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CHAPTER 1

INTRODUCTION

The research described in this thesis started in Delft in 1986, as part of the research program of

the Solid State Physics group at the Deparmaent of Applied Physics. At that time, renewed interest

had arisen in tunnel junctions with very small capacitance [1]. Long before, several investigations

[2] had shown the effect of small capacitance on tunneling of electrons in granular material.

However, it was only when tunnel junctions of sufficiently small capacitance could be fabricated

artificially, that this field gained intensive attention. Practical considerations certainly played a role.

Likharev realized that time correlation of tunneling events, enforced by the small capacitance,

would yield a practical possibility of observation of the fundamental relation I=ef. It was and is

also becoming increasingly clear that single electron charging effects may be very important in

future integrated circuit technology [3].

The group of Hans Mooij in Delft, with large experience in the fabrication of tunnel junctions

and facilities for submicron lithography available in the Centre for Submicron Technology nearby,

was the obvious place to start examining these effects experimentally. At the same time a

theoretical group around Gerd Schön was set up at the same Department, focussing on the same

subject. Delft has now obtained a good position for playing an important role in the future

development of this field, which will attract increasing attention in the coming years.

The following two chapters of this thesis cover a broad range of charging effects in normal

metal and in superconducting tunnel junctions, respectively. They are intended as an introduction

to nearly all the consequences of small junction capacitance which have so far turned out to be

experimentally accessible. For the normal metal junctions, good quantitative agreement with

theory is obtaìned, both for classical charge dynamics and for quantum charge fluctuations due to

a low tunnel resistance. The chapter on superconducting tunnel junctions is more intended as the

author’s qualitative view on how to understand the observed behavior of these junctions. It

emphasizes the importance of more theoretical work on realistic model systems. The following

chapters consider more detailed several topics of the first two chapters. Chapter four covers the

single-electron turnstile device that creates a frequency-locked current or charge source, by

transferring one single electron for each cycle of an external control voltage. Chapter five provides

evidence of higher order perturbative contributions to tunneling of the electric charge in turnstile-

like junction arrays of high tunnel resistance. Chapter six considers the effects of low tunnel
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resistance on charge flucmations, again in normal metal junctions. It also shows the destrucfive

influence of a low-impedance environment on charging effects in single junctions. In chapter

seven, linear arrays of superconducting juncfions are found to obey classical charge dynamics for

sufficiently low capacitance. The final two chapters cover charging effects in large 2-dimensional

juncfion arrays. Arrays of small normal metal juncfions are a system where the excess charges on

the islands interact logarithmically. Since these excess charges are quanfized, the arrays are a

representation of a two-dimensional Coulomb gas, and will thus exhibit a Kosterlitz-Thouless

phase transifion. Below the transition temperature, the charges are bound in pairs, and cannot

provide electrical conduction. Therefore, these arrays are isolafing at very low temperature. This

phase transition between isolafing and resistive behavior is the subject of chapter eight. In the

superconducfing state a similar transiUon may occur for Cooper-pair charge-anti charge pairs,

again resulfing in isolating behavior at low temperatures. However, in the superconducfing state

charge fluctuations due to the Josephson coupling can produce free charges and result in

conduction. Again a phase transifion occurs, but now as a funcfion of Josephson coupling energy

relative to Coulomb energy, and separating superconducting and isolating low temperature

behavior. This is the subject of chapter nine. Actually in chapter eight a similar phase transifion is

discussed, with the barrier transparency as the crifical parameter. In chapter eight it is also shown

that the charge excitafions cause a spaUally decaying charge polarization of the neighboring

juncfions. Moving charges therefore cause a sort of spiky current bias of the juncfions in the array.

This may be the reason that the I-V curves of superconducfing arrays, as reported in chapter nine,

have features that are predicted for single current-biased juncUons. Where macroscopic quantum

interference has not yet bêen observed in single juncfions, probably due to the problems of

realizing a current bias for a single juncfion, the arrays so far provide the only indicafions for

excifing phenomena like Bloch oscillafions and Zener tunneling of macroscopic variables.

The reader may, like the author, feel surprised by the difference between normal and

superconducting state as far as fit of theories to experiments is concerned. In the low voltage

regime of normal juncfion arrays, a nearly perfect agreement with the theory seems to be tule. In

contrast, the superconducting arrays exhibit a wealth of phenomena which are so far at best

qualitatively understood. Several reasons account for more complicated results in the

superconducting state. The non-linear quasiparticle resistance, strongly temperature dependent, is

one of them. The presence of both Cooper-pairs and quasiparticles, with different dependences of

the tunneling rare on the charging energy change, is another. The fact that Cooper-pairs do not

only tunnel through a single junction but, due to their condensation in a macroscopic coherent
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wave function, can oflen tunnel through several junctions at a significant rate, is also a

complicafing feature. The ac Josephson relafion makes the juncUon dynamics strongly dependent

on the resonance modes in the environment. Since we did not pay much attention to control of

these environmental modes, at least unfil some recent experiments, this sensifivity makes the

reported experiments certainly also more difficult to interpret. An awarding direction of future

research may focus on arrays of junctions in the superconducting state, in a controlled

environment. Also in the normal state, one possible next step in fundamental research concentrates

on the interacUon with the environment. To indicate some other open fields of research, one may

search for the single-juncUon SET or Bloch oscillations, concentrate on the superconducting

equivalent of the turnsfile, or examine device applicafions.

Most of the fime I felt very fortunate to be able to do research on charging effects, for several

reasons. It is attracfive to start experimental work in a new field, where very few results are yet

present but many theoretical predictions have been made and theoreticians are anxious for

experimental confn’mafion of their work [4]. For an experimentalist the project offered the perfect

blend of fascinating physics, state of the art technology and a fair amount of compeUtion, with

prospects of very rewarding results. One could even convince oneself that the work was really

worth to spend so much Urne on, both from the viewpoint of fundamental physics (as a testcase

for macroscopic quantum mechanics) and applications (a new current standard, a new class of

submicron electronics devices).

Many people have contributed to this research, first of all of course Hans Mooij. I thank Kees

van der Jeugd, Michiel Peters, Valérie Anderegg, Edwin Lenderink, Jeroen Walta and Peter Plooij

for pleasant collaboration in the experiments, and everything around it. Special thanks go to the

people from the Groupe Quantronique in Gif-sur-Yvette, Hugues Pothier, Daniel Esteve, Cristian

Urbina and Michel Devoret. They are great physicists and have had a very important part in

making this research successful. I have profited much from the experience of my room-mates

Peter van der Hamer and Sjaak Schellingerhout. Dima Averin is gratefully acknowledged for his

contribufions to chapters five and seven. I am indebted to Huub Appelboom, Rosario Fazio, Uli

Geigenmüller, Peter Hadley, Kees Harmans, Leo Kouwenhoven, Kostya Likharev, Dick van der

Marel, John Martinis, Gerd Schön, Bart van Wees, Mark van Wees and Herre van der Zant for

valuable advice and discussions. Finally, I would like to thank Chris Gorter, Bram Huis and Jan

Korflandt for their much appreciated technical assistance.
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The Centre for Submicron Technology in Delft, now part of the Delft Institute for

Microelectronics and Submicron Technology (DIMES), has provided essential facilities for the

lithography.
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CHAPTER 2

CHARGE DYNAMICS IN NORMAL METAL TUNNEL JUNCTIONS

I INTRODUCTION

In materials consisfing of small metal grains, coupled by tunnel barriers, at low temperatures

the electfical properties are strongly influenced by charging effects resulfing from the small

capacitance of the grains. Because charge is transferred in discrete units (e for normal metal

junctions, 2e or e for superconducfing tunnel junctions), the energy change of the system during

tunneling can be significant. If the energy of the system would increase, the tunneling is forbidden

at zero temperature. This phenomenon is called Coulomb blockade of (electron) tunneling. Typical

energy changes are of order Ec-=e2/2C, so that the temperature must be below Ec/kB to observe

charging effects. Already in 1951 this effect of small grain capacitance was appreciated as well as

observed experimentally (Gorter 1951, see also Giaever and Zeller 1968, 1969, Lambe and

Jaklevic 1969).

With the advance of submicron lithography it has become possible to artificially produce planar

tunnel junctions with capacitance as small as 10-16 F, for which charging effects can be observed

at liquid helium temperatures (although for most experiments the lower temperatures attainable in a

dilution refrigerator are still useful). Many experiments have confirmed the basic theoretical

description of these charging effects. We will present this basic theory and the related experiments

on artificial tunnel junctions in section II. We will not discuss the experiments on granular

systems (Kuzmin and Likharev 1987, Barner and Ruggiero 1987, van Bentum et al. 1988a and

1988b, Kuzmin and Safronov 1988, Wilkins et al. 1989) that have also provided convincing

confirmation of the basic theory. Especially the recent possibility of using a scanning tunneling

mìcroscope on granular material allowed for observafion of charging effects at much higher

temperatures (C~-10-18 F, or EC/kB>100 K). However, this configuration is less flexible in device

design and control of parameters.

In section III we will discuss the applicability of small tunnel junctions for practical purposes.

As an example the single electron turnstile that has recently been developed together with the CEN

Saclay (Geerligs et al. 1990) will be discussed in more detail, since it shows the possibility of

controlling charge transfer at the single electron level.

Coulomb blockade of electron tunneling is not absolute. Passing of an electron through several
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junctions in one process may be energetically favorable, even if the intermediate states where the

electron resides on the electrodes between the junctions, have a high energy. This process is

predicted to occur at a rate inversely proportional to the product of the junction resistances. It has

been named macroscopic quantum tunneling of the charge, since this tunneling of a single electron

corresponds to tunneling of the charge state of the total system through an energy barrier. This

extension of the basic theory, which is valid only for high junction tunnel resistance (compared to

the resistance quantum h/e2), will be discussed in section IV, together with experiments. These

results are important for practical applications based on high-resistance junctions, especially

single-el~tronic logic circuits like the turnstile.

Finally, in section V we discuss the role of highly dissipative environments, that cause the

breakdown of Coulomb blockade in single tunnel junctions or junctions of low tunnel resistance.

In this chapter we will consider some examples of the macroscopic quantum effects that arise

from the non-commutivity of..phase and charge. However, the presented experiments remain

restricted to junctions of normal metal. In superconducting tunnel junctions, more prominent

macroscopic quantum phenomena are expected to arise. Experimental results are presented in the

next chapter. We also refer to two reviews, by Averin and Likharev (1990), and Schön and Zaikin

(1990) that provide a thorough, mostly theoretical, overview of this subject. We also only

mention here that Coulomb blockade effects have probably been observed recently in split-gate

confined GaAs-A1GaAs heterostructures (Scott-Thomas et al. 1989, van Houten and Beenakker

1989, Meirav et al. 1989, Field et al. 1990, Kouwenhoven 1990, Brown et al. 1990). However,

in these systems the description is necessarily more complicated due to e.g. the discreteness of

single-particle levels.

The experiments that will be presented have all been performed on aluminum tunnel junctions.

These junctions have been brought in the normal state by applying a high magnetic field (typically

2 T). We have found no reason to suspect that the field affects the physics of the Coulomb

blockade in a measurable way.

A junction area of (100 nm)2 yields a capacitance of about 10-15 F, depending on the barrier

thickness. The smallest planar junctions that have been produced so far (Fulton and Dolan 1987,

Kuzmin et al. 1989, Geerligs et al. 1989) were all fabricated from aluminum. For such a small

junction area, useful tunnel resistances (of around 100 kf~) are obtained if the aluminum is

thermally oxidized at room temperature in oxygen at a pressure of about 1 mbar to create the

tunnel barrier. Together with the requirement of high purity metal electrodes this low oxidation

pressure means that the total junction be preferably fabricated in one vacuum cycle. This is



normal tunnel junctions 7

a) undercut

Ge mas

substrate

b) 2.~ I     bridge       I    /1

junction
AIOx ~’ Al

e)

50 - 100 nm

Fig. 1. Processing steps for shadow evaporation of a tunnel junction. (a) Suspended mask.

(b) Oblique angle evaporation. (c) The resulting planar junction.

conventionally done by shadow evaporation (Fig. 1). A mask is suspended at around 200 nm

above the (oxidized silicon) substrate. The mask is patterned by conventional submicron

lithography. The supporting layer for the mask is an organic material (e.g. resist) that can be

undercut by isotropic etching, either wet or with reactive ion etching. The two electrodes of a

junction are evaporated from two angles. A mask pattemed with a small channel interrupted by a

bridge, thus results in a junction because of the interruption of the aluminum strips by the bridge

shadow. On both sides of the junction the leads are actually also composed of a double aluminum

layer with oxide barrier in between, i.e. the leads are large junctions. This creation of large

junctions in series with the small ones can be partly avoided by using a slightly different geometry

(see e.g. Fulton and Dolan 1987 or Kuzmin et al. 1989). A photograph of a two-dimensional

array ofjunctions fabricated in this way is given in Fig. 2. This fabrication procedure has proven



Fig. 2. Scanning electron microscope photograph of an array of small tunnel junctions 

produced by shadow evaporation. The white bar is I p n  long. 

to be sufficient for creating junctions with area down to (30 nrn12. For significantly smaller 

dimensions, probably new methods have to be developed. 

11 CLASSICAL THEORY FOR COULOMB BLOCKADE 

In this section we consider tunnel junctions with high tunnel resistance, ~p>h/e2 .  The charge 

transport through the junction can then be calculated by treating the charge Q on the junction as a 

classical variable. The charge can change in a continuous way by applying a polarizing voltage to 

the junction. Trapped charges in the oxide barrier of the junction or in the substrate close to the 

junction likewise provide the possibility of the junction having an offset charge in the absence of 

an applied voltage. The junction charge can change stochastically due to tunneling events during 

which discrete charge units are transferred across the barrier. 

The rate for a tunneling process is determined by the energy change AE=Ef - Ei during 

tunneling (Averin and Likharev 1986): 
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F(AE,T) = AE [exp(AE/kBT) _ 11_1
e2Rt

(1)

For IAEI>>kBT:

{
AE

- ~ for AE < 0
F(AE) = e Rt (1 a)

0 for AE > 0

The relevant energy change is the change in free energy, the sum of the capacitive energies in

the system and the work performed by the voltage sources (Likharev 1988, Bakhvalov et al.

1989):

2

i ~    j
(2)

The index i denotes summation over tunneljunctions as well as true capacitors, the summation in j

is over all voltages sources in the system. Qtj denotes the charge transferred through voltage

source Vj. Note that a large stray capacitor on a chip can act as a voltage source and change an

experimentally applied current bias for high frequencies into a voltage bias. This is often the case

in experiments.

For a circuit consisting only of capacitors and voltage sources, eq. (2) can be reduced to a

simpler form for each individual junction (Esteve 1990). Using Thevenin’s rule the circuit to

which the junction is coupled is reduced to an equivalent capacitor Ce in series with a voltage

source Ve (Fig. 3). In the expression for AE, Ve and the charge on Ce cancel so that the energy

change during tunneling depends only on junction charge Q and a critical charge Qc (to be

calculated for each junction individually):

AE = - ~ (Q - Qc ) (3)

with
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a)

Rt

b)

Qt

Fig. 3. The reduction of a junction environment consisting of voltage sources and capacitors

(a) to an equivalent circuit with one equivalent capacitor Ce and one voltage source. The

charge Qt transferred through the voltage source is relevant for the energy change during

tunneling.

Qc =~(1 + Ce/C)-1 (4)

At low temperature, an electron can tunnel only if IQI > Qc: the junction will show a Coulomb gap

(threshold voltage for conduction) of Qc/C. This concept of a critical charge is useful to calculate

the tunneling characteristics of complicated systems subject to charging effects. Here we will use

it to consider several simple cases. A single junction biased via a very small capacitor (e.g.

Büttiker 1986) will show a Coulomb gap e/2C. Two equal junctions in series each have Qc=e/4. A

double junction will therefore show a total Coulomb gap e/2C. Likewise, n equal junctions in

series have a Coulomb gap (n-1)e/2C. This Coulomb gap can be influenced by charging the metal

islands between the junctions, a possibility that is discussed below.

First we consider a special case, the current biased single junction (Averin and Likharev 1986).

In the bias scheme of Büttiker (1986), it could be realized by a series circuit of the junction with a

very small classical capacitor Ce. Applying a linearly increasing voltage bias V=ott, the junction is

subject to a current Ix=Ce(dV/dt)=aCe. We can suppose Ce-~0 (keeping ace constant) so that

Qc=e/2. The externally applied current Ix induces a smooth time evolution of the charge on the

junction:
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dQ _ I +                                         (5)
dt    x ~ tunneling

If the current is small compared to e/RtC a tunneling event will occur at a charge only slightly

larger than e/2, changing the charge on the junction to about -e/2. Then it takes a time period e/Ix

to recharge the junction for a new tunneling event. At T=0 and small current the resulting dc I-V

curve has a parabolic shape:

<V> = ~
X/ 2c

(6)

At larger currents the I-V curve approaches a linear form with voltage offset e/2C and slope 1/Rt.

At low currents the tunneling events are correlated in time. The voltage noise spectrum will peak at

the Single Electron Tunneling frequency fSET = Ix/e and harmonics. By applying a high-

frequency alternating current (frequency f) in addition to the dc current, resonances should occur
nin the I-V curve at currents I=--e.f. This has not yet been observed, but a similar phenomenon hasm

been observed in long 1-dimensional arrays of tunnel junctions (Delsing et al. 1989b), where for a

different reason also time correlafion of tunneling events occurs (Likharev et al. 1989, Bakhvalov

et al. 1989). In a chain ofjunctions the current is carried by mutually repulsing charge solitons. A

charge soliton consists of a charged metal island between two junctions, together with the

associated polafizaUon of the neighboring junctions. Due to the repulsion the charge is transferred

in a train of regularly spaced solitons. On a given junction, a tunneling event occurs each time a

soliton passes. Therefore the tunneling events are again correlated in time. Delsing et al. (1989b)

have observed that under high frequency irradiation the I-V curve of such an array shows

resonances in the differential resistance at I=e-f and I=2e.f.

The ratio of the juncfion capacitance to the self-capacitance Co of the islands between the

junctions determines the size of a soliton. The junction charge in a soliton decays as

e
Q - . [ 1 - exp(- l/A)] exp(-d/A)

41 + 4C0/C
(7)

where d is the dismnce, in number of junctions, from the soliton center (the charged island) and
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the decay length is given by A-l=arccosh(1 + Co/2C). On a given junction the charge increases in

small steps if the soliton approaches, decreases bye if the soliton passes, and after tunneling again

increases smoothly in time if one soliton moves away and a new approaches. Therefore chains of

tunnel junctions, but also 2-D arrays of junctions (Mooij et al. 1990) can be used to provide a

current bias in a single junction. Fig. 4 shows the I-V curve of a single junction in a 4-wire

measurement. In each lead close to the junction a 90x9 junction array was incorporated to ensure

current bias or (for the voltage leads) decouple the junction from the environment. The I-V curve

shows the asymptotic linear behavior (inset) from which junction resistance and capacitance can

be determined. With these two parameters the experimental I-V curve can be compared to the

theory without fitting. The agreement is very good, showing that normal metal junction arrays can

indeed provide a good current bias and decoupling from the environment.

,- 0.5
-0.2 0 0.2/g’.

!

-2

0 0.05 0.1 0.15

V [mV]

Fig. 4. I-V curve of a small current biased tunnel junetion at a temperature of 55 mK. The

current bias is possible because the junction is decoupled from the environment by 2-D

junction arrays (90 junetions long, 9 wide) in the leads. The junction resistance and

capacitance as determined from the I-V curve asymptote (inset) are Rt=132 k£2 and C=2.9

fF. These parameters yield a theoretical prediction for the small-signal I-V curve (open

boxes) in good agreement with the measurement.
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For the rest of the chapter we restrict ourselves to voltage biased systems of two or more

junctions (Fulton and Dolan 1987, Mullen et al. 1988, Likharev 1988). These are configurations

that are easily realized experimentally. In addition they provide possibility for extra control of

electron motion. The metal islands between the junctions always have a self-capacitance, i.e. a

capacitance to ground. They can also be purposely coupled capacitively to a gate electrode. This

provides an extra possibility to charge the junctions, apart from a bias voltage directly applied to

the junctions. In a double junction the central metal island can be polarized by a gate voltage,

shifting charge from junction capacitance to the gate capacitor. We denote this shifted ’island

charge’ by Qo: Qo=CgVg+const. For example, an island charge Qo=e/2 on the gate capacitor

results in a charge +e/4 for each of the junctions, in addition to the charge CV/2 provided by the

bias voltage. Since for these junctions Qc=e/4, the Coulomb gap is completely suppressed. Fig. 5

400 I

200

/
/

/

O0 "-"
~ ~- ~

0.2 0.4

V [mV]

Fig. 5. I-V curve for a double tunnel junction with nominal Rt=347 k.(2 and C=0.32 fF at

two gate voltages, corresponding to an island charge Qo=O (solid curve) and Qo=e/2

(dashed curve). The temperature is 15 mK. Also plotted (dotted curves) are the two

corresponding theoretical predictions for the I-V curves at ó0 mK. The discrepancy between

theory and experiment may be due to several factors, such as imperfect symmetry of the

voltage bias or inequality of the two junctions.
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0.06

0.04

0.02

!

-3

I

I

!

3

0.1

o 0.05

Vg [mV]

0 I I ~ I !        I I        ~ I I I

0 0.5 1

a)

Vg [mV]

Fig. 6. V-Vg curve for a double tunnel junction with dc current fixed at 30 pA, T=15 mK.

(a) Over a large range of V g, showing the highly regular periodic behavior, following from

the discreteness of charge transfer to the central islaM. The maximum voltage gain (dV/dVg)

is about 0.35 (slope of dotted curve). (b) Expansion in Vg-direction, comparing the

measurement (solid curve) with calculated curves (dashed) for the estimated junction

parameters (105 kI2, O.ó fF). The temperatures in the calculations are 60 and 90 mK for the

circles and squares, respectively.

b)
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gives the measured I-V curve for a double junction for the two gate charges where the Coulomb

gap is maximum and minimum. In the case of the maximum Coulomb gap (solid curve) the

conduction below the threshold voltage is very low, although not completely zero. We will

consider the charge-MQT that causes the leakage in this device in section IV. With gate charge the

Coulomb gap can be completely suppressed to an almost Ohmic curve (dashed curve). At high

voltages the same voltage offset e/2C is recovered. As a function of gate voltage the I-V curve

evolves continuously between the two extremes shown. With the average current through the

device fixed at a low level, the voltage versus gate voltage can be recorded. An example is given

for a similar double junction in Fig. 6. The curve is periodic because gate charges Vg and Vg’ are

equivalent if Cg(Vg - Vg’) = e. This is a clear proof of the possibility to store charges for long

times on the metal islands between tunnel junctions, without noUceable ohmic leakage. At the

same úme the continuous evolution of the I-V curve as a function of gate voltage proves the

possibility of a continuous charging of a tunnel juncúon.

In Fig. 7 we show the current through linear arrays of 2, 3 or 5 junctions for a fixed bias

voltage, again as a funcúon of gate voltage. Of course this shows the same periodic behavior as

the previous Figure. For 3 junctions the gate voltage is applied via two gate capacitors to the two

islands between the junctions, for 5 junctions via 4 capacitors to 4 islands. Within the main period

of e/Cg, a total of n-1 dips can be observed for n junctions. Fig. 7 illustrates an important aspect

of experiments with gate voltages. Most curves show a minimum in the current which does not

occur for the expected zero gate vokage but instead for a seemingly random value. Curve b shows

telegraph noise: the current jumps between two positions corresponding to two I-Vg curves which

are slightly offset in Vg-direction. The curves for arrays of 5 junctions all differ in their fine

structure, whereas theory predicts one pattern for any device of 5 equal junctions. All these results

show that the juncüons have a random offset charge, probably caused by trapped charges near the

junctions. The impossibility to predict even approximately the gate voltage that is necessary to

maximize or minimize the Coulomb gap, might limit the usefulness of these junctions in large

scale integrated applications.

As is expected from eq. (1), the charging effects are suppressed if the energy of thermal

fluctuations kBT becomes of the order of EC. In Fig. 8 this is shown for a double junction, with

two different values of the gate voltage. Although the gap voltage is about halved for an island

charge Qo=e/4, the characterìstic temperature for smearing of the Coulomb gap is approximately

the same as in the situation with Qo--0. In Fig. 9 we show similar curves for an array of 5

junctions. The characteristic non-linear gap feature mostly disappears between 25 and 200 mK,
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i.e., far below EcJkB (=0.6 K). In the same temperature range the structure in the I-Vg curves also

disappears.

-2 -1 0 1 2

CgVg/e

Fig. 7. I-Vg curves for linear arrays of 2 (a,b), 3 (c) and 5 (d-g) junctions at fixed bias

voltage, T=15 mK. (d) and (e) are for the same device with Vg offset by 10 periods. It

shows beating due to differing gate capacitances.
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Fig. 8. I-V curves for a double junction with Rt=l17 kl2 as a function of temperature. (a)

For an island charge Qo=O, T=25, 200, 400 and 700 mK. (b) For an island charge Qo=e/4,

T=40, 200, 300, 500, 700 mK. The estimated EC=3 K.
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Fig. 9. (a) I-V curves for an linear array of 5 junctions with Rt=58 k£2 as a function of

temperature. T=25, 50, 100, 150, 200, 300, 500, 700 mK. The estimated EC=0.6 K. The

strongest suppression of the Coulomb gap takes place between 25 and 200 mK. (b) The I-

Vg curves for T=25, 50, 100, 150, 200 mK, also losing structure in this temperature range.
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III PRACTICAL USE OF COULOMB BLOCKADE OF ELECTRON TUNNELING

Various applications of the Coulomb blockade in small junctions have been proposed (e.g.

Likharev 1987 and 1988, Yoshikawa et al. 1989). Some possible advantages of these circuits are

the extreme integratíon level, the high speed (the typical operating frequency should be measured

in (RtC)-1) and the low dissipation. Here we will present some experimental results that give a

feeling of the possibilities and problems. As mentioned above one serious problem seems tobe

the presence of offset charging ofjunctions by trapped charges. In many applications this may in

future be circumvented by using a resistive gate instead of a gate capacitance (Likharev 1987). The

low temperature necessary to work with junctions with the presently attainable capacitance also

forms a limitation. All experiments presented here have been performed in a dilution refrigerator,

with the devices at temperatures down to 10 mK. We have found that low-pass filtering of the

leads to the devices is important. The filters need to be cooled to low temperatures in order to

suppress their own thermal noise. The filtering and attenuation of the gate voltage line also turned

out to be crucial, especially in the experiments on the turnstile device to be discussed below.

Obviously, a double junction is a sensitive detector for charge on the gate electrode. It can be

used to count electrons, like a DC SQUID is used to count flux quanta. Like the SQUID the

sensitivity is higher than the electron charge. In preliminary measurements we have found that the

gate charge fluctuations corresponding to the measured current noise in curves like Fig. 7(a), is

about 10-4 e/,]-~-between 10 and 200 Hz (Fig. 10). Compared to the SQUID a severe problem is

the application of the charge to the gate. The input line needs to have a small capacitance compared

to Cg. Otherwise much of the charge that should polarize the gate capacitor is lost to the parasitic

lead capacitance.

A double junction can also be used as a high quality switch. The difference in resistance of the

two states of the device of Fig. 5 is for low voltages almost infinite. Apart from conventional

applications in digital circuits, it would be interesting to evaluate the use of such a double junction

for experiments on mesoscopic circuits. As an example, with this switch these circuits could

perhaps at will be coupled and decoupled from a part of the environment, in one experiment.

Similarly, it could be used as a very high impedance voltmeter (by using the gate electrode as the

voltage probe) very close to a mesoscopic circuit.

The maximum slope of the V-Vg curve in Fig. 6 is 0.35, corresponding approximately to the

ratio of Cg to C. By increasing the gate capacitance to a value larger than the junction capacitance,

an amplifying element would be obtained, be it with a very small input voltage range.
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Fig. 10. Gate charge fluctuations versus frequency for a double junction with Rt=62 kI-2 and

C=1 fF. The charge noise (in e/’~r-~-z) was derived frorn the rneasured current noise by

multiplying with Cg(dVg/dI). Apart from peaks at harmonics of the line-frequency, the noise

is about 4.10-4 e/,f~~.

Other, more complicated circuits have been proposed. Some of those belong to the class of

single-electronic devices, such as the memory cell of Yoshikawa et al. In these devices the

information is stored not as a voltage but as an excess charge (e.g. one electron). The operation of

such devices requires the control of motion of single electrons at high frequencies. That this is

indeed possible has recently been shown by the succesful operation of single electron turnstile

devices in Delft and Saclay (Geerligs et al. 1990). In these devices two or more junctions on each

side of a central gate capacitor are used to block electron tunneling during part of a clock cycle.

The clocking signal consists of a high frequency alternating voltage (added to a dc voltage) applied

to the central gate capacitor. Only once per cycle an electron can tunnel across one arm and only

once per cycle can it tunnel across the other arm. Coulomb blockade is used to ensure that

precisely one electron tunnels. The turnstile creates a very accurate current or charge source.

The working principle can be conveniently illustrated using the concept of the critical charge. It

is shown in Fig. 11 for a device with four junctions. For simplicity we consider a square wave

gate voltage modulation. The gate capacitance is close to C/2 so that each junction has the same

critical charge of e/3. In the first part of the cycle the critical charge is exceeded for the junctions in

the left arm but not for those in the right arm. If a tunneling has occurred in one junction, the

second will follow almost immediately. If the electron has reached the central island, it will mainly
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Fig. 11. Working principle of a turnstile for single electrons. An ac plus de voltage is

applied to the central gate between the 4 junctions. The numbers denote consecutive

moments in one ac cycle. Junctions are denoted by double boxes. Cg=C/2, hence Qc=e/3 for

all junctions. The momentanous charges are indicated in units of e.
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Fig. 12. The turnstile is probably the simplest system that operates with one rf modutation

voltage. For a double junction the constraint of sending the electron in a specific direction is

in conflict with the need to trap the electron on the central islaM.

polarize the relatively large gate capacitor and all junction charges will be lower than the critical

charge. No other tunneling events occur until the gate voltage is decreased in the second half of

the cycle. Then the critical charge is exceeded for the junctions in the right arm but not for those in

the left arm flor the gate voltage amplitude within a certain window). Consequently, the electron

leaves on the other side of the device. After this event no tunneling can happen until the start of the

next cycle. In absence of the ac component of the gate voltage no tunneling is possible, i.e. the

conduction is zero. Thus, after switching on the ac gate voltage, at each moment in time the

passed charge is known up to at toost a single electron.

At least two junctions are needed in each arm of the device, to avoid unwanted entering or

leaving of electrons. Fig. 12 exemplifies that forcing the electron to enter from the left, and thus

forbidding a tunneling through the right junction onto the central island, makes it possible for an

electron to leave from the island to the right. Thus, the constraint of making the direction of

tunneling deterministic is in conflict with the need to trap an electron during part of the cycle. The

4-junction turnstile is probably the simplest system that works with one rf drive. The electrodes

with small self-capacitance in each arm can block electron transfer. Of course, if it is possible to

control the junction barrier itself, e.g. with a split-gate confined quantum dot in a heterostructure,

it should be possible to obtain controlled electron transfer in a two-barríer system (Odintsov

1990). (See also Guinea and Garcia 1990 for a specific example with a scanning tunneling

microscope) Also, more complicated control schemes with two-junction devices are expected to

work (see, e.g., the last section of the next chapter) and a three-junction electron-pump has been

operated at Saclay.
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Fig. 13. (a) Scanning electron microscope photograph of the turnstile device as realized with 

aluminum junctions. The main diflerence from Fig. 11 is the addition of auxiliary gate 

electrodes. The ac line is guarded. (b) Enlargement. Inset: Detail of one arm with two 

junctions and an auxiliary gate electrode. The white bars are 1 or 10 p long. 
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Fig. 14. I-V curves of the turnstile device of Fig. 13 without ac gate voltage (dotted) and

with ac gate voltage of frequency 4 to 20 MHz in steps of 4 MHz (a-e). The inset shows the

I-Vg curves for an ac gate voltage (5 MHz) of increasing amplitude (top to bottom), taken at

a bias voltage ofabout 0.15 mV. Rt=340 k£2, C=0.4fF, Cg=O.3fF.

2
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Fig. 15. Effect of offset charges on the current plateau. The dotted curve is the best plateau

at 5 MHz that could be obtained by adjusting rf amplitude and auxiliary gates. The solid

curve is for the worst plateau that could be produced (by trial and error) with misadjustment

of the auxiliary gates.
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As Fig. 13 shows the physical layout of the turnstile device is very close to the schematic. An

important difference is the addition of small additional gate electrodes to tune out offset charges on

the two metal islands in the left and right arm of the device.

Fig. 14 shows I-V curves of the device without ac gate voltage (dotted) and with ac gate

voltage at a set of frequencies f between 4 and 20 MHz. The zero current Coulomb gap in the

absence of the ac voltage (dotted) is lifted to a plateau I=e.f if the ac voltage is applied. The width

of the plateaus is dependent on the amplitude of the ac signal but the height is not. To obtain wide

flat plateaus it was necessary to tune the auxiliary gate electrodes. However, qualitatively similar

I-V curves have been obtained without these gates. An example of rather serious deterioration of

the plateaus due to island charges is shown in Fig. 15. The auxiliary gate electrodes were used to

try to destroy the plateaus on purpose. The inset of Fig. 14 shows I-Vg curves in the presence of

ac signals of various amplitudes (at a frequency f=5 MHz) for a bias voltage in the middle of the

plateaus. The curves tend to be confined between consecutive multiples of e-f. This shows that the

device can also pass several electrons per cycle in a controlled way. At higher ac amplitude it is

possible to fill the central island with more than one electron. On decreasing the gate voltage these

trapped electrons are released one by one through the other arrn. It has been possible to obtain

quantization (although less accurate) at levels as high as 8e.f (Pothier et al. 1990). Fig. 16 gives

both the measured and the calculated dependence of the I-V curves on the gate voltage amplitude,

with calculations based on eqs. (1-4). Since the junction capacitance and resistance can be

measured from the I-V curve asymptote, and the gate capacitance from the period of gate voltage

modulation, in prínciple no parameters need to be fitted. However, the asymptote can still be

identified with either -~(n-1)e/2C or with ~ne/2C (’global’ versus ’local’ rule, see e.g.

Geigenmüller and Schön 1989). In a previous publication (Geerligs et al. 1990) we determined C

with global rule. This was probably unjustified due to too low bias voltage or current. For the

calculations shown, local rule determination of C yields an almost perfect agreement with theory

with only marginal fitting of temperature and gate voltage attenuation. Only 1 dB attenuation of the

ac signal in the transmission lines and a sample temperature slightly higher than the mixing

chamber temperature were assumed. A slightly less satisfactory correspondence is obtained

between calculated and observed temperature dependence of the plateaus (Fig. 17). However, the

general correspondence of theory and experiment that is present here too, gives convincing

evidence that the behavior of circuits of small high resistance tunnel junctions can indeed be very

well described by simple theory.

In the experiment, deviations of the current quantization forto the relation I=ef were smaller
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ef!

V [mV]

Fig. ló. I-V curves at f=5 MHz for different amplitudes of ac gate voltage, increasing from

top to bottom. The dotted horizontal lines are at intervals ef=0.80 pA. The corresponding

calculated I-V curves (at ó0 mK, or 115 mK for the bottom two curves) are indicated by

circles. For these calculations, I dB extra attenuation was assumed. The rf amplitudes in the

calculations are O, 0.41, 0.65, 1.03 and 1.30, in units of e/C=0.40 mV.
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Fig. 17. The temperature dependence of the current plateaus, for f=l O MHz and at two

different rf amplitudes (differing by 4 dB). The temperature in the experiments is 20, 100

anti 200 mK (solid curves). The temperature for the calculations is 60, 100 and 200 mK

(circles). The attenuation of the rf line is the only fit parameter (10 MHz is beyond the

experimental low-pass cutoff frequency of about ó MHz), the fitted value is about I0 dB

attenuation.
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f Is ef-Is

(MHz) (fA)

4.012 635 2 8

6.011 967 2 -4

8.031 1287 2 0

10.040 1610 2 -1

12.029 1930 2 -3

14.028 2243 2 5

16.026 2560 3 7

18.063 2890 3 4

20.011 3196 3 10

30.036 4856 3 I

Table 1. Accuracy of the current quantization in the turnstile device of Fig. 14. The

measured current plateau Is is compared with the relation Is=ef . trm is the standard deviation

of ls, as determined from averaging about 50 data points, well inside the current plateau.

than the accuracy of the current measurement. This amounts to a few fA’s or about 0.3 % for the

plateaus at frequencies below 20 MHz. For higher frequencies the plateaus do not show apart that

is flat within the current noise. The determination of the level of the current plateau as the current

at the inflexion point then causes larger errors. Experimental results on the accuracy of the current

quantization are given in Table 1. It is easy to estimate the expected intrinsic accuracy of the

current quantization in this device from the simple theory. To obmin a high accuracy of the relation

I=ef, the ac cycle should last long enough to let tunneling to and from the central island happen

with high probability, i.e. f must be much smaller than (RtC)-1 to avoid cycles being lost. On the

other hand an electron trapped on the central electrode should have a negligible probability to

escape by a thermally assisted transfer. At finite temperature there is a trade-off between the two

requirements: a thermally assisted escape will be more probable for lower frequencies. For an

electron transfer in the situation shown in Fig. 11 the first tunnel event of each half of the cycle

(AE--0.1e2/C) can occur in two junctions with a rate F=(10RtC)-1. For a square wave modulation
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this yields a probability to miss a cycle of about exp(-F/f)=exp(-1/lOfRtC). For the device used in

the experiments, (RtC)-I=5 GHz, so at 5 MHz this probability is exp(-100)=10-44, while at 50

MHz it is already about 10-5. Obviously, the required accuracy puts an upper limit.to the allowed

frequency. To estimate the effect of thermal fluctuations, we compare the rate for unwanted

tunneling events, ~, with the one for favorable events, F. From eq. (1) we find that the ratio is of

order exp(-AE/kBT). For an accuracy of e.g. 10-8, it is necessary to have P/f=10-8, which

combined with the requirement F/f= 103 yields exp(-AE/kBT)= 10-11, or kBT=AE/25. Since

typically AE is on the order of 0. le2/C, for the present device this corresponds to temperatures of

about 15 mK. Comparable problems with unwanted transiUons could arise from insufficient

screening from noise and interference in the experiments. The simulations in Fig. 16,17 suggest

that in the present experiment these disturbances seem to be described well by a temperature of not

more than 60 mK, which is already close to the temperature requirement derived above. More

careful screening is possible. These limitations are relaxed by the use of smaller junctions. For

junctions of 0.1 fF with the same resistance, the requirement that f<10-3/RtC corresponds to f<30

MHz and kBT<0, le2/C to T<75 mK.

A third cause for accuracy degradation is the already mentioned macroscopic quantum

ttmneling (MQT) of the charge. This amounts to the escape (at zero temperature) of a trapped

charge on the central electrode, through both junctions in one event. The rate is proportional to the

product of the junction conductances. The addition of junctions to each arm of the device would

decrease the rate of this process. This addition would not significantly increase the chance of

cycles being lost, since the tunneling of an electron through the wings is an avalanche process,

where the first tunnel event takes most of the time. Below we will consider charge MQT more

detailed and present experiments that confirm the higher order perturbaUve description. With this

description, if we denote the rare for unwanted transitions again by ~, it turns out that P/f=10-8

together with F/f=103 corresponds to the approximate condition (Rt]Rq)n-1 < 1013-n where n is

the number ofjuncUons in each arm and Rq=h/4e2 ~- 6.5 kf~. This is e.g. fulfilled for wings of 5

jtmctions of Rt=650 kf~. Averin and Odintsov (1990, Sec also chapter 4) have recently performed

a rough calculation of the effect of q-MQT on the accuracy of the turnstile. They expect for the

4-junction tumstile device as presented above, a leakage current of at best about 10-3 times the

value I=ef. However, for turnstile devices with longer arms (e.g. 4 junctions in each arm), the

leakage current should be easily suppressed to acceptable values.

A practical complication when using a turnstile device to create a current standard is the

presently very low current level of around 1 pA. The usual technique for high-accuracy
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multiplication of a dc current uses a cryogenic current comparator (Sullivan and Dziuba 1974).

The primary current (e.g. from a turnstile device) and the multiplied current are sent in opposite

direction through ratio windings. An rf SQUID senses the ampere-turn unbalance. The SQUID

control electronics adjust a slave-current source in a feedback loop to produce a secondary

(multiplied) current for zero unbalance. For the usual current magnitudes of [.tA’s or higher, a

transfer accuracy of 10-8 can be easily reached. However, for multiplying the turnstile current the

bottle-neck for the accuracy is the very small flux that can be produced with the primary current,

even compared to the typical SQUID sensitivity of 10-4 ~o/q-~-~. It will prove hard in practice to

obtain a high ratio of primary ampere-turn product and the SQUID sensitivity. As an example, the

cryogenic current compamtor that is presently in use at the Van Swinden laboratory in Delft for the

Quantum Hall resistance standard (van der Wel, Mooij and Harmans 1988) would only give a

transfer sensitivity of about 10%.

IV PERTURBATIVE CORRECTION TO THE CLASSICAL THEORY FOR COULOMB

BLOCKADE

In this section we will discuss several examples of macroscopic quantum tunneling of the

electric charge (q-MQT). In this process small quantum fluctuations of the charge on a junction

yield a finite probability for tunneling of an electron despite Coulomb blockade. Due to the

Coulomb energy, all free electrons in the metal electrodes participate in such a process, making it a

macroscopic event. (See also chapter 5). We have experimentally observed q-MQT in linear arrays

of tunnel junctions. We note, however, that the effect could also arise in a single junction, which

might be realized in future experiments.

A single voltage biased tunnel junction can show a Coulomb gap if it is well decoupled from

the environment. The charge dynamics of this system is in several respects similar to the phase-

dynamics of a single current biased superconducting junctíon. The system can be represented by a

particle of mass L (L is the inductance in series with the junction), moving in a piecewise

parabolic potential in Q-space, E(Q)=(Q-ne)2/2C - QV (Fig. 18), where n is the number of elec-

trons passed through the junction. A resistor Re in series with junction and inductor causes

damping of the particle: d2Q/dt2 = V - (Q-ne)/C - Re(dQ/dt). Trapping of the particle in the meta-

stable state at Q=CV+ne, which is possible for V<e/2C, corresponds to Coulomb blockade of

electron tunneling. As Devoret et al. (1990) showed, the zero-point oscillations of the LC-circuit

will provide a possibility to escape from the metastable Coulomb blockade state. The mass
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Fig. 18. A voltage biased series circuit of junction, inductor Land resistor Re (a), can be

represented by a particle of mass proportional to L and damping proportional to Re"1, with

coordinate Q. It moves in a piecewise parabolic potential with a slope proportional to V (b).

The charge is a continuous variable, and can tunnel out of the metastable state through the

charging energy barrier.

(inductance) ensures a hysteretic response to this event, i.e. a current starts to flow. Thus, the

macroscopic quantum tunneling experiments in phase space (~p-MQT, see e.g. Martinis, Devoret

and Clarke 1987) could be repeated for the charge. Rough estimates show, however, that an

experiment will be hard to realize. The problem is that the quantum fluctuations of the charge are

usually by far too large and completely suppress the Coulomb blockade for any voltage below

e/2C. The typical energy barrier in the metastable state will be smaller than E¢, which should

therefore in an experiment be much larger than the harmonie oscillator ground state fi/2~--~. This

amounts to ~ >> Rq-- h/4e2. Since C will not be much smaller than 10-16 F, an inductor much
larger than 10-4 H is required on a ~tm-scale. The typical geometric inductance of small metal

wires, about 10-12 H/lam, is clearly not sufficient. By using low electron-density materials, which

have high kinetic inductance (L’=m/ne2S per unit length, where n is the electron density and S the

cross-section, e.g. Mooij and Schön 1985) one could hope to reach this requirement. In dirty

superconductors the necessary charge carrier densities ns of order 1020 m-3 can be attained.

As expected from the duality to the current biased Josephson junction, a low shunt resistance

enhances charge fluctuations and increases q-MQT (Averin and Odintsov 1989). For this single

junction, the charge evolves continuously during the tunneling. Therefore the q-MQT rate depends

exponentially on the characteristic impedances like Re, Rt or ~/L/C, and can be strongly

suppressed by increasing these impedances.
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Fig. 19. Macroscopic quantum tunneling of the charge in a double junction (a) is a

combination of two discrete tunneling events, indicated by (1) and (2) in (b), with a virtual

intermediate state of higher eharging energy. The rate of the net tunneling process (solid

arrow) is linearly suppressed by increasing the junction resistances.

In an array of junctions with low bias voltage, electrons residíng on the central metal islands

increase the energy of the total system. This produces a barrier for electron transport across the

system. Thermal fluctuations of the charge on the juncaons can cause passage of this barrier. At

low temperatures electron transport is exponentially (in ECA:BT) suppressed, giving rise to the

Coulomb gap and the possibility of trapping an electron in the turnstile. However, here too

quantum fluctuations of the charge can cause the system to change the charge distribution to a state

where one electron charge has passed through the complete array. Effectively virtual tunneling

events have occurred to the intermediate forbidden states. It need not be the same electron that

crosses the various junctions. Indeed, as Fig. 19 shows for a double junction, it is an inelastic

process in which an electron-hole excitation is created on the central island(s). Averin and

Odintsov (1989) have shown that for high tunnel resistances the rate for this process is

proportional to the junction conductances and proporUonal to V2N-l, where N is the number of

junctions:

V2N-1 ~ ~iF ,~ ---U-11 ~-y (8)

cq=Rq/Rt for juncUon i, and the product is over all junctions. In Fig. 20a we show experimental

I-V curves of the Coulomb gap of a 2-, 3- and 5-juncUon array. It is clear that the Coulomb gap

sharpens considerably for the longer arrays, in agreement with this equation. In parficular, in Fig.
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20b the log(I)-log(V) curves for the 2-junction and 3-junction array are close to the expected

slopes of 3 and 5, respectively.
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Fig. 20. (a) The Coulomb gap sharpens up significantly for longer arrays (top to bottom:

2,3 and 5 junctions, all with Rt around 70 kl2). The curves have been scaled to the

threshold values Vth of(top to bottom) 0.13, 0.20 and 0.068 mV. The I-V curves have been

offset in y-direction for clarity. (b) In log(l)-log(V) curves, the slopes are in agreement with

the expected values; 3 (left, for a double junction) and 5 (right, for 3 junctions).
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To study the effect of Rt on q-MQT, the double junction is the most favorable system, since it

has the highest q-MQT rate with the weakest voltage dependence. For a double junction, the rate

is for voltages inside the Coulomb gap

h { [ 1 +    2E1E2 eV eVF = (2rt)2e4Rt~R°    eV(E~+E~+eV)] [ln(l+-~-i )(1+-~-~ )]- 2} eV
(9)

E1 and E2 are the energies of the (virtua!) intermediate state if the first tunnel event occurs in the

left junction and the right junction, respectively;

e
E1 = ~ (e/2 + Qo - (C2 + Cg/2)V) (10a)

E2 = ~ (e/2 + Qo- (C2 + Cg/2)V) (10a)

CN=C1 + C2+ Cg (10c)

In Fig. 21 we compare measurements of the I-V curves of 4 double junctions (with maximum

Coulomb gap, so Qo-~0) with the theoretical prediction from classical theory and q-MQT

respectively. The measurements have been scaled to dimensionless voltage VC~e and current

IRtC,r_Je to allow for easy comparison. Rt is determined from the I-V curve asymptote. CI: is used

as a fit parameter. There is very good agreement with q-MQT theory. We note that the

correspondence of the slope (3, both in experiment and theory) is independent of the fitted

Further, we will show below that the fitted value for C~: is very reasonable. In contrast, to obtain

rough agreement with the predictions from thermal fluctuations (eqs. (1-4)), it is necessary to

introduce some ad hoc correctìons. A high temperature of 100 mK is used to obtain a curve that is

at least in the range of the measurements. In addition it is necessary to assume a misadjustment of

the gate charge, that is systematically larger for low resistance samples. In Table 2 the fitted CI; is

compared to two independently measured values. Both the asymptote offset Vof and the threshold

voltage Vth of the Coulomb gap should be equal to e/C1:. In actual I-V curves this is not the case.

Vth may be suppressed, due to asymmetric voltage bias, thermal effects, etc. The asymptotic value

Vol is possibly more reliable. In Table 2, the fitted value of CI: lies between e/Vof and e/Vth. We
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Fig. 21. I-V curves of 4 double junction devices, with Rt=41, 77, 117 and 347 k.Q (top left

curve to bottom right curve). The Coulomb gap was maximized with Vg. (a) Comparison

with classical theory (thermally assisted tunneling according to eq. (1)) for kBT=O.O2e2 /C z,

(dashed curve) and 0.04 e2/C~ (dash-dotted curves). Circles: Qo=O; boxes: Qo=O.le;

triangles:Qo=O.2e. (b) Comparison with q-MQT theory (dashed curves). The curves have

been fit with C Z, the fitted values are close to the values folIowing from the Coulomb gap

(Table 2).
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Rt (k~) C~=e/Vof (fF) C~;=e/Vth (fF) CZ, best fit (fF)

41 0.92 1.38 1.19

78 0.77 1.21 0.95

117 0.63 0.88 0.71

347 0.68 0.91 0.72

Table 2. The parameters of the four double junctions in the q-MQT experiment.

note that for the two highest resistance devices, the fitted C~ is close to e/Vof. For the other two

devices it is smaller. This may indicate a breakdown of the perturbafive approach yielding eq. (9).

We conclude that quantum leakage is a relevant factor in the descripfion of devices based on

tunnel junctions with realistic values of Rt (below or of order of 1 MGZ). As already mentioned by

Averin and Odintsov, for single-electron logic circuits like the tumstile it is therefore advisable to

use more than two juncUons to block electron tunneling reliably.

V QUANTUM CHARGE FLUCTUATIONS IN A NON-PERTURBATIVE APPROACH

A systematic approach to the description of tunneling in small junctions has been developed on

the basis of microscopie theory (Ambegaokar et al. 1982, Ben-Jacob et al. 1983, Eckern et al.

1984). With this technique in principle high tunnel conductances and strong coupling to a

dissipative environment, both giving rise to quantum charge fluctuations on the junctions, can be

treated. An effectíve action can be obtained in which all microscopic degrees of freedom have been

traced out and only the macroscopic degrees of freedom, the junction charge Q and a generalized

phase difference q0 = (e/ti)SVdt, remain. In this section we will consider the effect of quantum

charge fluctuafions on the I-V curves, especially the conductance in the linear response regime of

junctions with low Rt. The effect of the environment, causing a strong suppression of the

Coulomb gap in single junctions, will also be shortly considered.

For low Rt the charge on a junction is no longer a well-defined quantity. Qualitatively one

might say that the wavefunctions of the electrons leak too strongly through the barrier. Brown and

Simánek (1986) obtained a closed-form expression for the conductance of a tunnel junction for

arbitrary Rt. In a variafional approach they replaced the effective action with a new one with



6

5

4

3

2

0 0.5 1 1.5
kBT/Ec

Fig. 22. Resistance versus temperature in the linear response regime f or linear junction

arrays. The solid curves are the measurements, the dashed curves give the theoretical

predictions from Brown and Simánek. From top to bottom the devices are: double junction,

Rt=82 kl2, C=I.l fF; 5 junction array, 5.4 k£2, 1.0 fF; lO junction array, 1.3 kl’2, 0.8 fF;

lO junction array, 0.52 kl2, 2.3 fF; lO junction array, 0.24 k£2, 3.T fF.

effective ohmic dissipation. The current-current time correlation function was used to calculate the

junction resistance with the Kubo formula, for arbitrary temperature. Also Odìntsov (1988)

replaced quasiparticle dissipation by an effective Ohmic one to calculate the I-V curve for a very

low Rt junction. Here we compare measurements of the linear response ofjunction arrays with the

Brown and Simánek theory. The use of arrays is necessary to fix the junction capacitance and

exclude the parasitic capacitance of the leads. In Fig. 22 we give for several arrays the resistance

normalized to the tunnel resistance as a function of temperature. Rt varies between 0.24 and 82
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k~~. The sharp (actually exponential) resistance increase at low temperature for the high resistance

samples is strongly suppressed in the low resistance samples. The agreement with the theory from

Brown and Simánek is good if the capacitance is allowed to be used as a fit parameter. In principle

it should be equal to the capacitance determined from the asymptote of the I-V curve. For the

devices with Rt>l kf~ the fitting adjustment is within a factor 2. At low temperatures the measured

R(T) curves for high Rt samples are dependent on the gate voltage. In this case the fit with theory

is less satisfactory.

Much attention is being given at this moment to the influence of the environment on Coulomb

blockade. Generally, the capacitance between leads to a single junction is very large compared to

the junction parallel plate capacitance. This results in the absence of a Coulomb gap in a single

junction without special precautions (Delsing et al. 1989a, Geerligs et al. 1989). By using high

impedance leads the effect of parasiUc lead capacitance can be effectively avoided. One possibility

to realize high impedance leads is to use arrays ofjunctions (Fig. 4, see also Delsing et al. 1989a).

Cleland et al. (1990) showed that leads in the form of narrow strips of high sheet resistance

material also cause a clear Coulomb gap to appear in single junctions. Although these may seem

trivial results, until recently there was some controversy about this subject. It was argued by

Büttiker and Landauer (1986) and supported by van Bentum et al. (1988a) that due to the short

ttmneling time a Coulomb gap should be observed also in a single junction. The reasoning is that

only the capacitance within a small radius given by the product of speed of electromagnetic field

and electron barrier traversal time (approximately (108 ms-1).(10-15 s)=100 nm) can contribute to

the capacitance for charging effects - a ’relativisUc horizon’ argument (Geigenmüller and Schön,

1989). Recently this problem has been treated by various authors (Nazarov 1989a and 1989b,

Devoret et al. 1990, Cleland et al. 1990, Averin and Schön 1990). The results vary in the basic

assumptions, but describe similar results for most practical cases that have been examined so far.

The models consider the influence of an arbitrary frequency dependent shunt impedance on the

tunneling process in a junction. The electromagnetic field in the shunt geometry is influenced by

but also has a backinfluence on the tunneling process. Devoret et al. showed that a Coulomb gap

is due to inelastic tunneling; i.e. it arises if during tunneling low frequency modes can be excited

in the environment. If only elastic tunneling is possible (due to small coupling to environmental

modes, e.g. in a low impedance environment) no Coulomb gap arises. These authors as well as

Cleland et al. showed that the Coulomb gap in a single junction can also be understood to be

washed out by quantum fluctuations in the environment. Calculating these fluctuations from the

fluctuation-dissipation theorem for a well-controlled experimental impedance Cleland et al. found
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Fig. 23. I-V curve of a single junction at high current. The asymptotes (dashed lines) yield

Rt= l O.7 kl’2 and C= I.3 fF, the capacitance being in agreement with the 0.01 p.m2 junction

agreement between theory and observed suppression of the Coulomb gap. Note that these authors

take the charge fluctuations due to the environment to be incoherent. Features of macroscopic

quantum mechanical behavior of the environment are not present in this approach, such as for

example quantization of the energy levels in the case of a large series inductance, resulting in

quantized conductance as a function of voltage (Devoret et al. 1990).

The solution to the relativistic horizon paradox is that two timescales are important in this

problem. In addition to the Büttiker-Landauer traversal time the inverse of the energy change

during tunneling is important (following from the energy-time uncertainty). The important one is

the longer of the two, which is for not too high v01tages in these experiments the latter one. Thus

for high voltages (where this time is shortened or, in the altemative Devoret et al. formalism,
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inelastic tunneling is possible), it is expected that the Coulomb gap appears. This has not been

conclusively observed. An alternative way to cut off the effective tunneling time is to increase the

current to a level where the mean time between tunneling events - e/l - becomes short. We have

observed a Coulomb gap in single junctions (Fig. 23) with the current rather than the voltage

apparently being the relevant quantity.

VI CONCLUSIONS

An important result from the presented experiments is the good agreement of theory with the

observed charging effects in arrays of junctions, for bias voltages not much larger than e/C.

For devices constructed of high resistance junctions, the behavior is in quantitative agreement

with very simple calculations, based on straightforward engineering concepts like ideal parallel

plate capacitors and voltage sources. It is apparently unnecessary to take into account non-

equilibrium effects like creation of hot electrons or sample heating. The experimental expertise is

advanced enough to start working on practical applications. One important aspect should then be

born in mind, namely the possible presence of background charging of the junctions.

In the same low voltage regime the effects of charge fluctuations due to low tunnel resìstance

are also in good agreement with theory. For not too low resistance, electrons can leak through a

Coulomb blockade barrier in an act of macroscopic quantum tunneling of the charge. For our

relatively large systems it is, as expected, the inelastic process of successive incoherent electron

tunneling events which dominates. For low tunnel resistance (compared to h/4e2) the Coulomb

blockade effects are strongly suppressed. The charge on the junctions is no longer a (semi-)

classical variable, but fluctuates strongly. The resulting junction impedance follows the

fluctuaaon-dissipation theorem.

This is roughly where at present most of the experimental knowledge ends. From the

agreement of results with global rule, one can conclude that there is interaction of the junctions

with the environment. This is clearly a subject to examine carefully. The high voltage behavior of

a single junction could be used to test this interaction. For this regime, detailed theory has been

developed. We would also like to point at the more neglected high current behavior, which seems

to have an independent influence on the Coulomb blockade. The research on interaction with the

environment will benefit from development of fabrication techniques of extremely high sheet-

resistance materials, which are also of great advantage for several applications.
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CHAPTER 3

CHARGE AND PHASE DYNAMICS IN JOSEPHSONTUNNEL JUNCTIONS

May the New Year bring us ... fewer but more

successful theories

Editorial Phys. Rev. Lett. January 1, 1959.

I INTRODUCTION

In this chapter we present measurements on superconducting tunnel junctions (Josephson

junctions) with small capacitance. These measurements, mainly current-voltage (I-V)

characteristics, provide information about the dynamics of two macroscopic degrees of freedom,

the junction charge and phase difference. These degrees of freedom are not independent. The

phase difference can only be well-defined if there is the possibility of a free exchange of Cooper-

pairs across the junction (e.g. Ferrell and Prange 1963, Anderson 1964, De Gennes 1966). If this

exchange, or the accompanying charge fluctuations, are for any reason inhibited, the phase

becomes uncertain and the charge becomes the well-defined variable. This is obvious for the

extreme limit of two distant pieces of bulk superconductor. In this work we are concemed with

the quenching of charge fluctuations due to the small capacitance of junctions: Transfer of a

Cooper-pair across a junction of capacitance C will typically yield an energy change of order

Ec=e2/2C. At temperatures far below Ec/kB energetically unfavorable events will be forbidden,

so that the junction charge is well-determined. Since the junction states that differ by a Cooper-

pair are mixed by a tunneling matrix element of magnitude Ej/2, the important parameter in the

balance of charge and phase fluctuations is the ratio Ej]F~. For large Ej/EC, the junction behavior

is in practical cases well-described by classical dynamics of the phase. For small Ej/Ec, a classical

charge is better suited to describe a Josephson junction (see, e.g., the review by Schön and Zaikin

1990).

An interesting feature of tunnel junctions is that the dynamics of phase and charge, as

macroscopic degrees of freedom, are subject to quantum mechanics. The variables do not

commute; [q~,q]=2ei, so that they obey an uncertainty relation ~¢p~q>e. Various fascinating

phenomena for small Josephson junctions, such as tunneling, Bloch oscillations and Zener

tunneling of the macroscopic degrees of freedom have been predicted. However, until recently
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only macroscopic quantum tunneling in phase space (~p-MQT) had been observed. In a recent

publication (Geerligs et al. 1989, chapter 9) we reported on experiments in 2-D arrays of small

junctions that show behavior that can be very well explained by Bloch oscillations and Zener

tunneling of the constituent junctions. We also reported experiments on normal metal tunnel

juncfions that show macroscopic quantum tunneling of the charge degree of freedom (Geerligs,

Averin and Mooij 1990, chapter 5). Here we consider superconducfing junctions with Ej/EC

varying from much larger than unity, with accordingly phase as the well-defined degree of

freedom, to much smaller than unity, with the charge well-defined. However, although out

experiments are concemed with quantum mechanics of the macroscopic degrees of freedom of the

junctions, this often coincides with tracking the behavior of single Cooper-pairs or electrons. The

reader should bear in mind that this is consistent, though perhaps confusing. The significant

Coulomb energy implies that all free electrons and Cooper-pairs participate in the dynamics of a

single charge carrier, making this a macroscopic event.

After a short introduction of the Josephson juncUon as a quantum particle, in section II we will

describe the experimental apparatus and techniques. In secUon III, measurements are presented on

single junctions and short linear arrays in a low impedance environment. In that section, we will

also menaon the more straightforward interpretations of the measurements. A more elaborate

discussion is given in section IV. In section V, we show results for single juncfions which are

decoupled from the environment by large 2-D arrays. A discussion of possible high-frequency

experiments with small capacitance junctions is given in section VI, with some intriguing first

results. Finally, conclusions are summarized in section VII.

The Hamiltonian of an isolated Josephson junction reads, if quasiparticle conduction is

neglected

Ho = 2~C- Ejcos~ (1)

Here ~ is, as mentioned above, the phase difference of the condensate wave functions on both

sides of the barrier. It is conjugate to the number of Cooper-pairs that have tunneled through the

juncfion, q/2e. This Hamiltonian is equivalent to theone describing a quantum harmonic oscillator

(Condon 1928). The eigenstates are the 2~t-periodic Mathieu-functions (Abramowitz and Stegun

1965). For the junction, the 2~t-periodicity results directly from the discreteness of the charge on

the junction. Although the operators q and -2ei(O/Oq~) are identical, the commutation relation

between q and 9 is best written as [ei~°,q/2e]=eiq~ since 9 is not an observable quantity (Peierls
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1979). In experiments a junction is not isolated but can be charged from an extemal source by an

amount qx (a classical parameter), so that the Hamiltonian changes into

Hqx=~- Ejcos~ (2)

As noted by Büttiker (1986, 1987), this charge can e.g. be introduced by the use of a small

capacitor in series with the junction, and voltage biasing this system. The charge qx can also be

introduced by a perfect current source, as is seen from a gauge transformation to an equivalent

Hamiltonian

~2 fi
HI =,.,..~- Ejcosqo -~--êq~I (3)

where the bias current is equal to the time rate of change of qx: 3qx/Ot=I. For the junction on

which an extemal charge is induced, the eigenstates of Ho (or approximately of HI) are Bloch

functions exp(-Rpqx/2e)Un,qx(¢p). In the gauge of Hqx the eigenstates are just the Un,qx(~P)-

However, the eigenvalues in both cases form a band energy-spectrum, with qx as coordinate. For

low Ej/Ec, well inside the Brillouin zone the band is close to parabolic: E=qx2/2C for the lowest

band. At the Brillouin zone edges, which are found at qx----L--e, +3e, etc., a bandgap of width Ej

arises due to Cooper-pair tunneling. Sweeping the extemal charge qx, by means of an extemal

current source or via the small capacitor, sweeps the junction through the band. This produces

Bloch oscillations, i.e. coherent Cooper-pair tunneling with fixed time intervals !/2e (Widom et al.

1982, Ben-Jacob and Gefen 1985, Likharev and Zorin 1985). At high sweep rates, Zener

mnneling can occur, which means that a Cooper-pair mnneling event is missed (e.g. Geigenmüller

and Schön 1988, Mullen, Ben-Jacob and Schuss 1988). Note that, if the work performed by the

source of qx is taken into account, the Hamiltonian is no longer 2x-invariant. This is always so if

dissipation in the junction (due to shunt conductance) gives rise to an additional term

(4)

with Iqp the dissipative current, carried by quasiparticles. However, whether phases differing by a

_multiple of 2~t are distinguishable or not, usually does not have physical consequences (sec e.g.

Zwerger 1987, Schön and Zaikin 1988).
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Fig. 1. The analogue of a classical Josephson junction (left) is a point particle in a sloped

cosine-potential (right), with coordinate qg. The mass of the particle is proportional to the

junction capacitance, the height of the potential wells to the Josephson coupling and the

friction to the junction shunt conductance.

The hamiltonian (3)+(4) yields for classical phase the well-known picture of a point particle in

a sloped washboard potential, subject to friction (Fig. 1). The Hamilton equation of motion for q

is just the current balance of the junction. It contains the Josephson pair current term Is=Icsin¢p.

The equation of motion for q~ yields the ac Josephson relation q/C=V=fi~p/2e. The quantum

mechanical description is likewise analogous to that of a particle in a periodic potential, subject to

a driving field fiI/2e. (Although for zero current bias the eigenstates are delocalized in ¢p-direcUon,

in high Ej/Ec juncfions in pracfical situations the phase is localized, sec e.g. Nagai anti Kondo

1980 or Schön and Zaildn 1990). One interesting feature of this macroscopic quantum system is

the interaction between macroscopic quantum degrees of freedom and the underlying microscopic

degrees of freedom, which can be identified with dissipation (Caldeìra and Leggett, 1981,

Ambegaokar, Eckem and Schön 1983, Schön and Zaikin 1990). This subject bas received much

theoretical research. The general outcome is that strong dissipaUon, which coincides with a large

single electron conductance in the junction, quenches phase fluctuations. Several experiments,

most convincingly ¢p-MQT (Esteve et al. 1989), but possibly also the observation of phase

transitions in granular or regular 2-D Josephson junction arrays (Mooij and Schön 1988), have

shown this effect of dissipation. We will consider the effects of dissipation on the quantum

dynamics mainly in section VI.
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With the advance of submicron fabrication techniques, the fabrication ofjunctions for studying

macroscopic quantum effects seems to have become trivial. However, a serious practical problem

is encountered if one attempts to realize the current bias. Without special care, at hi, gh frequencies

the junction will be shunted by the low impedance environment from its bias leads, which is of the

order of the free space impedance. This problem was realized, but not completely solved, in

previous experiments on Josephson junctions in the quantum regime by Iansiti et al. (1988,

1989). Later Martinis and Kautz (1990) showed the effect of the high frequency impedance on the

characteristics of classical junctions in a carefully designed environment. The usual way to

circumvent the problem of a low impedance environment has become the use of several juncUons

in series. In the limit of long arrays this can realize a current bias, but even for two junctions there

is the advantage that at least the capacitance of the junction is reasonably well defined. The

impedance of the neighbouring junctions will generally also decrease the damping of a given

junction. Therefore in our experiments we concentrated mostly on short arrays ofjunctions.

As Fulton et al. (1989) pointed out, important features of the behavior of these short arrays

under voltage bias can be understood from a description based on the simple tunneling

hamiltonian for Cooper-pairs:

H = HL +HR +HT+HQ (5)

where HT couples states differing by one Cooper-pair, via a matrix element of magnitude Ej/2

(Josephson 1962, Ambegaokar anti Baratoff 1963). HL anà HR describe the electrodes, HQ the

charging energy. Of course, this Hamiltonian is also the basis of (1)-(4), but as Fulton et al.

showed it can often be conveniently interpreted in terms of single Cooper-pair moUon. Since

Cooper-pairs are condensed at the Fermi level, mixing of electrode charge states differing by one

Cooper-pair is strong only if they are at approximately the same energy. Due to Coulomb

blockade effects, for small capacitance junctions this requires generally a significant voltage on the

junction (e/C for an isolated juncUon). This aspect of Cooper-pair tunneling is similar to single

electron tunneling in normal metal tunnel junctions. However, the single electron tunneling is

stochasUc. In the normal state, the probability that a tunneling event occurs in a short time interval

is proportional to the energy change durìng tunneling AE. In contrast, in the superconducting state

a coherent charge oscillation across the tunnel barrier arises, with amplitude decreasing with

increasing IAEI/Ej. In the adiabatic approximation, sweeping the junction state through the

resonance condition AE=0, will always result in Cooper-pair tunneling (a Bragg reflection occurs
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at the band edge).

For the short arrays ofjunctions which are considered in this chapter, we find for low Ej/EC a

regime of classical charge. We can explain the results with single Cooper-pair dynamics, subject

to Coulomb blockade effects. In the intermediate and large Ej/EC regime, the description is more

complicated. For high Ej we can use the familiar description in �0-space, although this description

is quite complicated due to frequency-dependent damping. For intermediate Ej/Ec, this

description is affected by the presence of quantum fluctuations of the phase.

II EXPERIMENTAL TECHNIQUES AND JUNCTION CHARACTERIZATION

A Experimental techniques

All juncfions described in this work are fabricated from aluminum. They are evaporated

together with the connecting circuit on 0.4 mm thick silicon substrates, usually on a 0.4 ~tm

silicon oxide isolating top layer. Aluminum junctions have several advantages for this research,

the only disadvantage probably being the low critical temperature. They can be easily and reliably

fabricated, since the condensation heat of aluminum is not very large and does not affect out

evaporation mask. The grainsize is fairly small, and the condensed metal has low mobility,

features that are necessary in order to define a small juncfion area, The junction quality is very

high, for a wide range in linear dimension (from at least ga-n’s to tens of nm’s).

The junctions were produced by shadow evaporafion, as illustrated in Fig. 2. The advantage of

this method is the fabrication of a complete junction in one vacuum cycle. This ensures a high

quality tunnel barríer, for reasonable current densities. For this technique, a suspended mask has

to be created. In our case this mask is made of Ge, suspended 200-1000 nm above the substrate

by a layer of organic resist. On top of the Ge, a high resolution e-beam resist is applied for

patterning of the circuit. The coarse circuit (connection leads) can be exposed with deep-UV. After

that, the actual juncfion pattem is written with a modified SEM with a spot size of about 8 nm, at

50 kV beam voltage and about 5 to 10 pA current. After developing, this pattern is transfexTed into

the Ge by reactive ion etching. The suspending organic material is removed by a combination of

anisotropic reactive ion etching and isotropic wet etching. In this way, a free hanging bridge is

created, that is used for evaporating the junction. Typically a first layer of 25 nm A1 is evaporated,.

followed by oxidation of the barrier and evaporation of a 50 nm counter electrode from a different

angle. The barrier thickness is controlled by the oxidation pressure. Values between 0.02 and 10
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Fig. 2. Schematic side-view of shadow evaporation of small junctions. (a) A pattern is

defined in the upper layer of a three-layer resist by U-V and e-beam exposure, and

subsequently developed (b). (c) The pattern is transferred into an intermediate Ge-layer by

reactive ion-etching with SFó. (d) This pattern is again transferred into the bottom layer by

reactive ion etching with 02. (e) An undercut is created by wet (isotropic) etching of the

bottom layer. (f) In one vacuum-cycle two aluminum electrodes are evaporated from two

angles, with an oxidation step in between to create the barrier. A suspended Ge-bridge thus

results in a small junction. (g) Liftoff in acetone clears the unused silicon-oxide surface.

mbar yield reliable barriers for a critical current density between 104 and 107 A/m2. After

evaporation, the mask is lift-off with acetone. The resulting junctions are typically very stable.

They survive stomge in normal air for a period of up to several years. The tunnel resistance does

not change significantly over this time, except for high current density barriers and junctions with

dirty aluminum electrodes.

All measurements were performed with the junctions thermally anchored to the mixing chamber

of a dilution refrigerator. We found that glueing the substrate with vacuum grease to a copper

sample holder provided sufficient thermal contact. The leads were also thermally anchored close to

their connection with the sample. The electronical setup is carefully designed to prevent radio-
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frequency interference and ground loops reaching the sample or affecting the measurements. It is

divided in two parts. The primary part consists of the cryostat, with separate ground, the sample

and a minimal amount of measurement circuitry. The latter consists of the voltage preamplifier and

active current source, or alternatively the voltage source with current sensing virtually shorted

FET-input opamp, all powered by floating power supplies. This circuitry is shielded in closed

metal boxes that are grounded to the cryostat via the shields of the measurement cables. The

secondary part of the circuitry, consisting of e.g. oscilloscope, ramp generator, and lock-in

amplifier, is powered by line power, with a clean separate ground. The connection between the

two parts is formed by two high level voltage lines: the first is a control voltage for the bias

source, the second line carries the output voltage of the pre-amp or current sensing opamp. These

two signals are optically decoupled by high-accuracy (0.1%) analog optical isolation-amplifiers.

As a result, in case of noise problems only a very simple circuit on the primary side has to be

debugged.

All lines into the cryostat are shielded, twisted, and fíltered by 1 MHz low-pass filters at the

cryostat entrance. However, for experiments on superconducting tunnel junctions at these low

temperatures it is usually necessary to add low-pass filters which are thermally anchored to the

mixing chamber (Martinis, Devoret and Clarke 1987). This is probably due to the sensitivity of

the junctions to high-frequency room temperature noise, which can e.g. develop in the leads

inside the cryostat. If this cryogenic f’tltering is omitted, in our case usually the I-V curves (or Ic-

histogrammes, etc.) do not change below about 300 mK. Cold RC-filters already improved the

measurements, but in most experiments we used RC filters in combination with special

microwave filters, with the sample in a tightly closed, conducting box. The special filters

consisted of a long length of signal lead, coiled inside a tube filled with tightly packed copper

powder (<30 l.tm grainsize). High frequency signals (above about 1 GHz) are very effectively

attenuated in these filters by skin effect damping in the small copper grains. Measurements on

small-capacitance junctions obtained in this way showed significant changing of the I-V curves,

below 100 mK. To test this filtering, we also performed standard phase-MQT experiments, which

are reputedly very sensitive to high frequency room-temperature noise. Results are in good

agreement with theory for �0-MQT and will be given in later sections. Although many

measurements are recorded at or below 20 mK mixing chamber temperature, we avoid to attribute

any special significance to this temperature compared with, say, 50 mK, to be on the safe side

with respect to e.g. fîltering, sample heating or non-equilibrium effects. This is also the reason

that we like to study charging effects in junctions with capacitance of order 10-15 F (Ec/kB=I K)



josephson tunnel juncfions 53

even though junctions with C-~10-14 F of high enough resistance (about 100 k~) have Ej/Ec of

order 1, and should therefore show strong charging effects below 100 mK.

B Junction characteristics

For interpretation of the measurements, it is important to have an accurate estimate of junction

parameters like the Josephson coupling energy Ej, the capacitance C (or the charging energy EC),

the quasiparticle supgap resistance and possible ohmic leakage of the junctions. The devices

which are discussed in this chapter are listed in Table 1.

The capacitance of small junctions can be determined from the normal state Coulomb gap. It is

related to the voltage offset of the asymptote of the I-V curve (sec chapters 5 and 6). We have

taken the offset AV of the linear part of the I-V curve, not very far outside the Coulomb gap, to be

given by the ’global rule’ (Geigenmüller and Schön 1989) as AV=(n-1)e/2C, where n is the

number ofjunctions in the array. This was determined at a voltage of around 3-4 mV and a current

below 100 nA. For high currents (of order 1 [tA) or voltages (50 mV) we expect an offset

consistent with ’local mie’, i.e. equal to ne/2C. The latter determination was used for low

resistance arrays or small single junctions, where a sharp Coulomb gap is absent. Note that

unequal junction capacitances affect the quoted equations for the offset voltage. For large

junctions (>0.5 ~tm2), we have assumed the capacitance to scale with the junction area. This

seems plausible given the results for the small junctions, for which the junction capacitance

roughly follows the parallel plate forrnula C=eoA/t’, where A is the junction area and t’=t/~r is

about 1-1.5 A (chapter 6). The barrier thickness t is dependent on oxidation pressure, and varies

by about a factor 2 in the range that we use.

The Josephson coupling energy Ej is related to the critical current Ic of a junction by Ej=hIc/2e.

However, in our experiments for all but the largest junctions the supercurrent is significantly less

than Ic because of thermal or quantum fluctuations. Therefore we determine Ej from the

Ambegaokar-Baratoff (1963) relation Ic(T)=(~tA/2eRn)tanh(A/2kBT), where Rn is the normal state

resistance in the absence of charging effects of the junction. In this equation the temperature

dependent quasiparticle excitation gap A(T) appears. We have checked for several junctions, large

as well as small ones, that this gap follows the BCS relation (e.g. Mühlschlegel 1959), both for

the dependence on T/Te and for the relation A(0)=1.76 kBTc (Fig. 3). For a 3 I.tm2 junction of low

resistance, we have checked that the critical current also follows the Ambegaokar-Baratoff

prediction, both in absolute value and in temperature dependence (Fig. 4). (Note,
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sample Rn C Ej/kB EC/kB Ej/Ec

(kn) (fF) (K) (K)

lA 0.14 200 54 0.005 1.1.104

1B 0.57 50 13 0.02 7.102

1C 4.5 1.5 1.7 0.9 2.7

1D 140 1 0.05 0.9 2.7

lE 14 2.7 0.53 0.34 1.6

1F 132 2.9 0.06 0.32 0.18

2A 58 1 0.13 0.9 0.14

2B 41 0.43 0.18 2.1 0.09

2C 110 0.6 0.07 1.6 0.04

2D 117 0.28 0.064 3.3 0.02

3A 2.7

3B 73 1.4 0.10 0.7 0.15

5A 5.5 1 1.4 0.9 1.6

5B 58 2 0.13 0.45 0.3

5C 1 0.12 0.9 0.13

Table 1. Devices discussed in this chapter. The digit in the name gives the number of

junctions in series. Samples lE and 1F are single junctions with 2-D arrays in the leads for

decoupling from the environment. The capacitance determination was performed in various

ways, as discussed in the text. For single junctions 1B to 1D the quoted value for Ej/Ec is

probably not very realistic due to shunting by parasitic capacitance in the environment.
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Fig. 3. Measured gap voltage (from the I-V curves) versus reduced temperature for two

single junctions. Boxes are for junction lA (3 lzm2, Rn=140 1"2, C=200 fF). Crosses are for

junction 1D (0.01 l~m2, Rn=140 kl’2 and C~.1 fF). The dashed curve gives the BCS-

expression for the gap as a function of temperature. For junction lA the fitted Tc is equal to

1.24 K, for 1D it is 1.3ó K.

however, that the A(0) and fitted Te in Fig. 3 for this junction are suppressed compared to the

Ic(T) fit). Since this junction was fabricated with the same procedure as the smaller ones, we

assume that the Ambegaokar-Baratoff relation also describes Ej(T) for the smaller junctions. The

critical temperature of the aluminum varies around 1.35 K. This is higher than the literature value

for bulk aluminum of --1.2 K. The Te is correlated to the film thickness. We found for 100 nm

thick aluminum Tc=l.30 K, increasing for thinner f’dms to 1.52 K at 20 nm.

The small signal quasiparticle resistance Rqp of two arrays of three small capacitance junctions

was measured directly from the I-V curve. The critical current was suppressed by a magnetic field

of 0.4 Tesla. In Fig. 5 we have plotted the quasiparticle resistance together with the prediction of

Bol et al. (1985), which can be closely approximated by

Rqp/Rn=exp [A(0) (l/T- 1/Tc)/kB] (6)
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Fig. 4. Critical current from switching distributions (crosses) and I-V curves (boxes) for

junetion lA. The fitted Tc is 1.32 K, the corresponding Ic(T) is in good agreement with the

Ambegaokar-Baratoff equation (dashed curve).
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I I I I

3 4

T~
Fig. 5. Subgap resistance relative to normal state resistance for array 3A (three small

capa¢itance junctions) (boxes) and single junction lA (crosses), versus inverse reduced

temperature. The lines give the theoretical prediction, which can be closely approximated by

Rqp/Rn=exp[A(O)(1/T-1/Tc)/kB]. For the dashed line A(O)=l.7ókBTc, for the dashdotted line

A(O)= I.ókBTc.
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The agreement is good, if A(0)=I.6kBTc instead of the BCS value A(0)= 1.76kBTc is used. A very

small part of the exponential resistance increase in this experiment will have been due to the

Coulomb blockade. An alternative way to determine the quasiparticle resistance uses

measurements of the so-called retrapping current in the I-V curve (Stewart 1968, McCumber

1968). On decreasing the bias current, a classical junction that is in the running state in the

washboard potential, will eventually switch back from high voltage to a supercurrent. The current

at which this occurs is dependent on the quality factor Q=o)pRC, where the plasma frequency

O)p=03o(1-(I/Ic)2)1/4, lâ~o- 8~ and R is the damping resistance at high voltage, which is

essenUally the DC resistance Rqp. The Rqp determined in this way for a classical single junction is

also plotted in Fig. 5. It too fits satisfactorily to the expression (6), which we therefore assume to

be valid at least for the temperature range of these measurements (down to 0.3 K).

The ohmic shunt conductance of these junctions is very low. This follows from two types of

measurements on small junctions. First, in the normal and superconducting state for high Rn it is

possible to induce a gate charge on a metal island between two junctions in an array for apparently

indefinite time (except for special cases where the charge jumps between two or more discrete

values). The fact that this charge does not leak away notably, shows that only discrete charge

transfer is possible from these islands. In addition, in the superconducting state for low Ej/Ec

genemlly a Coulomb gap develops with very high resistance. The lower limit on the determination

of the resistance inside the gap is posed by the experimental current noise. For the associated low

voltages it is a few Gfl’s. Ohmic conductance would show up inside the Coulomb gap,

unaffected by the Coulomb blockade.

~ EXPERIMENTAL RESULTS FOR VOLTAGE BIASED SYSTEMS

In this secfion we will present results for juncfions which are capacitively shunted by the

measurement leads, so that they are voltage biased for high frequencies. Even if a current bias is

applied externally, the current only buffers the shunt capacitance and determines the accessible

part of the I-V curve. The relevant frequencies change with the state and parameters of the

junction. However, due to the high internal impedance of the junctions and the very low specific

inductance of our leads we can say that the junctions are voltage biased roughly from 100 MHz up

to frequencies larger than the gap frequency of aluminum. However, the voltage bias is not

perfect; resonances and neighbour junctions still affect the junction dynamics. This will be

considered in section IV.
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Fig. 6. I-V characteristics for single junctions. (a) lA (Rn=140 £2, C=200 fF); (b) 1C

(Rn=45 k~2, C=l fF); (c) 1D (Rn=140 k~2, C=l fF).
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A Single junctions

Single junctions will typically be biased from a source impedance of about 50 ~2. This is

already sufficient to predict that charging effects must be strongly suppressed (e.g. Nazarov 1990,

Devoret et al. 1990). We will describe experimental results forjunctions with area between 3 and

0.01 I.tm2, resistance varying between 140 f~ and 140 kf2, and capacitance between about 200 fF

and 1 fF. The junctions with the lowest resistances show classical phase dynamics. The small

junctions show some unconventional features, which can however still be explained with semi-

classical phase dynamics. For the largest junction, the environment has negligible effect on the I-V

curve, in contrast to the smaller ones, for which it is very crucial to take the environment into

account.

In Fig. 6 we show current.voltage characteristics of these junctions. They all show classical

underdamped hysteretic I-V curves, with a zero resistance supercurrent. The supercurrent is equal

to a large fraction of the Ambegaokar-Baratoff critical current, except for the 140 k.Q junction. In

some cases the gap edge has a negative differential resistance, which is probably a result of the

increasing hearing of the junction (and thus suppression of the gap) for increasing current at the

gap voltage. The measured voltage on this negative resistance part is the average of low-frequency

oscillations between finite- and zero-current state.

We have recorded distributions of the current at which switching out of the zero voltage state

occurs. Two series are shown in Fig. 7. For all junctions the critical current increases if the

temperature is decreased. However, whereas for the largest junction the width of the distribution

decreases with temperature, for the small junctions it increases. The decreasing width for the large

junction is expected from thermal activarion theory. The switching diswibution is determined by

the escape rate F from the zero-voltage state. For moderately damped junctions (Kramers 1940),

F = 2"2~g exp[-AU/kBT] (7)

where AU can be approximated by (4~/2/3)Ej(1-I/Ic(T)3/2. Therefore, if [ln(0~2~F(I))]2/3 is

plotted versus I, it should yield a straight line with slope proportional to Tesc-2/3, where Tesc is the

so-called escape temperature (Martinis, Devoret and Clarke 1987). In Fig. 8 these plots are given.

The intersection with the current axis yields the crìtical current, which was plotted in Fig. 4. The

inset shows the escape temperature versus mixing chamber temperature T. At high temperature,
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Fig. 7. Distributions of switching currents out of the zero-voltage state for single junctions

(a) lA (Rn=140 £2, C=200 fF),from left to right, the temperature is 0.6, 0.5, 0.4, 0.3, 0.2,

0.1, 0.01 K; (b) 1C (Rn=4.5 k£2, C=1 fF), from left to right the temperature is 0.6, 0.4,

0.2, 0.06 K.

I [p.A]

Fig. 8. Switching rate out of the zero-voltage state f’, from the measurements in Fig. 7a,

plotted in such a way that a straight line is obtained with slope scaling as Tesc"2/3. The inset

shows the Tesc thus obtained, versus the actual mixing chamber temperature.
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there is generally good agreement with the prediction T=Tesc, within about 20 mK, but below

about 150 mK Test becomes constant. This is the effect of macroscopic quantum tunneling out of

a well of the washboard potential, the first indication of quantum phase fluctuations. The

crossover temperature of 150 mK, from thermal activation to phase-MQT, is in agreement with

theory.

The increasing width of switching distrìbutions for the smaller junctions can also be explained

with semi-classical theory. It results from the sensitivity of the phase dynamics to the high

frequency impedance of the environment. We will return to this in section IV. Here we will give

one example of the classical phase dynamics of the junction with Rn=4.5 k~ and area 0.01 #m2 (a

parallel plate capacitance of C--1 fF). Under irradiation of microwaves on this junction, Josephson

current steps develop in its I-V curve. These are shown in Fig. 9. Josephson steps result from

phase locking of junction motion in the washboard potential. However, although the relation

i4~-2eV/li is also valid for operators, the amplitude of oscillation of relevant expectation values like

<sinq0> vanishes for strong phase fluctuations (Likharev and Zorin 1985). We also note that even

I

i i i i    I    i i i
-4 -3 -2 -1 0    1 2 3 4

2eV/hf

Fig. 9. I-V characteristics in the presence of microwave radiation for single junction 1C

(Rn=45 kl’2 and C=l fF). The voltage has been scaled to the Josephson step value of hf/2e.

From top to bottom the frequencies are 11.4, 8.87, 3.9 GHz.
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Fig. 10. Voltage biased I-V characteristics of single junctions. Current resonances occur at

device-independent voltages.(a) junction 1C (Rn=4 5 kl2 and C=l fF). The bottom curve is

in zero-magnetic field, for the top curve a field of 0.15 T is applied, giving a significant

suppression of the quasiparticle excitation gap. (b) junction 1B (Rn=540 12, C=50 fF). (c)

junction 1D (Rn=140 k£2, C=1 fF). For this device the current biased I-V curve shows a

constant voltage step of ca. 20 l.tV (also clear from the inset, which is for T=O.ó K).
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the smallest junctions, with parallel plate capacitance about 1 fF, do not show a Coulomb gap in

the normal state (except for high currents, of order 1 ~tA). This also shows that there is no

suppression of charge fluctuations by Coulomb blockade.

The suppression of phase fluctuations is due to the coupling to the environment. In Fig. 10

there is another direct indication of such coupling. It appears in the form of current resonances in

the I-V curve at voltages about equal to multiples of 20 I.tV. For current bias the resonances are

mostly hidden inside the hysteresis loop of the I-V curve. This effect has been observed before in

junctions coupled to an extemal resonating load (Kuzmin, Olsson and Claeson 1985, Kistenev et

al. 1985). Note that the position of the resonances is not affected if the superconducting excitation

gap is significantly suppressed by a magnetic field. We will show in the next section that

resonances also occurred, at the same voltages, in double junctions in the charging regime.

From the inset of Fig. 10c it is clear that the first current resonance can be larger than the

supercurrent. In such a case a current biased I-V curve shows a gap, with a width which is

independent of temperature. We note that this looks similar to a phenomenon observed by Iansiti

et al. (1988, 1989) in similar small single junctions. These authors did not interpret the gap with

environmental modes, but instead gave an explanation that relied on the quantum behavior of such

junctions.

B Double junctions

In double junctions, in contrast to single junctions, the capacitance is certainly of about the

magnitude that is expected from the junction area. This follows for instance from the occurrence

of a Coulomb gap in the normal state. Therefore double junctions are probably the simplest

systems where the effect of decreasing Ej/EC can be studied reliably.

In Fig. 11 the voltage biased I-V curve is shown for a double junction with Ej/Ec=0.09. On a

large scale the curve is clearly asymmetric, with the BCS sumgap at approximately the usual value

of 0.8 mV (for two junctions). Inside the gap a resonance is present at about 0.5 mV, which is

also asymmetric. On an expanded current scale (inset of Fig. 11) we observe a smaller gap, with a

width of approximately 0.35 mV. In Fig. 12 we compare the small scale I-V curves of various

double junctions with Coulomb gap measurements in the normal state. The remarkable feature is

that they all show a smaller gap, with the gap voltage close to two times the normal state Coulomb

gap of the same device. The Coulomb gap is the lowest voltage where tunneling of an electron can

occur across one of the two junctions with zero energy difference (see, e.g., chapter 2).
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Fig. 11. I-V characteristic of double junction 2B with Rn=42 kl’2, C~=0.47 fF (Ej/Ec=O.09).

The inset shows the current plateau starting at about 0.35 mV (the Cooper-pair gap), and a

strong current increase at 0.4 mV.

Consequently, the double voltage is the lowest voltage where one junction can pass a Cooper-pair

with zero energy difference. We will call this gap a Cooper-pair gap, and return on this

interpretatíon in the next section.

In the normal state, the Coulomb gap can be strongly suppressed by the gate voltage. This is

not so much the case in the superconducting state. In Fig. 13 we give I-V curves of a Cooper-pair

gap for different gate voltages. The gap can be somewhat modulated in width, and depending on

gate voltage a resonance at the gap voltage may arise. For somewhat higher Ej/EC current peaks in

the I-V curve almost mask the Cooper-pair gap. These current peaks are shown more detailed in

Fig. 14. They occur at the same position as the peaks of the single junctions of Fig. 10. One peak

is centered around V=0. For convenience, we will call this a supercurrent without meaning that

the resistance is truly zero. Fig. 14 gives the I-V curves of one device in two situations. The first

curve was measured with the usual external on-chip circuit. For the second curve, the

superconducting leads on the chip were interrupted and bridged by normal metal. Clearly, this did

not affect the position of the peaks very strongly. We have found that the geometry of the on-chip
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Fig. 12. Comparison of normal state Coulomb gap (dashed) and superconducting state

Cooper-pair gap (solid line) for several double junctions. (a) 2A (Rn=62 kg2, C=I fF,

Ej/Ec=O.13); (b) 2B (Rn=42 k~2, C=0.47 fF, Ej/Ec=O.09); (c) 2D (Rn=ll7 k~2, C=0.3 fF,

E J/EchO.02). For (a) and (b) the current in the normal state is divided by 10.
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Fig. 13. I-V characteristics of double junction 2B (Rn=41 kl2, C=0.47 fF) for three

different gate voltages, showing influence on the width of, and a resonance at the Cooper-

pair gap.

0 0.1 0.2

v [mv]
Fig. 14. Current peaks in the I-V curve for double junction 2A (Rn=ó2 k£2, C=I fF, bottom
two curves, 10 pA/division) compared with those for single junction 1C (top curve, 10

nA/division). The devices were patterned with the same on-chip connecting circuit. For the

lower curve of device 2A, part of the superconducting lead to the junctions was replaced by
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Fig. 15. Gate voltage modulation of the current peaks in the superconducting state, and the

Coulomb gap in the normal state. Shown are (top to bottom) I-Vg curves for the

supercurrent, the 20 I~V and 40 I.tV resonance, for a bias voltage on the flank of the BCS

gap, and in the normal state. (a) device 2A (Ej/Ec=O.13), (b) device 2B (Ej/Ec=O.09). The

inset of (a) shows the maximum and minimum supercurrent in I-V curves for two gate-

voltages (solid and dashed curves).

circuit has some influence on the position of the peaks. The peaks disappear for low Ej/EC. As for

the single junctions, they are probably a result of a resonance with environmental modes.

However, although in a single junction the phase dynamics is classical, in this case the current

resonances are influenced by gate voltage. This shows the presence of charging effects in these

junctions. Modulation of the current peaks at several values of voltage bias is shown in Fig. 15

for two samples. For reference, the modulation is given of the current just outside the Coulomb

gap in the normal state, of which we know that the period corresponds to an electron charge

divided by the gate capacitance. In the superconducting state there is mostly an e-periodic

modulation of the height of the current peaks, but in one case for the resonances at 20 and 40 l.tV,

a 2e period can be observed. It should also be noted that the supercurrent and resonances are
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1.00

40 80

Fig. ló. Temperature dependence of the small-voltage I-V characteristic of double junction

2A. The temperature increases from 0.1 to 0.7 K in steps of O.1 K (bottom to top).

maximum when the normal state Coulomb gap is maximized, which occurs for island charges

equal to an integer times e. Fig. 15a shows that the gate voltage does not affect the position of the

peaks.

For all devices, the current peaks strongly increase with increasing temperature. This is shown

in Fig. 16. The current peak at about the BCS sumgap is generally less strongly dependent on

temperature, the behavior varying from device to device and with gate voltage. At voltages where

both small junctions are in the voltage carrying state, i.e. larger than about 0.8 mV, the I-V curve

shows the presence of a third junction in the circuit, which we identify with the metal island

between the two small junctions. Since this island is also a double metal layer with barrier in

between, it is also a junction, but of about 10 times larger capacitance and higher Ej.
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C Three junctions in series

The three junction device of low Ej/Ec that is presented in this section shows cross-over

behavior between the two-junction and five-junction devices that we have examined. We will only

shortly describe the results. Fig. 17 shows I-V curves for three junctions of small Ej/EC in series,

with the same general features as the double junctions, except that a supercurrent is absent. The

Cooper-pair gap is hardly visible due to the current resonances at small voltage. With increasing

temperature the gap is washed out in favour of a supercurrent. On a larger scale again current

resonances appear at about 2A and 4A. These increase in height for increasing voltage and with

increasing temperature.

10
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100

00 0.5 1
¯ - v [mVl

I

5 mK
- -200 mK
- - - 300 mK

O0
~ I I I

0.2 0.4

V [mV]

Fig. 17. I-V characteristic of 3-junction array 3B (Ej/Ec = 0.15) at 10, 100, 200 and 300

mK. At the lowest temperature a Cooper-pair gap is visible. The inset shows the large-scale

characteristic.



70 chapter 3

15

10

5

0

10

5

0

a)

I

- - - 200 mK
-- -100 mK,
--10 mK,

0 0.1
I I I

0.2 0.3 0.4

v [mv]

b)

- - - 800 mK
-- -500 mK

10 mK

I I I I

0 0.1 0.2 0.3 0.4 0.5

V [mV]

Fig. 18. I-V characteristics at low temperature for 5-junction arrays. (a) array 5B

(Ej/Ec=0.3). At the lowest temperature a Cooper-pair gap arises. (b) array 5A (Ej/Ec= I.6).

A true supercurrent develops at low temperature.
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D Five junctions in series

Arrays of five junctions tum out to have much less detailed structure in the I-V curves at small

voltages. Instead they provide a clear superconductor-insulator phase transition as a function of

Ej/E¢. As an example we show in Fig. 18 I-V curves for two arrays of five junctions, with Ej/Ec
equal to 0.3 and 1.6. There is a crossover fl.om a clear supercurrent to a large Cooper-pair gap. In

Fig. 19 we show for one device that the Cooper-pair gap is again about equal to two times the

threshold voltage for onset of conduction in the normal state. The Cooper-pair gap can be slightly

modulated by a gate voltage. The current just outside the Cooper-pair gap is modulated with the

same period and structure as the normal state Coulomb gap.
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0
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Fig. 19. Comparison of normal Coulomb gap (dashed) and superconducting Cooper-pair

gap (solid line) for array 5C (Ej/Ec=O.13). The approximately minimum and maximum

gaps are shown (not for the same Vg in normal and superconducting state). The curves have

been offset in I-direction for clarity. The inset shows the gate voltage modulation of the

current just outside the gaps.
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On a large scale, the arrays all exhibit I-V curves with current resonances at voltages somewhat

larger than multiples of the BCS sumgap. All show a step-like pattem for these resonances, the

height increases for increasing voltage. However, the effect of temperature on these large scale

I-V curves depends on Ej/EC. Whereas for high Ej]EC there is little effect of temperature on the

current resonances, for low Ej/EC the current increases stronger with temperature (Fig. 20). The

effect of increasing temperature on the Cooper-pair gap is quite similar for all devices. First the

gap decreases in width, but remains rather sharp with a clear plateau outside the gap. For higher

temperatures an increasing supercurrent arises.
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Fig. 20. Influence of temperature on the large scale I-V curves for arrays 5B (a) and 5A (b).
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E Magnetic field effects

A magnetic field suppresses both the Josephson coupling and the quasiparticle excitation gap.

Both these effects influence the I-V curves ofjunctions. In Fig. 21 we show the I-V curves of a

double junction (Ej/Ec=0.09) for small magnetic fields. The field is applied in the plane of the

junction and the aluminum strips. Therefore the critical field for suppression of superconductivity

is significantly larger than the roughly 100 Gauss for bulk aluminum. As the field increases the

quasiparticle excitation gap is clearly suppressed from its zero-field value. Both the gap edge at

0.8 mV and the current peak at about 0.5 mV shift to lower voltages. The current peak initially

increases in height and then disappears. On a small scale the Cooper-pair gap is also slightly

suppressed, without changing significantly in height. The supercurrent peaks at a field that is

slightly smaller than the field at which the 0.5 mV resonance is maximum (0.15 versus 0.2 Tesla).

The penetration depth of the field in the aluminum is much larger than the electrode thickness of a

few tens of nm. Therefore the field penetrates the total cross-section of the junction, of the order

of (100 nm)2. One fluxquantum is induced in this area for a field of about 0.2 Tesla.
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Fig. 21. Infiuence of a magnetic field on the I-V characteristics of a double junction 2B. (a)

large scale; (b) expanded current scale, for the same field values.
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IV DISCUSSION OF THE RESULTS

In this section we will discuss the results of the previous section in two main lines of

argumentation. First, various features of the observed I-V curves can be explained by considering

the frequency dependent damping of a junction in its environment. This is applicable to single

junctions, where the damping is due to the on-chip circuit. It is also important for arrays, where

the impedance of the neighbours of ten determines the damping of a junction. The argumentation

will be mostly classical, i.e. based on a description of a phase-partícle. Second, we have observed

clear charging effects in the I-V curves of junction arrays. We will explain these from two

complementary viewpoints. Under certain circumstances, despite charging effects, a Cooper-pair

can be transferred coherently through an array. This leads to a picture of the array as a single

equivalent junction. Mostly, however, charging effects strongly influence the rate of Cooper-pair

mnneling in a way that can be described rather analogous to the picture of single electron mnneling

as presented in the previous chapter.

A Environmental resonances

Interaction with the environment is present in the I-V curves of most systems that we have

measured. This may look somewhat surprising, since for multi-juncUon arrays the individual

junctions are for the purpose of charging effects well-decoupled from the environment. However,

as we will discuss below, multi-juncUon arrays in the superconducUng state can in some

circumstances be regarded as an equivalent single juncfion with weak Josephson coupling. For a

(tme or equivalent) single junction, we can understand the influence of the environment on the I-V

curve better.

The I-V curve of a single junction is strongly dependent on damping (e.g. Stewart 1968,

McCumber 1968, Likharev 1986). For perfect voltage bias the dc current at non-zero voltage is

zero. Alternating supercurrent with the Josephson frequency 2eV/h, and amplitude of order 2eEjBI

is flowing. For non-ideal voltage bias, e.g. when there is a non-zero impedance in the

environment, the alternating supercurrent becomes anharmonic and the average yields dc

supercurrent. If the bias impedance is frequency dependent, the dc current of the I-V curve will

mainly follow the damping at the Josephson frequency, and thus trace the spectrum of

environmental modes. This has been observed for junctions in a specially designed resonafing

circuit (Kuzmin, Olsson and Claeson 1985, Kistenev et al. 1985). Because of the small
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capacitance and very low intemal damping, our systems are very sensitive to loading by the

environment, even without being meant to.

From the measurements, clearly an important resonance frequency is the Josephson frequency

at approximately 20 I.tV, i.e. about 10 GHz. For our roughly 3 mm long on-chip leads, which can

be regarded as striplines with a propagation velocity of the electromagnetic field of about 108 m/s,

this is close to the frequency of )~/4 standing waves. However, avoiding the on-chip stripline

configuration, by changing from narrow leads to very wide, high capacitance pads, does not

prevent the occurrence of the resonances. This could lead one to consider soliton oscillations in

the leads as possible source of the resonances. The leads are, as the junctions, made of two

overlapping aluminum layers with barrier in between. Indeed, the zero-field step voltage (e.g.

Pedersen 1983) of these long Josephson junctions turns out to be about 20 I.tV, and to be

inversely proportional to the length of the leads. However, since replacement of part of the leads

by normal metal did not affect the resonances very strongly (cf. Fig. 14), it seems that they are

indeed due to standing waves. The voltage bias will be improved by further increasing the mutual

capacitance between the leads. For this, an on-chip configuration with interdigitated leads has

been designed. No reliable results are yet available for this circuit.

Of course an imperfect voltage bias is equivalent to a current bias with a large shunt. Therefore,

a single junction in a low impedance environment can be described by the particle in a washboard

potential (essentially a current biased picture), subject to strong friction (Martinis and Kautz 1990,

Devoret 1989). At very low voltages, the high frequency harmonics of the Josephson frequency

become increasingly dorninating with a peak around the plasma frequency top. In typical circuits,

the impedance at these high frequencies is very low, lower than the free space impedance of 377

£~. Therefore, many escapes from the zero voltage state result in retrapping in a nearby potential

welk Switching to the voltage carrying state can only occur for bias currents high enough to

accelerate the particle through this first stage impeded by the retrapping due to high frequency

damping. Consequently there is a rather sharp threshold current for escape (the retrapping

current), and the switching distributions yield a narrow histogram. For decreasing temperatures,

the escape events shift to higher bias currents, where there is a stronger accelemtion to the voltage

carrying state. Therefore as the switching distribution shifts to higher currents, it also becomes

wider, i.e. closer to the actual thermal or quantum width.
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B Coherent tunneling for small voltages

A tunneling matrix element of magnitude Ej/2 couples charge states differing by one Cooper-

pair. For a single large capacitance junction this means that at zero voltage bias the degenerate

charge states with a Cooper-pair left and right are mixed, yielding new energy eigenvalues which

are Ej apart. For an isolated single junction the same occurs at the Brillouin zone edge, V=e/C. If

the junction could be prepared in a definite charge state, with Cooper-pair left or right, this would

result in a coherent charge oscillation with frequency Ej/fi, giving the possibility to carry a

maximum dc supercurrent Ic = 2eEj/[1.

In a double junction, there are three possible charge states that are coupled by Cooper-pair

tunneling, those with a Cooper-pair left, centered, or right. For small junctions, the Coulomb

energy of the central position, Ei, may be large compared to Ej. This decreases the coupling of the

left and right states, compared to a single junction (for zero bias voltage, e.g., by a factor Ej/2Ei).

Thus the maximum supercurrent is decreased by a factor of order (Ej]Ec). Only if the charging

energy Ei of the central state vanishes by the presence of an island charge e, all three states are

degenerate and the coupling becomes of order Ej. Averin and Likharev (1990) found that the

maximum supercurrent that can be obtained by varying the gate voltage is about half the

supercurrent of the individual junctions. For an array of n small-capacitance junctions, the

coupling for coherent transfer through the array will likewise be decreased by a factor ~J/Ec)n-1.

Again the coupling will be influenced by gate charge.

For low voltages the process of coherent Cooper-pair transfer through arrays can explain

various experimental observations. In double junctions there will be the possibility of a

supercurrent for not too low values of Ej]EC. This shows that the double juncUon behaves as a

single weakly coupled classical junction. Likharev and Zorin (1987) have shown that the sum of

the phase differences across the two junctions, ~pr., is a classical variable that follows the ac

Josephson relation ti~0x=2eV. Therefore, at finite voltages we observe the same resonances with

environmental modes as for the single junctions.

The Josephson coupling of the equivalent single junction is determined by the island charge,

and can thus be controlled by the gate voltage. Experimentally, the supercurrent and resonances

peak regularly at all integer island charges. Theoretically, only for odd island charges, +e, +3e,

etc., the charging energy change during Cooper-pair tunneling vanishes, yielding a peak in

supercurrent. However, all island charges larger than e/2 are not energetically stable against

quasiparticle tunneling, since by a single electron tunneling event a lower energy state can be
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reached. Therefore, taking into account the likely presence of at least a few quasiparticles on the

superconducting electrodes, on experimental time scale all integer island charges relax to zero

island charge. From this charge state, a thermally assisted quasiparticle tunneling can for a limited

duration create an island charge e, and thus catalyze conduction by Cooper-pair tunneling. This

explains the observed e-periodicity instead of 2e-periodicity of the supercurrent modulation. It

also explains the strong suppression of the maximum supercurrent compared to the prediction of

Averin and Likharev (1990) (about 20 pA instead of Ic/2=2700 pA) because this supercurrent is

predicted for absence of quasiparticle tunneling, i.e. relies on the possibility of a stable island

charge e. We note that from the standard equations for single electron tunneling, the rate of

creation of the island charge e is about exp(-AE/kBT)AE/e2R, and the rate of decay of this charge

is about AE/e2R, where R is the quasiparticle tunneling resistance, and AE is the energy difference

between the island charge e and island charge 0 situation. The ratio of the two, exp(-AE/kBT),

gives the time fraction that is available for catalyzed Cooper-pair mnneling. For the 62 k.Q junction

of Fig. 15a, Ic=5.5 nA and AE=Ec/2--0.5 K so that at 100 mK we would expect a maximum

supercurrent of 18 pA, which is close to the measured current, maximized with gate voltage, at the

lowest temperature. This high temperature may indicate residual noise in the experiments.

However, macroscopic quantum tunneling of the charge is known to produce charged island

states, analogous to thermal fluctuations. This might increase the occupation of the state that

catalyzes Cooper-pair tunneling. For increasing temperature, the supercurrent indeed increases

strongly. However, this is equally true for island charges that are non-integer, where the above

discussion does not apply. The increase of Cooper-pair tunneling with increasing temperature,

even for off-resonance condition, will be discussed in the next section.

For the five-junction devices with small Ej]F~, the possibility of coherent Cooper-pair transfer

at zero bias voltage is dependent on the application of equal gate charges of +2e/5 on all four

islands between the junctions. This is generally impossible to achieve without individual gate

electrodes, because of the presence of non-integer offset charges on the islands. Therefore, for

arrays with small Ej/E¢ supercurrent is suppressed by a factor of order (Ej/Ec)4. Only for

Ej=>Ec, there will be significant coherent transfer through the army despite charging effects.

As regards the effect of increasing temperature, this seems to enhance Cooper-pair tunneling

through the array. First the Cooper-pair gap decreases in width. For higher temperatures, even in

the devices with low Ej/EC a supercurrent-like feature arises (cf. Fig. 18). This thermally assisted

Cooper-pair tunneling is however not necessarily a coherent transfer through all junctions.
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C Alternating Cooper-pair and quasipartide tunneling for high voltages

In the above discussion charge transfer was due to coherent Cooper-pair transfer through all

junctions of a multi-junction device, which in that respect could be regarded as an equivalent

single juncfion. It required significant mixing of the various positions of a Cooper-pair in the

array. However, for not too high Ej, and with the exception of some special gate charges, at most

one juncUon is at resonance for Cooper-pair mnneling at any one bias voltage. On the other

junctions charge fluctuafions are suppressed and these can be regarded as classical capacitors.

Although it is thus generally impossible to realize Cooper-pair tunneling through all junctions,

there may still be tunneling current due to a combination of Cooper-pair tunneling with

quasiparticle tunneling, across the individual junctions in an array. Thìs was pointed out by Fulton

et al. (1989) anti Averin and Aleshkin (1989, 1990).

The quasiparticle tunneling is subject to the usual single electron tunneling rate equation

(chapter 2), corrected for the nonlinear junction resistance. If -AE is smaller than the BCS

sumgap, the rate is proportional to the subgap conductance Rqp-1, at zero temperature

FSET=-AE/e2Rqp (AE<0). On the other hand, if -AE is larger than the BCS sumgap 2ABCS,

quasiparticles can be excited and the rate is proportional to the normal state conductance, at zero

temperature FSET=(-AE+2ABcS)/e2Rn.

For the Cooper-pair tunneling rate FCPT, Averin and Aleshldn give in the limit EC smaller than

the BCS gap:

FCPT = v Ej2 / 2(AE2 + h2v2) (8a)

wh~e

v = Z [FsE-F+- + I~SET~-1 (8b)

This equation shows that the Cooper-pair tunneling rate is a function of the single electron

tunneling rates for the charge distributions before (FSET) and after (I~SET) tunneling of the

Cooper-pair, summed over both junctions and in both directions. It shows that if charging energy

of the intermediate state is important, the tunneling rate will decrease as (Ej/Ec)2. The tunneling

rate is appreciable only at resonance of the energies before and after tunneling, i.e. AE--0. For

increasing temperature, due to the dependence of the single electron tunneling rates on
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temperature, Cooper-pair tunneling can also increase.

The description is complicated by the possibility of catalyzed Cooper-pair transfer, like the

supercurrent in the double junction was enhanced by the metastable presence of a charge on the

central electrode. This was f’trst pointed out by Fulton et al. for a double junction as the reason for

the current peak at the BCS sumgap. In their interpretation, conduction starts by tunneling of a

quasiparticle to the central metal island, which is followed by Cooper-pair tunneling across one

junction. If the the bias voltage V>2ABcS/e+e/4C, then this will be followed by two quasiparticle

tunneling events across the other junction with energy change so large, that the rate is determined

by the normal state resistance. Thus a significant current can develop. (Il the voltage is lower, the

subgap resistance strongly reduces the quasiparticle tunneling rate.) Although the excess electron

on the central island is in an unstable situation, the tunneling rate out of the island will be

govemed by the subgap resistance, and hence be very low, under the condition that

V<2ABcS/e+3e/4C. As a result a current peak of width about e/2C arises somewhat beyond the

sumgap. How well the resonance condition for Cooper-pair tunneling is fulfilled for the charged

island depends on the non-integer part of the island charge. Therefore the current peak is

modulated by the gate voltage (Fig. 22). For longer arrays, as similar process occurs, which gives

resonances at V=n2ABcS/e+re/C, where r increases with nand is of order 1.

2 ~ I ~ I          ~ I ~

1.5

0.5

O0 0.4 0.8

V [mV]

Fig. 22. The resonance arising from Cooper pair tunneling combined with excitation and

tunneling of quasiparticles, for two different gate voltages. The sample is 2B (Ej/Ec=O.09)

at 400 mK.
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For bias between 2ABCS/e+e/4C and 2ABcS/e-e/4C, this catalyzing action of a permanent

average charge on the central electrode is less efficient (only one of the quasiparticles will tunnel at

a high rate), for still lower voltages it is completely absent. There only a combination of Cooper-

pair tunneling with slow (F ~: Rqp-1) quasiparticle tunneling is possible. The lowest voltage where

the resonance condition for Cooper-pair tunneling is fulfilled, is the doubled normal state

Coulomb gap (Cooper-pair gap). At this voltage conduction changes from being limited by only

quasiparticle tunneling events, to a process of Cooper-pair tunneling across one junction, and

quasiparticle tunneling across the other. Since typically Ej/h is much larger than (RqpC)-1, this

increases the conduction by at least a factor two. (Although a current resonance rather than a

plateau is expected when Cooper-pair tunneling comes in, a finite Ej and inequality of the junction

capacitances will smear out the resonance.) In Fig. 12a we possibly observe both the Cooper-pair

gap and the increase at V=2ABCS/e-e/4C. For Figs. 12b and c the interpretation as to what gap is

observed is not so clear. Taking into account the slight suppression of the gap with magnetic field

(Fig. 21), one rnight choose for the catalyzed Cooper-pair transfer starting at V=2ABCS/e-e/4C.

D Frequency-dependent damping in the phase regime

In the classical-phase picture each current peak at a multiple of the BCS sumgap corresponds to

a given number of junctions in the normal state, and the others in the superconducting state. By

taking into account a frequency-dependent damping of the junctions, the I-V curves can also be

qualitatively explained in this classical picture.

In an array, the damping of a single junction is certainly frequency-dependent. The impedance

of a superconducting neighbour is given by the parallel circuit of subgap resistance, capacitìve

impedance and the impedance of the superconducting inductance L=fi/2elccos~p. The ac impedance

of a neighbour that has switched to V=2ABCS]e is very low, since ~SV=0 for small signals.

Therefore the shunt impedance at the plasma frequency, important for the retrapping events, is

roughly proportional to the number of superconducting neighbours. This explains the steplike

increase in current of the resonances in the I-V curves. Since the retrapping current increases with

decreasing shunt, it predicts that the current peak height should scale as l/Ns, Ns being the

number of superconducting neighbours. However, this prediction relies on equal ac impedance of

all junctions, which is rather unlikely since the impedance will be very sensitive to small

differences in plasma frequency between the junctions. As a function of temperature the damping

does not change significantly, since the impedance should mainly be determined by the
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temperature-independent capacitance and inductance. Thus it seems that this picture is valid for the

high Ej/Ec array of Fig. 20b, where there is indeed little temperature effect on the current

resonances. For voltages between the resonances, the damping at lower frequencies is more

important, and here we probably see the decrease of subgap resistance with increasing

tempemmre.

V SINGLE JUNCTIONS IN A HIGH IMPEDANCE ENVIRONMENT

In this section we wil1 discuss results for single small capacitance junctions which are not

trivially voltage biased. It was shown theoretically (Bakhvalov et al. 1989) and experimentally

(chapter 2, Delsing et al. 1989) that arrays of normal metal tunnel junctions can be used to create a

current bias. A single junction with, incorporated in the bias leads, four 2-D arrays of similar

junctions (Fig. 23), can in this way be current-biased in the normal state (see chapter 2).

However, below a certain temperature, I-V curves can not be recorded because of the high

impedance of the arrays in the leads. This high impedance results from charging effects, yielding

in the arrays a Coulomb gap in the normal state and a Cooper-pair gap (or Bloch nose) in the

superconducting state. Above the critical temperature range where the arrays are isolating, in the

Fig. 23. Schematic of the configuration used to perform measurements on a single, isolated

junction. The junction is decoupled from the environment (the large stray capacitance Cp) by

arrays of LxW=9Ox9 junctions in the leads, close to the junction.
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Fig. 24. I-V characteristics of single junctions, in the configuration of Fig. 23. Both have a

capacitance of about 2.8 fF. (a) junction 1D (Rn=14 kl2); (b) junction lE (Rn=132 k£2).

Curves are shown for temperatures of O.8, 0.6, 0.4 and 0.01 K.
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Fig. 25. Small-signal resistance versus temperature for junction lE.
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normal state a Coulomb gap is visible, but in the superconducting state an ordinary supercurrent is

present. With an’ays of junctions in which the charging energy is decreased, in the normal state

for the single junction a Coulomb gap can be recorded down to lower temperatures. In the

superconducting state however, neither the arrays nor the single junction develop clear charging

effects. Note that if the arrays do not show charging effects, it is doubtful that the current can be

described as being due to orderly moving, mutually repelling, charge solitons.

However, the junction is certainly to some extent decoupled from large shunt capacitances, so

this technique may be useful to study junction dynamics with controlled damping. In particular,

the arrays yield a significant inductance (of order 0.1 ~tH) in series with the junction (e.g.

McCumber 1968). Fig. 24 shows the I-V curves for two single junctions in this measurement

configuration. In the normal state, both showed a Coulomb gap, with offset corresponding to a

capacitance of about 2.8 fF. In the superconducting state both junctions show a classical hysteretic

I-V curve. Note that these junctions both show a small voltage in the supercurrent, which is a sign

of phase diffusion. From the observation that the voltage decreases with decreasing temperature, it

can be concluded that this is predominantly thermally induced phase diffusion. However, even

with careful cryogenic filtering, the resistance versus temperature of the lowest Ej junction (Fig.

25) shows at low temperatures flattening-off and even a small quasi-reentrant behavior. Although

one should be careful with interpretation of these kind of observations, this might point at phase

diffusion induced by quantum fluctuaUons. The quasi-reentrant behavior can be caused by

decreasing damping at low temperatures, if the subgap resistance has a contribution to the

damping. Since damping decreases the phase delocalization (Caldeira and Leggett 1981), a

decreasing damping at low temperatures yields increasing phase diffusion. An alternative

explanation is the direct effect of temperature on quantum phase diffusion. Occupation of higher

energy levels at elevated temperatures tends to localize a quantum junction in phase space (e.g.

Zwerger 1988).

VI FREQUENCY-CONTROLLED COOPER-PAIR TUNNELING

The work discussed in this section was instigated by and performed in cooperation with the

Groupe Quantronique in Gif-Sur-Yvette. As was shown by the results on low Ej/EC double

junctions, the charge on these junctions is the classical variable. Moreover, these results showed

that the tunneling of Cooper-pairs is indeed a resonant process, dependent on matching of energy

levels of the charge states of the system. This suggests the possibility of control of Cooper-pair
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transfer across the junctions by the use of bias voltage and gate voltage.

A Theory

In a double junction in the normal state, an electron cannot be trapped on the central island, if it

can tunnel out with energy gain. In contrast, in a superconducting double j unction, such an

excited charged state is metastable if the energy levels are off-resonance. This yields extra

possibilities for the control of Cooper-pair tunneling. In this section several procedures are

described to realize synchronized Cooper-pair tunneling with a high frequency voltage, with the

object to obtain a current equal to 2ef or a multiple. Which procedure might work depends on the

precise charge dynamics, especially the occurrence of Zener tunneling. If a junction charge is

swept through the resonance situation, and damping is low, a Cooper-pair will be transferred for

low sweep speed. For high sweep speed Zener tunneling occurs. It is also known (Ao and

Rarnmer 1990) that dampíng affects (increases) Zener tunneling probabilities. At low temperature

the excitation transition probability is not enhanced by damping, whereas the decay transition is.

The result is that at low temperature and for strong damping a Cooper-pair will tunnel at the

Bdllouin zone edge only if the system is in the lowest band (ground state).

We assume that to one junction, the other is just a true capacitor with classical charge as

described by Büttiker. This is allowed for practical purposes if two conditions are met. First,

coherent tunneling through the array should be negligible, i.e. Ej/EC should be so low that for

example a supercurrent is absent. Second, bias conditions for which both junctions are in

resonance at the same time should be avoided (e.g. an island charge e at zero bias voltage). We

also need a quasiparticle tunneling rate which is low enough to avoid fast decay of states in higher

bands. For example, at a synchronization frequency of 10 MHz, Rqp should be much larger than

10 M~, for a decay probability of the excited state during one cycle to be much smaller than 1.

This is probably valid for real junctions at low temperature. Finally, we will neglect interference

of Zener tunneling events, which will at least be true for situations where damping is large and

causes the Zener tunneling.

All operating principles can be illustrated with the same diagram in parameter space. In Fig. 26

we have plotted the resonance conditions for Cooper-pair tunneling, as lines in a (V,Vg)-plot. In a

double junction of two equal capacitance junctions, and a low-capacitance gate, a Cooper-pair can

tunnel at a junction charge equal to +e/2. This leads to very simple resonance conditions,

depending on V, Vg and the number of Cooper-pairs on the central island n, as
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C C

n=-I

CgVg/e

a) b)

CWe

Fig. 26. (a) Double junction controlled by two voltages. (b) V-Vg diagram, showing
resonance Iines where Cooper-pair transfer may occur (solid: in the left junction; dotted: in

the right junction). For both junctions the number of Cooper pairs n on the central island

which gives the lowest charging energy as far as tunneling through that junction is

coneerned is indicated, between the resonance lines. Two modulation trajectories as

discussed in the text are shown.

CV/e - CgVg/e = _+1 + 2n (9a)

for the left junction (solid lines in Fig. 26), and

CV/e + CgVg/e = +1 - 2n (9b)

for the right junction (dotted lines). We have indicated in Fig. 26 the number of Cooper-pairs n

for which a junction is in the ground state (plotted between the resonance lines for that junction).

Of course these values of n change by unity precisely on the resonance lines (9a) and (9b). In the

adiabatic approximation a Cooper-pair transfer will always take place on line crossing. In the

high-damping limit, because the decay transition probability equals 1, on crossing a resonance line

Cooper pair tunneling only takes place if the junction starts from the ground state. Note that only

for regions along the Vg-axis both junctions can be in the ground state for the same value of n.
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CgVg/e

n=O

CV/e

n=O

CV/e

a)

Fig. 27. Synchronized Cooper-pair transfer

in the absence of interband transitions. Each

line crossing yields one Cooper-pair

transfer, so that two Cooper-pairs are

transferred through the system per cycle.

n=-I

n=O

b)                --->0                              c)
Vg -->

Fig. 28. Synchronized Cooper-pair transfer with one ac voltage, by using interband

transitions. (a) High probability of decay transitions. (b) Same as (a), in system energy vs

Vg diagram. (c) Selective Zener tunneling by sawtooth modulation.
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If interband transitions do not occur, encircling an intersection point of resonance lines on the

Vg-axis yields a current +4ef. Such a circle can be realized in an experiment if both gate voltage

and bias voltage are rf modulated, with amplitude approximately e/2Cg and e/2C, and a phase
difference of r~/2. In addition a dc bias voltage on the gate is necessary. In Fig. 27, one possible

centre-point for this rf cycle is illustrated. Starting at the Vg,V--0 in the island state n=0, and going

ccw, the following tunneling events occur (all with a charge +2e tunneling to the right): junction 2

(bringing junction 1 in a higher band); junction 1 (bdnging junction 2 in a higher band) ; junction

2 (relaxing junction 1); junction 1 (relaxing junction 2). Note that 3/4 of the cycle is metastable,

i.e. a Cooper-pair tunneling is energetically favorable, but cannot occur because of off-resonance

condition. As Likharev (1990) noted, this cycle is very sensitive to sporadic interband transitions,

because the current changes sign after each interband transition. Unless care is taken to correct for

this effect, e.g. by dwelling long enough around V,Vg=0 to let relaxation by quasiparticle
tunneling happen, the net current will average to zero.

The second operating possibility is illustrated in Fig. 28. With a vertical oscillation and

selective Zener tunneling, a current 2ef can be created. In Fig. 28a strong damping is assumed.

The cycle starts again in the ground state of both junctions. Going up, first junction 2 tunnels,

bringing junction 1 in an excited state. Increasing the gate voltage, junction 1 is relaxed by an

interband transition. Next, decreasing the gate voltage, now that junction 1 is in the ground state a

Cooper-pair tunnels at the resonance line between n=0 and n=-l. This brings junction 2 in a

higher band, which relaxes again on going back to the initial situation. This principle would not

have the instability against unwanted Zener tunneling that the double rf principle suffers from. By

increasing the gate voltage modulation amplitude, higher multiples of 2ef can be realized. The

approach of considering the junctions separately is just as valid or invalid as constructing the two-

junction energy diagram by plotting the charging energy and introducing band splittings where

Cooper pair tunneling across a single junction can occur. Such a diagram is given in Fig. 28b, to

illustrate again the trajectory of Fig. 28a. Finally, a sawtooth Vg-modulaUon (Fig. 28c) can in

principle also yield synchronized Cooper-pair tunneling by selecting Zener tunneling with sweep

speed, but such an approach will be hard to realize in experiments.

Note that the dc experiments on double junctions are probably very sensitive to the presence of

quasiparticle tunneling conductance, even if it is very small. High frequency experiments may be a

more fruitful way to study the bare Cooper-pair tunneling and a better tool to test theories for

small-capacitance superconducting junctions which disregard this quasiparficle tunneling.

From the work by Ao and Rammer we can make some remarks about the probability of decay
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1 O0 ~tV / division

Fig. 29. I-V characteristics of double junction 2C (Ej/Ec =0.04) at low bias voltage, in the

presence of an alternating gate voltage of frequency 8 MHz. The measurements have been

offset in voltage direction for clarity. The current offset is unknown, symmetry suggests

that the dashed line is I=0. From left to right the rf amplitudes are 05, 1.4, 2, 2.8, 3.6 and

4 V, where e/Cg corresponded to roughly 2 V at DC. The dotted lines are spaced by 2ef.

50 ~V / division

Fig. 30. I-V characteristics of device 2C for gate voltage frequency (from left to right) f=4,

5, 10 and 15 MHz. The amplitudes have been chosen for clearest step structure, and vary

between 2.5 and 4 V. The current is scaled to 2ef.
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transitions in out systems, in which at f’n’st sight one would expect the damping to be small. For

strong damping (e.g. an Ohmic shunt with R<Rq/2~) the decay probability is close to 1. For weak

damping, the decay transiUon probability is proportional to the density of states in the dissipafive

bath (the usual dense set of harmonic oscillators, e.g. Caldeira and Leggett 1981) at a frequency

Ej]lä. At this frequency the typical capacifive juncUon impedance is about 10Rq, and we would

expect the decay transifion probability to De significanfly smaller than 1. However, a quantitafive

evaluafion of the damping and decay probability for our systems has not been performed, and the

experiments presented in the next secfion suggest that the decay Iransifion might be more probable

than expected.

B Preliminary experiments

In Fig. 29 we show I-V curves of a double junction with Ej/Ec=0.04 (Rn=110 k~), with dc

gate voltage adjusted to suppress the zero-voltage current. Without rf voltage on the gate, the

current inside the BCS sumgap is negligible. With rf gate voltage applied, current is transferred

through the device at low voltage. As the Figure shows, for low rf levels only one plateau tends to

develop at equal positive and negative current, relatively independent of rf voltage amplitude. For

increasing amplitude a step structure with two current plateaus develops. The plateaus are near

I=2ef and I=4ef. This behavior occurs for low frequencies, e.g. f=8 MHz in Fig. 29. In Fig. 30

we show the I-V curves for frequencies between 4 and 15 MHz, for rf levels that yield an

optimum step structure. The current is normalized to 2ef. For higher frequencies only a plateau at

I=2ef develops. It is clear that there is correlation between frequency and step height, although

one cannot speak of clear synchronization of Cooper-pair transfer. Since these results were

obtained with only gate voltage modulation, it seems to conf’n’m the presence of decay transitions

during sweeping of the junction charge. Nevertheless, the same device also transmitted current if

two rf voltages were applied, with a clear effect of the phase difference on the sign of the current.

In Fig. 31 we give I-Vg curves obtained under comparable conditions for a double junction

with Ej/F_.C=0.02. For increasing rf amplitude, the current increases and also changes the sign of

the modulation, i.e. maxima turn into minima and vice versa. There is a tendency for this

inversion of the current modulation to occur at a current level I=2ef. This behavior is similar to

that observed for the single electron turnsfile device (chapter 2, inset of Fig. 14), and can be

understood from similar arguments. The best conclusion based on these results is probably that

there is a need for further experirnents.
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12
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4

2

0

Vg [a.u.]

Fig. 31. I-Vg characteristics of double junction 2D (EjIEc=O.02) for gate voltage

modulation at f= lO, 12.5 and 25 MHz (left to right). For each frequency, measurements are

plotted for low and high modulation amplitude (solid curves) and intermediate amplitude

(dotted curve). The I-Vg curves seem to mirror in the I=2ef axis.
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VII CONCLUSIONS

For single Josephson junctions in the usual low-impedance environment, we have observed

semi-classical phase dynamics. This means that the junctions show behavior that fits well in the

theories existing for conventional junctions, with only small modifications to allow for quantum

phase fluctuations. Even if a junction is isolated from the low-impedance environment by arrays

of junctions of small capacitance, the behavior is still apparently semi-classical as long as the

arrays are superconducting. Since at low temperatures the arrays are either superconducting or

insulating, this method seems of little use for research of strong charging effects in small

superconducting junctions.

Charging effects show up strongly in linear arrays of small-capacitance junctions, if Ej<<EC.
In that case, as for normal junctions, charge transfer is dominated by the Coulomb energy barrier

associated with charging of the central electrodes. In the presented experiments, the behavior was

complicated by resonating environmental modes and parasitic quasiparticle tunneling. There is a

need for additional experiments, preferably on double junction systems, in a circuit where the

environmental resonances are effectively shunted out. Individual determination of the junction

parameters in a geometry as used by Fulton et al. will also help the comparison of theory with

experiment.

High-frequency synchronized Cooper pair transfer through these systems is not only

interesting from a practical point of view. It gives interesting possibilities to examine the

dissipative quantum dynamics of this multi-band system, probably avoiding parasitic quasiparticle

effects to a higher extent than is possible in dc experiments.
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ABSTRACT

We have fabricated an array of ultrasmall tunnel juncfions which acts like a turnstile for single

electrons. When altemating voltage of frequency f is applied to a gate, one electron is transferred

per cycle through the device. This results in a current plateau in the current-voltage characterisUc

at I=ef. The overall behavior of the device is well explained by the theory of Coulomb blockade of

electron tunneling. We discuss the accuracy limitations of this device.
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With present-day lithographic techniques it has become possible to fabricate tunnel junctions

with capacitance C small enough to make the charging energy of a single electron, Ec=e2/2C,

much larger than thermal energies at dilution refrigerator temperatures. Typical capacitances are

below 10-15 F for junction areas below (100 nm)2, hence ECJkB>I K. Under this condition the

discreteness of electron tunneling leads to new phenomena, charging effects, as reviewed by

Averin and Likharev.[1] In a pioneering paper Fulton and Dolan [2] confirmed experimentally the

existence of charging effects in small circuits of planar tunnel junctions. In linear arrays of small

tunnel junctions charge is transferred by mutually repulsing charge-solitons,[3] resulting in Ume-

correlated tunneling events with fundamental frequency I/e. Delsing et al. [4] demonstrated this

effect by applicaUon of a signal with frequency f, leading to resonances at current levels I=ef and

I=2ef. The resonances show up in the differential resistance only. In this paper, we present a new

device in which a single electron is transferred per cycle of an externally applied rf signal. In this

voltage biased device a current flows which is equal to the frequency times the electron charge.

The device is based on a turnsUle effect resulting from the Coulomb blockade in linear arrays of

tunnel junctions. It opens the possibility of a high accuracy, frequency-determined current

standard. In many respects resembling a single electron shift register, the device exemplifies the

prospects of using charging effects for pracfical logic circuits.[5]

The Coulomb blockade of single electron tunneling manifests itself in voltage biased linear

arrays as a voltage gap in their current-voltage (I-V) characteristic. This Coulomb gap arises

because for an electron to transfer through the array it has to occupy intermediate positions on the

metal "islands" between the junctions. For bias voltages well below e/C (C being the junction

capacitance) the energy of these intermediate states is higher than the energy of the initial state.

Conduction is thus energetically suppressed. Consider the energy of a device constructed, like in

our experiment, of both tunnel junctions and true capacitors, biased from several voltage sources.

The energy associated with a given electron position is the sum of the capacitive energy for the

resulting charge distribution and the work performed by the bias voltage sources.[3] If, under the

influence of particular bias conditions, the absolute value of the charge on a junction of the array

exceeds a critical charge, an electron can tunnel across this junction. The difference zXEk between

the f’mal and initial energy for the tunnel event across junction k of the array can be expressed as:

AEk=-e(IQkI-Qck)/Ck (i)

where Qk and Ck are the charge and capacitance of junction k, respectively. The critical charge
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Fig. 1. Principle of controlled sing le electron transfer through a linear array of small tunnel

junctions. Junctions, with capacitance C, are denoted by crossed capacitor symbols, the gate

voltage Vg is applied via a true (non-tunneling) capacitance Cg. If Cg=C/2, tunneling across

any junction can only occur if for that junction /Q/>Qc, with Qc=e/3. The voltages and

charges are indicated in units of e/C and e. 1-6 indicate consecutive times in the cycle. Left:
First half of the cycle, Vg=2. An elementary charge (- in a circle) ends up trapped on the

central electrode. Right: Second half of the cycle, Vg=O. The charge can only leave on the

right hand side. No further tunneling can occur in the emptied array .

Qck=e/[2(l+Cek/Ck)] depends apart from the junction capacitance only on the equivalent

capacitance Cek of the circuit in parallel with junction k. With this concept of a critical charge Qc

the principle of the present experiment can be understood. It is illustrated in Fig. 1. A linear array

of 4 junctions of capacitance C is biased by a drive voltage V, which is applied symmetrie to

ground. The central island, between junctions 2 and 3, is capacitively coupled to a gate voltage

Vg.[2,5] If the gate capacitor Cg is chosen to equal C/2, all junctions have the same critical charge

for tunneling, Qc=e/3. For V and Vg within a certain window, the critical charge will be exceeded

for the junctions in the left arm, but not for the junctions in the right arm. Once an elementary

charge has entered the central island, part of it will polarize the gate capacitor, and the charge on

all junctions will be lower than the critical charge. Therefore the elementary charge is trapped on
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the central island until bias conditions are changed. It is also impossible for another charge to

move to the central island. To make the charge leave by the right arm, the gate voltage is

decreased. The junctions on the right arm will first exceed the critical charge because of the

asymmetry caused by the bias voltage. Cyclically changing the bias conditions by applying an

alternating voltage in addition to a dc voltage to the gate capacitor moves one electron per cycle

through the chain. We emphasize that after an arbitrary long time, the total charge transferred will

be known to within a single electron. The principle will work for a general T-shaped structure of

2n junctions with a gate capacitance of about C/n. However, at least two junctions on each side

are needed to avoid the unwanted entering or leaving of a charge.

We will discuss why the stochastic nature of electron tunneling need not perturb the

deterrninistic transfer of electrons through the device. At finite temperature T the tunneling rate is

for arbitrary AE given by [1]

AE/2Ec
F-RC[exp(AE/kBT)- 1] (~)

where R is the tunneling resistance of the junction. This shows the two main prerequisites for

deterministic electron transfer. The ac cycle should last long enough to let tunneling to and from

the centml island happen with high probability, i.e. f must be much smaller than (RC)-1 to avoid

cycles being lost. On the other hand an electron trapped on the central electrode should have a

negligible probability to escape by a thermally assisted transfer. At finite temperature there is a

tradeoff between the two requirements: a thermally assisted escape will be more probable for

lower frequencies. We will discuss the consequences of these limitations more quantitatively

below. Finally, we note that eq. (2) is stricfly valid only for negligible tunnel conductance.

Quantum charge fluctuations associated with a tunnel resistance not much larger than h/e2 [6,7]

generally suppress the charging effects. We have not investigated the consequences of this aspect

for the present experiment.

The physical layout of the device is very close to the circuit shown in Fig. 1, with 4 junctions of

about 0.5 fF and 340 kOhm ((RC)-I~5 GHz) and a gate capacitance Cg of 0.3 fF. The values of R

and C were determined from the large scale I-V curve,[6] and Cg was determined from the period

of the current modulation by the gate voltage. This period AVg yields the gate capacitance as

Cg=e/AVg. An important refinement over the circuit of Fig. 1 is the use of two small auxiliary gate

capacitances (0.06 fF) to tune out non-integer trapped charges [5] on the remaining two islands.

This device was fabricated with nanolithographic methods as described elsewhere,[6] with planar
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aluminum-aluminum oxide-aluminum junctions. It was thermally anchored to the mixing chamber

of a diluUon refrigerator, and a magnetic field of 2 Tesla was applied to bring the junctions in the

normal (i.e., non-superconducting) state. All leads were low pass filtered by a stage which was

also thermally anchored to the mixing chamber. In addition, the gate voltages were strongly

attenuated. The gate voltages were applied by room temperature dc voltage sources referenced to

cryostat ground. In addition, an ac voltage could be applied to the central gate capacitor. The

voltage bias was symmetric with respect to cryostat ground. The measurement was performed

with a two-wire method: a FET-opamp circuit with virtually shorted input terminals, in series with

voltage source and sample, was used to measure the current.

Fig. 2 shows I-V curves of the device, without ac gate voltage applied (dotted curve) and with

ac gate voltage of different frequencies between 4 and 20 MHz. Without ac gate voltage, a large

zero-current Coulomb gap is present. With ac gate voltage of frequency f, wide current plateaus

develop inside the Coulomb gap at a current level I=ef. The plateaus even extend to voltages

outside the gap. In Fig. 2 the dc gate voltages were the same for each curve, the ac amplitude was

adjusted for the widest plateau, which required more power at higher frequencies. Thermometer

temperature varied from 10 to 40 mK, depending on applied ac power. Good plateaus were

observed up to 40 Mhz, but only for frequencies below about 10 MHz were part of the plateaus

flat within experimental current noise (about 0.05 pA, DC to 1 Hz). Fig. 3 shows the dependence

of the I-V curve on ac amplitude at a frequency of 5 MHz. Clearly, the height of the plateaus is not

dependent on the ac amplitude, although the width is. For high amplitudes, we have observed a

tendency to form plateaus at I=2ef. Another sample with n=3 juncUons in each arm showed the

same behavior, although with somewhat rounded plateaus. We attribute this rounding to the larger

capacitances (about 2 fF) of the juncfions in this device.

A gate voltage adjustment was necessary to obtain wide plateaus. A suitable procedure was to

maximize the Coulomb gap without ac voltage, using the auxiliary gate voltages. Next the current

versus de gate voltage would be recorded at fixed bias voltage, with ac gate voltage applied. This

shows an oscillafing behavior with minima and maxima at I=ef, I=2ef or even higher multiples,

depending on the ac amplitude. An example is shown in the inset of Fig. 2. The I-V curves of

Fig. 2 were obtained with dc gate voltage in the middle of a I-Vg plateau at I=ef, corresponding to

half the elementary charge induced on the gate capacitor. When misadjusUng both auxiliary gates

on purpose, we could still obtain plateaus in the I-V curve, but not as wide as in Fig. 2.

The dependence of the I-V curves on ac amplitude, as shown in Fig. 3, are very well simulated

by numerical calculations based on eq. (1) and (2). Results are shown in the same figure as
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Fig. 2. Current-voltage characteristics without ac gate voltage (dotted) and with applied ac

gate voltage at frequencies f from 4 to 20 Mhz in 4 Mhz steps (a-e). Current plateaus are

seen at I=ef. The inset shows current versus dc gate voltage characteristics for f=5 MHz.

The curves tend tobe confined between levels at I=nef and I=(n+ l )ef, with n integer. The

bias voltage was f’txed at 0.15 mV. For the bottom curve, which is nearly flat, the ac gate

voltage amplitude is O. For the other curves the calculated ac amplitude at the sample

increases from O.óOe/C for the lowest one to 3.4e/C for the upper one, where e/C=0.30

mV.

dashed curves on the right of the measurements. No fitting parameters were used. The only

adjustments made were assuming 1 dB attenuation in the ac voltage line to be present in addition

to the known attenuators, and introducing a higher temperature (50-75 mK) than the thermometer

indicated during the experiments (10-20 mK) to roughly account for remaining noise or hearing of

the sample.

In Table 1 we compare the current step height Is, obtained by taking half the measured current

distance between the positive and the negative plateaus, with the prediction Is=ef. Up to 10 MHz,
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Fig. 3. Current-voltage characteristics at f=5 Mhz for different levels of applied ac gate

voltage. The dotted horizontal lines are at intervals ef=0.80 pA.The I-V curves have all been

offset in x-direction by 15 #V to compensate for opamp voltage offset in the current

measuring circuit, and individually in y-direction to display them more clearly. From top to

bottom the calculated ac voltage amplitudes at the sample are O, 0.60, 0.95, 1.50, and 1.89,

expressed in units of e/C=0.30 mV. On the right, the corresponding simulated I-V curves

are shown as dashed lines. For these calculations, I dB extra ac attenuation was assumed,

and temperatures of 50 mK (upper 3 curves) and 75 mK (lower 2) were used.

regions could be found (around 0.15 mV) where the plateau was flat within the current noise. In

those cases about 50 points were taken in the central parts of these regions to determine the

average current with its standard deviation ¢rm. Above 10 MHz, the current level at the inflexion

point was taken in a similar way. The measured current step coincides with ef within experimental

accuracy, which is around 0.3 %. We attribute the deviation of more than 3~m at 20 and 30 MHz

to the difficulty of determining the inflexion point. To discuss the expected intrinsic accuracy of

the current step height, we return to the example shown in Fig. 1. For an electron transfer in the

circuit shown in Fig. 1 the first tunnel event of each half of the cycle (AE=-0.1e2/C) can occur in

two junctions with a rate F=(10RC)-1. For a square wave modulation this yields a probability to

miss a cycle of about exp(-F/f)=exp(-1/10fRC). For the device used in the experiments, (RC)-I-~5

GHz, so at 5 MHz this probability is exp(-100)--10-44, while at 50 MHz it is already about I0-5.
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f Is ef-Is

(MHz) (lA) (lA) (fA)

4.012 635 2 8

6.011 967 2 -4

8.031 1287 2 0

10.040 1610 2 -1

12.029 1930 2 -3

14.028 2243 2 5

16.026 2560 3 7

18.063 2890 3 4

20.011 3196 3 10

30.036 4856 3

Table 1. Comparison of the measured current plateau Is with the relation Is=ef. ~m is the

standard deviation of Is.

Obviously, the required accuracy puts an upper limit to the allowed frequency. Next, to estimate
the effect of thermal fluctuations, we compare the rate for unwanted mnneling events, ~’, with the

one for favorable events, F. From eq. (2) we find that the ratio is of order exp(-AE/kBT). For an

accuracy of e.g. 10-8, it is necessary to have ~/f--10-8, which combined with the requirement

F/f=103 yields exp(-AE/kBT)=10-11, or kBT--AE/25. Since typically AE is on the order of

0. le2/C, for the present device this corresponds to temperatures of about 15 mK. Comparable

problems with unwanted transitions could arise from insufficient screening from noise and

interference in the experiments. The simulations in Fig. 3 suggest that in the present experiment

these disturbances seem to be described well by a temperature of not more than 50 mK, which is

already close to the temperature requirement derived above. More careful screening is possible.

These limitations are relaxed by the use of smaller junctions. For junctions of 0.1 fF with the

same resistance~ the requirement that f<10-3/RC corresponds to f<30 MHz and kl3T<0, le2/C to

T<75 mK.

In conclusion, we have fabricated a device producing a current clocked by an extemally applied
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high frequency voltage. Charge transfer is controlled at the level of single electrons. The

theoretical limitations on the accuracy are very promising. The good agreement between the I-V

curves and the theory shows that the dc and ac behavior of small capacitance normal metal tunnel

junctions is well understood, and that device behavior can be reliably predicted.
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DEVIATION OF CURRENT QUANTIZATION DUE TO
QUANTUM LEAKAGE

In the preceding paper we mentioned that quantum fluctuations of the charge, associated with a

tunnel resistance not very large compared to h/e2, affect the applicability of orthodox theory for

calculating the accuracy of the turnstile. In fact, quantum fluctuatíons decrease the accuracy of the

quantization (to I=e0 of the current. In a comment to the preceding paper, Averin and Odintsov

pointed this out and calculated a correction due to these fluctuations for a specific process:

Inelastic macroscopic quantum tunneling of the electric charge (q-MQT, dealt with in the next

chapter). This process opens the possibility for an electron which is trapped in a metastable

position, to escape through virtual intermediate states of higher energy. For example, for the

turnstile device this applies to the electron charge that is trapped on the central island during one

half of the cycle.

If EI or E2 is the increase in free energy after the fh’st tunneling event in such an escape (in a 4-

junction turnstile there are 2 junctions where this event can occur), and U the decrease after the

second tunneling event, the rate of q-MQT is given by

hU    [(l~ 2E1E2       U    U
FMQT = (2~t)2e4RtlRa U(EI+E2+U) ) ln(14~l )(1+~11 ) -2] (3)

Averin and Odintsov point out that for low bias voltage there is a leakage current in a direction

opposite to the current flow of the turnstile. For higher voltage the current increases to a value

higher than I=ef. At the cross-over region between negative and positive leakage current, at zero

temperature the relation I=ef would apply, but at finite temperature a positive leakage current due

to thermally assisted macroscopic quantum tunneling arises.

We have performed calculations of the I-V curve (based on the algorithm that generates the

simulations of the previous paper), including the possibility of macroscopic quantum tunneling

through the left arm or right arm of the turnstile. These are based on the zero temperature rate eq.

(3). There are at least two problems with the application of this equation. It diverges

logarithmically at the Coulomb gap threshold voltage (where El-->0 or E2-->0). Based on the

measurements in the next chapter, we have limited this divergence to a maximum value of the

logarithmic factor of 2. The q-MQT rate is in this way underestimated, which is not harrnful

because the divergence only occurs at bias conditions where q-MQT is actually a favorable

process for the tumstile principle.
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Fig. 4. Calculated l-V curves of afour-juncfion turnstile of the experimental parameters, at

60 mK without q-MQT (dashed curve) and at 50 mK with q-MQT (solid curve), at 5 MHz.

The inset compares the q-MQT leakage at 5 (solid), 10 (dashed) and 20 MHz (dotted).

The second problem is that, although the zero-tempemture fluctuations produce some rounding

of the I-V curves, this rounding is much less than is expedmentally observed (corresponding to

about 60 mK, see the preceding paper). This indicates that thermal fluctuations, noise, or other yet

unknown effects are important in the experiment. Since there are not yet simple equations for

thermally assisted q-MQT available, as an approximation the calculations that we present are

performed by summing the orthodox thermal rates at 50 mK and the q-MQT rates of eq. (3).

These calculations show a small tilting and rounding of the plateaus, with a deviation from I=ef of

about 10-3 (Fig. 4). In Fig. 5 we compare a 6 MHz measurement with calculations. The

experimental current noise is larger than the effect of q-MQT. However, the I-Vg curves of Fig. 6

show that the calculations reproduce an experimentally observed feature of quantum leakage, i.e. a

significant leakage current in the absence of rf gate-modulation, which largely disappears when

the gate is modulated. This means that the leakage in this device is worse for lower frequencies.

These preliminary calculations need to be elaborated before reliable statements with regard to

the accuracy of tumstile devices can be made.
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Fig. 5. Comparison of the experimental I-V curve at ó MHz with a calculation (described in

the text) including q-MQT.
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Fig. 6. Comparison of the experimental 1-Vg curves without rf modulation and at (appr.) 5

MHz for different amplitudes (left) with calculations including q-MQT (right).
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Lorentzweg 1, 2628 CJ Delft, The Netherlands

ABSTRACT

The conductance of linear arrays of 2 and 3 normal-metal small tunnel junctions is studied, for

bias voltages V below the Coulomb blockade threshold. At low temperature, we find evidence for

macroscopic quantum tunneling of the electric charge (q-MQT) through the Coulomb energy

barrier. For double junctions the tunneling rate scales as V3, and approximately as the product of

the junction conductances, as predicted by the theory of inelastic q-MQT.
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Quantum behavior of the macroscopic degrees of freedom of small tunnel junctions has

recently attracted much attention.[1] Experimental investigations have been largely devoted to

macroscopic quantum tunneling (MQT) of the Josephson phase difference q0,[2,3] that can take

place in superconducting tunnel junctions with large quasiparticle conductance Rt-I>>RQ-1

(RQ=h/4e2-~6.5 k~~). In such junctions q0 behaves as an almost classical variable. In particular, for

small bias current the phase can be trapped in a minimum of Josephson potential energy, resulting

in a zero-voltage supercurrent. Quantum fluctuations of q~ give rise to a nonvanishing probability

of quantum tunneling through the Josephson potential barrier, and make the zero-voltage state

metastable. This macroscopic quantum tunneling of q0 (~p-MQT) has been convincingly

demonstrated in several experiments.[3]

In the dual case of tunnel junctions with small conductance (Rt-I<<RQ-1) the electric charge q

on the junction capacitance, conjugate to q0, evolves nearly classically.[1] At low temperature this

results in Coulomb blockade of tunneling: for low bias voltage the tunnel current is suppressed,

since tunneling would increase the Coulomb energy of the junction capacitance, However, small

quantum fluctuations of the charge give rise to a nonvanishing probability of quantum tunneling

through the Coulomb energy barrier, and thus make the zero-current Coulomb blockade state

metastable. Only one electron (one Cooper pair for a superconducting junction) is transferred

through the system in one act of this quantum tunneling. Nevertheless, it is an essentially

macroscopic process, because the tunneling electron polarizes the junction electrodes in virtual

states below the energy barrier, so that the Coulomb energy is given by usual macroscopic

electrostatics. This implies that all free electrons of the junction electrodes do participate in the

tunneling process. In this respect it is not the tunneling of a single electron but rather that of a

macroscopic variable, the electric charge q of the junction. Apart from its fundamental importance,

q-MQT has practical implications. Proper functioning of a number of ’single-electronic’ devices

[4] depends on the reliable trapping of an extra single electron charge between small tunnel

junctions. The q-MQT process decreases the reliability of operation of these devices. For

example, it is a source of possible inaccuracy of current quantization in the recently reported

single-electron tumstile device.[5]

In this Letter we report for the first time on experimental observation of macroscopic quantum

tunneling of the electríc charge, in linear arrays of 2 and 3 normal metal junctions. In such

systems an act of q-MQT consists of a finite number of consecutive tunneling events. In an array

of two junctions an electron is transferred via one intermediate state, in which an extra electron or

hole charges the central metal electrode between the two junctions. The Coulomb energy of this
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Fig. 1. (a) Equivalent circuit of a symmetrically biased two junction array, as used in the

experiments. A square divided by a vertical line indicates a tunnel junction. (b) Macroscopic

quantum tunneling of the charge occurs via occupation of a virtual intermediate state. An

electron tunnels to an excited state in the central island (1). The resulting virtual state decays

by a different electron tunneling across the second junction (2), leaving a hole and the

excited electron, but decreasing the charging energy, bl and b2 indicate the junction

barriers, solid lines represent the Fermi levels in the electrodes.

intermediate state is equal to E1 or E2 if the first tunneling event occurs across the left or right

junction, respectively:

e
E1 = ~ le/2 + Qo - V(C2+Cg/2)]

eE2 =~ [e/2- Qo- V(CI+Cg/2)]

(la)

(lb)

where Cy.=CI+C2+Cg, C1 is the capacitance of the left junction, C2 of the right one and Cg of the
gate (Fig. la). Qo is the background charge of the central electrode which can be changed by the

gate voltage Vg: Qo=CgVg + const. For bias voltage inside the Coulomb gap, V<Vth, the energy

of the intermediate state is positive (this condition defines the threshold voltage Vth), and the

thermally assisted classical consecutive tunneling is exponentially suppressed at low temperatures.

However, even for V<Vth there is a finite probability for an act of quantum tunneling with a

virtual occupation of the central electrode.

For our metal junctions with relatively large electrodes, the main contribution to q-MQT is

given by a process in which two different electrons tunnel through the two junctions. In this
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inelastic process the q-MQT creates an electron-hole excitation on the central electrode (Fig.

lb).[6,7] In metal particles smaller than about 10 nm or semiconductor heterostructures, the

energy level spacing in the central electrode need not be very small compared to the characteristic

charging energy. In this case an ’elastic’ contribution to q-MQT may become significant.[8,9]

The rate of q-MQT decreases with increasing tunnel resistance. It has been calculated in a

perturbative approach, i.e. for Rt>>RQ.[6,7] For two junctions it is

fi         2 E 1 E2      +eV eV
~’MQT=2~te4RtlRt2 {(1 -~ eVEl+E2+ev)ln[(1 ~ll)(1+~2)]- 2}eV

(2)

and for a linear array of N junctions (with index i) at bias voltage low compared to Vth:

~/MQT ~ v2N’I ~ RQ
i=l 1~

(3)

Eq. (2) is valid for V<Vtla, except in the vicinity of the threshold voltage. As a result of the

discreteness of charge transfer in an act of q-MQT, 7MQ’r decreases only as a certain power of the

relevant parameter, RQ/Rt, that determines the strength of the quantum fluctuations of q. The rate

of the quantum tunneling of a continuous variable, e.g. q0-MQT, or q-MQT in a single junction

shunted by an ohmic conductance,[6] decreases exponentially.

We have studied q-MQT in four double junctions, with Rt between 41 and 347 kfL The

junctions are made of overlapping aluminum strips, approximately 60 nm wide and 20 or 40 nm

thick, and have an area of about (60 nm)2. The resistance of the aluminum oxide barrier is

controlled by varying the oxidation pressure. Inside an array, the junctions are about 1 I.tm apart.

The metal electrodes between the junctíons can be polarized (i.e. the background charge Qo can be

controlled) by a gate electrode at 1.5 gm distance, with a coupling capacitance Cg of about 0.07
fF. The samples were thermally anchored to the mixing chamber of a dilution refrigerator. For all

measurements low-pass filters were used that were also thermally anchored to the mixing

chamber. However, we found no significant difference between filtering with RC-fílters only,

compared to more careful high-frequency filtering. A magnetic field of 2 Tesla was applied to

bring the junctions in the normal state.

In Fig. 2 we show a typical I-V curve. The Coulomb gap is clearly visible, but even at the

lowest temperatures (below 20 mK), the gap is rounded and there is significant current for

voltages below Vth. The dashed line gives the asymptote to the I-V curve determined on a scale of

a few mV. In the classical theory [5] this asymptote should intersect the zero current-axis at e/Cru,
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Fig. 2.1-V curves of a double junction with Rt=78 kl2. The maximum Coulomb gap is

obtained by adjusting Vg. The dashed line gives the asymptote to the I-V curve that is used

to deterrnine R.s=2Rt. Vof and Vth (see text) are indicated. The inset shows that the Coulomb

gap can be continuously controlled with gate voltage (curves are given for, from right to

left, Qo=O, 0.le, 0.2e, 0.3e, 0.4e and e/2).

and have a slope R~=Rtl+Rt2. The Coulomb blockade threshold voltage should also equal e/Cz,

provided that it is maximized by adjusting Qo,[4] for instance with Vg. In Table 1 we give

Rt=Rz/2 and Cy., the latter determined both from asymptote and threshold voltage, for all double

junctions. The capacitances obtained from the high-voltage asymptote (e/Vol) are smaller by a

factor of 1.5 than those obtained from Vtla. Several reasons can account for this difference. First,

the Coulomb gap could be partially suppressed by imperfect adjustment of the gate voltage, or by

thermal and quantum fluctuations of the charge, leading to a smaller Vth, and thus larger

capacitance e/Vth. Second, the I-V curve offset Vol at high voltages could be larger than the low-

voltage offset, since additional channels of inelastic electron tunneling can become available with

increasing voltage.[10] Another possible reason for decrease of the effective capacitance with

increasing voltage is capacitance renormalization due to Coulomb blockade. At low voltages the

capacitance is increased by ìSC=(4/~)2(RQ/Rt)C,[11] while at high voltages ~C ,,~ (Vth/V)2 ~ 0.
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Fig. 3. Comparison of I-V curves with theory, for four double junctions. The

measurements (solid curves) have been scaled with Rt and C~,, the latter being a fit

parameter. The current increases with increasing Rt-l,from top left to bottom right curve Rt

equals 41, 78, 117 and 347 kl2, and C,~ equals 1.19, 0.95, 0.71 and 0.72 fF. (a) The

dashed curves give the predictions from q-MQT (b) Comparison with predictions from

thermally assisted tunneling. Dashed: T=O.O2e2 /C ~, and Qo=O. Dash-dotted: T=O.O4e2 /C ~,

and Qo=O (circles), 0.le (squares) and 0.2e (triangles).
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Rt (kf2) Cy.=e/Vof (fF) Cy.=e/Vth (fF) CZ, best fit (fF)

41 0.92 1.38 1.19

78 0.77 1.21 0.95

117 0.63 0.88 0.71

347 0.68 0.91 0.72

Table 1. The parameters of the four double junctions.

The fact that the difference between the low-voltage and high-voltage capacitances is larger for

junctions with lower Rt indicates that at least part of this difference can be attributed to the latter

reason. We cannot quantitatively take into account all these factors, although it follows that the

relevant capacitance for q-MQT should lie within the bounds set by Vth and Vol. For comparison

with theory we will therefore use the capacitance as a fitting parameter.

In Fig. 3 we show the log(I)-log(V) curves for the four double junctions.[12] Classical

tunneling current would increase exponentially with voltage. In contrast, the experimental tog(I)-

log(V) curves yield straight lines with a slope equal to 3, as expected for q-MQT (eq. 3), except

for high or very low voltages. In Fig. 3a we compare the measured I-V curves with calculations

for q-MQT from eq. (2), assuming both junctions to be equal. The measured current and voltage

are scaled to e/RtC~: and e/Cy., respectively, making it possible to observe the effect of Rt on the q-

MQT rate in one plot. All I-V curves can be very well fitted to theory in a broad voltage range

inside the Coulomb gap, and the corresponding best-fit values of Cy. lie (as they should) between

the high-voltage and the low-voltage capacitances (Table 1). The smaller slope of the log(I)-log(V)

curves at V ~ 0 is probably caused by the fact that, if eV>>kBT is no longer satisfied, crossover

to a linear I-V curve occurs.[7,9] The larger slope for high voltages may be due to the crossover

to thermally assisted charge transfer. In the regime where the classical tunneling rate becomes of

order ~’MQT there will be more cttrrent than predicted from q-MQT. Inequality of the two junction

capacitances or a not completely symmetric voltage bias would similarly increase the current at

high voltages. We can not exclude that these effects play a role in the experiments.

The observed sub-Coulomb gap current could altematively be explained by an effective sample

temperature that is significantly higher than the mixing chamber temperature, e.g. because of noise

and interference. Therefore in Fig. 3b we compare the same measurements with calculations for

classical thermally assisted charge transfer, with the same scaling as in Fig. 3a. There is clearly
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Fig. 4. I-V curves for a double junction with Rt=78 k£2 and three junctions in series with

Rt=84 kI2. As a guide to the eye lines for which I ~ V5 (dashed) and I o~ V3 (dash-dotted)

have been drawn, representing the q-MQT prediction for the slope of the log(I)-log(V)
cur~es.

nota convincing agreement. To obtaìn rough similarity of calculations to measurements, it is

necessary to assume a misadjustment of the gate voltage corresponding to a Qo of as much as

0.2e, with in addition systematically more error for the lower Rt samples. Also, a high

temperature of about 100 mK must be used to obtain a calculated curve that is at least in the range

of the measurements. In previous experíments on similar devices [e.g. Ref. 5], using the same

low pass filters, we have found that the noise temperature of out devices is not larger than about

~13 rnKo

Comparison of the log(I)-log(V) curves of a double junction and a 3-junction array of almost

equal Rt, in Fig. 4, also provides support for q-MQT. The prediction from eq. 3 is that for a

double junction I ,,, V3 whereas for 3 junctions I ,,- V5. As a guide to the eye, two lines give the

expected slopes, which are in fair agreement with the results. Because of the higher exponent of I,

the voltage range in which the current is not either unobservably small or for a significant amount

due to thermally assisted transfer, is smaller for the longer array.
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We conclude that for the first time we observed macroscopic quantum tunneling of the electric

charge in linear arrays of two small tunnel junctions. As a result of this tunneling a finite current

flows through the array even in the Coulomb blockade regime. The current is in quantitative

agreement with theoretical predictions.

We gratefully acknowledge discussions with V. Anderegg, M. Devoret, D. Esteve, K.

Likharev and C. Urbina. This work was supported by the Dutch Foundation for Fundamental

Research on Matter (FOM). Part of the lithography was performed at the Delft Institute of

Microelectronics and Submicron Technology.
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INFLUENCE OF DISSIPATION ON THE COULOMB BLOCKADE IN
S MALL TUNNEL JUNCTIONS
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Department of Applied Physics, Delft University of Technology

P.O. Box 5046, 2600 GA Delft, The Netherlands

ABSTRACT

Effects of charging energy were smdied in small capacitance aluminum tunnel junctions in the

normal state, with tunnel resistance Rt between 0.2 and 80 kf2. Single junctions, chains and 2-

dimensional arrays were fabricated. This allowed investigation of the influence of lead

capacitance. For Rt>l kC2 the voltage offset (’Coulomb gap’) determined from the I-V curve at

high current is consistent with the capacitance calculated from junction area only. For single

junctions with Rt near or below 10 kf2 at low current the charging effects are strongly suppressed.

Results of chains with arbitrary Rt show the suppression of charging effects by dissipation. The

R(T) curves are in good agreement with theory anti geometrical capacitance.
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Coulomb blockade of single electron tunneling [1-3] becomes apparent in tunnel junctions of

capacitance C when the temperature is near or below Ec=-e2/2C. The energy change connected

with transfer of a single electron then causes time coherence of the tunneling events. The small

capacitance results in a voltage offset of magnitude e/2C in the tunneling current-voltage

characteristic, the so-called Coulomb gap. For single junctions, it is not trivial that a Coulomb gap

can be seen at all, since the leads to the junction will add a large parasitic capacitance to the

junction’s geometrical capacitance. So fat, only a few observations of the Coulomb gap in a single

junction have been reported [4-6]. In Ref. 4 en 5 it is not clear whether impurities caused the

experiments to actually look at more junctions in series. For junctions in series circuits, the inner

junctions will be decoupled from the parasitic capacitance, so here the Coulomb gap should be

better visible. Although various measurements on serìes circuits are reported in the literature [1,6-

12], only Ref. 8 and 12 provide measurements on well-defined planar junctions, and indeed find

agreement between geometrical capacitance and Coulomb gap. In this letter we present a

comparison between single planar junctions, double junctions, and 1-D and 2-D arrays. We find a

significant difference between the Coulomb gap in single junctions and in arrays, which is

probably due to parasitic capacitance. The effect from parasitic capacitance turns out to vanish for

high currents, and appears to be also affected by the junction resistance.

We have also investigated the influence of dissipation, which is controlled by Rt, the tunneling

resistance in the absence of charging effects [13-17]. For a large resistance, Rt>>h/4e2, the charge

on the junction can be treated classically, and the I-V curve is obtained from a perturbation

analysis [3]. For low Rt, quantum fluctuations of the charge on the junction electrodes suppress

the Coulomb blockade. The theoretical approach by Ambegaokar et al. [ 13] is applicable to both

normal and superconducting tunnel junctions. It has been widely used in the extensive theoretical

literature on the problem of dissipation in a macroscopic quantum system of the last few years.

However, there has been very little direct experimental support for the results obtained. Two

theoretical papers have been published which calculate properties of small normal tunnel junctions

for not very low dissipation. Brown and ~imánek [ 16] use results of Ref. 15 and linear response

theory to calculate the resistance versus temperature of a tunnel junction with arbitrary Rt.

Odintsov [17] uses a formal analogy with the polaron problem to calculate I-V curves for high

dissipation. We find detailed quantitative agreement with the predictions of Brown and ~imánek.

Patterning of the junctions is by electron beam lithography. The junctions are produced by

shadow evaporation of the aluminum electrodes, with thermal oxidation of the first electrode in

about 0.05 mbar 02 gas to form the barrier. The electrode thicknesses are typically 30 and 60 nm,
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sample Rt nr. junctions area Cp CI-V CR03
(kY~) (gm2) (~) (fF)

A2 82 2 0.01 and 0.9 0.8 1.1

0.1

A3 51 3 0.01 0.9 0.9

B1 10.7 1 0.01 0.9 1.3

B2 11.8 2 0.01 and 0.9 0.9

0.1

B3 7.1 3 0.01 0.9 1.5 0.8

C 5.4 5 0.01 0.9 1.5 1.0

D 4.7 1 0.02 1.8 4.5

E 2.4 1 0.06 5.4 12.7

F1 1.3 10 0.02 2.0 1.8 0.8

F2 0.52 10 0.04 3.6 9.7 2.3

F3 0.24 10 0.06 5.6 37 3.7

G 129 190 x 60 0.04 3.6 2.3

H 15.3 190 x 60 0.01 0.9 1.0

I1 14.1 190 x 60 0.01 0.9 1.1 0.7

8.0 190 x 60 0.02 1.8 2.8

J 9.7 190 x 60 0.01 0.9 1.2

Table 1. Sample parameters and measured capacitances. Names that start with the same

character are for devices evaporated on the same substrate. Cp is the geometrical capacitance

calculated from the junction area, CI-V is the capacitance determined from the voltage offset

in the NV curve, and CR(T) is the capacitance determined from a fit to the R(T) curve. Nr.

junctions indicates single junctions (1), linear series arrays (single number > 1) and 2-D

arrays (L x W).
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so that with a junction area starting at 100 nm x 100 nm the junction is a reasonable approximation

of a parallel plate capacitor. For the parasitic capacitance to be as large as the junction capacitance

we estimate that the connecting pattern within a radius of at least 10 gm should contribute.

Superconductivity of the aluminum is suppressed by applying a magnetic field of 2 T. The

Coulomb gap is also visible in zero field above Tc. The high quality of the tunnel barrier is

manifested in the exponential temperature dependence of the subgap resistance in the

superconducting state.

If we determine the asymptote of the I-V curve at currents around 1 gA we always roughly find

the voltage offset expected fl.om the geometrical capacitance, i.e. Cp=~A/t, where A is the junction

area and t the barrier thickness. In this way we have determined the junction capacitance for

around 15 samples. Details are given in Table 1. For chains and arrays we have divided the offset

by the number ofjunctions in series. For Rt>l k~ we find a capacitance per junction of around

1.1 fF per 0.01 gm2 with a spread of about a factor two. This capacitance is in good agreement

with the junction area for a parallel plate capacitor with barrier thickness and dielectric constant

given by the expected ratio t/er=l/~. For low Rt the junctions are heated (see below), maldng high

currents necessary to see the full voltage offset, which in turn heat the junction more. For Rt< 1

k~ this makes determination of capacitance fl.om the I-V curve impossible.

In Fig. 1 we have plotted the measured I-V characteristics for two similar sets of samples, A

and B, at low temperature. They contain the same circuits with Rt for 0.01 gm2 junctions about

100 and 10 k~ on samples A and B, respectively. Shown are the I-V curves of three 0.01 gm2

area junctions in series (A3 and B3), and of a 0.01 gm2 junction in series with a 0.1 gm2 area

junction (A2 and B2). The large junction in the latter configuration was included for experiments

in the superconducting state. In addition the I-V curve for a single 0.01 gm2 junction was

recorded for the Rt=10 kf~ sample (B 1). This figure shows two separate effects.

Firstly, there is a significant difference between the low Rt single junction B 1 and chain B3. In

the single junction the Coulomb gap is clearly suppressed. This effect was also observed in other

samples. For the double junction B2, the Coulomb gap is somewhat better developed but still

suppressed. The difference, as observed between B2 and B3, is much less in the comparable high

Rt samples A2 and A3. In Fig. 2 the I-V curves up to high current are given for A2 and B 1. Even

for the low resistance single junction B 1, a Coulomb gap is visible at high current. The contrast

with the high resistance sample A2 is obvious. It is the capacitance determined from this high

current gap that is given in Table 1.

The second effect in Fig. 1 is the difference in I-V curves of the chains, A3 and B3. For low Rt



120 chapter ó

0.05

r"

o°
Blx,/¢ B2,: ’: B3 A2°"

°0

~l. :’: .~

nO ,~ 4~ °

,,~ :.: ~ _°

0.05
V/n (mV)

o4

0 0.1

Fig. 1. I-V curves at about 10 mK of samples A and B, both with a series circuit of three

0.01 l.tm2 junctions (A3 and B3) and a single 0.01 ,urn2 junction in series with a 0.1 I~rn2

junction (A2 and B2). The Rt of the 0.01 ,um2 junctions is roughly 80 k~ for A, and 10 k£2

for B (see Table l for more details). The voltage axis is scaled to the voltage over one

junction, the current axis in such a way (IRtot/n) that a linear resistance yields a unity slop°

straight line (dashed line). Rtot is the total Rt of a device, n (number of junctions) is taken 1

or 3 for the two kinds of devices.

the Coulomb gap is suppressed, roughly as if the temperature were increased. This suppression of

the charging effects for low Rt is also visible in the linear response of the junctions (Fig. 3).

In Fig. 3 we show the measurements (solid curves) of resistance versus temperature at low

current, typically < 0.1 nA, for chains of 5 or 10 junctions of vafious Rt and for the small high Rt

junction (A2) of Fig. 1. Also shown (dashed) are the R(T) curves calculated for a single junction

as prescribed by Brown and ~imánek [16]. For this calculation only Rt and C need to be known,

parameters that can be taken from the I-V measurements. However, to get an acceptable fit in Fig.

3 the capacitance is used as a fit parameter. For the highest resistance samples A2 and C this fitted

capacitance is only 35 % different from the one determined from the Coulomb gap. For the lower

Rt chains there is a deviation up to a factor 2.5 from the estimated geometrical capacitance.

However, for these samples we do not know the area very accurately.
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Fig. 2. I-V curves at about 10 mK showing the Coulomb gapfor sample A2 and B1. At !ow

currents the Coulomb gap is suppressed in the single low resistance junction B1, in contrast

to the sample A2 (a small high resistance junction in series with a large junction).

For the interpretation of the results on chains, and the high Rt sample A2 we may apparently

neglect parasitic capacitance. For a chain without electrode self-charging effects Geigenmüller and

Schön showed that we can also use single junction calculations [18]. Likharev et al. have recently

pointed out that if there is significant self-charging capacitance, solitons should be introduced in

the description of the chains [19]. However, for our junctions with capacitance to ground

C0--2.10-17 F the length ofthe solitons q"0/C0 is equal to or larger than the chains and we expect

the single junction theories to be applicable. We note that the R(T) curves are in good quantitative

agreement with the results of Brown and ~imánek [16]. This supports the present approach in

treating dissipation [ 13], as well as the variational approximation made in Ref. 16. Comparison of

the measured I-V curves with the calculations of Odintsov [17] is more complicated. Due to the

heating effects at higher current levels mentioned before, the voltage is suppressed from the



122 chapter ó

6

5

4

3

2
A2

0 0.5 1 1.5
kBT/Ec

Fig. 3. Resistance as a function of temperature (solid lines) for several samples. Dashed

lines are fits to theory of Brown and ~imánek [16] as described in the text. A2: Rt=82

junction frorn Fig. 1. C: chain of 5 junctions with Rt=5.4 k£2. Fl-F3: chains of 10 junctions

with Rt= l.3, 0.52 and 0.24 kl2, respectively.

expected value at substrate temperature to the value for a higher temperature. Relevant current and

voltage magnitudes are of order I0=e/RtC and V0=e/C. So, the heating will be stronger for lower

Rt. In addition non-equilibrium distributions of the electrons may be significant. We will not treat

this problem here.

In order to explain the strong suppression of charging effects in the low Rt single junctions, the

relevant capacitance for the Coulomb blockade must receive more consideration than it has been

given sofar. It has been suggested that the capacitance determining the Coulomb gap results from

an area within a distance c’t of the tunneling site, where ’t is the traversal time, "c=10-15 S, and c is

the propagation velocity of the electric field [20,4]. This distance amounts to roughly 100 nm, and



dissipation and coulomb blockade 123

would therefore yield no difference between the Coulomb gap in arrays and single junctions. For

tunnel junctions of dimensions larger than 100 nm, it would also predict a smaller effective

capacitance than the geometrical one, in contradiction with Rel. 6 and 8, and out present results.

A similar ’horizon’ argument, where ’t is taken to be the time between tunneling events, e.g. 10-13

S for I=1.6 gA, is in better agreement with our measurements on low Rt single junctions. It

explains the necessity of a high current (of the order of ~tA’s) to see the Coulomb gap belonging

to the geometrical capacitance. For high Rt junctions, however, comparing the results for samples

A2 and B2, our measurements still suggest the concept of a very small area for the capacitance

also at low current. We think this importance of Rt is a result of the higher probability of charge

fluctuations connected with a low Rt. If for low Rt an electron can tunnel several times back and
forth before it makes a real contribution to the dc current, charge redistributions can cover an area

much larger than the tunnel junction, and thus increase the observed capacitance. The mean time

between tunneling events e/I will be an upper limit of the time available for charge redistribution.

The additional electron transitions can follow from several causes. They might e.g. be tunneling

events to virtual states or a result of electron reflections against the electrode surface. In view of

the latter mechanism note that at the experimental temperatures an electron that has tunneled will

keep its excess energy for a long time. It will therefore have a relatively high tunneling probability

if it reflects back to the tunnel barrier.

Recently, Nazarov [21] has evaluated another process which lengthens the relevant time scale.

From the uncertainty principle he asserts that the electron after tunneling uses a probe time ~>fi/eV

to determine the relevant parameters like energy difference, capacitance and tunnel rate. Here, as

far as we know, Rt is not important. This theory is compared more quantitatively with

experiments by Delsing et al. [22].

We conclude that the behaviour of well-defined planar tunnel junctions can be described by

geometrical capacitance and the quantum mechanical treatment of dissipation. We have only found

a clear deviation of this rule for single junctions of low resistance, in which case the time between

tunneling events may be determining the area that contributes to the capacitance. The effect of

dissipation on quantum charge fluctuations is especially clearly observed in the linear response

measurements on arrays.

We are indebted to U. Geigenmüller, G. Schön and K. Likharev for very valuable discussions.

This work was supported by the Dutch Foundation for Fundamental Research on Matter (FOM).
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SINGLE COOPER-PAIR TUNNELING IN SMALL CAPACITANCE
JUNCTIONS
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ABSTRACT

We present observaUons of charging effects for Cooper pairs in short linear arrays of small

capacitance Josephson junctions. Current-voltage characteristics show a Coulomb gap for Cooper

pair tunneling when the charging energy exceeds the Josephson coupling energy. In a double

junction a zero-voltage current is observed that is modulated by a gate voltage applied to the metal

island between the junctions. For longer arrays a crossover from Coulomb blockade of Cooper

pair tunneling to a supercurrent is observed when the ratio of Josephson coupling to charging

energy is increased.
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In a tunnel junction with superconducting electrodes, a tunneling matrix element of magnitude

Ej/2 couples states differing in junction charge by a Cooper pair.[1] The Josephson coupling

energy Ej is determined by the junction resistance Rn and the BCS gap A of the superconducting

metat: Ej=hA/8e2Rn. For a junction of large capacitance, at zero bias voltage states differing by a

large number of Cooper pairs are nearly degenerate in energy. Therefore, there is a large

uncertainty in the charge on the junction. The eigenstates of the junctions are described by the

phase difference q0 of the superconducting electrodes,[2] conjugate to the charge of the junction.

However, when the junction capacitance is redùced to a value where the typical energy of

charging by a single Cooper pair becomes of order Ej the degeneracy of charge states is lifted,

even for states differing by only one Cooper pair. The junction state is then well described by the

charge, and single Cooper pair tunneling is an accurate concept to describe the conduction.

Conventionally for normal metal tunnel junctions, the charging energy is expressed in units

Ec=e2/2C. Recently, sub-micron fabrication techniques have progressed to a level where

junctions can be fabricated that have EC ~ Ej. This opens the possibility to investigate the

tunneling of individual Cooper palts, and thus study basic theory of Josephson junctions.

For normal metal tunnel junctions, a description in terms of the junction charge is allowed

provided that Rn is larger than about fi/e2. In linear arrays of normal junctions with small

capacitance the discreteness of charge transfer appears in several charging effects.[3,4] Firstly, the

current-voltage (I-V) characteristic shows a threshold voltage for conduction, the Coulomb gap,

with a magnitude (n-1)e/2C for an array of n junctions. Secondly, by capacitively applying a gate

voltage Vg to the metal island (with capacitance Cg) between two junctions, the I-V curve can be

changed. This change has a periodicity e in the ’gate charge’ CgVg induced on the island,

reflecting the equivalence of island charges (CgVg -ne) that differ by an integer times e. Most

reported experiments on junctions with superconductíng electrodes also only show single electron

effects, because of a very small ratio Ej]EC.

Few experimental results have been published where interaction of charging effects with

Josephson coupling was notable (Ej of order EC). Iansiti et al. [5] published experiments on small

junctions which were interpreted with theory based on macroscopic quantum phenomena [6] for a

small Josephson junction, i.e. a description in ¢p-space. Fulton et al. [7] published experiments on

a double superconducting junction and pointed out some aspects of charging effects for Cooper

pair tunneling to interpret their results. Their device is quite similar to ours. However, they did not

report on the low voltage region that we focus on in this Letter. Likharev and Zorin [8] and Averin

and Likharev [4] have theoretically treated aspects of the double superconducting junction that are
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relevant for the present work. In this Letter we present current-voltage (I-V) characteristics of

small linear arrays of aluminum tunnel junctions. For low Ej, these show direct charging effects

for Cooper pairs, for increasing Ej a crossover to more classical behaviour occurs.,

Fig. 1 shows I-V curves of a double A1-A1Ox-A1 junction with Rn=58 kf~, and a capacitance

derived from the Coulomb gap of about 1 fl= (Ej/Ec=0.13), in normal and superconducting state.

In both cases the I-V curves for two different gate voltages are shown. The junctions, with an area

of 0.01 gm2, were pattemed by e-beam lithography and produced by shadow evaporation on an

oxidized silicon substrate.[9] A junction is formed of two aluminum strips, of width 100 nm and

thicknesses 20 and 40 nm, overlapping for about 100 nm. The two junctions are 1 ~tm apart. The

sample was thermally anchored to the mixing chamber of a dilution refrigerator. The leads to the

junctions were filtered by low-pass filters which were also thermally anchored to the mixing

chamber. Normal state measurements were performed in a magnetic field to suppress

superconductivity. The inset of Fig. la shows the device and measurement layout. In the normal

state (Fig. la) a Coulomb gap of about 70 p.V is visible, which can be completely suppressed with

gate voltage.

In the superconducting state (Fig. lb) the curves show a current peak at zero voltage. In the

following we will call this a supercurrent. We also see current peaks at multiples of about 20 ~V,

and for a voltage about equal to 2A/e (0.4 mV for aluminum). Fulton et al. have previously

considered the peak at 2A/e [7]. Here we want to emphasize two novel features. Firstly, the

current peaks in the first 150 gV, including the supercurrent, can be largely suppressed with the

gate voltage, a clear indication of charging effects for Cooper pairs. Gate voltage experiments will

be described in more detail below. The second new feature in Fig lb is the voltage gap of about

150 gV (indicated by the arrow) that is visible if the supercurrent is suppressed with the gate

voltage. The width of 150 gV is twice as large as the Coulomb gap in the normal state. This

doubled width indicates Coulomb blockade of Cooper pair tunneling as the origin of the gap. We

will therefore call it a Cooper pair gap. Fig. 2a shows I-V curves for a linear array of 5 junctions,

with Rn=60 k~ and C--2 fF (E//Ec=0.3). This device also exhibits a Cooper pair gap, equal to

about two times the normal state Coulomb gap. With increasing temperature the gap first

decreases in width and then changes into a supercurrent-like feature. Omission of the low-pass

filters on the mixing chamber caused the high temperature I-V curve to persist at the lowest

temperature, thus hiding the Cooper pair gap. On a larger scale (inset) 4 current peaks of

increasing height are visible at voltages around multiples of 2zVe. In Fig. 2b we show the I-V

curve of an array of 5 junctions with high Ej (Rn=5.5 kí~) and C---1 fF (Ej/Ec=I.5). Instead of a
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Fig. 1. I-V curves of a double junction with Rn=58 k12 (Ej/Ec=O.13) for two different

values of the gate voltage Vg at 10 mK. (a) In the normal state, realized by applying a

magnetic field of 2 Tesla. The Coulomb gap with a maximum value of about 70 ktV (solid

curve) can be suppressed with the gate voltage (dashed curve). The inset shows the device

and measurement layout. The junctions are denoted by crossed capacitor symbols,

Cg=O.O1C. (b) In the superconducting state a Cooper pair gap of about 150 !.tV arises

(arrow). Coulomb gap and supercurrent are strongly dependent ongate voltage (compare

solid and dashed curve). The inset shows I-Vg curves for the normal state (top), the current

peak at 20 I.tV (middle) and the supercurrent at V=O (bottom).
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Cooper pair gap, at low temperatures a supercurrent arises. On a large scale, we find again 4

current peaks at multiples of 2A/e, and negative differential resistance regions. These results were

reproduced in the other samples that we examined. We have observed a Cooper pair gap such as

shown in Fig. 2a in arrays of 5 junctions with Ej,/ECup to 0.43. We have also examined other

double junctions with small Ej. For these, as in Fig. lb, generally this gap was difficult to discern

between the structure (resonances) in the I-V curve.

Three I-Vg curves for the double junction are given in the inset of Fig. lb. The height of the

supercurrent is periodic in gate voltage, with the same period e/Cg as in the normal state. The

current just outside the Cooper pair gap also oscillates with this single electron period. It is

important to note that if the voltage bias is increased the curves invert. At a gate voltage where the

supercurrent and the current just outside the Cooper pair gap are at a maximum, the current near

the ftrst BCS gap and the current in the normal state (for arbitrary bias) are at a minimum. For the

first two 20 gV resonances in Fig. lb a doubled modulation period was observed, corresponding

to 2ë periodicity in gate charge.

Since several of the concepts of single electron tunneling in small juncUons [4] are also useful

to describe Cooper pair tunneling,[7,8] we will flrst shorfly discuss the extensively verified theory

for normal metal tunnel junctions. At zero temperature the single electron tunneling rate is

proportional to the change AE in in the relevant (Gibbs) free energy, the sum of the capacitive

energies and the work performed by the voltage sources. For a single voltage biased junction

AE=-eV, hence a Coulomb gap (or Cooper pair gap) does not arise. In an array of junctions

charge transfer occurs via intermediate states, where the charge resides on an electrode between

the junctions. For low voltage, these states are higher in energy (by an amount of order EC) than

the iniUal state, so that tunneling is blocked and a Coulomb gap arises. With an extemally applied

gate voltage, the Coulomb gap can be suppressed. In two serially coupled junctions with island

charge e/2, the energy change of a tunneling step is always smaller than zero for all finite voltages.

Therefore no threshold voltage for conduction is observed. For n serially coupled junctions, this

complete suppression of the Coulomb gap is usually impossible due to random offset charging of

the junctions [4,9], e.g. by trapped charges near a junction barrier.

One essential difference between Cooper pair tunneling (in the following abbreviated to CPT)

and single electron tunneling is the dependence of the tunnel rate on the energy change. Generally,

Cooper pairs can only tunnel non-dissipatively. Therefore, dc conduction by CPT can only be

obtained if AE=0 for the tunneling event. If AE40 an oscillating charge state is obtained,

comparable to the ac supercurrent for a large capacitance junction under voltage bias. Coherent



130 cl~pter 7

15

10

5

0 0.2 0.4

V [mV]

a)

10

|

0 ..... 1 2 /" / ""~

~ ..._.~ ....... 800 m~
.... 500 m~

10 mK

I           I I I

0 0.2 0.4
v [mV]

b)

Fig. 2. I-V curves of linear arrays of 5 junctions. The insets show the I-V curves at 10 mK

on a larger scale. (a) Ej/kB=0.13 K and Ec/kB---0.45 K. A clear Cooper pair gap arises. (b)

Ej/kB=I.4 K and Ec/kB=0.9 K. At low temperature the resistance in the origin is zero (the

finite slope in this figure is caused by the two-wire measurement method).
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Cooper pair tunneling across more than one junction (e.g. an array) can be usefully described as

tunneling across an equivalent single junction with a smaller Josephson coupling.[8,10] Each

intermediate tunneling step with energy change AEi contributes to the decrease of the coupling by

a factor of order Ej/AEi. In the present small capacitance junctions, the intermediate states will

typically differ by an amount of order EC in energy. Obviously, the coherent transfer of Cooper

pairs through an array of junctions is therefore strongly dependent on the ratio Ej/Ec and the

number of junctions. Only for gate charge e in a double junction at small voltage the coupling

between initial and final state will be of order Ej.

We can now proceed to discuss the results for the double junction of Fig. 1 in the

superconducting state. If a gate charge e is induced on the central electrode, at zero drive voltage

the energy change for CPT is zero for either of the junctions. Therefore a supercurrent develops as

an equivalent of the complete suppression of the Coulomb gap in the normal state for a gate charge

e/2. This is the situation of the dashed curve. One might expect that the height of the supercurrent

is periodic in the gate voltage with period 2e/Cg.[4] However, the observed periodicity is e/Cg

because all states differing in gate charge by a multiple of e are equivalent due to the possibility of

quasiparticle tunneling. This is true even if the number of quasiparticles is very small. States with

gate charge equal to a multipte of e will relax by quasiparticle tunneling to the lower energy state

of island charge 0, which suppresses CPT. We propose that the supercurrent is at a maximum for

all gate charges equal to an integer times e because occasionally a quasiparticle tunneling event

produces the situation with island charge e, and thus catalyzes conduction by CPT. The

supercurrent is limited by the duration of this situation, which only lasts until relaxation to the gate

charge 0 occurs again. The probabilíty of a tunneling event from island charge 0 to e is strongly

dependent on temperature. Indeed, in out experiments the supercurrent was found to increase

strongly for increasing temperature. At a gate charge e the Coulomb gap in the normal state is

maximized, which explains the inversion of the current versus gate-voltage characteristics anti in

this way confirms conduction by CPT.

The other I-V curve of Fig. lb (solid line) corresponds to the situation with a non-integer gate

charge on the central island. Current by coherent CPT through both junctions is now smaller by a

factor of about Ej/Ec. Inside the Cooper pair gap, for voltages larger than the normal state

Coulomb gap, conduction takes also place by quasiparticle tunneling with a very small rate,

proportional to the subgap conductance. At the Cooper pair gap Cooper pairs are mixed across

one junction (AE=0) so that the quasiparticle tunneling events across that junction can be replaced

by CPT. Therefore CPT across this junction alternates with quasiparticle tunneling across the
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other, resulting in an increase of current. Fulton et al. [7] have shown that a similar process

accounts for the current peak around the BCS gap voltage. They explained that for such a voltage

Ct~ across one junction altemates with quasiparticle tunneling with a higher rate across the other.

Because the energy gain of the quasiparticles is larger than 2A, the tunneling rate is in that case

determined by the normal state resistance.

For the interpretation of the current peaks at small nonzero voltages we use again the

equivalence of a double junction to a single junction with coupling dependent on gate charge. For

a single junction under voltage bias, current resonances arise if the ac Josephson frequency 2eV/fi

is in resonance with an environmental mode.[11] These resonances cause the current peaks in Fig.

lb. Experiments have shown that the resonant modes are specific for out experimental circuit.

They cause current peaks at the same voltages in the I-V curve of a single high-Ej junction. It is

puzzling that in contrast to the situation for the supercurrent here a 2e-periodicity in gate charge is

observed.

In Fig. 2a for the array of low Ej,/EC junctions we observe a Cooper pair gap as in Fig. lb.

However, now Josephson coupling across the 5 junctions will generally be attenuated by a factor

of order (Ej/Ec)4. Because of random offset charging it is not possible to obtain a higher coupling

using a gate charge. This is the reason for the absence of a supercurrent (similar to the

impossibility in the normal state to suppress the Coulomb gap in this array completely) and for the

absence of the 20 ~V resonances. Again at the Cooper pair gap the current increases because of

the possibility of CPT alternating with quasiparticle mnneling. The current peaks at multiples of

the BCS gap are, as for the double junction, probably a result of the combination of CPT with

quasiparticle tunneling with a rate determined by the normal state resistance. Finally, in the case of

the array of Fig. 2b, Ej=I.4 EC. Therefore all states with Cooper pairs on the central islands are

mixed and there is strong coupling across the array. At zero voltage the Cooper pairs can transfer

coherently through the complete chain.

In conclusion we have observed features of localization of the charge on Josephson junctions

due to small capacitance. The charge transfer unit is 2e, but quasiparticles also play a role. For

Ej>Ec coherent mixing of the Cooper pair states can occur despite the still appreciable charging

energy, resulting in a supercurrent. In a double junction coherent Cooper pair tunneling is

modulated by charging of the central island through a gate voltage.

We are much indebted to D.V. Averin, M.H. Devoret, D. Esteve, M. Peters, U. Geigenmüller,
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ABSTRACT

We describe behavior of charges in 2-dimensional arrays of normal metal tunnel junctions with

very small capacitance. A Kosterlitz-Thouless-Berezinskii phase transition with unbinding of

charge-anticharge pairs occurs at a transition temperature of about Tc=e2/8rtCkB, with C the

junction capacitance. We calculate the influence of tunneling conductance. Tc is reduced with

increasing conductance, no transition occurs for junction conductance above (14 k£2)-1. In the

superconducting state a similar transition occurs at a 4 times higher Tc. We present first

experimental results on the conductive transition of an array in the normal and superconducting

states.
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With modem lithographic techniques it is possible to fabricate metal-insulator-metal tunnel

junctions with an area below (100 nm)2, and consequently a capacitance of less than 10-15 F.

When one electron crosses the tunneling barrier, the charging energy EC = e2/2C is about 1 K and

cannot be neglected at low temperamres. This has given access to a new area of mesoscopic

physics. A series of effects has been predicted theoretically, some have recently been observed. A

review is given by Averin and Likharev1. Most experimental effort has been directed at single

junctions, circuits with 2 or 3 junctions and longer linear arrays. Only one experimental paper2

has appeared on fabricated 2D arrays of small junctions. In that paper a transition is reported,

similar as seen in granular films, between insulating and superconducting behavior at T=0 for

samples with a normal state sheet resistance above or below the quantum resistance. A large

number of theoretical papers have been devoted to this subject3. In the present article, we discuss

a different aspect of 2D arrays: for certain reasonable values of the parameters the interaction

between single charges on islands depends logarithmically on their separation. A real Coulomb

gas with 2D interaction can be realized, and a Kosterlitz-Thouless-Berezinskii (KTB) phase

transition4 should occur at a critical temperature Te. Below Tc, only bound charge-anticharge palts

are present, above Tc free charges +e and -e are generated. We calculate the influence of

dissipation on this charge unbinding transition. It leads to a suppression of Tc when the tunnel

junction resistance is lower than the quantum resistance. As we will discuss later, present day

techniques only allow fabrication of samples in which the logarithrnic interaction extends over a

limited number of cell distances (10-100), with a consequent rounding of the transition. In the

superconducting state a similar transition is expected at a 4 times higher temperature, where bound

+2e / -2e pairs unbind. The possibility of a charge KTB transition in superconducting 2D granular

materials has been indicated by Sugahara and Yoshikawa5 and by Widom and Badjou6.

Single electron charge solitons in 1D chains have been discussed in detail by Averin and

Likharev1 and others7. A simple exact solution is available for the dependence of the island

potential on position. When the nearest neighbour capacitance is C and the self-capacitance of an

island is Co, the screening length is L=(C/Co)1/2. When A is small, the solitons are independent

for low density. Solitons repel/attract each other when they have equal/opposite charge. We adopt

a similar picture for the 2D array, concentratìng on the behavior within the screening length. It

should be noted that the 1D array does not show a phase transition at a f’mite temperamre.

Consider a square 2D array of small tunnel junctions (see Fig. 1) with capacitance C,

connecting ’islands’ (x,y) with their nearest neighbors at distance 1 (lengths are dimensionless).

Each island in addition has a capacitance Co to ground. The non-nearest-neighbour elements of the
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Fig. 1. Top: Approximation scheme of a square 2D network. Tunnel junctions are

represented as crossed capacitances. ’Islands’ are positioned at integer values (x,y).

Bottom: Schematic distribution of charges in the neighborhood of a charge-anticharge pair.

Only two islands in the picture contain a net charge.

capacitance matrix are neglected. The electrical potential of island x,y is indicated as (I)x,y. The

charge distribution for the case of a positively charged island near a negatively charged island is

schematically indicated in Fig. 1. The charge on island x,y is equal to:

qx,y = Co~x,y + C(4~x,y - ~x-l,y - ~x+l,y - ~x,y-1 - ~x,y+l).
When qo,o = e and all other qx,y are zero, the potential for r=(x2+y2)1/2 >> 1 can be

approximately solved in a quasi-continuous approximation from V2~(r) - (Co/C)~(r) = 0, with

the solution:

¯ (r) = ot Ko(r/A) , A = (C/Co)a/2 (1)

The modified Bessel function Ko(r/A) falls off exponentially for r/A >> 1. For r/A << 1 it is

approximately equal to -In (r/A). In this regime we have: ~(r) = - o~ In (r/A), which is the same

potential as for the 2D Coulomb gas. From Gauss’s law in the 2D medium with effective dielectric

¯ constant C we find o~=e/2~tC. The free energy of a pair of charges +e and -e at a mutual distance r,
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for l<<r<<A, is equal to

Up = 2~core + (EcJ~) In r (2)

The constant 2gcore is the free energy of a pair with separation 1 and includes an entropy term.

Without the latter it has a value of about 0.42 Ec. The form of (2) is the same as for vortex-

antivortex pairs in the 2D X-Y model4 or in arrays of superconducting Josephson junctions8. The

ratio between gcore and the prefactor of the logarithmic terra in (2) is also very similar to the ratio

in those systems. A KTB phase transition occurs at a temperature:

kBTc = 1Ec (3)
4rt~

where ~ is a non-universal constant slightly larger than 1. Above Tc, free charges of either

sign, +e, will be present. Near Tc, their density should be given by the well-known square root

cusp formula: ne = K exp{-2b(T/Tc-1)-1/2} where K and b are constants of order 1.

Above we concentrated on the interactions between the charges. We did not account explicitly

for the tunneling of electrons between the islands, except that we assumed that it establishes the

equilibrium charge distribution. However, if the tunneling conductance, characterized by the

parameter C~T = (h/4e2)/RT where RT is the junction resistance, is not small this picture is no

longer sufficient. We can investigate the influence of arbitrarily strong tunneling by means of the

rnicroscopictheory9. partition function Z = ~.l~IDq0i exp{- A[q0] } can be expressed as a pathThe
integral over the fields q~i, which are related to thé e~lectric potential by dq~i/dt = e~i. The action is9

1
"d’l;(u.~~iJ)2 - (4)

The f’trst term represents the charging energy (here for simplicity we drop the self-capacitance

and put ti = 1, 13=l/kBT), the second is due to the tunneling. The islands are labeled by the

subscripts i, and (Pij = q0i- q0j refers to nearest neighbors. The dissipative kernel is
c~(’t ) = C~T[1~sin(rt’t/13)]"2. The fields q0i are conjugate to the charges and the limits of the in-

tegration in the partition function depend on the allowed charge states of the system. Since here the

total charges on the islands are quantized the integrals include a summation over the winding num-

bers q0i(13) = q~i(0) + 2rmi. To proceed we decompose the phase as �0i(’c) = q0i(0) + t~i(’t) + 2rmi’t/13

where ~i (0) = t~i (13) = 0. In lowest order we consider the charging energy only. The winding
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number contribution then leads to the so called "Discrete Gaussian Model" (DGM). This model

exhibits the KTB transition at the critical temperature given by (3). This result was also obtained

(by a different method) in reference 6 where the case of a 2-D Josephson array was considered.

The present method allows us to extend the analysis to evaluate the influence of the dissipation by

tunneling on the transition temperature. Details of the calculations will be presented elsewhere10.

For small ~T the dissipation can be treated perturbatively. The first order correction to the

transition temperature is:

Tc(C~T) = ( EcJ47t~c ) ( 1 -0.1C~T) (5)

On the other hand, for strong dissipation Tc is almost reduced to zero. In this limit it is possible

to map the problem onto the ’absolute solid on solid’ (ASOS) model11, in which the coupling

constant (in the limit T ~ 0) is proportional to O~T. The critical value of dissipation determined

from Monte Carlo calculations12 is:

0~T,crit = 0.45 (6)

Above this critical value the Coulomb gas is always in the disordered phase. All roughening

models (such as the DGM and ASOS models) belong to the same class of universality so that the

transition is of the KTB type everywhere in the phase diagram (Fig. 2). The value 0.45

corresponds to a critical junction resistance of 14 k~.

The mobility of the charges is determined by the tunneling rate in the junctions. Applying the

’global’ rules, where the energies of the whole system before and after tunneling count, in a large

system at low density the charge energy is independent of position and the charges should be

mobile. Without driving voltage, they will diffuse around. With a voltage V over the length L of

the array, the net tunneling rate is rt=(eRT)-I(V/L), as long as L<<A. This leads to a current

I=neWert, where W is the array width. Consequently the conductance of the whole array is:

G = (W/L) RT-lne = (W/L) RT-1 K exp {-2b/(T/Tc-1)1/2} (7)

Below Tc, G=0. Above Tc, the conductivity should start to rise according to eq. (7). In

practice, the screening length A or the array size wìll limit the scale over which charge-anticharge

pairs exist. To have an ideal KTB transition, one needs conditions in whìch the logarithm of the



charge unbinding transition 139

dipoles

free charges

\
\
\

!
0.45

Fig. 2. Phase diagram of the normal metal tunnel junction array. Tc is the transition

temperature, ~T=(ó.45 k£2)/RT. Values of Tc have been calculated on both axes and close to

the temperature axis.

pair separation can be much larger than 1. For finite array size or finite screening length, the

transition will be rounded-off.

Due to the complementarity of phase and charge as well as the similarity of the Hamiltonians

involved, a high degree of correspondence exists between charges in arrays of low capacitance

superconducting or normal metal tunnel junctions and vortices in arrays of superconducting

junctions where charging effects can be ignored. In classical two-dimensional Josephson junctions

arrays, a KTB transition occurs where vortex-antivortex pairs dissociate. The resistance is zero

below Tc and grows with a square root cusp equation similar to eq. (7) above Tc. Voltage,

conductance and charge are replaced by current, resistance and vortex.

When the potential of both end electrodes is increased to Vg with respect to ground (Vg is

much larger than V used for measuring G) and the array is shorter than A, the capacitive coupling

to ground leads to an induced charge CoVg on each island. The effect of this induced charge is a

’frustration’, similar to the frustration induced in classical Josephson junction arrays by a

perpendicular magnetic field. There f is equal to the flux per cell divided by the superconducting

flux quantum tg2e. In the 2D charge system the frustration is

f= CoVg/e (8)

The properties of the array should be periodic in f with period 1. In practical fabricated arrays
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random fractional charges will sometimes be induced on islands by trapped charges in the barriers

or on the film surfaces. Their presence leads to a random initial additional value of f for each

island.

In the superconducting state, if there are no quasiparticles, the unit of charge is 2e and the

charging energies are larger by a factor 4. This is also true for the KTB temperature, which

should now be: kBTcs = Ec/(rtec). Because of the presence of Josephson tunneling, and because

the charges have equal energy on all islands, the charges will not be localized. However, the

calculation of the conductance in the highly correlated superconducting state is more complicated.

Also the influence of dissipation on Tcs is different from the normal state case. Widom and

Badjou6 previously indicated the possibility of a charge-KTB transition in granular

superconducting films, and gave the same (unrenormalized) transition temperature. From the

correspondence with classical 2D Josephson junction arrays, Sugahara and Yoshikawa also

qualitatively predicted the charge transition in superconducting films. It is clear that for large

Josephson coupling energy Ej, the superconducting phase coherence dominates at low

temperatures and the resistance is zero. When Ec >> Ej, on the other hand, the conductance is

zero at low T. This implies that a zero temperature transition should occur between a

superconducting and an insulating phase when EC is of order Ej.This is exactly the type of

transition that we reported on in reference 2, which had to be studied by fabricating a series of

samples with varying resistance and Ej. In those samples that become insulating at T=0, we expect

the charge-pair-unbinding transition to occur when the temperature is increased to Tcs.

We have experimentally investigated this transition in an aluminum array with (100 nm)2

junctions, an island size of about (0.5 l.tm)2 and a cell size of (2 ~m)2. The junction resistance RT

is 15.3 kfL The array length is 190 cells, the width 60 cells. We estimate the self-capacitance to

ground to be about 3-10-18 F. The junction capacitance is near 10-15 F, so A is about 18 cells.

The array is considerably larger than A, which should lead to significant rounding of the

transition. According to Eq. (3) the normal state Tco should be near 60 mK (for ec about 1.2). For

this array, with a junction resistance such that ST is just above the critical value (6), we expect the

normal state transition temperature to be considerably reduced below Tco. For the same sample,

the conductance in the normal state and in the superconducting state is given in Fig. 3. The normal

state is achieved by application of a 3 T magnetic field. As shown, the conductance is zero at low

temperatures and increases sharply above about 20 mK in the normal state and 160 mK in the

superconducting state, clearly showing the ’conductive transition’.

We consider the value of the transition temperature in the normal state to be in good agreement
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Fig. 3. Measured conductance of an array of (lOOnm)2 aluminum tunnel junctions, 190 cells

long and 60 cells wide. N is in the normal state (magnetic field of 3T applied), S in the

superconducting state.

with the theoretical prediction, including effects of dissipation. The functional dependence of G on

T does not follow the square-root cusp dependence, due to the limited screening length. The

transition in the superconducting state at 160 mK is to be compared with the theoretical value Tcs,

about 240 mK without taking dissipation into account. It appears from the experiment that the

influence of dissipation is smaller in the superconducting state (no theoretical calculation is

available as yet).

We want to draw attention to the remarkable fact that the conductance is orders of magnitude

smaller in the superconducting state, compared with the normal state. This directly demonstrates

that charging effects are dominating. We expect that it is possible to fabricate arrays with smaller

islands and an order of magnitude smaller junction capacitance. The increased screening length

will allow a closer test of the theory.

We thank K.K. Likharev, U. Geigenmüller and H.S.J. van der Zant for discussions. This

research was supported by the Foundation for Fundamental Research on Matter FOM.
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CHAPTER 9

CHARGING EFFECTS AND QUANTUM COHERENCE IN REGULAR
JOSEPHSON JUNCTION ARRAYS

L.J. Geerligs, M. Peters, L.E.M. de Groot,(a) A. Verbruggen,(a) and J.E. Mooij

Department of Applied Physics, Delft University of Technology

P.O. Box 5046, 2600 GA Delft, The Netherlands

ABSTRACT

2-dimensional arrays of very small capacitance Josephson junctions have been smdied. At low

temperatures the arrays show a tmnsition from superconducting to insulating behaviour when the

ratio of chargìng energy to Josephson coupling energy exceeds the value 1. Insulating behaviour

coincides with the occurrence of a charging gap inside the BCS gap, with an S-shaped I-V

characteristic. This so far unobserved S-shape is predicted to arise from macroscopic quantum

coherent effects ìncluding Bloch oscillafions.
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In the last few years the effects of the charging energy in small Josephson junctions have been

the subject of intensive theoretical study.[1] As noted by seveml authors [2] experiments on very

small junctions can provide important information about the validity of quantum mechanics on a

macroscopic scale. Fmm microscopic theory it bas been derived [3] that a Josephson junction can

be described as a quantum particle of mass fi2/8Ec in a periodic potential -Ejcos(~). Here the

charging energy Ec~=e2/2C, C is the capacitance of the junction, Ej is the Josephson coupling

energy anti ~) is the phase difference across the junction. With increasing ratio x--Ec/Ej the

quantum mechanical behaviour of the junction (delocalization in phase-coordinate space) should

become more noticeable. So fat only low x effects, i.e. macroscopic quantum tunneling and

energy level quantization,[4] have been observed convincingly. For high x the behaviour of a

junction should be govemed by a band energy spectrum. Extemal current causes a sweep of the

junction Bloch state through this band spectrum. For increasing current the voltage is

subsequently dominated by single electron tunneling, Bloch oscillations anti finally Zener

tunneling, resulting in a characteristic S-shape of the I-V curve.J5] Although high x junctions

have been fabricated before,[6-8] this S-shape was not observed. Yoshihiro et al. [9] reported on

microwave-induced voltage steps in granular superconducting films which they interpreted as due

to Bloch oscillations. Owing to the undefined nature of their samples this interpretation bas not

been generally accepted. Iansiti et al. [7] find in superconducting junctions a knee in the I-V

characteristic which may be related to the above effects. The knee only occurs when Ej is

suppressed by a magnetic field.

In this letter experiments are reported on two-dimensional arrays of well-defined high x

junctions that prominently exhibit the predicted current-voltage dependence. We consider this as

the clearest observafion so far of macroscopic quantum coherent effects. The prominent negative

slope is also a manifestation of the more general phenomenon of Bloch oscillations.

In addition the arrays provide the opportunity to test the effects of charging energy on

coherence in 2-dimensional systems. Generally quantum fluctuations of the phase destroy global

superconductivity for high x.[10] Experiments on granular films [11] suggested that apart from

the parameter x the junction dissipafion, i.e. coupling to external degrees of freedom which is

proportional to the quasiparticle conductance, has a strong influence on macroscopic quantum

effects. It appeared that whether or not a granular film became superconducting depended on

dissipation only, and not on x. In this letter we compare our experimental results with predictions

of phase diagrams for 2-D systems.[10,12-14] Owing to the fabrication by nanolithographic

methods, reliable esfimates of Ej and E¢ are available and percolation effects are absent. In short,
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results for T=0 show a phase transition from insulafing behaviour at high x to superconducting at

low x, with at most a small dependence on dissipation. Preliminary results were published in Ref.

15.

The junctions in the arrays are arranged in a square network. The arrays are 190 junctions long

and 60 junctions wide. The junctions are made of aluminum, and have an area of 0.01 or 0.04

I.tm2. The area of the aluminum islands is approximately 1.9 I.tm2. Since we found shielding of

magnetic and electrical interference to be critical we give some details of our experimental setup.

The experiments on the arrays in the superconducting state were performed inside a magnetic

shield. A magnetic field of 4.1 G corresponded to a flux quantum O0=h/2e per unit cell. (The area

of the elementary cell is 4.9 ktm2.) The typical remanent field was between 0.04 and 0.004 G. In
this paper the field is indicated as the frustration f, the flux per cell divided by ~0. The leads to the

arrays were filtered at the entrance to the cryostat with rfi feedthrough f’flters. At mixing chamber

temperature the leads were filtered by RC-filters and microwave filters [4] before entering the

electfically shielded case containing the arrays. For recording the charging gap, in a separate

experiment we put 10 Mf~ resistors in the leads close to the arrays. All the measuring methods

were standard except for the addition of analog optical decoupling between current

source/preamplifier and the rest of the equipment.

As the critical current was too smal to be measured directly, we calculated Ej with Ic given by
the Ambegaokar-Baratoff equafion, i.e. Ej=rttiAJ4e2Rn at zero temperature, using experimental

values of the normal state resistance Rn and the critical temperature Te and assuming

A(0)=l.76kBTc. Results on larger single junctions justify this procedure.

For T>Tc or in a large magnetic field, i.e. in the normal state, the arrays show the effect of

charging energy as the ’Coulomb gap’ in the I-V curve. This is a voltage offset of magnitude e/2C

for a single junction and Le/2C for an array, where L is the length of the array. For details we

refer to Ref. 15. From this offset the capacitance is calculated. It is about 1.1 fF for a 0.01 I.tm2

junction, and proportionally larger for the larger juncUons.

Fig. 1 shows R(T) curves for several arrays in zero magnetic field, measured with a lock-in

amplifier anti current bias. The current was chosen small enough that the resistance was linear for

increasing current, typically 0.1 to 1 nA. The resistance given is the measured resistance divided

by the length/width ratio 3.14 of the array. For the five arrays shown, EC~0.84 K is constant and

Rn varies from 4.8 to 36 kfL Since the critical temperature of the aluminum was also

approximately constant, Tc=1.37 K, this causes x to vary from 0.53 to 3.9. In the figure caption

the relevant data are given for each array. The arrays with the smallest x, which are not all
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Fig. 1. R(T) curves for arrays of 0.01 Wn2 junctions (Ec=0.84 K). Rsq is the resistance

divided by the length/width ratio 3.14. Each solid curve corresponds to an array with a

particular normal state resistance Rn in zero field. The dashed curve is for array D with

f=l/2. Values of Rn in kl’2, Ej/kB in K and x=Ej/Ec are: sample A: 36, 0.22, 3.9; B: 15.3,

0.51, 1.8; C: 14.1, 055, 1.5; D: 9.7, 0.80, 1.0; E: 4.8, 1.6, 0.53.

included in Fig. 1, show the Kosterlitz-Thouless transiUon in the form of the square-root cusp

behaviour R(’t)=Rqpexp{-b/( "t-’tc)0.5},[16] where "t=kT/Ej(T), and Rqp is the temperature

dependent quasiparUcle resistance. The R(T) curves for the arrays with significant charging

energy show deviations from a Kosterlitz-Thouless transition. For arrays with x _~ 1.0 (D and E

in Fig. 1) the resistance decreases to zero within experimental accuracy (about 0.01 f2), but the

transition temperature is significantly lower than the Kosterlitz-Thouless temperature. For array

C, with x=l.5, the resistance decreases in a similar way down to 0.1 K. At that temperature the

’supercurrent’ in the I-V curve becomes noisy with voltage spikes, the effect getting worse for
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lower temperature. It is therefore impossible to attribute a resistance to this array below 0.1 K.

Arrays with still higher x show at low temperatures a strongly increasing resistance with no sign

of flattening off.

In earlier experiments [ 15] we found a flattening off of the resistance at low temperatures. This

feature has completely disappeared with the addition of the special cryogenic microwave filtering

to the experiments.

At first sight all I-V curves show the same general features, similar to those of classical arrays.

Fig. 2a gives an example for x=3.9 (array A). For increasing current there is first a supercurrent-

like part. Then the voltage increases from near zero to a value equal to the length of the array times

the single junction BCS sum gap. Finally, after the gap edge, the voltage increases with the

normal state resistance of the array.

The new phenomenon of these quantum arrays, with x>l, is the existence of a small second

gap, in the supercurrent-like part of the I-V characteristic at low temperatures. This gap, of order

1 mV, is simated inside the BCS gap (80 mV in our 190 junctions long arrays). In the following

we indicate it as the charging gap. Fig. 2b shows it for T=20 mK. At this temperature the

resistance in the gap is larger than 5 G~. The occurrence of the charging gap is responsible for

the strong increase of resistance at low T for the high x arrays in Fig. 1. In arrays with EC~I K

the charging gap becomes visible below 0.5 K, for EC=0.4 K below 0.2 K. Below 0.1 K the gap

edge of the high x arrays develops a negative resistance region. In an array with Hall contacts we

verified that the gap is present proportionally in both halves of the array. This indicates that the

gap is distributed over the length of the array, instead of being localized in certain crossrows. The

charging gap is present in the I-V curves of the highest x arrays at zero magnetic field. It is also

present in arrays with smaller x (down to 0.5) at low temperatures if the array is frustrated in a

magnetic field. For frustrated arrays the gap can cause quasi-reentrant behaviour of the R(T) curve

(dashed curve in Fig. 1). No quasi-reentrant behaviour was found in zero field. The width of the

charging gap is modulated by the frustration with period 1. For large fields the width gradually

increases and the gap changes into the normal state Coulomb gap as the superconductivity in the

islands is destroyed. This behaviour is shown in Fig. 3.

Macroscopic quantum behaviour of single high x junctions is predicted to yield an S-shaped I-

V curve because of band spectrum effects.[5] For low current quasiparticle tunneling confines the

junction to the centre of the first Brillouin zone, and the I-V curve follows a high resistance

branch. For higher currents Bloch oscillations, which can be regarded as coherent Cooper pair

tunneling, become important, decreasing the mean voltage. The resulting low current part of the
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Fig. 2. I-V characteristic for sample A at 20 mK. (a). Iarge scale showing the BCS sum gap

of the array, with a small ’supercurrent’. (b). Small current region (box in (a)) with voltage

measured over 95 junctions, showing effects of Bloch oscillations and Zener tunneling. The

inset shows caleulated I-V curves [17]for a single junction (dashed curve) and of a circuit

of one junction parallel to two junctions (solid curve). The junction parameters are chosen to

be the estimated parameters for sample A. The axes are in arbitrary units but identical for the
two calculated curves.
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Fig. 3.Voltage for I=lO pA in array C. This voltage is indicative for the charging gap and

oscillates with a period of one flux quantum per cell.

I-V curve is known as the ’Bloch nose’. For qualitative comparison, the inset of Fig. 2b shows

calculated I-V curves [17] for a single junction and a series/parallel arrangement of three

junctions. The trend of sharpening-up of the Bloch nose with increasing number of degrees of

freedom is consistent with the experimental I-V curve. A quantitative comparison will have to wait

for a more similar theoretical system.

The superconductor-insulator transition of Fig. 1 can be compared with theory. Quantum XY

models which do not include dissipation [10] generally predict a transition from superconducting

to non-superconducting behaviour near x=l. Several theoretical calculations [12] have shown that

quasiparticle dissipation significantly influences superconductivity in Josephson junction arrays.

Quasiparticle tunneling in addition leads to a renormalization of the capacitance [18,13,14] which

even at low temperatures depends on the normal state resistance. In our junctions the subgap

resistance is very high so that quasiparticle dissipation is negligible. This leaves only capacitance

renormalization to be considered in addition to bare charging effects.

Array D, clearly showing superconducting behaviour, has a value x= 1.04, calculated from the

normal state Coulomb gap. Possibly this Coulomb gap is suppressed by heating.[15] We estimate

that x is between 1.0 and 1.3. Similarly, array C has 1.5<x<2.0. It appears to go

superconducting but develops the above described noisy supercurrent below 0.1 K. Array B, the
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first insulating sample, has 1.8<x<2.5. So, the experimental transition is close to x=1.5. The

variation in the prediction for the critical x from various bare charging theories is large and x=l.5

lies in their range. In contrast, the transition observed in granular f’tlms [11] occurred at x>>l.

The phase diagram of a 2-D array of Josephson junctions, influenced by capacitance

renormalization, was evaluated by Chakravarty et al. [ 13] and Ferrell and Mirhashem. [ 14] The

experimental results for granular films, where the capacitance can only be estimated, are in

reasonable agreement with that phase diagram. In our arrays the capacitance is well known.

Applying the phase diagram of Ref.13, the transition should occur for Rn=13 kg2. This is in

excellent agreement with our experimental data. The same holds for the similar treatment in Ref.

14.
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Geigenmüller and H. Jaeger for valuable discussions. This work was supported by the Dutch

Foundation for Fundamental Research on Matter (FOM).
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CORRECTION DUE TO CAPACITANCE RENORMALIZATION ON THE
SUPERCONDUCTOR-INSULATOR PHASE TRANSITION.

In a comment to the preceding paper,[1] Ferrell and Mirhashem [2] considered the effect of

capacitance renormalizafion on the exact value of x=Ec~j at which the phase transiUon between

superconducUng and insulating behavior should occur, more thoroughly than we did in the last

paragraph. Virmal quasiparticle tunneling screens the Coulomb interaction of the Cooper pairs, to

an extent depending on normal state resistance, and thus results in a larger effective capacitance.

As quoted in the preceding paper, theory for "bare" charging effects predicts a threshold x

approximately equal to 1. This is a general statement that applies both to theories that take into

account Coulomb energy due to charging of the self-capacitance and theories that take into account

charging of the nearest-neighbour capacitance. For the latter possibility (i.e., only nearest

neighbour charging), Ferrell and Mirhashem calculated that in mean-field theory the threshold

value for ECJEJ is approximâtely 1.54,[3] in a second order expansion in 1/z (z--4 is the number

of nearest neighbours). However, we want to note that they assume the effective nearest-

neighbour capacitance to be a factor two smaller than the capacitance that is experimentally

measured in the Coulomb gap.

This calculated threshold value is close to the experimentally observed one. The point that

Ferrell and Mirhashem make is that the capacitance renormalizaUon due to quasiparticle tunneling

[4] accounts for the small deviation between the two. If the superconducting phase difference

varies only slowly in time, this correction takes the forto of an extra capacitive charging term in

the imaginary-time action of the system,

3h
AC =

64ABCSRn

is added to the nearest neighbour capacitance, and lifts the transition line somewhat from array C

(superconducting), to precisely midway arrays B and C (insulating and superconducting,

respectively). We advise not to draw any conclusions fl:om this marginal effect. We fully agree

with the authors that further miniatudzation is necessary to establish the role of virtual

quasiparficle tunneling and think that this would yield very interesting information.
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SUMMAR¥

This thesis presents an experimental study of the effects of a small capacitance on the electrical

conduction in systems of small tunnel junctions. In zero magnetic field we study the

characteristics of the junctions with superconducting electrodes. By applying a magnetic field the

superconductivity of the electrodes is quenched and the normal state characteristics can be studied

for the same devices, in the same setup, without thermal cycling the sample.

In normal and in superconducting state the characteristics of arrays of high resistance junctions

show clear Coulomb blockade of single electron and Cooper-pair tunneling, respectively. Due to

incorporation of the junctions in arrays, stray capacitance is suppressed and the junction

capacitance turns out to be close to the simple geometrical parallel-plate value. The results can in

normal as well as superconducting state be interpreted by classical charge dynamics. In the normal

state, there is detailed quantitative agreement with simple ("orthodox") theory, based on thermal

equilibrium in the junction electrodes and first order permrbation theory for electron tunneling. In

the superconducting state there is no such quantitative agreement, but a qualitative description

based on Coulomb blockade of Cooper-pair tunneling is possible. For single junctions Coulomb

blockade is strongly suppressed due to stray capacitance shunting the junctions. The only

remaining feature is a voltage offset in the current-voltage characteristic at high currents. By

making connection to these single junctions via arrays of similar small junctions, in the normal

state a clear Coulomb blockade is observed. In the superconducting state the same devices do not

show indications of classical charge dynamics.

In the normal state, a frequency-controlled turnstile-device for single electrons has been

operated, based on a small array of high-resistance junctions. Applying an alternating voltage to a

gate causes one electron to be transferred through the device per cycle. It can yield a high-accuracy

charge or current source. Limitations to the accuracy are discussed.

Some possible mechanisms to operate a turnstile-device for Cooper-pairs are discussed, with

preliminary results. Part of the importance of testing these mechanisms is that they probably

provide the better means to test hypotheses on Cooper-pair tunneling and dissipative band

dynamics.

The effects of finite barrier transparency on charge dynamics are studied for junctìons with

well-defined capacitance, i.e. those incorporated in arrays. In the normal state the suppression of

Coulomb blockade due to quantum charge fluctuations, increasing with decreasing tunnel

resistance, is in quantitative agreement with theory. For tunnel resistances high compared with the
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resistance quantum Rq=h/4e2~6.5 kf~ the charge behaves semi-classically. Charge leakage (i.e.,

violation of the Coulomb blockade) is possible due to successive tunneling events through the

junctions in the array, and can be described by higher order perturbative treatment of electron

tunneling. For tunnel resistances around or below Rq a strong suppression of Coulomb blockade

occurs, due to quantum charge fluctuations. The small-signal resistance can be evaluated with the

Kubo-formula. In the superconducting state the ratio of Josephson coupling to chargíng energy is

crucial for the sample characteristics. If the Josephson coupling is the larger one, zero-voltage

transfer of Cooper pairs is possible. If the charging energy is the larger one Coulomb blockade is

observed, but the probability of zero-voltage Cooper-pair tunneling through double junctions is

still significant, supposedly only decaying linearly in this ratio. In general, for junction arrays

with superconducting electrodes if both energies are comparable there is a complicated

combination of features belonging to classical phase dynamics (such as sensitivity to an

environmental resonance of the Josephson frequency) and classical charge dynamics (such as gate

voltage modulation of the Cooper-pair tunneling rate).

The excess charges on the normal metal electrodes of a 2-dimensional junction array interact as

a two-dimensional Coulomb gas. They are expected to show a Kosterlitz-Thouless charge

unbinding transition at a critical temperature scaling with the charging energy. However, if the

junction conductance exceeds a critical value 0.45 Rq-1 charge pairs unbind even at zero

temperature because of quantum charge fluctuations. Preliminary results are in rough agreement

with this theory. In arrays with superconducting electrodes the ratio of Josephson coupling to

charging energy is important for the charge fluctuations. There is a duality between excess charges

and vortices in these arrays. If the Josephson coupling dominates, the vortices are bound at low

temperature and global phase coherence in the array yields a superconducting state. If the charging

energy dominates, charges are bound and an isolating state results at low temperature. The

crossover occurs at the predicted value of the ratio of the two energies, possibly even showing the

effect of capacitance renormalization due to quasiparticle tunneling.

In the charging-energy dominated arrays the moving excess charges are expected to repel each

other and keep at regular distances, causing each junction to be current biased. This results in the

I-V characteristic showing a characteristic negative differential resistance: quasiparticle tunneling is

replaced by coherent Cooper-pair tunneling (Bloch oscillations) as the current increases. The

significance of this observation lies in the quantum behavior of the macroscopic degrees of

freedom which describe the junctions.
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In dit proefschrift wordt een experimenteel onderzoek gepresenteerd naar de effecten van een

kleine capaciteit op de electrische geleiding in systemen bestaande uit kleine tunnel-juncties. In

afwezigheid van een magneetveld kunnen de eigenschappen van de juncties met supergeleidende

electroden bestudeerd worden. Door een magneetveld aan te leggen wordt de supergeleiding in de

electroden onderdrukt, zodat de eigenschappen van dezelfde juncties in normale toestand

onderzocht kunnen worden, in dezelfde opstelling en zonder te hoeven opwarmen.

Zowel in normale als in supergeleidende toestand vertonen netwerken van juncties met hoge

weerstand duidelijk Coulomb blokkade van respectievelijk elektron- en paar-tunneling. Door de

juncties in een netwerk op te nemen is het mogelijk parasitaire capaciteit te onderdrukken. De

capaciteit van de juncties blijkt dan de waarde te volgen die wordt verwacht voor een vlakke-plaat

condensator van de junctie-afmetingen. In zowel normale als supergeleidende toestand gedraagt de

junctie-lading zich als een klassieke variabele. In normale toestand is er kwantitatieve

overeenstemming tussen experiment en de eenvoudige theorie die thermisch evenwicht in de

electrodes veronderstelt, en de electron tunneling in eerste orde storingsrekening bepaalt. In de

supergeleidende toestand is een dergelijke kwantitieve overeenstemming afwezig, maar de

resultaten kunnen wel kwalitatief begrepen worden op een basis van Coulomb blokkade van paar-

tunneling. Voor enkele (d.w.z. niet in een netwerk opgenomen) juncties staat een grote parasitaire

capaciteit parallel aan de junctie capaciteit, waardoor Coulomb blokkade onderdnkkt wordt. Alleen

een verschuiving van de stroom-spannings-karakteristiek in spannings-richting wijst nog op

Coulomb blokkade. Als een enkele junctie doorgemeten wordt via netwerken van vergelijkbare

kleine juncties, is in de normale toestand wel duidelijk Coulomb blokkade aanwezig. In de

supergeleidende toestand kan in ieder geval niet duidelijk geconcludeerd worden dat de

junctielading zich klassiek gedraagt.

Er is aangetoond dat in de normale toestand een schuifregister voor enkele electronen kan

worden gemaakt met deze kleine juncties. Een wisselspanning bepaalt de passage van electronen,

tot precies één electron per periode. Op deze wijze kan een stroom- of ladings-generator van hoge

nauwkeurigheid gecreëerd worden. Wat de vereisten voor de hoge nauwkeurigheid zijn wordt

behandeld.

Er zijn verschillende ideeën om een schuifregister te laten werken met paartunneling in de

supergeleidende toestand. Voorlopige metingen geven goede hoop op realisatie hiervan. Een

interessant aspect van deze experimenten is de mogelijkheid die ze bieden om veronderstellingen
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over paar-turmeling en bandbeschrijvingen van deze systemen te testen.

Voor juncties waarvan de capaciteit goed bepaald is, doordat ze in een netwerk zijn

opgenomen, is het effect van variatie van tunnelbarriëre onderzocht. In de normale toestand wordt

bij dunne barriëres (de schaal om dat aan af te meten is de verhouding van tunnelweerstand tot

quantumweerstand Rq=h/4e2=6.5 k.Q) de Coulomb blokkade onderdrukt; er treden quantum-

fluctuaties van de lading op. De experimenten laten goede overeenstemming met theorie zien. Als

de tunnelweerstand hoog is, is de lading van de junctie bijna-klassiek. Lading lekt door een

netwerk - niettegenstaande de Coulomb-blokkade - in een opeenvolging van tunneling-

gebeurtenissen die volgen uit hogere-orde storingsrekening. Is de tunnelweerstand kleiner dan Rq,
dan wordt Coulomb-blokkade sterk onderdrukt. In dit geval is de weerstand bij kleine excitatie

goed beschreven door de Kubo-formule. In supergeleidende juncties is de verhouding tussen

Josephson koppelings- en ladings-energie doorslaggevend. Is de Josephson koppeling de

grootste, dan is een "superstroom" door paar-tunneling mogelijk. In het andere geval wordt

Coulomb-blokkade waargenomen, maar in dubbele juncties is er nog steeds een mogelijkheid tot

paar-tunneling zonder aangelegde spanning, welke afneemt met afnemende verhouding van de

karakteristieke energieën. Als de energieën vergelijkbaar zijn wordt een gecompliceerde mengeling

zichtbaar van gedrag dat wijst op een klassieke phase en gedrag dat wijst op klassieke lading.

De lading op electrodes van normaal metaal in een 2-dimensionaal netwerk van tunneljuncties,

gedragen zich als een 2-dimensionaal Coulomb gas. Er zou daarom een Kosterlitz-Thouless fase-

overgang moeten plaatsvinden, waarbij ladingen vrijkomen uit een gebonden dipool-toestand voor

temperatuur hoger dan een kritische temperatuur, welke schaalt met de ladingsenergie. Als de

junctieweerstand kleiner is dan Rq/0.45 zorgen quantumfluctuaties voor opbreken van dipolen bij
willekeurig lage temperatuur. Voorlopige resultaten ondersteunen deze theorie. Als de netwerken

supergeleidende electroden hebben, wordt verhouding van de karakteristieke energieën -

Josephson koppelings- en ladingsenergie - belangrijk. De dualiteit tussen vortices en ladingen in

deze arrays helpt bij het begrip. Als de Josephson koppelingsenergie de grootste is, vindt binding

van vortices plaats bij afkoeling, resulterend in een supergeleidende toestand. In het andere geval

worden ladingen gebonden bij afkoeling, resulterend in een isolerende toestand. De overgang

tussen deze twee soorten gedrag is waargenomen bij de voorspelde verhouding van de

karakteristieke energieën, met enige aanwijzing voor het optreden van renormalisatie van de

junctie-capaciteit.

In de netwerken waar ladingsenergie overheerst, bewegen de elkaar afstotende ladingen op

regelmatige afstand, resulterend in een stroomsturing van de juncties in het netwerk. Het resultaat
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is dat de stroom-spannings-karaktedstiek een negatieve differentiële weerstand laat zien: electron-

mnneling wordt verdrongen door coherente paar-tunneling (Bloch-oscillaties) bij toenemende

stroom. Het belang van deze waarneming is dat het quantum gedrag van de macroscopische

junctie-variabelen laat zien.
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