
Extending the
Computing Capabilities
of Neural Interfaces

GPU Integration to the ONIX
Electrophysiology System

A.J.R Bleeker

MSc. Thesis Report

Extending the Computing
Capabilities of Neural

Interfaces
GPU Integration to the ONIX Electrophysiology System

by

A.J.R Bleeker
to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Monday January 27, 2025

Student number: 4713230
Project duration: March, 2023 – September 1, 2024
Thesis committee: dr. ir. C. Strydis, TU Delft, supervisor

dr. D.G. Muratore TU Delft
Prof. dr ir. G. Gaydadjiev, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract
The exponential growth in the scale and complexity of neural recording systems demands increasingly
efficient computational frameworks to manage the vast data generated by modern multi-electrode ar-
rays. This thesis explores the feasibility of integrating Graphics Processing Unit (GPU) acceleration with
the Open Ephys ONIX system to enhance its support for next-generation neural interfaces and compu-
tational algorithms. ONIX, a modular and open-source electrophysiology platform, currently relies on
CPU-based computations that may struggle to meet the rising demands of closed-loop experiments.

This work investigates PCIe peer-to-peer (P2P) communication between ONIX and GPUs to by-
pass CPU involvement, aiming to reduce latency and increase throughput. A secondary data channel
was implemented on the ONIX FPGA, accompanied by a custom kernel driver integrating GPUDirect
with the existing RIFFA driver. Performance evaluations compared unpinned and pinned GPUDirect
transfers to traditional CPU-mediated methods. Pinned transfers reduced transfer times by up to 30%
for small data and 14% for larger data sizes, though significant variance in transfer time was observed.
Application-level benchmarks revealed that GPU acceleration provides advantages for larger data sizes
and higher computational loads but the effectiveness of GPUDirect is limited by ONIX’s PCIe through-
put.

The findings highlight that while GPUDirect offers theoretical benefits, its practical impact is con-
strained by hardware limitations, including the PCIe bandwidth of the ONIX FPGA. This thesis out-
lines necessary hardware improvements, such as higher-speed SerDes modules and advanced FPGA
cards, to fully realize the potential of GPU acceleration in electrophysiology systems. A decision tree
framework is proposed to guide researchers in determining scenarios where GPU and GPUDirect in-
tegration is beneficial. While this study demonstrates the feasibility of GPU integration with ONIX,
GPUDirect integration is currently not a beneficial technology for the ONIX ecosystem.

ii

Acknowledgements
I would like to sincerely thank my thesis advisor, Christos Strydis, for his guidance and constructive
feedback throughout this project. His advice and enthusiasm have been crucial in helping me navigate
to the end of this work.

I am also thankful to the members of the Neurocomputing Lab for their support and insights dur-
ing my time at TU Delft. The collaborative environment and willingness to help made a significant
difference.

To my friends I made at TU Delft and before, thank you for all the good times, fun nights and trips
we made during my studies.

Lastly, I would like to express my gratitude to my family and my girlfriend. Their encouragement,
patience, and understanding have been a constant source of motivation, and I am deeply appreciative
of their support.

A.J.R Bleeker
Delft, January 2025

iii

List of Acronyms
BMI Brain-Machine Interface . 1
CPU Central Processing Unit . 1
GPU Graphics Processing Unit . 1
PCIe Peripheral Component Interconnect Express
API Application Programming Interface . 7
FPGA Field Programmable Gate Array . 5
MMU Memory Management Unit . 12
IOMMU Input Output Memory Management Unit . 12
DMA Direct Memory Access
MSI Message Signaled Interrupt . 13
GPGPU General-Purpose computing on Graphics Processing Units 2
AI Arithmetic Intensity . 41
P2P peer-to-peer . 2
PCA Principle Component Analysis . 1
ONI Open Ephys Network Interface . 5
IMU Inertial Measurement Unit . 6
SD Standard Deviation . 30
FLOPs Floating Point Operations . 41
GFLOPS Giga Floating Point Operations . 41
SMs streaming multiprocessors . 43
BAR Base Address Register . 25

iv

Contents

1 Introduction 1
1.1 Problem statement . 1
1.2 Motivation . 1
1.3 Thesis Goal . 2
1.4 Thesis Outline . 3

2 Background and Related Work 4
2.1 ONIX data acquisition system for ephys experiments . 4
2.2 System Overview . 5
2.3 Application and Devices . 5
2.4 FPGA logic design . 6
2.5 Liboni and API . 7

2.5.1 Initialization . 8
2.5.2 Device interaction . 8
2.5.3 Reading and Writing Data . 8
2.5.4 Driver development for Liboni . 10

2.6 PCIe and Kernel driver . 10
2.6.1 PCIe Bus Organization . 10
2.6.2 Base Address Registers (BAR) Space in PCIe . 10

2.7 Linux Kernel & Memory Spaces . 12
2.7.1 Scatter-Gather and DMA. 13

2.8 RIFFA . 13
2.9 Graphics processing unit . 15

2.9.1 CUDA . 16
2.10 GPUDirect RDMA . 16
2.11 Related work . 17

2.11.1 Ephys Systems . 17
2.11.2 Ephys Software . 18
2.11.3 Direct FPGA-GPU Communication . 18

3 Design and Implementation 21
3.1 Base Case . 21
3.2 Reducing Transfer Steps. 22
3.3 Direct PCIe transfer . 23
3.4 ONIX FPGA-Core Modification . 24
3.5 Linux RIFFA-Kernel Driver Modification . 25

3.5.1 Wrapper Kernel Module . 26
3.6 Liboni Library Update. 27
3.7 Conclusion . 27

4 Performance Evaluation 29
4.1 Experimental Setup . 29
4.2 FPGA testing logic . 30
4.3 Performance of Original System . 31

4.3.1 Results . 31
4.3.2 Conclusion . 32

4.4 Performance of Updated system without GPUDirect . 32
4.4.1 Results . 33
4.4.2 Conclusion . 33

v

vi Contents

4.5 Performance of GPUDirect without Prepinning . 34
4.5.1 Results . 34
4.5.2 Conclusion . 34

4.6 Performance of GPUDirect with Prepinning. 35
4.6.1 Results . 35
4.6.2 Conclusion . 36

4.7 Profiling kernel driver . 38
4.7.1 Results . 38
4.7.2 Conclusion . 38

4.8 Conclusion of performance evaluation . 39

5 Application Scenarios 40
5.1 Implementation of Application Scenarios . 40
5.2 Results . 43

5.2.1 Small Data Transfer, Small Computation . 43
5.2.2 Small Data transfer, Large Computation . 43
5.2.3 Large Data Transfer, Small Computation . 44
5.2.4 Large Data Transfer, Large Computation . 45

5.3 Conclusion . 45

6 Discussion and Future Directions 46
6.1 Cases for Utilizing GPUDirect . 46
6.2 Potential Upgrades to ONIX System Components . 46
6.3 Comparison of GPUDirect Solution to Previous Work . 47
6.4 Conclusion . 49

7 Conclusion 51
7.1 Summary . 51
7.2 Main Contributions . 52
7.3 Future Work. 52

1
Introduction

1.1. Problem statement
In recent years, there has been a significant increase in the number of recorded neurons, mirroring
the trend of the number of transistors in integrated circuits following Moore’s law, as depicted in figure
1.1 [34]. The figure shows that the number of neurons recorded in experiments doubles approximately
every 7 years. The leading technology in neural recording has been mainly electrode arrays [11]. A
multi-electrode array is a grid of tightly spaced microscopic electrodes. With these electrodes, it is
possible to measure the neural activity of the brain at many sites. Using measurements, individual
neuron responses and the way an ensemble of neurons interact with each other can be measured.
These measurements shed light on the neural networks involved in various tasks, such as sensory
responses, motor activities, and cognitive processes, allowing the development of an efficient Brain-
Machine Interface (BMI).

However, the algorithms used to find these networks can be quite demanding. Examples of this
are spike sorting [5] to find the activation of individual cells or dimensionality reduction algorithms like
Principle Component Analysis (PCA) to find latent variables in the data [21]. As the electrode count
increases, the computational demand for these algorithms also increases. In the case of BMI, it is
especially important that these algorithms run fast enough. After the measured activity, a response
must be quickly sent back to ensure correct circuit behavior. Thus, it is pivotal that computational
requirements can scale with the increasing number of neurons measured.

Traditionally, the Central Processing Unit (CPU) has served as the primary computing platform
in closed-loop experiments due to its versatility. However, with escalating computational demands,
particularly for memory-intensive tasks such as machine learning, alternative hardware targets must
be considered. The Graphics Processing Unit (GPU) present a compelling solution, offering a multitude
of parallel cores and ease of interface and programming [7]. Due to the fact that GPUs have a much
higher core count than CPUs, both the memory bandwidth and computational throughput of a GPU
tends to be higher than that of a CPU. However, algorithms should be optimized such that they can
fully utilize the GPU hardware.

1.2. Motivation
Electrophysiology, often abbreviated as ephys, is the study of electrical properties of biological cells
and tissues. Many ephys systems have been developed to facilitate neural recordings in laboratory
settings. ONIX is one such system [24], developed by the Open Ephys project, and has gained popu-
larity due to its open-source nature and streamlined support for a variety of neural interfaces, such as
the Neuropixels probes and other electrode arrays [9]. ONIX is a combination of hardware and software
designed to seamlessly integrate with diverse neurological experiment setups. In particular, it enables
both data acquisition and stimulation, making it suitable for closed-loop brain experiments.

ONIX is built with a modular architecture that can handle significantly higher data throughput as
neural interface technology advances. It contains a reconfigurable FPGA, which can be programmed
to manage complex data processing tasks efficiently. The FPGA enables ONIX to handle the increas-
ing data volumes generated by neural recording devices as electrode counts and sampling rates rise.

1

2 1. Introduction

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020
Publication Date

1

5

10

50

100

500

1000

Si
m

ul
ta

ne
ou

sl
y

R
ec

or
de

d
N

eu
ro

ns

Doubling Time: 6.3 ± 0.2 years (n=92)

Figure 1.1: Trend of recorded neurons in experiments from published papers [34].

Additionally, ONIX connects to the PCIe bus, allowing for high-speed data transfer between the system
and other components. The current configuration of ONIX limits computation to CPUs. As mentioned
earlier, introducing GPUs into the computational framework presents an opportunity to run more com-
plex algorithms, thus offering deeper insights into neural mechanisms while keeping pace with these
increasing data demands.

Using GPU resources has become relatively straightforward due to the availability of hardware
access through General-Purpose computing on Graphics Processing Units (GPGPU) libraries such as
CUDA and OpenCL. However, a notable drawback of these libraries is that data must first be collected
by the CPU before being sent to the GPU. This intermediate step could potentially be eliminated. Both
the ONIX system and the GPU are connected to the PC via a PCIe bus, which allows for the possibility
of direct communication between them. In applications such as closed-loop BMI systems, minimizing
latency is crucial for proper system operation. Consequently, PCIe peer-to-peer (P2P) communication
could be a valuable enhancement for the ONIX system, particularly as the demand for higher throughput
and lower latencies is expected to grow in the future.

Main Memory

ONIX GPU

Input buffer

PCIe bus

Input buffer

Main Memory

ONIX GPU

Input buffer

PCIe bus

Figure 1.2: Sending data to the GPU doing computation and sending it back. First without PCIe P2P and after with PCIe P2P.

1.3. Thesis Goal
The primary goal of this thesis is to extend the existing ONIX neural recording system to make it suit-
able for the next generation of neural interfaces and computational algorithms. This involves ensuring
that the system can sustain higher data rates and support more complex processing demands, partic-
ularly in the context of both open-loop and closed-loop experiments. The focus will be on integrating

1.4. Thesis Outline 3

advanced hardware and software solutions that can handle the growing number of channels, higher
data acquisition speeds, and increasingly powerful algorithms used in neural interfaces.

How can GPU computation be effectively integrated with the ONIX electrophysiology system
to enhance support for next-generation neural interfaces and computational algorithms?

To achieve this goal, the following specific objectives are defined:

• Analyze the technology stack that underpins the ONIX system and related technologies.

• Determine the necessary modifications to enhance data throughput and reduce latency in the
ONIX system, enabling support for high-speed neural interfaces.

• Develop and implement hardware and software changes in the ONIX platform to integrate GPU
acceleration effectively.

• Evaluate system performance with and without GPU acceleration, to determine if the proposed
enhancements deliver improvements.

• Investigate future hardware changes to the ONIX system to more effectively handle higher data
loads.

1.4. Thesis Outline
In Chapter 2, background information on the ONIX system and the technologies required for GPU
integration is presented. A comprehensive understanding of the ONIX system is essential to determine
the necessary modifications. At the end of the chapter, a review of related work is performed, exploring
other electrophysiology systems and software to understand their technology stacks and assess how
GPU acceleration has been implemented in comparable systems.

With the foundational background and related works in place, Chapter 3 will go over all the neces-
sary hardware and software modifications that are implemented in the ONIX system to try and establish
GPU integration, addressing the second research goal. In Chapter 4 the performance of the system
is evaluated, and tests will be conducted to assess whether the modifications improve latency and
performance. Subsequently, in Chapter 5 realistic usage scenarios of the modified ONIX system are
simulated and the aggregate performance is evaluated. Chapter 6 discusses how the implemented
technology might be used in the future. Furthermore, an investigation is done on how the hardware
of the ONIX system could be improved in the future to handle increasingly large neural interfaces. In
Chapter 7, a thesis outline is provided, which summarizes the main contributions of the work and dis-
cusses potential future research directions and emerging opportunities based on the findings of this
study.

2
Background and Related Work

In this chapter, the necessary background information on the ONIX system is provided, which is essen-
tial for understanding the designmodifications and performance evaluations presented in later chapters.
The system’s architecture is explained, including its libraries and hardware components, and detail how
they adhere to the ONI standard. This foundational knowledge is critical to ensuring that the integra-
tion of a GPU does not interfere with ONIX’s modular and flexible framework. Additionally, this chapter
reviews the methods of data transfer to a GPU and kernel execution to identify the most effective ap-
proaches for balancing latency, throughput, and usability. Finally, a survey is done of related literature
and prior work that explores similar technological integrations and improvements in electrophysiology
systems. This review provides context and helps frame the contributions of this thesis in the broader
field of neural data acquisition and processing.

2.1. ONIX data acquisition system for ephys experiments

Figure 2.1: Overview of main hardware components in a typical ONIX system [10]

TheONIX system is an open-source platform designed to facilitate data acquisition for neuroscience
experiments, particularly those involving electrophysiology (ephys). Its modular design allows it to sup-
port a wide variety of experimental devices, ranging from extracellular probes to cameras and tracking
systems, all of which can be connected to a single acquisition platform. By standardizing data orga-
nization while remaining flexible about the type of data being acquired, ONIX aims to create a unified
system for neuroscience research. This standardization allows researchers to use the same infras-
tructure for different types of neural recordings, reducing the need for multiple acquisition systems and
promoting interoperability across experiments.

The main component of ONIX is the PCIe host card, which serves as the central hub for data
acquisition and processing. As shown in Figure 2.1, this host card is composed of a Xilinx Kintex-7
FPGA-based Nereid PCI Express development board, along with a custom PCB that interfaces with it
via an FMCheader. The customPCB is designed to connect various experimental devices using coaxial

4

2.2. System Overview 5

cables, while the FPGA board provides the high-speed processing necessary for handling large data
volumes in real time.

The FPGA in the ONIX system plays a critical role by managing the data flow between connected
devices and the central PC, using the PCIe interface for high-throughput data transfer. The Nereid
Kintex-7 board, with its x4 PCIe interface and 4GB of DDR3 SDRAM, is responsible for transmitting
the data to the host computer.

ONIX is part of the broader open-ephys initiative, which promotes the development of affordable,
open-source tools for electrophysiology experiments. Open-ephys has made the ONIX system pop-
ular due to its adaptability and compatibility with various neural interfaces and sensors. This modu-
lar approach, combined with its open-source nature, has facilitated widespread use in the research
community, allowing for continual improvements and customization. In this thesis, we explore how
GPU computation can be integrated into this framework to support the growing data demands of next-
generation neural interfaces, without disrupting the core principles of the ONIX system.

2.2. System Overview
As shown in Figure 2.2, the system consists of three main layers: the application and devices, the
Liboni library and the ONIX Field Programmable Gate Array (FPGA) Core and finally the PCIe com-
munication library RIFFA [29]. The application allows the user to read and write data and modify the
configuration parameters of the devices and the CPU. The application interacts with the Liboni API,
which is a high-level interface that abstracts away the details of the underlying communication proto-
col. The Liboni API is implemented using the Liboni library, which is a C implementation of the Open
Ephys Network Interface (ONI) standard. The ONI standard defines a common protocol for data ac-
quisition and communication between devices and software in neuroscience experiments. The Liboni
library communicates with the ONIX FPGA Core, which is a hardware module that multiplexes the data
streams from different devices and sends them to the CPU. The communication between the Liboni
library and the ONIX FPGA Core is based on RIFFA, an open-source kernel driver and FPGA core that
enables easy communication over PCIe using simple read and write calls [29]. However, the ONI stan-
dard is designed to be independent of the communication protocol, enabling the use of other protocols
as well.

CPU

Application

LIBONI

PCIe linkRIFFA Kernel driver RIFFA FPGA Core

ONIX FPGA Core

Devices

ONI Translation Layer

ONI API

FIFOs

FPGA

Figure 2.2: System overview of ONIX

2.3. Application and Devices
The parts that the user interacts with at both ends of the system are the application and devices. ONI
tries to abstract everything that happens between them away. The platform is agnostic to the application
attached to it, as long as the application uses the ONI API to communicate with the library. Currently, the
best-supported application is Bonsai, an open-source framework that enables the visual programming
of control loops for various asynchronous data streams [20]. The library also provides C/C++ and C#
APIs for custom user applications.

6 2. Background and Related Work

The devices compatible with the platform are primarily headstages, which are small circuit boards
that amplify and digitize neural signals from electrodes. The headstages can interface with the PC
card using a serial communication link over a coaxial cable. For this communication, the DS90UB933
[12]/DS90UB934 [13] pair is used. Each headstage that the ONIX supports should have a DS90UB933
serializer on the headstage side. On the PC card side, two DS90UB934 deserializers are present. The
SerDes pair supports a maximum data rate of 150 MB/s; hence with two deserializers, the system can
handle a maximum input data rate of 300MB/s.

The supported device with the highest data rate is currently the Neuropixel V2 [33], a high-density
sensor with up to 5120 electrodes. It can record 384 12-bit channels simultaneously at a sampling
frequency of 30 kHz, resulting in a data rate of 138 Mbps.

The card also supports the Miniscope, a head-mounted CMOS imaging sensor used in calcium
imaging [6]. Other types of devices the platform supports include an Inertial Measurement Unit (IMU)
and a position tracker, which can provide additional data about the motion and orientation of the subject.
The devices have multiple inputs for analog and digital I/O, which can be utilized to transmit and receive
signals from other devices or stimuli.
To incorporate new devices, these need to be integrated into the FPGA VHDL code, the hardware
description language that specifies the logic of the platform. The code for this is proprietary but can be
obtained if the end goal of the user is non-profit. The platform can accommodate up to 256 devices,
each with a unique ID and a data rate. Table 2.1 lists some of the devices that can be connected and
their respective data rates.

Device Peak Data Rate (Mbps)

Neuropixel V1 115 [22]

Neuropixel V2 138 [33]

BNO055 (IMU) 2.8 [31]

UCLA Miniscope V4 90 [6]

Table 2.1: Example of supported devices in the ONIX system and their peak data rates.

2.4. FPGA logic design
The interface between the devices and the PC is handled by the FPGA, which stands for Field Pro-
grammable Gate Array. This is a chip where the logic can be reprogrammed so that any logic function
fitting within the hardware can be realized. The logic can be described using a hardware description
language such as VHDL or Verilog. To compile the code into an implementation which can be pro-
grammed on the device, a synthesizer is used. Creating custom logic for a specific function allows it to
be executed with very low latency and high throughput, making the FPGA an ideal platform for the data
acquisition context of ONIX. Figure 2.3 presents a simplified diagram of the logic structure programmed
on the FPGA.

Within the logic, there is an implementation for each device that can be connected to the ONIX card.
These devices handle reading and writing to device registers for configuration, as well as managing
incoming and outgoing data. This is the interface the user interacts with to indirectly communicate with
the devices connected to the system. To send and receive data, each device has a custom frame with
a fixed header, as shown in Figure 2.4.

The next part of the core is the data input, which acts as a multiplexer, passing data from the devices
into a single data stream in a round-robin fashion. Additionally, it adds headers to the data from each
device, creating single frames that the application can read.

The deep FIFO functions as a backup buffer for the read stream. When the FIFO in the read stream
block is full, incoming data is stored in the DDR module of the FPGA, which has a capacity of 4GB.
Otherwise, it simply passes the data to the write stream.

The data output performs the opposite function of the data input by demultiplexing the single data
stream. It reads the headers of the data and sends it to the correct device.

The Config controller is responsible for configuring both the individual devices and global settings.

2.5. Liboni and API 7

It can also be used to read current configuration values. The signal controller has two main responsibil-
ities: after the FPGA is reset, it sends all the devices present in the system to the library, and when the
application sends a configuration request to the FPGA, the signal controller sends an acknowledgment
to indicate whether the request was successful.

The write stream serves as the interface between the logic and the RIFFA core. The RIFFA core
will be explained in more detail in 2.8. It waits until the user wants to receive data, at which point it
writes a block of data to the user. The size of this block can be adjusted by writing the desired value to
the write stream. All other streams also serve as interfaces between the logic and RIFFA, containing a
FIFO buffer.

Signal
contoller

Conifg
contoller

Deep fifoData input

Data output

DDR3 RAM

Devices

Read
stream

Write
stream

Register
stream

Signal
stream

RIFFA
Core

Figure 2.3: Overview of the logic on ONIX FPGA

Device
AddressAcquisition Clock Counter Data Size Hub Clock Counter Data

0 64 96 192128

Figure 2.4: Frame Header Structure

2.5. Liboni and API
The Liboni serves as an interface layer between the application and the hardware. It provides a simple
and consistent Application Programming Interface (API) for creating and running ONI-compatible ex-
periments. Additionally, it offers a standardized interface for writing hardware drivers, allowing flexibility
in the underlying communication protocol between the PC and the ONIX card.

The API is composed of several key components:

• oni.h: Defines the main functions and data structures of the library.

• onidriver.h: Specifies the interface for the hardware communication layer.

• onix.h (optional): Includes ONIX-specific features.

• onitest.h (optional): Provides tools for testing and debugging purposes.

This structure ensures that developers can efficiently interface with ONI hardware while maintaining
the flexibility to adapt to various communication protocols and specific use cases.

8 2. Background and Related Work

2.5.1. Initialization
During the initialization phase, Liboni sets up the necessary components to enable communication
between the application and the hardware. The hardware state is represented by a structure called
oni_ctx. Users can obtain this structure by invoking the oni_create_ctx function. This function
dynamically loads the desired driver for hardware communication, such as RIFFA [29], Xillybus [3], or
FTDI USB3.0 and returns an oni_ctx structure. Subsequently, the oni_ctx_init function can be
called using this structure, which retrieves the device table from the hardware and configures the read
and write buffers on the PC.

The device table is a data structure that specifies the devices connected to the ONIX card. Interac-
tion with oni_ctx is facilitated by the oni_get_opt and oni_set_opt functions. These functions
allow various actions, such as reading the device table or initiating a system reset, to be performed by
the user application. An overview of the initialization process is provided in Figure 2.5.

Liboni

oni_ctx_init

Read stream
Configuration

stream
Signal streamWrite streamApplication

Reset

device table

set block read size

get devicetable

device table

Figure 2.5: Overview of initialization in Liboni.

2.5.2. Device interaction
After proper initialization, the user can interact with the devices through the use of registers. The API
has two functions to interact with these registers: the oni_write_reg and oni_read_reg. A call to
these functions will cause a write to the configuration stream. In case of a sucessful write, the signal
stream will return an acknowledgment. For reads, the signal steam will first acknowledge that the read
is allowed, then the library will return the value from the configuration stream and then return it to the
user.

2.5.3. Reading and Writing Data
Once everything is set up correctly, the device can be signaled to start data acquisition by calling
oni_set_opt with ONI_OPT_RUNNING. This action initiates the read stream, which begins to accu-
mulate data from all active devices. If the user is ready to receive this data, a call to oni_read_frame
has to be made. The first call to this function retrieves not a single frame but an entire block of data,
sized according to the read buffer. Users can set this buffer size, with larger buffers allowing higher
throughput as more data is sent simultaneously. However, this might increase per-frame latency since
the entire block must be accumulated before it can be sent, which may contain multiple frames.

When the read buffer is filled, the function returns the first frame in the buffer using zero-copy views
into this buffer. Subsequent calls to oni_read_frame will return single frames until the frame buffer
is depleted. Once the buffer is empty, the library fetches a new block from the read stream.

To write a frame, the user must first create one by calling the oni_create_frame function, which
returns a frame to which the user can attach the appropriate data. The frame is then passed to the
oni_send_frame function, which sends the frame to the write stream. In this case, single frames are
sent instead of fixed-size blocks. An overview of the data receiving and sending process is shown in
Figure 2.7.

2.5. Liboni and API 9

Liboni Read stream Configuration
stream

Signal streamWrite streamApplication

oni_write_reg
idx, addr, value

confWack

confWack

oni_read_reg
idx, addr

confRack

confRack

_oni_read_conf

value

value

Figure 2.6: Overview of interacting with device registers

Liboni Read stream
Configuration

stream
Signal streamWrite streamApplication

Running

Config Running

block of frames

start read stream

oni_read_frame

frame

oni_read_frame

send frame to stream

frame

oni_create_frame

frame

oni_send_frame

read block from stream

Figure 2.7: Overview of Data Transfer Process in Liboni

10 2. Background and Related Work

2.5.4. Driver development for Liboni
As previously mentioned, Liboni is a hardware-agnostic library that implements the ONI standard, so
the underlying hardware can be freely implemented. To use Liboni with a specific hardware platform,
a device driver translator (also called onidriver) is required. A device driver translator sits between the
public Liboni API and the low-level libraries or kernel drivers handling the actual hardware, taking care
of all the implementation details.

To implement a onidriver, a driver context and all functions defined in onidriver.h should be
implemented. A driver context is a data structure that contains all state information about a particular
instance of the driver. The functions defined in onidriver.h are the interface between the Liboni
API and the device driver translator. They include functions for creating and destroying the driver
context, opening and closing the communication channels, reading and writing data and signals, setting
and getting device options, reading and writing device registers and handling errors and events. All
functions present inonidriver.h must be implemented, even if they are not actively used.

2.6. PCIe and Kernel driver
The next part in the ONIX system from Figure 2.1 is the RIFFA Kernel driver and RIFFA FPGA Core.
These components enable communication over Peripheral Component Interconnect Express (PCIe).
PCIe is a serial data interface used in most modern PC’s to connect peripheral devices to the system.
[28] Different drivers exist for PCIe but they all share some common elements that are discussed in the
following section.

2.6.1. PCIe Bus Organization
A PCIe bus consists of a hierarchy of switches, endpoints and links. A switch is a device that connects
multiple PCIe devices and routes packets between them. An endpoint is a device that initiates or
terminates data transfers, such as a graphics card or ONIX card. A link is a point-to-point connection
between two PCIe devices, consisting of one or more lanes. A lane is a pair of differential signal
wires, one for transmitting and one for receiving. Each lane operates at a fixed bit rate, which can be
negotiated at the initiation of the link. The PCIe standard defines several generations of speed and
width for links, such as PCIe 1.0 x1 (0.250 GB/s per lane), PCIe 2.0 x4 (0.500 GB/s per lane), up to the
at moment of writing, latest announced PCIe 7.0 (15.125 GB/s per lane). The throughput of the PCIe is
doubled by either taking a next generation or by doubling the amount of PCIe lanes between two links.
An example of a PCIe bus is show in Figure 2.8.

The PCIe bus uses a packet-based protocol to transfer data between devices. Each packet consists
of a header, a payload and a footer. The header contains information such as the source and destination
address, the type and length of the packet and the error detection code. The payload contains the actual
data to be transferred, which can be up to 4 KB in size. The footer contains an end-of-packet indicator
and an optional error correction code. The PCIe protocol supports four types of packets: memory read
and write, which access themainmemory; I/O read and write, which access the I/O space; configuration
read and write which access the configuration space of PCIe devices; and messages, which carry
various control and status information.

2.6.2. Base Address Registers (BAR) Space in PCIe
PCIe devices use Base Address Registers (BARs) to manage memory and I/O resources allocated to
them by the system. BARs are a fundamental part of the PCIe configuration space and are essential
to facilitate communication between the CPU and PCIe devices. These registers define regions of
memory or I/O space that are ”mapped” to the PCIe device, allowing the CPU and other components
to read and write data to the device as though it were regular RAM or I/O space.

Each PCIe device can support up to six BARs (BAR0 to BAR5) within its configuration space. These
registers hold the base addresses of memory or I/O regions assigned to the device during system
initialization. This assignment is handled by the system firmware or operating system. The BARs map
device-specific memory or I/O space to the system’s address space, ensuring efficient data exchange
between the device and the system.

BARs can be categorized into two main types:

• Memory-Mapped BARs: These BARs define regions in the system’s memory space that are
directly accessible by the PCIe device. When configured, these regions can also be accessed

2.6. PCIe and Kernel driver 11

CPU

PCIe Endpoint

LinkLink

PCIe Switch

Link

Root complexMemory

Link

PCIe EndpointPCIe Endpoint

Figure 2.8: Overview of typical PCIe hierarchy

by the CPU using standard memory instructions. The size of the memory-mapped region is
specified by the PCIe endpoint device, typically as a power of two, and can be used to store
control registers, buffers, or other data structures required by the endpoint device. Memory-
mapped BARs also allow for more efficient communication as the device is treated like part of the
system’s memory.

• I/O-Mapped BARs: These BARs define regions in the system’s I/O address space. Unlike
memory-mapped BARs, I/O-mapped BARs are accessed using specific I/O instructions, such
as ‘in‘ and ‘out‘ on x86 systems. I/O mapping was more common in earlier generations of hard-
ware, particularly in legacy devices, because it provided a dedicated address space for peripheral
devices that was separate from system memory. However, as memory-mapped I/O (MMIO) be-
came more efficient and flexible, I/O-mapped BARs became less common in modern systems.
Today, they are primarily used in legacy systems where backward compatibility is necessary, and
certain older devices still rely on this mechanism for communication.

The configuration of BARs involves several critical steps:

1. Device Discovery and BAR Initialization: During system boot, the firmware scans the PCIe
bus to detect all connected endpoint devices. For each device, the system reads the BARs to
determine the amount of address space required by the endpoint device, as each BAR indicates
the size and type of memory or I/O space the device needs.

2. Resource Allocation: Based on the size and type of address space requested by the BARs,
the system allocates appropriate memory or I/O space. Once allocated, the system writes the
corresponding base addresses into the BARs, effectively ”mapping” the PCIe device into the
system’s address space. The BARs can specify 32-bit or 64-bit addresses, depending on the
device’s requirements.

3. Device Access: After the BARs are configured, the CPU and other devices can access the
memory or I/O regions of the PCIe device by referencing the addresses stored in the BARs.
Memory-mapped I/O (MMIO) is commonly used for high-speed communication, where the de-
vice’s registers and memory appear as part of the system’s address space, allowing the CPU to
interact with them using regular load/store instructions.

In addition to address allocation, BARs also include flags that indicate the type of address space
(32-bit or 64-bit), whether thememory region is prefetchable (i.e., can be cached by the CPU), and other
properties. These flags help optimize the interaction between the CPU and the device, ensuring efficient
data transfer while minimizing latency.PCIe devices often utilize Direct Memory Access (DMA), where

12 2. Background and Related Work

MMU IOMMU

Virtual address space Physical addres space Bus addres space

Figure 2.9: Overview of Memory Spaces

the device can read/write to system RAM without CPU involvement, further enhancing performance in
high-throughput applications.

2.7. Linux Kernel & Memory Spaces
The Linux operating system is divided into two distinct spaces: userspace and kernel space. Userspace
is where all regular programs running on a PC operate, including user applications and the Liboni li-
brary. Programs in this space have limited access to resources to ensure system stability and security.

Kernel space, on the other hand, has access to all hardware on the system. It provides APIs for
userspace programs to interact with the hardware. The separation between userspace and kernel
space is crucial for both performance and security, ensuring that hardware resources are shared fairly
among programs and preventing unauthorized access to sensitive memory regions, such as stored
passwords. To maintain this separation, different memory spaces are utilized.

The following memory spaces are important for the implementation of RIFFA. An overview of how
these memory spaces relate is shown in Figure 2.9.

User Virtual Addresses: User virtual addresses are the addresses seen by user-space programs.
Each program has its own 32-bit or 64-bit address space, depending on the underlying hardware.

Physical Addresses: Physical addresses are used between the processor and the system’s mem-
ory. This address space is constructed by the system at startup and includes all relevant hardware,
such as RAM and devices on the PCIe bus. When a user program allocates memory, it is also allo-
cated in the physical address space. However, since users do not have direct access to this space, a
translation is needed, which is handled by the Memory Management Unit (MMU). The MMU contains
a page table that translates virtual addresses to physical ones.

Bus Addresses: Bus addresses are used between peripheral devices on a bus, such as PCIe
devices and memory. Often, bus addresses are the same as physical addresses. However, some
PC architectures have an Input Output Memory Management Unit (IOMMU) between the peripheral
bus and the main memory. An IOMMU extends the functionality of the MMU to PCIe devices, map-
ping device-visible virtual addresses to physical addresses. This allows PCIe devices to access main
memory through the Direct Memory Access (DMA) engine. Additionally, an IOMMU provides memory
protection from faulty or malicious PCIe devices by preventing unauthorized memory access and sup-
ports virtualization by allowing guest operating systems to use PCIe devices not specifically designed
for virtualization.

Kernel Logical Addresses: Kernel logical addresses make up the normal address space of the
kernel. These addresses map some portion (or possibly all) of main memory and are often treated as
physical addresses. On most architectures, logical addresses and their associated physical addresses
differ only by a constant offset.

2.8. RIFFA 13

2.7.1. Scatter-Gather and DMA
RIFFA users can pass buffers allocated in user space to the driver, which utilizes them for data transfers
using DMA. DMA allows a PCIe device to access the main memory directly without involving the CPU,
significantly reducing CPU overhead after the transfer is initiated.

Using DMA, the PCIe device can read from and write to the main memory, facilitating data transfers
between the main system and the FPGA. However, for these operations, the PCIe controller on the
FPGA needs the memory locations of the user-allocated buffer. Since the user address space and
device address space do not match, translations are required. Additionally, user-allocated memory is
not necessarily contiguous in physical memory but can be scattered throughout the physical address
space.

To address this, the driver creates a scatter-gather list. In a scatter-gather list, the user-allocated
buffer is divided into fixed-size pages, often 4KB in size. The virtual addresses are then translated to
the corresponding physical addresses. Finally, the kernel finds the bus addresses corresponding to the
physical addresses. With the bus addresses, the PCIe engine on the FPGA can read from and write
to the user-allocated buffer effectively.

virtual adress

physical adress

dma address

length

virtual adress

physical adress

dma address

length

virtual adress

physical adress

dma address

length

Physical address
space

Virtual address
space

PCI Bus address
space

Scatter
gather list

Figure 2.10: Scatter-Gather and DMA Process

2.8. RIFFA
The Reusable Integration Framework for FPGA Accelerators (RIFFA) is an open-source library that
facilitates communication between a host CPU and a FPGA via a PCI Express bus [29]. This framework
is compatible with both Windows and Linux operating systems, and supports Altera and Xilinx FPGAs.
It provides bindings for various programming languages including C/C++, Python, MATLAB, and Java.
An overview of the RIFFA architecture is show in Figure 2.11.

The design of RIFFA is based on the concept of communication channels between software threads
on the CPU and the logic on the FPGA. Similar to a network socket, a channel must first be opened,
can be read and written, and then closed. Furthermore, reads and writes can occur simultaneously if
using multiple threads. RIFFA supports up to 12 channels per FPGA, allowing up to 12 different logic
blocks to be accessed directly by software threads on the CPU, simultaneously.

On the hardware side, user defined logic can access an interface with independent transmit and
receive signals. These signals provide transaction handshaking and a FIFO interface for reading/writing
data. RIFFA works directly with the PCIe Endpoint and can run fast enough to saturate the PCIe link.

RIFFA’s software primarily consists of two functions: data send and data receive. These functions
are accessible through user libraries in various programming languages. The driver supports multiple
FPGAs (up to five) per system, enabling users to communicate with FPGA IP cores with minimal code.

Figure 2.12 illustrates how RIFFA functions when receiving data. The logic on the FPGA side can
signal at any moment that it wants to send data. In the case of Liboni, this occurs when enough frames
are collected to fill the receive buffer. When this happens, a Message Signaled Interrupt (MSI) is sent

14 2. Background and Related Work

RX Engine

ChannelChannelChannel

RX
FIFO

TX
FIFO

RX Demux

TX Engine

TX Mux

Vendor specific PCIe Endpoint

PCIe Link

PC Memory

USER
Application

RIFFA Driver

RIFFA API

FPGA

PC

User Logic

Figure 2.11: Architecture overview of RIFFA

2.9. Graphics processing unit 15

to the kernel driver, which stores the interrupt. When the Liboni library on the PC calls the fpga_recv
function, the interrupt is handled, and the transfer starts. The RIFFA driver creates a scatter-gather list
from the user-allocated memory. This scatter-gather list is then sent to the RIFFA core, which writes into
the supplied memory locations. When more memory is needed, a new scatter-gather list is requested,
and the process is repeated. Once the RIFFA core has sent all the data supplied by the logic, it sends
a new MSI indicating that the transfer is complete. The driver then reads a register on the PCIe device,
which holds the total amount of data sent and returns this information to the user.

Figure 2.13 shows how data is sent using RIFFA. Sending data is similar to receiving data from the
FPGA, with the main difference being that the transaction is initiated by the driver. The driver sends
an interrupt to the logic and subsequently sends the scatter-gather list. The RIFFA core then reads the
memory locations from the main memory and transfers the data to an AXI stream to the logic. Finally,
the driver reads a register on the PCIe device to confirm the total amount of data sent.

Liboni

fpga_recv

RIFFA Driver RIFFA Core User core

New AXI transaction
New Transfer

Scatter Gather List

PC Memory

Write

New scatter gather list

scatter gather list

transfer done

read transfer size

Write

amount

amount

Figure 2.12: RIFFA Data Receiving Process

2.9. Graphics processing unit
Graphics processing units (GPUs) have, as their name suggests, commonly been used for rendering of
graphics for games and visually intensive applications. However, they have evolved beyond their tradi-
tional role. Today, they are increasingly being used as general-purpose computing devices due to their
highly parallel structure, which makes them more effective than general-purpose CPUs for algorithms
where processing of large blocks of data is done in parallel. This concept, known as General-Purpose
computing on Graphics Processing Units (GPGPU), allows developers to harness the computational
power of the GPU for non-graphical tasks. Languages such as CUDA and OpenCL have been devel-
oped to facilitate this kind of programming. GPGPU has found applications in a wide range of fields,
including machine learning, scientific computing, and big data analysis, where the ability to process
large amounts of data in parallel can significantly reduce computation times. However, programming
for GPUs is not without its challenges, as it requires a different programming paradigm and careful
consideration of data dependencies and memory usage.

16 2. Background and Related Work

Liboni

fpga_recv

RIFFA Driver RIFFA Core User core

New AXI transaction
New Transfer

Scatter Gather List

PC Memory

Write

New scatter gather list

scatter gather list

transfer done

read transfer size

Write

amount

amount

Figure 2.13: RIFFA Data Sending Process

2.9.1. CUDA
The Compute Unified Device Architecture (CUDA) is a parallel computing platform and application
programming interface (API) model created by NVIDIA. It allows developers to use a CUDA-enabled
GPUs for general purpose processing. CUDA provides both a low level API (CUDA Driver API, non
single-source) and a higher level API (CUDA Runtime API, single-source), each with its own benefits.
The CUDA platform is designed to work with programming languages such as C, C++, and Fortran.
This accessibility makes it a popular choice for data scientists and researchers working on complex
computational problems. CUDA can greatly improve the speed of GPU-accelerated applications by
harnessing the power of the GPU’s multi-core architecture. It also provides a comprehensive software
layer that gives direct access to the GPU’s virtual instruction set and parallel computational elements,
for the execution of compute kernels. However, CUDA is proprietary to NVIDIA and therefore, requires
an NVIDIA GPU to run. Despite this limitation, the performance gains from using CUDA have led to its
wide adoption in the field of high-performance computing.

2.10. GPUDirect RDMA
GPUDirect is a family of technologies designed to accelerate data transfer using PCIe peer-to-peer
functionality. Traditionally, when handling data in a computing system with GPUs, all data had to be
copied to the main memory first. This ensured that NVIDIA drivers had full control over the data sent
to the GPU. However, because of the rise of GPGPU and the need for faster data throughput, NVIDIA
introduced GPUDirect. This allows other devices on communication buses to directly read and write
data to the memory located on the GPU.

GPUDirect encompasses several technologies:

• GPUDirect Storage: Enables GPUs to directly read and write to local or remote storage, such
as NVMe.

• GPUDirect Peer-to-Peer: Allows communication between GPUs.

• GPUDirect Video: Provides an optimized pipeline for frame-based devices.

2.11. Related work 17

These technologies are typically available to large hardware vendors creating these types of hard-
ware. However, the final technology, GPUDirect RDMA, is openly available and allows any type of
device on the PCIe bus to access GPU memory.

GPUDirect RDMA (Remote Direct Memory Access) was introduced in Kepler-class GPUs and
CUDA 5.0. Normally, data transfer is handled solely by the GPU kernel driver, which is closed to
the user and can only be interacted with using user-space APIs within CUDA. However, GPUDirect
provides kernel-level APIs that expose memory locations in the GPU.

To determine if a system supports GPUDirect, several requirements must be met:

• GPU Support: Only Tesla and Quadro GPUs, which are server and workstation-grade GPUs,
support GPUDirect. GPUs typically found in laptops and desktop computers do not support this
feature.

• Motherboard Support: The motherboard must support peer-to-peer PCIe communication. Al-
though specified in the PCIe standard, this feature is not universally supported. Motherboards
designed for larger workstations and servers are more likely to support it.

• IOMMU Restrictions: GPUDirect imposes restrictions on the IOMMU (Input-Output Memory
Management Unit). Specifically, the IOMMU must be configured to allow direct access to GPU
memory by devices on the PCIe bus, bypassing the standard IOMMU translation process. In
some systems, the IOMMU’s memory address translation and protection mechanisms can inter-
fere with direct data transfers between devices and the GPU. To enable GPUDirect RDMA, the
IOMMU may need to be disabled or configured in a pass-through mode to ensure that mem-
ory access is not blocked or altered by the IOMMU. This reduces the overhead associated with
memory translations but can also limit certain system security features typically provided by the
IOMMU, such as isolation of device memory accesses.

• Operating-System Support: Currently, only Linux distributions support GPUDirect.

2.11. Related work
Electrophysiology experiments in neuroscientific research are inherently complex, and scientists often
lack an extensive background in computer science or electrical engineering. Consequently, a signifi-
cant amount of research has been dedicated to developing platforms that simplify the setup of these
experiments. This section discusses various aspects of this research.
First, electrophysiology (ephys) systems other than the ONIX hardware are explored. Following this,
the software used to interface with ephys systems is examined. Additionally, research on accelerating
communication between FPGAs and GPUs is reviewed, as this is relevant to the thesis.

2.11.1. Ephys Systems
Electrophysiology (ephys) systems have been extensively studied in the context of animal experiments,
with a variety of tools available for neural recording and analysis. One of the commonly used systems
is the Intan RHD recording system, a modular and cost-effective electrophysiology data acquisition
platform centered around the Intan RHD family of microchips [14]. This system includes RHD recording
headstages capable of digitizing signals from 16, 32, 64 or 128 electrodes. These digital signals are
then transmitted to a recording controller, which sends the data from one or more headstages to a PC
via USB.

Intan also sells their chips for custom hardware development. An example of this is the first system
built by the creator of ONIX, called the Open Ephys Acquisition Board [32]. Open Ephys Acquisition
Board is designed to be affordable, transparent, and flexible, supporting up to 512 channels. Similar to
the RHD controller, it connects to a host PC using USB.

Another notable system is the open-source, open-loop 1024-channel recording system calledWillow
[18]. Willow also utilizes Intan chips for front-end amplification and filtering but distinguishes itself by
sending data directly to a solid-state drive, thereby eliminating the need for a separate computer to
acquire data. Additionally, a copy of the data can be transmitted over Ethernet for real-time visualization.
Although Willow is optimized for high channel count reliability, it lacks the modularity and software
extensibility of Open Ephys.

18 2. Background and Related Work

Mukherjee, Wachutka, and Katz [23] introduced an affordable, scalable, and open-source system
for use with awake, behaving rodents, emphasizing its cost-effectiveness and scalability. Their system
demonstrates that a Raspberry Pi can successfully interface with up to four RHD200-based head-
stages. Additionally, it can drive optogenetic perturbations and actuators using the Raspberry Pi’s
GPIO pins. Their results indicate that relatively simple hardware can be effective when the experimen-
tal constraints are not demanding. Finally, Topalovic et al. [37] showcased a wearable bidirectional
closed-loop neuromodulation system (Neuro-stack) that records single-neuron and local field potential
activity during both stationary and ambulatory behavior in humans. The Neuro-stack system includes a
TPU for performing inference with a machine learning model, demonstrating the potential for GPU-like
hardware in closed-loop neuroscience applications. The mentioned ephys systems are summarized in
Table 2.2.

System Open-Source Max Channels Connection Type Special Feature

Intan RHD [14] No 128 USB None

Open Ephys [32] Yes 512 USB None

Willow [18] Yes 1024 Ethernet Direct-to-drive

Mukherjee et al. [23] Yes 128 USB Cost effective

Neuro-stack [37] No 128 Direct onboard connection TPU Accelerator

Table 2.2: Taxonomy of Ephys Systems

2.11.2. Ephys Software
In electrophysiology research, specialized software frameworks are essential for managing complex
experiments, especially those involving real-time closed-loop applications. These tools enable precise
control, dynamic perturbations, and efficient data processing, significantly advancing our understanding
of neural dynamics.

One example is the Real-Time eXperiment Interface (RTXI), which provides low-latency, hard real-
time capabilities for closed-loop experiments. Built on a custom Linux kernel, RTXI supports flexible
protocol implementation in a wide range of experimental settings. Despite its strengths, is is only
available for commercial data acquisition (DAQ) hardware, which can limit accessibility [27].

The Open Ephys GUI, developed alongside the Open Ephys hardware platform, offers a modular,
plugin-based interface for data acquisition, processing, and visualization. Although optimized for Open
Ephys hardware, the GUI also supports interoperability with other systems, enhancing its versatility.
Integration with tools like Bonsai further expands its functionality, enabling seamless management of
diverse experimental setups [32].

Bonsai, a visual programming framework, builds on this versatility by facilitating advanced work-
flows. Designed for real-time event-based processing, Bonsai is well-suited for tasks such as behav-
ioral experiment control, video-electrophysiology synchronization, and closed-loop applications. Its
modular architecture make it particularly effective for computationally intensive tasks [20].

Another notable framework is Falcon, a multi-threaded C++ platform designed for high-performance
closed-loop experiments. Falcon supports the creation of complex processing graphswith sub-millisecond
latencies, enabling applications like dynamic clamp, real-time spike detection, and neural oscillation
analysis. Its flexibility and compatibility with various hardware systems make it a valuable tool for com-
putationally demanding experiments [8]. Table 2.3 provides a concise comparison of these tools.

2.11.3. Direct FPGA-GPU Communication
The implementations of direct communication between FPGAs andGPUs via the PCIe bus, as explored
in various studies, illustrate a range of innovative approaches aimed at enhancing performance and
efficiency in heterogeneous computing systems. Direct communication over PCIe has been applied in
scenarios involving Software-Defined Radio [35] or Radar Signal Processing [30].

Bittner and Ruf [4] introduced an innovative approach where existing DMA engines on GPUs are
used for DMA operations to an FPGA. By mapping the FPGA’s memory into the process’s virtual ad-
dress space, they could register it as DMA-safe, enabling faster data transfers from the GPU to the
FPGA. This method increased data throughput for large transfers, though it faced challenges with re-

2.11. Related work 19

Table 2.3: Taxonomy of Ephys Software Suites

RTXI[27] Open Ephys
GUI[32]

Falcon[8] Bonsai[20]

Open Source Yes Yes Yes Yes

Identifying
Features

Hard real-time
capabilities;
closed-loop
control; custom
Linux kernel

Plugin based
architecture;
flexible data acqui-
sition and visualiza-
tion

Multithreaded
architecture;
sub-millisecond
latency; real-time
detection

Visual
programming;
modular workflows

Supported OS Linux Linux, Windows Linux Windows

verse transfers, particularly with larger data sizes, where performance dropped significantly. Despite
some limitations, the approach effectively reduced data transfer latency.

In another approach, Thoma et al. developed an open-source framework named FPGA2, designed
to facilitate DMA between GPUs and FPGAs. This framework utilizes a Xilinx IP core the open-source
GPU drivers, Nouveau [25] and the gdev [17] an open-source implementation of CUDA runtime. By
pinning GPU memory and obtaining its bus address, FPGA2 performs DMA in a manner similar to
GPUDirect RDMA. Although it requires an additional memory copy within the GPU, the impact on per-
formance is minimal. For smaller transfers, FPGA2’s performance is approximately double that of tra-
ditional host-mediated transfers, though it becomes comparable for larger data sizes. The framework’s
reliance on open-source tools makes it suitable for consumer-grade GPUs.

In more recent work, Kasai and Osana [15] presented two distinct implementations of DMA transfer
between FPGA and GPU without the involvement of host memory. Both methods involved mapping the
memory on either the FPGA or GPU to their respective BAR (Base Address Register) space, allowing
the partner’s DMA controller to directly read or write from/to the BAR. The first methodmaps the FPGA’s
memory to the FPGA BAR using a PCIe-AXI bridge, enabling GPU DMA access. This method is very
similar as the approach taken by Bittner and Ruf [4]. While this approach is straightforward and avoids
driver-level programming, it results in significant performance degradation compared to methods that
involve host memory. The second method maps the GPU memory to the GPU BAR via the GPUDirect
API, allowing FPGA DMA access. This approach nearly saturates the PCIe bandwidth, achieving
performance that was 1.6 times better than the host memory-based method. However, transferring
data from the GPU to the FPGA failed. As future work, it is mentioned that RIFFA might be used, to
improve performance.

In table 2.4 the three different implementations are compared. A comparison of the maximum
achieved throughput in each case reveals significant differences in performance. Given the varying
number of PCIe lanes and PCIe generations used in each solution, a more meaningful comparison can
be made by examining the utilization of the PCIe lanes.

The FPGA2 solution performs well in this regard, achieving a utilization of 81% and 75% for FPGA-
to-GPU and GPU-to-FPGA communication, respectively. However, this solution does not scale ef-
fectively as it is implemented for only one lane. The solution proposed by Bittner & Ruf shows decent
performance, with an 80% utilization in the GPU-to-FPGA direction, but significantly lower performance
in the FPGA-to-GPU direction. Notably, it is the only solution that operates under Windows, making it
the only viable option if that is a constraint.[4]

Kasai & Osana’s solution achieves the highest utilization in the FPGA-to-GPU direction, with 81%.
[16] However, it does not successfully implement GPU-to-FPGA communication. A solution to this
limitation is not mentioned in the paper.

20 2. Background and Related Work

Table 2.4: Comparison of Direct FPGA-GPU Communication in Previous Work

Property Bittner & Ruf [4] FPGA2 [36] Kasai & Osana [16]

Operating System Windows Linux Linux

DMA Master GPU FPGA FPGA

FPGA Vendor Xilinx Xilinx Xilinx

FPGA Model Virtex 6 Virtex 5 Alveo U50

FPGA IP Stack Custom Custom Vendor

FPGA Driver Custom Custom XDMA

FPGA Programming HDL HDL HDL

GPU Vendor NVIDIA NVIDIA NVIDIA

GPU Model GeForce GTX580 GeForce 8400GS Quadro RTX 4000

GPU Driver Original Nouveau Original

GPU Programming CUDA gdev CUDA

Effective PCIe Lanes 8 1 4

PCIe Generation 1.0 1.0 3.0

Maximal Throughput
(FPGA to GPU)

514 MB/s 203 MB/s 32,500 MB/s

Maximal Throughput
(GPU to FPGA)

1.6 GB/s 189 MB/s N/A

3
Design and Implementation

This chapter outlines the design changes and implementations needed to enhance data throughput and
reduce latency in the ONIX system, when integrating a GPU. It begins with a description of a straight-
forward approach using high-level APIs for closed-loop GPU integration, then progresses through the
required system modifications for improving troughput and latency.

Key updates are discussed across the FPGA core, Linux kernel driver, and Liboni library, each
essential to facilitate efficient data transfer. In the FPGA core, new data paths are added and channel
widths increased to optimize PCIe bandwidth. Driver modifications include adapting the RIFFA driver
to support P2P data exchange with pre- and non-pre-pinned memory configurations. Lastly, the Liboni
library is extended to accommodate new user options for managing data streams and direct GPU
communication.

3.1. Base Case
Before examining GPU integration into the ONIX system, it is important to highlight the two primary
modes in which the ONIX system is used and discuss how optimization strategies differ for each. These
modes are as follows:

Open-Loop Data Acquisition: In this mode, data acquisition occurs independently of any influ-
ence on the ongoing experiment. This setup allows for real-time data processing as it arrives, which
can enable the researcher to obtain preliminary results quickly. However, in open-loop experiments,
maximizing data throughput and minimizing latency are not critical requirements. Instead, the focus
is on ensuring that sufficient memory and computational resources are available for post-processing
tasks.

Closed-Loop Experiments: In closed-loop experiments, acquired data directly influences the fu-
ture course of the experiment. This mode demands fast data processing to enable real-time feedback
during the experiment. Key metrics for optimization include minimizing the time required to transfer,
process, and return data to the experiment. For this reason, the focus of this thesis will be on optimizing
the system for closed-loop scenarios.

For both open and closed loop experiments, the simplest method to leverage GPU resources is by
utilizing high-level APIs provided by the GPU vendor, such as NVIDIA’s CUDA or OpenCL. Consider
an experiment where data is collected from multiple ephys devices, but only one device’s data requires
GPU acceleration. In this scenario, each frame from the ONIX card must be processed individually.
When a that should be processed by the GPU is detected, the data is copied to a new buffer. Once
sufficient data has been accumulated, it is transferred to the GPU, where a CUDA kernel can execute
the necessary algorithm. The results are then copied back to the user program, and a new ONI frame
is created and sent back to the ONIX device to generate an output signal. The following steps are thus
involved, which are also depicted in Figure 3.1.

1. The first call to oni_read_frame internally returns a block of data from the FPGA and the first
frame in this block is returned to the user.

21

22 3. Design and Implementation

2. This block of data can then be read out frame by frame. If a frame contains data that should be
sent to the GPU, the data is copied in a secondary buffer.

3. The buffer containing data for the GPU is sent using cudaMemCpy.

4. A Cuda kernel is run and the result is stored in memory.

5. The result is copied back to the main memory using cudaMemCpy again.

6. The result is written into the data part of an ONI frame.

7. The ONI frame is sent back to the FPGA using oni_write_frame.

Main Memory

FPGA

GPU Memory

Cache CPU CoresPCIe bus

Shared
memory GPU Cores

1

3
2

4

5

6
7

Figure 3.1: Steps involved in sending data to the GPU from the current ONIX system

3.2. Reducing Transfer Steps
One strategy to reduce the overhead associated with data transfer between the FPGA and GPU is
to decrease the processing workload on the CPU by shifting more responsibilities to the FPGA. Cur-
rently, during steps 2 and 6 (as described in the previous section), the CPU must inspect each frame
transferred between the FPGA and GPU to determine which data should be processed by the CPU
and which by the GPU. To eliminate this overhead, the data flow can be restructured so that, instead
of multiplexing all data into a single stream, two separate data streams are created: one designated
for the CPU and another for the GPU. This restructuring modifies the data transfer steps between the
FPGA and GPU as follows. The steps are also depicted in Figure 3.2.

1. A mechanism is implemented on the FPGA to allow the user to specify which data is buffered for
the CPU and which for the GPU.

2. The user initiates a library call that transfers a block of data from the FPGA into the main memory.

3.3. Direct PCIe transfer 23

3. The buffer containing data for the GPU is transferred using cudaMemcpy.

4. A CUDA kernel is executed, with results stored in memory.

5. The result is copied back to main memory using cudaMemcpy.

6. The ONI frame is written back to the FPGA using a GPU-specific write function.

7. Data is send to the destination device.

Implementing these changes requires modifications at multiple levels of the technology stack. First,
within the FPGA logic, a method must be developed to separate data intended for the CPU and GPU,
as detailed in Section 3.4. Additionally, the liboni library must be updated to support these changes,
as discussed in Section 3.6.

Main Memory

FPGA

GPU Memory

Cache CPU CoresPCIe bus

Shared
memory GPU Cores

1
32

4

5

Devices
6

7

Figure 3.2: Closed loop data transfer from FPGA to GPU with reduced steps when compared with base case

3.3. Direct PCIe transfer
As was discussed in Chapter 2, communication between a FPGA and a GPU can be made faster by
directly sending data between them on the PCIe bus instead on using main memory. To design a
system where data is directly communicated over the PCIe bus two major design decisions have to be
made. The first one is which PCIe endpoint behaves as the master, either the GPU or FPGA. If the
GPU works as the master a approach similar to Bittner and Ruf [4] has to be taken. While this approach
would work on Windows OS, it has the main disadvantage that the way that direct communication was
achieved was more of a hack than a supported feature of NVIDIA GPUs. Another disadvantage is that
memory of the GPU needs to be mapped to the bus. This does not work with RIFFA as it is designed
for the FPGA to work as a bus master and thus an entirely new communication layer for the ONIX has
to be designed. For this reason it is preferred that the FPGA functions as bus master in the proposed
design.

The second design decision is how to write data to and from the FPGA. Two approaches can be
taken in this. The first is by directly addressing memory on the FPGA. This means that a large chunk of
memory is pinned to the PCIe bus and the user can decide where to read and write data from. This is
the approach taken by Thoma, Dassatti, and Molla [36] and Kasai and Osana [15]. While this approach
is very flexible since the user can read and write anywhere in the memory space of the FPGA, it adds
complexity in the design as this all needs to be managed in a memory safe way. Another approach
would be the one RIFFA takes. Instead of giving the user the option to read and write to a block of
memory, they can read and write from fixed channels which from the user’s perspective can be regarded
as large buffers. Although no literature exists that implies this approach would work when reading and
writing data from the GPU memory, it is by far the easiest to implement since ONIX has been designed

24 3. Design and Implementation

around RIFFA. Thus it will be tested if a modified version of RIFFA which is able to directly read and
write to and from the GPU memory can increase throughput and latency compared to the base case
explained above. On a high level, the system will have to perform the following tasks, which are also
depicted in Figure 3.3.

1. There needs to be a way for the user to select which data is buffered for the CPU and which data
is buffered for the GPU on the FPGA

2. The user makes a library call that transfers a block of data from the FPGA in to the GPU Memory

3. A Cuda kernel is run and the result is stored in memory.

4. Another library call is made that transfers the data back to the FPGA

5. The user shoudld be able to configure which device the data is eventually written to.

The kernel module which handles the data transfers to and from the FPGA needs to be modified
such that the data can be transferred to and form the GPU Memory, these changes are discussed in
Section 3.5. Finally the ONI library needs additional API calls to make it possible for the user to initiate
and configure the transfers, these changes are discussed in Section 3.6.

Main Memory

FPGA

GPU Memory

Cache CPU CoresPCIe bus

Shared
memory GPU Cores

1

3

2

4

5

Devices

Figure 3.3: Steps involved in sending data directly over PCIe to the GPU

3.4. ONIX FPGA-Core Modification
If direct communication is to be established between the FPGA and GPU, then there needs to be a
way to separate the data meant for CPU and GPU inside the FPGA. To do this separation, an extra
data stream on the FPGA is required, which collects all data which should be sent to the GPU. This
setup allows one data stream to remain versatile for CPU processing, while the second stream can be
tailored for high-performance, closed-loop operations using the GPU.

To achieve this, RIFFA should have two additional channels, one for reading GPU data and one for
writing. The RIFFA core, currently in use, can be extended to support extra channels, each capable
of sending and receiving data independently. To these channels, a GPU write stream and GPU read
stream are connected, which operate exactly the same as the existing read and write stream. The only
difference between the original data paths and the added ones is the GPU data input/output block. The
original data input/output blocks multiplex and demultiplex data from all ephys devices into a single
data stream. The GPU data input/output should be configurable, allowing a single device to write

3.5. Linux RIFFA-Kernel Driver Modification 25

and read to the input and output, respectively. This ensures that no two ephys devices write data
simultaneously, thereby preventing data mix-up. Additionally, the data width of the input and output
paths can be increased. In the original design, these paths are 16 bits wide, which, at a clock speed
of 250 MHz from the PCIe lines, offers a maximum throughput of 500 MB/s.

Furthermore, introducing a second read data stream means that there are two components that
read from and write to the DDR3 memory independently. To accommodate this, the DDR3 memory
should be partitioned into two separate regions, allowing each data stream to access its respective
partition without interference. Since only one device can access the memory controller at a time, an
interconnect is added to manage arbitration between the two data streams. A design proposition of the
new FPGA firmware is shown in Figure 3.4.

Signal
contoller

Conifg
contoller

Deep fifoData input

Data output

Devices
Read
stream

Write
stream

Register
stream

Signal
stream

RIFFA
Core

DDR3 RAM

Deep fifo
GPU Data
input

GPU Data
output

GPU Read
stream

GPU Write
stream

AXI
Interconnect

IP

Xilinx memory
contoller Added

logic

Figure 3.4: Overview of the updated ONIX FPGA core design with and additional read and write data for GPU data

3.5. Linux RIFFA-Kernel Driver Modification
Building on the concepts discussed in Section 2.8 regarding RIFFA and in Section 2.10 on GPUDirect,
this section outlines the necessary modifications to the RIFFA driver to enable peer-to-peer communi-
cation between the FPGA and GPU. The communication mechanism proposed is similar to that used
between the main memory and FPGA, where the kernel creates a scatter-gather structure that the
FPGA uses to read and write data. This procedure is explained in Section 2.7.1.

A key difference between sending data to a location in main memory compared to GPU memory is
that device addresses are not automatically exposed on the PCIe bus. Instead, at startup, the GPU
requests a portion of the PCIe bus address space using its Base Address Register (BAR). The amount
of address space requested by the GPU varies between GPU models. For example, the Quadro P620
GPU, which is used in later experiments, has BAR1 allocated for read and write operations with a size
of 256 MB, which means that only a portion of the GPU’s 2 GB memory can be mapped to the PCIe
bus at any one time.

26 3. Design and Implementation

To map allocated memory to the PCIe bus, the nvidia_p2p_get_pages function is used. When
a user allocates memory within the user program, the Nvidia driver returns a virtual address. This vir-
tual address is then passed to the nvidia_p2p_get_pages function, which maps the corresponding
memory pages to the PCIe memory address space within the BAR. This process, known as pinning
the memory, generates a page-table structure containing the addresses and sizes of the pinned pages.
Memory pinning is a critical yet time-consuming operation, as noted in the GPUDirect documentation
[26].

To enable the FPGA to read and write to these memory addresses on the PCIe bus, a final address
translation is required. Due to the presence of a Memory Management Unit (MMU) between the PCIe
bus and CPU, the I/O addresses of PCIe resources used in P2P transactions differ from the physical
addresses used by the CPU. The nvidia_p2p_dma_map_pages function performs this translation,
ensuring that the physical addresses align with those on the PCIe bus, thereby making them accessible
to other devices on the PCIe bus. Figure 3.5 provides an overview of how these functions and memory
relate to each other. Given the time-intensive nature of memory pinning, optimizing this process is
crucial. Two strategies for pinning are considered:

• Without Prepinning: This method is analogous to the original RIFFA functionality. If a buffer
exceeds the maximum size of the scatter-gather structure, which is 200 pages, it is divided into
multiple smaller scatter-gather structures that are sequentially pinned and sent to the FPGA. This
approach allows the transfer of data to a buffer significantly larger than the GPU’s maximum
pinning size. The maximum scatter-gather size is 200 times the size of a GPU page (64KB),
resulting in up to 12.8 MB of data being pinned to the BAR at one time. However, the constant
pinning and unpinning for large transfers introduces additional overhead.

• With Prepinning: This method mitigates the overhead associated with frequent pinning and
unpinning by pre-pinning the read or write buffer before data transfers begin. This approach
is particularly effective in the Liboni library, where the same buffers are reused throughout the
experiment. The method requires additional kernel calls, rdma_pin and rdma_unpin, to pin
the buffer once before the experiment starts, ensuring that it remains mapped to the PCIe bus for
the duration of the experiment. However, the amount of data that can be pinned is limited and
dependent on the specific GPU in use.

PCI Bus
address
space

GPU BAR

CUDA VA
Space

GPU Physical
address
space

FPGA BAR

RAM

CudaMalloc()

nvidia_p2p_get_pages() nvidia_p2p_dma_map_pages()

Figure 3.5: Memory Mapping in GPUDirect

3.5.1. Wrapper Kernel Module
A challenge when using GPUDirect is that the functions provided by the NVIDIA driver are licensed
under a proprietary license, whereas all other APIs provided by the Linux kernel are licensed under the

3.6. Liboni Library Update 27

GNU General Public License (GPL). The GPL includes a ”copyleft” provision, which mandates that any
derivative work based on GPL-licensed codemust also be distributed under the same license. Because
of this copyleft requirement, the Linux kernel prohibits mixing proprietary code with GPL-licensed code
within the kernel. Consequently, GPUDirect functions cannot be directly integrated into a custom kernel
module that calls linux kernel functions.

To overcome this issue, a secondary wrapper module was developed. This wrapper module en-
capsulates the necessary NVIDIA functions, allowing them to be called by the driver without violating
the provision. The reason why the wrapper can call the NVIDIA driver functions is that the driver does
not make calls to any other GPL-licensed functions. Thus, it does not mix proprietary function calls and
GPL function calls. This approach ensures compliance with licensing requirements while still allowing
the use of GPUDirect functionality.

Figure 3.6: Overview of how wrapper kernel module connects to NVIDIA Driver

3.6. Liboni Library Update
Changing the liboni library should be done with some care. A big appeal of the ONIX system is that it
is standardized and easy to set up. Therefore, changes made to the library and API shouldn’t affect
the usage of ONIX too much. First off, there needs to be a way for the user to configure whether a
device sends or receives data through the default data stream or the new GPU data stream. To enable
this, devices that support GPU computation should include a register that toggles this behavior via the
oni_set_opt() function.

The next problem is that the GPU data stream is not designed to send individual packets, the existing
API functions oni_read_frame() and oni_write_frame() are incompatible with this stream. The
only way that custom driver based functionality can be built into the API is using oni_driver_set_opt
and oni_driver_get_opt. To implement all optimizations that have been discussed in this chapter
there needs to be a way to pin memory, get the handle return by the pinning and upinning of memory;
there also needs to be a way to set the read and write buffer size; finally the user should be able to
initiate read and write actions to the driver. An overview of the options that should be added to the
library is shown in Table 3.1.

3.7. Conclusion
This chapter addressed the question of how the current ONIX design can be updated to enable com-
munication to a GPU. First, a a solution without any modifications to the current design is shown (Figure
3.1). Utilizing high-level APIs, such as NVIDIA’s CUDA, which allows for closed-loop experiments with
GPU acceleration.

Next, a more optimized version of the system is discussed which still send data trough host memory
but does so more optimized by reducing the steps involved.

28 3. Design and Implementation

Get/Set Option Name Input/Output Explanation

Set ONI_DRV_RD_SZ Size Set the size of the Read buffer

Set ONI_DRV_WR_SZ Size Set the size of the write buffer

Set ONI_DRV_PIN Memory address Pin the buffer at the given memory location

Set ONI_DRV_UNPIN Memory address Unpin the buffer at the given memory location

Set ONI_DRV_READ Memory address Write a block of data to the given memory ad-
dress to the FPGA

Get ONI_DRV_RD_SZ Size Returns the current set size of read buffer

Get ONI_DRV_WR_SZ Size Returns the current set size of write buffer

Table 3.1: Library call options added to the RDMA driver to add custom functionality

To implement PCIe P2P communication, modifications to the ONIX system are necessary. Data
meant for the CPU or GPU needs to be separated inside the FPGA before transmitting. This involves
updating the FPGA image to support multiple data channels. Furthermore, the data width of these
channels is increased to fully utilize the PCIe bandwidth.

Additionally, enabling peer-to-peer communication between the FPGA and GPU requires the devel-
opment of a new Linux kernel driver. This driver is based of the original RIFFA driver and can interface
with the RIFFA core on the FPGA. Two modes of sending are added, one with memory prepinning and
the other without memory prepinning.

The Liboni library, which interfaces with the ONIX system, also needs to be updated to accommo-
date these changes. This includes adding options for driver-specific functions such as memory pinning,
setting buffer sizes, and initiating read and write actions directly to the driver. These updates will allow
for the integration of advanced GPU computation capabilities while maintaining the flexibility and ease
of use that the ONIX system is known for.

4
Performance Evaluation

In this chapter, we investigate the performance of GPU integration within the Open Ephys system. The
hardware changes proposed in the previous chapter are implemented and the impact on transfer time
and troughput are measured.

The first section describes the experimental setup and methods used for data transfer, where we
implement a streamlined FPGA core to simulate Open Ephys data handling. This core supports up to 2
GB/s throughput, allowing an accurate assessment of latency and bandwidth without extensive system
alterations.

In the second section, we present and compare results from the original system and the updated
system with firmware modifications, focusing on the improvements in data transfer latency and through-
put.

The final section examines the impact of GPUDirect on data transfer rates with and without pre-
pinned memory across different payload sizes, providing insight into the conditions that yield optimal
performance for high-speed data transfers between the FPGA and GPU.

4.1. Experimental Setup
The testing was carried out on a Precision 7920 Tower workstation, which was selected for its capability
to support peer-to-peer communication on the PCIe bus. To make sure the translation of physical ad-
dresses and PCI bus addresses performs correctly, Intel’s VT-x virtualization technology was disabled.
The system specifications and software configurations used in the experiments are detailed in Table
4.1.

The experiments were designed to evaluate the performance limits of data transfer between the
FPGA and GPU within the ONIX system. Since closed loop performance is main interest both the
FPGA to GPU and GPU to FPGA transfer is evaluated. All the configurations discussed in chapter 3
are tested which are:

• Original system: Logic on the FPGA is the official Open Ephys bit-steam, original RIFFA kernel
driver and Liboni library is used. Data is geathered in main memory and then send to GPU using
cuda functions

• Updated system: Updated FPGA Logic, Kernel driver and Liboni library. Data is first send to the
main memory then to GPU using CUDA Functions

• GPUDirect without prepinning: Updated FPGA Logic, Kernel driver and Liboni library. Data is
send directly from the FPGA to GPU without prepinning the memory

• GPUDirect with prepinning: Updated FPGA Logic, Kernel driver and Liboni library. Data is send
directly from the FPGA to GPU with prepinning the memory

primary goal was to test how the system handles varying data sizes during transfer operations. The
metrics of interest are transfer time and troughput. Which are defined as the following:

29

30 4. Performance Evaluation

• Transfer time: This is taken as the time from the moment the user issues a command to start the
data transfer up until the user gets an indication that all the data has been successfully transferred

• Throughput: The total amount of data that is transferred during an experiment divided by the
total time of the experiment.

First, the average transfer time for the data to get from the FPGA to the GPU is measured. The
data transfer size is progressively increased, starting from a minimum of 64 bytes, and doubling each
time up to a maximum of 16.7 MB. For each datasize the transfer is repeated until a total of 8.6 GB
of data is transferred. This was chosen as a trade off where result accuracy did not really improve
while experiment time would increase significantly by transferring more data. The total time taken for
these transfers was measured using C++’s built-in chrono library. Using that the average, Standard
Deviation (SD) and maximum was calculated for each transfer size.

Component Description

CPU Intel(R) Xeon(R) Gold 6230 CPU @ 2.10GHz (40 cores)

System Precision 7920 Tower

RAM 6x 16GiB DIMM DDR4 Synchronous @ 2933 MHz

GPU NVIDIA Quadro® P620

FPGA AMD Kintex-7 XC7K160T

Operating System Ubuntu 20.04.6 LTS (kernel 5.4.0-190-generic, 64-bit)

C++ Compiler GCC 9.4.0

FPGA Synthesiser Vivado

GPU Drivers Nvidia 535.183.01 (Linux)

CUDA CUDA 12.2

Table 4.1: System Hardware and Software Configuration

4.2. FPGA testing logic
For the purpous of this experiment, instead of implementing the FPGA logic defined in section 3.4, logic
specific for testing the system is designed. The problem with propped system for testing purpouses
is that devices have to be used to generate data while, for this experiment the interest lays in the
behaviour of the connection between FPGA and GPU. Therefore this test logic is implemented which
is able to send arbitrary data back and forth between the FPGA and GPU, but which should perform
exaclty the same as the designed system for section 3.4.

The core includes two inputs and two outputs. The data source and sink are used to generate and
receive data at the maximum throughput that the FPGA can handle. The FPGA operates at a clock
frequency of 250 MHz, provided by the PCIe bus. The data source outputs an incrementing 64-bit value
at every rising clock edge, resulting in an maximum output rate of 2 GB/s. The sinks is non-blocking
and capable of always receiving data also at a rate of 2 GB/s

To simulate the FPGA’s operation when data is stored on the DRAM, both input and output streams
are incorporated. Data is written to the DRAM using the write stream and can subsequently be read
using the read stream. This feature is particularly useful for testing applications where the FPGA’s
output data must adhere to a specific type or format. Users can format the data and send it to the
FPGA, which is then redirected to the output. The RIFFA core is not changed and operates the same
as in the original ONIX design. A schematic overview of the new core is given in Figure 4.1. Since
in both this test design and the design specified in Section 3.4 the DRAM is used as a buffer and all
other components between the DRAM and RIFFA core are the same, this test logic should be a good
representation of the performance of the designed system.

4.3. Performance of Original System 31

RIFFA
Core

Write streamFifo

Deep Fifo
Xilinx

memory
contoller

Fifo Read Stream

4GB DRAM

Data source

Data sink

Figure 4.1: Simplified FPGA-Core Test Bed

4.3. Performance of Original System
The initial performance evaluation of the Open Ephys system was conducted using all the original
software parts. The original FPGA logic contains a test device capable of generating artificial data to
fully saturate the data path and receiving data at the same rate. The test device was configured to
operate at the highest possible throughput. The frame size generated by the test device was set to
match the block read size, ensuring that each call to oni_read_frame() resulted in a single driver
call that returned the frame. irst, buffers are allocated on both the host and GPU sides using cudaMal-
locHost() and cudaMalloc(). Once the data is correctly received, it is copied to the GPU using
CUDA’s memory-copy function. Finally, a call to cudaStreamSynchronize() blocks the execution
of the next transfer until all data has been properly written to the GPU. The code in Listing 4.1 provides
an overview of the measurement process used to evaluate system performance.

Listing 4.1: Reading and processing frames

1 cudaMallocHost(&host_buffer, transfer_size);
2 cudaMalloc(&device_buffer, transfer_size);
3 for(int i=0; i < repeats; i++){
4 oni_frame_t *frame = NULL;
5 rc = oni_read_frame(ctx, &frame);
6 cudaMemcpy(device_buffer, frame->data, block_read_size, cudaMemcpyHostToDevice);
7 cudaStreamSynchronize(cudaStreamDefault);
8 total_read += frame->data_sz;
9 oni_destroy_frame(frame);

10 }

4.3.1. Results
The experimental results are presented in the following figures. Figure 4.2a illustrates the average
latency as a function of the number of bytes transferred per operation. A key observation is that latency
linearly increases at around 10 kB. This indicates that the throughput has plateaued. Calculating this
throughput shows that for transfers from the FPGA to the host a maximum of approximately 500 MB/s
can be reached. In contrast, the throughput for transfers from the host to the FPGA is lower, saturating
at 350 MB/s.

Figure 4.2b is a frequency plot of the transfer time for two transfer sizes, highlighting significant
differences in latency, particularly for smaller transfers. Some number of the graph are shown in in Table
4.2 and indicate an average SD of 47 µs and 52 µs for FPGA-to-GPU and GPU-to-FPGA transfers,

32 4. Performance Evaluation

respectively, which is similar order of size as the average transfer time. Additionally, the maximum
transfer time observed is exceptionally high, exceeding 100 times the average. For larger transfer
sizes, the time for FPGA-to-GPU transfers is noticeably lower compared to GPU-to-FPGA transfers.

Transfer Type Throughput
(MB/s)

Transfer Time (µs)

Average SD Max

FPGA to host, 4 kB 116 34 47.3 6190

Host to FPGA, 4 kB 76 51 52 6210

FPGA to host, 10 MB 499 20900 644 3730

Host to FPGA, 10 MB 382 27700 4150 45500

Table 4.2: Performance metrics for FPGA-to-host and host-to-FPGA transfers.

102 103 104 105 106 107

Bytes per transfer

102

103

104

T
ra

n
sf

er
 t

im
e

(u
s)

FPGA to GPU

GPU to FPGA

(a) Average transfer time trough host memory before changes to
ONIX

105 106 107

Time (us)

100

101

102

103

104

105

F
re

q
u
en

cy

FPGA to GPU at 4kB

GPU to FPGA at 4kB

FPGA to GPU at 10MB

GPU to FPGA at 10MB

(b) Transfer time before changes to ONIX

Figure 4.2: Performance of the ONIX system without any upgrades

4.3.2. Conclusion
The performance evaluation of the original ONIX system reveals clear limitations, particularly in terms
of throughput and latency. The maximum achievable throughput is constrained to approximately 500
MB/s for FPGA-to-GPU transfers, this is due to the fact that the original FPGA logic can only ouput 16
bits per clock cycle at 250MHz. The constraint means that the current data path in the logic FPGA is
a bottleneck. To fully utilize the available PCIe bus and GPU resources, improvements to the FPGA
data path are necessary.

The observed transfer time differences, especially for smaller transfers, are likely due to the shared
access to main memory across the system and the lack of prioritization in memory-access scheduling.
Implementing GPUDirect, which bypasses themain memory, could potentially address these overhead.
Additionally, the poorer performance observed in GPU-to-FPGA transfers can be attributed to the ad-
ditional memory allocations required in the current system. When generating a frame which is send to
the FPGA new memory is always allocated, while when getting data from the FPGA preallocated buffer
are used. Eliminating these unnecessary allocations could further enhance system performance.

Overall, the results underscore the need for firmware enhancements and architectural modifications
to optimize the ONIX system for high-performance GPU computation.

4.4. Performance of Updated system without GPUDirect
This section the updated system is tested and compared to the original system. The test will use the
FPGA core shown in Figure 2.3, which is able to read and write data at 2GB/s. Listing 4.2 demonstrates

4.4. Performance of Updated system without GPUDirect 33

how data is transferred from the FPGA to the GPU using the newly implemented driver and library
functions but without GPUDirect. First, buffers are allocated on both the host and GPU sides using
cudaMallocHost() and cudaMalloc(). The entire transfer is similar as the previous experiment
except that the new liboni library options are used to set the transfer size and initiate data transfer from
the FPGA to the host. The GPU to FPGA transfer occurs in a similar manner.

Listing 4.2: Reading and processing frames with the new system

1 cudaMallocHost(&host_buffer, transfer_size);
2 cudaMalloc(&device_buffer, transfer_size);
3 oni_set_driver_opt(ctx, ONI_DRV_RD_SZ, transfer_size, 4);
4

5 for(int i=0; i < repeats; i++){
6 rc = oni_set_driver_opt(ctx, ONI_DRV_READ, host_buffer, 4);
7 if (rc != 0)
8 error_exit(rc, ”Error reading data\n”);
9 cudaMemcpy(device_buffer, host_buffer, transfer_size, cudaMemcpyHostToDevice);

10 cudaStreamSynchronize(cudaStreamDefault);
11 }

4.4.1. Results
The results of the experiments are illustrated in Figure 4.3a at a later point in the chapter for a better
comparison, but are summarized in Table 4.3. When compared to the orignal system, for smaller trans-
fer sizes, the transfer times remain comparable; however, for larger transfers, the time is much lower.
Calculating the throughput using the transfer time shows that the new system plateaus at approxi-
mately 1600 MB/s, a significant improvement over the original system. Comparing the performance
of the original and modified systems when transferring larger data, there is a substantial decrease in
transfer time. The time for FPGA to GPU transfers went from 21000 us to 7658 us. Similarly, GPU to
FPGA transfers saw an decrease from 28000 to 7084 us, reflecting an almost 400% improvement.

Figure 4.3b depicts the spread of transfer times after the system modifications. The results indicate
that the changes have not significantly impacted the Standard Deviation (SD) and maximum tranfer
time. This shows that the underlying contention for system resources remains similar to the original
setup.

Transfer Type Throughput
(MB/s)

Transfer Time (µs)

Average SD Max

FPGA to GPU, 4kB 120 34 43 7686

GPU to FPGA, 4kB 119 33 44 14974

FPGA to GPU, 10MB 1379 7658 381 14719

GPU to FPGA, 10MB 1501 7084 426 13731

Table 4.3: Performance metrics for different types of FPGA-to-GPU and GPU-to-FPGA transfers in the modified system.

4.4.2. Conclusion
The experimental results demonstrate significant improvements in system performance following the
modifications. The latency for both 10MB FPGA-to-GPU and GPU-to-FPGA transfers has substan-
tially decreased for large transfer sizes. Specifically, FPGA-to-GPU latency improved almost 300%.
Similarly, GPU-to-FPGA transfers saw an improvement of nearly a 400%.

Despite the substantial gains in average transfer time, the modifications did not significantly impact
the deviation and maximum transfer time; this can be expected since system resource contention re-
mains similar to the previous configuration. However, these enhancements clearly demonstrate that
the system modifications have effectively increased the data-transfer rates between the FPGA and
GPU, making the system more suitable for high-performance applications and testing of the PCIe bus.

34 4. Performance Evaluation

For smaller transfers, the system changes had less of an impact. The time stayed the same for FGPA
to GPU transfers but slightly increased for transfers from GPU back to the FPGA.

4.5. Performance of GPUDirect without Prepinning
The GPUDirect functionality is evaluated by first testing it without utilizing prepinning. The evaluation
procedure closely mirrors the previous tests, where data was transferred through the main memory.
A sample of the code is shown in Listing 4.3. Initially, a buffer is allocated in the GPU memory using
cudaMalloc, and the data is subsequently transferred to this buffer using the oni_set_driver_opt
function and the newly implemented ONI_DRV_READ option, which handles the data transfer. The
transfer process is timed and recorded.

Listing 4.3: Reading data from ONIX using GPUDirect without prepinning

1 cudaMalloc(&device_buffer, transfer_size);
2 oni_set_driver_opt(ctx, ONI_DRV_RD_SZ, transfer_size, 4);
3

4 for(int i=0; i < repeats; i++){
5 rc = oni_set_driver_opt(ctx, ONI_DRV_READ, device_buffer, 8);
6 if (rc != 0)
7 error_exit(rc, ”Error reading data\n”);
8 }

4.5.1. Results
The results obtained from implementing GPUDirect are shown below. Figure 4.3c presents the average
transfer time of the new system using GPUDirect, while Figure 4.3d illustrates the frequency plot for
transfer times. The performance results for the two transfer sizes are summarized in Table 4.4.

When comparing the results of GPUDirect with the previous system improvements, several obser-
vations can bemade. For small transfers (4kB), the transfer time using GPUDirect is significantly higher
than that achieved while sending data through main memory. Specifically, the time for FPGA-to-GPU
and GPU-to-FPGA transfers at 4kB increased to 155 us and 152 us, respectively. This represents an
increase in latency of almost 400% compared to not using GPUDirect. Also the SD and maximum
transfer time increased.

For larger transfers (10MB), the transfer time using GPUDirect is comparable to that of sending data
through host memory, with transfer sizes around 1MB and beyond surpassing the latency of transfer
through main memory. The Standard Deviation (SD) and maximum time metrics slightly improve with
GPUDirect but not significantly compared to the average time decrease, suggesting that it does not
enhance the real-time performance of the system and probably still contends with shared system re-
sources.

Transfer Type Throughput
(MB/s)

Transfer Time (µs)

Average SD Max

FPGA to GPU, 4kB 31 155 106 15525

GPU to FPGA, 4kB 28 152 107 19766

FPGA to GPU, 10MB 1485 7086 344 15748

GPU to FPGA, 10MB 1598 6517 353 18132

Table 4.4: Performance metrics for different types of FPGA-to-GPU and GPU-to-FPGA transfers using GPUDirect.

4.5.2. Conclusion
The results indicate that GPUDirect without prepinning performs poorly for small transfers, exhibiting
higher latency compared to the previous system improvements. Additionally, there is no improvement

4.6. Performance of GPUDirect with Prepinning 35

in the deviation and maximum transfer time, suggesting that GPUDirect does not enhance the real-
time performance of the system. The poor performance is likely due to the overhead associated with
memory pinning, which will be examined in more detail in section 4.7. Although GPUDirect achieves
slightly higher throughput and lower latency for larger transfers, the bad performance at smaller trans-
fers outweigh these benefits. Consequently, GPUDirect without prepinning does not offer a meaningful
advantage for the ONIX and may not be worth the constraints it introduces, given its limitations.

4.6. Performance of GPUDirect with Prepinning
The final evaluation that is performed is the GPUDirect with pinning. The evaluation code from a user’s
perspective looks very similar to the code without pinning, shown in Listing 4.4. The only difference is
that the allocated buffer must be pinned before transfer and unpinned after. One notable drawback of
this approach is the fact that the amount that can be pinned is defined by how much can be pinned to
the BAR space of the PCIe bus. This should be 256 MB according to the hardware specs of the Quadro
P600. However, for unknown reason it was found that pinning fails for buffer larger than roughly 16
MB; therefore, the tests do not go further than that.

Listing 4.4: Reading data from ONIX using GPUDirect with prepinning

1 cudaMalloc(&device_buffer, transfer_size);
2 oni_set_driver_opt(ctx, ONI_DRV_RD_SZ, transfer_size, 4);
3 rc = oni_set_driver_opt(ctx, ONI_DRV_PIN, device_buffer, 8);
4 for(int i=0; i < repeats; i++){
5 rc = oni_set_driver_opt(ctx, ONI_DRV_READ, device_buffer, 8);
6 if (rc != 0)
7 error_exit(rc, ”Error reading data\n”);
8 }
9 rc = oni_set_driver_opt(ctx, ONI_DRV_UNPIN, device_buffer, 8);

4.6.1. Results
The results of implementing the new method are shown below. Figure 4.3e presents the average
latency for the new system, the results for sending data through host memory are also plotted for
comparison. Figure 4.3f give the frequency of the transfer times. The performance metrics for various
transfers are summarized in Table 4.5.

When comparing the results with the GPUDirect pinning method to the system without GPUDirect,
several observations can be made. The transfer time for small transfers (4kB) using the new method
shows a significant improvement compared to the transfers achieved without GPUDirect. For FPGA to
GPU and GPU to FPGA transfers at 4kB, the transfer time decreased approximately by 30%.

For larger transfers (10MB), the transfer time using the new method is also slightly lower than the
results through host memory, achieving an improvement of 14%, indicating that the new method has
faster transfers for both small and large transfer sizes. Compared to the transfer trough host memory
the SD and maximum time only slightly improves but not significantly.

Transfer Type Throughput
(MB/s)

Transfer Time (µs)

Average SD Max

FPGA to GPU, 4kB 161 25 40 8010

GPU to FPGA, 4kB 168 24 37 8006

FPGA to GPU, 10MB 1572 6677 267 12686

GPU to FPGA, 10MB 1705 6121 279 12215

Table 4.5: Performance metrics for different types of FPGA to GPU and GPU to FPGA transfers.

36 4. Performance Evaluation

4.6.2. Conclusion
The implementation of GPUDirect with prepinning demonstrates significant benefits over the unpinned
version. The primary improvement stems from the reduced overhead of pinning, as this step is per-
formed only once per buffer rather than per transfer. This optimization results in substantial improve-
ments in transfer times and throughput, particularly for smaller transfers, where the overhead of the
pinning operations is most pronounced.

Also when compared to sending data trough host memory the pinned GPUDirect version improves
transfer time and throughput. For example, time for 4kB transfers decreased by approximately 30%
compared to transfers using host memory.

For larger transfers, while the benefits are less pronounced, prepinning still provides an improve-
ment. The 14% throughput increase for 10MB transfers suggests that even with larger data sizes,
avoiding the host memory pathway contributes to measurable performance gains. However, the im-
pact of prepinning on variability, such as jitter and maximum latency, remains minimal. This indicates
that prepinning alone cannot address timing inconsistencies in the system.

These results highlight the importance of leveraging prepinning for GPUDirect in applications requir-
ing frequent, high-speed transfers, particularly for smaller data sizes. However, further optimizations
will be needed to address non-deterministic timing behavior and ensure reliable performance for real-
time systems.

4.6. Performance of GPUDirect with Prepinning 37

102 103 104 105 106 107

Bytes per transfer

102

103

104

T
ra

n
sf

er
 t

im
e

(u
s)

FPGA to GPU via host Original system

GPU to FPGA via host Original system

FPGA to GPU via host Updated system

GPU to FPGA via host Updated system

(a) Average transfer time trough host memory after changes to ONIX

102 103 104

Time (us)

100

101

102

103

104

105

106

F
re

q
u
en

cy

FPGA to GPU at 4kB

GPU to FPGA at 4kB

FPGA to GPU at 10MB

GPU to FPGA at 10MB

(b) Transfer time after changes to ONIX

102 103 104 105 106 107

Bytes per transfer

102

103

104

T
ra

n
sf

er
 t

im
e

(u
s)

FPGA to GPU via Host

GPU to FPGA via Host

FPGA to GPU GPUDirect w/o prepinning

GPU to FPGA GPUDirect w/o prepinning

(c) Average transfer time using GPUDirect without prepinning

102 103 104

Time (us)

100

101

102

103

104

105

106

F
re

q
u
en

cy

FPGA to GPU at 4kB

GPU to FPGA at 4kB

FPGA to GPU at 10MB

GPU to FPGA at 10MB

(d) Transfer time using GPUDirect without prepinning

102 103 104 105 106 107

Bytes per transfer

102

103

104

T
ra

n
sf

er
 t

im
e

(u
s)

FPGA to GPU via Host

GPU to FPGA via Host

FPGA to GPU GPUDirect w/ prepinning

GPU to FPGA GPUDirect w/ prepinning

(e) Average transfer time using GPUDirect with prepinning

102 103 104

Time (us)

100

101

102

103

104

105

106

F
re

q
u
en

cy

FPGA to GPU at 4kB

GPU to FPGA at 4kB

FPGA to GPU at 10MB

GPU to FPGA at 10MB

(f) Transfer time using GPUDirect with prepinning

Figure 4.3: Comparison of transfer times and throughputs for various configurations.

38 4. Performance Evaluation

4.7. Profiling kernel driver
In Section 4.5 the assumption was made that the having to pin the memory for every transfer was the
cause of the slower transfers. To verify this a profiling of themodified RIFFA kernel dirver has to be done.
Profiling the kernel also helps with identifying the major overheads in the kernel driver. Understanding
these overheads is crucial for making informed decisions about potential optimization targets. Profiling
also ensures that the kernel behaves as expected. The profiling was performed using the printk
function, which logs messages to the system log, and the ktime_get_ns function, which provides
highly accurate system timing. These functions were combined in a macro called PRINT_TIME, which
was incorporated at compile time. The overhead caused by printing was measured by performing two
prints and calculating the time difference between them.

4.7.1. Results
The profiling results are shown in Figure 4.4. Each function in the new kernel module that handles data
transfer was timed. The profiling revealed that, for the default and pre-pinned GPUDirect transfers,
most of the time was spent waiting for the FPGA to send interrupts indicating it had completed the data
transfer. All other parts were negligible and therefore categorized under the ”Other” label. This was not
the case for the unpinned GPUDirect transfers, where each transfer involved pinning and unpinning
the data. This operation caused a significant overhead, which explains the higher latency for these
particular transfers, as seen in Figure 4.3c. A profiling of 10MB transfers was also done but the graph
is omitted as it did not provide any additional information. It showed that the driver spends almost all
its run time waiting on interrupts.

Defau
lt w

rite

Defau
lt re

ad

GPUDirec
t write

GPUDirec
t re

ad

Prepinned GPUDirec
t write

Prepinned GPUDirec
t re

ad
0

20

40

60

80

100

D
u
ra

ti
on

 (
u
s)

Other

Wait for interrupt

Pinning buffer

Unpinning buffer

Figure 4.4: Profile of kernel module with 4KB transfer

4.7.2. Conclusion
The profiling results indicate that there is limited scope for optimizing the kernel driver itself. The
primary way to significantly reduce transfer time is by decreasing the wait time for interrupts. This could
potentially be achieved by speeding up the PCIe bus, either by increasing the lane count or upgrading
the generation type. This is however not a posibilty with the current ONIX hardware. Profiling also
confirms that the higher latency in the GPUDirect transfers where the memory is not prepinned is
mainly due to the time-consuming pinning operations that has to be performed for each transfer.

4.8. Conclusion of performance evaluation 39

4.8. Conclusion of performance evaluation
First off, the GPUDirect version without prepinning does not bring any benefits and should not be used
by users due to the large overhead associated with pinning each transfer. In contrast, the pinned
GPUDirect version clearly demonstrates improvements in both transfertime and throughput for data
transfers between the FPGA and GPU. These enhancements are particularly notable for smaller trans-
fers, where the overhead associated with transferring data through the host memory is relatively larger.
In these cases, GPUDirect significantly reduces transfer time, resulting in a throughput increase of ap-
proximately 30% for 4kB transfers. This improvement is attributed to the elimination of themainmemory
as an intermediary, which reduces the overhead that disproportionately affects smaller transfers.

For larger transfers, the benefits of pinned GPUDirect are more modest. Although there is an
improvement in throughput and latency, the impact is less pronounced. This is because the PCIe
channel between the GPU and host is already much faster compared to the FPGA-to-host path, so
the relative speedup from bypassing the host memory is smaller. The throughput for 10MB transfers
showed a more modest increase of about 14%, reflecting the diminishing returns of GPUDirect as
transfer sizes increase.

Despite these throughput and transfer time improvements, GPUDirect did not result in better jitter
or maximum latency performance. The lack of improvement in these metrics indicates that GPUDi-
rect alone is insufficient to address the variability and worst-case timing behavior in the system. This
suggests that other strategies, such as implementing a real-time Linux kernel, may be necessary to
achieve consistent low-latency performance and reduce jitter.

Overall, while GPUDirect offers substantial benefits for improving throughput and latency, especially
for smaller transfers, additional measures will be required to enhance real-time performance in high-
demand applications. From profiling the kernel driver it was concluded that the only way to further
speed up the transfers is by improving the physical PCIe connections.

5
Application Scenarios

The objective of this chapter is to find out in which application scenarios GPU’s and GPUDirect provide
improved performance. Up to this point, the measurements conducted have focused on stress testing
the system with data transfers, to determine the maximum feasible throughput. However, to under-
stand the differences in throughput between the CPU and GPU, it is essential to consider scenarios
where multiple processes are executed concurrently. These processes include data transfer from the
ONIX FPGA card, computation, and response transmission. Ideally, these operations should occur
simultaneously to maximize throughput. Consequently, this chapter evaluates the system in scenarios
where both data transfers and processing are performed concurrently.

Three different configurations are compared in this evaluation:

• CPU-only configuration.

• GPU computation with data transferred through host memory.

• GPU computation with pre-pinned GPUDirect memory.

In practical applications, various factors can influence response time and throughput, including bus
bandwidth, memory bandwidth, core count, CUDA kernel launch time, and others. The limiting factor
can vary significantly depending on the application. To account for this variability, multiple application
scenarios are considered. This chapter first mentions how these configurations are implemented. Next
the results are evaluated. Finally, a conclusion is drawn which should give more insight in how GPU
and GPUDirect could improve application which run on the ONIX system.

5.1. Implementation of Application Scenarios
A single algorithm is employed across different scenarios, with parameters adjusted to simulate varying
conditions. The algorithm, derived from Konstantinidis and Cotronis [19], effectively estimates the
runtime of different types of GPU kernels. The algorithm can be described as amultiply-add-accumulate
function, as illustrated in Listing 5.1. Given its straightforward and highly parallelizable nature, the
algorithm allows for a comprehensive comparison of CPU and GPU performance.

Listing 5.1: Multiply-Add-Accumulate Kernel

1 template <ssize_t compute_iterations>
2 int kernel(float* vec, int vec_len, float seed) {
3 int sum = 0;
4 for(int i = 0; i < vec_len; i++) {
5 for(int j = 0; j < compute_iterations; j++) {
6 vec[i] = vec[i] * vec[i] + seed;
7 }
8 sum += vec[i];
9 }

10 return sum;
11 }

40

5.1. Implementation of Application Scenarios 41

The evaluation involves four distinct scenarios, determined by varying two parameters: the data
size transferred from the FPGA and the data size used in computation. For each of the four sce-
narios the Arithmetic Intensity (AI) of the computation is also changed. The first parameter, the data
size, has a significant impact on PCIe bus throughput. The same data sizes are used as in Chapter
4, small data sizes are set at 4 KB, while large data sizes are set at 10 MB. The second parameter,
the computation data size, affects memory bandwidth relative to bus bandwidth. Scenarios with small
memory bandwidth use data sizes identical to the transferred data, whereas large memory bandwidth
scenarios use data sizes 100 times greater than the transferred data. The memory bandwidth is in-
creased by doing the computation multiple times on the the same data. The final parameter that is
changed is the AI, which measures the number of operations performed per byte moved from mem-
ory to a core, encompassing operations like additions or multiplications. AI is thus defined in Floating
Point Operations (FLOPs) per byte. Typically, AI is low; for example, a floating-point vector addition
has an AI of 0.083 FLOPs/byte, while dense linear algebra can achieve AI values in the order of tens,
for large matrices. By varying the AI and calculating throughput, a roofline graph can be constructed.
This graph helps identify the limiting hardware component, whether it be memory bandwidth, PCIe bus
speed or computational throughput of the CPU or GPU. The bandwidth limits for different components
are summarized in Table 5.1. Giga Floating Point Operations (GFLOPS) for a given bandwidth can be
calculated by multiplying AI with the bandwidth in GB/s. The hardware used in the experiments is the
same as in Chapter 4 and is thus again summarized by Table 4.1. The bandwidth limits for the CPU
and GPU were determined using the original application by Konstantinidis and Cotronis [19]. The PCIe
bus limits are taken from Chapter 4. An overview of these scenarios is presented in Table 5.2.

Table 5.1: Bandwidth Limits of Different Components

Component Limit

CPU (4 cores enabled)

Compute BW 410 GFLOPS

Memory BW 40 GB/s

GPU

Compute BW 1300 GFLOPS

Memory BW 75 GB/s

PCIe Bus (4kB)

Write BW 161 MB/s

Read BW 168 MB/s

PCIe Bus (10MB)

Write BW 1572 MB/s

Read BW 1705 MB/s

Table 5.2: Summary of Experiments

Experiment ID Data Transfer Size Computation Size Sequence of Operations

1 4 kB 4 kB Read 4 kB data → Compute on 4 kB data → Send 4 kB back

2 4 kB 400 kB Read 4 kB data → Compute on 400 kB data → Send 4 kB back

3 10 MB 10 MB Read 10 MB data → Compute on 10 MB data → Send 10 MB back

4 10 MB 1 GB Read 10 MB data → Compute on 1 GB data → Send 10 MB back

Two implementations were developed for testing: one in standard C++ and another using the CUDA
framework. The C++ implementation runs entirely on the CPU, with data transfer and processing

42 5. Application Scenarios

specified as program inputs. It employs three threads: one for receiving data, one for processing,
and one for sending data.

The CUDA implementation mirrors this setup but performs computations within a GPU kernel. For
the CUDA version, two methods are tested: data transfer through host memory and pre-pinned GPUDi-
rect memory. In the host-memory transfer method, five threads are utilized—two additional threads
handle the data transfer to and from the GPU. In contrast, the GPUDirect implementation uses only
three threads. Both methods employ a double-buffering technique to maximize throughput, where one
buffer is used for computation while the other is available for data transfer. This technique ensures that
throughput is limited by the slowest thread, while latency remains unaffected.

Host to GPU

FPGA to Host

GPU Kernel

Wr Buf 1 Wr Buf 2

1 2

Threads

Time

GPU to Host

Host to FPGA

1 2

Rd Buf 1 Rd Buf 2

Wr Buf 1 Wr Buf 2

1 2

1

Rd Buf 2

Figure 5.1: Overview of closed loop data pipeline.

Main Memory

FPGA

GPU Memory

Input buffer 1

Input buffer 2

Result buffer 1

Result buffer 2

Write buffer 1

Write buffer 2

Read buffer 1

Read buffer 2

Cache CPU CoresPCIe bus

Shared
memory GPU Cores

Figure 5.2: Memory locations and their interactions for closed loop data pipeline.

The processing algorithm is optimized for speed by leveraging parallelism. In the C++ implemen-

5.2. Results 43

tation, this is achieved trough OpenMP pragmas. The data that is send by the FPGA is interpreted
as a one dimensional array. The array is subdivided into blocks of 256 elements, processed by mul-
tiple threads using #pragma omp for. Within these blocks, a second loop performs eight multiply-
accumulate operations per cycle, parallelized using SIMD instructions with #pragma omp simd. The
CPU utilizes 512-bit AVX registers.

For the CUDA implementation, the array is divided among different blocks, each consisting of 64
cuda threads. These blocks are processed by streaming multiprocessors (SMs), which have multiple
cores andmemory. Every thread calculates four elements; the number of compute iterations is adjusted
to vary the arithmetic intensity (AI).

5.2. Results
5.2.1. Small Data Transfer, Small Computation
The first experiment involves the following sequence of operations: Read 4 kB of data → Compute on
4 kB of data → Send 4 kB back. The plot in Figure 5.3a shows the roundtrip time at an AI of 0.75. The
results indicate that the FPGA and GPU read and write times, put together is the primary limiting factor
in this scenario, as it dominates the total response time. The additional read and write operations for
the non-GPUDirect version significantly slow down the response compared to the GPUDirect version,
making the GPUDirect version 25% faster. This suggests that leveraging GPUDirect can substantially
improve performance when utilizing the GPU’s computational capabilities. However, the CPU is the
fastest computation platform in this case, being around 35% faster then using the GPU with GPUDirect.
The small amount of data seems to be better handled by the CPU. This is because even though the
GPU has a higher maximum bandwith, the CPU is generally faster with computing small data sets as
it has a more optimized computer architecture for this. Also, the transfer to the CPU is slightly faster
then to the GPU. This shows the the transfer to GPU memory gives a slight performance penalty when
compared to sending data just to the main memory. The round-trip time for an AI of 10 is shown in
Figure 5.3b. Here, the GPU is 60% faster than the CPU, indicating that once the AI goes up, the GPU
is able to slightly outperform the CPU, even at small data sizes. This is because the total amount of
parallel computations increased which the GPU is better optimized for.

CPU

GPUDirec
t

No G
PUDirec

t
0

10

20

30

40

50

60

70

80

T
im

e
in

 u
s

(a) Roundtrip time 4kB Package, 4kB Compute, 0.75 AI

CPU

GPUDirec
t

No G
PUDirec

t
0

10

20

30

40

50

60

70

80

T
im

e
in

 u
s

FPGA write

FPGA read

GPU read

GPU write

Compute

(b) Roundtrip time 4kB Package, 4kB Compute, 10 AI0

Figure 5.3: Round-trip time for 4 kB package with 400 kB of processing

5.2.2. Small Data transfer, Large Computation
In the second experiment, the sequence of operations is: Read 4 kB of data → Compute on 400 kB
of data → Send 4 kB back. Figure 5.4a shows the transfer time at AI 0.75 and Figure 5.4b at AI 10.
Even tough the total amount that should be computed is 100 larger, the compute time for the GPU
is exactly the same as in previous experiment. The CPU is impacted by the additional computational
load. For an AI of 0.75 the CPU and GPUDirect version perform similar. When the AI increases to 10,

44 5. Application Scenarios

the GPUDirect version is around 25% faster then the CPU version.

CPU

GPUDirec
t

No G
PUDirec

t
0

10

20

30

40

50

60

70

80

T
im

e
in

 u
s

(a) Roundtrip time 4kB Package, 400kB Compute, 0.75 AI

CPU

GPUDirec
t

No G
PUDirec

t
0

20

40

60

80

T
im

e
in

 u
s

FPGA write

FPGA read

GPU read

GPU write

Compute

(b) Roundtrip time 4kB Package, 400kB Compute, 10 AI

Figure 5.4: Round-trip time for 4 kB package with 400 kB of processing

5.2.3. Large Data Transfer, Small Computation
The third experiment involves larger data transfers: Read 10 MB of data → Compute on 10 MB of data
→ Send 10 MB back. Figure 5.5 shows the round trip time at an AI of 0.75 and 10. For these amounts of
data, the transfer to and from the FPGA becomes by far the largest contributor to the overhead. Since
this is the same for all three configurations, the relative difference between them becomes smaller.
The GPUDirect configuration is the fastest, being around 15% faster than no GPUDirect and 3% faster
when using the CPU. Increasing the AI does not affect the computation time of the GPU kernel. This
is likely because with a small AI the GPU resources are under utilized, meaning that the total compute
time mostly comprises of overheads and adding additional computation has no significant effect on the
compute time. Increasing the AI does significantly increase the CPU computation time, causing the
response time to be 10% slower than GPUDirect.

CPU

GPUDirec
t

No G
PUDirec

t
0

2000

4000

6000

8000

10000

12000

14000

16000

T
im

e
in

 u
s

(a) Roundtrip time 10MB Package, 10MB Compute, 0.75 AI

CPU

GPUDirec
t

No G
PUDirec

t
0

2000

4000

6000

8000

10000

12000

14000

16000

T
im

e
in

 u
s

FPGA write

FPGA read

GPU read

GPU write

Compute

(b) Roundtrip time 10MB Package, 10MB Compute, 10 AI

Figure 5.5: Round-trip time for 10 MB package with 10 MB of processing

5.3. Conclusion 45

5.2.4. Large Data Transfer, Large Computation
In the final experiment, each block of 10 MB data is processed with 100 times, totaling 1 GB: Read
10 MB of data → Compute on 1 GB of data → Send 10 MB back. The total round trip time for the two
tested AIs is shown in Figure 5.6. At 1GB of data compute, the compute time becomes the dominant
factor in the total response time. For both cases, the GPU is the better compute platform. However,
when comparing both GPU configurations the difference is less pronounced due to the fact that the
total contributions of the additional read and writes become smaller. In both cases, the GPUDirect
configuration is only 6% faster than not using GPUDirect.

CPU

GPUDirec
t

No G
PUDirec

t
0

5000

10000

15000

20000

25000

30000

T
im

e
in

 u
s

(a) Roundtrip time 10MB Package, 1GB Compute, 0.75 AI

CPU

GPUDirec
t

No G
PUDirec

t
0

10000

20000

30000

40000

50000

T
im

e
in

 u
s

FPGA write

FPGA read

GPU read

GPU write

Compute

(b) Roundtrip time 10MB Package, 1GB Compute, 10 AI

Figure 5.6: Round-trip time for 10 MB package with 1 GB of processing

5.3. Conclusion
The experiments conducted in this chapter systematically investigated the performance implications
of various configurations and parameters on total round trip time in a closed-loop system. The pri-
mary objective was to determine in which application scenarios a GPU and GPUDirect offers improved
performance. While it is challenging to provide a definitive answer, the results offer a general under-
standing of how data size and throughput impact different aspects of of the total closed loop cycle.
The findings indicate that for the smallest transfer size of 4 KB, the GPU provides minimal performance
benefits compared to CPU computation. Although GPUDirect significantly accelerates the data transfer
from FPGA to GPU, its utility is questionable in this context. In this specific algorithm, which is simple
and could be easily accelerated by a GPU, there is no noticeable performance improvement due to
the small data sizes. Even with an increase in algorithm complexity, the performance gain remains
marginal.
For larger data transfers, GPU’s can have a improved performance compared to the CPU. However,
for GPUDirect the pattern observed in Chapter 4 re-emerges: the relative performance improvement
diminishes as transfer sizes increase. This is attributable to the limited throughput capability of the
FPGA’s PCIe interface. When 10 MB of data is used in computation, the GPU’s impact is minimal, as
the computation time is negligible compared to the data transfer time.
Thus, the benefits of incorporating GPUDirect into the system should be carefully evaluated. Given the
increased complexity and minimal performance gains observed in this study, it may be worth reconsid-
ering whether the effort to integrate GPUDirect justifies the added complexity and potential performance
improvements.

6
Discussion and Future Directions

The thesis thus far has analyzed the current design of the ONIX system and proposed potential im-
provements, primarily focusing on software enhancements and changes on the user desktop. The
first part of this chapter consolidates these findings, explores their use cases, and evaluates their
practical applications. The second part looks into hardware changes of the ONIX FPGA card. While
the improvements discussed so far are software-oriented, achieving optimal performance may require
hardware-level modifications to the ONIX system—especially when integrating additional high-speed
interfaces. Therefore, this chapter also investigates potential hardware upgrades that could further en-
hance the system’s capabilities. Finally, the chapter provides a comparative analysis of the GPUDirect
implementation presented in this thesis with other implementations, along with a brief discussion on its
applicability to other domains.

6.1. Cases for Utilizing GPUDirect
The decision tree depicted in Figure 6.1 outlines the considerations for determining whether GPUDirect
can provide significant speedup for a given application. Users should begin by evaluating the paral-
lelizability of their application. If the application is not highly parallelizable, GPUs offer no advantage,
and efforts should focus on optimizing CPU performance using SIMD registers and multithreading.

Next, the decision tree considers whether the data and algorithm size are large (greater than ap-
proximately 1MB). If the size is not large, the focus should again be on CPU optimization techniques.
However, if the size is large, the decision tree then examines whether the data transfer constitutes
a significant portion of the total processing time. If the transfer is not a large part, efforts should be
directed towards algorithm speedup.

The user should also evaluate whether the GPU in their system PCIe capability is significantly better
than that of ONIX. If it is, GPUDirect might provide a slight speedup. Conversely, if the GPU’s PCIe
capability is not much better than ONIX, GPUDirect could offer a more substantial speedup. But this is
the biggest problem for the GPUDirect solution. Almost all GPU’s have much better PCIe capabilities
than the ONIX card. Even the NVIDIA Quadro P620 used in this study, which is a relatively old and
lightweight card had a much faster PCIe connection. This implies that for GPUDirect to make sense in
future systems the hardware capability of the ONIX FPGA card should be improved first.

The decision tree helps identify the scenarios where GPUDirect would provide the most benefit and
where alternative approaches would be more effective. This approach ensures that resources and
efforts are directed towards achieving the highest performance improvements possible under the given
constraints.

6.2. Potential Upgrades to ONIX System Components
If the ONIX would support higher throughput ephys devices parts of the system should be upgraded
to handle the higher data loads. When assessing which parts to update it is important that the most
limiting components of the hardware are revised first to this end a overview of which parts could be
limiting the data throughput on the ONIX FPGA Card is shown in Figure 6.2. The ONIX system’s

46

6.3. Comparison of GPUDirect Solution to Previous Work 47

Is the application
very parallelizable?

Is the data and
algorithm size

large? (~>1MB)

No

Yes

Is the transfer a
large part of the
total computation

time?

Use SIMD
registers,

Multithreading

Is the GPU PCIe
capabilty much

better than Gen 2
4 lane?Yes

No

Yes

No

GPUDirect might
give slight speed

up

GPUDirect might
give large speed

up

Yes

No

GPU's provide no
advantage

Focus on algorithm
speed up

Figure 6.1: Decision Tree for Evaluating GPUDirect Speedup Potential

performance is currently limited by the Serializer/Deserializer (SerDes) modules on the FMC card,
which interface with the electrophysiology devices and the Nereid PCIe board. The system employs
the DS90UB933/DS90UB934 SerDes pair [12, 13], with two deserializers supporting up to 300 MB/s of
combined bandwidth. Upgrading to higher-speed SerDes modules such as the DS90UB934-Q1 (up to
13.5 Gbps) or TSER9615 (up to 7.55 Gbps) [38] could significantly enhance data throughput, although
this would require addressing challenges related to signal integrity at higher speeds.

Another approach to improve bandwidth could be to add additional deserializers to the FMC card.
The ONIX FMC card connects to the Nereid board via a VITA 57.1 FMC HPC connector with 174 I/O
pins, 114 of which are currently utilized. The SerDes modules occupy 25 pins, allowing the potential
addition of two more modules within the existing setup. To accommodate further expansion, the Nereid
board could be replaced with an FPGA card that supports more I/O pins, such as those with FMC+
connectors compliant with the VITA 57.4 standard. An example is the VCK190 (Versal AI)[41], which
features two FMC+ connectors and higher bandwidth capabilities. These cards are particularly suited
for high-throughput applications.

To further enhance bandwidth, multi-gigabit transceivers (MGTs) integrated into the FPGA could
be leveraged. The Nereid board’s FPGA includes four GT lanes supporting data rates of up to 6.6
Gbps. Boards like the Versal AI Core VCK190, which features 12 GT lanes per connector, offer signifi-
cant upgrades in bandwidth capacity and processing power. Such advancements would enable future
iterations of ONIX to better handle next-generation neural interfaces.

Replacing the Nereid PCIe card offers another straightforward upgrade path. The replacement card
must meet the following criteria: compliance with the VITA 57.1 or 57.4 standard, inclusion of an FPGA,
onboard DRAM, and a PCIe edge connector. An example is the Kintex UltraScale KCU105 [1], which
provides an FMC HPC connector and Gen3 x8 PCIe support. This card could double the number of
SerDes interfaces on the FMC card. Additionally, cards with advanced PCIe capabilities, such as the
Versal AI VEK280 [39] (Gen4 x16 PCIe) [40] or the Versal HBMVHK158 [41] (Gen5 x16 PCIe), could be
considered. These upgrades would become critical once the PCIe bus bandwidth becomes a limiting
factor, ensuring the ONIX system remains scalable and performant.

While the current FPGA on the Nereid card is not fully utilized (as shown in Table 6.2), upgrading to a
higher-performance FPGA would prepare the system for scenarios requiring additional computational
resources. For example, increasing the width of datapaths or supporting additional interfaces could
demand more FPGA resources. An advanced card like the Virtex UltraScale+ VCU118 [2], offering
enhanced logic capacity and bandwidth, could address these requirements effectively.

In summary, incremental upgrades to SerDes modules, leveraging multi-gigabit transceivers, or
replacing the Nereid card with a more capable FPGA card are all viable pathways to improving the
ONIX system. These upgrades would enable higher data throughput, better scalability, and preparation
for future neural interface applications.

6.3. Comparison of GPUDirect Solution to Previous Work
Although the proposed communication solution in this thesis does not demonstrate a significant perfor-
mance improvement for the ONIX system, it does not imply that it cannot be useful in other contexts.
In Section 2.11, several previous implementations of FPGA-to-GPU PCIe P2P communication were
discussed. A comparison of the maximum achieved throughput in each case reveals significant differ-
ences in performance. Given the varying number of PCIe lanes and PCIe generations used in each
solution, a more meaningful comparison can be made by examining the utilization of the PCIe lanes.

48 6. Discussion and Future Directions

SerDes modules
Limit: CLK, Bits

300 MB/s

HPC connector
Limit: amount of IO ports

174

FPGA
Limit: LUT, FF,

BRAM etc..

PCIe
Limit: Gen, Lanes

2 GB/s

Figure 6.2: Overview of limiting hardware specs on the ONIX PCIe host

Resource Utilization Available Utilization (%)

LUT 41,776 101,400 41.20

LUTRAM 2,192 35,000 6.26

FF 52,979 202,800 26.12

BRAM 123.50 325 38.00

DSP 2 600 0.33

IO 235 400 58.75

Table 6.1: FPGA Resource Utilization

The FPGA2 solution performs well in this regard, achieving a utilization of 81% and 75% for FPGA-
to-GPU and GPU-to-FPGA communication, respectively.[36] However, this solution does not scale
effectively as it is implemented for only one lane. The solution proposed by Bittner & Ruf shows decent
performance, with an 80% utilization in the GPU-to-FPGA direction, but significantly lower performance
in the FPGA-to-GPU direction.[4] Notably, it is the only solution that operates under Windows, making
it the only viable option if that is a constraint.

Kasai & Osana’s solution achieves the highest utilization in the FPGA-to-GPU direction, with 81%.
[16] However, it does not successfully implement GPU-to-FPGA communication. This limitation could
be attributed to the fact that the PCIe bridges on their motherboard did not support PCIe P2P read
transactions. Through the work conducted in this thesis, it was observed that PCIe write transactions
are often supported, as they are simply forwarded to a specified memory address by PCIe bridges,
making P2P writes functional. However, for P2P reads, the read response needs to be routed back to
the source by the PCIe bridges, a feature often not supported by many motherboards.

The work presented in this thesis demonstrates that an utilization of 79% and 86% can be achieved
using a modified RIFFA driver, representing the best utilization in the GPU-to-FPGA direction among
the compared works, and a comparable result in the FPGA-to-GPU direction. Considering that RIFFA is

Board Device Name FMC Type PCIe Version PCIe Lanes

VCK190 Versal AI 2 FMC+ Gen4 8

Kintex UltraScale KCU105 Kintex UltraScale HPC Gen3 8

Versal Prime VMK180 Versal Prime 2 FMC+ Gen4 8

Virtex UltraScale+ VCU118 Virtex UltraScale+ HPC Gen4 8

Versal AI VEK280 Versal AI FMC+ Gen4 16

Versal HBM VHK158 Versal HBM FMC+ Gen5 16

Table 6.2: Specifications of FPGA Development Boards Mentioned for ONIX System Upgrades

6.4. Conclusion 49

an open-source communication library and easy to interface with, the proposed solution in this thesis—
combining GPUDirect with RIFFA—proves to be a promising approach for developers seeking lower
latency on the PCIe bus.

Previous Work This Thesis

Bittner & Ruf [4] FPGA2 [36] Kasai & Osana
[16]

Operating System Windows Linux Linux Linux

DMA Master GPU FPGA FPGA FPGA

FPGA Vendor Xilinx Xilinx Xilinx Xilinx

FPGA Model Virtex 6 Virtex 5 Alveo U50 Kintex-7

FPGA IP Stack Custom Custom Vendor RIFFA

FPGA Driver Custom Custom XDMA Modified RIFFA

FPGA
Programming HDL HDL HDL HDL

GPU Vendor NVIDIA NVIDIA NVIDIA NVIDIA

GPU Model GeForce
GTX580

GeForce
8400GS

Quadro RTX
4000 Quadro P600

GPU Driver Original Nouveau Original Original

GPU Programming CUDA gdev CUDA CUDA

Effective PCIe
Lanes 8 1 4 4

PCIe Generation 1.0 1.0 3.0 2.0

Maximal
Throughput (FPGA

to GPU)
514 MB/s 203 MB/s 32500 MB/s 1583 MB/s

Maximal
Throughput (GPU

to FPGA)
1.6 GB/s 189 MB/s N/A 1728 MB/s

Table 6.3: Comparison of Previous Work with This Thesis

6.4. Conclusion
This chapter has explored the potential enhancements to the ONIX system, focusing on both software
and hardware improvements, and evaluated their practical implications for next-generation neural inter-
faces. By analyzing the scenarios in which GPUDirect offers significant performance gains, a structured
decision-making framework was presented to guide users in determining its applicability. The findings
highlight that while GPUDirect provides benefits under certain conditions, but with the current hardware
it would not be logical to use. The ONIX system’s current limitations are primarily in PCIe bandwidth
and SerDes.

Hardware upgrades were identified as critical to addressing these bottlenecks. Incremental im-
provements to the FMC card, such as integrating higher-speed SerDes modules or additional deserial-
izers, present viable pathways to enhance bandwidth. Replacing the Nereid card with advanced FPGA
boards or leveraging multi-gigabit transceivers could further boost data throughput and ensure scala-
bility for future neural interface applications. The proposed upgrades emphasize a modular approach,

50 6. Discussion and Future Directions

enabling the ONIX system to adapt to evolving experimental demands.
Finally, the comparison of GPUDirect implementations contextualizes the work presented in this

thesis within the broader research landscape. By achieving competitive PCIe lane utilization using an
open-source driver, the solution demonstrates promise for applications requiring efficient GPU-FPGA
communication. However, the analysis underscores the importance of aligning system design with
application-specific requirements, especially when integrating advanced computational methods.

In summary, this chapter has provided a roadmap for long-term improvements to the ONIX sys-
tem. By addressing current hardware constraints and refining software capabilities, the ONIX platform
can better support high-throughput neural interfaces and computational algorithms, paving the way for
advancements in electrophysiology research.

7
Conclusion

7.1. Summary
This thesis investigated the feasibility and potential benefits of integrating GPU computation with the
Open Ephys ONIX system to enhance its capacity for next-generation neural interfaces and computa-
tional algorithms. The research addressed the overarching question:
How can GPU computation be effectively integrated with the ONIX electrophysiology system to
enhance support for next-generation neural interfaces and computational algorithms?

To answer this question, the study pursued several specific objectives. The findings are summarized
as follows:

In Chapter 2, we provided the foundational background on the ONIX system, detailing its archi-
tecture, hardware components, and libraries. This ensured that the GPU integration respected the
system’s modular and flexible framework. Additionally, data transfer methods and kernel execution
techniques were reviewed to balance latency, throughput, and usability. A survey of related literature
contextualized the contributions of this thesis within the broader field of neural data acquisition and
processing.

Chapter 3 focused on implementing key modifications for GPU integration. This included the devel-
opment of a secondary data channel on the FPGA and a custom kernel driver that combined GPUDirect
functionality with the RIFFA driver. Updates to the Liboni API were made to support these changes.

In Chapter 4 Benchmarks are done. First, the modifications to the FPGA logic are tested without
GPUDirect and it shows improvement compared to the original system. Next unpinned and pinned
GPUDirect transfer strategies are compared to the improved system which showed that pinned trans-
fers improved throughput by 30% for small transfers and 14% for larger ones. However, significant
jitter was observed across all configurations, emphasizing the challenge of achieving consistent per-
formance.

In Chapter 5, we analyzed the performance of GPUDirect in closed-loop applications. The evalua-
tion showed that GPU acceleration provided benefits for larger transfers and higher arithmetic intensity.
However, limited PCIe bandwidth in the ONIX system constrained the benefits of using GPUDirect, with
CPU-based implementations outperforming GPUs for smaller transfers. These results demonstrated
that GPU acceleration is most effective when applied selectively, depending on data size and compu-
tational intensity.

Chapter 6 addressed the hardware limitations of the ONIX system, including PCIe bandwidth con-
straints, FPGA resources, and Serializer/Deserializer (SerDes) module capabilities. Proposed hard-
ware upgrades, such as higher-speed SerDes modules and advanced FPGA cards with improved
PCIe support, were outlined to address these bottlenecks. A decision tree framework was developed to
help users evaluate when GPUDirect integration offers meaningful performance improvements. Com-
parisons with prior GPUDirect implementations highlighted this work’s competitive lane utilization and
broader applicability beyond the ONIX system.

Bringing these findings together, the thesis concludes that GPU integration demonstrates poten-
tial benefits in specific scenarios but is currently constrained by the hardware limitations of the ONIX

51

52 7. Conclusion

system. Achieving the goal of supporting next-generation neural interfaces requires a multifaceted
approach that includes GPU integration, hardware improvements, and algorithmic optimization.

7.2. Main Contributions
The main contributions of this thesis are as follows:

• Comprehensive Analysis of the ONIX System: Detailed evaluation of the ONIX architecture,
identifying critical hardware and software limitations.

• Design of GPU Integration: Development of a secondary data channel on the FPGA, a custom
kernel driver with GPUDirect and RIFFA integration, and updates to the Liboni API for seamless
system compatibility.

• Performance Evaluation: Benchmarking of pinned and unpinned transfer strategies and analy-
sis of GPUDirect performance in closed-loop applications, revealing strengths and constraints.

• Hardware Recommendations: Identification of ONIX system bottlenecks and proposals for in-
cremental hardware upgrades to enhance throughput and scalability.

• Decision Tree Framework: Creation of a tool to guide researchers in determining the conditions
under which GPUDirect provides meaningful benefits.

• Broader Applicability of GPUDirect: Demonstration of the GPUDirect implementation’s com-
petitive lane utilization and its potential for use beyond the ONIX system.

7.3. Future Work
Building upon the contributions of this thesis, several directions for future research are proposed:

• Hardware Upgrades: Implement higher-bandwidth Serializer/Deserializer (SerDes) modules,
advanced FPGA cards with PCIe Gen4 or Gen5 capabilities, and additional deserializers to ad-
dress throughput limitations.

• Reducing System Jitter: Investigate techniques to minimize jitter and improve the reliability of
data transfer for real-time neuroscience applications.

• Tailored Computational Solutions: Conduct a detailed analysis of the computational require-
ments of ephys workflows to guide the design of optimized hardware and software solutions.

• Expanded Applications of GPUDirect: Explore the use of GPUDirect in other high-bandwidth,
low-latency domains, such as position tracking or real-time data processing tasks.

• Scalability Studies: Evaluate the scalability of the system on GPUs with higher computational
capacity or alternative acceleration platforms to further enhance performance.

By addressing these directions, future work can overcome the current limitations and push the
boundaries of what is possible with electrophysiology systems. This progress will support more ad-
vanced neuroscience research and the development of next-generation neural interfaces.

Bibliography
[1] AMD Kintex UltraScale FPGA KCU105 Evaluation Kit. en. URL: https://www.xilinx.com/

products/boards-and-kits/kcu105.html (visited on 11/19/2024).
[2] AMD Virtex UltraScale+ FPGA VCU118 Evaluation Kit. en. URL: https://www.xilinx.com/

products/boards-and-kits/vcu118.html (visited on 11/19/2024).
[3] . An FPGA IP core for easy DMA over PCIe with Windows and Linux | xillybus.com. URL: https:

//xillybus.com/ (visited on 08/08/2024).
[4] Ray Bittner and Erik Ruf. “Direct GPU/FPGA Communication Via PCI Express”. en. In: ().
[5] Alessio P. Buccino, Samuel Garcia, and Pierre Yger. “Spike sorting: new trends and challenges

of the era of high-density probes”. en. In: Progress in Biomedical Engineering 4.2 (May 2022).
Publisher: IOP Publishing, p. 022005. ISSN: 2516-1091. DOI: 10.1088/2516-1091/ac6b96.
URL: https://dx.doi.org/10.1088/2516-1091/ac6b96 (visited on 08/06/2024).

[6] Denise J. Cai et al. “A shared neural ensemble links distinct contextual memories encoded close
in time”. en. In: Nature 534.7605 (June 2016). Publisher: Nature Publishing Group, pp. 115–
118. ISSN: 1476-4687. DOI: 10.1038/nature17955. URL: https://www.nature.com/
articles/nature17955 (visited on 08/07/2024).

[7] Zhe Sage Chen and Bijan Pesaran. “Improving scalability in systems neuroscience”. English. In:
Neuron 109.11 (June 2021). Publisher: Elsevier, pp. 1776–1790. ISSN: 0896-6273. DOI: 10.
1016/j.neuron.2021.03.025. URL: https://www.cell.com/neuron/abstract/
S0896-6273(21)00195-1 (visited on 08/23/2024).

[8] Davide Ciliberti and Fabian Kloosterman. “Falcon: a highly flexible open-source software for
closed-loop neuroscience”. en. In: Journal of Neural Engineering 14.4 (June 2017). Publisher:
IOP Publishing, p. 045004. ISSN: 1741-2552. DOI: 10.1088/1741- 2552/aa7526. URL:
https://dx.doi.org/10.1088/1741-2552/aa7526 (visited on 08/09/2024).

[9] Getting Started — ONIX Docs. URL: https://open-ephys.github.io/onix-docs/
Getting%20Started/index.html (visited on 08/23/2024).

[10] Home — ONIX Docs. URL: https://open-ephys.github.io/onix-docs/index.html
(visited on 12/05/2023).

[11] Guosong Hong and Charles M. Lieber. “Novel electrode technologies for neural recordings”.
en. In: Nature Reviews Neuroscience 20.6 (June 2019). Publisher: Nature Publishing Group,
pp. 330–345. ISSN: 1471-0048. DOI: 10.1038/s41583-019-0140-6. URL: https://www.
nature.com/articles/s41583-019-0140-6 (visited on 08/23/2024).

[12] Texas Instruments.DS90UB933-Q1 12-Bit, 100-MHz FPD-Link III Deserializer for 1MP/60fps and
2MP/30fps Cameras. URL: https://www.ti.com/lit/gpn/ds90ub933-q1 (visited on
08/07/2024).

[13] Texas Instruments. DS90UB934-Q1 12-Bit, 100-MHz FPD-Link III Deserializer. URL: https:
//www.ti.com/lit/gpn/ds90ub934-q1 (visited on 08/07/2024).

[14] LLC Intan Technologies. RHD2000 Series Digital Electrophysiology Interface Chips. Nov. 1012.
URL: https://intantech.com/files/Intan_RHD2000_series_datasheet.pdf
(visited on 08/08/2024).

[15] Shun Kasai and Yasunori Osana. “A driver-based approach for DMA transfer between FPGA-
GPU”. In: 2022 Tenth International Symposium on Computing and Networking Workshops (CAN-
DARW). ISSN: 2832-1324. Nov. 2022, pp. 103–108. DOI: 10.1109/CANDARW57323.2022.
00061.

53

https://www.xilinx.com/products/boards-and-kits/kcu105.html
https://www.xilinx.com/products/boards-and-kits/kcu105.html
https://www.xilinx.com/products/boards-and-kits/vcu118.html
https://www.xilinx.com/products/boards-and-kits/vcu118.html
https://xillybus.com/
https://xillybus.com/
https://doi.org/10.1088/2516-1091/ac6b96
https://dx.doi.org/10.1088/2516-1091/ac6b96
https://doi.org/10.1038/nature17955
https://www.nature.com/articles/nature17955
https://www.nature.com/articles/nature17955
https://doi.org/10.1016/j.neuron.2021.03.025
https://doi.org/10.1016/j.neuron.2021.03.025
https://www.cell.com/neuron/abstract/S0896-6273(21)00195-1
https://www.cell.com/neuron/abstract/S0896-6273(21)00195-1
https://doi.org/10.1088/1741-2552/aa7526
https://dx.doi.org/10.1088/1741-2552/aa7526
https://open-ephys.github.io/onix-docs/Getting%20Started/index.html
https://open-ephys.github.io/onix-docs/Getting%20Started/index.html
https://open-ephys.github.io/onix-docs/index.html
https://doi.org/10.1038/s41583-019-0140-6
https://www.nature.com/articles/s41583-019-0140-6
https://www.nature.com/articles/s41583-019-0140-6
https://www.ti.com/lit/gpn/ds90ub933-q1
https://www.ti.com/lit/gpn/ds90ub934-q1
https://www.ti.com/lit/gpn/ds90ub934-q1
https://intantech.com/files/Intan_RHD2000_series_datasheet.pdf
https://doi.org/10.1109/CANDARW57323.2022.00061
https://doi.org/10.1109/CANDARW57323.2022.00061

54 Bibliography

[16] Shun Kasai and Yasunori Osana. “A driver-based approach for DMA transfer between FPGA-
GPU”. In: 2022 Tenth International Symposium on Computing and Networking Workshops (CAN-
DARW). ISSN: 2832-1324. Nov. 2022, pp. 103–108. DOI: 10.1109/CANDARW57323.2022.
00061.

[17] S. Kato. “ImplementingOpen-SourceCUDARuntime”. In: 2013. URL: https://www.semanticscholar.
org/paper/Implementing-Open-Source-CUDA-Runtime-Kato/13efdbff6365e5ff6337ad3b67269cac50c036cb
(visited on 10/21/2024).

[18] Justin P. Kinney et al. “A direct-to-drive neural data acquisition system”. English. In: Frontiers in
Neural Circuits 9 (Sept. 2015). Publisher: Frontiers. ISSN: 1662-5110. DOI: 10.3389/fncir.
2015.00046. URL: https://www.frontiersin.org/journals/neural-circuits/
articles/10.3389/fncir.2015.00046/full (visited on 08/09/2024).

[19] Elias Konstantinidis and Yiannis Cotronis. “A quantitative roofline model for GPU kernel perfor-
mance estimation using micro-benchmarks and hardware metric profiling”. In: Journal of Parallel
and Distributed Computing 107 (Sept. 2017), pp. 37–56. ISSN: 0743-7315. DOI: 10.1016/j.
jpdc.2017.04.002. URL: https://www.sciencedirect.com/science/article/
pii/S0743731517301247 (visited on 07/03/2024).

[20] Gonçalo Lopes et al. “Bonsai: an event-based framework for processing and controlling data
streams”. English. In: Frontiers in Neuroinformatics 9 (Apr. 2015). Publisher: Frontiers. ISSN:
1662-5196. DOI: 10.3389/fninf.2015.00007. URL: https://www.frontiersin.org/
journals/neuroinformatics/articles/10.3389/fninf.2015.00007/full (visited
on 08/06/2024).

[21] Rufus Mitchell-Heggs et al. “Neural manifold analysis of brain circuit dynamics in health and
disease”. en. In: Journal of Computational Neuroscience 51.1 (Feb. 2023), pp. 1–21. ISSN: 1573-
6873. DOI: 10.1007/s10827- 022- 00839- 3. URL: https://doi.org/10.1007/
s10827-022-00839-3 (visited on 05/03/2023).

[22] CarolinaMora Lopez et al. “A Neural ProbeWith Up to 966 Electrodes and Up to 384 Configurable
Channels in 0.13 μm SOI CMOS”. In: IEEE Transactions on Biomedical Circuits and Systems
11.3 (June 2017). Conference Name: IEEE Transactions on Biomedical Circuits and Systems,
pp. 510–522. ISSN: 1940-9990. DOI: 10.1109/TBCAS.2016.2646901. URL: https://
ieeexplore.ieee.org/document/7900417 (visited on 08/07/2024).

[23] Narendra Mukherjee, Joseph Wachutka, and Donald Katz. Python meets systems neuroscience:
affordable, scalable and open-source electrophysiology in awake, behaving rodents. Pages: 105.
Jan. 2017. DOI: 10.25080/shinma-7f4c6e7-00e.

[24] Jonathan P. Newman et al. A unified open-source platform for multimodal neural recording and
perturbation during naturalistic behavior. en. Pages: 2023.08.30.554672 Section: New Results.
Sept. 2023. DOI: 10.1101/2023.08.30.554672. URL: https://www.biorxiv.org/
content/10.1101/2023.08.30.554672v1 (visited on 03/22/2024).

[25] nouveau ∙ freedesktop.org. en. Aug. 2024. URL: https://nouveau.freedesktop.org/
(visited on 10/21/2024).

[26] NVIDIA.GPUDirect RDMA. Aug. 2024. URL: https://docs.nvidia.com/cuda/gpudirect-
rdma/ (visited on 08/24/2024).

[27] Yogi A. Patel et al. “Hard real-time closed-loop electrophysiology with the Real-Time eXperiment
Interface (RTXI)”. en. In: PLOSComputational Biology 13.5 (May 2017). Publisher: Public Library
of Science, e1005430. ISSN: 1553-7358. DOI: 10.1371/journal.pcbi.1005430. URL:
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.
pcbi.1005430 (visited on 08/09/2024).

[28] PCI-SIG. PCI Express Base Specification Revision 2.0. Dec. 2006. URL: https://members.
pcisig.com/wg/PCI-SIG/document/download/8246.

[29] riffa. original-date: 2015-05-04T21:24:17Z. July 2023. URL: https://github.com/KastnerRG/
riffa (visited on 07/12/2023).

[30] Marek Rupniewski et al. A Real-Time Embedded Heterogeneous GPU/FPGA Parallel System
for Radar Signal Processing. Pages: 1197. July 2016. DOI: 10.1109/UIC-ATC-ScalCom-
CBDCom-IoP-SmartWorld.2016.0182.

https://doi.org/10.1109/CANDARW57323.2022.00061
https://doi.org/10.1109/CANDARW57323.2022.00061
https://www.semanticscholar.org/paper/Implementing-Open-Source-CUDA-Runtime-Kato/13efdbff6365e5ff6337ad3b67269cac50c036cb
https://www.semanticscholar.org/paper/Implementing-Open-Source-CUDA-Runtime-Kato/13efdbff6365e5ff6337ad3b67269cac50c036cb
https://doi.org/10.3389/fncir.2015.00046
https://doi.org/10.3389/fncir.2015.00046
https://www.frontiersin.org/journals/neural-circuits/articles/10.3389/fncir.2015.00046/full
https://www.frontiersin.org/journals/neural-circuits/articles/10.3389/fncir.2015.00046/full
https://doi.org/10.1016/j.jpdc.2017.04.002
https://doi.org/10.1016/j.jpdc.2017.04.002
https://www.sciencedirect.com/science/article/pii/S0743731517301247
https://www.sciencedirect.com/science/article/pii/S0743731517301247
https://doi.org/10.3389/fninf.2015.00007
https://www.frontiersin.org/journals/neuroinformatics/articles/10.3389/fninf.2015.00007/full
https://www.frontiersin.org/journals/neuroinformatics/articles/10.3389/fninf.2015.00007/full
https://doi.org/10.1007/s10827-022-00839-3
https://doi.org/10.1007/s10827-022-00839-3
https://doi.org/10.1007/s10827-022-00839-3
https://doi.org/10.1109/TBCAS.2016.2646901
https://ieeexplore.ieee.org/document/7900417
https://ieeexplore.ieee.org/document/7900417
https://doi.org/10.25080/shinma-7f4c6e7-00e
https://doi.org/10.1101/2023.08.30.554672
https://www.biorxiv.org/content/10.1101/2023.08.30.554672v1
https://www.biorxiv.org/content/10.1101/2023.08.30.554672v1
https://nouveau.freedesktop.org/
https://docs.nvidia.com/cuda/gpudirect-rdma/
https://docs.nvidia.com/cuda/gpudirect-rdma/
https://doi.org/10.1371/journal.pcbi.1005430
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005430
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005430
https://members.pcisig.com/wg/PCI-SIG/document/download/8246
https://members.pcisig.com/wg/PCI-SIG/document/download/8246
https://github.com/KastnerRG/riffa
https://github.com/KastnerRG/riffa
https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0182
https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0182

Bibliography 55

[31] Bosch Sensortec.BNO055 Intelligent 9-axis absolute orientation sensor. Oct. 2021. URL: https:
//www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/
bst-bno055-ds000.pdf (visited on 08/07/2024).

[32] Joshua H. Siegle et al. “Open Ephys: an open-source, plugin-based platform for multichannel
electrophysiology”. en. In: Journal of Neural Engineering 14.4 (June 2017). Publisher: IOP Pub-
lishing, p. 045003. ISSN: 1741-2552. DOI: 10.1088/1741-2552/aa5eea. URL: https:
//dx.doi.org/10.1088/1741-2552/aa5eea (visited on 08/09/2024).

[33] Nicholas A. Steinmetz et al. “Neuropixels 2.0: A miniaturized high-density probe for stable, long-
term brain recordings”. In: Science 372.6539 (Apr. 2021). Publisher: American Association for
the Advancement of Science, eabf4588. DOI: 10.1126/science.abf4588. URL: https:
//www.science.org/doi/full/10.1126/science.abf4588 (visited on 08/07/2024).

[34] Ian Stevenson. Tracking Advances in Neural Recording | Statistical Neuroscience Lab. en-US.
Oct. 2013. URL: https://stevenson.lab.uconn.edu/scaling/ (visited on 04/29/2024).

[35] Manolis Surligas, Antonis Makrogiannakis, and Stefanos Papadakis. “Maximizing GPU Exploita-
tion for SDR with GPUDirect”. In: Proceedings of the 2015 Workshop on Software Radio Imple-
mentation Forum. SRIF ’15. New York, NY, USA: Association for Computing Machinery, Sept.
2015, pp. 31–36. ISBN: 978-1-4503-3532-4. DOI: 10.1145/2801676.2801688. URL: https:
//dl.acm.org/doi/10.1145/2801676.2801688 (visited on 08/09/2024).

[36] Yann Thoma, Alberto Dassatti, and Daniel Molla. “FPGA2: An open source framework for FPGA-
GPU PCIe communication”. In: 2013 International Conference on Reconfigurable Computing and
FPGAs (ReConFig). ISSN: 2325-6532. Dec. 2013, pp. 1–6. DOI: 10.1109/ReConFig.2013.
6732296.

[37] Uros Topalovic et al. “A wearable platform for closed-loop stimulation and recording of single-
neuron and local field potential activity in freely moving humans”. en. In: Nature Neuroscience
26.3 (Mar. 2023). Number: 3 Publisher: Nature Publishing Group, pp. 517–527. ISSN: 1546-1726.
DOI: 10.1038/s41593-023-01260-4. URL: https://www.nature.com/articles/
s41593-023-01260-4 (visited on 03/07/2023).

[38] TSER9615 data sheet, product information and support | TI.com. URL: https://www.ti.
com/product/TSER9615 (visited on 11/20/2024).

[39] Versal AI Edge Series VEK280 Evaluation Kit. URL: https://www.xilinx.com/products/
boards-and-kits/vek280.html (visited on 11/20/2024).

[40] Versal HBMSeries VHK158 Evaluation Kit. en. URL: https://www.xilinx.com/products/
boards-and-kits/vhk158.html (visited on 11/19/2024).

[41] Versal PrimeSeries VMK180Evaluation Kit. en. URL: https://www.xilinx.com/products/
boards-and-kits/vmk180.html (visited on 11/19/2024).

https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bno055-ds000.pdf
https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bno055-ds000.pdf
https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bno055-ds000.pdf
https://doi.org/10.1088/1741-2552/aa5eea
https://dx.doi.org/10.1088/1741-2552/aa5eea
https://dx.doi.org/10.1088/1741-2552/aa5eea
https://doi.org/10.1126/science.abf4588
https://www.science.org/doi/full/10.1126/science.abf4588
https://www.science.org/doi/full/10.1126/science.abf4588
https://stevenson.lab.uconn.edu/scaling/
https://doi.org/10.1145/2801676.2801688
https://dl.acm.org/doi/10.1145/2801676.2801688
https://dl.acm.org/doi/10.1145/2801676.2801688
https://doi.org/10.1109/ReConFig.2013.6732296
https://doi.org/10.1109/ReConFig.2013.6732296
https://doi.org/10.1038/s41593-023-01260-4
https://www.nature.com/articles/s41593-023-01260-4
https://www.nature.com/articles/s41593-023-01260-4
https://www.ti.com/product/TSER9615
https://www.ti.com/product/TSER9615
https://www.xilinx.com/products/boards-and-kits/vek280.html
https://www.xilinx.com/products/boards-and-kits/vek280.html
https://www.xilinx.com/products/boards-and-kits/vhk158.html
https://www.xilinx.com/products/boards-and-kits/vhk158.html
https://www.xilinx.com/products/boards-and-kits/vmk180.html
https://www.xilinx.com/products/boards-and-kits/vmk180.html

	Introduction
	Problem statement
	Motivation
	Thesis Goal
	Thesis Outline

	Background and Related Work
	ONIX data acquisition system for ephys experiments
	System Overview
	Application and Devices
	FPGA logic design
	Liboni and API
	Initialization
	Device interaction
	Reading and Writing Data
	Driver development for Liboni

	PCIe and Kernel driver
	PCIe Bus Organization
	Base Address Registers (BAR) Space in PCIe

	Linux Kernel & Memory Spaces
	Scatter-Gather and DMA

	RIFFA
	Graphics processing unit
	CUDA

	GPUDirect RDMA
	Related work
	Ephys Systems
	Ephys Software
	Direct FPGA-GPU Communication

	Design and Implementation
	Base Case
	Reducing Transfer Steps
	Direct PCIe transfer
	ONIX FPGA-Core Modification
	Linux RIFFA-Kernel Driver Modification
	Wrapper Kernel Module

	Liboni Library Update
	Conclusion

	Performance Evaluation
	Experimental Setup
	FPGA testing logic
	Performance of Original System
	Results
	Conclusion

	Performance of Updated system without GPUDirect
	Results
	Conclusion

	Performance of GPUDirect without Prepinning
	Results
	Conclusion

	Performance of GPUDirect with Prepinning
	Results
	Conclusion

	Profiling kernel driver
	Results
	Conclusion

	Conclusion of performance evaluation

	Application Scenarios
	Implementation of Application Scenarios
	Results
	Small Data Transfer, Small Computation
	Small Data transfer, Large Computation
	Large Data Transfer, Small Computation
	Large Data Transfer, Large Computation

	Conclusion

	Discussion and Future Directions
	Cases for Utilizing GPUDirect
	Potential Upgrades to ONIX System Components
	Comparison of GPUDirect Solution to Previous Work
	Conclusion

	Conclusion
	Summary
	Main Contributions
	Future Work

