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Sparsity Regularized Nonlinear Inversion
for Microwave Imaging

Ulaş Taşkın and Özgür Özdemir

Abstract— We present a novel microwave imaging technique
for sparse domain imaging applications. In the proposed method,
inverse scattering algorithm modified gradient method (MGM) is
combined with a fast iterative shrinkage-thresholding algorithm
to improve the resolution and robustness of the MGM by
enforcing the sparsity in the imaging domain. The numerical
experiments show that the proposed method achieves higher
resolution and robustness compared with that of classical MGM.
For nonsparse domain reconstruction, the wavelet transformation
is adopted to convert nonsparse spatial domain into a sparse
wavelet coefficient domain. The feasibility of the proposed method
in the wavelet domain is demonstrated through the numerical
experiments.

Index Terms— Compressive sensing, inverse scattering,
microwave imaging, sparsity regularization, wavelet transform.

I. INTRODUCTION

M ICROWAVE imaging techniques estimate the electro-
magnetic properties of unknown targets using transmit-

ted and received microwave signals and have been widely
applied in geoscience and remote sensing, nondestructive
testing, and medical applications [1]–[4]. Microwave imaging
problem belongs to a category of inverse problem, which
is a highly nonlinear and ill-posed problem. To tackle the
nonlinearity of the problem, Born-type imaging methods lin-
earize the problem within the weak scatterer assumption [5].
For nonweak scatterers, nonlinear inversion algorithms, such
as modified gradient method (MGM) and contrast source
inversion (CSI), have been developed where the inverse
problem is recast as an optimization problem and solve it
iteratively [6]–[9].

On the other hand, in order to overcome the numerical
instability issues of such ill-posed inverse problems, a com-
pressive sensing framework has been proposed recently by
exploiting sparsity approximation [10], [11]. Among spar-
sity promoted algorithms, Greedy pursuits algorithms search
for the most sparse solution within �0 pseudonorm-based
solutions. The orthogonal matching pursuit-based microwave
imaging technique is developed to reconstruct scatterers under
the Born approximation in [12]. Hard thresholding approaches
have been successfully applied to linear inverse scattering
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techniques in [13] and [14]. Convex relaxation techniques
exploit �1 norm formulation, which yields convex optimiza-
tion problems, and hence, classical solution techniques can
be applied [15]–[17]. One of the most popular techniques
in this category is the iterative shrinkage-thresholding algo-
rithm (ISTA) due to its simplicity, and however, it suffers from
a slow convergence rate. Recently, the fast ISTA (FISTA) is
developed to improve the convergence rate of ISTA while pre-
serving its computational simplicity [18]. The FISTA exploits
a specific linear combination of previous two steps to accel-
erate the convergence rate, and it has not been applied to
any microwave imaging technique. Another convex relaxation
method that has gained recognition is the Bayesian com-
pressive sensing (BCS) [19], [20]. BCS recasts the mini-
mization problem in the Bayesian framework by using the
relevance vector machine. Thresholding-type algorithms have
been combined with the linear inversion algorithm Born iter-
ative method for sparse domain reconstructions [16]. Most of
the sparsity-based techniques have been applied to linear inver-
sion techniques; to the best of our knowledge, a few works
have been devoted to exploit sparsity in nonlinear imaging
methods [9], [21], [22].

The sparsity-based approaches have proven to be successful
in the improvement of the stability and resolution of classical
imaging techniques for sparse imaging domain. However, for
nonsparse imaging domain, the sparsity enforcement would
severely degrade the performance of reconstruction results.
To tackle this problem, wavelet transform has been employed
to transfer the nonsparse domain to sparse domain [21]–[24].
In [23] and [24], the BCS technique has been applied to
solve a linear inverse problem in the sparse wavelet domain.
The nonlinear inversion method CSI has been implemented
in the wavelet domain to remedy the ill-posedness of the
problem [21], [22]. Beside wavelet transform, total variation
compressive sensing framework has also been developed to
address the nonsparseness problem in [25].

In this letter, we aim to improve the resolution of nonlin-
ear imaging method MGM for sparse domain applications.
To this aim, we combine the sparsity-based approach FISTA
with MGM, and we refer to this approach as MGM-FISTA.
The classical MGM updates the unknown object function and
electric field in the imaging domain iteratively by simul-
taneous minimization of residual errors in data and state
equations. In the proposed approach, the FISTA is applied
in each iteration step of the MGM to enforce the sparsity
on the object function. It has been demonstrated through the
numerical experiments that the MGM-FISTA outperforms the
classical MGM on the detection of closely located targets and
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Fig. 1. Geometry of inverse scattering problem.

has improved noise robustness for sparse domain. Moreover,
we also exploit the wavelet transformation to extend the
application range of the proposed approach to nonsparse
domain by transforming nonsparse spatial domain to a sparse
wavelet domain. We have shown that by the appropriate choice
of the level of wavelet transform, the MGM-FISTA can be
successfully applied to nonsparse imaging scenarios.

The outline of this letter is as follows. Section II first
describes the formulation of classical MGM and, then, its
incorporation with FISTA. Following this, an outline of
the MGM-FISTA is explained in both spatial and wavelet
domains. In Section III, numerical experiments in sparse and
nonsparse domains are presented to assess the performance of
the proposed method.

II. THEORY

A. Inverse Scattering Algorithm MGM

Consider an unknown scattering object embedded in a
homogeneous medium (Fig. 1). We assume that the object in a
search domain is irradiated successively by N number of TM
polarized incident fields Ei . The scattered field Es measured
on a line � enclosing the object can be described by

Es(r) = k2
o

∫
D

χ(r′)Et (r′)G(r, r′)ds′, r ∈ � (1)

where k0 is the wavenumber of the free space and χ = εr − 1
is the object function with complex relative permittivity εr .
r represents the points on the measurement line �, r′ rep-
resents the points in the imaging domain D, and ds′ is the
infinitesimal surface element. G(r, r′) is Green’s func-
tion of homogeneous medium and given as G(r, r′) =
(i/4H 1

0 )(k0|r − r′|), where H 1
0 is the zero-order Hankel func-

tion of the first kind. The total field Et in the search domain
in (1) can be determined by the following state equation:

Et (r) = Ei (r) + k2
o

∫
D

χ(r′)Et (r′)G(r, r′)ds′, r ∈ D. (2)

Equations (1) and (2) can be written in more compact operator
form

Et = Ei + G Dχ Et (3)

Es = G�χ Et . (4)

The MGM estimates the unknown object function by simul-
taneous minimization of residual errors in data and state

equations defined in the following cost functional:
F(χ, Et ) = w�||Es −G�χ Et ||22+wD||Ei −Et +G Dχ Et ||22

(5)

where the normalizing terms w� and wD are defined as

w� = 1

||Es ||22
wD = 1

||Ei ||22
. (6)

Two sequences of object function χn and total field Et
n are

defined to minimize cost functional (5) at each iteration
step n by the Polak–Ribiere conjugate gradient method

Et
n = Et

n−1 + αnvn (7)

χn = χn−1 + βndn (8)

where vn and dn are search directions for total field and object
function, respectively. The step sizes αn and βn are determined
analytically by finding the real root of partial derivative of the
cost functional.

The MGM method starts with the initial estimates that are
calculated with a backprojection algorithm. Then, the object
function and the total field are reconstructed by using the
conjugate gradient method steps. In the update of the object
function, the total field is considered as a constant with the
value of the previous step, and similarly, the object function
is considered as a constant with the value of the previous step
while updating the total field.

B. Sparsity-Based Algorithm MGM-FISTA
The MGM leads to a smooth reconstruction in a similar

manner to �2 norm regularization, and therefore, it may fail
to obtain accurate solutions for sharp edged or closely located
sparse objects. In such cases, the MGM can be improved by
adding �1 norm penalty term to the cost function

min
χ

{F(χ; Et ) + λ||χ ||1}. (9)

The presence of l1 term forces sparsity in reconstruc-
tion. The solution of l1 norm minimization problem (9) is
obtained with incorporation of FISTA and MGM by applying
FISTA to object function reconstruction at each step of the
MGM iteration.

The FISTA is the improved version of the ISTA, which
belongs to the class of forward–backward splitting algo-
rithms [26]. The forward step is line searching with a gradient
descent step involving the cost function F(χ, Et ), and the
application of the soft-thresholding operator is the backward
step. The computation of the object function at the kth iteration
step of the ISTA can be written as

χk = Hλt(χ
k−1 − tk∇F(χk−1)) (10)

where t is the step size and Hδ is the soft-thresholding operator
for threshold value δ which is defined as

Hδ(χ) =
{

χ − δsign(χ), |χ | > δ

0, |χ | < δ.
(11)

In this letter, the threshold value δ is chosen adaptively as start-
ing with initial threshold value and decreasing exponentially in
each iteration as δk = δ0e−kα . The thresholding parameters,
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initial threshold value δ0, and decay rate α are responsible
for resolution of the reconstruction. We use trial and error to
determine the optimal thresholding parameters. The optimal
value of an initial threshold value is found by sorting the object
function vector obtained in the MGM step in a decreasing
order and then picking the Tc/4th element as δ0, where Tc is
the total number of elements. For α, it is observed that the
optimal value lies in the range of (0, 0.5]. The FISTA exploits
a specific linear combination of previous two values of object
function instead of only previous step value to improve the
rate of convergence of ISTA [18]

χk+1 = χk + tk − 1

tk+1 (χk − χk−1). (12)

With this modification, the FISTA outperforms ISTA for the
number of iterations to reach the required accuracy. The
complete procedure of the proposed method MGM-FISTA is
outlined in Algorithm 1.

Algorithm 1 MGM-FISTA Algorithm in Spatial Domain

Input: χ0, Et
0

while n ≤ Nmax do (MGM Loop)
Update Et

n from (7)
Update χn from (8)
Initialization for FISTA χ0

n = χn, t0 = 1, δ0 = χn(Tc/4)
while k ≤ Kmax do (FISTA Loop)

δk = δ0e−kα

χk
n = H k

δ (χk−1
n − tk−1∇F(χk−1

n )

tk+1 = 1+
√

1+4(t k)2

2

χk+1
n = χk

n + t k−1
t k+1 (χk

n − χk−1
n )

k = k + 1
end while
n = n + 1

end while

C. MGM-FISTA in Wavelet Domain
For nonsparse imaging domain where the target size is

comparable with the investigation domain, the sparsity-based
algorithm MGM-FISTA cannot yield accurate reconstructions.
To tackle this problem, we have employed the wavelet trans-
form to represent object function with a small number of
nonzero coefficients without a significant loss of resolution.
Wavelet transformation decomposes the object function into
different scales with different levels of resolution, and there-
fore, the number of unknowns can be reduced to a specific
level, where the object function of imaging domain can be
assumed to be sparse in the wavelet domain.

The operator form of the wavelet transformation of the
object function χ can be written as follows:

s = Wχ (13)

where W is the discrete wavelet transform operator and s
is the wavelet coefficients. Similarly, inverse discrete wavelet
transform WT converts the wavelet coefficients back to the
spatial coefficients

χ = WT s. (14)

Fig. 2. Reconstruction of sparse domain with noise-free measurement
data. Real and imaginary parts of (a) and (b) exact permittivity pro-
file. Reconstructed permittivity profiles by (c) and (d) classical MGM,
(e) and (f) MGM-TV, and (g) and (h) MGM-FISTA.

We can write the cost function of minimization problem (5)
in the wavelet domain as follows:

min
s

{w�||Es − G�WT s Et ||22
+ wD||Ei − Et + G DWT s Et ||22 + λ||s||1}. (15)

In the wavelet domain, the MGM-FISTA defines now two
sequences of total field Et

n (7) and wavelet coefficients sn .
Wavelet coefficients are updated using the conjugate gradient
algorithm

sn = sn−1 + β ′
nd ′

n (16)

where β ′
n and d ′

n are step size and search directions, respec-
tively. Once the iteration is terminated for predetermined
accuracy level or the iteration number, the object function
is determined from the wavelet coefficients by inverse trans-
form (14). A summary of the MGM-FISTA in the wavelet
domain is given in Algorithm 2.
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Fig. 3. Reconstruction of sparse domain with noisy data (SNR = 20 dB).
Reconstructed real and imaginary part permittivity profiles by (a) and (b) clas-
sical MGM and (c) and (d) MGM-FISTA.

Algorithm 2 MGM-FISTA Algorithm in Wavelet Domain

Input: χ0, Et
0

s0 = Wχ0
while n ≤ Nmax do (MGM Loop)

Update Et
n from (7)

Update sn from (16)
Initialization for FISTA s0

n = sn, t0 = 1, δ0 = s(Tc/8)
while k ≤ Kmax do (FISTA Loop)

δk = δ0e−kα

sk
n = H k

δ (sk−1
n − tk−1∇F(sk−1

n )

tk+1 = 1+
√

1+4(t k)2

2

sk+1
n = sk

n + t k−1
t k+1 (sk

n − sk−1
n )

k = k + 1
end while
sn = sk+1

n
χn = WT sn

n = n + 1
end while

III. NUMERICAL RESULTS

The performance of the proposed method is evaluated using
synthetic data generated by the numerical solution of the
forward scattering problem. We consider two different imaging
domain setups to assess the performance of the method:
sparse and nonsparse unknown permittivity distribution in
imaging domain. In both setups, 16 transmitter and receiver
antennas operated at 3 GHz (a wavelength of 0.1 m) are placed
uniformly along the circular line around the search domain.
The square-shaped imaging domain has the dimensions
of 20 cm × 20 cm, which is discretized into 32 × 32 cells.

A. Sparse Domain Reconstruction

As a first experiment, we compare the performances of
the proposed MGM-FISTA with classical MGM and MGM
with total variation (MGM-TV) regularization for the sparse
permittivity profile, which consists of a circular ring and two
closely located circular object given in Fig. 2(a) and (b).

Fig. 4. Reconstruction of nonsparse domain with noisy data (SNR =
37 dB). Real and imaginary parts of (a) and (b) exact permittivity
profile. Reconstructed permittivity profiles by (c) and (d) MGM-FISTA
in spatial domain, (e) and (f) MGM-FISTA in wavelet domain, and
(g) and (h) MGM-TV in spatial domain.

The relative permittivity of all objects is chosen as
εr = 2.5 − 0.2i . In order to quantify how sparse a domain is,
a sparsity ratio (Sratio) is defined as the ratio of number of zero
elements to the number of all elements of the imaging domain
cells, i.e., object matrix: Sratio = Nzeros(χ)/Ntotal(χ). The
domain can be considered as having sparse representation
if the sparsity ratio is close to one. There are 92 nonzero
elements among the whole 1024 elements in Fig. 2(a) and (b),
which gives Sratio = 0.9102, and hence, it is a sparse domain.

The reconstruction results of real and imaginary parts of
permittivity profile are given in Fig. 2, where the dashed line
shows the actual boundaries. MGM routine in all algorithms is
terminated after 96 iterations. In the MGM-FISTA, the incre-
ment in the inner loop iteration increases the computational
complexity and has a negligible effect on the result after some
point, since the threshold value decreases exponentially in each
iteration. In the presented examples, five iteration is found to
be optimal value to provide a better resolution while keeping
the computational cost as low as possible. As seen in Fig. 2,
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while the MGM-FISTA can clearly resolve two circular objects
for both real and imaginary parts, MGM and MGM-TV cannot
differentiate the two objects, especially in their imaginary part
reconstruction. MGM-FISTA also gives better estimates for the
permittivity value of the objects. Therefore, we can say that the
MGM-FISTA improves the accuracy and spatial resolution of
the reconstruction of classical MGM, while TV regularization
has no significant effect.

In order to compare the robustness of the methods against
noise, random Gaussian noise is added to the measurement
data with 20-dB signal-to-noise ratio (SNR). Fig. 3 shows that
the reconstructions by MGM are more disrupted by the noise
than that of MGM-FISTA.

B. Nonsparse Domain Reconstruction

As a second experiment, we consider a nonsparse profile of
the circular object given in Fig. 4(a) and (b). The relative
permittivity of the object is chosen as εr = 1.5 − 0.2i .
There are 540 nonzero elements among the 1024 elements,
i.e., Sratio = 0.4727, which indicates the nonsparse imaging
domain. When we applied the MGM-FISTA in the spatial
domain, it cannot provide an accurate reconstruction, as given
in Fig. 4(c) and (d). Then, we applied Daubechies wavelet
transform to convert the spatial domain into a sparse wavelet
coefficient domain. The sparsity ratio of the imaging domain
increases to Sratio = 0.87 with level 4 of wavelet trans-
formation. As it can be seen from Fig. 4(e) and (f), the
MGM-FISTA now can provide a quite accurate reconstruc-
tion results for such a nonsparse spatial domain. We should
note here that the choice of wavelet type and its level is
very influential on the performance of the imaging method
MGM-FISTA. On the other hand, MGM-TV gives better
reconstruction results than MGM-FISTA in spatial domain for
nonsparse scenarios [see Fig. 4(g) and (h)].

IV. CONCLUSION

A novel nonlinear inverse scattering algorithm has been
proposed for sparse domain imaging. The cost function in the
classical MGM has been modified by adding �1 norm penalty
term in order to enforce sparsity in the minimization scheme.
The solution of that cost function is then obtained by combin-
ing MGM steps with the soft-thresholding algorithm FISTA.
Numerical experiments have been presented to demonstrate
the improvement in the accuracy, resolution, and robustness
against noise in the proposed method compared with the
classical MGM. For nonsparse domain, wavelet transform is
applied to convert the nonsparse domain into a sparse one in
order to apply MGM-FISTA. It is shown that by appropriate
choice of wavelet level, the MGM-FISTA provides successful
reconstruction of the nonsparse domain. Future works are
devoted to 3-D case applications and the investigation on
different methods of sparsification.
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