Examining the influence of urban design on cyclist route choice in different weather conditions

Erik van der Wal

Mentors: Kees Maat & Martijn Meijers

Co-reader: Stefan van der Spek

Delegate BoE: Ype Cuperus

Contents

- 1. Introduction
- 2. Methodology
- 3. Results
- 4. Conclusions

Introduction Motivation

- Changing climate and air pollution
- Rising interest in sustainable transportation modes
- Utilitarian cycling to replace car trips
- Expanding the cycling range: electric bicycles
- Governments want to stimulate utilitarian cycling
- Requires understanding of cyclist's preferences
 - What drives cyclists when deciding upon transportation mode?
 - What drives cyclists when deciding upon a route?

Cyclist travel behavior

Main influence:

- Minimization of effort
- Minimization of duration

Cyclist travel behavior

Other influences:

- Factors influencing effort and duration
- Safety
- Individual preferences

Cyclist travel behavior

Weather conditions:

- Main deterrent
- Reduce travel time

Cyclist travel behavior

Weather conditions:

- Main deterrent
- Reduce travel time
- Four main parameters

Problem statement

- Is it possible to mitigate the influence of weather conditions on cyclists?
- Research gap: cyclist route choice in different weather conditions, and determinants for the choice of route

Problem statement

- Is it possible to mitigate the influence of weather conditions on cyclists?
- Research gap: cyclist route choice in different weather conditions, and determinants for the choice of route

Pedestrian route choice:

- Experience of weather conditions heavily affected by urban design
- Pedestrians seek or avoid shelter by the built environment in different weather conditions
- Directly related to exposure to/shelter from weather conditions
- Shelter from buildings and trees

Research objective

Research question

To what extent does the degree of shelter provided by the built environment explain cyclist route choice in different weather conditions?

Case study Noord-Brabant

Development: fast bike lanes

- Connecting larger cities
- Significant investment

Observed travel data: B-Riders

- Bicycle commuters (conventional + electric bicycles)
- Registration of GPS measurements and route info
- Reward: money or points
- Anonymized data

Case study Study area

- Study area: Tilburg
 - For development methodology
 - Mix of urban and rural areas
 - Sufficient travel data

2. Methodology

Breaking down the methodology

To what extent does the degree of shelter provided by the built environment explain cyclist route choice in different weather conditions?

Breaking down the methodology

To what extent does the degree of shelter provided by the built environment explain **cyclist route choice** in different weather conditions?

Route choice Definition

Focal group:

Utilitarian cyclists

Definition

Utilitarian cyclists:

Minimization of effort

Optimal route:

• Shortest route

Definition

Utilitarian cyclists:

- Minimization of effort
- Minimization of travel time -

Optimal route:

- Shortest route
- Fastest route

Definition

Utilitarian cyclists:

- Minimization of effort
- · Minimization of travel time -

Optimal route:

- Shortest route
- Fastest route

Definition

Utilitarian cyclists:

- Minimization of effort
- · Minimization of travel time -

Optimal route:

- Shortest route
- Fastest route

Route choice:

• % divergence from shortest or fastest route

Operationalization

Route model

- 18424 routes
- 322 cyclists
- Majority of observed routes: divergence < 10%

Breaking down the methodology

To what extent does the degree of shelter provided by the built environment explain cyclist route choice in different weather conditions?

Weather conditions

Meteorological factors

Influencing factors based on literature:

Weather conditions

Meteorological factors

- Extra factors based on data KNMI
- Measured at departure of route
- Obtained from three closest weather stations
- Inverse distance weighted interpolation

Main meteorological factors	Additional meteorological factors
Average wind speed	
	Wind direction
Daylight conditions	
Precipitation	
	Fog Ice formation Snowfall
Temperature	
	Solar radiation

Breaking down the methodology

To what extent does the degree of **shelter provided by the built environment** explain cyclist route choice in different weather conditions?

Street climate design studies:

- Shelter from buildings
- Built environment as **urban canyons**
- Metric: height/width ratio of urban canyon
- Minimum ratio to find shelter:
 - Closed canyons: H/W > 0.4
 - Half-open canyons: H/W > 0.8

Street climate design studies:

- Shelter from buildings
- Built environment as urban canyons
- Metric: height/width ratio of urban canyon
- Minimum ratio to find shelter:
 - Closed canyons: H/W > 0.4
 - Half-open canyons: H/W > 0.8

Visibility studies:

- Isovist
- Using more detail to describe built environment geometries
- Set of all **visible points** from a point in space in relation to surrounding environment

Why a new method?

- Many routes through different types of built environment
- High level of detail needed to expose differences in shelter along a route
- Integrate aspects of urban canyon method in Isovist
- Expanded with vegetational shelter (tree density) as a separate factor

Shelter Metrics

- Sampled over the bicycle road network
- Within fixed distance of each other
- Contain elevation value
- Vegetational shelter: tree density

• Rays every 10 degrees

Shelter Metrics

• Find buildings intersecting with ray

Shelter Metrics

- Buildings stored as set of segments
- Both rays and segments stored in parametric form: point(x,y)+direction(x,y)*t
- When ray and segment intersect: (x,y) component will be equal

Shelter Metrics

- Closest intersecting building
- Should provide at least minimum shelter: **distance** < Δh/0.8

Shelter Metrics

• Mean shelter =
$$\frac{\sum_{1}^{n} \frac{Height\ object\ -\ Height\ sample\ point}{Distance\ to\ object\ +\ Height\ delta}}{Number\ of\ rays}$$

• Maximum shelter = $\max \frac{\textit{Height object - Height sample point}}{\textit{Distance to object + Height delta}}$

Shelter Why two factors?

Closed urban canyon:

 High mean building shelter

Shelter Why two factors?

Closed urban canyon:

 High mean building shelter

Open urban canyon:

 Low mean building shelter

Shelter Why two factors?

Closed urban canyon:

 High mean building shelter

Open urban canyon:

 Low mean building shelter

Close to building

- Low mean building shelter
- Substantial shelter from building → Maximum shelter as measure

Shelter

Distribution over study area

Shelter

Mean vs. maximum building shelter

Mean building shelter

Maximum building shelter

Shelter

Aggregation on route-level

- Mean building shelter > 25%
- Maximum building shelter > 50%
- Tree density > 50%

3. Results

Route:

Meteorological variables

Shelter variables

% divergence from shortest or fastest route

Model 1:

factors

Meteorological

Model 2:

Shelter factors

Meteorological Shelter Route: variables variables % divergence from shortest or fastest route

Model 3:

factors

Meteorological

Shelter factors

Results Regression models

Model 4:

 Interactions between

meteorological

and shelter factors

Meteorological Shelter Route: variables variables % divergence from shortest or fastest route

Route: Meteorological variables

Model 5:

 Adaptation of route choice to shelter factors

> % difference between observed and shortest/fastest route

- Mean building shelter
- Maximum building shelter
- Vegetational shelter

Create context:

- Individual characteristics
- Infrastructural characteristics
- Environmental characteristics

Vegetational shelter

Results Influence of weather

Model 1:

- Moderate effects of temperature, windspeed, and cycling during twilight
- No significant effects for fog, precipitation, solar radiation, wind direction, and cycling without daylight
- Barely any routes with ice or snow measurements

Results

Influence of built environment shelter

Model 2:

- Divergence negatively influenced by building and vegetational shelter
- · Cyclists seek for lower degrees of built environment shelter when diverging
- Effects are limited: little variation between observed and shortest/fastest routes
- No clear indication which factor is a better descriptor of building shelter

Results

Influence of built environment shelter

Model 3:

• The effects of meteorological and shelter variables do not change

Model 4:

- No substantial interaction effects between meteorological and shelter variables
- Shelter variables do not explain the effect of weather on route choice

Model 5:

- For three shelter variables: limited influence of temperature and windspeed
- Building shelter mainly explained by infrastructural characteristics
- Tree density mainly explained by environmental characteristics

4. Conclusions

Conclusions

Main findings

Shelter by the built environment **cannot** be considered as an explanatory factor for cyclist route choice in different weather conditions

Conclusions Main findings

Shelter by the built environment **cannot** be considered as an explanatory factor for cyclist route choice in different weather conditions

- Utilitarian cyclists are moderately influenced by weather conditions
- Strong preference for shortest/fastest route
- No divergence to obtain more building or vegetational shelter
- Cyclists did not adapt route choice to degree of shelter based on weather conditions

Conclusions Discussion

- No mitigation of weather conditions through built environment shelter
- Minimization of travel distance/time as strategy to minimize exposure to weather
- Policies should focus on fast travelling
- Mainly based on routes through urban areas
- Boundary problem: majority of routes through city

Conclusions

Future work

- Qualitative research on perception of shelter
- Application on larger study area
- Integrated weather conditions
- Different approach vegetational shelter

Thank you!

References

[1] J. Ansalm Akubue, Effects of Street Geometry on Airflow Regimes for Natural Ventilation in Three Different Street Configurations in Enugu City, 2019.

[2] M. L. Benedikt, To take a hold of space: Isovist and Isovist fields, 1979.