

Delft University of Technology

Jumping Shift
A Logarithmic Quantization Method for Low-Power CNN Acceleration
Jiang, Longxing; Aledo , David; van Leuken, Rene

DOI
10.23919/DATE56975.2023.10137169
Publication date
2023
Document Version
Final published version
Published in
Proceedings of the 2023 Design, Automation & Test in Europe Conference & Exhibition (DATE)

Citation (APA)
Jiang, L., Aledo , D., & van Leuken, R. (2023). Jumping Shift: A Logarithmic Quantization Method for Low-
Power CNN Acceleration. In Proceedings of the 2023 Design, Automation & Test in Europe Conference &
Exhibition (DATE) (pp. 1-6). IEEE. https://doi.org/10.23919/DATE56975.2023.10137169

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.23919/DATE56975.2023.10137169
https://doi.org/10.23919/DATE56975.2023.10137169

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Jumping Shift: A Logarithmic Quantization Method
for Low-Power CNN Acceleration

Longxing Jiang, David Aledo, Rene van Leuken
Circuits and Systems Group

Delft University of Technology

Abstract—Logarithmic quantization for Convolutional Neural
Networks (CNN): a) fits well typical weights and activation
distributions, and b) allows the replacement of the multiplication
operation by a shift operation that can be implemented with
fewer hardware resources. We propose a new quantization method
named Jumping Log Quantization (JLQ). The key idea of JLQ is
to extend the quantization range, by adding a coefficient param-
eter “s” in the power of two exponents (2sx+i). This quantization
strategy skips some values from the standard logarithmic quan-
tization. In addition, we also develop a small hardware-friendly
optimization called weight de-zero. Zero-valued weights that can-
not be performed by a single shift operation are all replaced with
logarithmic weights to reduce hardware resources with almost no
accuracy loss. To implement the Multiply-And-Accumulate (MAC)
operation (needed to compute convolutions) when the weights are
JLQ-ed and de-zeroed, a new Processing Element (PE) have been
developed. This new PE uses a modified barrel shifter that can
efficiently avoid the skipped values. Resource utilization, area, and
power consumption of the new PE standing alone are reported.
We have found that JLQ performs better than other state-of-the-
art logarithmic quantization methods when the bit width of the
operands becomes very small.

Index Terms—Convolutional Neural Network, Low-power hard-
ware acceleration, Logarithmic Quantization, FPGA

I. INTRODUCTION

In recent years, there has been a lot of interest in deep
learning. Convolutional Neural Network (CNN), one of the
most mature deep learning models, has attracted attention
in various fields such as medical research [1] [2], language
processing [3], and visual imagery [4] [5] [6]. Despite its
popularity, due to its huge data volume, intensive computation,
and frequent memory access, deploying a CNN on low-power
hardware systems is still challenging. To make deep neural
networks generally easier to deploy on hardware devices like
FPGA and ASIC, various quantization algorithms [7] [8] [9]
have been devised to reduce memory requirements. Among all
quantization methods, logarithmic quantization is very suitable
for low-power inference because as logarithmic weights are
represented by powers of two. The memory only needs to store
the integer power index instead of the floating point weight.
Besides, logarithmic quantization fits better the common CNN
Gaussian-like distributions of weights and activations, than the
more uniform integer quantization. Furthermore, logarithmic
quantization allows the replacement of the multiplication op-
eration (massively involved in CNN computation) by a shift

This work was supported by the NewControl Project, funded by Electronic
Components and Systems for European Leadership Joint Undertaking (ECSEL
JU) in collaboration with the European Union’s H2020 Framework Programme
and National Authorities, under grant agreement no. 826653-2.

operation, which can be implemented with fewer hardware
resources. Because of all the previous reasons, logarithmic
quantization effectively reduces the CNN memory footprint
and reduces the area and power consumption of the Processing
Elements (PEs) involved in CNN computation.

In this paper, we introduce a logarithmic quantization tech-
nique named Jumping Logarithmic Quantization (JLQ) that can
achieve higher accuracy than traditional logarithmic quanti-
zation at low-bit quantization by extending the quantization
range. JLQ replaces traditional logarithmic weights (±2x+i)
with jumping logarithmic weights (±2sx+i, “s” is the jumping
step parameter) so that the quantization range is extended when
the bit width is the same. We performed tests on CIFAR10
[10], CIFAR100 [10], and TinyImageNet [11] to evaluate
the accuracy based on our quantization technique. Compared
with the state-of-the-art logarithmic quantization algorithm, our
method has obvious advantages in the low-bit (2 or 3-bit)
quantization cases. Besides, we develop a hardware-friendly
weight de-zero optimization. Hardware resources are reduced
by replacing zero-valued weights with logarithmic weights that
can be performed by shift operations.

In addition, we design a processing element (PE) based
on JLQ and weight de-zero optimization, aiming to perform
MAC operations of CNN models with fewer resources, lower
area, and power consumption. The processing element (PE)
realizes the quantization range extension of JLQ without addi-
tional hardware resources by optimizing the traditional barrel
shifter. For ASIC simulation, we synthesized our PE design, a
multiplier-based PE design, and a traditional shifter-based PE
design using TSMC 28nm technology (in the 3-bit and 2-bit
quantization case). Compared with other competitors, our PE
design has less area and power consumption. In addition, we
also conduct experiments regarding the resource consumption
of different PEs on Xilinx ARTIX7 XC7A100T FPGA. The
results show that compared with traditional shifter-based PE,
our PE achieves 35% and 28.6% LUT reduction in 2-bit and
3-bit quantization cases respectively.

The rest of this paper is organized as follows. The related
work on logarithmic quantification is described in Section II.
Then, we introduce our proposed quantization method, JLQ,
in Section III. Section IV presents the accuracy results of
JLQ on various datasets and backbone networks. In Section
V, we present our PE design and the corresponding hardware
implementation results. Finally, Section VI and Section VII are
the conclusion and future work, respectively.

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

Authorized licensed use limited to: TU Delft Library. Downloaded on June 22,2023 at 08:59:47 UTC from IEEE Xplore. Restrictions apply.

II. RELATED WORK

LogNN [12] was the first to propose logarithmic quantization
for CNNs. They propose two methods: in the first method, the
weights remain fix-point and the activations are log-quantized.
While in the second method, both weights and activations are
log-quantized.

ShiftCNN [13] replaces each multiplication with a set of 2 or
3 shifts, therefore their PE consumes more hardware resources
and has higher power consumption than the PE with only a
single shifter. Similar to ShiftCNN, in [14] and [15], to improve
the accuracy, they also replace each multiplication with the sum
of two shift operations.

In DeepShift [8], the author proposes two methods:
DeepShift-Q and DeepShift-PS. DeepShift-Q can be regarded
as the standard logarithmic quantization. In DeepShift-PS, since
the power-of-two function is differentiable, they implement a
deeper derivation of the backward propagation pass, which is
the main innovation in this paper. Besides, both DeepShift-Q
and DeepShift-PS support training from scratch.

The main feature of INQ [9] is implementing incremental
retraining from a pre-trained model to increase the quantization
accuracy. The INQ algorithm consists of three steps: the first
step is to sort the weights by absolute value and divide them
into two groups according to a certain proportion; the second
step is to quantize the group of weights with larger absolute
value; the third step is to retrain the group of weights with
relatively smaller absolute value. After iterating these three
steps, the overall quantization can be completed. In INQ, the
proportion of each quantization is a hyperparameter.

In [16], the author also uses incremental retraining and makes
it more adaptive to sparse models through their centralized
quantization method.

Furthermore, logarithmic quantization is also applied in
approximate computing. In [17], the author proposes an ap-
proximate shifter-based PE. And in [18], an approximate log-
arithmic data representation is proposed for CNN training.
Compared with these methods, in our JLQ method, once the
quantization has been performed, the computations are exact.
Besides, our JLQ method gets higher accuracy in extreme low-
bit quantization cases: 2-bit and 3-bit quantization with 8-bit
activations.

III. JUMPING LOGARITHMIC QUANTIZATION

Many studies indicated that weights in most mainstream non-
sparse CNN models generally follow a Gaussian-like distri-
bution [19]. That means, the majority of the CNN weights
have small values, and only a few outliers have relatively
large values. Based on this information, some quantization
techniques [7] intentionally use the quantization strategy of
the Lloyd–Max quantizer: fewer sampling points are used to
quantize weights with large absolute values and more sampling
points are used to quantize weights with small absolute values.
However, some previous studies show that weights with larger
absolute values are not inessential. In fact, they are more
critical in feature extraction than those with smaller values [20].

Therefore, based on these three facts, we developed the new
logarithmic quantization technique JLQ.

To achieve our goal, this quantization technique extends the
quantization range by introducing one jumping step parameter
“s” so that both big-value weights and small-value weights can
be taken into consideration in the extreme low-bit quantization
case. In JLQ, the logarithmic quantization values can be rep-
resented as follows, where “i” can be regarded as a scaling
parameter (or pre-shift):

• Quantization Weights = (±2sx+i)

A. Quantization Error estimation model

To theoretically determine the optimal hyperparameter “s”
(jumping step parameter) of the JLQ, a quantization error
estimation model is proposed. In this model, the main factor
taken into account is the signal-to-noise ratio (SNR). In our
model, weights Wi are assumed to be in the range of [-1, 1], and
they follow a Gaussian distribution N(µ, δ2), where µ is very
close to 0. In addition, since the slope of the long tail part of the
Gaussian distribution is extremely small, for simplicity, weights
located in the [-1, -3δ) and (3δ, 1] intervals are regarded to have
a uniform distribution instead of a Gaussian distribution in our
model. For most typical non-sparse CNN models, the value of
δ is between 0.01 and 0.09 [19]. To facilitate the comparison of
quantization errors engendered by different jumping steps and
scaling parameters, in this error estimation model, δ is assumed
to be the average of 0.01 and 0.09, which is 0.05.

Consider a general N-level quantizer that is specified by N +
1 decision borders bi, where i = 0 to N; and N reconstruction
points xi, where i = 1 to N. The quantization operator Q(x) is
given by Q(x) = xi if bi−1<x ≤ bi (In our model, we use the
same strategy of Lloyd–Max quantizer to determine bi−1 and
bi). Given a random model with probability density function
fx(x), the distortion D can be represented as (1):

D =

N∑
i=1

∫ bi

bi−1

(x− xi)
2fx(x)dx (1)

The signal-to-noise ratio (SNR) can be calculated as (2),
where D is calculated using (1):

SNR = 10 · log10 ·
δ2x
D

(2)

When weights obey a uniform distribution, (1) is easy to
calculate, since the probability density function fx(x) and
the variance δ2x can be regarded as constant. However, when
weights obey a Gaussian distribution, the probability density
function fx(x) turns to be complex. In this case, (1) is no longer
possible to be calculated with the Newton-Leibniz formula. To
calculate it numerically, the alternative method used in this
paper is the Simpson’s Rule formula.

B. Weight De-zero Optimization

Since zero weights cannot be applied to the shift operation,
additional hardware resources (multiplexers) will be needed
to perform them. In order to reduce hardware resources, we
propose a weight de-zero optimization, which can be achieved
by replacing the ternary sign operator {−1, 0,+1} with the

!

!

Authorized licensed use limited to: TU Delft Library. Downloaded on June 22,2023 at 08:59:47 UTC from IEEE Xplore. Restrictions apply.

TABLE I
ESTIMATED SIGNAL TO NOISE RATIO

s i W SNR(dB)
1 0 2 0T

1 -2 2 -5.13
1 -3 2 2.93
1 -4 2 7.83
1 -5 2 4.69
2 -2 2 2.49
2 -3 2 7.90
2 -4 2 8.76
2 -5 2 4.72
3 -1 2 2.46
3 -2 2 4.23
3 -3 2 5.49
3 -4 2 8.14
1 0 3 0.18T

2 0 3 8.88
2 -1 3 9.01
2 -2 3 9.12
2 -3 3 8.37
TTernary sign.

binary sign operator {−1,+1} An example that can show the
difference between implementing the ternary sign operator and
the binary sign operator is as follows:

• Quantization weights with ternary operator (3-bit):
(±20,±2−1,±2−2,0)

• Quantization weights with binary operator (3-bit):
(±20,±2−1,±2−2,±2−3)

C. Parameter Selection

In order to obtain the theoretical optimal parameters, it
is necessary to calculate and compare the estimated SNR
of different parameter sets. Summarizing these results yields
Table I.

It can be seen that for low-bit quantization cases, extending
the quantization range can effectively increase SNR. And
among all the jumping parameter sets, s=2 is optimal in theory.

IV. BENCHMARK RESULTS

We have tested the training results on 3 datasets: CIFAR10
[10], CIFAR100 [10], and Tinyimagenet [11]. For the CIFAR10
dataset, the original DeepShift-PS and DeepShift-Q are set as
the baseline, and two DeepShift modes integrated with JLQ are
set as the comparison group to get a preliminary conclusion.
And CIFAR100 and Tiny ImageNet datasets are used to verify
the scalability of JLQ. For a fair comparison, we set all the
training parameters consistent with those of DeepShift [8].
Different from the display strategy of DeepShift, which only
shows the best accuracy results, the accuracy we show is the
median after three experiments.

A. Benchmark Statement

In order to reduce the burden of memory, researchers often
want a quantization method that can minimize bit-width for
both, weights and activation data. In order to demonstrate the
advantages of our proposed method in low-bit quantization,
most of our experiments are based on 8 activation bits. And
since the training of DeepShift-PS at 8 activation bits fluctuates

TABLE II
CIFAR10 BENCHMARK FROM PRE-TRAINED, ACC@1

W A Sign Base-PS JLQ-PS Base-Q JLQ-Q
2 8 T 81.75% 90.04% 90.37% 93.03%
2 8 B 81.11% 89.89% 89.46% 93.15%
3 8 T 90.53% 90.07% 92.67% 93.27%
3 8 B 90.37% 89.81% 92.01% 93.31%
4 8 T 93.75% 90.18% 93.95% 93.29%
4 8 B 93.61% 90.06% 93.88% 93.34%
4 32 T 94.06% 90.24% 94.05% 93.46%
4 32 B 93.91% 90.17% 93.95% 93.37%

greatly and its loss curve is difficult to converge in this case
according to our experiments, we select the highest accuracy
during the entire training process as the final accuracy value
of a single experiment when doing experiments in relation to
DeepShift-PS.

In our test strategy, we will first test the jumping logarithmic
quantization with the parameter set “s=2, i=-3” compared with
the DeepShift baseline. At the same time, in order to test
the effect of weight de-zero optimization on the accuracy,
experiments using the ternary sign operator and binary sign
operator will also be performed based on the CIFAR10 dataset.
After that, we will test the accuracy of jumping logarithmic
quantization with other parameter sets to determine the optimal
scaling factor (i) while verifying the prediction of our error
estimation model.

In our tables, “W” refers to the number of bits to represent
weights, “A” refers to the number of bits to represent activation
bits, “T” refers to the ternary sign operator, “B” refers to the
binary sign operator, and “Acc@N” accuracy means that the
correct class gets to be in the Top-N probabilities for it to
count as “correct”. We also highlight the useful data in our
table to make the data comparison and conclusion extraction
more convenient.

B. CIFAR10 Dataset

The accuracy results shown in Table II are based on the
results reproduced by us instead of the results from the original
DeepShift paper.

We can see that in 2-bit quantization, DeepShift-PS inte-
grated with jumping logarithmic quantization has better perfor-
mance than the corresponding baseline. Meanwhile, DeepShift-
Q integrating with jumping logarithmic quantization achieves
higher accuracy than any baseline in 2-bit and 3-bit quanti-
zation. Another conclusion is that quantization methods using
the ternary sign operator only have slight accuracy advantages
compared to those using the binary sign operator. That means,
using the binary sign operator that is more hardware-friendly
is feasible.

We also find some drawbacks of JLQ. For 4-bit or larger bit-
width quantization, it brings little to no accuracy improvement
than 3-bit quantization. This can be explained by the following
two reasons. The first reason is that JLQ adjusts the step
size and overdraws the accuracy improvement by expanding
the quantization range in advance. Another reason is that for
most non-sparse CNN models when the logarithmic weight

!

!

Authorized licensed use limited to: TU Delft Library. Downloaded on June 22,2023 at 08:59:47 UTC from IEEE Xplore. Restrictions apply.

TABLE III
CIFAR10 RESNET18 BASED ON OTHER PARAMETER SETTINGS OF JLQ

(METHOD=JLQ-Q, A=8, SIGN=B)

Parameters W From pre-trained
s = 1, i = -3 2 89.56%
s = 1, i = -4 2 89.98%
s = 2, i = -1 2 87.81%
s = 2, i = -2 2 90.60%
s = 2, i = -3 2 93.15%
s = 2, i = -4 2 91.71%
s = 1, i = -3 3 93.10%
s = 1, i = -4 3 91.90%
s = 2, i = -1 3 93.33%
s = 2, i = -2 3 93.20%
s = 2, i = -3 3 93.31%

is less than a certain small value, the mutual substitution
between those adjacent small logarithmic weights will become
very obvious. For example, adding or removing weight value
±2−8,±2−9 or ±2−10 by adjusting the quantization range will
have almost no impact when there exists 2−7 in the original
quantization case. As for the performance of other parameter
settings, to fully demonstrate the advantage of extending the
quantization range, we also intentionally filter parameter sets
such as “s=1, i=-1”, “s=1, i=-2” and so on, which only achieve
a small range extension. And the results are shown in Table III
(JLQ-Q results of s = 2, i= -3 are mentioned again for the
convenience of conclusion extraction).

For CIFAR10 Dataset, in 2-bit quantization, the parameter
set that achieves the best accuracy is “s=2, i=-3”, and in 3-bit
quantization, the optimal parameter set is “s=2, i=-1”. It can
be seen that the optimal parameter sets in CIFAR10 benchmark
results are a little bit different from those in our error estimation
model. This is because weights with larger absolute values are
essential in feature extraction. Namely, it is infeasible to pay
full attention to weights with smaller absolute values when
implementing quantization, even though they may bring more
benefits in SNR improvement.

C. CIFAR100 Dataset

As for the CIFAR100 dataset, we simplified our experiments
based on the results of CIFAR10. We intentionally removed
experiments in relation to Baseline PS and JLQ-PS, consid-
ering Baseline Q shows more benefits after integrating with
JLQ. We conduct experiments with two backbone networks,
ResNet18 and GoogleNet, to verify the scalability of JLQ.
For the convenience of hardware implementation, we keep the
weight de-zero optimization and apply it to all experiments
of CIFAR100. Additionally, we add a control group named
“original” that does not implement any quantization to better
demonstrate the accuracy comparison. The accuracy results
based on ResNet18 are shown in Table IV. The accuracy results
based on GoogleNet are shown in Table V.

Since the CIFAR100 dataset has more types of images than
the CIFAR10 dataset, it becomes more difficult to identify
the CIFAR100 dataset. In this case, the advantages of JLQ
are more obvious. In terms of accuracy, the conclusions in
GoogleNet are consistent with those in ResNet. In the 2-bit

TABLE IV
RESNET18 CIFAR100 BENCHMARK (SIGN=B)

Method W A From scratch From pre-trained
Acc@1 Acc@5 Acc@1 Acc@5

Original 32 32 74.75% 92.97% - -
Base-Q 2 8 28.05% 58.29% 64.97% 86.69%
JLQ-Q 2 8 71.02% 90.97% 72.33% 91.43%
Base-Q 3 8 61.79% 87.68% 66.84% 88.45%
JLQ-Q 3 8 72.73% 91.40% 73.45% 92.17%
Base-Q 4 8 74.10% 92.46% 73.99% 92.60%
JLQ-Q 4 8 72.75% 91.51% 73.33% 92.13%
Base-Q 4 32 74.33% 92.56% 74.14% 92.71%
JLQ-Q 4 32 73.15% 91.77% 73.57% 92.36%

TABLE V
GOOGLENET CIFAR100 BENCHMARK (SIGN=B)

Method W A From scratch From pre-trained
Acc@1 Acc@5 Acc@1 Acc@5

Original 32 32 78.17% 94.58% - -
Base-Q 2 8 44.97% 76.30% 62.90% 87.07%
JLQ-Q 2 8 76.51% 93.82% 76.36% 93.65%
Base-Q 3 8 67.89% 90.44% 67.73% 89.80%
JLQ-Q 3 8 77.11% 94.19% 77.27% 94.06%
Base-Q 4 8 77.52% 94.37% 78.06% 94.55%
JLQ-Q 4 8 77.15% 94.14% 77.38% 94.19%
Base-Q 4 32 77.80% 94.56% 78.09% 94.47%
JLQ-Q 4 32 77.35% 94.27% 77.63% 94.31%

and 3-bit quantization cases, whether the model is trained
from scratch or from a pre-trained model, the accuracy is
dramatically improved by implementing JLQ. However, in the
4-bit quantization case, the JLQ shows no advantages compared
to the baseline as a trade-off.

D. Tiny ImageNet Dataset

In order to test whether JLQ can maintain the accuracy
advantage in the case of extremely low-bit quantization (2-bit
and 3-bit) on larger datasets, we conducted experiments based
on the Tiny ImageNet dataset. The Tiny ImageNet dataset [11]
is a modified subset of the original ImageNet dataset [21] with
200 different classes, 100,000 training examples and 10,000
validation examples. The resolution of the images is only 64x64
pixels, which makes it more challenging to extract information
from it than the original ImageNet dataset. To get pre-trained
models of Tiny ImageNet Dataset, we train the networks from
scratch in 90 epochs based on Imagenet pre-trained weights.
After that, we train the networks from those pre-trained models
for 15 epochs (Other training parameters are consistent with
those in ImageNet experiments mentioned in [8]). In addition,
to increase the accuracy of the Resnet18 baseline, we use
a fine-tuning method by removing the max pooling layer to
reduce information loss of the image in the early stage of CNN.
The accuracy results based on ResNet18, and Inception-v3 are
shown in Table VI, and VII correspondingly.

It can be clearly seen that although the dataset becomes
larger, compared to the baseline, JLQ still maintains the ad-
vantage of accuracy in a very low-bit quantization case.

!

!

Authorized licensed use limited to: TU Delft Library. Downloaded on June 22,2023 at 08:59:47 UTC from IEEE Xplore. Restrictions apply.

TABLE VI
RESNET18 TINY IMAGENET BENCHMARK (SIGN=B)

Method W A From scratch
Acc@1 Acc@5

Original 32 32 60.30% 82.10%
Base-Q 2 8 37.40% 62.54%

JLQ-Q(s=2,i=-3) 2 8 57.32% 80.02%
Base-Q 3 8 48.60% 73.51%

JLQ-Q(s=2,i=-1) 3 8 58.36% 81.03%

TABLE VII
INCEPTION-V3 TINY IMAGENET BENCHMARK (SIGN=B)

Method W A From scratch
Acc@1 Acc@5

Original 32 32 68.09% 86.89%
Base-Q 2 8 10.08% 28.81%

JLQ-Q(s=2,i=-3) 2 8 65.98% 85.28%
Base-Q 3 8 59.83% 81.57%

JLQ-Q(s=2,i=-1) 3 8 66.37% 85.43%

V. HARDWARE DESIGN

A. Design Of Processing Element

The processing element serves as the core of neural network
acceleration. Therefore, the optimization of a PE will directly
affect the efficiency of the overall hardware design. A general
weight-stationary shifter-based PE design is illustrated in Fig. 1.
The shift operation of the feature and the weight is first con-
ducted, then followed by a negative or positive value selection
and zero value selection.

Since our quantization method does not have the weight of
zero value, our PE removes a multiplexer in relation to zero bit
and can save one multiplexer compared to traditional PE.

B. Design Of Shifter

Although JLQ extends the quantization range, it does not
mean that it requires a larger shifter to achieve the corre-
sponding quantization. By modifying the barrel shifter, our PE
achieves the purpose of range extension without adding any
hardware burden. Taking the 3-bit jumping log quantization
with step = 2 i = -1 as an example, the logarithmic quantization
weights, in this case, are as follows:(±2−1,±2−3,±2−5,±2−7).
These weight values will correspond to the shift operations
of ≫ 1, ≫ 3, ≫ 5, and ≫ 7 respectively. These operations
only entail the 2-bit barrel shifter shown in Fig. 2 instead of a

Fig. 1. Shifter-Based PE (Our PE is the solid part, and the dotted part is what
we remove from traditional shifter-based PE in our optimization)

Fig. 2. Shifter Design (Our shifter is the solid part and the red part. The
dotted part is what we remove from the traditional 3-bit barrel shifter in our
optimization, and the red part indicates the replacement of multiplexers with
AND gates. The first column of multiplexers can be directly removed due to
the pre-shift operation).

TABLE VIII
RESOURCES CONSUMPTION IN SINGLE PE

PE type W LUTa A(µm2)b P(mw)b

multiplier-based PE 3 55 221.186 1.3200
shifter-based PE 3 46 209.720 1.1928

our PE 3 33 203.840 1.1879
multiplier-based PE 2 43 200.900 1.2047

shifter-based PE 2 43 202.664 1.1567
our PE 2 28 192.178 1.1516

aFor Xilinx ARTIX7 XC7A100T FPGA
bFor TSMC 28 nm technology (ASIC)

traditional 3-bit barrel shifter to be computed. In this example
shifter, the layer of multiplexers that operate right shift one
bit is removed. To save hardware resources, some multiplexers
are substituted by AND gates or removed (when become
unnecessary). The first layer of AND gates and multiplexers
represents the ≫ 4 operation, and the second layer represents
the ≫ 2 operation. Besides, the input is pre-shifted 1 bit in
advance. Consequently, ≫ 1, ≫ 3, ≫ 5, ≫ 7 operations can
be achieved using this shifter.

C. Implementation Results

In order to calculate area and power consumption, different
types of PE were synthesized using the Synopsys Design
Compiler for TSMC 28 nm technology. The resource utilization
is tested on Xilinx ARTIX7 XC7A100T. The basic resulting
resources, area consumption, and power consumption for dif-
ferent PEs are given in Table VIII, and the normalized results
of resource utilization and area are shown in Fig. 3 and Fig. 4
respectively.

It can be seen that our PE has advantages in hardware utiliza-
tion, area, and power consumption over both traditional shifter-
based PE and multiplier-based PE. Specifically, as shown in
Fig. 3, our PE reduce the 35% and 28.6% LUT compared with
traditional shifter-based PE in 2-bit and 3-bit quantization case
respectively. As for area and power consumption, although the

!

!

Authorized licensed use limited to: TU Delft Library. Downloaded on June 22,2023 at 08:59:47 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Normalized LUT Resources

Fig. 4. Normalized Area

differences are not as prominent as those in resource utilization,
our PE still performs better than traditional shifter-based PE.

VI. CONCLUSION

In this paper, we propose a quantization method called
Jumping Logarithmic Quantization (JLQ), a weight de-zero
optimization, and a cost-efficient PE design. In the experiments
of CIFAR10, CIFAR100, and Tiny ImageNet, after integrating
JLQ and weight de-zero optimization, the accuracy of the
baseline has been greatly improved in both 2-bit quantization
and 3-bit quantization. Implementation results show that our
PE can maximally reduce the area and power consumption up
to 19.7% and 17.2% compared with traditional multiplier-based
PE under similar accuracy conditions.

VII. FUTURE WORK

We have proven that jumping logarithmic quantization and
weight de-zero optimization perform well on small datasets in
the extreme low-bit quantization case. But the verification based
on big datasets such as ImageNet [21] is not yet provided
in this paper. It is expected to reach similar conclusions. In
addition, in the aspect of hardware, putting our PE into a
CNN accelerator to evaluate the overall throughput, resource
utilization, and power consumption is yet to be done in our
work. We expect a strong reduction in resource utilization and
power consumption since JLQ is able to dramatically reduce
the bit-width of the memory from the common-used bit down
to 3-bit or 2-bit. Finally, the integration of three theoretically
non-conflicting optimizations in logarithmic quantization, INQ
[9], JLQ, and DeepShift [8], is also a very interesting future
topic.

REFERENCES

[1] M. C. M. C. S. D. W. A. N. e. a. Varun Gulshan, Lily Peng, “Development
and validation of a deep learning algorithm for detection of diabetic
retinopathy in retinal fundus photographs,” JAMA, vol. 316, no. 22, pp.
2402–2410, 12 2016.

[2] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau,
and S. Thrun, “Dermatologist-level classification of skin cancer with deep
neural networks,” nature, vol. 542, no. 7639, pp. 115–118, 2017.

[3] M. C. Chen, R. L. Ball, L. Yang, N. Moradzadeh, B. E. Chapman, D. B.
Larson, C. P. Langlotz, T. J. Amrhein, and M. P. Lungren, “Deep learning
to classify radiology free-text reports,” Radiology, vol. 286, no. 3, pp.
845–852, 2018.

[4] I. S. A. Krizhevsky and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” in Advances in Neural Information
Processing Systems 25, 2012, pp. 1097 – 1105.

[5] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2015, pp. 1–9.

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770–778.

[7] E. Kalali and R. van Leuken, “A power-efficient parameter quantization
technique for CNN accelerators,” in 2021 24th Euromicro Conference on
Digital System Design (DSD), 2021, pp. 18–23.

[8] M. Elhoushi, Z. Chen, F. Shafiq, Y. H. Tian, and J. Y. Li, “DeepShift:
Towards multiplication-less neural networks,” in 2021 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition Workshops (CVPRW),
2021, pp. 2359–2368.

[9] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen, “Incremental network
quantization: Towards lossless CNNs with low-precision weights,” arXiv
preprint arXiv:1702.03044, 2017.

[10] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
Tech. Rep., 2009.

[11] P. Chrabaszcz, I. Loshchilov, and F. Hutter, “A downsampled variant
of imagenet as an alternative to the cifar datasets,” arXiv preprint
arXiv:1707.08819, 2017.

[12] D. Miyashita, E. H. Lee, and B. Murmann, “Convolutional neu-
ral networks using logarithmic data representation,” arXiv preprint
arXiv:1603.01025, 2016.

[13] D. A. Gudovskiy and L. Rigazio, “ShiftCNN: Generalized Low-Precision
Architecture for Inference of Convolutional Neural Networks,” arXiv
preprint arXiv:1706.02393, 2017.

[14] C. Yang, B. Li, and Y. Wang, “A fully quantitative scheme with fine-
grained tuning method for lightweight CNN acceleration,” in 2019 26th
IEEE International Conference on Electronics, Circuits and Systems
(ICECS), 2019, pp. 125–126.

[15] J. Xu, Y. Huan, L.-R. Zheng, and Z. Zou, “A low-power arithmetic
element for multi-base logarithmic computation on deep neural networks,”
in 2018 31st IEEE International System-on-Chip Conference (SOCC),
2018, pp. 43–48.

[16] Y. Zhao, X. Gao, D. Bates, R. Mullins, and C.-Z. Xu, “Focused quanti-
zation for sparse CNNs,” in Advances in Neural Information Processing
Systems, vol. 32, 2019.

[17] C. F. B. Fong, J. Mu, and W. Zhang, “A cost-effective cnn accelerator
design with configurable pu on fpga,” in 2019 IEEE Computer Society
Annual Symposium on VLSI (ISVLSI), 2019, pp. 31–36.

[18] D. Miyashita, E. H. Lee, and B. Murmann, “Convolutional neu-
ral networks using logarithmic data representation,” arXiv preprint
arXiv:1603.01025, 2016.

[19] R. S. Jie Li, “Jizhong dianxing juanji shenjing wangluo de quanzhong
fenxi yu yanjiu[Weight Analysis and Research of Several Typical Convo-
lutional Neural Networks],” in JOURNAL OF QINGDAO UNIVERSITY
(Natural Science Edition), 2019.

[20] Y. Liu, X. Liu, and L. Liang, “Optimize FPGA-Based Neural Network
Accelerator with Bit-Shift Quantization,” in 2020 IEEE International
Symposium on Circuits and Systems (ISCAS), 2020, pp. 1–5.

[21] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE Conference on
Computer Vision and Pattern Recognition, 2009, pp. 248–255.

!

!

Authorized licensed use limited to: TU Delft Library. Downloaded on June 22,2023 at 08:59:47 UTC from IEEE Xplore. Restrictions apply.

