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Abstract

This report presents the results of a friendly competition for formal verification and pol-
icy synthesis of stochastic models. It also introduces new benchmarks within this category,
and recommends next steps for this category towards next year’s edition of the competi-
tion. The friendly competition took place as part of the workshop Applied Verification for
Continuous and Hybrid Systems (ARCH) in Spring 2019.

1 Introduction

Disclaimer The presented report of the ARCH friendly competition for stochastic mod-
elling group aims at providing a unified point of reference on the current state of the art
in the area of stochastic models together with the currently available tools and framework
for performing formal verification and optimal policy synthesis to such models. We further
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provide a set of benchmarks which we aim to push forward the development of current
and future tools. To establish further trustworthiness of the results, the code describing
the benchmarks together with the code used to compute the results is publicly available at
gitlab.com/goranf/ARCH-COMP.

This report summarizes results obtained in the 2019 friendly competition of the ARCH
workshop1 for the stochastic modelling group. In this edition, we have divided our work over
two targets:

1. the generation of new benchmarks, comprising different model structures and dealing with
diverse applications and tasks to be solved; and

2. the friendly competition, run over previously identified benchmarks.

We have additionally initiated a discussion about setting up a formal language for stochastic
models (or a subset thereof). This is specifically seen within the heated tank benchmarks, were
different formalisms are collated and key differences are identified. We will leave this as future
work (see relevant final section).

The tools and frameworks used are (in alphabetical order): (ε, δ) Abstraction, FAUST2,
HYPEG, LyapMMC, Modest Toolset, SReachTools, StocHy, SDCPN. We emphasise
in particular the introduction of four new tools and/or frameworks. All the tools and frameworks
have been compiled into docker format (a container software), which allows for easier readability
evaluation of the generated results together with the sharing of the tools themselves to both
the ARCH and the wider research community.

This report has the following structure. Section 2 provides a short overview of the partic-
ipating tools and frameworks. Section 3 presents a set of new benchmark descriptions, which
include a discussion of the individual models syntax and semantics, and a presentation of the
specifications of interest. Next, in Section 4 we present the results of the friendly competition
where the participating tools or algorithmic frameworks that are used to solve instances of the
benchmarks from last year’s edition. We identify key challenges and discuss future plans in
Section 5.

2 Participating Tools & Frameworks

The tools and frameworks used in the category Stochastic Modelling are introduced next, or-
ganised in alphabetical order.

2.1 Tools

FAUST2 The tool Formal Abstractions of Uncountable-STate STochastic processes (FAUST2)
[48] generates formal abstractions of discrete-time Markov processes (dtMP) defined over con-
tinuous state spaces. The dtMP model is abstracted into a finite-state Markov chain or a
Markov decision process. The abstract model is formally put in relationship with the concrete
dtMP via a user-defined maximum threshold on the approximation error introduced by the ab-
straction procedure. FAUST2 allows exporting the abstract model to well-known probabilistic
model checkers, such as PRISM [36] or STORM [17]. Alternatively, it can handle internally

1Workshop on Applied Verification for Continuous and Hybrid Systems (ARCH), cps-vo.org/group/ARCH
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the computation of basic PCTL properties (e.g. safety or reach-avoid) over the abstract model,
and refine the outcomes over the concrete dtMP via a quantified error that depends on the
abstraction procedure and the given formula. The toolbox relies on approaches developed and
adapted to different classes of systems and under different assumptions [46, 43, 47, 44, 45]. The
toolbox is available at https://sourceforge.net/projects/faust2/

HYPEG The Java-based library HYPEG [38] is a simulator for hybrid Petri nets with general
transitions (HPnGs) [27] which combine discrete and continuous components with a possibly
large number of random variables, whose stochastic behavior follows arbitrary probability dis-
tributions. HYPEG uses time-bounded discrete-event simulation and well-known Statistical
Model Checking techniques to verify complex properties, including time-bounded reachabil-
ity [39]. These techniques comprise several hypothesis tests as well as different approaches for
the computation of confidence intervals. In the latest version of HYPEG, continuous behavior
that can be expressed by systems of ordinary differential equations can be simulated using an
approximative approach [37], whereas piecewise-linear continuous behavior is simulated without
approximation.

LyapMMC Using the tool Lyapanov-based Markov Model Checker (LyapMMC), verification
problems over continuous-time Markov chains (ctmc) and continuous-time Markov decision
processes (ctmdp) can be solved efficiently([40]). The core verification problem for ctmcs and
ctmdps is time-bounded reachabilty. It can be computed by numerically solving a characteristic
linear dynamical system but the procedure is computationally expensive. We take a control-
theoretic approach and propose a reduction technique that finds another dynamical system of
lower dimension (number of variables), such that numerically solving the reduced dynamical
system provides an approximation to the solution of the original system with guaranteed error
bounds.

Modest Toolset The Modest Toolset [32] supports the modelling and analysis of hy-
brid, real-time, distributed and stochastic systems. A modular framework centred around the
stochastic hybrid automata formalism [31] and supporting the JANI specification [9], it provides
a variety of input languages and analysis backends. The modelling formalism at the core of the
Modest Toolset is the model of networks of stochastic hybrid automata (SHA), which com-
bine nondeterministic choices, continuous system dynamics, stochastic decisions and timing,
and real-time behaviour, including nondeterministic delays. A wide range of well-known and
extensively studied formalisms in modelling and verification can be seen as special cases of SHA
e.g. STA (stochastic timed automata), PTA (probabilistic timed automata) and MDP (Markov
decision processes). The toolset can can be obtained from http://www.modestchecker.net/.
For the experiments on the Heated Tank benchmark, we have used the Modest Toolset’s
simulator “modes” [8] and its support for rare event simulation based on importance splitting
with the fixed effort method (using 64 child runs for each fixed effort run) [7].

SReachTools [52] An open-source MATLAB toolbox to tackle the problem of stochastic
reachability of a target tube [55]. This problem subsumes terminal hitting-time stochastic
reach-avoid and stochastic viability problems (guaranteeing safety in stochastic systems) [49, 2].
SReachTools handles discrete-time continuous-state dynamical systems that are linear and
have an additive stochastic disturbance. The dynamics and the safety constraints can be time-
varying, and the disturbance may be Gaussian or non-Gaussian. It relies on approaches drawn
from convex optimization, Fourier transforms, scenario-based optimization, and computational
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geometry for a grid-free and scalable computation of the stochastic reach sets as well as con-
troller (open-loop, affine feedback, and set-based) synthesis [25, 53, 54, 56, 41]. The toolbox is
available at https://unm-hscl.github.io/SReachTools/.

StocHy [12] is a software tool for the quantitative analysis of discrete-time stochastic hybrid
systems (shs). StocHy accepts a high-level description of stochastic models and constructs
an equivalent shs model. The tool allows to (i) simulate the shs evolution over a given time
horizon; and to automatically construct formal abstractions of the shs- these are grounded on
interval MDPs [13] and show the benefit of providing scalability and tighter error bounds than
cognate approaches [11]. Abstractions are then employed for (ii) formal verification or (iii)
control (policy, strategy) synthesis. StocHy allows for modular modelling, and has separate
simulation, verification and synthesis engines, which are implemented as independent libraries.
This allows for libraries to be easily used and for extensions to be easily built. The tool is
implemented in c++ and employs manipulations based on vector calculus, the use of sparse
matrices, the symbolic construction of probabilistic kernels, and multi-threading. StocHy is
available at www.gitlab.com/natchi92/StocHy.

2.2 Frameworks

(ε, δ) Abstraction Based on the papers [28, 29, 42], this software library uses code snippets
and algorithms to compute two precision parameters (ε, δ), which allow bounding the deviations
between models in both the output signals (ε) and the transition probabilities (δ). The obtained
abstract models, either with deterministic continuous states or with stochastic finite states, are
then employed in probabilistic model checking.

SDCPN modelling & Rare Event simulation Stochastically and Dynamically Coloured
Petri Nets (SDCPN) [18, 19, 20, 21] have been developed in support of the compositional
modelling of continuous-time Piecewise Deterministic Markov Processes [16] and Generalized
Stochastic Hybrid Processes [10]. In combination with conditional and rare event MC sim-
ulation, SDCPN modelling has successfully been applied for the quantitative risk modelling
and assessment of future air traffic management designs, e.g. [4]. The SDCPN framework is
suitable for all versions of the Heated Tank benchmark. For rare event simulation it can con-
duct straightforward Monte Carlo (MC) simulation as well as the Interacting Particle System
(IPS) acceleration approach [4, 5, 14] for reach probability evaluation of Generalised Stochastic
Hybrid Processes.

3 New benchmarks

We present a set of new benchmarks (alphabetically ordered), in this section. The benchmarks
highlight different tasks and modelling complexities that are not currently handled within the
current benchmarks. For additional benchmarks please refer to last year’s report [1] and to
[42].

3.1 Networked automation system [26]

Figure 1 provides a schematic overview of the networked automation system (NAS) studied
in [26, 50]. As a typical NAS, it involves networked control by programmable logic controllers
(PLCs) connected to several sensors and actuators via wired and wireless networks. Its objective
is to transport a workpiece from its initial position to the drilling position by means of a
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Figure 1: A networked automation system from [26].

transportation unit which controls the speed of the conveyor belt transporting the workpiece.
The PLC can set the deceleration of the belt via network messages to the transportation unit,
but cannot determine the position of the object unless it hits two sensors SA and SB close to the
drilling position. The sensors are connected to the IO card of the PLC over the network. When
the object reaches sensor SA, the PLC reacts with sending a command to the transportation unit
that forces it to decelerate to slow speed. Likewise, the transportation unit is asked to decelerate
to stand-still when the PLC notices that SB has been reached. The goal is that the object halts
close to the drilling position despite the uncontrollable latencies in the communication network.
The parameters of the system are adopted from [26] as far as indicated. Thus, one length
unit (lu) is 0.01 mm, and one time step (ts) is 1 ms. The positions of SA and SB are 699 lu
and 470 lu, respectively, while the acceptable drilling position are between 100 lu and 0 lu. The
initial speed of the object is 24 lu/ts and the slow speed is 4 lu/ts; the decelerations for the
two types of speed changes at SA and SB are 2 lu/ts2 and 4 lu/ts2, respectively. The network
routing time is determined stochastically, needing 1 ts for delivery with probability 0.9 and 2 ts
with probability 0.1. The cycle time of the PLC-IO card is 10 ts, while the cycle time of the
PLC itself is 7 ts. Please note that these cycle times are not multiples of each other (in fact,
even co-primal), resulting in a systematic cyclic variation of end-to-end response time of the
PLC setup. The minimum sampling interval is 1 ts. Due to the initial speed of 24 lu/ts, the
initial position of the object is thus equally distributed over 24 neighboring values, namely the
range between 999 lu and 976 lu.

Task: Compute the probability of stopping within the region [100 lu, 0 lu] of acceptable drilling
positions.

3.2 Scheduling

Imagine a system of 16 structurally identical tasks running in sequence. Each task has a worst-
case execution time (WCET) of 1 ms, with their actual run times being independent random
variables featuring a triangular density, as depicted in Figure 2. Each task hence has 0.25%
probability of exceeding 95% of its WCET.

Task: Compute (a conservative approximation of) the probability for the 16 tasks together
exceeding 95% of their accumulated WCET of 16 ms.

3.3 Tandem Network

We introduce the tandem network benchmark [34] in this section. The tandem network is a
queuing network system shown in Figure 3 and consists of a M/Cox2/1 queue composed with
a M/M/1 queue.
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Figure 2: Runtime distribution for a single task

Figure 3: A typical tandem network ([34])

In Figure 3, both queuing stations have a capacity denoted by cap. The first queuing station
has two phases for processing jobs, while the second queuing station has only one phase. In
Figure 3, different phases are indicated by circles, with their corresponding rates written inside
them. Jobs arrive at the first queuing station with rate λ and are processed in the first phase
with rate µ1. After this phase, jobs are passed through the second phase with probability a1

and will be processed with the rate µ2 before passing to the second station. Alternatively, jobs
will be sent directly to the second queuing station with probability b1. Processing in the second
station is done with the rate κ.

The tandem network can be modelled as a continuous-time Markov chain (ctmc) with a
state space of size determined by cap. Given a time bound T , we seek computing the probability
of reaching to the configurations in which both stations are at their full capacity (blocked state)
starting from a configuration in which both stations are empty (empty state). Therefore, blocked
state is chosen as the good (absorbing) state. First, we need to model the given tandem network
as a ctmc. Figure 4 demonstrates the corresponding ctmc for the case that cap = 1.

The states are of the form (l1, p, l2), where l1 is the number of jobs in first station, p ∈ {0, 1, 2}
is the status of servicing in the first station (0 means that no service is going on, 1 means that
a job is in the first phase,and 2 means that a job is in the second phase) and l2 indicates
the number of jobs in the second station. Given higher values for cap, one can compute the
corresponding ctmc, modelling the original tandem network by applying the same procedure.

3.4 Water Sewage Treatment Plant

We provide a high level description of the sewage treatment facility in Enschede, NL based
on Hybrid Petri nets [27], using the graphical components given in Figure 6a. As can be seen
we have four main components: tanks, overflow tanks, pumps, and pipes. These components
suffice to model the water treatment facility at a certain level of abstraction. Tanks with a
certain capacity are used to store sewage during the various cleaning stages, which sometimes
require additional chemicals and certain bacterias, which we however abstract from. Note that
due to its finite capacity, the semantics of such a tank is that its input is reduced to match
its output whenever it is full and vice versa in case it is empty. This concept is denoted rate
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Figure 4: ctmc for a tandem network with cap = 1 [35]

adaptation in [27]. Pumps are used to transport sewage from one tank to another and are
associated with a predefined nominal rate and can be reduced for rate adaptation purposes.
Pipes connect pumps and tanks and vice versa. Note that we abstract from further parameters,
like e.g. the diameter of pipes and the pressure in tanks and pipes.

This system has previously been evaluated in [24], where the model is limited in the number
of stochastic variables and restricted to linear continuous dynamics without diffusion. By using
models that allow for diffusion stochastic differential equations, one might be able to incorporate
the cleaning steps including chemicals and bacterias into the model.

Overflow tanks are used to model sedimentation tanks as can be seen in the bird’s-eye
view of a sewage treatment facility in Figure 5. A sedimentation tank physically separates
suspended solids from water using gravity. The process is such that the contaminated sewage
containing solids enters the tank and stays there for a certain period of time, during which
the solids sediment to the ground. At a certain rate the so-called sludge is removed from the
bottom of the tank, while at the top of the tank the cleaned water overflows. Overflow tanks,
depicted separately in Figure 6b, have a certain capacity, one input and two outputs, where one
corresponds to taking out the settled sludge and the other (indicated by a grey rectangle) models
the overflow. The rate of the input and the sludge output are determined by the connecting
pumps, while the output of the overflow is determined by the difference of the output and the
input.

With these components, we can describe the simplified structure of the water treatment
facility, as depicted in Figure 7. Volumes of tanks are indicated in 1000 m3 and pump rates in
1000 m3/h. The capacity of the community sewerage system is modelled by an overflow tank
denoted Pc, which has input rates that depend on the weather conditions. From this tank the
water is pumped into the treatment facility with a maximum rate of 12 and in case the input
exceeds the capacity of the place and the intake of the treatment facility, the waste water flows
into the (overflow) place Po which models the amount of water in the streets. The primary
stage of the sewage treatment consists of two phases, namely the sand interceptor and the
primary sedimentation tank. The first, as the naming suggests, is responsible for filtering solids
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like sand from the water. Then the sewage flows into a large tank, where the sludge settles
and where the lighter material, like oils, rise to the surface and is removed, and the remaining
cleaner water overflows. The speed of the sand interceptor is abstracted through pump Tz, and
the primary sedimentation tank is modelled by the overflow tank Pps.

While the dirt settles at the ground, cleaned water is forwarded to the second cleaning
stage. This stage consists of several phases for removing chemical and biological contaminations,
modelled by a sequence of pumps and tanks, before a second sedimentation tank separates the
biological material from the now environment friendly sewage water, that can safely be disposed
to surface water. The second sedimentation tank is modelled by overflow place Pss. The sludge
that settles at the primary and secondary sedimentation tank is accumulated and forwarded
to the sludge treatment stage. There it is thickened to reduce its volume for easier off-site
transport. The sludge from the primary tank is pumped out and forwarded to the fresh sludge
thickener. This is also modelled by an overflow place, denoted Pft. Sludge is pumped out of
the tank with a small rate and discharged to the digestion tank which is considered a very large
tank. The overflow is directed to the filtrate basement. The same procedure is repeated for
the accumulated sludge in the second sedimentation tank. Note that we do not consider the
digestion process and the transportation of the remaining material off site.

The model presented in Figure 7, is an abstraction of the real system, which consists of
three parallel sand interceptor pumps and three parallel cleaning streets with several parallel
primary and secondary sedimentation tanks. Moreover, fresh and surplus sludge treatment
lines also consist of several parallel pumps, which are all abstracted into a single pump. Tables
1-7 provide the parameters for the entire system, where the capacity of the community buffer,
the filtrate basement and the digestion tank is provided in Table 1 and the rates for the Sand
interceptor pumps is given in Table 2. The parameters for the three different cleaning streets
are provided in Tables 3-5 and Tables 6 and 7 depict the values for fresh sludge treatment and
surplus sludge treatment, respectively.

Figure 5: A bird’s eye view picture of the sewage treatment facility in Enschede, the Nether-
lands. The picture is retrieved using Google Maps.
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(a) Primitives used in the high level description. (b) An overflow tank connected with two pumps.

Figure 6: Graphical representation.

Name Symbol Capacity
Community buffer Pc 20
Filtrate basement Pfb no limit
Digestion Tank Pdt no limit

Table 1: Capacity of main tanks in the system.

Figure 7: High level description of the water treatment facility in Enschede.
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Name Symbol Capacity
Sand interceptor pump 1 Tz 4.7
Sand interceptor pump 2 Tz 4.7
Sand interceptor pump 3 Tz 2.6

Table 2: Rates of three different parallel sand interceptors. These are abstracted as a single
pump in Figure 7.

Name Symbol Capacity
Primary sedimentation tank 1 Pps 3.5
Primary sedimentation tank 2 Pps 3.5
Selector P1 1.57
Anaerobic tank P2 4.7
Aeration tank P3 5.8
Transfer rate T1, T2, T3 4
Secondary sedimentation tank 1 Pss
Secondary sedimentation tank 2 Pss
Secondary sedimentation tank 3 Pss
Secondary sedimentation tank 4 Pss

Table 3: Cleaning street 1. This is the one considered in Figure 7, with two Primary sedimen-
tation tanks merged in one. Note that the capacity of the secondary sedimentation tanks is not
known to us.

Name Symbol Capacity
Primary sedimentation tank Pps 2.3
Selector P1 0.78
Anaerobic tank P2 1.15
Aeration tank P3 2.34
Transfer rate T1, T2, T3 4
Secondary sedimentation tank 1 Pss 2.3
Secondary sedimentation tank 2 Pss 2.3
Secondary sedimentation tank 3 Pss 2.3
Secondary sedimentation tank 4 Pss 2.3

Table 4: Cleaning street 2. Not considered in Figure 7.

3.4.1 What to analyse?

We have created two scenarios of interest for this model, based on the information provided by
the crew responsible for maintenance of this specific water treatment facility. The first scenario
relates to the increased input of sewage, during heavy rain fall. As mentioned earlier, in the
Netherlands there is a contract between water treatment facilities and the municipality about
the intake capacity of the facility. Hence if the weather is such that the sewage input rate
exceeds this capacity the surrounding area may be flooded with sewage. Dry and rainy weather
are modelled with pumps I1 and I2, respectively. As can be seen the rate of the I2 is slightly
more than the bottleneck of the system, i.e., rate of sand interceptor, Tz, so we may expect
that eventually the community buffer, Pc overflows. The overflow from the community buffer,
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Name Symbol Capacity
Primary sedimentation tank Pps 2.3
Selector P1 0.78
Anaerobic tank P2 11.7
Aeration tank P3 2.34
Transfer rate T1, T2, T3 4
Secondary sedimentation tank 1 Pss 2.3
Secondary sedimentation tank 2 Pss 2.3
Secondary sedimentation tank 3 Pss 2.3
Secondary sedimentation tank 4 Pss 2.3

Table 5: Cleaning street 3. Not considered in Figure 7.

Name Symbol Capacity
Primary sludge pump 1 Tft 0.3
Primary sludge pump 2 Tft 0.3
Primary sludge pump 3 Tft 0.3
Primary sludge pump 4 Tft 0.35
Fresh sludge thickener Pft 1.1
Thickened primary sludge pump 1 Tt 0.03
Thickened primary sludge pump 2 Tt 0.03
Thickened primary sludge pump 3 Tt 0.03

Table 6: Fresh sludge treatment

Name Symbol Capacity
Surplus sludge pump 1 Tst 0.055
Surplus sludge pump 2 Tst 0.055
Surplus sludge pump 3 Tst 0.035
Surplus sludge pump 4 Tst 0.035
Surplus sludge pump 5 Tst 0.035
Surplus sludge pump 6 Tst 0.035
Surplus sludge thickener Pst 3.8
Scum pump 1 Tt 0.03
Scum pump 2 Tt 0.03
Scum pump 3 Tt 0.03

Table 7: Surplus sludge treatment

is stored in the tank Po which models the amount of sewage in the street. Depending on the
modelling tool which is used for the analysis of this system, one can assume a stochastic variable
for the duration of rain, based on available data, and evaluate how much water is spilled in the
street.

For the second scenario we propose to analyse a failure of the sand interceptor, Tz. According
to the maintenance crew, this is the most vulnerable part of their system, and if there is failure
in the system at this point no intake is possible anymore for the entire system. One can analyse
for example how quickly the sand interceptor needs to be repaired, in the presence of failure,
before sewage spills into the street.
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Regarding the first scenario, we have presented an analysis of how long it may continue
to rain without having water in the streets in [24]. Using the logic STL [23] we formalise a
property stating that the amount of water in the streets is very low until the rain stops, i.e.,

ΦA = (xPo
< ε) U [0,30] (mPn

= 1), (1)

where (xPo
< ε) states that the amount of overflow in Place Po is smaller or equal to some ε,

which we have chosen for computational purposes close to zero, and mPn = 1 means that the
rain has stopped and we are back to normal operations. Formula ΦA is satisfied if and only if
(xPo

< ε) (the safety condition) holds until we reach mPn
= 1 (recovery condition), before the

given time bound. We have chosen a time bound of 30, which is considered to be large enough
for this kind of analysis.

In the second scenario, we parametrise the failure of the sand interceptor to time α. After
the occurrence of a failure, a repair crew will repair the pump with a duration distributed
according to an exponential distribution, with mean 2 hours. For this case we investigated in
[24] a similar formula, stating that the sand interceptor should be repaired before the street is
flooded:

ΦB = (xPo
< 0.01) U [α,α+30] (mPr

= 1), (2)

where, mPr
= 1, means that the sand interceptor pump is repaired. Here, we have chosen the

time bound [α, α+ 30] for the Until operator, since the pump is supposed to be repaired within
30 hours after its failure. For an extensive set of results on both scenarios, we refer to [24].

4 Friendly Competition - Setup and Outcomes

4.1 Anaesthesia Model

We consider the problem of providing probabilistic guarantees of safety for the automated
anaesthesia delivery problem with a human (anaesthesiologist) in the loop [22, 6, 1]. We use
the well-studied multi-compartment model for delivery of Propofol (anaesthetic) in paediatrics.
The depth of hypnosis can be described by the following linear dynamics

x[k + 1] = Ax[k] +B(u[k] + σ[k]) + w[k] (3)

with state x[·] ∈ R3, automation input u[k] ∈ [0, 7] ⊂ R, anaesthesiologist (human) input
σ[k] ∈ {0, 30}, and input uncertainty w[k] ∼ N (0, 5). See [1] for the matrices A and B
determined for a 11-year old child weighing 35 kilograms from the Paedfusor dataset [3].

In [1], we discussed a model for the human’s action (i.e., the delivery (or not) of a bolus
dose of anaesthetic), as a non-deterministic, discrete-valued, discrete-time stochastic process
that depends on the current state of the system, as well as the past actions of the human in a
predetermined interval. Closing the loop with human control in (3) using this stochastic map
results in a discrete-time stochastic hybrid system formulation. We consider the safety problem
posed in [1].

Problem 4.1.1. (Stochastic viability problem) Consider a safe set

S = {z ∈ X : 1 ≤ z1 ≤ 6, 0 ≤ z2 ≤ 10, 0 ≤ z3 ≤ 10}.

Compute the set of initial states from which the probability of guaranteeing x[k] ∈ S for a time
horizon of 10 time steps is above 0.99. Synthesize an admissible automation controller that
achieves this probability.

73



ARCH-COMP19 Stochastic models Abate et al.

4.1.1 Stochastic viability with input uncertainty, but no anaesthesiologist

Figure 8 and Table 8 discuss the results for the stochastic viability computation with no anes-
thesiologist. In this case, the safety problem simplifies to stochastic viability computation of
a Gaussian-perturbed linear time-invariant (lti) system with a convex safe set. In Table 8 we
have distinguished the calculation of a lower bound on the probability of verifying the formula
from the computation of the abstraction error, since some techniques are statistical in nature
and cannot assess the latter.

SReachTools: We use the chance-constrained and Lagrangian (set-based) approaches avail-
able in SReachTools for this problem. SReachTools does not use any abstraction, and
analyzes the continuous-state problem directly.

In the chance-constrained approach, the convexity of the stochastic viability set is utilized
to construct a polytopic innerapproximation via ray shooting [56]. For the easy of computation
of the rays, we fixed x3[0] as it has slow dynamics.

For the Lagrangian approach, we use the notion of disturbance-minimal safe set. Recall that
the computation of disturbance-minimal safe set (set of initial states from which a controller
exists that is safe despite all disturbances) can be obtained using computational geometry [25].
Using the stochasticity of the disturbance, we compute a subset of the disturbance, which is
guaranteed to provide an innerapproximation of the stochastic viability set. This approach does
not require fixing x3[0].

StocHy: For this benchmark model, both abstraction techniques found within StocHy can
be directly used with no need for tailoring whatsoever. With the first abstraction technique
(leveraging an mdp), the lti is abstracted into a Markov decision process by gridding the state-
space depending on the required abstraction error and the underlying Lipschitz constants (hs)
of the continuous transition kernels. (This abstraction technique corresponds to the methods
used in FAUST2.) For the second technique (leveraging an imdp and native to StocHy), the
lti is abstracted into an Interval Markov decision process. In this case, the error between the
original system and the abstraction is embedded within the model structure resulting in tighter
error bounds when compared to the mdp method. For imdp, the abstraction error is defined
as the ε = p̂(q) − p̌(q), where p̂(q) and p̌(q) correspond to the upper and lower probability
bounds for each state in the imdp. In contrast for the mdp method, the N -step abstraction
error corresponds to ε = hsδL(A) where δ is the max diameter of partition and L(A) is the
volume of set.

We perform the analysis using both abstraction methods, and

• fixing x3[0] = 5,

• maintaining all three continuous variables.

When abstracting the model using the mdp method, the control action space is discretised into
three values, u = 0, u = 3.5, u = 7. Whereas, due to the little effect the control actions have
over the N = 10 time horizon, for the imdp we fix u = 7. Also, note that when gridding the
state-space to generate the imdp for the three dimensional model, x1 and x2 where coarsely
gridded due the slow dynamics of x3 which was seen to have small effect on the satisfaction of
the safety property.

Backwards reachability: Due to the small noise signal, gridding might not be neces-
sary. This conclusion is drawn based on the same reasoning and computations as described
in Section B.0.1. Therefore, the noise is truncated, where the error, denoted with δ, is cho-
sen equal to δ = 0.0001. This yields the Gaussian realizations w1, w2, w3 to be limited to
w1 ∈ [−0.1312, 0.1312], w2 ∈ [−0.1312, 0.1312], w3 ∈ [−0.1312, 0.1312]. The new abstract model
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Figure 8: Stochastic viability set (initial states with safety probability of at least α = 0.99).
The plot on the left fixes x3[0] = 5, and the one on the right shows the Lagrangian (set-based)
underapproximation for the entire state space, obtained using SReachTools. Compute times
are given in Table 8. Code available at https://doi.org/10.24433/CO.3325937.v1.

Figure 9: The lower probability of satisfying safety property when x3[0] = 5 is fixed and policy
is generated using StocHy via abstractions into imdp. The associated computational times
are given in Table 8.

M̃ with truncated noise, is approximately bisimilar to the original model M . This is denoted as
M̃ ≡ε=0

δ=1.00e−04 M . Next, a backwards reachability computation is performed using the Multi-
Parametric toolbox [33] in Matlab. After every step, the 3-dimensional polyhedron noise is
subtracted. The resulting intitial set for which you will stay within the safe set is given in
Figure 10. Due to the trunaction of the noise, the probability of staying in the safe set with
this initial set equals (1− δ)10 = 0.999.

4.1.2 Stochastic viability with anaesthesiologist, but no uncertainty

Consider inputs (v[k], σ[k]) ∈ {0, 7} × {0, 30}, respectively, enumerated as a, b, c, and d. When
applied as a constant input, for the (0, 0) input (a) the systems behaviour becomes autonomous.
Similarly for the (7, 0) input (b), the system is only affected by the control input and not by the
anaesthesiologist. In contrast, inputs (7, 30) c and (0, 30) d reflect the (unrealistic) cases where
the anaesthesiologist continuously applies a bolus dosage. Neglecting the low noise disturbance
wk = 0, we perform a preliminary analysis which yields the forward reach sets of the in Figures
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Figure 10: Stochastic viability set (with probability 0.999) computed using ε− δ abstraction.
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Figure 11: Forward reach sets for input a are given for k ∈ {0, 1} in (a), k ∈ {0, 1, 4} in (b),
and for k ∈ {0, 1, 4, 10} in (c).
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Figure 12: Forward reach sets for input b are given for k ∈ {0, 1} in (a), k ∈ {0, 1, 4} in (b),
and for k ∈ {0, 1, 4, 10} in (c).
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instance Problem 4.1.1 with no anaesthesiologist and fixed x3[0] = 5

tool method time [s] Lower bound on abstraction Programming
max. safety prob. error lang.

FAUST2 Uniform 1596.93 1 1 Matlab
SReachTools Chance const. 33.93 ≥0.99 - Matlab

StocHy MDP 422.92 1 1 c++
StocHy IMDP 27.86 ≥ 0.991 0.008 c++

instance Problem 4.1.1 with no anaesthesiologist and 0 ≤ x3 ≤ 10

FAUST2 Uniform 18147.00 1 1 Matlab
SReachTools Lagrangian 0.42 ≥0.99 - Matlab

StocHy IMDP 85.80 ≥0.994 0.02 c++
(ε, δ)-abstract. Truncate noise 0.278 0.999 1e−3 Matlab

Table 8: Results for stochastic viability problem with no anaesthesiologist.

11, ??, ??, and ??. More precisely, each figure depicts the forward reach sets Xk (green boxes)
starting from the safe set, that is, x0 ∈ X0 =: S for one of the possible input combinations.
The blue line gives trajectories starting from the vertices of the safe set. From Figure 11,
we observe that most initial states stay in the safe sets, only states in the neighborhood of
(x0,1, x0,2, x0,3) = (1, 0, 0) will leave the safe set at k = 1. Also for input b (cf. Figure ??) most
states remain safe except for initial states in the neighborhood of (x0,1, x0,2, x0,3) = (1, 0, 0).
Thus in this neighborhood we observe that the maximal control input is not sufficient to avoid
failure if no bolus is applied. This scenario has a low probability.
For input c (cf. Figure ??), most states remain safe except for states in the neighborhood
(x0,1, x0,2, x0,3) = (6, 10, 10) which leave the safe set at k = 1.
In contrast, when the bolus is not given together with the control input v, the states remain in
the safe set. as illustrated for input d in Figure ??.
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Figure 13: Forward reach sets for input c are given for k ∈ {0, 1} in (a), k ∈ {0, 1, 4} in (b),
and for k ∈ {0, 1, 4, 10} in (c).

Based on this preliminary analysis, a policy that achieves safety can be composed as

v[k] =

{
7, 1 ≤ x1[k] ≤ 3

0, 3 < x1[k] ≤ 6.
(4)
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Figure 14: Forward reach sets for input d are given for k ∈ {0, 1} in (a), k ∈ {0, 1, 4} in (b),
and for k ∈ {0, 1, 4, 10} in (c).

Anaesthesiologist’s actions depends on the past actions and current state The past
history of the bolus dosages can be modelled with 46 states and transitions given in Table 9.

x 1 2 3 4 5 6 7 8 9
x ↓	
1 ↓↘
2 ↓↘ ↘
3 ↓↘ ↘ ↘
4 ↓↘ ↘ ↘ ↘
5 ↓↘ ↘ ↘ ↘ ↘
6 ↓↘ ↘ ↘ ↘ ↘ ↘
7 ↓↘ ↘ ↘ ↘ ↘ ↘ ↘
8 ↓↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘
9 (x, x/1) (2, x) (3, x) (4, x) (5, x) (6, x) (7, x) (8, x) (9, x)

Table 9: Bolus counter

4.1.3 Stochastic viability with anaesthesiologist and uncertainty - preliminary
analysis

The analysis as discussed in the previous subsection can be extended by adding the noise
signal w[k] to the system. Due to the small noise signal, gridding might not be necessary. This
conclusion is drawn based on the same reasoning and computations as described in Section B.0.1.
Therefore, the noise is truncated, where the error, denoted with δ, is chosen equal to δ = 0.0001.
This yields the Gaussian realizations w1, w2, w3 to be limited to w1 ∈ [−0.1312, 0.1312], w2 ∈
[−0.1312, 0.1312], w3 ∈ [−0.1312, 0.1312]. The new abstract model M̃ with truncated noise, is
approximately bisimilar to the original model M . This is denoted as M̃ ≡ε=0

δ=1.00e−04 M .
Next, we consider the worst-case scenarios. Since the input has the biggest impact on the

first state x1, we focus on this state. If state x1 is high 3 < x1 ≤ 6, the worst case scenario
is the anaesthesiologist giving two boluses after each other (at k = 1, 2). This could imply
that we leave the safe set by exceeding the upper-bound on x1. The best thing we can do
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with our automated input is to supply no additional input. On the other hand, if state x1 is
high 1 ≤ x1 ≤ 3, the worst case scenario is the anaesthesiologist doing nothing at all. Even
tough this has a very low probability, it could happen. This could imply that we leave the
safe set by exceeding the lower-bound on x1. The best thing we can do with our automated
input is to supply as much as possible. This yields the same control strategy as given in (4).
The results are given in Figure 15. The green lines denote the upper- and lowerbound of the
safe set, the red lines are the extrema of the noise and the blue lines the nominal trajectory.
The trajectories are shown for all extreme initial conditions inside the safe set. Besides that,
the anaesthesiologist has been implemented as described by the worst case scenarios before.
The states are not always safe and due to the coupling between the states, it is not possible to
conclude anything about the initial set from which this input will guarantee that the original
system will always be in the safe set (with a probability of (1 − δ)10 = 0.999). The analysis
shows that it is necessary to have more advanced tools to solve this problem.
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Figure 15: Evolution of the state over time, x1 in (a), x2 in (b), x3 in (c)

4.2 Building Automation System

The Building Automation System (BAS) benchmark is split into three different versions built
upon the library of stochastic models presented in [11, 1]. For each model instance (i) we
establish the dynamics of the models, (ii) the specification of interest, and (iii) we describe the
results of the friendly competition.

4.2.1 CS1BAS

Model This model is a two zone thermal model consisting of a single discrete location and four
continuous variables which evolve according to a stochastic difference equation which takes the
form of

Ms :


x[k + 1] = Ax[k] +Bu[k] +Q+ ΣW [k]

ys[k] =

[
1 0 0 0

0 1 0 0

]
x[k],

(5)

with a uniform sampling time ∆ = 15 minutes. Here,

A =


0.6682 0 0.02632 0

0 0.6830 0 0.02096
1.0005 0 −0.000499 0

0 0.8004 0 0.1996

 , B =


0.1320
0.1402

0
0

 , Q =


3.3378
2.9272
13.0207
10.4166

 ,Σ =


0.0774 0 0 0

0 0.0774 0 0
0 0 0.3872 0
0 0 0 0.3098

 ,
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and W =
[
w1 w2 w3 w4

]T
are independent Gaussian random variables, which are also

independent of the initial condition of the process (cf. Section 2.2.1 in [1]).

Specification The thermal model is performing within the comfort range if the temperature
in each zone is kept within the range [19.5 20.5] , when using a control input signal which lies
within the range of [15 22], for a specific time horizon.

Problem 4.2.1. Define S1 = [19.5 20.5]× [19.5 20.5]. Characterize the set of initial states and
an admissible controller such that the probability of the corresponding traces (ys[·]) generated
by Ms remain within S for 1.5 hours (i.e. 6 time steps), with a minimum likelihood of 0.8.

4.2.2 CS2BAS

Model The second case studies a model similar to Eq. (5) in Section 4.2.1, but as a higher
dimensional problem for more model fidelity. In this case, the model is a discrete-time Gaussian-
perturbed stochastic linear system with 7-dimensional state, 1-dimensional control input, and
a 6-dimensional Gaussian disturbance vector. The trace ys[·] in this case is defined as the first
component of the state. The model details can be found in [1].

Specification We would like to synthesise a policy ensuring that the temperature within zone
1 does not deviate from the set point by more then 0.5oC over a time horizon equal to 1.5
hours.

Problem 4.2.2. Define S2 = [19.5 20.5]. Characterize the set of initial states and an admissible
controller such that the probability of the corresponding traces (ys[·]) generated by Ms remain
within S for 1.5 hours (i.e. 6 time steps), with a minimum likelihood of 0.8.

Model manipulations Using a singular value decomposition, the rank deficient Bw ∈ R7×6

matrix is replaced by an equivalent matrix Bw ∈ R7×4. More specifically, Bw = UΣV ′ can be
replaced by the equivalent B̃w = UΣ.

4.2.3 Results

Problems 4.2.1 and 4.2.2 are stochastic viability problems with Gaussian-perturbed linear sys-
tem and convex safe set.

SReachTools Since SReachTools analyzes safety under full state information, we use
the safe sets S1 × R2 and S2 × R6 respectively. See Section 4.1.1 for details of the approaches
used in SReachTools. For Problem 4.2.2, SReachTools declares all initial states whose
first component lie in S2 can be driven to achieve a safety probability of 0.8.

StocHy synthesises the optimal policy by performing abstractions into an imdp. For this
method, we discretise the action space once again resulting in a discrete-time switched system.
Note that StocHy could also have solved this problem using the mdp method, however due
to the length of time needed to generate the abstractions for small abstraction errors this was
left out of the comparison for this benchmark.

FAUST2 performs policy synthesis by performing abstractions into mdp. Both the con-
tinuous and action space are discretised depending on the input maximum required level of
abstraction, representative points are selected and an mdp is built. The abstract model error
increases linearly with the time horizon, hence for longer time horizons one needs to discretise
more finely in order to obtain models with smaller abstraction errors.
ε, δ-abstraction computes an abstract model that can be verified and for which a controller
can be synthesised. This abstract model can either be a finite state MDP, a deterministic LTI
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Figure 16: Stochastic viability set for Problem 4.2.1 for x3[0] = x4[0] = 20, computed using
SReachTools. Code available in https://doi.org/10.24433/CO.8093142.v1.

instance CS1BAS (Problem 4.2.1)

tool method time [s] Lower bound on abstraction Programming
max. safety prob. error lang.

FAUST2 Uniform 2940.00 ≥ 0.80 1 Matlab
SReachTools Chance const. 20.59 ≥ 0.99 - Matlab
SReachTools Lagrangian 0.86 ≥ 0.8 - Matlab

StocHy IMDP 0.43 ≥ 0.99 0 c++

instance CS2BAS (Problem 4.2.2)

(ε, δ)-abstract Truncate noise 0.51 >0.9994 6e-3 Python
SReachTools Chance const. 8.35 ≥ 0.99 - Matlab
SReachTools Lagrangian 18.96 ≥ 0.8 - Matlab

Table 10: Results for stochastic viability analysis for building automation systems. SReach-
Tools does not use any abstraction, and analyzes the continuous-state problem directly.

model, or an LTI model with bounded disturbance. For the Building Automation System, only
the 7 dimensional model was solved via this approach. For this model it was computed that
truncating the noise of the LTI model would be more effective than computing an MDP model.
System dynamics are loaded in Python based on the .mat file generated by Matlab in the other
benchmarks. The Gaussian disturbance on this model is very low. An estimated amount of
17 × 109 would be needed to achieve an MDP that has similar performance and which does
not have deterministic dynamics. In Table 10, the computation time is given together with the
probability that the system starting from a stationary state leaves the safe set.

The obtained results for each of the specifications in the BAS benchmark are presented
in Table 10. We have distinguished the calculation of a lower bound on the probability of
verifying the formula from the computation of the abstraction error, since some techniques are
statistical in nature and cannot assess the latter. Figure 16 shows the stochastic viability set
for Problem 4.2.1.
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4.3 Heated Tank

4.3.1 Description

The Heated Tank benchmark stems from safety literature; there it is a well-known example of a
Piecewise Deterministic Markov Process (PDMP) [16]. This made the Heated Tank benchmark
a logical candidate for early inclusion in the set of ARCH stochastic models [1].

The heated tank system consists of a tank containing liquid whose level is influenced by two
pumps and one valve managed by a controller. The purpose of the liquid in the tank is to
absorb and transport the heat from a heat source; this means that under nominal conditions
one of the pumps produces a constant inflow of cool liquid, and a similar flow of heated liquid
leaves the tank through the valve. The Euclidean valued state components are the height xH,t
and temperature xT,t of the liquid in the tank at moment t. Pumps and Valve may fail, and
a Controller switches Pumps or Valve if the height of the liquid becomes too high or too low.
The rare event probabilities, to be estimated on time interval [t0, tend], are: Dryout probability
(pdryout), Overflow probability (poverflow), and Overheating probability (poverheating). The
heated tank benchmark has five versions:

- Version 1: Pumps and Valve have constant failure rates;

- Version 2: Pumps and Valve have mode dependent failure rates;

- Version 3: In version 1, Controller may fail to implement its switching decision;

- Version 4: In version 1, Pumps and Valve are repaired;

- Version 5: In version 1, failure rates depend on the liquid temperature.

For ARCH2018 the focus has been on the estimation of the dryout probability for version 4 [1]
using the methods Modest Toolset and SDCPN & Monte Carlo simulation. The very
reason for this focus was that it is a rare event estimation type of problem.

4.3.2 ARCH2019 objectives

For ARCH2019 one objective is to apply two novel methods to version 4 of the heated tank
benchmark: HYPEG and SDCPN & IPS. A complementary objective is to make the heated
tank benchmark more challenging by extending version 4 with other complications, e.g. from
versions 2, 3 or 5. In order to specify such extensions in an unambiguous way it is needed to
move from a textual type of heated tank benchmark description to a formal model description.

Because the heated tank benchmark falls in the class of PDMP, it would have been an option
to use the PDMP or GSHP formalisms for its model description. Although these formalisms
work well at an abstract model level, it is very demanding to specify all PDMP or GSHP
model elements for a system involving multiple interacting systems, even for a relatively simple
example as the heated tank benchmark. Most demanding is to specify the hybrid state transition
probability measure element of a PDMP/GSHP. Therefore the second objective for ARCH2019
is to collect the formal models from Modest Toolset, SDCPN and HPnG of version 4 of the
heated tank benchmark, and evaluate them on their ability in supporting future heated tank
benchmark extensions.
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4.3.3 ARCH2019 results

A. Rare event estimation results

For the heated tank version 4, Table 11 lists the parameter values that have been used in the
estimation of the dry-out probability.

Parameter Symbol values in version 4
Failure rate of P1 λP1 2.2831× 10−3 h−1

Failure rate of P2 λP2 2.8571× 10−3 h−1

Failure rate of V λV 1.5625× 10−3 h−1

Repair rate µ 0.2 h−1

Liquid flow q 0.6 m/h
Normalized input energy Ein 1 oCm/h

Luiqid inflow temperature Tin 15 oC
Initial liquid temperature Tinit 152/3 oC

Liquid overflow level HOverflow 5 m
Liquid too high level HHigh 1 m
Liquid initial level Hinit 0 m

Liquid too low level HLow -1 m
Liquid dryout level HDryout -5 m

Initial time t0 0 h
End time tend 500 h

Table 11: Parameters and their values in version 4

Table 12 gives the pdryout estimation results obtained by the different methods; i.e. SAN&MC,
Restart, Modest Toolset, SDCPN & MC, HYPEG and SDCPN & IPS respectively. Of
these methods, Restart, Modest Toolset and IPS have in common of using splitting tech-
niques in MC simulation of rare events. The importance functions that are used by Restart
and Modest Toolset counts the number of component failures that are relevant for dry-out.
The importance function that is used by IPS is the distance between liquid height xH,t and
HDryout.

Method
SAN MODEST SDCPN SDCPN
&MC Restart TOOLSET &MC HYPEG &IPS

[15] [51] [1] [1]
Importance

No Yes Yes No No Yes
Splitting

Estimated
5.1× 10−4 5.4× 10−4 5.09× 10−4 5.3× 10−4 4.84× 10−4 5.27× 10−4

pdryout

Simulation 100,000
- -

100,000 183,773 100,000
Effort MC runs MC runs MC runs particles
95%

±1.4× 10−4 ±3.4× 10−4 ±0.26× 10−4 ±1.4× 10−4 ±1.0× 10−4 ±0.24× 10−4Confidence
Interval

Table 12: pdryout estimation results: two from safety literature (SAN & MC and Restart),
two from methods applied in ARC2018 (Modest Toolset and SDCPN & MC), and two
from the new methods HYPEG and SDCPN & IPS.

B. Modest Toolset model of heated tank benchmark version 4
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For the readers that are not familar with Modest Toolset, we refer to [30]. We used the
hierarchical description formalisms shown below for version 4.

const real tend;

const real HOverflow;
const real HHigh;
const real HLow;
const real HDryout;

const real λP1;
const real λP2;
const real λV ;
const real µ;
const real Cfail = 0;

action init;

bool on p1 = true, on p2 = false, on v = true;
int(0..2) fail p1, fail p2, fail v;

var xH,t = 0;
der(xH,t) = (on p1 && fail p1 == 0 ‖ fail p1 == 1 ? 0.6 : 0) + (on p2 && fail p2 == 0 ‖
fail p2 == 1 ? 0.6 : 0) + (on v && fail v == 0 ‖ fail v == 1 ? -0.6 : 0);

bool overflow, dryout;
int(0..2) grace;

property pdryout = Pmax(<>[T<= tend] dryout);
property IDryOut = (fail p1 == 2 ? 1 : 0) + (fail p2 == 2 ? 1 : 0) + (fail v == 1 ? 1 : 0);

process Pump1()
{

clock c; real x;
invariant(false) init {= x = Exp(λP1) =};
do {

when(c >= x) invariant(c <= x) palt {
:1: {= fail p1 = 1 =}
:1: {= fail p1 = 2 =}
};
when(grace ! = 0) invariant(grace == 0) {= c = 0, x = Exp(µ) =};
alt {
:: when(c >= x) invariant(c <= x) {= fail p1 = 0, c = 0, x = Exp(λP1) =}
:: when(grace == 2) invariant(grace ! = 2) break
}

}
}
process Pump2()
{

clock c; real x;
invariant(false) init {= x = Exp(λP2) =};
do {

when(c >= x) invariant(c <= x) palt {
:1: {= fail p2 = 1 =}
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:1: {= fail p2 = 2 =}
};
when(grace ! = 0) invariant(grace == 0) {= c = 0, x = Exp(µ) =};
alt {
:: when(c >= x) invariant(c <= x) {= fail p2 = 0, c = 0, x = Exp(λP2) =}
:: when(grace == 2) invariant(grace != 2) break
}

}
}

process Valve()
{

clock c; real x;
invariant(false) init {= x = Exp(λV ) =};
do {

when(c >= x) invariant(c <= x) palt {
:1: {= fail v = 1 =}
:1: {= fail v = 2 =}
};
when(grace ! = 0) invariant(grace == 0) = c = 0, x = Exp(µ) =;
alt {
:: when(c >= x) invariant(c <= x) = fail v = 0, c = 0, x = Exp(λV ) =
:: when(grace == 2) invariant(grace != 2) break
}

}
}

process Controller()
{

process Normal()
{

alt {
:: invariant(level <= HHigh) when(level >= HHigh) palt {

:1− Cfail: {= on p1 = false, on p2 = false, on v = true, grace = 1 =}
:Cfail: {= grace = 1 =}
}; High()

:: invariant(level >= HLow) when(level <= HLow) palt {
: 1− Cfail : {= on p1 = true, on p2 = true, on v = false, grace = 1 =}
: Cfail : {= grace = 1 =}
}; Low()

}
}

process High()
{

invariant(level >= HLow) when(level <= HLow) palt {
: 1− Cfail : {= on p1 = true, on p2 = true, on v = false =}
: Cfail : {==}
}; Low()

}
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process Low()

{
invariant(level <= HHigh) when(level >= HHigh) palt {
: 1− Cfail : {= on p1 = false, on p2 = false, on v = true =}
: Cfail : {==}
}; High()

}
Normal()

}
process Observer()

{
par {
:: invariant(level <= HOverflow) when(level >= HOverflow) {= overflow = true, grace = 2

=}
:: invariant(level >= HDryout) when(level <= HDryout) {= dryout = true, grace = 2 =}
}

}
par {
:: Pump1()
:: Pump2()
:: Valve()
:: Controller()
:: Observer()
}

C. HPnG model of heated tank benchmark version 4

Since HYPEG is a simulator for hybrid Petri nets with general transitions (HPnGs) [27], the
heated tank benchmark has been modeled as an HPnG. A graphical representation of the HPnG
for version 4 of the heated tank benchmark is presented in Figures 18 to 21, divided into four
parts, which compose one large HPnG (connected via places with identical names in different
figures).

An HPnG consists of places, transitions and arcs, whose graphical representation is presented
in Figure 17. Discrete places hold a natural number of tokens and continuous places contain
an amount of fluid. Continuous transitions carry fluid between continous places via continuous
arcs, whereas we separate between static continuous transitions with a constant fluid rate (r)
and dynamic continuous transition, whose fluid rate (also denoted by r) might depend on the
current marking (tokens or fluid level) of places in the HPnG. Tokens are transported via
immediate, deterministic or general transitions via discrete arcs. Immediate transitions fire as
soon as enabled, whereas deterministic transitions fire after a pre-defined period of time. The
firing time of general transitions follow a continuous probability distribution. The enabling
status of transitions can be controlled by test arcs or inhibitor arcs, whereas for test arcs, the
marking of the connected place has be greater or equal to the arc’s weight (w) to enable the
connected transition, and for inhibitor arcs it has to be lower than the weight.
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Figure 17: Graphical representation of HPnG components [37].

Figure 18 shows how the state of the valve is modeled via four different discrete places V On,
V Off, V SOn, V SOff. The token (small black circle) can be transported to another discrete
place, thus switching the valve state via general transitions, e.g. V On SOn, or immediate transi-
tions, e.g. V On Off. The firing times of the general transitions for the valve follow exponential
distributions with rate λV . The immediate transitions can only fire when there is a token in
the places Increase or Decrease, due to the connecting test arcs. The state of the valve is
further stored in the places Valve On and Valve Off, which is required for the filling of the
tank (see Figure 20). When the valve is in stuck mode, the repair is modeled by the general
transitions V SOff Repair resp. V SOn Repair, which are enabled when the place Valve grace

holds a token and follow an exponential distribution with repair rate µ.

Figure 18: HPnG of the heated tank version 4: Valve.

The states of the pumps are modeled in a similar way, as shown in Figure 19, however the
connections to the places Increase and Decrease are switched. The general transitions for the
pumps follow exponential distributions with rate λP1

respectively λP2
. The number of activated

pumps is counted via the places No Pump, One Pump and Two Pumps.
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Figure 19: HPnG of the heated tank version 4: Pumps.

Figure 20 shows how the heated tank and its controller are modeled. The fluid level of the heated
tank is modeled by the continuous place x H , which has two static continuous input transitions
H in1 and H in2, with a rate of q resp. 2 · q, and one static continuous output transition H out

with rate q. The transitions get enabled via test arcs or inhibitor arcs, depending on the number
of tokens in the places One Pump and Two Pumps and Valve On.

The controller is initially in the Normal state, but moves to Increase or Decrease, when the
transition Normal Decrease resp. Normal Increase fires. Since Normal Decrease is controlled
by a test arc, it gets enabled when the fluid level of x H reaches the weight of the test arc, i.e.
HHigh. On the other hand, Normal Increase is controlled by an inhibitor arc and thus gets
enabled when x H < HLow. In a similar way, the token can further move between Increase

and Decrease via the transitions Decrease Increase and Increase Decrease. The firing of
Normal Increase resp. Normal Decrease further adds a token into the places Valve grace,
P1 grace and P2 grace, activating the repair mode for the components. Each of these places
can lose its token via the connected immediate transitions for the case of an outflow or dryout,
i.e. when the fluid level of x H reaches HDryout or HOverflow.

The temperature of the tank is modeled by another continuous place x T, as shown in Figure 21.
It is connected to different dynamic continuous input and output transitions, which are enabled
depending on the state of the pumps and the current fluid level of x H (via test and inhibitor
arcs). E.g., for one activated pump and a positive fluid level, transitions T in1 and T out1 are
enabled, such that the input rate for x T equals (Tin · q+Ein)/(x H−HDryout) and the output
rate is (q · x T)/(x H−HDryout) .
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Figure 20: HPnG of the heated tank version 4: Tank and Controller.

Figure 21: HPnG of the heated tank version 4: Temperature.
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D. SDCPN model of heated tank benchmark version 4

The graphical part of the SDCPN model is given in Figure 22; it has one local Petri Net (LPN)
for each of the systems Pump 1(P1), Pump 2(P2), Valve(V), Tank(T), and Controller(C). Figure
22 shows the places ©, the transitions 2 and the arcs (→ or –•) within and between each of
these five LPN’s. Figure 22 also shows which places have a token at initial moment t0. Each
LPN is such that it always has exactly one token.

Figure 22: Graphical part of the SDCPN model for the heated tank benchmark, version 4.
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For readers that are not familiar with SDCPN, we provide a short explanation of the graphical
elements in this SDCPN model. Arcs ending with an arrow are normal arcs; arcs ending with
a ball are enabling arcs. In contrast with a normal arc, an enabling arc can only go from a place
to a transition, and this transition does not consume any token from this place. Each enabling
arc that starts from the boundary of a local Petri net (LPN) and ends at the boundary of
another local Petri net (LPN), say from LPN A to LPN B, represents multiple enabling arcs,
i.e. one enabling arc for each combination of a place in LPN A and a transition in LPN B. This
allows that all transitions in LPN B have full access to the hybrid state information available
in LPN A. There are three types of transitions: Immediate transitions (I), Delay transitions
(D) and Guard transitions (G). A transition is said to be pre-enabled if each place from which
it receives an arc has a token. If an immediate transition is pre-enabled it fires a token to the
places where outgoing arcs lead to. If a delay transition is pre-enabled then its firing happens
stochastically at a given firing rate. If a guard transition is pre-enabled, then it fires as soon as
its guard condition is satisfied.

If in LPN “Tank” there is a token in place Normal, i.e θT,t = Normal, then to this token a
2-D Euclidean valued process {xH,t, xT,t} is connected which is the solution of the following
differential equations:

dxH,t =q · (χP1,t + χP2,t − χV,t) · dt with xH,0 = Hinit

dxT,t =[q · (χP1,t + χP2,t)(Tin − xT,t) + Ein]/(xH,t −HDryout) · dt with xT,0 = Tinit

where for U ∈ {P1, P2, V }: χU,t = 1 if LPN U has a token in place On or in place StuckOn,
else χU,t = 0.

In LPN “Tank” the guard conditions of G1 and G2 are xH,t ≥ HOverflow and xH,t ≤ HDryout

respectively.

In LPN “Controller” the guard conditions of G1, G2, G3 and G4 are xH,t ≥ HHigh, xH,t ≤
HLow, xH,t ≤ HLow and xH,t ≥ HHigh respectively.

In LPN’s Pump 1, Pump 2 and Valve the following applies to the transitions:

– Di, i ∈ {1, 2, 3, 4} fires at rate λU , U ∈ {P1, P2, V }.
– Di, i ∈ {5, 6, 7, 8} fires at rate 1

2µ 6= 0 , iff the token of LPN Controller is not in place
Normal.

– In LPN Pj , j=1,2, I1 fires if Pj's place Off has a token as well as LPN C's place
Increase,

– In LPN V, I1 fires if V's place Off has a token as well as LPN C's place Decrease,
– In LPN Pj , j=1,2, I2 fires if Pj's place On has a token as well as LPN C's place Decrease,
– In LPN V, I2 fires if V's place On has a token as well as LPN C's place Increase.

The Generalised Stochastic Hybrid Process (GSHP) defined by this SDCPN model is {xt, θt}
with xt = [xH,t, xT,t]

T and θt = [θU,t;U = P1, P2, V, T, C]T , where the value of process θU,t
equals the name of the place where the token in LPN U is at moment t.

E. Relevant extensions of heated tank benchmark

From a rare event estimation challenge perspective the following five extensions of heated tank
version 4 are of relevance:
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I. Discrete-valued process influences repair rates or failure rates (e.g. in version 2).

II. Non-zero probability of not communicating a decision made (e.g. in version 3)

III. Continuous-valued process influences repair rate or failure rate (e.g. in version 5).

IV. Non-exponentially distributed duration of working and/or repair of system components.

V. Brownian motion in a Euclidean state component, e.g. in the heat source Ein.

For the modelling of these extensions it also is quite helpful if the syntax supports compositional
modelling. In Table 13, it is indicated which extensions are supported by PDMP, by GSHP
and by which of the three syntax models that have been used for the Heated tank benchmark,
i.e. Modest Toolset, SDCPN and HPnG.

Model syntax I II III IV V Compositional modelling
PDMP Yes Yes Yes Yes No No
GSHP Yes Yes Yes Yes Yes No

Modest Toolset Yes Yes No Yes No Yes
HPnG Yes Yes No Yes No Yes

SDCPN Yes Yes Yes Yes Yes Yes

Table 13: Capabilities of the methods to support relevant extensions.

4.4 Tandem Network

4.4.1 Model

Let us first give solution to the time bounded reachability problem over ctmcs in general and
then we will discuss tandem network as a concrete example.

A continuous-time Markov chain (ctmc) M = (SM, R) consists of a finite set SM =
{1, 2, · · · , |SM|} of states, a rate matrix SM × SM → R≥0. Intuitively, R(s, s′) > 0 indicates
that a transition from s to s′ is possible and that the timing of the transition is exponentially
distributed with rate R(s, s′). Q is the infinitesimal generator matrix of M defined as Q =
R − diags(

∑
s′∈SM R(s, s′)). Note that

∑
s′ Q(s, s′) = 0 for any s ∈ SM. Let M = (S ]

{good,bad}, R) be a ctmc, with |S| = m, and absorbing states good and bad. For computing
the reachability probability vector Z(t) we need to solve for the following differential equation

d

dt
Z(t) = QZ(t), Z(0) = 1(good), (6)

where Z(t) ∈ Rm is a column vector with elements Zi(t) = ProbM(1(si), t), denoting the
probability of reaching the good state after time t for the ith state and 1(i) denotes a m × 1
vector which contains zeros everywhere and 1 on its ith position. In order to solve Equation (6)
the most common approach is to use uniformization. By using uniformization, one can compute
time bounded reachability for an arbitrary time bound with an arbitrary precision. However,
it is well-known that for large time bounds, uniformization is not fast enough.

A Lyapunov based approach is proposed in [40] to compute the solution of (6) approximately
with formal error bounds. The approach generalizes the binary interpretation of bisimulation
relations to a quantitative setting. It allows states to be members of different partition sets with
some membership degree and utilizes Lyapunov theory to compute formal error bounds. From
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Time bound [h] run-time [s] reach. prob
333.34 0.019 0.153
666.67 0.011 0.284
1000 0.012 0.394

1333.34 0.012 0.487
1666.67 0.015 0.566

Table 14: Results for running LyapMMC over tandem network using ε(T )=0.01

Formal error bound (ε(T )) [h] run-time [s] Percentage of order reduction
0.5 0.0056 25.2%
0.4 0.008 16.5%
0.3 0.009 9.56%
0.2 0.01 3.4%
0.1 0.018 0%

Table 15: Results for running LyapMMC over tandem network with different ε(T )

the computation pespective, instead of (6), a set of differential equations of order r (r << m)
will be solved,

d

dt
Z̄(t) = Q̄Z̄(t), Z̄(0) = Z̄0, (7)

where Z̄(t) ∈ Rr×1 and Q̄, Z̄0 should be computed such that∣∣Z(t)− PZ̄(t)
∣∣ ≤ ε(t), (8)

where P ∈ Rn×r is a projection matrix and ε denotes the time varying upper bound over order
reduction error. The details on the computation of Q̄, Z̄0 and P and the characterization of
ε(t) can be found in [40].

We consider cap = 10 which results in a ctmc with 231 states. We can choose values
µ1 = 1, µ2 = 2, κ = 2, λ = 4, a = 1, b = 0 and time bounds T = 60000 × r for r being
integers from 1 to 5. Once the tandem network is modelled as a ctmc, the generator matrix
Q is computed such that block state (chosen as the good (absorbing) state) is made absorbing.
All we need to do is to compute Q̄, Z̄0, P for ε(t) and solve (7) up-to time T .

4.4.2 Results

We present the results in two tables. Table 14 demonstrates results of running LyapMMC
over the described tandem network for five different time bounds (T ), while ε(T ) is set to
0.01. Results for LyapMMC are given in Table 14. Surprisingly, it can be noticed that 5
times increasing the time horizon not only does not result in a linear increase in computation
time but also keeps the run-time almost the same. Next, in Table 15, we report the effect
of changing the formal error bound ε on the run-time and the percentage of reduction in the
order of differential equation, while time bound is set to T = 1666.7h. It can be noticed that
by reducing the precision, execution time decreases as the order of differential equations in
(7) decreases. Interestingly, even for relatively large formal error bounds, the computed error
bound is very small. It can also be observed that one can significantly reduce the run-time by
choosing larger error bounds.
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5 Discussion

A highlight of this year’s edition has been the evident and ever growing interest in tools that
can verify and perform synthesis of stochastic models. We have seen the introduction of three
new software tools and of one early synthesis framework, which together can tackle different
problems and benchmarks. Building on the experience gathered from the outcomes of the
friendly competition and from the work on the benchmarks (old and new), some key points for
future work have been identified as follows:

• one of the key issues is the absence of an accepted formal modelling description for the
benchmarks, which would (among other things) facilitate their comparison and the run-
ning of experiments on them. It is understood that there is a plethora of stochastic
models characterisations, each of which are tailored to specific tasks and problems (e.g.,
rare-event setup, or a control setup), however there is a need for a common modelling
language. Related to this is also the need for a common format for sharing models used
in the benchmarks (e.g. .mat files);

• many tools have different ways to describe outcomes, which are tailored towards the
underlying of algorithms used within specific tools. A common standard for the output
of tools is required (e.g., max satisfiability for a specific initial condition);

• it was noted that in most of the current benchmarks the effect of noise is small, hence we
should design models where noise has a larger effect on the dynamics;

• a realistic safety analysis problem of industrial relevance is typically is much larger than
what can be currently handled in an ARCH benchmark;

• there is a need for more diverse specifications, beyond safety or reach-avoid;

• finally, we should work towards having all tools working on benchmarks run over the same
machine.

6 Conclusion

This report has presented the results of a first friendly competition for the formal verification
of stochastic models, as part of the ARCH’19 Workshop. The reports of other categories can
be found in the proceedings and on the ARCH website: cps-vo.org/group/ARCH.
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A Specification of Used Machines

A.1 MFAUST2

• Processor: Intel Core i7-8550U CPU @ 1.80GHz × 8

• Memory: 8.00 GB

• Average CPU Mark on www.cpubenchmark.net: 8337

A.2 Mhypeg

• Processor: Intel Core i5-5257U CPU @ 2.70GHz (2 cores)

• Memory: 8.00 GB

• Average CPU Mark on www.cpubenchmark.net: 4403

A.3 MModest

• Processor: Intel Core i7-4790 @ 3.6-4.0 GHz (4 cores × 2 threads)

• Memory: 8.00 GB

• Average CPU Mark on www.cpubenchmark.net: 9994

A.4 Msdcpn

• Processor: Intel Core i5-2400 @ 3.10GHz

• Memory: 8.00 GB (7.88 GB usable)

• Average CPU Mark on www.cpubenchmark.net: 5949

A.5 MSReachTools

• Processor: Intel Xeon CPU @ 3.4GHz

• Memory: 32.00 GB

• Average CPU Mark on www.cpubenchmark.net:

A.6 MStocHy

• Processor: Intel Core i7-8550U CPU @ 1.80GHz × 8

• Memory: 8.00 GB

• Average CPU Mark on www.cpubenchmark.net: 8337
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A.7 Mε,δ (1)

• Processor: Intel Core i5-8259U CPU @ 2.30GHz (4 cores)

• Memory: 16.00 GB

• Average CPU Mark on www.cpubenchmark.net: 11003

A.8 Mε,δ (2)

• Processor: Intel Core i5-7360U CPU @ 2.30GHz (2 cores)

• Memory: 8.00 GB

• Average CPU Mark on www.cpubenchmark.net: 5823
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B BAS Explanation of the results

B.0.1 Comments on CS2BASS – ε, δ-abstraction

As a first step, we compute the hyper-cube to which the standard Gaussian noise belongs with
probability equal to 0.99. For w in this hypercube, the largest disturbance is ‖Bww‖∞ ≤ .07.
If the cells of our gridding-based approach are of the same magnitude or smaller than ‖Bww‖∞
this implies that more than 17× 109 cells are needed. This is actually the amount of cells from
which the transition probabilities take values in [0, 0.99).
Truncated noise model. We now compute an abstract model M̃ with truncated noise, that
is the Gaussian realizations (w1(t), w2(t), w3(t), w4(t)) are limited to w1 ∈ [−4.215, 4.215], w2 ∈
[−4.215, 4.215], w3 ∈ [−4.215, 4.215], w4 ∈ [−4.215, 4.215]. This model M̃ is approximately
bisimilar model to the original model M , this is denoted as M̃ 'ε=0

δ=1.00e−04 M . The δ value
follows from the truncation, which is obtained as follows:

In [3]: delta = 0.0001

conf = 1-delta

conf_i = conf ** (1/4)

w_list_= [list(scipy.stats.norm.interval(conf_i, loc=0, scale=1)) ] *4

# domain of truncated noise

Since the specification is a simple bounded horizon safety specification, and since the model
is stable, we have opted to compute forward reach set using hyper-cubes. This is efficient and
simple to implement using a one-step reachability mapping.

In [4]: def forward_box(AB, xbox, wbox):

dist = np.concatenate([[np.array(list_items).dot(AB.T)]

for list_items in itertools.product

(*xbox,*wbox)])

return [row for row in np.array((np.amin(dist, axis=0),

np.amax(dist, axis=0))).T]

AB = np.concatenate([sys_s.a,sys_s.Bw], axis=1)

More precisely, this function propagates the effect of the disturbance by encapsulating them
in hyper-cubes. On the output, this gives a deviation over time as depicted in Figure 23a.

Figure 23a implies that for a model without noise, the safe set will be time varying. Figure
23b implies that when starting at a stationary temperature (at 0), the stationary policy will
stay in the safe set for the abstract model with probability 1. Similarly, for the original model
the satisfaction probability is (1−δ)6 = 0.99940015. By using toolboxes such as MPT (Matlab)
or any other verification toolbox for non-stochastic systems similar results can be achieved over
the truncated noise model.
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(a) (b)

Figure 23: Figure of (a) deviation over time and (b) the effect of the disturbance on the allowed
set for deterministic dynamics.
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