of this operation is equal to recreation of the entire

tree, which is unacceptable. Deletion of an odd number of blocks will have the same

issue.

In [13], a method for insertion an deletion of blocks in a Merkle hash tree is proposed,

as shown in Figure 2.4. When a new block is inserted between B2 and B3, then the

leaf node that used to represent B2 now becomes a parent node of two new nodes, from

which the left node now represents B2, and the right node represents the new node. The

parent hashes on the path to the root will have to be updated, but the rest of the tree

stays the same. For deletion, the exact opposite happens, as shown in Figure 2.5. A

node that used to be a parent of two leaf nodes, becomes a leaf node itself, when one of

the leaf nodes (representing a block hash) is deleted. After deletion, the parent hashes

are updated. This type of insertion and deletion is easy to implement, but introduces

two major issues. First, the tree might become highly unbalanced, due to a sequence of

insertions (or deletions) at a concentrated position. In an unbalanced tree, the distance

to the root differs greatly between different leaves. This distance affects the time it takes

to perform an update on that position, and construct and verify a proof for a block,

located in that branch. Also, it affects the proof size, as this depends on the number of

hash nodes the block is distanced from the root. This unpredictability of performance

time and proof size for a randomly chosen position is undesirable. Second, the structure

is not history independent, as it reveals information about the order of a sequence of

update operations. This is undesirable. In a scenario where the data is static, and

never requires updates, the Merkle hash tree serves perfectly as an ADS. However, in a

dynamic setting, these two issues make a Merkle hash tree unsuitable for practical use,

which created the need of dynamic ADSs.



Chapter 1. Authenticated Data Structures 10

Enabling Public Verifiability and Data Dynamics for Storage Security 365

h(n1) h(n2) h(n3) h(n4)

ha hb

Roothr

A B

h(n1) h(n3) h(n4)

h'a hb

Root'h’r

A B

h(n’2)

h(n2) is replaced by h(n’2)

: the sequence of access to the ordered set of leaves

Fig. 4. Example of MHT update under block modification operation. Here, ni and n′
i

are used to denote H(mi) and H(m′
i), respectively.

h(n1) h(n2) h(n3) h(n4)

ha hb

Roothr

A B

n3

h(n1) hc h(n3) h(n4)

h'a hb

Root'h’r

A B

h(n*)h(n2)

C

Insert h(n*) after h(n2)

: the sequence of access to the ordered set of leaves

Fig. 5. Example of MHT update under block insertion operation. Here, ni and n∗ are
used to denote H(mi) and H(m∗), respectively.

hc hd he hf

ha hb

Roothr

A B
Delete h(n5)

: the sequence of access to the ordered set of leaves

h(n1) h(n2) h(n3) h(n4) h(n5) h(n6) h(n7) h(n8)

hc hd hf

ha h’b

Root’h’r
A B

h(n1) h(n2) h(n3) h(n4)

h(n6)

h(n7) h(n8)

Fig. 6. Example of MHT update under block deletion operation

R′ (see the example in Fig. 6). The details of the protocol procedures are similar
to that of data modification and insertion, which are thus omitted here.

3.4 Discussion on Design Considerations

Instantiations based on BLS and RSA. As discussed above, we present a
BLS-based construction that offers both public verifiability and data dynamics.
In fact, our proposed scheme can also be constructed based on RSA signatures.
Compared with RSA construction [2, 14], as a desirable benefit, the BLS con-
struction can offer shorter homomorphic signatures (e.g., 160 bits) than those
that use RSA techniques (e.g., 1024 bits). In addition, the BLS construction has
the shortest query and response (we does not consider AAI here): 20 bytes and
40 bytes [1]. However, while BLS construction is not suitable to use variable sized

Figure 2.4: Inserting a block [13]

Enabling Public Verifiability and Data Dynamics for Storage Security 365

h(n1) h(n2) h(n3) h(n4)

ha hb

Roothr

A B

h(n1) h(n3) h(n4)

h'a hb

Root'h’r

A B

h(n’2)

h(n2) is replaced by h(n’2)

: the sequence of access to the ordered set of leaves

Fig. 4. Example of MHT update under block modification operation. Here, ni and n′
i

are used to denote H(mi) and H(m′
i), respectively.

h(n1) h(n2) h(n3) h(n4)

ha hb

Roothr

A B

n3

h(n1) hc h(n3) h(n4)

h'a hb

Root'h’r

A B

h(n*)h(n2)

C

Insert h(n*) after h(n2)

: the sequence of access to the ordered set of leaves

Fig. 5. Example of MHT update under block insertion operation. Here, ni and n∗ are
used to denote H(mi) and H(m∗), respectively.

hc hd he hf

ha hb

Roothr

A B
Delete h(n5)

: the sequence of access to the ordered set of leaves

h(n1) h(n2) h(n3) h(n4) h(n5) h(n6) h(n7) h(n8)

hc hd hf

ha h’b

Root’h’r
A B

h(n1) h(n2) h(n3) h(n4)

h(n6)

h(n7) h(n8)

Fig. 6. Example of MHT update under block deletion operation

R′ (see the example in Fig. 6). The details of the protocol procedures are similar
to that of data modification and insertion, which are thus omitted here.

3.4 Discussion on Design Considerations

Instantiations based on BLS and RSA. As discussed above, we present a
BLS-based construction that offers both public verifiability and data dynamics.
In fact, our proposed scheme can also be constructed based on RSA signatures.
Compared with RSA construction [2, 14], as a desirable benefit, the BLS con-
struction can offer shorter homomorphic signatures (e.g., 160 bits) than those
that use RSA techniques (e.g., 1024 bits). In addition, the BLS construction has
the shortest query and response (we does not consider AAI here): 20 bytes and
40 bytes [1]. However, while BLS construction is not suitable to use variable sized

Figure 2.5: Deleting a block [13]

2.5 Authenticated Skip List

In [2], a new ADS is introduced, the so-called rank-based skip list. This work is based on

previous research [4] [5] that uses skip lists for authentication of data, but is unsuitable

for usage with indexed data blocks. The rank-based skip list provides a way to insert

and delete a block at a given index more efficiently, without having to recompute as

many hash nodes as in the Merkle hash tree. In this section, we will first explain what a

skip list is. Then, we will describe the structure of our design of the authenticated skip

list. We will point out the elements that are similar to the rank-based skip list, but also

the way in which our structure improves it. We will explain how this ADS is created

from the input data, how it can be used for verification, and how it can be updated.

2.5.1 Skip list

In contrast to a binary tree, the original skip list design uses probabilistic balancing. The

goal of this is to provide an efficient lookup method for sorted entries, and eliminate the

need of having to define relatively complex methods to deterministically keep the tree



Chapter 1. Authenticated Data Structures 11

balanced. Balancing is important for guaranteeing that tree lookups perform similarly

well for different locations in the tree. The skip list design shows how a structure can

remain balanced in a probabilistic way, making the implementation much less complex.

The downside of a probabilistic approach is that the worst case performance is much

worse than the deterministic variant, but the probability that this occurs is very low.

Similar to a binary tree, a skip list provides a way to lookup values in logarithmic time,

not having to visit every entry in a linear way. This is reached by so-called skipping of

entries. Figure 2.6 depicts a skip list representation of a list of numbers.

Articles 

670 

Searyh path , update[i]+forwzrd[i] 

original list, I7 to be inserted 

list after insertion, updated pointers in grey 

Insert(list, searchKey, newvalue) 
local update[l ..MaxLevel] 
x := list-+header 
for i := list+level downto 1 do 

while x+forward[i]+key c searchKey do 
x := x+forward[i] 

-- x+key < searchKey I x+fonuard[i]+key 

update[i] := x 
x := x+forward[l] 
if x+key = searchKey then x+value := newValue 
else 

newLevel := randomLevel() 
if newLevel > list+level then 

for i := lisblevel + 1 to newLevel do 
update[i] := listjheader 

list+level := newLevel 
x := makeNode(newLevel, searchKey, value) 
for i := 1 to newLevel do 

x+forward[i] := update[i]-+forward[i] 
update[i]-+forward[i] := x 

Delete(list, searchKey) 
local update[l ..MaxLevel] 
x := list-+header 
for i := list-+level downto 1 do 

while x+forward[i]+key c searchKey do 
x := x+forward[i] 

update[i] := x 
x := x+forward[ I] 
if x-+key = searchKey then 

for i := 1 to lisblevel do 
if update[i]-+forward[i] # x then break 
update[i]+forward[i] := x-+forward[i] 

free(x) 
while list+level > 1 and 

list+header-+forward[list+level] = NIL do 
list+level := list+level - 1 

FIGURE 4. Skip List Insertion and Deletion Algorithms 

Communications of the AC.44 

FIGURE 3. Pictorial Description of Steps Involved in Performing an 
Insertion 

randomLevel() 
newLevel := 1 
-- random0 returns a random value in [O...l) 
while random0 -Z p do 

newLevel := newLevel + 1 
return min(newLevel, MaxLevel) 

FIGURE 5. Algorithm to Calculate a Random Level 

half of the nodes that have level i pointers also have 
level i + 1 pointers. To get away from magic constants, 
we say that a fraction p of the nodes with level i point- 
ers also have level i + 1 pointers (see p = % for our 
original discussion). Levels are generated randomly by 
an algorithm equivalent to the one in Figure 5. Levels 
are generated without reference to the number of ele- 
ments in the list. 

At What Level do We Start a Search? Defining L(n) 
In a skip list of 16 elements generated with p = %, we 
might happen to have 9 elements of level 1; 3 elements 
of level 2; 3 elements of level 3; and 1 element of level 
14 (this would be very unlikely, but it could happen). 
How should we handle this? If we use the standard 
algorithm and start our search at level 14, we will do a 
lot of useless work. 

Where should we start the search? Our analysis sug- 
gests that ideally we would start a search at the level L 
where we expect l/p nodes. This happens when L = 
logl,,n. Since we will be referring frequently to this 
formula, we will use L(n) to denote logl,,n. 

There are a number of solutions to the problem of 
deciding how to handle the case where there is an 
element with an unusually large level in the list. 

l Don’t worry, be happy. Simply start a search at the 
highest level present in the list. As we will see in our 

June 1990 Volume 33 Number 6 

Figure 2.6: Skip list [10]

The figure shows that a skip list consists of a set of towers. Each tower contains the value

of a single entry, together with a stack of leveled nodes. A node contains a reference to

its right node on the same level (denoted by an arrow), and its down node (in the same

tower). On the left, a dummy tower (without an entry) contains the starting nodes, and

on the right, all last references refer to a dummy tower NIL, indicating the end. When

a search for a specified entry is performed, the pointer starts at the top left node, and

traverses to the right as long as the current entry is less than the entry being searched

for. If a greater element is spotted, the pointer goes one back, and then one down, and

repeats the process, until the entry is found, or the lowest layer is reached. In this way,

many entries are skipped, making it more efficient than a linear search. The number

of nodes stored in an object differs per entry, giving the towers different heights. This

height is determined by a sequence of random coin flips, starting with a height of 1,

and increasing by 1 until the coin lands on tails. Therefore, the probability of a tower

getting a certain height is p(h = x) = 0.5x. The expected value of the maximum height

of a tower in the skip list equals the depth of a Merkle hash tree with an equal number

of entries, providing a similar lookup time with high probability. The advantage of

this probabilistic approach is that it simplifies the way in which the structure is kept

balanced. The disadvantage is the high variance of performance: in the worst case (with

low probability), the structure is highly unbalanced.

2.5.2 Structure

The original skip list keeps the list sorted. This means that adding new entries does

not require the user to give a location of where to add the value, because the value

itself determines its location, relative to other entries. Therefore, it does not support



Chapter 1. Authenticated Data Structures 12

an indexed insertion operation. To be able to apply the authenticated skip list on an

indexed set of data blocks, the skip list should not sort the entries based on their value.

Instead, the writer wants to define an index, deciding where the entry should be put, and

knowing where to retrieve it later. The rank-based skip list enables indexed insertion and

deletion, by storing additional information in each node. A node v stores the number

of leaves that can be reached from that node, denoted as r(v). This is the rank of that

node. Figure 2.7 shows a rank-based skip list, with the rank of each node shown in its

square. With this information, it is possible to traverse from the top left node, referred

to as the start node, all the way to the leaf that corresponds to the given index, by

deciding whether to turn right or down, based on the ranks of the right and bottom

nodes.

with the firstinfo∗
1 specifying a full re-write (this corresponds

to the first time the client sends a file to the server). The
challenger updates his local metadata only for the verifying
updates (hence, non-verifying updates are considered not to
have taken place—data has not changed);

4. CHALLENGE: Call the final version of the fileF , which is
created according to the verifying updates the adversary re-
quested in the previous step. The challenger holds the latest
metadataMc sent by the adversary and verified as accepting.
Now the challenger creates a challenge using the algorithm
Challenge(sk, pk,Mc) → {c} and sends it to the adversary.
The adversary returns a proofP . If Verify(sk, pk,Mc, c, P )
accepts, then the adversary wins. The challenger has the
ability to reset the adversary to the beginning of the chal-
lenge phase and repeat this step polynomially-many times
for the purpose of extraction. Overall, the goal is to extract
(at least) the challenged parts ofF from the adversary’s re-
sponses which are accepting.

Note that our definition coincides with extractor definitions
in proofs of knowledge. For an adversary that answers a non-
negligible fraction of the challenges, a polynomial-time extractor
must exist. Furthermore, this definition can be applied to the POR
case [7, 13, 30], in which by repeating the challenge-response pro-
cess, the extractor can extract the whole file with the help of error-
correcting codes. The probability of catching a cheating server is
analyzed in Section 5.

Finally, if a DPDP scheme is to be truly publicly verifiable, the
Verify algorithm should not make use of the secret key. Since that
is the case for our construction (see Section 4), we can derive a
public verifiability protocol usable for official arbitration purposes;
this work is currently under development.

3. RANK-BASED SKIP LISTS
In order to implement our first DPDP construction, we develop a

modification of the authenticated skip list data structure [12], which
we call arank-based authenticated skip list. A similar modification
could be done on other hash-based authenticated data structures,
such as Merkle trees.

We recall that in a skip list [26], each nodev stores two point-
ers, denotedrgt(v) anddwn(v), that are used for searching. In an
authenticated skip list [12], a nodev also stores a labelf(v) com-
puted by applying a collision-resistant hash function tof(rgt(v))
andf(dwn(v)).

We can use an authenticated skip list to check the integrity of the
file blocks. However, this data structure does not support efficient
verification of the indices of the blocks, which are used as query
and update parameters in our DPDP scenario. To overcome this
difficulty, we define a new hashing scheme that takes into account
rank information.

3.1 Authenticating ranks
Let F be a file consisting ofn blocks m1, m2, . . . , mn. We

store at thei-th bottom-level node of the skip list a representation
T (mi) of block mi (we will defineT (mi) later). Blockmi will
be stored elsewhere by the untrusted server. Each nodev of the
skip list stores the number of nodes at the bottom level that can
be reached fromv. We call this value therank of v and denote it
with r(v). In Figure 1, we show the ranks of the nodes of a skip list.
An insertion, deletion, or modification of a file block affects only
the nodes of the skip list along a search path. We can recompute
bottom-up the ranks of the affected nodes in constant time per node.

v1
v8

0

4

v3v4v5

v7

v6 v9

w 3

w 4

w 5

w 6

w 7

3

12

11 10

5 4

1 1111 1 1 1 11 3 2

5

2 3

2

Figure 1: Example of rank-based skip list.

The top leftmost node of a skip list will be referred to as the
start node. For example,w7 is the start node of the skip list in
Figure 1. For a nodev, denote withlow(v) andhigh(v) the indices
of the leftmost and rightmost nodes at the bottom level reachable
from v, respectively. Clearly, for the start nodes of the skip list,
we haver(s) = n, low(s) = 1 and high(s) = n. Using the
ranks stored at the nodes, we can reach thei-th node of the bottom
level by traversing a path that begins at the start node, as follows.
For the current nodev, assume we knowlow(v) andhigh(v). Let
w = rgt(v) andz = dwn(v). We set

high(w) = high(v) ,

low(w) = high(v) − r(w) + 1 ,

high(z) = low(v) + r(z) − 1 ,

low(z) = low(v) .

If i ∈ [low(w), high(w)], we follow the right pointer and setv =
w, else we follow the down pointer and setv = z. We continue
until we reach thei-th bottom node.

In order to authenticate skip lists with ranks, we extend the hash-
ing scheme defined in [12]. We consider a skip list that stores data
items at the bottom-level nodes. In our application, the nodev as-
sociated with thei-th block mi stores itemx(v) = T (mi). Let
l(v) be the level (height) of nodev in the skip list (l(v) = 0 for the
nodes at the bottom level).

Let || denote concatenation. We extend a hash functionh to
support multiple arguments by defining

h(x1, . . . , xk) = h(h(x1)|| . . . ||h(xk)) .

DEFINITION 3 (HASHING SCHEME WITH RANKS). Given a
collision resistant hash functionh, the labelf(v) of a nodev of
a rank-based authenticated skip list is defined as follows.
Case 0: v = null

f(v) = 0 ;

Case 1: l(v) > 0

f(v) = h(l(v), r(v), f(dwn(v)), f(rgt(v))) ;

Case 2: l(v) = 0

f(v) = h(l(v), r(v), x(v), f(rgt(v))) .

3.2 Queries
Suppose now the fileF and a skip list on the file have been stored

at the untrusted server. The client wants to verify the integrity of
block i and therefore issues queryatRank(i) to the server. The
server executes Algorithm 1, described below, to computeT (i) and
a proof forT (i) (for convenience we useT (i) to denoteT (mi)).

Let vk, . . . , v1 be the path from the start node,vk, to the node
associated with blocki, v1. The reverse pathv1, . . . , vk is called
theverification pathof blocki. For each nodevj , j = 1, . . . , k, we

216

Figure 2.7: Rank-based skip list [2]

In our design, we support indexed insertion in a different way. Our design does not

require rank information. Instead, each node not only stores a reference to its right

and bottom neighbour, but also its top and left neighbour, enabling more flexible node

traversal. Also, the ADS stores a list of references to all leaf nodes. When a new node

is inserted or deleted, or a proof is constructed, we do not start the traversal at the

start node (top down), but rather at the leaf node (bottom up). This takes away the

necessity of searching the leaf first.

2.5.3 Creation

First, the start node is created, which at that point is the only node that is contained

in the left dummy tower. Then, the tower of the first data block is attached to the

dummy tower. The height is determined by a pseudo-random generator, for which the

block’s contents are used as a seed. This means that the same contents will always result

into the same height. This feature is very important, as it guarantees that the writer’s

ADS will always remain identical to the publisher’s copy. If this would not be the case,

then verification would be impossible, as the authenticator values would not match. If



Chapter 1. Authenticated Data Structures 13

a newly created tower is higher than the dummy tower, new nodes are added to the

dummy tower until the heights are equal. The start node is now set to the highest node

in the left dummy tower. This guarantees that every node in the skip list is reachable

from the start node. This process is repeated by adding each data block to the rightmost

tower at that point. In the end, the right dummy tower is created, with a height equal

to the left dummy tower, referring to all rightmost nodes, and vice versa.

2.5.4 Verification

An authenticated skip list enables verification, by computing a label for each node. A

label f(v) for node v represents an accumulating check value that is built up recursively

from the nodes that this node refers to. right(v) denotes the node at the right of node

v. down(v) denotes the node below node v. entry(v) denotes the entry value of the

tower of which node v is a base node.

• if v is a base node

– if right(v) is a tower node: f(v) = h(entry(v))

– if right(v) is a plateau node: f(v) = h(entry(v), f(right(v))

• else

– if right(v) is a tower node: f(v) = f(down(v))

– if right(v) is a plateau node: f(v) = h(f(down(v)), f(right(v))

A base node is a node that is located on the lowest level of the skip list. A plateau node

is the top node of its tower. The other nodes of this object are tower nodes. Figure

2.8 shows the information flow that determines the contents of the labels for each node.

This figure is a modified version of the skip list figure in [5]. The recursive computation

of labels guarantees that the top left node of the authenticated skip list represents the

authenticator for the entire set of entries, allowing a user to verify correctness of a query

response efficiently. Similar as for the Merkle hash tree, the proof contains the labels of

other nodes along the path that are necessary to recompute the authenticator.

2.5.5 Updating

To merge two skip lists, the right dummy tower of the left skip list, and the left dummy

tower of the right skip list, should be removed. Instead, the nodes that they were

connected to, should now be connected to each other. Also, if the two skip lists did not

have the same height, the dummy tower’s heights should be adjusted accordingly. When

the nodes are now connected correctly, the node labels should be updated efficiently,

without recomputing hashes for nodes that do not change. We know that the labels of



Chapter 1. Authenticated Data Structures 14

22

17 31 38

555012 17 20 25 31 38 39 44

4412

17 5531

17

17 55

55

25

25

25

S5

S4

S3

S2

S1

S0 8-

8-

8-
8-

8-

8- 8+

8+

8+

8+

8+

8+

555012 17 20 25 31 38 39 448- 8+22

Figure 7. Flo w of the computation of the hash values labeling the nodes of the skip list of Fig. 5.
Nodes where hash functions are computed are drawn with thic k lines. The arr ows denote the flow of
information, not links in the data structure .

Let be thesequenceof nodesthat
are visited when searching for element , in reverse or-
der. In theexample of Fig. 6, we have

. Note thatby thepropertiesof a skip list, the
size of sequence is with high probabil-
ity. We constructfrom thenodesequence a sequence

of values such that:

, thelabel of thestartnode;

The computationof the nodesequence can be done
by pushingontoa stack the nodesvisited while searching
for element . When thesearchends, thestack containsthe
nodesof orderedfromtoptobottom.Using this stack,
we easily constructthesequence of nodelabels.

The user verifies the answer for element by sim-
ply hashing the values of the returnedsequence in
the given order, and comparingthe result with the signed
value , where is thestart nodeof theskip list. If the
two values agree, thentheuser is assuredof thevalidity of
theanswerat thetimegivenby thetimestamp.

4.4. Implementation Details

The six interfaces describedin Section 3 have beenim-
plementedas Java classes. Additionalauxiliary classeshave
beenused. Someimplementationdetailsareoverviewedbe-
low.

A class CommutativeHash serves as a wrap-
per that adds commutativity to a standard
java.secur ity.MessageDigest .

The class implementingtheBasis interface stores the
label of thestartnodeof theskip list anda referenceto
theCommutativeHash usedby thedatastructure.

The class implementingtheAuthenticResponse in-
terface stores the sequenceof label values and
an integer flag to distinguishamongthevarious cases
of validationof theanswer.

Two classes are used to implementtheUpdate inter-
face. One representsinsertionupdatesand stores the
heightof thetower associatedwith thenewly inserted
element.The otherrepresentsdeletionupdates.

The class implementingtheAuthenticatedDictionar y
interfaceusesfinite sentinelvalues. Also, it limits to a
givenvalue theheightof any tower.

5. Performance

We have conducteda preliminaryexperimentontheper-
formanceof our data structurefor authenticateddictionar-
ies on randomlygeneratedsets of -bit integers ranging
in size from to . For eachoperation,the
averagewas computedover trials.

The experimentwas conductedon a 440MHz Sun Ultra
10 with 256M of memoryrunningSolaris. The Java Virtual
Machine was launchedwith a 200M maximumheapsize.
Cryptographic hashingwas performedusing the standard
Java implementationof the MD5 algorithm. The signing
of thebasis by theCA andthesignatureverificationby the
user were omittedfrom the experiment. The highestlevel
of a tower was limited to .

The results of the experiment are summarized in Fig-
ure 9. Note that validations, insertions and deletionstake
less than ms, while queries take less than ms. Thus,
we feel the use of skip lists and commutative hashingis a
scalablesolutionfor theauthenticateddictionary.

Figure 2.8: Authenticated skip list [5]

the nodes in the right skip list do not change, because the nodes that determine their

labels have not changed. Only the nodes in the left part that (indirectly) have right

neighbours in the right skip list that are plateau nodes, have to be updated. We do this

by iterating over the righmost nodes of the left skip list, and checking whether their

right neighbour is a plateau node. If so, update the label. If the node is a plateau node

itself, its left neighbour should also be updated.

To split one skip list into two, an opposite procedure should be followed. At the given

index location, where the skip list should be split, the left part should get a right dummy

tower, and the right part should get a left dummy tower. The connections between the

left and right part should be removed, and instead connected with the dummy towers.

Due to the split, one of the resulting skip lists might have a lower height now. The

dummy towers have to be adjusted accordingly. Similar to a merge, the labels in the left

skip list have to be updated, as the left part is not connected to the right part anymore,

but instead to the created right dummy tower.

2.6 SeqHash

SeqHash is a recent ADS that was first proposed in [12]. The ADS is implemented in a

system called VerSum, that enables checking the behavior of multiple servers, performing

the same outsourced computation for a user. In this system, SeqHash is used to store

a history of computations. In a case where the servers return a different outcome, the

user can analyze this history to detect where the server went wrong. This history is put

in an ADS to make sure that the server cannot cheat by modifying the history. Because

a history log is only extended with new computations at the end, SeqHash focused on

the efficiency of appending blocks, and not on insertion or deletion. SeqHash reaches

this appending efficiency by working with so-called partially evaluated trees. Due to this

partial evaluation, it is more efficient to merge two SeqHashes, compared to two normal



Chapter 1. Authenticated Data Structures 15

hash trees. The original Seqhash design does not directly support a split method, and

the algorithm to do this was not constructed yet. We extended the design with a split

method, and the extra storage of values in nodes to make this possible.

2.6.1 Structure

A Merkle hash tree always uses the same method to combine the hashes of the blocks.

Every two block hashes are combined, and a binary tree is constructed. In SeqHash

however, the merging of two hashes depends on the hash. A sequence of rounds de-

termine with which node a given node will merge. This feature allows SeqHash to be

deterministic, and still allow efficient merging of partially evaluated trees.

2.6.2 Creation

Figure 2.9 shows the structure of a SeqHash. The leaf nodes a − k denote the input

data blocks. For each of these blocks, the hash is computed. An algorithm uses this

hash as a seed for a pseudo-randomly generated sequence of output bits. The contents

of a block are used as the seed for this pseudo-random generator, to make sure that

the writer’s ADS is identical to the publisher’s copy. These bits are shown above the

nodes. For every node, the first bit is computed. The bits determine whether two nodes

are being merged or not. The merging means that a new parent node is created, and

that its hash will be the combined hash of its two children. The parent node will be

placed in the next level, one level higher. The criterium of two nodes being merged is

that the bit of the left node should be 1, and the right node’s bit should be 0. On all

other combinations, the node are not merged. This ensures that conflicting situations

do not occur in which one node should merge with both neighbours. However, it may

happen that a node becomes enclosed between two nodes that have merged with their

neighbours, making it impossible for the middle node to merge. When this happens,

this node is added to the next level, giving it the opportunity to merge in the next

round. Besides merging or being enclosed, a third scenario can occur for the rightmost

and leftmost node. Namely, if the leftmost node gets an output bit 0, then this means

that it can potentially get merged with the rightmost node of another SeqHash that is

concatenated with this SeqHash in the future. The same holds for the rightmost node if

its output bit is a 1. When this happens, these nodes are labeled unknown, depicted as

a dashed square in Figure 2.9. These unknown nodes are then part of the fringes of the

SeqHash. The left and right fringe contain the nodes that might be merged with nodes

of a SeqHash with which this SeqHash is merged in a later stage. The usage of these

fringes characterize the partial evaluation of the SeqHash structure.



Chapter 1. Authenticated Data Structures 16

The size of a DetermineNext proof is determined by the number
of calls made by the innermost unfinished function: for each of
those, the proof must include the result of the function. It is up to
the developer to keep the number of calls made by each function
reasonably small. Note that if a function becomes too long, it can
always be split in two parts, with the first part passing local variables
to the second part as arguments.

VERSUM efficiently supports incremental updates to the input
data structure if it can reuse previous computation histories. Func-
tions processing unchanged data should not have their arguments
changed. That is, computations should be structured in a memoization-
friendly way. For example, to compute a sum over a list, the running
total should not be passed as an argument, but should instead be
kept and later added by the calling function.

5. SEQHASH
VERSUM stores computation histories in SEQHASH, a novel

hash-tree structure for storing sequences. SEQHASH supports fast
positional indexing, fast concatenation, and is efficiently comparable
thanks to its deterministic structure. This section describes and
motivates SEQHASH.

5.1 Goals
To hold computation histories for VERSUM, SEQHASH needs

several properties:
Efficient lookup and concatenation. To keep DetermineNext

proofs small, SEQHASH must support fast lookups. When VERSUM
reuses (parts of) a computation history, the corresponding SEQHASH
must be efficiently concatenable to the new computation history.

Note that SEQHASH must support general concatenation (that
is, a SEQHASH will be constructed in different orders): at the end
of DetermineNext, SEQHASH must support concatenation with a
single step. However, when reusing computations, SEQHASH must
support concatenation with a large number of steps.

Efficient comparison. During conflict resolution, VERSUM
must determine if two SEQHASH’s are equal. Computation his-
tories are too large to transmit in their entirety, so a SEQHASH is
stored as an ADS. To efficiently test for equality, two SEQHASH’s
representing identical computation histories must have the same
root hashes. This means that a SEQHASH’s internal structure must
be deterministic for given a computation history; it cannot depend
on the order in which the SEQHASH was constructed.

Resistance to adversarial inputs. A deterministic structure
comes with a risk: there might be a set of inputs that leads to an
unbalanced internal structure, so that operations on the SEQHASH
become slow (see §10.2). If an adversary could cause operations on
a SEQHASH to take linear time by modifying the input, they could
easily cause a VERSUM server to become unavailable. Constructing
such an adversarial input must be hard.

5.2 Structure
A SEQHASH is a forest of balanced binary trees that is con-

structed over several merge rounds. At the start of construction, all
of the elements making up the sequence that the SEQHASH holds
are placed as leaves at the bottom of the SEQHASH. Then, as long
as at least one node remains, SEQHASH performs a merge round.
The input and output of each round is the current sequence of nodes
representing the roots of SEQHASH’s trees. Each round merges
several adjacent pairs of input nodes, forming new trees as input for
the next round. Each merged node contains hashes of the merged
children, much like a Merkle tree [13]. SEQHASH keeps running un-
til no more nodes remain. Figure 4 contains an example SEQHASH,
where the leaf nodes a-k are the SEQHASH’s elements.

Round 1

Round 2

Round 3

1 1 0 0 0 0 1 1 0 1
1 1 1 0
0 0
1 0

0

1 0

1

0 1

1 0

1

0
0

0

a b c d e f g i j k

l m n o p

q r

h

Figure 4: A SEQHASH constructed over the sequence of leaf
nodes a-k. The digits on top of each node represent the output
bits of the hash of each node. Dashed squares indicate roots of
trees that might be merged when another SEQHASH is concate-
nated to this SEQHASH.

Since SEQHASH produces a forest containing a variable num-
ber of trees, we summarize the entire forest at the end by hashing
together the roots of all trees, from left to right, to produce a sin-
gle final hash value. In VERSUM, all these hashes are computed
automatically by the ADS code.

5.3 Merge round
The idea behind SEQHASH’s merge round is to use a crypto-

graphic hash function to determine which nodes to merge.
The input to SEQHASH’s round function is a sequence of nodes.

The first round starts with all sequence elements as individual nodes
as input; in the case of a computation history, these nodes store
individual steps in the history.

Using the hash function, each input node is hashed to construct an
infinite sequence of bits. The round then proceeds one bit at a time,
considering the output of all nodes at the same time. SEQHASH
merges each adjacent pair of unmerged nodes when the left node
generated a 1 and the right node generated a 0 (with the exception
of nodes on the side of the sequence). The round function continues
until no two unmerged adjacent nodes exist. The tree has a determin-
istic shape because the bit sequence is deterministically generated
by each node.

Consider the first round in the example SEQHASH from Figure 4,
ignoring nodes a and k. While processing the first bit, nodes b and c
are merged, as well as i and j. Nodes d and e are not merged because
d’s first bit is not a 1, nor is e’s bit a 0. After several more bits, all
nodes except h are merged. Because h is between two merged nodes,
it will never merge during this round no matter how many bits are
considered, and so the round ends.

The nodes on the side represent a challenge because we do not
yet know their neighbor nodes; for example, node a might end up
adjacent to another node that generates 1 for the second bit of round
1, but it might also end up to a node that is merged during the first
bit of round 1. We say that in this example SEQHASH the fate of
node a is unknown, and so we keep it as its own tree in the final
SEQHASH.

During the merge round function, any nodes on the side whose
fate cannot yet be decided are marked as unknown. This happens

5

Figure 2.9: SeqHash [12]

The process of computing new output bits continues until all nodes have either been

merged, enclosed, or labeled unknown. Then, a new round starts, attempting to merge

the nodes of the next level. The process of rounds stops when at some point, all nodes

are labeled unknown, causing them to be unable to merge or be enclosed. This scenario

is the furthest in which the SeqHash can be evaluated. Due to the partial evaluation, as

it does not result into a single tree with a single root. Instead, multiple adjacent trees are

constructed, for which each root is an unknown-labeled node. If the user wants to fully

evaluate the final SeqHash tree, a finish method is defined in which the unknown nodes

are combined. Their fate now becomes known, because there are no other SeqHashes at

the left or right of this SeqHash, that will be concatenated with it in a later stage.

2.6.3 Verification

Verification happens similarly to verification in a Merkle hash tree. The sibling hashes

are added to the proof, along with their relative position, allowing the reader to compute

the correct hash. However, as we have seen, a SeqHash does not consist of a single tree,

but rather of a number of adjacent trees. Therefore, the authenticator is not a single

hash value, but a list of hashes: the roots of all the trees. The authenticator therefore

is not constant-sized, but still much smaller than the data itself. More importantly, the

size of the proof is smaller than in a Merkle hash tree, because the partial evaluation

produces trees with a lower height. For the same reason, verification is less costly as

well, as the hash function has to be executed less. If the reader has computed the root

for the tree that contained the hash of the to-be-verified block, he iterates over the list

of roots in the authenticator he received from the writer. If one of these values match

the computed hash, the reader knows that the response is correct.



Chapter 1. Authenticated Data Structures 17

2.6.4 Updating

Compared to a Merkle hash tree, SeqHash supports very efficient merging, due to the

use of partial evaluation. When two SeqHashes are merged, only the nodes that occur

in the right fringe of the left SeqHash, and the left fringe of the right SeqHash, have

to be accessed. By design, we know that all other nodes in the structure will remain

untouched, and will therefore not change. We do not have to traverse these nodes,

which increases the efficiency. Similar to the creation of a single SeqHash, merging two

SeqHashes proceeds in rounds, going from the bottom to the top. Every round, the

fringe nodes of that level in the left and right SeqHash are added to the pool, and the

output bits are computed to construct that part of the SeqHash. This will build up new

trees, as nodes are merged, creating parent nodes on higher levels. When all right fringes

of the left SeqHash, and left fringes of the right SeqHash are processed, the resulting

structure is a SeqHash itself. This is the merged structure of the two given SeqHashes.

To split a SeqHash at a given index into two SeqHashes, the right fringes for the left

SeqHash, and the left fringes for the right SeqHash, have to be constructed. We start

at the leaf nodes directly left and directly right of the split location. From there, we

traverse up and inside the resulting SeqHashes in order to decide which nodes are added

to the fringes. To increase efficiency, every node stores a reference to its previous and

next neighbour node. These are the nodes located left and right of the node respectively.

Storing these references removes the need of traversing to the root or leaves of the tree

and back. Also, each merged node stores the number of output bits that were computed

until the node merged with another node. We use this value to determine whether a

node can be added to the fringe: if a node, located at the left of the split, returns an

output bit 1 faster than originally merged with a node on its left, then we know that

this node should not merge with that left node, because it should be labeled unknown.

2.7 Construction of Input Data

To support applicability of an ADS on a data set, the writer is required to divide the set

into separate blocks. The writer should cleverly decide how to distribute the data. The

most important consideration here is that data that is likely to be altered at the same

time, should be put in the same block. This will result in the least number of blocks

having to be rehashed. For example, if the data consists of files that are edited one at

a time, it may be efficient to define one file as one block. The advantage is that this

does not mean that all blocks have to be files. The input data for the ADS will be a list



Chapter 1. Authenticated Data Structures 18

of blocks, from which a number of blocks may be files, but other blocks may represent

numbers, DNA sequences or anything.

To give a concrete example, say we have a simple chat application. The user has a

username and a profile picture. He has a list of contacts, in which each contact has its

own username and profile picture. With each contact, the user can start a chat, which

consists of a list of timestamped messages. In this case, one block (probably the first)

will be a map, containing information about which information can be found where in

the following blocks. The user’s username (as a string block) will be stored in block

2, and his profile picture (as an image block) in block 3. Block 4 will serve as a map,

indicating where the contacts can be found, and block 5 will be a map for the chats. In

this way, the complete set of information of an app can be used for the app itself, and

its integrity can at the same time be verified by an ADS.

2.8 Confidentiality

It is important to notice that the main goal of an ADS is to improve integrity, by

detecting misbehavior of the publisher. Keeping the data confidential for the publisher

is not the goal. In the described scheme, the publisher can read the data that the

writer sends. It is however possible to partially achieve confidentiality of the data. The

writer should then encrypt the blocks separately, and share the decryption key with

the readers. The encrypted blocks are sent to the publisher. The reader decrypts the

block after reception. In this way, the only information a publisher can obtain is the

number of blocks, and, depending on the encryption scheme used, the varying sizes of

block contents. Notice that the data set as a whole cannot be encrypted, as it will lose

its block-distributed property, making it unsuitable to be used as ADS input.



Chapter 3

Design and Implementation

The framework, the access to input data, and the implementations of the ADS, are

implemented in Java. Its object-oriented characteristic, supporting abstraction and

inheritance, combined with the fact that it is widely used, makes it a very suitable

language for building a framework which a programmer can use to implement new

ADSs. Section 3.1 first discusses the framework, and of which classes and methods it

exists. Next, Section 3.2 explains how to implement a new ADS and new input data

in the framework. Section 3.3 describes how to use an implemented ADS and input

data. Section 3.4 explains how a benchmark for a core method of an ADS is run. The

complete implementation code of this work can be found at [7].

3.1 The Framework

Figure 3.1 shows the class diagram of the framework. The classes, contained in the

framework package, form the core of our implementation, and are referred to when a

new ADS is implemented. In the figure, the names of all classes in this package are

italized, indicating that they are abstract. An abstract class has to be inherited before

it can be instantiated. Italized method names are abstract methods. Abstract methods

have to be implemented in a subclass. This abstract property is cleverly used, as it

clearly shows the programmer which classes he should extend and which methods to

implement in order to build a fully functional ADS. Also, the methods that are not

abstract and already implemented, can be used directly by the programmer.

In the framework package, we see the classes Block, Data, ADS, Proof, and Authenticator.

As a Block may have all kinds of forms (possibly binary), the programmer has to define

how it is hashed. Therefore, it contains the method toString() and hash(). Implementing

19



Chapter 2. Design and Implementation 20

framework

Proof

#create(index: int, ads: ADS)

Data

+getBlock(index: int)
+getBlockCount()
+insertBlock(blocks: [Block], index: int)
+deleteBlocks(index: int, length: int)
+appendBlocks(blocks: [Block])

ADS

-auth: Authenticator

+create(data: Data)
+merge(left: ADS, right: ADS)
+split(ads: ADS)
+getProof(index: int)
+verify(block: Block, proof: Proof, auth: Authenticator)
+getAuthenticator()
+insertBlocks(blocks: [Block], index: int)
+deleteBlocks(index: int, length: int)
+appendBlocks(blocks: [Block])

1

Block

+toString(index: int)
+hash()

Authenticator

#create(ads: ADS)

Model::Main

Figure 3.1: Class diagram of the ADS framework

toString() tells the program how the contents of the block are converted to a string.

hash() directly uses this string to create a hash for the block. It is important that

toString() creates a string that represents the complete content. Otherwise, the publisher

could modify parts that will not affect the hash, and therefore the changes will not be

detected. For efficient hashing, the string should be as short as possible. An example is

depicted in Figure 3.2. On the left, a block representation of a simple file is shown. The

file has a title, a creation date, and contents. toString() combines these details with the

given index, creating a short string, that can be passed to the hash function.

Title: 
File1 
 
Created: 
2015-01-07 23:46 
 
Content: 
These are the contents 
of File1 

toString() 
“3;File1;201501072346;The
se are the contents of File1” 

FileBlock (index = 3) 

Figure 3.2: The toString() method

Data stores the references to the input data. In the simplest case, this means that a

subclass of Data has a field that contains a list of Blocks in memory. However, this is not



Chapter 2. Design and Implementation 21

required. The subclass may merely contain a reference to a folder on the hard drive, in

which files are stored. In that case, the Data subclass serves as an interface, defining how

the raw data is translated to separately indexed Blocks, that are not stored in memory,

but are instead created (from the raw data) when queried. To make this interface work,

the programmer should implement getBlock(), as well as the update methods.

When the Data is ready, it can be used to create the ADS. The ADS requires a ref-

erence to the Data, and passes it to create(). For ADS construction, the hashes of

all blocks in the Data are computed. After that, the reference to Data is not needed

anymore. create() initializes the fields of ADS, including the Authenticator field. The

in-memory fields contain all properties, defining the ADS. For the ADS, the programmer

should implement merge() and split(). These methods are called by the update meth-

ods insertBlocks( ), deleteBlocks(), and appendBlocks(), so they can be instantly used.

When implementing merge() and split(), the programmer is responsible for updating the

Authenticator field as well, as the authenticator changes when ADSs merge or split.

To support verification, getProof() has to be implemented. getAuthenticator() returns

the Authenticator object, stored in the ADS. A subclass of Authenticator stores the

authenticator information in its fields, and should define methods to access these fields.

getProof() creates and returns a Proof object. The Proof constructor uses the given

index and the ADS to construct the proof, from which the information is stored in its

fields. In ADS, verify() takes a given Block, a Proof, and an Authenticator object, and

defines how these are used to verify the block contents with the proof, returning true or

false accordingly.

3.2 Implementation of an ADS with Input Data

Figure 3.3 shows an example of how the previously described framework is used. It shows

both how we can define input data as well as an ADS. Keep in mind that the type of

data is not related to the type of ADS. The framework focuses on modularity of the two,

by distinguishing them programmatically. IntBlock and IntData are subclasses of Block

and Data, and therefore have to implement the abstract methods of their superclasses.

Additionally, an IntBlock contains a integer value. IntData contains a list of IntBlocks.

In IntData, getBlock(), and the update operations are defined by simply performing

the corresponding update operation on that list. Now we have a fully functioning data

instance that consists of a list of integer blocks.



Chapter 2. Design and Implementation 22

0..*

framework

Proof AuthenticatorBlock Data ADS

seqhash

SeqHashADS

-height: int
-top: [Node]
-leftFringes: [[Node]]
-rightFringes: [[Node]]
-leaves: [LeafNode]

-initFromLeaves(leaves: [LeafNode])
-addLeftFringe(node: Node)
-addRightFringe(node: Node)
-setTop(top: [Node])
-doRound(nodes: [Node], volatileLeft: boolean, volatileRight: boolean, level: int)

SHProof

-siblingHashes: List<byte[]>
-siblingPositions: List<Position>

SHAuthenticator

-roots: [byte[]]

+contains(root: byte[])

IntData

-blocks: List<IntBlock>

+addInts(values: int[])

IntBlock

-value: int

1

Model::Main

Figure 3.3: Class diagram of the SeqHash ADS and IntData

Next, we want to implement the SeqHash ADS in the framework. The classes Se-

qHashADS, SHResponse, and SHAuthenticator represent the SeqHash together. Se-

qHashADS contains a number of fields that represent its contents and enable efficient

traversal of the nodes: its height, a list of top nodes, the left and right fringes, which are

both a list of node lists, and lastly, a list of leaf nodes. SeqHashADS also consists of a

number of (private) methods to build and update the contents. These are helper meth-

ods that are called in create(), merge() and split(). After initialization of SeqHashADS,

a new instance of SHAuthenticator is created. SHAuthenticator contains a field roots,

which is a list of byte arrays. roots stores the hash values of the roots of all trees in

the SeqHash. The method contains() takes a byte array and returns whether this is

contained in roots, which we need to know for verification. The authenticator object

is updated alongside with updates that are performed on the ADS. getProof() calls the

constructor of SHProof, which sets up the sibling hashes and corresponding positions

for a given index.

This example has shown how the framework can be used to implement input data and

ADSs. In a similar way, other types of data and ADSs can be implemented, as we did

for the Merkle hash tree and authenticated skip list.



Chapter 2. Design and Implementation 23

3.3 Usage of an ADS with Input Data

The previous section explained how SeqHashADS and IntData were implemented. We

will now show these are used. A writer first initializes the data. He adds the integer

that the data consists of, and passes the data to the create() function of the ADS:

data = new IntData()

data.addInts([3, 8, 2, 4, 7])

ads = SplitHashADS.create(data)

sendToPublisher(CREATE, data)

authenticator = ads.getAuthenticator()

sendToAllUsers(AUTH, authenticator)

Now both the data and the ADS are initialized. To make sure that the publisher

possesses the same ADS, the writer shares the data with the publisher, and sends the

authenticator to all users. Now they both have an identical copy of the data and the

ADS. In a later stage, the writer wants to perform a number of updates:

# Inserting 3 blocks at position 3

index = 3

blocks = [1, 5, 7]

data.insertBlocks(blocks, index)

ads.insertBlocks(blocks, index)

sendToPublisher(INSERT, index, blocks)

# Deleting 3 blocks at position 4

index = 4

length = 3

data.deleteBlocks(index, length)

ads.deleteBlocks(index, length)

sendToPublisher(DELETE, index, length)

# Appending 2 blocks

blocks = [9, 8]

data.appendBlocks(blocks)

ads.appendBlocks(blocks)

sendToPublisher(APPEND, blocks)

authenticator = ads.getAuthenticator()

sendToAllUsers(AUTH, authenticator)



Chapter 2. Design and Implementation 24

As the code shows, each update should be updated on both the original data and the

ADS, to make sure they remain consistent. Also, the update information should be

shared with the publisher, which should then performs the same updates. Also, the new

authenticator should be shared with all users. The code shows the ease of updating the

data and the corresponding ADS.

At a certain moment, the reader wants to query a block, and verify it. The reader will

send the index of the block he wants to the publisher:

index = 3

sendToPublisher(QUERY, index)

The publisher will create the response contents:

# index = provided by user

block = data.getBlock(index)

proof = ads.getProof(index)

sendToReader(RESPONSE, block, proof)

On reception of the block and proof, the reader verifies the contents as follows:

# authenticator = provided by writer

result = SeqHashADS.verify(block, proof, authenticator)

As shown before, the reader received the writer’s authenticator in an earlier stage. Now

that he has received the block and proof from the publisher, he can verify the result.

Note that although he needs to know the details of the verification method of a specific

ADS, he does not need to possess the ADS contents itself. If the result returns true,

the reader knows that the contents are correct. If the result is false, the publisher has

cheated.

3.4 Benchmarks

To enable performance comparison of the implemented ADSs, we extended the frame-

work with a benchmarking functionality that only requires an ADS as input, and au-

tomatically benchmarks the core methods: create(), merge(), split(), getProof(), and

verify(). It is also possible to benchmark other methods that each ADS supports: in-

sertBlocks(), deleteBlocks(), appendBlocks(). However, as the performance of these



Chapter 2. Design and Implementation 25

update methods is fully dependent of the performance of merge() and split(), we de-

cided to benchmark those instead. To start a benchmark, the ADSs that need to be

benchmarked are first initialized and stored in an array:

ADSs = [new HashTreeADS(), new SkipListADS(), new SeqHashADS()]

Then, a benchmark is initialized, and starts to run after the array is given:

benchmark = new MergeBenchmark()

benchmark.runBatch(ADSs)

Inside the MergeBenchmark class, details can be set on the size of the data set, and the

number of repetitions. Also, the class defines how the data set on which the benchmark

is performed is initialized, together with other information that is needed to perform the

operation. runBatch() repeats the benchmark for a number of different sizes. As soon as

a benchmark for one size is finished, the result are printed and saved to a file. The result

is computed by dividing the total passed time by the number of repetitions. This example

showed MergeBenchmark, but the details are the same for the other benchmarks. Notice

that when a programmer has implemented a new ADS, he only has to add a reference

to the input array, and the benchmarks will automatically output its performance.



Chapter 4

Experimental Results

Apart from studying the three ADSs theoretically, we performed benchmarks on its core

elements. The benchmarks measure the execution time of a method. For each ADS,

we performed benchmarks on the methods that are specific for this ADS, and need to

be implemented by the programmer: create(), merge(), split(), getProof(), and verify().

In the next sections, we will discuss the results of each of these methods for each ADS.

Each figure shows the number of data entries on the x-axis, representing the size of

the data. The execution time in milliseconds of the performed method is shown on the

y-axis. The chapter ends with a code comparison of skip list and SeqHash.

4.1 Creation

Figure 4.1 shows the performance of creation of a new ADS, meaning that a Data object

is given to the constructor, from which the list of blocks is retrieved, and an ADS is

created. For creation, the hash tree performs the best, for every size. This is what we

expected, as the hash tree is the most basic ADS, that does not require computation

of additional values for future updates, in contrast to the skip list and SeqHash. The

skip list turns out to perform almost equally well compared to the hash tree, despite

the extra cost of constructing the dummy towers, and the coin tossing for each level of

a tower. We see that SeqHash’s creation compared to skip list and hash tree has a ratio

of approximately 1.8:1. This is explained by the fact that many output bits have to be

computed for each node, in each merge round.

The figure shows lines that are almost perfectly linear. However, the complexity for

the creation of each ADS is O(nlog(n)), of which n equals the number of data entries.

This complexity would not give a straight line, but rather a line of which the slope

26



Chapter 3. Experimental Results 27

0 800 1600 2400 3200 4000
0

2

4

6

8

10

12

14

16

Number of data entries

E
xe

cu
tio

n 
tim

e 
(m

s)

 

 
Hash Tree
Skip List
SeqHash

Figure 4.1: Creation of a new ADS

slowly increases for an increasing number of data entries. However, in the sizes that are

measured, this effect cannot yet be clearly seen, as log(n) is very small. The effect will

be visible for a very large number of data entries.

The figure supports the fact, discussed in Chapter 2, that the hash tree is very efficient

for static ADSs. If the user never requires updates on its data, he should choose to use

a hash tree, rather than a more complex skip list or SeqHash.

4.2 Updating

Figure 4.2 show the performance of merge() for the skip list and SeqHash. As discussed,

merge() and split() are not applicable to the hash tree, as its cost is equal to recreating

the tree, so the hash tree is not shown in the figures. We see that again, skip list performs

better than SeqHash, with a ratio of approximately 2:1. This is explained by the fact

that when a SeqHash is merged, the fringe nodes are given to the round method, that

creates new parents for these nodes. After that, these parents are again used as input for

the round method, creating a new tree structure. For a skip list, this does not happen.

Instead, only the right dummy tower of the left skip list, and the left dummy tower

of the right skip list disappear, and the nodes to which they connected, now have to

be connected to each other, and the corresponding labels have to be recomputed. The

creation of new nodes in the SeqHash explain the difference in merge performance of

these two ADSs. The fact that the lines are not straight, but rather a bit tortuous, is

caused by the randomness of the input. It may happen that the data with size 2800



Chapter 3. Experimental Results 28

require computation of more output bits than the data with size 3200. This cannot be

predicted. Despite this fact, the lines clearly show a quasi-linear increasing trend.

0 800 1600 2400 3200 4000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Number of data entries

E
xe

cu
tio

n 
tim

e 
(m

s)

 

 
Skip List
SeqHash

Figure 4.2: Merging of two ADSs

For splitting (Figure 4.3), it turns out that skip list is slower than SeqHash, with a

ratio of approximately 1.4:1. This is explained by the fact that when a skip list splits,

the existing links have to be broken, and those links have to be connected with dummy

towers, that need to be created. For SeqHash, splitting only requires traversing the

nodes along the split location, and deciding whether to add them to the fringe or not.

No new nodes have to be created.

0 800 1600 2400 3200 4000
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Number of data entries

E
xe

cu
tio

n 
tim

e 
(m

s)

 

 
Skip List
SeqHash

Figure 4.3: Splitting of an ADS

We have seen that skip list is more efficient for merging, and SeqHash is more efficient

for splitting. It is therefore up to the programmer to analyze the application for which



Chapter 3. Experimental Results 29

he will apply the ADS. If the application performs many more merges than splits, he

should choose the skip list. If the data has to be split very often, he should choose a

SeqHash. If the numbers of merges and splits are about equal, the skip list is a better

choice, as the skip list/SeqHash-ratio of merge is higher than split.

4.3 Verification

SeqHash performs better than the hash tree for proof construction (Figure 4.4). This is

explained by the fact that SeqHash consists of a number of trees, of which the maximum

height is lower than the height of a single hash tree. A lower height incurs that less

siblings have to be passed to the proof. Skip list performs worse than the hash tree.

A skip list has to decide for each node whether to add the label of its down or right

neighbour, whereas a hash tree and SeqHash can directly add their sibling. This causes

the performance difference. However, notice that the absolute differences in execution

time is very small, with a magnitude of microseconds, so it will require an extremely

large data set before these differences will start to become relevant.

0 2048 4096 6144 8192 10240
0

0.5

1

1.5

2

2.5

x 10
−3

Number of data entries

E
xe

cu
tio

n 
tim

e 
(m

s)

 

 
Hash Tree
Skip List
SeqHash

Figure 4.4: Construction of an entry proof

The results of verification (Figure 2.2) show the same order of execution time as for proof

construction. The difference between SplitHash and hash tree is expected, because a

SplitHash proof contains less hashes. Therefore, verification will also have to compute

less hashes. However, skip list not only performs worse in proof construction, but also

in verification. Verification of a skip list and hash tree are exactly the same, so from

this we can conclude that on average, a skip list proof is longer (contains more hashes).

This means that the random construction of a skip list does not guarantee that each



Chapter 3. Experimental Results 30

leaf node will on average have the same distance to the root. Although, the differences

are again very small, so will only be relevant for very large data inputs.

0 2048 4096 6144 8192 10240
0

0.005

0.01

0.015

0.02

Number of data entries

E
xe

cu
tio

n 
tim

e 
(m

s)

 

 
Hash Tree
Skip List
SeqHash

Figure 4.5: Integrity verification of entry

4.4 Code comparison

When we look at the two ADSs that support updating, we have seen that on average,

skip list performs better than SeqHash. This is an interesting outcome, as in the current

literature, SeqHash is a state of the art ADS, that is supposed to merge two ADSs

efficiently. However, we have seen that our implementation of the skip list, based on

the rank-based skip list, merges more efficiently. Therefore, it is interesting to look at

the complexity of the written code. Skip list not only performs better, but also requires

less code lines. SeqHash is written in 1009 lines of code, and skip list in 647 lines. Skip

list’s structure is also more intuitive, and therefore easier to explain. Because it does

essentially the same as a SeqHash, we can say that SeqHash’s structure is unnecessarily

complex. Its goals can be achieved in a simpler and more efficient way, as we have

shown.



Chapter 5

Discussion & Conclusion

In this work, we have given a detailed view on Authenticated Data Structures. We

have shown how the range of existing ADS designs can be generalized to a model, and

how we have implemented this model into a framework. We have explained how this

framework can be used to implement new ADSs, without having to re-implement ADS

commonalities every time, and how this framework supports benchmarking of an ADS,

and performance comparison of different ADSs. We have proposed an intuitive way

to generalize update operations, by using a create, merge, and split method as building

blocks. To prove the usability of the framework, we implemented and compared the hash

tree, skip list, and SeqHash. Without the framework, it would have been much harder

to research the differences and similarities of the different ADSs, both qualitatively and

quantitatively. Apart from the implementation of specific ADSs, we have also shown

that the framework enables an intuitive way of constructing the input data, of every

existing type, and explained how this is passed as input to an ADS. Moreover, we have

discussed how a user can apply an implemented ADS and input. The most important

outcome of the ADS comparison is that our modification of the skip list outperforms

the current state-of-the-art SeqHash, and is also easier to implement, while supporting

the same functionality.

5.1 Skip list and SeqHash comparison

Our initial goal was to extend the SeqHash design with a split function, as the original

SeqHash only supported merging. Our reason for this was to support efficient insertion

and deletion of a list of entries. We succeeded in implementing this function, however,

the surprising outcome of the comparison with the skip list that we implemented was

that the skip list is able to support the same operations as the SeqHash, but performs

31



Chapter 4. Discussion & Conclusion 32

better, is more intuitive, easier to implement, and requires less code. With this, we

have shown that the structure of SeqHash, consisting of a number of trees, requiring

rounds for merging layers of nodes, is unnecessarily complex, and is slower for the same

reason. In the background, skip list and SeqHash are essentially the same, but skip list

requires less operations to achieve this. Also, SeqHash’s authenticator is not constant-

sized. Although the size will remain relatively small, it is unpleasant that this value

will grow, as this value has to be shared with all users after a writer has performed an

update. One of the goals of Authenticated Data Structures is to redeem the writer from

executing costly tasks, so it would be desirable the the authenticator is constant-sized.

This is the case for skip list. These multiple reasons make the skip list a good alternative

for SeqHash.

5.2 General review on use of ADSs

As we have seen, an ADS provides a useful procedure to verify the integrity of queried

data. However, there are some disadvantages. First, the verification procedure can only

verify the integrity of the block that the reader queried for. In other words, if a publisher

maliciously modifies the contents of a block, that is queried much later in time, then

there is no way to discover when the publisher applied this modification. For the same

reason, there is no possibility to revert the data set to a correct version. More generally,

an ADS does not provide an error-correcting feature. It only supports error detection.

Also, we have seen that the way in which the data has to be distributed into blocks, in

order to be able to be inserted into an ADS, reduces the possibility of encrypting the

data. It is only possible to encrypt the single blocks. This is less secure compared to

encrypting the data set as a whole. Also, even when every single block is encrypted,

the structure still reveals information. First, the publisher knows of how many blocks

the data set consists. Second, the reader can estimate the size of the entire data set, by

looking at the number of hashes that a proof consists of, as this number is logarithmic

to the size of the data. Also, the positional information in the proof tells the reader

exactly where the queried block is located in the data set.

5.3 Future work

In the current framework, a possibility for the publisher to cheat, would be to send a

block to the reader that the reader did not query. If the publisher sends the correspond-

ing proof, then the verification method will return true. If the reader cannot tell by the

contents of the block that he received the wrong block, then he cannot know that the



Bibliography 33

publisher cheated. In [13], a method is proposed that disables this way of cheating by

the publisher, by introducing an additional verification of the block hashes. Future work

could extend our framework to add this feature to the verification procedure, disabling

the publisher from the ability to cheat by sending another block.

Future work of ADSs in general should come up with ways to support error correction

after detection, and design structures that are revealing less information about the data

contents to the publisher and the reader.



Bibliography

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski, G. Lee,

D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. A view of cloud computing.

Commun. ACM, 53(4):50–58, 2010. doi: 10.1145/1721654.1721672. URL http:

//doi.acm.org/10.1145/1721654.1721672.

[2] C. C. Erway, A. Küpçü, C. Papamanthou, and R. Tamassia. Dynamic provable data

possession. ACM Trans. Inf. Syst. Secur., 17(4):15, 2015. doi: 10.1145/2699909.

URL http://doi.acm.org/10.1145/2699909.

[3] D. Fiala, F. Mueller, C. Engelmann, R. Riesen, K. B. Ferreira, and R. Brightwell.

Detection and correction of silent data corruption for large-scale high-performance

computing. In SC Conference on High Performance Computing Networking, Storage

and Analysis, SC ’12, Salt Lake City, UT, USA - November 11 - 15, 2012, page 78,

2012. doi: 10.1109/SC.2012.49. URL http://dx.doi.org/10.1109/SC.2012.49.

[4] M. T. Goodrich and R. Tamassia. Efficient authenticated dictionaries with skip

lists and commutative hashing. US Patent App, 10(416,015), 2000.

[5] M. T. Goodrich, R. Tamassia, and A. Schwerin. Implementation of an authenti-

cated dictionary with skip lists and commutative hashing. In DARPA Information

Survivability Conference &amp; Exposition II, 2001. DISCEX’01. Proceedings, vol-

ume 2, pages 68–82. IEEE, 2001.

[6] M. T. Goodrich, R. Tamassia, and N. Triandopoulos. Efficient authenticated data

structures for graph connectivity and geometric search problems. Algorithmica, 60

(3):505–552, 2011. doi: 10.1007/s00453-009-9355-7. URL http://dx.doi.org/10.

1007/s00453-009-9355-7.

[7] D. Mast. ADS framework code. URL https://github.com/danielmast/ads.

[8] D. Mast. Cryptographic solutions for security and privacy issues in the

cloud. Literature Survey, 2015. URL http://cys.ewi.tudelft.nl/content/

cryptographic-solutions-security-and-privacy-issues-cloud.

34

http://doi.acm.org/10.1145/1721654.1721672
http://doi.acm.org/10.1145/1721654.1721672
http://doi.acm.org/10.1145/2699909
http://dx.doi.org/10.1109/SC.2012.49
http://dx.doi.org/10.1007/s00453-009-9355-7
http://dx.doi.org/10.1007/s00453-009-9355-7
https://github.com/danielmast/ads
http://cys.ewi.tudelft.nl/content/cryptographic-solutions-security-and-privacy-issues-cloud
http://cys.ewi.tudelft.nl/content/cryptographic-solutions-security-and-privacy-issues-cloud


Bibliography 35

[9] R. C. Merkle. Protocols for public key cryptosystems. In Proceedings of the 1980

IEEE Symposium on Security and Privacy, Oakland, California, USA, April 14-

16, 1980, pages 122–134, 1980. doi: 10.1109/SP.1980.10006. URL http://dx.doi.

org/10.1109/SP.1980.10006.

[10] W. Pugh. Skip lists: A probabilistic alternative to balanced trees. Commun. ACM,

33(6):668–676, 1990. doi: 10.1145/78973.78977. URL http://doi.acm.org/10.

1145/78973.78977.

[11] R. Tamassia. Authenticated data structures. In Algorithms - ESA 2003, 11th

Annual European Symposium, Budapest, Hungary, September 16-19, 2003, Pro-

ceedings, pages 2–5, 2003. doi: 10.1007/978-3-540-39658-1 2. URL http://dx.

doi.org/10.1007/978-3-540-39658-1_2.

[12] J. van den Hooff, M. F. Kaashoek, and N. Zeldovich. Versum: Verifiable compu-

tations over large public logs. In Proceedings of the 2014 ACM SIGSAC Confer-

ence on Computer and Communications Security, Scottsdale, AZ, USA, Novem-

ber 3-7, 2014, pages 1304–1316, 2014. doi: 10.1145/2660267.2660327. URL

http://doi.acm.org/10.1145/2660267.2660327.

[13] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou. Enabling public verifiability and data

dynamics for storage security in cloud computing. In Computer Security - ESORICS

2009, 14th European Symposium on Research in Computer Security, Saint-Malo,

France, September 21-23, 2009. Proceedings, pages 355–370, 2009. doi: 10.1007/

978-3-642-04444-1 22. URL http://dx.doi.org/10.1007/978-3-642-04444-1_

22.

http://dx.doi.org/10.1109/SP.1980.10006
http://dx.doi.org/10.1109/SP.1980.10006
http://doi.acm.org/10.1145/78973.78977
http://doi.acm.org/10.1145/78973.78977
http://dx.doi.org/10.1007/978-3-540-39658-1_2
http://dx.doi.org/10.1007/978-3-540-39658-1_2
http://doi.acm.org/10.1145/2660267.2660327
http://dx.doi.org/10.1007/978-3-642-04444-1_22
http://dx.doi.org/10.1007/978-3-642-04444-1_22

	Abstract
	Acknowledgements
	Contents
	1 Introduction
	2 Authenticated Data Structures
	2.1 Model
	2.2 Verification
	2.3 Updating an ADS
	2.4 Merkle Hash Tree
	2.4.1 Creation
	2.4.2 Verification
	2.4.3 Updating

	2.5 Authenticated Skip List
	2.5.1 Skip list
	2.5.2 Structure
	2.5.3 Creation
	2.5.4 Verification
	2.5.5 Updating

	2.6 SeqHash
	2.6.1 Structure
	2.6.2 Creation
	2.6.3 Verification
	2.6.4 Updating

	2.7 Construction of Input Data
	2.8 Confidentiality

	3 Design and Implementation
	3.1 The Framework
	3.2 Implementation of an ADS with Input Data
	3.3 Usage of an ADS with Input Data
	3.4 Benchmarks

	4 Experimental Results
	4.1 Creation
	4.2 Updating
	4.3 Verification
	4.4 Code comparison

	5 Discussion & Conclusion
	5.1 Skip list and SeqHash comparison
	5.2 General review on use of ADSs
	5.3 Future work


