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SUMMARY

In Ref. 1 the author established the existence of a new class of exact
subharmonic solutions to Duffing's equation, without damping, i.e., the term
in % is absent. The present study is concerned with the full equation of
Duffing, with damping present, and it is shown that, provided the damping
coefficient, b, is sufficiently small, there exists a class of exact subharmonic
solutions which stem from a sub-class of exact pure-subharmonic solutions.




CONTENTS
Introduction

An Extended Class of Subharmonic Solutions

The Existence Theorem
Some Norms and Pseudo-norms

Conditions for T to be a Contraction Mapping in S*

By - BsJ'

An Estimate for lubl(u,v) - 0].

Estimates for|a1 - alO' e lita s

The Proof of Existence When lgl = 1| or h are Small

References

Page

11

22

30




19 Introduction

The equation

3&+b5<+c1x+c3x3 =@ Sin wt, b £ 0, (1.1)

is known as Duffing's equation, with damping. The only known broad class
of subharmonic solutions to this equation is that related to the condition

c3<<c1, in which the solution takes the form of a real Fourier series whose
leading term is the dominant subharmonic. See for example Stoker, Ref. 2,
pp. 103-109. Stoker's account is concerned with subharmonics of order

1/3 and it is demonstrated that these do not occur when w2 = 9(:1. Further,

the conclusion is drawn that these subharmonics cannot occur unless the
damping coefficient, b, is of the same order as Cqs i.e. b<<c1.

In an earlier paper, Ref. 1, the author established the existence of a
new class of pure subharmonic solutions of order 1/3 (i.e. with terms in

Sin %ut and Cos ;—wt present, only) for Duffing's equation with b = 0 and

went on to demonstrate the existence of an associated, broader, class of
solutions which could be represented by a Fourier series whose minimum
frequency was w/3. These solutions were shown to exist in intervals
2 2 . .
-1{901/00 <1, 1<9c1/w <3, with Cq unrestricted. That no subharmonic
2 :
solution of order 1/3 could be shown to exist when w™~ = 9c1 agreed with

Stoker's first conclusion. However, neither of the two treatments can be

taken as proof that no subharmonic of order 1/3 exists when w = 9c1.

The present study is a natural continuation of the work in Ref. 1.
Starting from a pure subharmonic solution of order 1/3 of equation (1.1),
b = 0, the combined functional analytic, topological, method will be used to
explore the existence of associated subharmonic solutions representable by
Fourier series of minimum frequency w/3.

e An Extended Class of Subharmonic Solutions

By writing 36 = wt, equation (1.1) may be reduced to

3 .

x'' + hx' + gx + ggx - I Sin 36 = 0, (h,g3 # 0) (Z1)
where

h = 3bjw

g. = 9c /w2

. Loy (2. 2)

g~ 9c3/w ’
and o

I' = 9Q/w”




Starting with the case h = 0, I' = Fe’

solutions described in Ref. 1, equation (2.5).

2
1 - Sgsae .
the g, B3 plane are then as shown in Fig. 1.

equation (2. 16) should read g, 7

there exist certain subharmonic

It should be noted that in Ref, 1,
The family of straight lines in

With 8 &g and [’ = Fe

fixed and h > 0 it is anticipated that there will exist a subharmonic solution

of (2.1) of the form

X =n°>§0 {a, ., Sin (20+1)0 +b, .. Cos (2n+1)0) (2. 3)
As before the first approximation will be the pure-subharmonic solution
X = ae Sin 6 + be Cos 0, (2.4)
whilst the second approximation will be
x = a; Sin6+b1 CosG+aSSin36+b3Cos6 (& 8)
It then follows that
x3 = @ Sin 6 + [310 Cos 6 + 2 ST G-I b90 Cos 90, (2..6)
where
g %31(""? + b)) - %as(a? : bi) - %alble g % 1(a§ N bg)
Pio © %bﬂa? + bf) . %ba(af : bf) i %albl% N g'bl(ag i bi)
%0 %al(Bb? . ai) " %as(a ' b?) N _as(ag ’ bg)
byy © -2b (327 - b)) + %bs(az +b2) + —Z—bs(ag + b))
%0 "~ T %33(3? : bf) ’ %alble - %al(ag i bg) " %b1a3b3
Pso = - %b3(a? - bf) ” %alblaB : %bl(ag - bg) = % a123Pg
%0 " %"’11(3; - by) + %blasbs
oo = - %bl(ai - bg) - %alasbs
%90 ~ %""3(%2 : ag)
Pgo = -3 b3(3a§ - bg)
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Also

x' = a1 Cos 6 - b1 Sin 6 + 3a3 Cos 30 - 3b3 Sin 36

and ‘ s (2.7

e

1" = . - = . =
X a1 Sin 6 b1 Cos 0 9a3 Sin 36 9b3 Cos 36

Approximately x3 by

3

vl = Sin 6 + [310 Cos 0 + a,, Sin 30 + /330 Cos 30

%0 30

and substituting for x, x3, x' and x'" in (2. 1) and equating coefficients of the
distinct terms, i.e. Sin 6, Cos 6, Sin 36 and Cos 36, respectively, to zero,
gives rise to the following simultaneous equations:

(g, - Na, - hb, + gga, =0 (2.8)
(g, - )by + ha, + gzB,, =0 (2.9)
(g, - 9ay - 3hb, + guany = T (2. 10)
(g1 - 9)b3 + Sha3 + g3B30 =0 (2941%)

The corresponding equations defining the pure subharmonic solution are, from
Ref. 1,

3 29

(g1 - 1)ae + Zg3ae(ae + be) =0 (2.12)

(g, - 1)b +§gb(a2+b2)=o (2.13)

1 4°3e e e :

1 2 2.

7 853,(8b - a) = I (2.14)
1 2 2

-Znge(3ae - be) =0 (2:91.5)

Writing a; = (1 + el)ae, b1 = (k1 + ez)ae, ag = &a,, b3 = ga, and

subtracting (2. 12) from (2.8), (2.13) from (2.9), (2.14) from (2.10) and (2. 15)
from (2.11) gives, after division by a, # 0 and the substitution
2 _ 1,

€38 T 3 - 1),

38y
where k3= -4 or -1,
(8. - 1)e, - he, + 2k (g, - D[(3 + k)e, + 2k e + (K> - 1)e, - 2k e
1 1 € 77738 151 192 1 S 1%

4 .
e )} = hk, (2. 16)




= e

1 2
- + + = -
(8, - Ve, + he, + 7 kolg, 1){2k1€1 +(1+ 3Kk))e, + 2k ¢

2 4
- = = _
k] - 1) ¢ *+ 3Gy 1= -h (2. 17)
(@, - 9)e, - She, + = k (g, - V(K2 - Ve, + Zk.e + 21 + ke + G (=0
1 & 4 " 7 *3'8q 1 1 1% 173 " 3+q
(2.18)
(g, - 9)¢, + 3he, + = k (g, - D[-2k e + (k2 - 1)e, + 2(1 + ko), + =G ,()}= 0
1 4 € T 7 %38 141 1 2 5 T gy
(2.19)
where
3 3 2 2
Gl(el, : ,54) Z(l + 61)(61 e 62) T 5(1 A 61)(63 + 54)
3
Tl F kg - g - kg tselkig - ¢ - gg)
3 2 2 '
& Z%(klez - 61) (2. 20)
3 o 9 2 3
Gz(el,...,e4) = Z(kl + 62)(6 + 62) A 3 (l«:1 ke 62)(63 i 64) 4 -2—51(62 +- k1€3 - 64)
3 3 2 2
+ '2‘62(1{162 + € + k164 £ 6163) & Z€4(€2 - 61) (2..21)
R 2 3 2 2 2 2
Galepsoovngy) = 7l - ) T 5l + 6) + 7l + ¢)
1 2 2. 3
Ar 261(362 = 61) + 3 €% + 3k1€2€3 (2.:22)
3 2 2 2 2 2 2
G4(€1,...,e4) =2 kl(e2 - €) + 5 64(61 = 64)+ — 64(63 i 64)
1 2 2. 3
+ 262(62 + 361) -~ 5 €€, S 36164 T % k1€2€4 (2. 23)

17 &g in terms of h from these four simultaneous

cubic equations would be formidable, this, however, is not required. The
reason for deriving this system of equations is firstly that they define a
mapping Mo’ used in the existence theorem, and secondly they provide a guide

The task of determining e

to the choice of a four-cell A, also used in the existence theorem. For the

latter purpose let SEREEREA be of the first order of small quantities compared

with unity, then Gl" .. ,G4 contain terms of the second and higher orders of

small quantities only. Under these conditions equations (2.16) to (2.19) may
be adequately approximated by the linear equations

L+ 3 8+ ke +{5 K kg - Q)+ 7hglk? - D -3 kikge, = ko (2.24)

4 73 1 153 oy T AL ) T AR 1 34 151
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1 1 2 1
= &kt Qe + {1+ 7 k(14 36D)e, + 5 K, ke
ik 2 1 1 2

= k X = Aizh = e
7 el e =it ke {2 kg(1+ k) + Qz‘,cg

1
31 4

where

‘% { h/(gl - 1) ‘[

and >
Q, = (g, - 9/, - 1) J

2
1

Consider the solution of these equations for €
separately

‘ Case (i) k

The equations become

-261 B 52162 o € =0

+ = -
Qlel 64 Ql

m
X
o)
no
1
)
o
1
w
)
f
o
1
o

with solutions

= -Al/AO, €

. 2

1 ) AZ/AO’ S -AS/AO’ V1

where

-2y 4+ (1 391)2 - Q%q. - 2)2

A= 20 1

o 2 (€

2

2

2 2
= o = + -
A e {@, - 2°+ 9a] - 32}

_ 2 2
A, = -91{(92 -2) + 20, - 2)° + 991}

and 9 9
A, = -91{6+ (Q, - 2) + 6Qj(Q, - 2)}

1 2 (1 2
-5 b kge + 7k (k] - 1)g, + 80, H{Z K (1+ K))+ Q

N e l)e, = -Q

4 31 1

3(2164 =0

2]{64 =20

..,64 in the two cases,
Sy
s

= Ql(l - 61)

(2. 26)

(2. 27)

(2. 28)

(2. 29)
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This means that € ,...,¢€

1 4 may be expressed in the form

g =2 §a, ).l vy = 0 0,00, 0,) (2. 30)

where the (I)i(Ql, 5'22), i=1,...,4 all tend to finite values as szl—;o.

Thus el,...,e4—->0 as Ql—ro or h—0.

Case (ii) k, = 3%, k_ = -2, k_ = -1

1 . 3 1 1 =
-561-(-2-X3 +Ql)62-'4—:63+-2-><3€4-391
(-%X 3%+Ql)€1-é—€2-%x 3%63-é€4 =-Ql
1 1 = _
19 -3 X ¥zt alg -0 =0

1 3 1 i
2X3€1-Z€2+3QI€3+[-2+521_}€4 = 0,

which again have solutions in the form
€ = Ql d)i(ﬂl,flz)

and, therefore, ¢ .,€,—~0 as 2.—0 or h—0.

1 4 1

3. The Existence Theorem

The existence theorem, which will be used to prove the existence of
the solution (2.3) of equation (2.1), is essentially the same as that described
in Ref. 1. However, because of the presence of the term hx' in (2.1) it is
now necessary to formulate the proof in term:s of vectors and this gives rise
to important differences of detail from the scalar technique set out in Ref. 1.

Consider the function space S of all real periodic vector functions
x(0) = (xl,. o ,xj, S .,xn) defined by Fourier series of the form

)
xj(6) =E { aj'2s+1 Sin (2s+1)6 + bj.'2s+1 Cos (2s+1)6}, (3.1)




and having a norm v(x) defined by

v(x) = max V(Xj), JR=RInrer 1
where
27 .
vix,) = {(27r)-lf x;?(e)de}f .
o

A projection operator P may be defined in S by the relations

1552 = (Plxl, Ol 'ann)'
m
P.x, =s§o{3j'2s+1 Sin (2s+1)6 + bj, 5 gty COS (2s+1)0},
and, by definition, P'= P2.
The subspace S of S is defined by
S ={x 1 xeS, Px = O},
and, thereby, if xeS then
x.(6) S iy { aj,2s+1 Sin (2s+1)6 +bj,2s+1 Cos (2s+1)6}

Define the operator H on S by the relation

Cos (2s+1)6 + b.

0 il {
ij = sE=m +1 (28+1) -a, i, 28+l

j,2st+l

’

(13.:2)

(3.3)

(3.4)

(3.5)

(3.6)

(3T

Sin (2s+1)0%,

(3.8)

which corresponds to the integration of xje§ with the constants of integration

taken to be zero.
Write equation (2.1) in the system form

X' = ql(xz) = x,

T 3
Xy = qz(xl,x2,6> = g% - 8gX) - hx2 + I Sin 36,

(3.9)




where 4y .99 are the components of the vector operator q on S. Further,

consider the operators f, F and T on S defined by

fx = gx - Pgx (3.10)

Fx = Hfx (E35118)
and |

y = Tx = Px + Ex; (13152

or, in more detail,

(fx) sz
= 3 3
(fx) - 8%y - hx2 I Sin 368 P(glx1 + gaX) hx2 - I'Sin 38)

(3.13)

- Px ) i

Fx = Hfx = i
3 .. 3 .

5T % - hx_ + I Sin 30 + P(glx1 tggXy t hx, - I'Sin 30} J

"83% 7 2
(3.14)
and
¥y (Tx); le + (Fx)1
y = = =
Yy (Tx)2 Px2 I (Fx)2
le + H(x2 - sz)
B B +H{-gx —gxs—hx + I' Sin 36 + P(g,x +gx3+hx —iSin
2 171 31 2 171 3 2
(3.15)
By placing certain bounds on v(x), x| , v(x - Px) and ,x - Px| it is possible

to define a subspace S* of S and, provided certain inequalities are satisfied,
it will be shown that T : S¥—= S* and is also a contraction mapping. Because
T is a contraction in S*, Banach's fixed point theorem (See Ref. 5, p.141)
may be invoked to conclude that y(6) exists uniquely in S* and is continuously
dependent on the approximate solution (2.5). This means that as, b5, TR

Lo I

are uniquely determined by and continuously dependent on a 3

1’

|

30)}




If y(6)eS* is a fixed element of T in S*, then

YR By Sy
or
Yo =SBy
1 1
VR L=
| Yo - Py,
]
5 1
H(y2 = Pyz)

3 . 3 -
H{—gly1 = 2.3 - hy, + T Sin 36 + P(g;y, + g,Y; * hy, - T Sin 30)}J

[ ———,

Differentiating this expression with respect to 6 gives
i ]
Yy = Y9 * Ply; - ¥p)
y 3 . ' 3 . {
=5 = = r Bl s - - [ Sin ¢
Yo g5, g3, hy2 + Sin 36 + (y2 g1y * 8,9y hygy ' Sin 30)

Thus y(0) will satisfy (3.9) provided

Py, -y, =0 (3.16)

3 ,
P (y; b gy, t gy, *hy, - T Sin30) =0 (3.17)

If y(6) is the fixed element described, then y = x and yj(O) will be given
by (3.1). Choosing m =1, then
Py. =a, Sin 8 + b,, Cos 6 + a,_, Sin 36 + b, Cos 30 (3.18)
% i1 i1 i3 i3
and

(3.19)

1
.=a, Cos 6 - b, Sin 6 + 3a,, Cos 38 - 3b., Sin 36
Py] i il 3 3

Also, writing
3 : : e '
yl(é))—az1 Sm0+31Cos6+a35m39+}33C0536+a5b1n50+.

(3.20)

then

Sin 9+Bl Cos 0 + a, Sin 360 + § Cos 30 (3.21)

3
Py (0) = a

1
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Substituting from (3.18) and (3.19) into (5.16) and equating the coefficients
of the distinct terms to zero then gives the relations

all = b21’ b].]. = —azl, 3&13 = b23 and 3b13 = '3.23 (3.22)

A similar process, using (3.18), (3.19) and (3.21), applied to (3.17) then
yields the relations

- + = 0
8121y T Py T Ay gy
g1 + 2y * hbyy g3 =l

(3.23)

" + =T =0

81313 - 3byg * hayg + ggag
. ) )

g b3 + 3255 + hbyg + gofy 0

Substituting from (3.22) into (3.23) then gives the exact set of determining
equations

o B 3
V1:(g1 - 1)311 - hb11 + g3al =0
U= (o HR Rl o S o =0
1 1 11 i 3¥1 ! .
St - < + - ]_—‘ =
V=g, - 9a;5 - 3hb , + gro, .
U 9)b h =0 E
3= (g - 9)b;4 + 3ha,, + g4B,

The corresponding approximate set of deteru ining equations (2.8) to (2.11)
nway be re-written in a similar form

¥p=lg = lay — b, St Ea,

u, ==(g, - 1)b.. + ha _ + g f

1 1 i1 11 * &3P0 i
vg=I(g, -9)2,5 - 3hb,; + goag, - T,

u,—= (g, - 9b

3 + 3ha,

13 3 * 833

where a11 =a,, b11 = bl’ a13 = a3 and b13 = b3.

Denote by A the four-cell defined by 'al , < "‘llae,’ 'b1| < ;&,ael,
,33’ < ﬂ3’ae,. lbal 'S “4'|ae” ’“‘1’”2’“3'”4 > 0, in the Euclide 'n four-space of
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Cartesian co-ordinates al, bl' a3, b3. Let M and MO be mappings,

described by equations (3.24) and (3.25), respectively, from the vector
space of conponents (al, bl' a3, b3) to the space of cou.ponents (Vl' U

V3, 1" Vg u3). These mappings are single-valued and
continuous. Define C and Co as the closed three-cells described by MAB

and M A
o

11

U3) and (vl, u v

B’ respectively, where AB is the boundary of A. It may be
verified directly whether, or not, the origin of the image four-space lies in
Co, whether C0 has non-zero order, v(CO,O), with respect to the origin

(See Ref. 5, p.15 and p.30), and the distance ](u,v) - Ol of the origin from Co,

) aloi ’
[[31 - 510[, ,03 - a30’ and ’B3 = 630[' the Euclidean distance between the

may be determined. Further, using certain estimates for Ial

three-cells C and Co is given by

v - @l =] L vy - vp? ) - up? v vy - v sy -

2

2 . \2)3
= leglley - o)™+ by - 510)2 tlag - agg) + (Bg - ﬁso)z}zl

(3.26)
If it can be established that
glb| (U, V) - (uw,v)| <1lub|(u,v) - of (3.27)
then by Reouché's theorem (See Ref. 7, Vol. 3, p.103) it follows that
v(C,0) = V(CO,O) £ O (3.28)
or that
v{M, A, 0) =7(MO,A,0) f 0, (3.29)

where y(M, A, 0) is the local topological degree of M at the origin relative to
A. It then follows from Ref. 5, p.32, Theorem 6.6 that there is a point in

the interior of A for which v, =u = Vg Tug s 0, and another point in the

interior of A for which V1 = U1 = V3 = U3 = 0. This implies that the exact

system of determining equations (3.24) are satisfied for certain values of
al.bl.as.b3contained in the cell A and, therefore, y = x, as given by

equation (2.3), is an exact solution of (3.9) and, thereby, equation (2.1), for

certain values al, bl' a3, b3 contained in A.




= 9100 &

4, Some Norms and Pseudo-norms

From (3.1) and (3.3) the norm
2 2 2 2 2 i
A6

-1
v(x.)={2 (., + b, +a_ +b_ +a_ + .... 4.1
j i1 il 3 i3 5 t&L)
Thus for the components Xy and x2 described in (3.9)
[ o-1,.2 2 2 2 i
vix,) ={ 27 (a], + b5 + SRS (4.2)
and
(o1, 2 2 2 2 i
v(xz) = {2 (a21 + b21 +a .t b23 + .0l
Now from (3.1)
x1(6) = sE=0 al,?s+1 Sin (2s+1)6 + bl, 925+l Cos (2s+1)9},
x(0) = 18y, ,, Sin (2541)0 + by, Cos (25+1)6}
and upon differentiation with respect to 6
] 00 { 1 8 1 i
x,(0) = L (2s+1) 21 g4l Cos (2s+1) - b1,25+1sm (25+1)6}
|
From (3.9), X, =X, and, therefore, it must follow that
8y 941" A2EHID, o gand b, o oy T Rstlla on (4.3)
Substituting (4.3) into the expression for v(xz) then gives
-1, 2 2 2 2 2 ;
= {2 4.4
v(x,) {2 (a); + by, + 9aj, + 9bl, + 252/ + )} (4.4)
It follows that
V(x2)> V(xl)
and, therefore,
v(x) = V(Xz) (4.5)

Also,
v(Px) = V(sz),

vix -~ Px) = v(x,

5 " sz)
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-1 2 2 2 i
= +
{2 (2527 + 25D + 49a), + ....)} (4.6)
therefore
v(Px) < v(x)
and Vet
v(x - Px) < v(x)
for all xeS.
Now
e S Cos 56 + 5 b, Sin 58 - 7% Cos 76
X, )= a5 Co 15 Sin a,, Cos + ..
and
IrI(x2 = sz) =X - le =2, Sin 560 + b15 Cos 560 + ajq Sin Te oo
thus
- -1, -2 2 20202 L
uH(x1 le) ={27( aj. + 5 b15 + 17 80 * )} <1/H(x2 Px2)
and
vH(x - Px) = UH(X2 - sz)
{ 9=1, 2 2 z
= 2 = 3 - 3,
{ 2 (315 + b15 ta, t ) 1/(1\1 lxl).
It follows that
-1 -1 .
vH(x - Px) <5 v(x - Px) <5 wv(x) (4.8)
In addition to the norm v, use will be made of the pseudonorm
Ixj(e)l, 0 < 6 2m,
and the result that
Ix.| = I Oég {a Sin (2s+1)6 + b Cos (25+1)0}|
j 8=0 = j,2s+l i, 28+l
0
{ 4.9
SN |aL2s+1, N lb12s+1|} (#a8)

will be used. Thus

lH(xj - ij)t = l;£=2 (2{:‘.+1)—1 ] Cos (2s+1)6 + b, Sin (25+1)6}{

L7425+ j,28+1




S Sl s

+ b |}

.
(2s+1) " L | 3, 2s+1l i, 28+l

2 2
2 %5 2611 TPy 2g4))

1
2

(2s+1) 2} {E

1

(2s+1)72}2 u(xj - ij)

el
(2S+1)—2} 2u(x)

Now

00
-2 -2 -2 =2
§:0(28+1) =1+ 3 2 + t ceee = 7r2/8, (See Ref. 3, p.219, or

Ref. 4, p.167, Example 5 with x = 0,) therefore

2l 2anl
IH(xj - ij)l <22(772/8 -1-3 2)2v(xj - ij)

< 0.49516 V(Xj - ij) < 0.49516 v(x) (4.10)

Similarly, if h is a real analytic operator in S, then

. - _1 4 -
vH[hx - P(hx)] <5 w[hx - P(hx)] <57 v(hx) (4.11)
and |
) i ~ _ 1
lH[hxj - P(hxj)J | < 0.49516 Vl_hxj - P(hxj)J < 0.49516 V(hxj) (4.12)
5. Conditions for T to be a Contraction Mapping in S*
Consider the four cell A defined in Section 3. Then x* is defined as
* ; -
Xt a11 Sin 6 + b11 Cos 6 + a13 Sin 36 + b13 Cos 36
X* = = ’
g : :
x2 a21 Sin 6 + b21 Cos 6 + a23 Sin 36 + b23 Cos 36

which from (4. 3)

i i + 30
) au Sin 6 + b11 Cos 6 + a13 Sin 36 b13 Cos 51

-b Sin 6 + a

11 11 Cos 6 - 3b1

Sin 36 + 3a1 Cos 360

3 3



G

with an, bll' a13 and b13 contained in A. It follows that
v(x*) = v(xk) = {2_1(afl + bfl + 9:51?3 4 9b‘123)}%
sc=olmla_l, (5.2)

YIS L S i PO I T

< = -rl(:u)|ael, (5.3)
Ixsl < ,azll B ibzll - la23] + lbzsl

<lag |+ lblll +13a,l +lab |

<1y = TZ(M)IaeI. | (5.4)
where
o (1) ={2—1(uf + “:24 + 9u§ + 9ui )}%. (5.5)
L I O (5.6)
and
72(u) = Ky +u2+3u3+3u4. (5.7)

Define S* to be the set of all x(6), as given by (3.1), which satisfy

the conditions
-

P(x) = x*

v(x) €d

Ix.] <R, > (5.8)
i i

vix - Px) géla l
e

[xj = ijl gpjlae', /

where d, Rj' 6 and pj will be chosen below. Then

v(Px) = v(x*) ¢
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and

IijI . lle <y

for every x in S%,

Consider the mapping T : S*—> S defined in (3.12), then
Py = PTx = P(Px + Fx) = PPx + PFx,
But PPx = Px and PFx = PHfx = 0,

thus
Py = Px = x*,

Also ¥ - Py, =H(x2 - Px0) = x 0 - Px
and y-Py=H{'ox-gx3-hx + P(g.x +gx3+hx)}.
2 2 S 3l 2 1l 3l 2

It is required now to obtain conditions for T : S*—> S%, For this

purpose ¥(y - Py) and ij ~ Pyj! will be evaluated in terms of Hoo ooy

Iae], 5 and p,. Write

x, = Px, + (Xl - le),

1 1
then
3 3 2 s B 2 B 3
X, = (le) is 3(Px1) (x1 ¥ Xl) + 3Px1(x1 le) + (x1 le) .
Thus
v(y - Py) = l’(yz - Pyz)

]

VH[gl(xl = le) + g3(xf - Px?) + h(x2 - sz)]

VH{gl(Xl - le) a5 gs[(le)B - P(PXl)B]
2 2
+ 3g3[(Px1) (x1 - le) - P(le) (xl . le)]
2 92
+ 3g3[(le)(x1 - le) - P(Px1 )(x1 - le) |

P _ 3 . 3 ~ -
I g5 L(x1 le) P(“1 - le)J + h(x2 sz)j

3
< lglvie - Px) + g [{vr[(Px)® - P(Px))*]
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+ SVH[.... ]+ 3VH[] + vH[“ + lhluH(x2 - sz). (5.9)
Similarly

3 o 1
,yz . pyzl < lg, | =, - Px )] + ;'gsi{IH[(le) . P(px1)3] | + slml.... ]|

ealalo ]+ lal s IhHH(x2 - sz)l. (5.10)
Also, ,yl -Pyll = lH(x2 - sz)] < 0.49516 1/(x2 = Px2)
g0.495166|ael . (5.11)

Consider the terms in these inequalities in order, with xeS*. Then

1

l/H(x1 - le) < 5 v(x, - le) < 5_2V(x - Px) 5_26lae,

il
and (15:12)

|H(x, - Px.)| <0.49516 v(x, - Px.) < 0.099035 |a |.
1 1 1 1 e

Now 3 3
P ~ _ . ) ,
{ Xl) P(le) % Sin 50 + 1350 Cos 56 + %0 Sin 76 + p70 Cos706
+ :
0190 Sin 96 + BQO Cos 96,
therefore
3 8o ook 2 2 2 o 2 2 4
v[(PXl) P(le) :l = [2 (050 + BSO + @+ [570 b [390 )]
ol 2 2 2 2 2 |, 12 B
= [27 (agol™ + 18g, +l"‘7o' & 'B7ol +lag,l 4 Bool |
and
3 3 :
I(le) - P(Px,) e |a50| + lﬁsol +oaea. + Ibgﬂl.
In order to evaluate these, estimates for la50|’ etc. are required. These
may be obtained from the expressions for %0 etc. in Section 2 and the

definiticn of A. Thus
3.3 .2 2 3 3 2 2 3
“"sol < |""el {THgluy +ug) + Gupugny + Tuylug + up) + Zugugu,} -

It will be seen later that the values of “1"' e ,u4 may be expressed in terms

of|)t| , thus {a50[ "I 1390! may be expressed in the form




where

Thus

and

where

and

It will

From

g -

W
3
IalsoI < Asom‘ 2l
3
'Bsol s ]'3’500‘”‘%|
| By < Bgo 2, J
A ) = S [l )+ iy e ( )
so™ = 7 |4 Wy + Hy 2“2““1 Hy
.3
BgoM) = 3 [“4(“1 “z) - “z(“s - “4 ) [+ 2
.3
AN =3 “1(’“‘3 * “4) i 2“2“3“4
_3 2 S
B, oM = KK 3 ) g R
1,2 2
A og 7 gl * 34y)
1 2 2
By, = 74,k + Hy)
v[(px)’ - pPx)’] <6 la | <
l(le) - P(Px,) )| <ypla, =
1.1,,2 2 2\ ,2
M) = | 2 (/\50 b BSO e F BQ())J
) = Agy b Byg +ee + By
be noted that
Ay --+e Bggr S0V, y(N) > 0
(4,11) and (4.12) it now follows that

va[(Px)® - BPx®] <5700 a |’

—

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)



and

& (5.20)

|H|_(Px1)3 . P(le)SH < 0.49516 $(N) iae

Also from (4.11) and (4.12) it follows that
vi| (Px)%x, - Px)) - PPx) Ak, - Px) ] <57 (PP - Pxp) - PPx(x, - Px)]
. 5~1VI.(Px1)2(x1 ~ B |
< EfllPx]l'?]/(x1 = P, |
2 8

<5 % %N esla | (5.21)
1 e

and

| 2 . ~ 2 B 1 2 B B 2 ) :
LB (s )00, -T2 ) = PR K, - B ) <0.49516v! (Px )“(x, - Px,) - P(Px)*(x; - Px)|
< 0.495160 (Px )4(x, - Px )]
& (ke v x1 xl Xy |
2 3 )
<0.09903 1 (N3] ael (5.22)

where, from (5.6) and the previous remarks concerning the expression of

“1 ,u4 in terms of A, it is clear that Ty is a function of A.
Similarly

I/H[(le)(x1 - le)z - P(le)(x1 B le)?T = 5_11/[:(le)(x1 - le)z - P(le)(xl - le)zi!

-1 23t
% 55) 1/‘—7(Px1)(x1 = le) |

_1 i ; -
<5 ‘lel 'xl le’ 1/(x1 le)

-2 3 )
<5 Tl(A)plalael, (5.23)

, ( (3
“ll< 0.09903 'rl()t)p164ae|, (5.24)

[H[(Px0x, - Px? - PlPx ), - Px))

1

uH[(x1 - le)3 - Plx, - Px1)3: < 5-11/:()(1 = le)3 - Plx, - le)sj
< 5-11/[.()(1 = PXI)B ]
< S_lel = leizv(x1 - le)
€5 225 0a 13 (5.25)

p]. 6:ae;,
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3 3 2 3
B, - Px))” - Plx; - Px)°]| <0.09903 p75 la | (5.26)
vH[(x, - Px,)] = u(x, - Px) <5 ¥(x, - Px,) <5 ‘6|a | (5.27)
2 2 1 i 2 ~TXg) S e :
and
|H(x, - Px,)| < 0.49516v (x, - Px,) < 0.49516 ¢ la_I. (5.28)

Substituting the appropriate inequalities into (5.9) gives

vy —Py)<5'2|aef{(ig1f +5/nlys + lgBHaelz[sux) + 3Tf ()6 + 37 (p, 6 + pfa]} .

or since g3‘ae!2 = %lk.Sl ‘gl - 1,, then}

viy - Py) < 5 2la_l(le |+ slnlye+ i llg, - 1llsp) + 3r200 6+ 37, 0p 6+ o7 o]}

{5.29)
Similarly

I'y2 . Pyzl < o.oggoslae e+ slnl) s+ %}kgflgl - 1540 + 3+ ?(7&)6+ 37, () py 6

+ aolb (5. 30)
and

lyl 8 Pyll <o.495166iae{. (5.31)

The conditions for T : $%—>S5* may now be established. First it is
rrequ,ired to ask whether, for xeS*,

viy - Py) <vix - Px) 6|ae!,

I)'2 = Pyzl \<|x2 = szl sz‘ae‘
and

ly1 = Pyll < 'xl - lel <p1|ael s

or, upon using (5.29), (5.30) and (5.31) and dividing throughout by
[a_|# 0, whether

5'2{(lg1l +5lnlys + §|k3|| g, - 1l[sd) + 37006 + 37, (Np 6+ plel}<s.
(5. 32)

0.09903{( g, | + 5ln)s +%J kg, - 1 [se0) + 3r2(\)6+ 37, (\)p |6 + o2 eli<n, (5. 33)
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and

0.49516 6 < p - (5.34)

Now for xeS¥, Py = Px = Px* = x¥*, and, therefore,

v(x) = v[Px + (x - Px)] ¢¥(Px) + v(x - Px) < [o(M) + 6]lae| <d, ( 5.35)
|x1| = I'le +Ax, - le)l\< |Px1| + le - Px1| < [71(7\) " pl_]Iael < Ry (5.36)
and

]le = lsz + (xz ~ sz)l < lszl + lxz - szl < ['rz()\) - pz]lael gRZ (5.37)
Similarly

v(y) < V(Py) + v(y - Py) <oVla_| + vy - Py), (5.38)
ly,l < leyl + 1y, - eyl <rula | + |y, - Pyl (5.39)
and

(5.40)

lyzl < lezl & |y2 - Py2| \<72(M|ae| 2 \yz - Py,l.
If the inequalities (5.32), (5.33) and (5.34) hold then from (5.35) to (5.40)
v(y) < [0(7\) + 6]lae, <}

,yll \<[71(A) Es pl]lae} <Ry

and

’yzf £ ['rz(k) + pz]lael < Ry,

and hence yeS*. Choosing

d

[on + s]la |
and (5.41)

R ['r j()\) = pj] ‘ae‘ ,

J

with A, 6, Py and Py satisfying (5.32), (5.33) and (5.34), then T : S¥— S*,

Conditions for T to be a contraction mapping in S* may be established
in the following way. With x and X in S¥*,
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- ]
yl le et H(xz sz)
. y ) Px, + H{-g.x, - g x> - nx, + Plg.x, + g.x° + hx )
2 2 1™ T 2 8% T 83%y 2
L |
and
( - =
¥y le + H(x2 - sz)
. ¥ ) Px, + H{-g %, - g.x> - hx, + P(g,%, + %0 + hi,))
K 2 11 3%1 2 1%1 7 83% 2

Also Px = x* = Px. Thus

Y sy = , Where
Yo = Yy

D = yl. = H {(xz - iz) - Plx, - )22)}

= = 3 -3 3 )
¥y ~ 7y = gl - %) P, -2 - gl ~x) - P - %]

- hf(x, - &) - Plx, - %]}

Now

VAN =l s iz), which from equation (4.11)
o 5_1{|g1|l/(x1 - %) + lgalv(le3 - i?) + |h|l/(x2 - :?2)}
<57 | g lvlx, - %)+ gl v[ 66, - %63 + x % + 3] + [nluis, - %))
<57 gl vt - %) + gyl () ? el |l P - 2+ i, - 2,0
<5 lgl + eyl dx)® +lxllg |+ 15) Alvneg, - 5, +lnlvix, - 7))
<5 s gl + 3lgalRf)u(x2 - %) + |nlvtx, - )

<5_2“g1| + 5|h| + 3|g3|}(f}y(x - x),
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thus T is a contraction in S* provided that
2
gl + slnl + 3fg3[R1 < 25.
Upon substituting for R1 from (5.41) and then for lael this

inequality becomes

lg, | + slnl + [+ (0 + pl]zlkSHgl -1l <25 (5.42)

When the above conditions are satisfied for T to be a contraction
mapping in S*, then it may be concluded, on the basis of Banach's fixed
point theorem, Ref. 5, p.141, that the fixed element

y(9)=aISin6+b1Cosé)+a Sin 36 + b Cos39+a58m59+..

3 3
exists, is unique in S* and is continuously dependent on x*. Thus as, b5,
a,, b7 ..... , are uniquely determined by and continuously dependent on
a, a3, bl' b3 for all,...,b3 in A..
6. Estimates for @ el , '{33 - BBOI .

In order to be able to obtain the Euclidean distance between the cells

C0 and C, estimates of aj5’ bjs"""ij' [al - alol,....,lﬁs - B30| will
be required. For x in S*, Py = Px = x* and it follows that

. . =a., Sin 50 + b,_ Cos 50 + a__ Sin 760 + ...., (6.1)
- PyJ 35 35 (O
and, therefore, that aj5’ bjS""' etc. are the Fourier coefficients of (yJ.-Pyj).

Consider now a differentiable, periodic, function GJ.(G) of period 27. Assuming
that Gj(e) has a Fourier series representation in both Sin n6 and Cos n@, then

the Fourier coefficients will be given by
2w
=1

T
o, =1 f G,(6) Sin n6 df and b, = = f G.(6) Cos no db (6.2)
Jn J Jn )
o) (o]
Upon integrating by parts there are produced the alternative relations
27 27
-1 0 -1 v -1 -1 .
a, =7 n G, (6) Cos nf d6 and b, = -7 / n G, (6) Sin n6 d6 (6.3)
Ja J n J

o (o]




- 24 -

?7r
| -1 -1 !
Now la, [ =f7r n G, (6) Cos ng déol.
jn . J
o
27
< w_lj ln'IG;(e) Cos no | 6

o
which by the Schwarz inequality

27 -3 2

e n'ln"l[ f | G;(e)|2deJ [/ | Cos n deJ

(o] (o]

N

N

1
2

1 - =51 P 1
< 25 : [(27) 1f J G;(B)]zdaj’ [’7! 1] lCos neldeJ = 2"l’n 1V(G;).

o (o]
Similarly
1
b, | < 22n7tu(ah,
jn j

Identifying (yj = Pyj) with GJ.(O) then yields

1.
la | [og < 2200 - Py (6.4)

Now
(y -Py)'z—gx —gx3-hx + P(g.x +gx3+hx)
2 2 1] 31 2 171 31 2
and
B ~ 3 _ 3 ~
1/[(y2 - Pyz) J -V{gl(xl le) 3+ g3(x1 Px]) + h(x, sz)}

< ,|gllv(x1 B ) lhlu(xz - Px,) + lgsl{'u[(le)3 = P(Px1)3]

+ 31/[....] + 31/[....] + v[]}

in a closely similar manner to (5.9). Thus
' -1
u[(y2 = Pyz)] < 5 Nlae'

where
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N—={dg1|+5hJ)a+%Jleg1-1N5Mx)+37?xm 37 (Wp 6+ p2s ]} (6. 5)

Substitution into (6.4) then gives

L - -
|a2nl, !b2n‘\<22 51n lNIae' (6.6)
From (4.3) a; = n-lb2n and bln = -n_lazn'
thus
1
lalnl' Iblnl <#57n 2N|aeI (6.7)

As a preliminary to determining |a1 =N
relations will be required:

10! » etc. the following

. : 2
(a Sin 6 + b11 Cos 6 + a13 Sin 360 + b13 Cos 360)" Sin 6

11

F Sin 6 + oY Cos 6 + o Ts Sin 36 + .... + Y7 Cos 176, (6.8)

(a,, Sin 6 + b11 Cos 6 + a4 Sin 36 + bl Cos 39)2 Cos 6

1) 3

= B‘g'l Sin 6 + CEI Cos 6 + s§3 Sin 36 + ....+ c§7 Cos 176, (6.9)

. . 2
(a Sm6+b11 C059+a13 Sin 39+b3Cos 30)” Sin 36

11 1

= 0 Sin 6 + N Cos 06 + s Sin 36 +....+ o Cos 96 (6.10)

and

3 . 2
(a Sin 6 + b11 Cos 6 + a4 Sin 36 + b13 Cos 36) Cos 36

5151
. . : 6.11
s§1 Sin 6 + Crl Cos 0 + 8§3 Sin 360 + ....+ cgg Cos 90, ( )

where

1, 2 2 2 2
Y = g9y t by £2, + 30, - 2a,8,, -20,b0)

-l( lohn s ke = b, )
et © 2 ¥1°11 11213 7 %11°%13

= a .a —l(az-bz)
g3 11713 T 2% 11




L

1

~3211(Pyy - 20y5)
_ 1,2 .2

R RANLTRE LT blB)]
-3t b + b +a, b, )
2'%11°13 11213 7 *13°13

1,2 2

-30@3 " by
1
221313
1—( b + b b, )
2'%11°11 11t - il
1,2 2 2 2
4(a11 + 3b11 + 2a13 + 2b13 + 2a11a13
l-b (a + 2a_.)
2 °11'%11 13

1, 2 2

bibig ~ 781 " Pyy)
lia b, +b,.a,,+a.b.)
2 '%11°13 11213 7 #13°13
1 1, 2 2
2 ['auals +byybyg ~ 3l - b13)]
}—q b

2 913713

1 2

-~y lags " by

1 2
Ay e = glayy - By
l-b ( + 2a_.)
2 °11'%11 s
1,2 2 20
4—(&«111 + 2b11 + 38.13 b13)
1
Z Y313
1 L
= 518,815 ¥ B1103 T 38 bll)]

- 1—(‘ (5} + b, .a - a, . b,.)

2 '**11°11 11913 11°13

+ 2b11b13

)



st -
ch T
s ~

o~

From

| 75|
lc"’S”

1577] <

1—(— + b,.b, )
2 ?11%13 7 °11°13

o

5 b

13+b

a1 11213

1

g (a4Pgg *

b33 = 341Pig’

1,2
2 7

*byybig -3

%[311""13

1

2 (811013 * B335

L

) + b, ,b_.)

“311*13 T P11°13

1
2 213%13

313

—

2 2
“71(a3 Py

- 27 -

-b2 )]

i1

these, the following inequalities may be determined:

1
| Esl < F[riHg * Koy

| &5l <

1992 2 2
| & 7y u4)|ae]

+ %(ui + ui)] Iael 4

1—(uu + oM +Mu)|a|2
2 "174 273 374 e




= 0 e

l077" ,567' < ;—u3u4|ael
[ ons! Icrsl <[;— MiHg + o, + %(uf + ug)] | aelz

1 2
omsl o [ 8s] € g uymy + mpug + “1“4>lae|

1 2
I 2
’CHI[ , ls§7' < 5041#4 + uzna)lae,
i 102 2 2
lsngl ) |C§9I < Z(MS it p4)lae|

lc”9l oSl < %“3“4'%'2

From (3.20) the Fourier coefficients of y?(@) may be obtained by the
relations

27 27
-1 3 . -1 3
a =T y1(6) Sin n6 d@ and Bn =7 yl (6) Cos n6 do

n
o (e]

Also for x in 8%, Py = Px = x*, and from (2.6) the Fourier coefficients

of (Xl*)a = (Pyl)3 are
27 2m
a = 1r_1 f (P )3 Sin n6 d6 and B = 7f—1 / (P )3 Cos nf dé
no y1 no y1 °
o o
Thus
g7r
-1 3 3 .
@ -@a =7 / [yl - (Pyl) ] Sin n6é dé
o
27
=2t [y, - Py [y, - Py)? ¢ 3(y, - Py, )Py,) + 3(Py,)%]Sin nede
Y1 AR g/ * oy Yy 1
o
= nJ1 + 3nJ2 -+ 3nJ3 (6.12)
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where
27
'nJll = ]rr_l f (y1 - }'?yl)3 Sin n6 dé
o
27
o =1 2 2 12
< Zly1 ) PyllMax. (27) f (yy - Py,) a6 = 2ly1 - Pyl'Max.["(yl - Py))]
o
-1 2 -2
szpllael [5 viy - Py)] <2 x5 p16zlae,3,
27
-1 2 ;
'ngl = |1r f (y1 - Pyl) (Pyl) Sin né dGl
o
27
~1 2 2
< 2|Py11 Max.(Zw) f (y, - Py,)" do = Z‘Pyl‘ Max‘[v(yl - Pyl)]
o
< 271(7\)|ae| [5—111()' - Py)]2 < 2 x 5_271()t)62|ae‘3.
2m
-1 2 .
|1J3| =|x f (y, - Py, )Py,)" Sin 6 ael ,
o
which from (6.8) becomes
2 ,
I1J3{ e (a,, Sin 56 + b . Cos 50 + ....0_v, Sin 6 +.... + y,Cos 76)dél
o
- lals ¥ * P15 Y5 * 27 g% * Prq oYl
and upon substituting for lalsl . ls‘y5l , +s+.. etc. this becomes
3
where

1 ok a2l T2 e
‘133‘ = N TGy ) ¥ UG ) g ¢ ”3“4)]

+ 7‘2[;11_(,; i “i) i %“3‘_44]}; (6.13)
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similarly

2m
FAEN (y, - Py,XPy,)? Sin 36 d6
33 1 1 1

o

27

-1 )
= |7r f (a15 Sin 56+b15 Cos 56+....)(sn1 Sm6+....+cn9CoS 99)d9|

(o]

: lalS g% T P15 % T 217 g T Pip Jh 29 gy * by c”9I

or

. 3
l3"31 & |333Hael '

where
) 3 -2r1 1,2 2 1 §
|3J | = 27 ns [§(u1u3 ) ) S o 4 u1u4)J
+ 7—2[;-(u1u3 t )+ ;—(ulu4 + u2u3)] + 9-2[%@; + uZ) + %u3u4|} .
(6.14)
It follows that
lal - a10|\< {5-2 [2p1 + 671(7\)]62 + 3l1j3|}| ae|3
and
@ - a30’ < {5-2[2p1 - 671(A)]62 + S,BjBI}laels.
Also, 27
Bn = Bno e f [ y:: - (Pyl)a:l Cos nf dé
(o]
= nL1 + 3nL2 + 3nL3, (6.15)
where

|nL1| < 2x s'zplazlaela.

- -2 21 3
| Ll < 2x57% (s lael ,
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' 3
|1L31 < ,1L3’ Jael

3
I31‘3I < '3*’3“%’
l1“3'3l - IljSI sl ’3{’3' - ,333J'
Thus
o - oy
1 10 i
o -5 | < {5 2[2p1 + 611()\)J62 + 3'1j3l},ae‘3 (6.16)
1 10
and
,"’3 . "30!
< {5'2[2,) + om0 )62 + 3l g Ha |3 (6.17)
ls. - .| 1 1\ 3l3' S '8
3 " P3o
7 An Estimate for lub,(u,v) - 0'.

Since /.41,.. 5 ,u4 define the cell A, and hence S*, it is clear that if

S* is to contain the proposed exact solution then A must contain the point
(a bl’ a.,; b3) defined by the leading coefficients of the exact solution and

1 3
CRERERE u4 must be chosen so as to make this possible. Now
‘al’ = l(l + el)ae I.g (1 + 'ell)lae|
o | = 0, + gagl< i) + [ghla,l
’ (7.1)
|a3| ) IESae’ = IEBHBLe|
|b3' = |e4ae| < le4||ae' )

and if ul ..... ,u4 are chosen so that
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-
1+ |61|< L
|k1|+ lezls uz &
(7.2)
|€3|\< u3
| J
£4|< M4

then
|a1|s ul‘ae|.|b1|\< uzlael.lasl € u3|ae| and |b3|< u4|ael.

as required. The four-cell A is then defined as the set of points correspond-

ing to all combinations of €preree€y in the intervals
= < = ~ < = -u < g, < - u < < 7.
1 ) < €S H 1, ky H, < € uz kq, u3 < p3. u4\ €S B (=3

The set of points defining the boundary three-cell AB are obtained by taking
SEEER ,54, in turn, to be their extreme valuegs in the above definition. Thus

AB is made up of the following collection of three-cells:

3 3 3 4 4 (7.4)

where SREREREUA take on all values over their respective intervals.

From equations (3.25), (2.12), (2.13), (2.14) and (2. 15) it follows that

3 2 .2
vy = gy - Dlay, -8+ g3le1g - 2@ * Pl
3. 2 .2
up = (gy - Dby - b)) + gg{fyy - Fblag + B
v, = ( - 9)a + {a - -l—a (3b az)}
3 - &g 13 7 B3l " 7 % e

~ 1 2
3 = (81 - 9byg + gglbyy * 7P (B2, - B

=
u
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which, from equations (2. 16) to (2. 19) become

= 1 2
vl/ae (g1 = l)e1 - hez + 1'13(g1 - 1){(3 + kl)e1 + 2kle2 T
k2 - 1), - 2k ¢, + 2G -hk  (7.5)
1 3 R | s G
) 1 2
u)/ag = (8y - 1 + hey + Fkg(gy - {2k, + (1 + 3kj)e, + 2k +
2 4
(kg = L, + oG l+h (7.6)
vola, = (@, - 9 - 3he, + >k (g, - D{(K - 1e + 2k e +
3/ %e 1 3 4" 73881 1 1 12

2 4
2(1 + k) § +§G3} (7.7)

us/av.e (g1 = 9)e4 + 3h€3 + 4k3(g1 - 1){-21{151 + (k1 - 1)62 +

4

2
2(1 + kj) ¢, + 3 G,J, (7.8)

where Gl" ..,G, are given by equations (2. 20) to (2.23). Thus Co is given

4
by MOAB, where Mo is defined by equations (7.5) to (7.8) and the distance

1
[(u,v) - ol = ({v? + u? +v§ + ui}zi (7.9)
In order to employ the inequality (3.27) it is required to determine
lubl(u, v) - 0|. Formally it is not a difficult problem to determine the
minima of [(u,v) - 0, however, this process involves the solution of a set
of simultaneous equations of third degree, a task which it is required to avoid.
This difficulty may, to some extent, be overcome by the use of the inequality

lubl (u,v) - Ol 2!{(1ub V1)2 + (lub ul)2 + (lub v3)2 + (lub u3)2}% j (7.10)

which, when one of the components is dominant, usefully reduces to

o)
] (7.11)
| vl
| ug|

lub‘ (u,v) - O‘ > lub

The use of the right hand side of (7.10), in place of 1ub|(u,v) - Ol, in s (3.27)
will usually underestimate the size of the region in the g, 83 h, I space




for which the existence theorem can be proved to be satisfied. Nevertheless,
valuable results can still be obtained by its use.

Consider the evaluation of lub vy It is first required to determine
whether any minima exist in v, as €,...,€, vary over AB Differentiating
A 1 1 4
(7.5) gives
ov oG
i 1 2 1 1 h
Fal (g, - D1 + 7 ka(3 + k) +3 kg e, la,
ov oG
1 1 1 it
— = e + — — + - ————
be, {-h+ (g - 1) [3 ik + 3Ky 869]} e
. h (@R12)
v 1 9 1 oG ”
— = - — + - A A
5o, - (8 - DIg kylky - 1) 45k, 5=a
3 3
v oG
1 1 1
— = (g, - D{- = kk, + =k ] a
854 1 2 173 3 3 854 e J
where

@
Q

3 3 2 2 2 2
— = 5{361 + kl(e2 - 64) - 63} + 2 {351 + € + 2(63 + 64)}

3
— = E{kl(el + 63) + € " € + 61(62 64) + klezes}
(S 1S
\

3 2 2
+ klez + 263) + 36163 + Z(klez - q )

3 .
— = —2—{—klel - € + 264 + el(&€4 62)}

Now in the subsequent analysis the values of “1""’“4 will be chosen so

that the values of STERRREN on A are, at most, of the first order of small

quantities compared with unity, and gl will be assumed to be other than unity.
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Thus from (7.13), the derivatives BGl/ac WERERRRIR:E 1/864 are, at most, of

the first order of small quantities. It follows that the derivatives avl/acl,

10 GO 8v1/8¢4 can only be zero if the terms not dependent on Eqreees€y in
(7.12) are zero, Taking these in turn
1 2
e, - 1| - 7 kg3 + 1<1)|> 0
|-h + 1@, - vr k. |30
2 21 ILREE =
i 2
fgl . 1”-4- ey (K2 - Hl>o
1 :
gl - 1|| 3 klkzl > 0,
thus it is possible for avl/ac‘) and Z)vl/i)c4 to be zero in this range of
€pprnns & but not c)vl/aos1 or avl/dts. Now with €4 =1 - @, or
(‘1 = “1 - 1 on %, the least condition for a minimum is
Bv1 ) Bv1 i 8v1 .
8(2 363 8c4
But 8v1/8c3 # 0 in this range, so that there can be no minimum on the
part of /\B defined by € ° 1 - My oor € % My - 1, Similarly with
= l - v £ = - l 3 1 3
Co <1 My or €, My <1 on AB’ the least condition for a minimum is

av1 av Bv1 o
8(1 8c3 064

But (’)Vl/af1 # 0 in this range, so that there can be no minimum on the
part of /\B defined by €y = i(k1 - H,). Similar arguments apply to the

parts of AB defined by €q = n and €4 = tHy Since there are no minima

3
in vl((l, e 64) for Eprereaty in AB' it may be concluded that lub ¥y is the
value of vy at one of the sixteen combinations of extreme values of STRRRFLYT

The values of Ivll at these combinations of extreme values may conveniently
be called 'corner values', (Vl)c' as in Ref, 1, Direct comparison of these

corner values then yields the least value
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min(vl)c J = lub vy (7. 14)
A

B

Consider now lub ul. Differentiating (7.6) gives

ou

1 8G, N
—— 1 l z
) {h+( -1l K w2k ——li &

o ! [2 133 3¢ J} e
3U1
5, " (& - D1 + J i1+ 3kZ) 4 L k, be, } a_

, (7. 15)

du G

1 1 1 2
AT RIS I el IR

3 3

8G

1 1 2 1 2

5e, - @t Mgkali - D g3kg 500 2, )

where an/ael, e an/ac4 may be obtained from (2. 21),

In Case (ii) the partial derivatives 8u1/‘0¢2. ’c)ul/a.:3 and 3u1/654 cannot be

zero, and therefore, lub u1 corresponds to the least corner value,

In Case (i)

1 ~ 1 2, _
h+§( l)klka—h, 1+4k,3(1+3k1)
1 b, .2

3 kykg = 0, 7 kg(k} - 1)>0,

and if h can be of the first order of small quantities then only aul/864,
without further examination of the partial derivatives of G2, can be guaran-

teed to be other than zero. For the parts of AB defined by € * +(1 - /41)
€, = 1(1(1 - u2) and <q

condition for a minimum cannot be satisfied, because 8ul/ae4 f 0. When

= tHg, respectively, it is clear that the least

€4 % THy the least condition for a minimum in u_, on the appropriate part of

1
MoA B is
3G
_ 4 2 :
aul/ael-{h-3(g1-1) o }ae 0
3G
o 2
ouyfoe, = -3 (g, - la, b, °
9G
B 2
Bu,fBeq = -3 (g) - Va, 5= =0



e REE e

or, excluding the conditions g = 1, ae = 0, these become
= - - o ~ =
h Z(g1 l)(e2 € t e tee 6164) 0 ({73816)
3 302 2 2 .
. s + =
2(€1+€3)+4(€1+3€2+2€3+2€) €3+€€ 0 (71T
S ellte tic)=0 (7.18)
3 ‘o 17 %% .
Now 1 + & + 263 # 0, thus from (7.18), € = 0 at the minima.

Substituting € = 0 in (7. 16) reduces this to

HIEERD (o= 1) (10 51)54 =)

1
If now h is chosen sufficiently small for

Moy >l h/2(g1 - l)l (7.19)

then the above equation cannot be satisfied and there can be no minima for

€srri§y in AB defined by € = ;tu4. Thus lub u1 is the least corner value.

From (7.7)
ov G
3 2 1 3 R
= g1 - 1){-— k - 1) + 3 k3 e } ae
1 1
ov oG
3 _ il 1 3
be, () - Dfg k kg + 3 kg 5, }ag
} (7. 20)
v oG
3 3
== (g, -9+ G -1){—k(1+k)+_386}]ae
3 3
v oG
3 _ 1 3
de {_3h t3 k3(g1 = de } 8
4 4 >,

Now in Case (ii) both

1 2 1
Zkg(kl - 1) <0 and 'é-klkS <0
so that lub Vg corresponds to the least corner value. In Case (i)
1 2 1 _
1 k3(k1 - 1) > 0 and 3 klkB @




e b e

Thus 8v3/8€1 7 0 and there can be no minima in v_ for the parts of A

3 B
= :tu4, respectively, When

defined by ¢, = :(:(k1 - “2)' €q ~ iuS and ¢

2 4
€ = +(1 - pl) the least condition for a minimum in Vg on the appropriate
ar A
part of Mo B is
ov oG
3 4 3
=1 (P e = ((%2i0)
ac2 3 = 862 e
v oG
3 4 3
—— S - 9 - e = o
dc [g1 9 - (g niz + 3 B¢ v a =0 (1. 22)
3 3
ov oG
3 5 4 3 : ;
g sl -5l - Dg—ta =0 (7. 23)
B 4
Now
oG
3_3
—— D + €
el @ ot Ty T Reh
2
therefore the condition (7.21) is satisfied by ¢, = 0. Also it may be seen

2
that (7.22) cannot be satisfied for -6 < gl, and there can be no minima.,

Thus lub Vg corresponds to the least corner value,

A closely similar analysis shows that in Case (ii) lub u3 corresponds
to the least corner value, whilst in Case (i) this is again true provided that
-6 < g..

1

Summarizing these results, it follows that if “1 -1, “2 - kl' ;43 and

are chosen to be, at most, of the first order of small quantities, then in

Hy
Case (ii)
|2 201
bl (4, v) - 0] > {[min(v,)_ |5+, +[min(uy) | (7. 24)
A

If, in Case (i), the additional conditions (7, 19) and -6 < g1 are met then
lubt(u,v) - 0| is again given by (7.24). The restriction on h and g,

imposed in Case (i) may seem undesirable, however, it will be seen that
these conditions are no more restrictive than further conditions imposed in
Section 8.
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8. Application of the Proof Existence When lgl - 1| or h are Small

Some guidance to the choice of “1‘ e ,u4 may be obtained from the

linearized second approximations obtained in Section 2. It can be seen
from these that provided h is taken sufficiently small then STERRTE will

always be small. These values may be written
e = le, de. 0] = & Inl, (8.1)

which define a four-cell, Ae' A satisfactory choice for Ais then a cell
slightly larger than A€ and such that A€ is contained in the interior of A.

For this purpose the values of “1" ..,/.14 defining A may be chosen to be

w1+ oE )

n =‘k1|+ 1+ §)E21|h|

., > 0 (8.2)
o= (1 r)Esllhl
b =+ 0E, [l |
It then follows from (5,6) that
7, = (1 +|k1|)+ 1+ r)|h|r;1z:il =T+ Tll h| (8.3)

and from (5.14) and (5.17) that ¢ may be expressed in the form
= 2 3
6= ¢lnl + ¢2lh! 5 ¢3|h| L bbby >0 (8. 4)

The simultaneous inequalities (5.32) to (5.34) may, alternatively be
written as the equations

2

(|g1| = 5'h')6+ %lkallgl - 11(5¢+ 37?6 + 371p16 o+ Py 5 = B (8. 5)
(lgy |+ slnbys+ Sl llg, - 1lse+ 37% + 37 p 6+ o2 8 = Dp, (8. 6)
o = Ab (8. 7)
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with
A > 0.4952, 0 ¢ B 25, 0 D 10,098.
Similarly the contraction condition (5.42) may be written as

g, ] +slnl + liegflg, - alr, + o2 = c (.8)

with

0 < C<25
Substituting from (8. 7) into (8.5) and (8.8) and writing

H = |k3, lgl L (8.9)

then gives

2.3 2 2
A6T + 31 As” + {3(‘gll i 5lh] =B H 37f}6 + 5¢ = 0 (8.10)

and
(Ig1| + 5|h‘ - C)/H + (71 + Ats)2 =0 (8.11)

From (8.11)

(el +slnl -BY H =(c-B/H -(r, + a0
which upon substitution into (8. 10) gives
an® s 4 3A7162 + 3(B-C)§H - 5¢=10 (8.12)

The significance of equation (8, 6) is that it defines pzand hence by (5. 41), R2'
Since by definition, § must be real and positive, then only the real and

positive roots of the cubic (8. 12) are relevant, For the present purpose it is

convenient to restrict the choice of A, B, C, H and hence T and ¢ to ranges

of values which causec (8.12) to have only one positive real root and such that
this root is small. This this choice is possible may be seen by writing (8. 12)
in the form

|ul

; (8.13)
3(B - C)

{56 - 3A7162 - 24253}




s GHL

and observing that, with A not too large and B > C, it is possible to obtain
small positive values of § which satisfy the expression by choosing |h‘ and
hence ¢ small, or by choosing H small, In the latter case, however, the
choice of lhl and hence ¢ is not unrestricted. Alternatively, the ranges of

the variables which ensure that there is only one real and positive value of §
may be obtained more precisely from the relations given by Neumark in Ref. 6,
p.5, Case (A).

From (8. 13) it follows that there exists a positive root

5H¢  _ _ 5H
3(B - C) 3(B - C)

5 < (¢llh(+¢zlhlz+ ¢3|hl3) (8. 14)
From (6.5), (8.5) and (8. 14)

5He

N = Bé m) (8. 15)
and from (6.13) llj3, may be expressed as
S 2
71331 = 5 N(J1|h| > J2|h| ) 33, >0
B H
<ﬁB——-—% (Jllh‘ +J2Ih'2) (8.16)
Thus from (6.16), (8.7) and (8.3)
‘“1 . “10' >
| <{s72as + s+ 1 [n))]s? + s i1 }]a |3,
l“1 " Pro
which upon further substitution from (8. 16), (8.14) and (8. 4) gives
l“l - QIJ
H 2 9 3
| < BT 1x2hﬂ +,,,+x9hJ Hael, > SRR 5 (8.17)
ﬁl f 10
Similarly
’a - a l
3 7 930 91 |3
< 13_ =1, |nl? +,,.,+YJh|jpe], i B 0 (8.18)
lby - Pag

Substituting from (8. 17) and (8. 18) into (3. 26) gives

l(u, v) -(u.VH




= 427

L )2 19,2 |2 9.9 Igs”""e]SH
= (Z(X2 h +...+X91h )T+ 2(Y2]h ot Ygfhl )32 —im
Or, upon the further substitution
2
]gSHae‘ = H/3
the inequality becomes
‘2'a l , .
L, v) - @) < e Cl {z, 2., .+ zgnl”}
or
w2le | 9
glbl (U, V) - (u, vl —B—C-'— { =5 §hL R zglhl } (8.19)
where Z Z, > 0. This quantity may be made as small as desirc¢ . by

2 O
taking H or ‘h‘ sufficiently small.

To establish the proof when only h is small it will be observed that

) 1 1 2
(ug) /a, = (g - 9u, £3huy + (g, - 1){15 kjkgluy - 1) 47 kglk] - Dk, - k)

1 2 1
5 koll + kiU, + 7 kB(G4)c}

From (2.23) and (8. 2) (G4)c must have the form

) 2 3
@,), = G42[hl " G431hl )
therefore
(u,), /2, = - 9)(1+ OE lhl £3h(1 + YE, | |
+ —1ikk 1+ 'h‘ikk2-11+ Elh,
(g, - Dty k k (1 + OE USRI
:t% kg(1+ k?)(l + OE lh] 3 ky(G, Ihlz+G4alh13)}

1t follows that the minimum corner value of u3 on AB has the form

. . 2 3
min (ug) [, {Lllhl+L2lhl +L31h| }laef, Ly Ly, Ly >0

B
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or

Fabita, v} - 0l 1ub|u3| . L1|h| + Lzlhlz + L3|h|3 (8. 20)

Thus from (8. 19) and (8. 20), with ]hl chosen to be sufficiently small,

glbl (U, V) - (u, v)l < 1ub|u,v) - ol

and from (3.27) the desired result follows. This does not mean that the
result holds for arbitrary finite g, since this is also governed by the con-

traction condition (5.42). The limiting values of g, may be obtained by
putting h—0 and C = 24,99 .... in (5.42). Thus 6—0, -r—>T0 and the

equations for the limiting value become

lg1\+ 4\g1- 1| = 24,09 ..., Case (i)

and
1
lg1| + (1 + 32)2‘g1 = ll = 24,99 .... Case (ii),

the solutions of which are
g~ 5.8 and -4,2 Case (i)

and

g, 3.83 and -2, 06 Case (ii)

This means that for h vanishly small the subharmonic solution (2.3) exists
for g, in the interval 5.8 > g, > -4,2, Case (i) and 3.83 > g > -2.06,

Case (ii)., With increasing values of h these intervals decrease in size,

To establish the proof with only lgl - ll small consider

A 1, .2 L1
lub ¥y ° nrun([(g1 - l)e1 - h(k1 + 52) c (g1 - 1){_4 k3(3 + kl)e1 t 2 k1k3€2

+ g kgleg - Ve - 5k ke, +%k3G1}]ae)c Ay 8y
Now as (g1 - 1)—>0, H—0 and
lublu, |~ min {-h (| + ,)a_}_ A 2 (el - |62|)|h| |a, |
Provided that h is not large enough to make lczl . lkll then it follows that

for (g1 - 1) sufficiently small
glbl (U, V) - (vl <wblv] <1 |@v) - o

and the desired result follows from (3. 27).




References

1% Christopher, P.A.T.
2. Stoker, J.J.

3. Bromwich, T.J.I'a,
4, Whittaker, E.T.

and
Watson, G.N.

5. Cronin, J.
6. Neumark, S.
7 Alexandroff, P.S.

- 44 -

"A New Class of Subharmonic Solutions
to Duffing's Equation."

College of Aeronautics, Cranfield
Report Aero. 195.

""Nonlinear Vibrations in Mechanical and
Electrical Systems,"
Interscience Publishers, New York (1950).

"An Introduction to the Theory of Infinite
Series. "
Macmillan, London (1942).

"A Course of Modern Analysis,"
Cambridge U.P. (1963).

"Fixed Points and Topolgical Degree in
Nonlinear Analysis,"

American Mathematical Society,
Mathematical Surveys No. 11 (1964).

"Solution of Cubic and Quartic Equations,"
Pergamon Press, Oxford (1965).

""Combinatorial Topology."
Graylock Press (1960).



93

FIG.I. REGIONS OF EXISTENCE OF PURE SUBHARMONICS,
IN THE 9,,9; PLANE.




