
Delft University of Technology
Master of Science Thesis in Embedded Systems

Firmware Updates Over The Air for LoRa
using Random Linear Network Coding

David Zwart

Embedded
Networked
Systems

Firmware Updates Over The Air for LoRa using

Random Linear Network Coding

Master of Science Thesis in Embedded Systems

Embedded and Networked Systems Group
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology
Mekelweg 4, 2628CD Delft, The Netherlands

David Zwart
d.j.zwart@student.tudelft.nl

davidzwa@gmail.com

27th June 2022

mailto:d.j.zwart@student.tudelft.nl
mailto:davidzwa@gmail.com

Author
David Zwart (d.j.zwart@student.tudelft.nl)
(davidzwa@gmail.com)

Title
Firmware Updates Over The Air for LoRa using Random Linear Network Coding

MSc Presentation Date
27th June 2022

Graduation Committee
Dr. Prof. R.R. Venkatesha Prasad Delft University of Technology
Dr. Prof. R.K. Bishnoi Delft University of Technology
MSc. K. Kroep Delft University of Technology

mailto:d.j.zwart@student.tudelft.nl
mailto:davidzwa@gmail.com

Abstract

LoRaWAN is a public Wireless Sensor network with excellent properties like
being long-range, low-energy radios and resulting in long battery life. Devices
are connected to this network through gateways, and they will run in that de-
ployment for years without replacement. Therefore, bugs and security issues in
such devices’ firmware are present for a long time, unless firmware updates are
applied to fix them. Firmware-Updates Over-The-Air (FUOTA) is a firmware
update application framework for LoRaWAN, but packet loss is an unsolved
issue for such firmware updating frameworks. State-of-the-art packet dissem-
ination uses the Low-Density Parity Checks (LDPC), but this has decoding
overhead. Also, it is inflexible due to its fixed-rate nature. The code can not be
dynamically adjusted to adapt to temporary changes in channel conditions.
In this work, we provide critical analysis to justify replacing Low-Density Parity
Checks code (LDPC) proposed in FUOTA with the famous code Random Linear
Network Coding (RLNC). The benefit of RLNC shows when scaling to multic-
ast networks using LoRaWAN FUOTA as fewer messages need to be exchanged
to serve the complete network of firmware updates. An analysis is presented
on how to configure the finite field size, generation size, and redundancy for
generation-based RLNC. The parameters are optimized to cope with the worst-
case packet-error rate. As such, RLNC can optimally counter every lost packet
with redundancy with near-zero decoding overhead. Since devices sleep after
decoding a set of fragments, or the generation, sending additional fragments
does not decrease efficiency. Finally, the decoding probability is provided as an
analytical tool to show that a specific amount of redundancy can deal with a
specific worst-case packet-error rate.
To evaluate and test the RLNC code for LoRa, embedded firmware and terminal
software have been developed to do indoor and outdoor measurements. This
testbed has been developed with a custom control plane replacing all FUOTA
MAC layer modules (Fragmentation, Multicast, Synchronization, Device Man-
agement, etc.). Therefore, it can be shaped into custom network configurations
meant for evaluating the firmware updating process without having to set up
infrastructures like ChirpStack or TheThingsStack. Our work’s testbed can isol-
ate the decoding process and evaluate it for artificial packet drops.
Results are presented, which show that systematic coding phase of LDPC will
perform poorly compared to RLNC. This systematic phase is at least as large as
the firmware update. Between 38% to 88% improvement in decoding success is
found by using RLNC in case of varying network conditions due to burst loss.

iv

Preface

Doing a thesis project in the middle of the COVID-19 pandemic slowed things
down. My motivation was stunted, and even doing the simplest tasks was tough.
Also, visiting the faculty was not an option. Some people work well in isolation,
but everyone needs social interaction. Luckily, this changed entirely after the
university opened for students. This is why I felt like my project started only
at that moment. The lesson I learned is that having people around you leads
to rhythm, happiness, enthusiasm, and many creative moments.

Many directions and ideas were considered in the search for novelty. Most of
these ideas did not make it into this thesis. I now accept that self-found ideas
take a long time to fully conceptualize, review for novelty, and implement. This
makes the end result truly your own and is very risky. It is a scary road, but
I’m glad I took it.

I want to express my respect and gratitude to MSc. Kees Kroep, my daily
supervisor. You bring great excitement to doing research and solving Game
Theory puzzles! Secondly, thanks to Dr. R.R. Venkatesha Prasad for providing
me the opportunity and guidance to undertake this project. I would also like
to thank my direct and indirect friends and colleagues in the ENS group for
the unlimited amount of coffee, wild goose-chase brainstorming sessions, and
feedback. Specific thanks go out to Anup, Niels, Layla, Sury, Naram, Josine,
Tareq, Mike, Gabe, Eric, Vineet, and many others for helping in collecting
and reshaping the many divergent ideas that a thesis project brings with it. I
would like to thank you, Britt, for all your support, for being the lovely and
ever-happy person you are, and for helping me get through this challenging yet
memorable period. Finally, I would like to express my gratitude for my family
and, specifically, my mother.

David J. Zwart

Delft, The Netherlands
27th June 2022

v

vi

Contents

Preface v

Acronyms 1

Symbols 3

1 Introduction 5
1.1 Reducing device maintenance . 6
1.2 Contributions . 7
1.3 Thesis structure . 7

2 Background 9
2.1 LoRa physical layer . 10

2.1.1 Packet duration . 11
2.2 LoRaWAN layer . 12

2.2.1 Class A, B, and C . 13
2.2.2 LoRaWAN Medium Access Control 15
2.2.3 Network topology . 16

3 Related work 19
3.1 Scalability . 20
3.2 State-of-the-art . 21

4 Network Coding for Firmware Updates 23
4.1 Firmware Dissemination . 23

4.1.1 Encoding and decoding 24
4.1.2 Fixed-rate and rateless coding 24
4.1.3 Network Coding . 25

4.2 Random Linear Network Coding 25
4.2.1 Coding system overview 26
4.2.2 Finite field mapping . 26
4.2.3 Generation-based encoding 28
4.2.4 Randomized encoding . 29
4.2.5 Pseudo-random number generator 31
4.2.6 Decoding algorithm . 32

4.3 Decoding performance . 33
4.3.1 Decoding matrix size . 33
4.3.2 Decoding probability . 35
4.3.3 Decoding latency . 35

vii

5 Testbed Design 39
5.1 Wireless and wired interfaces . 40

5.1.1 Configurations with Source and Sinks 41
5.1.2 Flash replay RLNC session 43

5.2 Decoder tests . 45
5.2.1 Packet error rate . 46
5.2.2 Artificial packet loss . 46
5.2.3 Generation success threshold 47

5.3 Projecting onto LoRaWAN . 48
5.3.1 FUOTA firmware layers 48
5.3.2 Comparison TheThingsNetwork and ChirpStack 49
5.3.3 Low-Density Parity Checks 50

6 Evaluation 51
6.1 Experimental validation . 51

6.1.1 Indoor test results . 51
6.1.2 Outdoor test results . 54

6.2 Decoder model validation . 57
6.2.1 Packet error rate . 57
6.2.2 Single decoder . 58
6.2.3 Network decoding . 59

6.3 Burst loss . 62
6.4 Comparison RLNC and systematic coding 65

7 Conclusions and Future Work 67
7.1 Future work . 67
7.2 Conclusions . 68

A LoRaWAN FUOTA extension 73

viii

Acronyms

ACK Acknowledgement. 20, 25, 29, 67

ARQ Automatic Repeat Request. 20, 29

blob Binary Large Object. 23–25, 28, 35, 43

BW Bandwidth. 10–13, 44, 52, 53, 57

CDF Cumulative Distribution Function. 35

CR Coding Rate. 10, 19, 66

CRC Cyclic Redundancy Check. 10, 19, 33

CSS Chirp Spread Spectrum. 10

DC Duty Cycle. 12, 13

DR Data Rate. 10

FEC Forward Error Correction. 10, 19, 20

FOTA Firmware Over-The-Air. 19

FUOTA Firmware-Updates Over-The-Air. 6–8, 14–16, 19–21, 23, 27, 39, 40,
47–50, 66–68, 73, 75

IID Independent and Identically Distributed. 62

IoT Internet of Things. 5, 19, 28

LCG Linear Congruential Generator. 32

LDPC Low-Density Parity-Check. 7, 8, 19–21, 49, 50, 65–68

LFSR Linear Feedback Shift Register. 32

LoRa Long-range wireless area network. LoRa is a long-range low-energy
proprietary radio technology brought forward by the chip manufacturer
Semtech and the non-profit organisation LoRa Alliance. iii, 5–13, 16, 19–
21, 23, 25, 37, 39–41, 43, 44, 46, 48–50, 66

1

LoRaWAN LoRaWAN is a public wide area network (WAN) providing con-
nectivity and compatibility with many off-the-shelf LoRa chipsets. iii, 5–9,
12–17, 19–21, 25, 40, 47–50, 62, 65, 67, 68, 73, 74

LPWAN low power wide area network. 6

LRConf LoRaConfigurator. 40–43

LUT Look-up Table. 26, 27

MAC Medium Access Control. 7, 9, 12, 14–16, 21, 23, 39, 40, 47, 49, 62, 67,
73, 74

MC Multicast. 44

NC Network Coding. 20, 23, 25

NS Network Server. 16, 17, 48, 49, 67

OAP Over-The-Air Programming. 19, 28

OSI Open Systems Interconnection model. 9

OTA Over-The-Air. 19

PER Packet Error Rate. 28, 29, 40, 45–49, 52–54, 57–60, 62–64

PHY Physical. 9, 10, 15, 47

PMF Probability Mass Function. 35, 63

pRNG Pseudo-random number generator. 29–32, 43

RLNC Random Linear Network Coding. 7, 8, 19–21, 23, 25–36, 39, 40, 43–45,
47, 49–51, 57, 61, 62, 65–68

RREF Row-reduced Echelon Form. 26, 30, 33

RSSI Received Signal Strength Indicator. 41, 43, 45, 52–55

SF Spreading Factor. 10–12, 40, 44

SNR Signal-to-Noise Ratio. 41, 43, 45, 52–55

stream Abstraction for a sequence of messages transmitted through a computer
system or network. 24, 25

TOA Time-On-Air. 11, 12, 14

UC Unicast. 44

WAN Wide Area Network. 13

WSN Wireless Sensor Network. 19

2

Symbols

BW Bandwidth. 11

CR Coding rate. 11

D Number of end devices. 60, 61

F Fragment size. 23, 24, 30, 34–36, 43

G Generation size. 28–30, 33–36, 43, 57, 58, 60, 61, 65

Npayload Packet payload symbol count. 11, 12

Npre Packet preamble symbol count. 11

Nf Number of firmware fragments. 23, 24, 34–36, 43

Ng Number of generations. 33, 34, 36, 66

PGD Network decoding success probability. 60

PTX Transmission power. 10, 13, 52, 53, 57

Pfail Decoding failure probability. 35, 58, 60

R Redundancy-extended generation size. 30, 33–37, 48, 57, 58, 60, 61, 65, 66

SF Spreading factor. 11, 12

Tdecode Decoding delay. 36

Tfirmware Firmware update duration. 23, 24, 36

Tpacket Packet duration. 11, 23, 24, 36, 37

Tpayload Packet payload duration. 11

Tpre Packet preamble duration. 11

Tsymb Chirp symbol duration. 11

Ufirmware Firmware update size. 23, 24, 34–36

W PER filter window. 46, 52, 53, 55

δ Redundancy factor. 30, 33, 36, 37, 43, 48, 57, 61, 65, 66

ϵ Uniform packet-error rate. 35, 37, 57–62

3

πB Ratio of time spent in burst state. 62–64

πE Expected mean per. 62, 64

πG Ratio of time spent in good (non-burst) state. 62

E Encoding submatrix. 29, 30, 33

F Uncoded fragment submatrix. 29, 30

h Burst packet error rate. 62

k Good (non-burst) packet error rate. 62

p Burst state entry probability. 62, 63

q Order of a finite field. 25, 26, 35, 36

r Burst state exit probability. 62, 63

x Good vs Burst frequency/duration coefficient. 63, 64, 66

MD Decoding matrix. 28–30, 32, 33

ME Encoding submatrix. 28–30

Φ Encoded fragment submatrix. 29, 30

4

Chapter 1

Introduction

The infrastructure of Internet of Things (IoT) is being enriched by many dif-
ferent free-to-use non-cellular radio technologies and LoRaWAN (Figure 1.1) is
a very popular one. However, the wireless protocol LoRa, which drives LoR-
aWAN, is not a good fit for transmitting large payloads required for, for example,
firmware updating.

Figure 1.1: LoRa and LoRaWAN logos

LoRa technology provides connectivity for a high amount of devices while
maintaining reliable long-range communication and low energy consumption -
a genuinely unique combination of capabilities. Applications like climate and
crop monitoring, automation and control of irrigation, smart building/lighting
control, and remote energy metering (gas, water, solar energy) are just a few of
the many applications where LoRaWAN is beneficial. See Figure 1.2 for such a
network.

Figure 1.2: Example LoRaWAN star network with two gateways
providing connection for multiple end devices to a LoRaWAN back-
bone (Network Server and Application backends).

LoRa is free-to-use for the public, and it is set up using inexpensive gateways
and IoT end devices, each equipped with a standardized LoRa radio. The
LoRa radio uses a unique wireless technique to receive messages with low signal

5

strength, allowing large areas to be covered. When a LoRa end device transmits
back messages, it consumes similar amounts of energy compared to other low-
power networks. However, the end device is put to low-power sleep when not
transmitting or receiving, resulting in low energy consumption and years of
battery life. The device can only send messages at relatively low speeds to ensure
that long distances are covered. So, low energy consumption, long sleeping
times, low data rates, long-range, and long battery lifetimes make LoRa an
attractive network. It is for these reasons that the LoRaWAN network (see
Figure 1.2) is estimated to be the leading non-cellular low power wide area
network (LPWAN) technology by 2026 making it very interesting for research
studies like those presented in this work[1].
So, what is the catch? The challenge of low-power long-range communication

is the chance of lost messages due to interference with other devices transmitting
at the same time. The result is packet loss, which can be detrimental. For LoRa,
it is common to disable acknowledgments and retransmissions to keep the traffic
simple and predictable. Consequently, packet loss is something that needs to be
taken into account when designing a LoRa application and network configura-
tion. Also, the device is inactive due to its long sleep time to save power, which
means it is harder to communicate with it, and its availability is, therefore, low.
Quite some engineering effort goes into being able to communicate with such a
sleepy device.

1.1 Reducing device maintenance

Although deploying the network on remote locations is feasible with LoRa, it is
challenging to reach the devices once maintenance is necessary. Consequently,
the cost and difficulty for an engineer to go around are high. It, therefore,
is cheaper and quicker if the firmware could be updated remotely and for all
devices in a deployed network. Given that LoRa end devices face packet loss
and that firmware updates require many packets to be sent in sequence, a new
solution is needed to give applications running over this network the capability to
be updated reliably. Similar to other wireless network types, in LoRaWAN the
application firmware update mechanism is named Firmware-Updates Over-The-
Air (FUOTA)[2]. This name resembles its remote aspect of updating devices
using LoRa as the wireless physical layer and LoRaWAN as the medium access
control layer.
Without remote or on-premises firmware updates, devices are prone to se-

curity vulnerabilities or reduced compatibility with the application. It is a fact
that on-premises firmware updates are a necessity and requirement[3]. However,
transmitting new firmware in fragments with LoRa is not trivial. The LoRa net-
work presents a challenge due to the high chance of packet loss. Therefore, a
firmware update might not arrive entirely or correctly. This thesis presents a
combination of novelties to improve firmware updates for LoRa in the following
problem statement:

Thesis Problem Statement Firmware updates specifications and example
applications have been released into public domain[4, 5, 6, 7]. In other work, the
security aspects of FUOTA, multicast scalability and energy consumption have
been analyzed[8, 9, 10, 11]. Certainly, applications have already been realized,

6

which implement FUOTA for multiple LoRa devices. These applications use
three proposals which extend the LoRaWAN Medium Access Control (MAC)
layer with commands for block fragmentation, time synchronization and mul-
ticast communication for FUOTA[12, 13, 14]. Given the progress in this area,
it is surprising that the evaluation of the fragment block code Low-Density
Parity-Check (LDPC) used in FUOTA is missing. To the best of the author’s
knowledge, this choice has not been critically evaluated or improved with a bet-
ter fragment code. Secondly, no concrete methods were developed to analyze
the success rate of FUOTA, irrespective of the implemented fragment decoder.
Such a method is essential, given that LoRaWAN networks have to deal with
varying conditions due to packet loss and burst loss.

The thesis objective is as follows:
Implement Random Linear Network Coding (RLNC) for LoRa on provided

STM32 F446RE embedded devices and SX1261 radio shields. Develop a robust
testbed with measurement storage for evaluating packet erasure on devices placed
remotely or nearby. Use increased network utilization to evaluate the RLNC
decoder tolerance against real and artificial packet erasure due to uniform or
burst loss. Provide analysis and observations of measurement results to suggest
which code and coding configuration is most suitable for FUOTA under poor
channel conditions.

1.2 Contributions

The main contributions described in this thesis are as follows:

• Developing a mathematical framework for evaluation of a RLNC decoder
for performing high-duration firmware updates (Chapter 4). The genera-
tion decoding success rate is a metric for determining whether a specific
encoding configuration is going to succeed.

• Develop a testbed using real hardware for measureming the RLNC de-
coding probability as well as LoRa network packet error rates. Different
testbed configuration provide methods for evaluating RLNC with FUOTA
applications in LoRaWAN (Chapter 5).

• Comparing LDPC currently used in FUOTA to RLNC (Chapter 5).

• Performing indoor and outdoor experiments to collect data for studying
packet loss scenarioss.

• Evaluating performance of RLNC for burst loss using the Gilbert-Elliot
burst loss model (Chapter 6).

1.3 Thesis structure

Chapter 2 provides background on LoRa and LoRaWAN. Chapter 3 presents
related works and justifies the need for the research of this thesis using RLNC for
FUOTA. Chapter 4 introduces the RLNC encoding/decoding scheme in detail
and establishes relevant parameters, a mathematical analysis framework and

7

observations to be used for our testbed presented in Chapter 5. This chapter
elaborates the hardware, software capabilities and custom LoRa control plane
for doing evaluation of the RLNC end device decoder and provides a strategy
on how to project the insights from Chapter 4 to a LoRa star-network and
extends to the context of LoRaWAN class B and C in multicast mode. Following
this, Chapter 6 presents the results and observations from experimental data
and simulations to compare FUOTA using RLNC to FUOTA using LDPC and
systematic coding. Finally, Chapter 7 concludes this work and provides leads
for future work with interesting research targets to extend this work.

8

Chapter 2

Background

This chapter explains the three network layers LoRa and LoRaWAN consist of.
Figure 2.1 shows that three media layers are covered compared to the Open
Systems Interconnection model (OSI) model, which has four additional host
layers. The Physical (PHY) and Data Link layer are treated as one layer in this
chapter. Note that although this layer is configured differently per region, only
the region Europe is assumed as the region of operation. Other regions are out
of the scope of this work.

Figure 2.1: OSI seven-layer vs LoRa three-layer network models (image
from Semtech Developer Portal[15])

Section 2.1 explains the control over the LoRa PHY Layer. Secondly, Sec-
tion 2.2 presents the MAC Layer configurability and network commands in or-
der to inter-operate with LoRaWAN. Finally, it is explained how an application
layer needs to hook into the PHY and MAC layers in order to operate, which
provides the basis for realising the testbed of Chapter 5.

9

2.1 LoRa physical layer

LoRa packets are sent using the Chirp Spread Spectrum (CSS) modulation
technique. The symbols of a packet are transformed into up and down-chirp
symbols when modulated by this technique. Each chirp starts on low frequency
and ends on high frequency after which the next chirp symbol starts. The pre-
amble consists of up-chirps which increase linearly in frequency, followed by two
sync down-chirp symbols. Together the preamble and sync symbols are used for
detecting a packet at a receiver. Finally, the data symbols are sent by applying
an offset to the starting frequency of each chirp. This explains why the data
symbols look like they are split into smaller pieces - the linear frequency increase
causes the chirp to wrap to the lowest frequency if the maximum frequency is
reached.
The LoRa protocol works very well even below the noise floor over long

distance[16, 17]. This is achieved by spreading the symbols over time with
the Spreading Factor (SF), increasing the transmission power PTX and increas-
ing the signal Bandwidth (BW). The SF parameter, of which its inverse is Data
Rate (DR), stretches the symbols in time making it easier for a receiver to lock
onto the signal. The downside is that this consumes more energy, so a balance
between energy and signal quality needs to be found. The same holds for in-
creasing the parameters PTX and BW, although these are not specific to LoRa
PHY only. The parameters BW, SF and PTX define the packet duration, but
these are not the only parameters to improve communication robustness.
Figure 2.2 shows the packet structure in symbol and binary representation.

The preamble is 8 symbols long by default. This is followed by the optional
header. This header, which contains its own Cyclic Redundancy Check (CRC)
field, specifies the payload length, whether the 16 bits CRC is present at the
end and what Coding Rate (CR) is applied. The CR provides Forward Error
Correction (FEC), but will not help with lost packets(packet erasure)1. The
CRC is a compact representation of the packet, also called a checksum, which
can be calculated with the packet payload. If the reconstructed CRC value does
not match the CRC in the packet, the packet is flagged as faulty and an error is
sent to the radio LoRa receive error handler. Given that faulty packets are not
valuable, throughout this thesis it is assumed the packets are erased as if they
were never received at all.

Preamble Sync Header Payload CRC

8 symbols 4.25 symbols HDR+CRC Npayload 16 bits

CR 4
8 CR ?

8

Figure 2.2: LoRa PHY packet structure with preamble, optional
header, payload and CRC fields. The payload and last CRC fields
are coded with configurable CR.

The packet is transmitted with a certain transmission power setting ran-

1The CR defines the amount of additional bits provided to correct a limited amount of
packet bit errors. This FEC is part of the proprietary firmware of the LoRa radio frontend.

10

ging from −17 dBm to 14 dBm or 20 dBm (depending on choice of LoRa radio
hardware). This thesis does not explore transmission power on received signal
strength except for testing in preliminary lab experiments. The primary argu-
ment for this is that new LoRa radio hardware is released by manufacturers at
a high pace, rendering measurements with any used radio chip outdated or even
obsolete.

2.1.1 Packet duration

Long range wireless communication sacrifices some performance aspects com-
pared to short range communication. Each packet takes time to transmit, called
the Time-On-Air (TOA). The longer each symbol transmission takes or the more
symbols are transmitted for each packet, the more energy and time is required
for each packet. Energy consumption is very important, but previous work has
been done on this matter, and, therefore, the energy aspect is not in the scope
of this thesis[11, 10, 18]. The aforementioned SF parameter is the most critical
control parameter of the packet TOA.

The SF parameter defines the number of quantization steps per chirp or fre-
quency step. Such a small frequency jump is called a chip. Each chirp in-
creases in frequency by these quantized frequency jumps and wraps around at
the highest frequency. A higher SF requires more chips to be traversed before
the next chirp symbol starts, resulting in a quadratic increase in transmission
duration. The BW defines the speed at which the chips are produced. There-
fore, a higher BW results in a higher chip rate, which translated to a higher
symbol rate and data rate. In other words, more data can be sent in the same
chirp time frame. There are three possible values for BW: 125 kHz, 250 kHz and
500 kHz. However, 250 kHz is the most realistic bandwidth limit as is explained
in Section 2.2.

Now the packet TOA equations are presented[19]. The choice of BW and
SF define the maximum data rate and the data rate has great influence on
the possible communication range. Equation (2.1) presents the inverse of the
data rate, the symbol duration Tsymb. Following, Equation (2.2) shows that the
preamble duration is dependent on the symbol duration Tsymb and preamble
length Npre. From Equation (2.3) and (2.4) it can be deduced that the payload
duration is very configurable2, whereas the preamble is quite static. Resulting,
Equation (2.5) is mostly influenced by the payload settings.

Tsymb =
2SF

BW
, (2.1)

Tpre = (Npre + 4.25)Tsymb, (2.2)

Npayload = 8 +max

{
0,

⌈
8Npayload − 4, SF + 28 + 16CRC− 20H

4(SF − 2DE)

⌉
(CR+ 4)

}
,

(2.3)

Tpayload = Npayload · Tsymb, (2.4)

Tpacket = Tpre + Tpayload. (2.5)

2The payload symbol length has some intricate choices like optional header H, data rate
optimization DE for SF 11 or 12 and some fixed parts like 16-bits CRC etc.

11

Equation (2.5) leads to the logarithmic TOA plots in Figure (2.3). This
Figure shows that high SF like SF11 or SF12 result in packet duration in the
order of hundreds of milliseconds up to multiple seconds. Therefore, great care
must be taken to prevent excessive packet duration because the throughput of
the network becomes very low. This might be desirable for extremely energy-
optimized applications, but this thesis’ premise depends on quite a high amount
of packets to be transmitted and lower SF is more beneficial. In Chapter 6 this
becomes clear when the firmware update success rate is evaluated.

20 40 60 80 100 120 140
Payload size [bytes]

10 1

100

Ti
m

e
on

 A
ir

[s
ec

]

Packet ToA vs SF and payload size

SF7
SF8
SF9
SF10
SF11
SF12

Figure 2.3: Time on Air TOA at BW 250 kHz for different payload size
Npayload and SF . High spreading factors like SF11 and SF12 show
much higher packet duration (> 1 sec).

The next section dives into the LoRaWAN MAC layer of LoRa, which intro-
duces the fair use policies, constraints on available wireless frequencies, and the
concept of the Duty Cycle (DC) limit is introduced. Furthermore, the three
device classes A, B, and C are brought to light in the context of this thesis.

2.2 LoRaWAN layer

The LoRaWAN stack is an open standard maintained by the collective named
the LoRa Alliance®. Continuous updates are released and for this reason, dif-
ferent versions exist with each specification manual. Practical MAC commands
are added, but also security considerations are applied. Throughout this work,
it is assumed that all information is based on version v1.1 (not specifications in
the range of v1.0.x)[20].
LoRa frequencies are part of the ISM bands (Industrial, Scientific, and Med-

ical radio bands). Gateways and/or end devices may use some of the same pre-
defined (sub-)bands within the ISM bands given very tight fair use constraints.
Such constraints ensure that high amounts of devices on LoRa or other network
protocols can co-exist as much as possible. These limits are rarely enforced on a

12

radio hardware level, so it is often up to the application or Wide Area Network
(WAN) backbone to enforce this. Table 2.1 presents the bands labeled g, g1,
g2, g3 and g4. It is due to the 10% DC and 500mW transmission power limits
that g3 is the most viable band to use for the firmware update application.

Name Min Freq. Max Freq. DC Max BWa Max PTX

g 863.0 MHz 868.00 MHz <1% 500 kHz <25mW
g1 868.0 MHz 868.60 MHz <1% 500 kHz <25mW
g2 868.7 MHz 869.20 MHz <0.1% 500 kHz <25mW
g3 b 869.4 MHz 869.65 MHz <10% 250 kHz <500mW
g4 869.7 MHz 870.00 MHz <1% 250 kHz <25mW

aThe bandwidth values here were capped off by configurable bandwidths. Offset sub-bands are
available, but share the DC limit.

bThe band g3 is the best candidate for transmitting firmware updates due to its 10% DC limit
and 500mw PTX.

Table 2.1: Frequency bands with duty cycle limits (DC), bandwidth
(BW) and max transmission power (PTX).

Next, the three classes of LoRaWAN end device modes are explained to under-
stand better what will practically work for the application at hand. Before this is
explained, the concept of message flows needs to be defined. LoRa acts as a star
network. This means messages can be sent from end devices to gateways and
vice versa. The LoRaWAN network does not give incentive to implement peer-
to-peer traffic between end devices as the DC limit is very low (1% or 0.1%).
Therefore, the network type is classified as star network (see Section 2.2.3). It is
common to define messages from the end device to the gateway as uplink traffic,
which is also the most common traffic as will be shown later when class A is
defined. Similarly, messages from the gateway to the end device are classified
as downlink traffic. The downlink message flow direction is the most interesting
in the scope of this thesis. Therefore, the next section will provide insight as to
which LoRaWAN class supports downlink traffic capabilities best.

2.2.1 Class A, B, and C

Classes A, B, and C exist to provide runtime adjustments for devices to improve
reachability by increasing energy consumption. This means devices in Class B
and C will listen and possibly transmit more using their radio frontends, which
is the main contributor to energy consumption. Class A is the default and
in this class, it is impossible to transmit downlink messages asynchronously
simply because the end device will be in sleep mode. This class defines that
uplink messages are device initiated after which the network may schedule one
or two downlink time slots. This is not a feasible class for sending many down-
link messages. Secondly, the required downlink traffic for the firmware update
application can benefit greatly from multicast downlink messages3.
There is an easy shortcut to understand classes better:

• A: asynchronous (aloha uplink-oriented)

3Multicast messages can be received by multiple devices which are configured through the
same multicast group using the GroupID identifier

13

• B: beacon (synchronous bidirectional)

• C: continuous (asynchronous bidirectional)

Each end device needs to upgrade by request or be upgraded dynamically to
class B or C to function in either of these classes. It is assumed throughout this
thesis that Class B or C is configured for a firmware update application that
depends almost completely on downlink traffic. The reader is referred to work
that explains the scalability of Class B for multicast traffic in great detail[9].
More recent work studies the implementation of firmware updates FUOTA for
multicast traffic in Class B and analyzes bottlenecks in the existing MAC layer
command structure required for this FUOTA application type[11].
Class B is time-synchronized using gateway beacons which are transmitted
in a period of 128 sec by default. This sets up a strict time-division schedule
between each beacon called ping slots. Each ping slot is a contract between
the LoRaWAN network and the end device enforcing that the device listens for
downlink transmission during that time slot. The number of ping slot subdivi-
sions is determined by the ping slot periodicity. The resulting period between
each possible slot is 1 sec up until 128 secs. From this, it is clear that the number
of messages that can be sent in Class B can only be 128 messages per 128 seconds
resulting in a maximum (optimistic) rate of 1 message per second. Therefore,
scheduling downlink messages is expensive, and transmitting messages with low
information value is wasteful. Luckily, multicast messages can be sent using the
same ping slot construct to reach more devices at once. The devices are (se-
curely) registered into multicast groups first, which provides these devices with
enough configuration to be able to listen to and decrypt the downlink messages
from one or more gateways. This is an essential optimization, as now the same
firmware update messages can be used for many devices at once.
The ping slots are randomly, yet deterministically, offset using ping slot offset.

This value defines what offset the device and gateway will use for the ping
slot periodicity. This mechanism exists to offer more downlink transmission
opportunities for multiple different devices, or device groups. This ping slot
offset is not studied as this thesis does not make assumptions about whether
Class B or C is chosen.
It is fact that near the end of the beacon period, ping slots could cause the

next beacon not to be scheduled for transmission4. Simply because a gateway
cannot transmit more than one message at the same time. This is called beacon
blocking and, although there exists a guard around the beacon transmission, it
can cause some ping slots at the end of the cycle to be unuseful[21]. In effect,
some ping slots at the end of the beacon period cannot be used for downlink
multicast transmissions. This can be checked by calculating the TOA from
Equation (2.5) and adding this to the absolute starting time of a ping slot. If
the beacon guard window overlaps, it is best to either choose a shorter payload
and thus shorter TOA. Alternatively, it is best to not send on those ping slots
to ensure the Class B beacon can still be sent. Concluding, when taking into
account such scheduling constraints Class B is a viable option for transmitting
the intended multicast application fragments on a periodic time-synchronized
sense[11].

4The beacons are transmitted with very tight timing error margins, so deferring transmis-
sion is not possible by design.

14

Class C dictates that the end device is continuously listening, which means
the energy consumption is high. The benefit is of course that these devices
can accept asynchronous downlink traffic compared to Class B and at possibly
higher message rate as there is no ping slot construct. It is, however, not a
given that Class C is viable for any network of devices, because this depends
on the deployment. Therefore, throughout this thesis, it is not defined whether
either Class B or C is used. Instead, the network throughput is optimized to be
used as efficiently as possible5. This will be shown in Chapter 6 where channel
conditions are taken into account. The next Section introduces the MAC layer
packet structure, to show that the LoRaWAN packet has more overhead, which
limits the size of the application payload to be sent.

2.2.2 LoRaWAN Medium Access Control

Figure 2.4 extends the PHY packet structure from Figure 2.2 and shows how
three layers nest the application payload. The bottom layer contains the applic-
ation payload (encrypted FRMPayload). The actual method of how the backbone
network uses encryption to secure this payload is beyond this thesis’ scope. Sim-
ilarly, throughout this work it is assumed that the default configuration is used
for the MAC, therefore, detailed explanation will be left out and this is presen-
ted for reference. Only the first Radio PHY layer is used in this work and the
payload field in this layer is filled with custom control commands as explained
in Chapter 5.

Preamble HDR+CRC Payload CRC Radio PHY Layer

PayloadHDR MIC PHY Payload

PortHDR FRMPayload MAC Payload

Figure 2.4: Overview of LoRaWAN packet nesting structure for the
Radio PHY layer, PHY payload and MAC payload layers. The bot-
tom layer contains the encrypted frame payload FRMPayload for the
application.

For the FUOTA application there exist three extension specifications: clock
synchronization[13], fragmentation[12] and multicast[14]. These specifications
are summarized in one application process specification[22]. A short excerpt
from the multicast specification is shown in Figure 2.5. It can be deduced
from commands like McClassBSessionReq and McClassCSessionReq that the
devices are commanded to join a multicast session for either Class B or C mode.
The end device must have indicated their Class beforehand through an uplink
message. How this specifically works for Class B differs from C. Class B has
a bit field in the MAC payload header, whereas Class C has a custom MAC
command DeviceModeInd for it (the header field must not be used for Class C).

5For all network coding tests using the testbed of this thesis, the radio is set to continuous
listening (similar to class C) as energy consumption is not of concern.

15

Figure 2.5: Multicast commands extending the LoRaWAN MAC layer
with Command ID (CID), transmitter origin and description. Image
from LoRa Alliance[14].

For brevity, most of the LoRaWAN MAC commands have been omitted here.
For more information the reader is referred to Appendix A where relevant MAC
commands for a FUOTA session are presented.

2.2.3 Network topology

The LoRaWAN network is a star network topology from the perspective of
end devices(referring to Figure 1.2), which means that end devices are not in
communication with each other. One or multiple gateways ensure end devices
are connected to the backbone network, which has much more throughput as it
is not built on top of LoRa but Ethernet, cellular, etc. The backbone consists of
the Network Server (NS) which is a generic adapter serving traffic management
from and to many gateways and end devices. Because multiple gateways can
receive the same message from an end device, it is the responsibility of the NS to
deduplicate the messages. The gateway does not process the internal message
payloads, but instead, it only forwards the messages to the right NS.
The NS processes the message and forwards the resulting payload to a known
and verified application server.

Figure 2.6 shows that multiple gateways can provide overlapping coverage for
a subset of end devices. Therefore, the network topology from the perspective of
NS is a two-hop network where the end devices and gateways form an incomplete
bipartite graph. This abstraction of LoRaWAN is used as basis for projecting
LoRaWAN on the testbed in Section 5.3. The next chapter will summarize
relevant works used for this thesis, taking into account this network topology.

16

D1

D2

D3

D4

D5

G1

G2

G3

G4

Backbone

NS

End-devices Gateways

Figure 2.6: The LoRaWAN network forms an incomplete bipartite
graph connected to backbone infrastructure. End devices (blue) are
serviced only by gateways (green). The Network Server (NS, orange)
connects all gateways in a clique.

17

18

Chapter 3

Related work

Firmware updates of embedded devices are done by directly connecting to a
device. Therefore, after the devices are deployed in the field, a remote update
mechanism is required to avoid having to visit each device separately. Exactly
such firmware update protocols have been developed for almost all popular
Wireless Sensor Network (WSN) protocols like Bluetooth[2], ZigBee[23], LoR-
aWAN[18] and IoT in general[24, 25]. These firmware updates protocols are of-
ten named Over-The-Air (OTA), Over-The-Air Programming (OAP), Firmware
Over-The-Air (FOTA) or Firmware Updates Over-The-Air FUOTA application
frameworks. Throughout this work we will refer to FUOTA applied to LoRa
context - unless specified otherwise - due to this being the common term for it
in the LoRaWAN community[26, 22, 6].
FUOTA has the responsibility of transmitting/receiving updates, correcting
faults, and loading new firmware securely and reliably. As of now, a great num-
ber of studies have been done in the field of firmware updates for LoRaWAN.
The main driving reason is that it is such a challenge to perform large-size data
transfers over this error prone, low rate LoRaWAN networks[8, 11, 18, 27]. The
primary challenges are packet errors and erasure. LoRa’s proprietary physical
layer provides FEC and CRC error detection on the hardware level, which can be
configured on the software level. This becomes clear by reviewing the SX1261/2
datasheet, a commonly used LoRa radio shield and driver specification[19].
FUOTA also offers mechanisms to deal with both error and erasure correc-
tion using the block code LDPC[4, 12]. It is possible that this code was chosen,
because of its popularity in 5G New Radio[28]. However, it is surprising that
LDPC was selected as the FEC capabilities are already provided by the propri-
etary LoRa radio hardware. Therefore, LDPC is not optimal for LoRa devices.
In the case packet errors are detected but the error count exceeds the maximum
for the LoRa CR setting, the packet must be discarded. This means additional
packet erasure. This fact has been previously fortified by the work of peers[29].
Although LDPC does provide limited capabilities for repairing erased packets,
it has been shown that the statistical overhead due to non-ideal parity matrix
rank can only be reduced by increasing the number of transmitted fragments to
high numbers[12]. Using this reference, it is known that the overhead for only
20 fragments is 10% and even for 100 fragments the overhead is on average 2%.
Later, it is shown that this can be improved: block-based generation RLNC has
a neglibible decoding overhead.

19

3.1 Scalability

As packet erasure has been established as an issue, another challenge arises for
FUOTA due to the number of downlink packets that must be sent to a possibly
large group of devices. LoRaWAN supports multicast messages in its MAC layer
to address this in Class B and C as was stated in Section 2.2. Previous works by
peers present thorough analysis and simulations to address the scalability of us-
ing multicast for LoRa class B devices[9, 21]. From this analysis and by looking
at popular LoRaWAN network stacks like TheThingsNetwork and ChirpStack,
it has become clear that message confirmations using Acknowledgement (ACK)
are not advised for LoRaWAN. To make this point even stronger, Class B or
C do not support confirmations for multicast in the MAC layer. Therefore,
it is up to the application layer to provide enough redundancy in the form of
FEC or verification by aggregation or selective ACK using a form of Automatic
Repeat Request (ARQ). This work focuses mainly on providing feed-forward
redundancy, whereas ACK-confirmations are outside the scope of this work.

To the best of the author’s knowledge FUOTA performance has not been
analyzed yet in the context of non-ideal network conditions. Also, no average
and burst erasure analysis has been applied to FUOTA framework using LDPC
as of this moment. It’s, for this reason, the well-studied encoding Network Cod-
ing (NC) protocol RLNC is proposed to deal with providing enough fragment
redundancy, dealing with the scalability of a LoRa network, and, adapting to
LoRa’s multi-gateway star network.
RLNC has been developed for generic broadcast networks[30]. Recently, how-
ever, the erasure code was also evaluated for LoRa. The decoding latency has
been studied through simulation, but no analysis or insights were presented
on how the devices were modeled or what radio configurations lead to better
throughput[31]. Also, this work assumes multi-hop network topology for LoRa,
which is as of this moment not possible since LoRa must be set up in star net-
work topology (single-hop).
Other recent studies, outside the field of LoRa, show that the code is a near
optimal decoding protocol concerning decoding efficiency given the choice of the
Galois field size (decoding complexity) is traded off with decoding latency and
redundancy[32]. Recent work however also shows the decoding complexity of
two RLNC encoders can be combined to reduce decoding complexity resulting
in a Fulcrum or Adaptive Fulcrum code[33]. The authors extend the mathemat-
ical framework to trade-off decoding probability and computational complexity
based on the original RLNC mathematical equations[30], which is also what has
been done in this thesis report. However, concerning computational complexity
it has been shown in work by peers that the energy consumption of the LoRa
radio - not the primary micro-controller unit - is the greatest contributing factor
to the total energy consumption of a LoRaWAN end device[11]. Given that a
FUOTA session mostly requires the end device to receive messages over its ra-
dio, it makes sense to choose near-perfect decoding computational complexity
if the total energy consumption is negligible and, more importantly, if a higher
probability of decoding successfully is guaranteed. For this reason, this thesis
focuses on providing analysis, real measurements, and validation using RLNC
and not using newer Fulcrum codes.

20

3.2 State-of-the-art

It has been mentioned that FUOTA currently is provided with LDPC code,
which has been presented in the LoRaWANmulticast MAC-layer specification[14].
Other crucial mechanisms like fragmentation[12], time synchronization[13] and
process[22] MAC-layer extensions have also been published in specifications by
the LoRa Alliance. Similarly, companies like ARM, Semtech and STMicroelec-
tronics are developing their own take at FUOTA[4, 26], which is based on (or
showed the need for) the specifications. The result is publicly available software
and documentation resources [6, 7].
Other work shows how multiple gateways can simultaneously contribute to

the FUOTA performance to counteract limits like the permitted duty-cycle on
the selected ISM-band radio frequency[27, 34]. It is interesting to see from
their simulation results that a higher amount of cooperating gateways reduces
the total network energy consumption, and the update duration and increases
the update efficiency. This thesis will not study combining multiple gateways
as it’s clear that the benefit of multiple gateways will still hold. Similarly, a
lot of work was published concerning the cryptograpy and security aspects of
firmware updates and the root-of-trust bootloader[6, 8]. This thesis will not try
to improve this as it has been extensively reviewed.
As might be clear there is no work published that takes a critical look at the

FUOTA erasure-correcting code from a network perspective. To gain insights
on this level of abstraction, simulation is essential for evaluating scalability. One
related work does this through a LoRaWAN multicast Class B implementation
in the ns-3 simulation framework[35]. These insights have been taken into ac-
count in this thesis. Another related work provides the simulator FuotaSim to
analyze the performance of dissemination LoRaWAN under non-ideal channel
conditions[36, 18]. This simulator implements the LoRaWAN MAC layer and
shows the control plane commands. Surprisingly, the simulator does not in-
corporate the LDPC code of FUOTA although it is given that the code has
imperfect decoding efficiency. Therefore, this thesis provides an alternative ap-
proach which does not simulate the LoRaWAN MAC layer. Recent work by
peers studied and provided measurements of the MAC layer concerning energy
and FUOTA session duration [11]. Instead, we provide a time-discrete simu-
lation on the application level to provide a fair comparison between primitive
uncoded dissemination, LDPC and RLNC. Real-life indoor and outdoor experi-
mentation results using our custom LoRa testbed support our claims that RLNC
is a very suitable code for FUOTA.

21

22

Chapter 4

Network Coding for
Firmware Updates

Network Coding(NC) is a broad term for network-optimized packet coding,
which improves network robustness and efficiency[37]. Transmitted packets are
fragmented, transformed, and forwarded, so the output packets are more suit-
able against faulty network behavior. Multiple aspects define a network’s be-
havior. For example, the number of end devices, whether data is multicast or
the probability of packet loss, can bottleneck network performance. A firmware
payload is too large for the LoRa network to process all at once. Such a firm-
ware payload is named a Binary Large Object (blob).
This chapter explains the fundamentals of firmware dissemination in Section 4.1.
Next, the principle of sending a generic blob using the NC scheme RLNC is
presented in Section 4.1.3. This provides insights why specifically RLNC is a
powerful NC scheme for firmware dissemination. Finally, Section 4.3.2 presents
a mathematical framework for evaluating configurations of RLNC, which is ap-
plied in Chapter 5.

4.1 Firmware Dissemination

Firmware dissemination is the process of fragmenting a firmware payload into
smaller fragments in sequence, transmitting these to all receivers, and recover-
ing from imperfections like errors or erasures(explained in Section 4.1.1). The
targeted devices must receive all original fragments. Otherwise, the new firm-
ware can not be adequately reconstructed and can not be trusted to work as
intended.
Fragmenting the firmware needs to be done while taking into account the limita-
tions of the intended network like physical layer constraints, message scheduling
bottlenecks, and MAC layer frame overhead, to mention some examples. The
firmware of size Ufirmware symbols is sent with fragments of size F symbols, as
shown in Equation (4.1)), which results in Nf fragments. Following, the total
session duration Tfirmware defined in Equation (4.2) dependent on both Nf and
the transmission period Tpacket of each individual fragment. As will become
clear in Section 4.3.3, the FUOTA session takes very long. Therefore, it is

23

crucial to keep Tfirmware as low as possible (Equation (4.2)).

Nf =

⌈
Ufirmware

F

⌉
, (4.1)

Tfirmware = NfTpacket. (4.2)

Techniques exist to reduce Nf before dissemination. So-called difference al-
gorithms take advantage of changes in the target device’s firmware because an
update is a successor of existing firmware. By comparing an already installed
firmware version with an updated firmware, redundant data is removed result-
ing in a diff with Ndiff fragments where Ndiff ≤ Nf holds. Other algorithms
like RSync[38], RMTD[39] and R3Diff[40] can reduce the blob size even further
by applying compression across the disseminated fragments. However, since
these optimized algorithms have been developed to full maturity, it is outside
this thesis’ scope to reduce and compress the firmware size itself[25]. Therefore,
the firmware with size Ufirmware is considered a constant factor defined by the
disseminated application firmware.

4.1.1 Encoding and decoding

An encoder accumulates fragments to generate a stream of coded fragments.
The receivers must collect a certain number of these encoded fragments to be
able to reconstruct the original payload. A decoder algorithm is implemented
on each receiver. Such a decoder is designed to be tolerant against fragment
faults caused by poor network conditions on the packet level. Two such faults
are packet errors and packet erasure. These two faults can be prevented by
appending reparation symbols to each packet or transmitting redundant packets.
The decoder takes advantage of these two types of redundancy with the highest
possible decoding efficiency. This efficiency is defined by the bits required to
decode successfully compared to the transmitted bits. Decoding efficiency is
independent of the number of transmitted packets over the network. For ex-
ample, suppose two packets are required for decoding successfully, and four
were transmitted because of two erased packets. In that case, the decoding
efficiency will still be 100% as only no additional information was necessary.
Therefore, since packet erasure can still cause decoding failures for a perfect
decoder, decoding efficiency is insufficient to determine decoder performance.
The decoding probability is a complete statistic, because it incorporates a ran-
dom packet error/erasure model, redundancy, and decoding efficiency[33, 29].
The decoding probability is the first step to evaluating the decoder for static or
dynamic network conditions.

4.1.2 Fixed-rate and rateless coding

Relevant to the context of this work, two main classes of coding exist. Fixed-rate
coding adds redundancy based on a fixed code rate. The stream of fragments is
extended with redundant information, which constitutes a fixed ratio compared
to the original unencoded stream. This ratio is determined beforehand and
can not be changed without first exhausting or terminating the current stream.
Another variant, named rateless coding, does not require determining and ex-
changing the code rate beforehand as the stream can be extended on-the-fly.

24

In other words, the maximum number of encoded packets is not limited by a
code rate and, therefore, the stream can be extended without having to flush
the decoder(reset). Concluding, rateless codes provide flexibility.

4.1.3 Network Coding

Network performance is primarily evaluated by throughput, the number of data
packets it can exchange between transmitters and receivers for a certain dura-
tion. Data packets alone are not sufficient for the network to stay operational.
A network must exchange control packets to ensure proper synchronization and
dynamic adjustments to counteract network side-effects (refer to Section 2.2.2
for LoRaWAN control packets). These two packet classes are called the data
plane and control plane.
A NC algorithm makes the network more robust by combining the control plane
and data plane packets. Fewer control packets must be exchanged to disseminate
a blob payload. Less ACK control packets are required to verify the fragments
have arrived without faults. ACK control packets provide feedback from end
devices to compensate for packet erasure. The transmitter can then compensate
by transmitting redundant fragments. At first sight, it seems that this solves
the issue of erasure, but sadly it does not scale properly with network size. Also,
additional feedback communication lowers the bandwidth for transmitting rel-
evant data - this is especially clear in LoRa. This effect is visible in a large
network through the scaling phenomenon called ACK-implosion. More added
devices in the network require more control frames to be sent, which ’implodes’
or reduces the network throughput on the data plane.
However, the RLNC scheme is a significant improvement that reduces the amount
of end device feedback in case of network faults.

4.2 Random Linear Network Coding

RLNC is a rateless erasure coding scheme sharing similarities with fountain
codes[29]. Theoretically, a limitless number of encoding symbols can be gener-
ated to compensate for packet erasure (refer to Section 4.1.2). Secondly, it is a
linear code, which means that linear operations are used on a specific mathem-
atical field to encode and decode the fragment symbols. In the case of RLNC,
the field is a finite field called Galois Field (GF)[30], which is defined by a spe-
cific degree and irreducible polynomial1. Thirdly, encoding helper symbols are
selected in a pseudo-random fashion within this finite field, which is why RLNC
is classified as a random code. Finally, it is a network code which shows itself in
two ways. Firstly, in case of packet loss, receiver nodes only need to give feed-
back on how many packets were lost, not specifically which packets. Secondly,
intermediate nodes recode fragments without knowing the original unencoded
fragments using independently generated random encoding symbols. It depends
on the network topology whether intermediate nodes are present. However, the
LoRa network topology from Section 2.2.3 shows that the single-hop network

1Mathematical operations on the symbols in a finite field always results in outcomes within
the field. No overflow or carry is required as the modulo operator reduces the outcome within
the field by using the irreducible polynomial. For order q = 2k = 256 (degree k = 8), or 256
elements in the finite field, the irreducible polynomial x8 + x4 + x3 + x2 + 1 (hex: 0x11D) is
used.

25

does not naturally have such intermediate nodes. For this reason, this work will
focus on encoding and decoding only.
Next, the finite field is explained, a mathematical construct used by the RLNC
encoding and decoding algorithms. Note that the decoder algorithm is of more
importance as it is implemented on end devices with limited processing power.

4.2.1 Coding system overview

Figure 4.1 shows the generic approach to a RLNC encoder-decoder system
between two hosts. A large payload is transmitted from the encoder system
to a decoder. To achieve that the firmware is pre-processed using these trans-
formations:

1. Fragmentation (Section 4.1.3)

2. Finite-field mapping (Section 4.2.2)

3. Generation segmentation (Section 4.2.3)

After pre-processing, each generation is completely precoded using a RLNC
generation-based encoder :

1. Randomized encoding vectors selection (Section 4.2.4)

2. Generation fragments and redundancy precoding (Section 4.2.4)

3. Encoded fragment transmission

Finally, the transmitted encoded fragments are put into the decoder one by one.
For each new fragment decoding can be done to progress further.

1. Perform fragment decoding by matrix row-reduction to Row-reduced Ech-
elon Form (RREF)

2. Verify decoding success and store generation in non-volatile storage

As fragmentation was previously covered (it is not unique to RLNC), finite
fields and generation segmentation are covered next.

4.2.2 Finite field mapping

A Finite Field (Galois Field) represents a limited numerical system like a digital
system. The advantage of finite fields is that overflow does not occur. All
encoding and fragment symbols used for RLNC are represented within the Galois
finite field. Each symbol is of the size as the field order q. Relevant options for
q are 20, 21, 22, 24, 28 and 216. This symbol size can, therefore, be represented
in bits (binary numbers). As is shown in Section 4.3.2 that q = 256, noted as
GF(28), is accurate enough for decoding with RLNC. This accuracy is practical
because one or more 8-bit symbols can be nicely packed into a byte, two bytes,
or 4 bytes. Also, the addition, subtraction, multiplication, and division field
operators can be optimized for q = 28 through the use of Look-up Tables.
Beyond 16-bits, the time complexity of operations defined on the Galois field
becomes quite large. For q = 216 optimization using LUTs is no longer feasible

26

Firmware
Fragmentation & Generation

Pre-processor

RLNC Generation
EncoderBinary

Firmware
Source

RLNC Generation
Decoder

FUOTA State
Manager

Generation
Buffer

Transmission Medium

Decoding
Storage

Verification
Post-processor

Figure 4.1: RLNC system overview for FUOTA with fragmentation
preprocessor, generation buffer, and generation encoder controlled by
FUOTA State Manager. The dashed transmission medium represents
an arbitrary network topology to one or more receivers. Transmitted
fragments are decoded by a RLNC decoder and verified before being
stored.

Operation Time Complexity Function
Addition O(n) g(x) + h(x)
Subtraction O(n) g(x)− h(x)
Multiplication O(n2) g(x) · h(x)
Inversion O(n2) g(x)−1

Table 4.1: Trivial (un-optimized) time complexity for finite fields
without use of multiplication or division LUTs, where n = ⌈log2(q)⌉
or the degree of the field[41].

as the memory required to store this is too excessive. Table 4.1 presents the
time complexity of operators used in the RLNC code.

Finite fields and their operators are extensively used in cryptographic (RSA),
hashing (SHA), and parity check (CRC) functions. For this reason, it is outside
the scope of this thesis to discuss optimizations for the Galois Field through
LUT. The RLNC algorithm works correctly for q = 28 by calculating interme-
diate results in online fashion (without help of LUT).

Concluding, the definition of a symbol in the Galois Field depends on the
degree of the field. Symbol mapping is necessary to convert from a binary
system of a certain degree (in bits). For example, a symbol or word on a 32-bit
architecture system must be split into four GF(28) symbols. Another better
approach would be to work from with bytes (8-bit) directly instead, so the
mapping becomes trivial as both a byte and GF(28) can represent the same
symbols. This approach is assumed in this thesis.

27

4.2.3 Generation-based encoding

Section 4.1 introduced the concept of fragmenting the firmware payload and
Section 4.2.2 showed symbol conversion to GF(28). Generation-based RLNC
goes one step further by introducing segmentation called a generation2. After
fragmentation completes, the fragments are grouped into generations of G frag-
ments in size. The RLNC encoder iterates each generation separately. Uncoded
fragments are put in the rows of an encoding matrix ME . Similarly, encoded
fragments end up in a decoding matrix MD after reception. Both ME and MD

are augmented matrices with on the left side encoding vectors and the right the
original fragment rows. The only difference between ME and MD is that they
are maintained by the encoder and the decoder, respectively.
There are clear benefits to using generations:

• The decoder needs G linearly independent generation fragments to be able
to decode successfully.

• The decoder allocates much less memory for the decoding matrix MD.

• Decoding the generation takes few computations, and the workload is split
into small pieces.

• After decoding, the end device can save power until the next generation
starts.

When a generation is being transmitted over the network, selecting a certain
number of redundant fragments is possible to cope with packet erasure (Packet
Error Rate (PER)). Since packet erasure can only be estimated or predicted,
this is a feed-forward instead of a feedback approach. If one or more receivers
could not decode the generation, the estimate of the network packet erasure was
incorrect, and some form of feedback is required to at least indicate this to the
transmitter (encoder). Multiple situations are possible:

1. The redundancy was not enough to cope with uniform PER.

2. The redundancy was exactly right (or too high), and the whole network
has completed successfully.

3. Temporary packet erasure (burst loss) caused multiple packets to be erased,
causing generation decoding to fail, but these bursts do not occur often
nor uniformly.

Case 1 is solved by statically increasing redundancy beyond the threshold of
average packet erasure. This requires a small number of feedback packets from
the receivers in the network at the beginning or some form of network through-
put estimation. Such a configuration is named block-based RLNC[42].
Case 2 seems to be what is desired, but it is not likely that this kind of uniform
packet loss occurs in reality. Also, if excessive redundancy is applied, much time
could be spent on packet transmission without extra information.
Case 3 is called burst loss and this is much more complex. It can be solved in

2The term generation is often referred to as a block or page in more generic OAP and IoT
works for blob payload dissemination[25].

28

two different ways. By increasing the redundancy threshold beyond the worst-
case PER, a lot of redundant packets will counteract the burst loss. However,
when no burst loss is present, the redundancy is overestimated and wasteful.
Therefore, a second solution to Case 3 is adjusting redundancy dynamically
with feedback from receivers. Consequently, redundancy for moments without
burst will not waste as many packet transmissions. Also, this feedback can be
used to extend, restart or terminate generations if needed to be able to either
guarantee successful completion or to gain knowledge and statistics about what
caused the generation failure(s). However, great care is needed to avoid ACK-
implosion because of too much feedback communication, especially for a large
network.
It can be deduced from these three disjoint cases that an evaluation method is
needed to estimate and correct the performance of one or more RLNC decoders
present on the network. The decoders synchronously decode the same generation
but will experience different packet losses due to independent channel charac-
teristics. Consequently, the redundancy must be adjusted based on performing
this evaluation statically or dynamically. One solution for this is sliding-window
RLNC. This variant has been developed to adjust generation (or redundancy)
sizes dynamically. Sliding-window RLNC has been shown to outperform block-
based RLNC and classical feedback mechanisms similar to ARQ[42]. This RLNC
extension requires extra control plane packets compared to block-based RLNC.
The core working principle is the same. For that reason, block-based RLNC
encoding algorithm is introduced first. The sliding-window extension is treated
in Section 5.2.
As previously mentioned, encoding is performed on matrix ME , which is an

augmented matrix with encoding vectors on the left side. The following sec-
tion explains how these vectors are generated using a specific choice of Pseudo-
random number generator (pRNG) to ensure linearly independent vectors.

4.2.4 Randomized encoding

The RLNC encoding algorithm is explained now. First, the uncoded state is
presented, which is the desired state after decoding. Also, it is explained how
to evaluate whether decoding will fail. A precise mathematical basis is provided
for understanding the encoded state. The essential arithmetic to achieve this
encoded state is explained.
Beforehand, a generation is assembled and buffered as explained in Section 4.2.3
into a matrix F with symbols F[i, j] = fij in GF(2k). In this notation i is the
fragment index (row) and j the fragment vector index (column) as shown in the
uncoded or decoding matrix MD from Figure 4.2. It is observable that the left
submatrix I is an identity and, therefore, a linearly independent matrix. Note
that this is also the desired state after decoding has been completed. If, after
receiving sufficient linearly dependent fragments, the encoding matrix does not
reduce to an identity matrix (unity symbols on the diagonal), the matrix has
become corrupted. This topic is revisited in Section 4.2.6. Alternatively, if too
many fragments were linearly dependent, the matrix rank is smaller than G.
This method is used to determine decoding success.
Equation 4.3 is the encoding function which produces the encoding matrix

ME with (left) submatrix E and (right) submatrix Φ in Figure 4.3. Each row
of E is called the encoding vector of the associated encoded fragment row in

29

1 0 · · · 0 f00 f01 · · · f0F
0 1 · · · 0 f10 f11 · · · f1F
...

...
. . .

...
...

...
. . .

...
0 0 · · · 1 fG0 fG1 · · · fGF

I F

G

G

FF

Figure 4.2: RLNC uncoded/decoding matrix MD. Note the submatrix
I is an G×G identity matrix (RREF) and the fragment submatrix F
is a rectangular G× F matrix.

Φ. Elements in submatrix E will be randomized and the end result is used to
transform submatrix F into submatrix Φ. Note that redundant rows are gener-
ated which results in R encoded rows. This is possible, because the coordinates
Φ(i, j) are essentially linear combinations of symbols fij and, therefore, more
rows can be generated than provided as input to F.

e00 e01 · · · e0G ϕ00 ϕ01 · · · ϕ0F

e10 e11 · · · e1G ϕ10 ϕ11 · · · ϕ1F

...
...

. . .
...

...
...

. . .
...

eR0 eR1 · · · eRG ϕR0 ϕR1 · · · ϕRF

E Φ

G

R

FF

Figure 4.3: RLNC encoding matrix ME. Note the encoding submatrix
E is an R×G matrix and the coded fragment submatrix Φ is a R× F
rectangular matrix.

Φ(i, j) = E(i, 0)F(0, i) +E(i, 1)F(1, i) + · · ·+E(i, G)F(G, i)

= ei0 · f0i + ei1 · f1i + · · ·+ eiG · fGi = ϕij ,

where 0 ≤ i < R and 0 ≤ j < G.

(4.3)

The encoded generation size becomes R defined in Equation 4.4. The redund-
ancy coefficient δ is the ratio of added packets to the generation. Therefore, R
always is greater or equal to the original generation size G.

R = (1 + δ)G ≥ G (4.4)

The encoded fragments found on the rows of Φ must be transmitted over
the network. The encoding vectors on the rows E could be appended to each
fragment packet as well, which is called explicit transmission[37]. Alternat-
ively, the encoding vectors can be randomized using a deterministic type of
pRNG (pseudo-random number generator). The pRNG seed belonging to each
fragment is appended to each fragment to synchronize the decoders, which is

30

called implicit transmission[37]. The implicit type of randomization requires
the decoder software to implement the same pRNG functionality as the encoder
software. Also, the decoder must be able to reset the internal state of said
random-number generator to the state provided with each fragment (a seed
value). This reduces overhead as fewer data symbols need to be sent. This
optimization becomes especially apparent when the encoding vectors are nearly
the same size as the encoded fragments.
Only a subset of pRNG types is suitable for this code. The requirements and
choice of pRNG are explained next.

4.2.5 Pseudo-random number generator

Multiple properties classify a pRNG, which are prioritized from high priority
(top) to low priority (bottom) for RLNC as follows:

1. Cyclic length or period (and internal state size)

2. Repeating/non-repeating outcomes

3. Includes/excludes symbol 0

4. Memory/code footprint

5. Computational complexity

6. Uniform randomness

7. Cryptographic security

The decoding phase of RLNC is not of a cryptographic kind whatsoever, and
it should not be used that way (7). Therefore, statistical unpredictability3 of
the pRNG is not of importance, and it need not be perfectly uniformly random
(6). The memory space and code footprint complexities should be matched
with the used hardware and firmware, but because the intended application has
a low sampling rate, it is not of great importance (5). The same argument
extends to computational complexity (4). The random symbol source could
include the symbol 0 in its possible outcomes to create more unique encoding
vectors, which means that more linearly independent encoding vectors can be
generated. In general lower probability of linearly dependent encoding vectors is
very desirable, so the 0-symbol should generally be included (3). Furthermore,
the pRNG should be able to repeat the same elements in the Galois Field for
the same reason of desiring independent encoding vectors (2). This aspect is
discussed further in Section 4.3.2 where the decoding failure probability due to
linear encoding vectors is treated. Finally, the simplest and most important
property of the pRNG is the so-called cycle period, which, if it is too small, is
important because of possible faulty pRNG behavior (1).
All pRNG have a bounded cycle. When the number of samples drawn from
the generator exceeds the cycle period, theoretically, the pRNG design can be
reverse-engineered. This is not important for the RLNC coding scheme (refer to
property 7 about importance of cryptographic strength). However, note that the
RLNC encoder draws many symbols from the generator simultaneously while

3An unpredictable pseudo-random number generator is still deterministic.

31

encoding a generation. With a short period, a pRNG can only generate a lim-
ited number of unique encoding vectors. Therefore, the cycle should be great
enough to guarantee a sufficient number of unique sequences of symbols, rather
than just individually random symbols. In conclusion, the design and thus inner
state size of the pRNG must be considered when selecting the generation size
of the RLNC.

Three types of pRNG were considered: Linear Feedback Shift Register (LFSR),
Linear Congruential Generator (LCG) and XoShiRo (xor-shift-rotate). These
are quickly compared.
LFSR is simple to implement with XOR-arithmetic4, computationally highly
efficient and can be scaled up to desired period. This type of generator only
generates values in its cycle once and excludes the symbol 0. Therefore, prop-
erty 2 and 3 do not meet the requirements set before. Finally, the cycle period
is equal to 2n − 1 with n-bits state elements, which means that the 32-bit state
will result in a high period.
LCG is simple to implement using modulo, multiplier, and increment operat-
ors. This efficient design can generate the same symbols, including the symbol
0, so all requirements are met. However, it is considered a very poor pRNG
implementation based on property 7 (statistical strength)[43]. The next option
is much stronger.
XoShiRo is a novel, very robust and efficient scrambler inspired by filtered
LFSR[44]. It uses XOR and rotation arithmetic. Many variants can be picked
to meet a specific set of requirements. Each XoShiRo type of pRNG has been
proven to be statistically robust with high cycle period length[44].
For referential purposes, the XoShiRo32** (XoShiRo, 32-bit state, 8-bit output)
was picked for the RLNC encoder and decoder, which is not a standard variant.
Four states of 8-bit are combined to a total of 32-bit internal state with a high
period (232 − 1). The 8-bit output symbols perfectly matches the finite field
GF(28) (Section 4.2.2).

Concluding, the choice of pRNG is crucial for determining the quality of
the RLNC encoding vectors. The probability of linearly dependent encoding
vectors can be reduced by high pRNG period and allowing for repeated symbols,
including the symbol 0. The next topic is the inner working of decoding and
decoding matrix rank determination to test for completion.

4.2.6 Decoding algorithm

The decoding matrix MD is periodically filled with newly received generation
fragments. Each time a new RLNC fragment packet is received, the firmware
unpacks the packet. The packet contains the generation index, the implicit
randomization seed for the encoding vector, and the fragment symbols. Multiple
actions are performed by the RLNC decoder to update the MD:

1. Check that the fragment generation index is equal to the decoder genera-
tion index; otherwise, reset and flush the decoder.

4XOR is one of the fundamental types of digital arithmetic. It performs an exclusive-OR
operation on two inputs.

32

2. Check that the decoding matrix has full rank and the identity matrix is
not corrupted. If successful, flip the success state5.

3. Use the fragment random seed to generate G encoding symbols (the en-
coding vector).

4. Insert the reproduced encoding vector and encoded fragment into MD

5. Perform row-reduction by row-swapping and pivotting using GF(28) finite
field arithmetic.

Decoding has four possible states after each fragment has been processed:
Completed, NoProgress, Progress and Corrupted. The Completed state is
determined by validating the encoding submatrix E in the decoding matrix MD.
As the decoder has previously executed row-reduction, it is guaranteed that the
matrix is in RREF. Therefore, completion is checked by checking the diagonal
of E for ones and zeroes on all other places in the submatrix. The matrix is not
full rank if zeroes are detected on the diagonal. Consequently, decoding cannot
complete. If the decoder rank did not increase compared to the previous round,
the state switches to NoProgress. The encoding vector was linearly dependent
and did not carry enough new information to progress. However, if the rank
increased by one, the state Progress is flagged. Finally, if the decoder processes
a corrupt fragment or seed, the state is changed to Corrupted. The decoder
will have to reset its state and lose its progress because parts of the decoding
matrix have become corrupt. Because this is such a costly event, a mechanism is
needed to prevent fragment corruption. This mechanism is provided by payload
CRC as an integrity check.

Summarizing, RLNC generation decoding should succeed when G fragments
are received, unless linearly dependent encoding vectors were selected or packet
erasure occurred. To compensate for this redundancy factor δ is applied on
G resulting in R fragments per generation. The next section provides math-
ematical equations to get expected performance using different settings of such
parameters.

4.3 Decoding performance

This section provides mathematical tools to evaluate the required memory for
a decoding matrix, the decoding latency, the session duration, the decoding
probability, and the network recovery probability. These tools are essential for
evaluating the RLNC decoder robustness against packet erasure. The equations
applied in the evaluation are presented in Chapter 6.

4.3.1 Decoding matrix size

The encoding vectors in sub-matrix E have a length equal to Ng and there are R
encoding vectors in total. Therefore, the encoding matrix dimensions are Ng

2.

5The testbed decoder will continue decoding after completion. In reality, the decoder skips
new packets after decoding successfully, and the system switches to energy-saving deep sleep
until next-generation fragments are transmitted.

33

Each fragment is of size F and there are R fragments in each generation, but
after each fragment is received row-reduction is performed. When more than
G fragments are received, the decoding matrix is full rank and new rows will
not result in new information. Therefore, the decoding matrix needs only be
allocated with a capacity of G rows and G+ F columns (see Figure 4.2).

SD = G ·G+G · F = G(G+ F) (4.5)

Now, the generation size is related to the configured generation count Ng:

Ng =

⌈
Nf

G

⌉
, (4.6)

and the total exchanged amount of data will exceed the firmware update size (al-
beit only slightly). The following equation shows how generation size, fragment
size and generation count relates to the firmware size:

Ufirmware ≤ F ·G ·Ng. (4.7)

It seems from Equation (4.5) that the generation size Ng has quadratic influence
on the size of the decoding matrix. Note, however, that changing the generation
size will inversely change the fragment size. This effect is visible in plots of
Figure 4.4, which shows the linear relation of decoding matrix size to fragment
size and generation size.

20 30 40 50 60 70
Fragment size [bytes]

1000

1500

2000

2500

3000

3500

4000

4500

De
co

di
ng

 m
at

rix
 si

ze
 [b

yt
es

]

Decoding matrix size vs fragment size
Generation size (G=20)
Generation size (G=25)
Generation size (G=30)
Generation size (G=35)
Generation size (G=40)
Example calculation

Figure 4.4: Allocated RLNC decoding matrix size for different config-
urations of generation size G and fragment size F .

If practical, computational, hardware and radio limitations are ignored, the
parameters Nf and G are free to choose. The next example calculation shows
how this works.

34

Calculation example A firmware blob Ufirmware = 60 kB is transmitted us-
ing Nf = 2000 fragments (F=30bytes per fragment). Assuming G = 20 the
decoding matrix will have a size of SD = 1000 symbols or 1 kB in case each
symbol is a byte. This approach is useful for validating if the memory usage
will not exceed the available dynamic RAM on a target embedded device. Fig-
ure 4.4 shows this calculation result and generalizes it for fragments between 20
and 75 symbols in size and generations between 20 and 40 in size.

4.3.2 Decoding probability

The RLNC decoding failure probability is dependent on two factors: packet
erasure rate ϵ and probability of linearly independent encoding vectors. This
probability is defined as P (m,n, k) in Equation (4.8)) wherem is the transmitted
fragment count, n the generation size and k the field degree (k = log2(q) [32, 30].

P (m,n, k) =

n−1∏

i=0

(1− 1

km−i
) (4.8)

In other words, Equation (4.8) shows the probability of decoding success due
to linearly independent encoding vectors. This function is 0 for all m < n, which
makes sense because decoding can only succeed when n frames are received with
a probability higher than 0. One could state from Equation (4.8) that the prob-
ability of decoding increases monotonically with increasing n. However, this
means the threshold of each generation is increased and, therefore, m must be
increased as well. Concluding, the decoding probability due to non-linear pack-
ets does not become lower for larger generation size n, and only the influence of
k must be further evaluated.

Equation (4.9) extends this decoding probability by including decoding failure
due to packet erasure. This packet erasure is modeled here with Bernouilli prob-
ability ϵ which results in a binomial Probability Mass Function (PMF)[32]. This
PMF is cumulatively summed to acquire the Cumulative Distribution Function
(CDF) using the masking feature of Equation (4.8).

Pfail(G,R, ϵ, k) = 1−
R∑

m=G

(
R

m

)
ϵR−m(1− ϵ)mP (m,G, k) (4.9)

Figure 4.5 shows multiple plots using Equations (4.8) and (4.9). One of the
plots is the perfect finite field decoder, which shows decoding failure probability
based purely on packet erasure. This is achieved by forcing the probability
P (m,G, k) = 1 of Equation (4.8) for m ≥ G. Compared to such a decoder,
a GF(28) decoder has nearly no additional probability of failing due to non-
linear packets. Decoders with GF(24) deviate only slightly, but GF(22) and
GF(21) show undesirable additional decoding failures. Therefore, q = 2k = 28

or higher should be preferred from the perspective of maintaining high decoding
probability.

4.3.3 Decoding latency

The average decoding latency defined as the time step required to encode a
blob, transmit the encoded fragments to one or more receivers and decode them.

35

0% 10% 20% 30% 40% 50% 60%
Redundancy [%]

0.0

0.2

0.4

0.6

0.8

1.0

De
co

di
ng

 Fa
ilu

re
 P

ro
ba

bi
lit

y
Decoding Failure P{fail} vs Redundancy (G=16, R=26, =20%)

Perfect
GF(28)
GF(24)
GF(22)
GF(21)

Figure 4.5: RLNC decoding failure for different Finite-Field degrees
(1, 2, 4 and 8). GF(28) is nearly perfect.

Equation 4.1 previously defined Nf , but now it is refined with finite field symbol
mapping of Section 4.2.4 in mind as shown in Equation (4.10). Note that with
q = 28 or GF(28), the equation simplifies to Equation (4.1).

Nf =

⌈
Ufirmware

F
· 2

8

q

⌉
, (4.10)

R in Equation (4.4) can then be redefined:

R =

⌈
Nf

Ng

⌉
(1 + δ). (4.11)

This leads to the following bounds for the generation decoding latency, which
is defined for decoding success only

NgG ≤ Tdecode ≤ NgR, (4.12)

and complete firmware update duration is then bounded as follows:

Tpacket ·NgG ≤ Tfirmware ≤ Tpacket ·NgR. (4.13)

Calculation example A firmware blob 60 kB of fragments of each 30 bytes
each in GF(28) would result in 2000 fragments according to Equation (4.10).
Assuming generation size G = 20 we require Ng = 100 generations from Equa-
tion (4.6) without redundancy.

36

The packet erasure ϵ must be taken into account. Referring to Figure 4.5,
more than 63% fragment redundancy δ is required to guarantee successful de-
coding for a channel with ϵ = 20% (uniform distribution). Using δ, each gen-
eration sends R = 32 fragments. The whole generation will take between 20
and 32 fragments. If one fragment is transmitted every Tpacket = 1 second, the
decoding latency lies between 20 sec and 32 sec (Equation (4.12)).
With a total fragment count of 3200 , the whole decoding session will roughly
take between 34minutes and 54minutes. This is an optimistic example, indic-
ating that firmware update sessions for LoRa take long to complete.

Basic tools for the analysis of decoding a single generation have been provided.
Multiple generations must succeed, and often multiple end devices will perform
this decoding process simultaneously. Section 6.2.3 presents results the probab-
ility distribution analysis in a network of independent end devices. A testbed has
been developed, which verifies this distribution, explained in the next chapter.

37

38

Chapter 5

Testbed Design

The testbed described in this chapter has been developed to validate and gain
insights about the RLNC FUOTA application layer for LoRa. As will become
clear, the capabilities of the testbed are a superset of collecting decoder perform-
ance statistics. Static and dynamic external factors impact coding performance
on each device in LoRa. Channel conditions, time synchronization, and MAC
dynamically change the probability of decoding the generations in our RLNC
system. Critical factors (f.e. encoding parameters or LoRa, software, and hard-
ware limitations) are evaluated with this testbed presented in this chapter. The
software for the LoRaConfigurator terminal host is published online[45]1. Also
the end device firmware, plots and measurements are available online[46]2. This
leads to the results presented in Chapter 6.

Figure 5.1: SMT32 Nucleo64 F446RE end device with 3D-printed pro-
tective case, SX1261MD2BAS LoRa shield, and 868MHz antenna.

Figure 5.1 shows the STM32 Nucleo64 F446RE device equipped with SX1261MD2BAS
LoRa shield and 868MHz antenna[47, 19]. This device has been flashed with

1https://github.com/davidzwa/LoRaConfigurator
2https://github.com/davidzwa/F446_ProtoBufDevice

39

https://github.com/davidzwa/LoRaConfigurator
https://github.com/davidzwa/F446_ProtoBufDevice

firmware capable of acting as both gateway and end device. However, it is
common in LoRa networks to equip a gateway with a collector radio. A LoRa
collector can operate at multiple SF settings simultaneously, which the SX1261
radio shield cannot achieve. However, using the same device as the end device
and gateway pays off in its simplicity and, most importantly, in the ability to
assign multiple roles without having to change network deployment. Therefore,
only single-channel devices are used for this testbed. Figure 5.2 illustrates two
such end devices in a symmetrical setup.

The two largest flash memory pages on the F446RE chip of 128 kB are not
used by application firmware. Therefore, these pages are available for other pur-
poses. This chapter assumes that the first page is used for storing experimental
measurements and the second page for providing encoded RLNC configuration
and fragments compiled into a small blob less than 128 kB in size.

Figure 5.2: An example of two F446 end devices placed close together.

Furthermore, this chapter explains the possible testbed configurations which
are required to validate the system components. A PC application has been de-
veloped named LoRaConfigurator (LRConf), which can trigger experiments and
store associated measurements. The wireless LoRa and wired UART interfaces
between LRConf and the end device are explained in Section 5.1. Secondly, the
message flow of an experiment testing the RLNC coding application is presented.
Thirdly, Section 5.2 shows how measurements are processed to get estimates for
the PER in real LoRa experiments. Finally, Section 5.3 provides an overview
of constraints, practical experimental observations, and their inferences to in-
tegrate RLNC with LoRa and LoRaWAN. This provides the basis for the next
Chapter 6, where the performance of this novel FUOTA application is evaluated.

5.1 Wireless and wired interfaces

Two end devices communicate over the wireless LoRa interface without any
additional commands required to synchronize their exchanges. This physical
link between two devices is the most primitive possible method of exchanging
frames. Because the LoRaWAN MAC-layer adds quite some message traffic to
set up, gain and defer channel access (Appendix A), the testbed will avoid this

40

additional control plane[11]. Instead, the testbed has its minimal control plane
with capabilities specifically designed for the intended tests. The following list
specifies the capability for transmission (TX) or reception (RX) handlers of each
end device’s firmware:

1. (TX) Identify receiver using Unique Hardware Identifier (UHI)

2. (TX) Mark message as unicast or multicast

3. (TX) Add sequence number for message ordering

4. (RX) Append Signal-to-Noise Ratio (SNR) and Received Signal Strength
Indicator (RSSI) provided by the radio to each message

5. (RX) Drop received unicast messages meant for another device

6. (RX) Store sequence number, SNR and RSSI in Flash measurement stor-
age

7. (RX) Drop packets using a uniform or burst erasure model (pseudo-random,
see Chapter 6)

Next, the basic building blocks source and sink are presented which build up
different experiments using the capabilities mentioned above.

5.1.1 Configurations with Source and Sinks

One source (transmitter) sends messages to one or more sinks (receivers). Each
received message results in a data point, and all points form an experimental
data set. Both sinks and sources can be combined into different Configurations
(Configs) shown in Figure 5.3. Each Config shines a different light onto the
network it consists of. Often there are multiple parameters associated with
the evaluations possible with each configuration. Therefore, experiments iterate
relevant parameters, which are integrated into the experimental control plane.
Each control message sends the specific set of parameters to the sink either
directly using a wired link or indirectly using a proxy end device. It is inter-
esting to note that the configurations have been designed by adding more and
more influencing factors to the network. For example, the most straightforward
configuration, Config C, excludes wireless communication by using a loopback
message handler setting, which results in the ability to evaluate every feature
except for the LoRa interface. This method of progressively evaluating addi-
tional influencing factors while excluding others gives the testbed a compelling
characteristic.
Figure 5.3 shows practical setup configurations with LRConf, the sinks, and

sources. Most options can easily be changed from a unicast to a multicast mode
or vice versa. The configurations are presented as primitive building blocks to
work with. Interesting capabilities are visible in configurations B, C, E and F,
which are explained in more detail next.

41

Source Sink

Source

Sink

Source SinkProxyProxy

Direct

Loopback

Indirect
Loopback

Source
Flash-Storage

Sinks

(A)

(B)

(C)

(D)

(E)

ProxyProxy
Flash Replay

(F)

Flash
Source

LoRa Receiver

LoRa
Message source

LoRa link

Wired link

LoRaConfigurator
Transmitter/Receiver

Flash Memory
Read/Write Storage

Flash
Sink

Sink

Sink

Sink

Sink

Sink

Sink

Source

Source

Figure 5.3: LRConf basic setup possibilities.
Config A Direct source-sink with data storage on another LoRaCon-
figurator.
Config B Proxy variant of A.
Config C Single end device with self-testing loopback.
Config D Multicast source with measurements stored in sink Flash
storage.
Config E Simplification of Config A and C.
Config F Remote replay from flash storage transmitted in multicast
mode.

42

Config B: It provides the capability for the end device to relay messages not
intended for itself. This is achieved by verifying the intended receiver ID in each
message.
Config C: This is more complicated than it seems at face value because the
end device can be instructed to immediately process a certain payload as if a
radio callback passed it - a loopback interface3. This is vital functionality when
testing all variables except for the radio and wireless link. The terminal software
also provides source messages, sink data storage, and tracing/logging.
Config E: This shows that the LRConf terminal handles multiple wired con-
nections at the same, making this config quite similar to Config A, B, and C.
This configuration offers the ability to evaluate a single wireless link between a
sink device and a source device.
Config F: This is the most exciting and complex configuration. Flash storage
is used for replaying messages through a source device. One or multiple sinks
receive this replayed data and store it in flash (i.e., Config D) or at the LRConf
host.
Note, the output from Config F provides data for plots and observations of

Chapter 6. This configuration tests the complete RLNC coding scheme from
Chapter 4 in a repeatable and, therefore, predictable manner. It is the testbed’s
primary and most important purpose to ensure that each component in the
network performs as it should. Stepping through each Config, more complexity
is added to the network progressively. Finally, Config F ends up as the setup
most similar to a real LoRa network running a RLNC decoding session.

5.1.2 Flash replay RLNC session

As was briefly stated in Section 5.1.1 the source device in Config F can send a
stream of predefined messages from its flash storage. This data is programmed
separately from the application firmware with a compiled blob, so it can be
rewritten more conveniently4. The layout of this flash memory blob, the valid-
ation/loading functions, and the execution of commands stored in the blob are
available for review online[45, 46].

Figure 5.4 shows the flow of messages of a LoRa RLNC session as well as
the wired commands sent over USB. Note that the transmitter is not directly
connected to the host PC on purpose. This shows the independence of said
transmitter node and its capabilities to stream multicast RLNC init and start
commands, as well as RLNC fragments, to other nodes without requiring a PC.
This has one small downside and one major benefit. The downside is that almost
all coding parameters like generation size G, fragment count Nf , fragment size
F , and redundancy factor δ are kept constant beforehand. Also, the pRNG
seed for the encoding vectors is constant (see Section 4.2.4). The benefit of this
choice is that the coding experiment is highly repeatable. To compensate for
the static nature of this setup, many different configurations are run to generate
rich experimental results. The host PC needs to synchronize each configuration
to ensure it can track the session properly. It is, therefore, explained how the
chain of messages looks to run decoding experiments.

3In the loopback construct it is not possible to define a SNR and RSSI, so default and
impossible values are inserted.

4Since the data blob is a 128 kB binary file it is convenient to store this with the resulting
measurements for administration purposes.

43

LoRaLRConf
(PC)

RlncStart TX1

RlncStart UC

Rlnc
Receiver

Config Radio
SF/BW/TxP

Config Radio
SF/BW/TxP

Rlnc
Transmitter

RlncInit MC

Config Decoder

RlncFragments
G2 ... Gn

Store Fragment G1Fn

Decode Generation G1

Store Fragment G2Fn

Decode Generation G2

Store Fragment Gn

Decode Generation Gn

RlncTerminate MC

Terminate

Store RLNC Config

Store Result

Log LoRa Messages

Store Result

Log LoRa Messages

Store Result

Log LoRa Messages

Export Plots & Data

RlncFragment G1Fn MC

USB

Figure 5.4: Network message exchange for a RLNC setup. Transmit-
ted Multicast (MC) commands are green and Unicast (UC) in yel-
low. Blue tiles represent command reception and an executed action.
White tiles represent actions on the host PC.

The first phase is performed by sending the RlncStart command, which con-
tains dynamic LoRa parameters like SF, BW, transmission power, and more.
Once this start command is received by the RLNC transmitter, it will autonom-
ously start the session. First off, it responds with the RlncInit command with
its flash configuration on the condition the flash storage content is in the correct
state. The receiver end device then resets its decoding state and forwards the
received RLNC configuration to the host PC for administration.

The second phase starts after a specific timeout on the transmitter. It will
automatically switch to loading and transmitting coded RlncFragment mes-
sages which the receiver adds to its decoding matrix. The receiver performs
row-reduction each time it receives a new fragment, even if it has not received
enough fragments to be able to decode completely. This is because the matrix
rank of the decoder matrix shows how the far decoding session has progressed.
Therefore, the received fragment messages and the updated decoding state are

44

subsequently sent to the host PC to be logged. Once enough fragments have
arrived, the receiver’s decoding state will change from failure to success. Even
after the generation decoding is complete new fragments are still added to the
decoding matrix by overwriting the last row for testing purposes. The second
phase is restarted for each new generation. The receiver unpacks the generation
index value prefixed to each fragment and, therefore, can determine whether
the decoder needs to be flushed for a new generation to start.
The final phase is the termination of the decoding session to command the
receiver to flush all its state. This is done by sending the RlncTerminate com-
mand. Once the host PC receives this forwarded command, it closes the session.
The process is iterated from initiation until termination in different configur-
ations. For example, the spreading factor could be changed to find a time
scheduling bottleneck, or the PER could be swept to see how robust the decod-
ing is.

Finally, the data is post-processed to estimate the channel conditions, the de-
coder successes/failures, and how much redundancy was required to compensate
for packet loss. This post-processing results in plots presented in Chapter 6. The
following section explains how the decoding state updates are post-processed to
get the decoding success rate for multiple redundancy thresholds and specific
channel conditions, as well as other metrics like PER for specific configurations
previously introduced in Section 5.1.1.

5.2 Decoder tests

Currently, two methods of collecting measurements were introduced: remote
and direct sampling. These methods are briefly revisited. In the first remote
method, the sink end device is not connected to a host PC, so it needs a way to
buffer the measurements in non-volatile storage. Therefore, it can store roughly
16000 measurement tuples (SNR, RSSI, and sequence number), after which any
new measurement must be discarded. Section 5.2.1 elaborates how the sequence
numbers are retrieved from the end device and processed to get the PER metric.
The second direct method immediately forwards measurements to a host PC.
This is more suitable for high data-rate measurements like decoding updates
and debugging the decoding process. Also, the resulting data does not have to
be separately fetched from the end device flash, and the flash memory does not
constrain the maximum measurement count. Therefore, this situation is more
favorable for running the RLNC coding scheme with the testbed. However,
one downside is connecting the source and sink end device directly to the host.
The distance between the transmitter and receiver antennas is very short, and
the channel conditions of the environment are almost perfect. To resolve this
Chapter 6.2.1 explains how packets are artificially dropped by software using a
uniform probability model or temporal burst model5. Now it is established how
temporal packet erasure is estimated using the PER metric.

5The parameters for the uniform/burst loss filter are also included in the RlncStart com-
mand

45

5.2.1 Packet error rate

The received array of measurements contains a sequence number for each re-
ceived message. A missing (erased) message can only be determined by analyz-
ing the gaps in the series of these sequence numbers. Now, to determine the
rate at which packets were lost for a certain moment in time, it is desirable not
to include all packets to determine the temporal change in PER. This is solved
by masking the sequence numbers using Equation (5.1). The temporal PER is
estimated using a low-pass averaging filter. This is implemented using a sliding
window of a certain width W . This width determines how quickly the PER
can change; therefore, different values of W provide a different insight into how
bursty the packet loss was in time. The window starts at packet j and ends at
packet k, so the following holds: W = k − j.

pi =

{
1, if packet i erased,

0, if packet i received
(5.1)

PER =
1

k − j

k∑

i=j

pi, for k > j. (5.2)

The PER presented in Equation (5.2) is a reliable estimate of channel per-
formance for a certain time duration W from packet j to k. To determine this
metric correctly, received packets from unrelated external sources should not
be included in the estimation. Otherwise, the estimated PER could exceed 1.
Therefore, functionality is added to force the end device to accept only unicast
messages of a specific type targeted to itself. Other messages are discarded and
will not be added to the data set and PER estimation.
The method described above provides the ability to evaluate what packets were
dropped given measurement data collected using remote sink setups like Config
A, B, D, or F (Section 5.1.1). This leads to PER analysis of experiments done
with the testbed of this thesis, shown in Chapter 6.
To test the decoder for different PER levels, packets can be dropped artificially
for more pragmatic experimentation of the testbed6.

5.2.2 Artificial packet loss

The coding scheme is tested using artificial loss. It is not practical to experiment
with varying radio channel conditions to look for specific packet loss. As will
become apparent with results presented in Section 6.1, burst or temporary loss
is a common cause for packet erasures. Reproducing burst losses in realistic
environments is challenging, inefficient, and hardly repeatable. Therefore, it
becomes intractable to accurately and sufficiently reproduce all levels of burst
loss. As such, it is justified to artificially introduce uniform or burst loss into
the system, so the firmware and decoder can still be thoroughly tested. Also,
real LoRa networks are spread over long-range outdoor line-of-sight locations,
and gateways are located at high elevations. An indoor lab situation can not
reproduce such environments well.

6The result of the remote measurements is useful as input for this artificial packet loss
functionality.

46

Inference 5.1 Measurements from devices located in short range of each other
are reproducible.

Inference 5.1 significantly impacts the testbed’s design because devices can be
placed close together, and artificially introduced packet loss makes experiments
reproducible. As a nice side-effect, the coding scheme can be fully evaluated
without being hampered by unwanted faults in the control plane as (experi-
mental) control packets will never be dropped. Using the concept of artificial
loss, the following section elaborates how the RLNC performance is evaluated
by defining the generation success threshold.

5.2.3 Generation success threshold

As explained in Section 4.2.3 the RLNC session is split into progressive gen-
erations. It has been shown that RLNC can be extended to sliding-window
RLNC to adjust to dynamic changes[37, 42]. However, it cannot be realistically
assumed that end devices can send back information about decoding progress
and estimated network performance7. More analysis is required to prove that
the network as a whole can guarantee not losing feedback packets as well as
RLNC fragment packets. Secondly, it is not a given that the MAC layer can
provide enough opportunities in LoRaWAN Class B and C to let the end devices
respond. The opportunities for LoRaWAN Class B devices are limited by the
ping slot configuration (refer to Section 2.2.2). Although class C devices are
offered more liberty through asynchronous transmission scheduling, the duty
cycle limit of the PHY layer (0.1% or 1%) limits class C as well as B equally
(refer to Section 2.1). For these reasons, it is assumed that dynamic adjust-
ments are disabled. Therefore, each generation must be equal in size and have
a sufficient amount of redundancy to cope with packet erasure.

Inference 5.2 Without feedback from receiver end devices during FUOTA, the
on-the-fly adjustment of decoding parameters like generation size and redund-
ancy is unavailable.

From Inference 5.2 is deduced that sliding-window RLNC is not an option as
that method dynamically increases generation size and redundancy in case of
burst loss or temporary outage. It would require a control plane with feedback
commands which are not available for LoRaWAN.

After a generation of fragments (including redundancy), the receiver should
have received enough fragments to decode the generation successfully. This
point of success marks the generation success threshold. Similarly, if not enough
fragments were received, the redundancy was not optimally matched to com-
pensate. This results in generation failure, and the success threshold is not
defined. The penalty of generation failure is high if the FUOTA scheme does
not have an end device feedback mechanism to restart or extend such a failing
generation. Therefore, the redundancy must compensate for peak (expected)
PER due to burst loss if failure is intolerable.

Inference 5.3 Statically configured RLNC generations require equally sized gen-
erations with enough redundancy to restore lost fragments.

7Sending feedback with decoding updates and network performance is only realistic for
testing environments.

47

The experimental target is to collect threshold values for enough generations
of the same configuration (size and redundancy). However, iterating different
redundancies and generation sizes against different non-uniform channel condi-
tions like burst loss rapidly increases the number of iterations of an experiment.
Therefore, the sweep parameter range should be selected with caution. However,
since all generations in one experiment iteration are equally sized (Inference 5.3),
and generation success is defined by reaching the generation success threshold
for several transmitted fragments, an optimization exists. One generation can
be used to sample many redundancy levels (data points), and the data points
of each generation can be combined into a histogram. After normalizing, the
bins in the histograms will more accurately approach a distribution given that
a high number of generations is sampled in the experiment.

Inference 5.4 Taking the redundancy level capable of counteracting worst-case
PER is sufficient to get a complete success rate distribution.

Inference 5.4 leads to a method for estimating the optimality of a certain re-
dundancy factor δ or R. The reasoning from Inference 5.4 is useful for evaluation
of how well a FUOTA session performs. The target is to reduce the unnecessary
amount of redundancy while still keeping enough to have robustness against
worst-case packet loss.

5.3 Projecting onto LoRaWAN

Although FUOTA for LoRaWAN is still in its infancy, many proposals and spe-
cifications provide a foundation for companies to develop applications to be de-
ployed with a firmware update strategy in mind. One such example comes from
STMicroelectronics who have developed the STM32WL series of system-on-
chip development boards for LoRa accompanied by complete example projects
to develop a FUOTA-based application[48, 4]. This board is equipped with two
separate CPUs, one meant for an updatable application firmware and another
for a fixed FUOTA management LoRaWAN firmware[48]. This setup shows
that FUOTA requires strategic planning starting from the hardware design to
the software stack on the end device. The next section shows the software
blocks currently present in example FUOTA application projects provided by
STMicroelectronics and Semtech.

5.3.1 FUOTA firmware layers

The company Semtech also brings forward specifications for FUOTA layers
presented in Figure 5.5.

The NS (network server) on the right part of the image was briefly introduced
in Section 2.2.3. Common NS server stacks are discussed in the next section.
The App Server and Device Management block has been completely built from
the ground up for this thesis for complete experimental control. High-level fea-
tures such as security with public-private key encryption, over-the-air activation
(OTAA), or activation by personalization (ABP) have been replaced by simple
and insecure device hardware identifier exchange. This thesis’s experimental
setting for firmware updates does not need device activation. The LoRaWAN

48

Figure 5.5: Semtech FUOTA layers for LoRaWAN. The NS device
management and application backend are on the right. The end
device system layers are on the left. Image source: Semtech De-
veloper Portal[26].

MAC layer (on the left) has been completely replaced by the control plane in-
troduced in Section 5.1. Since Class A, B, or C were not implemented, the
Clock Sync block is not required. No accurate timing is required to improve
measurements to estimate PER or decoder failure rates.
The Multicast Setup block has been replaced by a simple control plane using
device hardware identifiers to filter LoRa packets that are unicast and mark
multicast packets with a separate flag. In other words, the Multicast Setup
block was left out of the testbed.
The Dev Mngt (device management) block provides bootloader features for se-
cure firmware updates. The bootloader is responsible for loading firmware at
boot, hence the name. The bootloader is not relevant for evaluation of RLNC
for FUOTA.
The File Frag has been replaced by the RLNC decoder. Validation functionality
is added to evaluate the RLNC decoder output aimed at making sure no decoder
matrix corruption happened during experiments (refer to Section 5.2) and to
track decoder success ratio. To achieve this different functionality was required
than what was provided by the fragmentation decoder of FUOTA. A more in-
depth comparison between the File Frag (also known as Frag Decoder) based
on LDPC (Low-density Parity Checks) and RLNC is provided in Section 5.3.3.

5.3.2 Comparison TheThingsNetwork and ChirpStack

Two well-known LoRaWAN server stacks exist, at the moment of writing.

• ChirpStack (self-hosted, open-source model)

• TheThingsStack (publicly/self-hosted, commercial and open-source mod-
els)

49

The ChirpStack is a network server compatible with LoRaWAN 1.0 and 1.1[20].
It is an open-source server that can only be self-hosted to form private networks.
Together with ChirpStack FUOTA Server, it is an exemplary implementation
to set up a private network for LoRaWAN[49].
TheThingsStack is a stack that is publicly accessible through TheThingsNet-
work. In specific regions around the world, public LoRaWAN gateways provide
coverage to connect private LoRaWAN to the internet. Although this is ideal for
testing LoRa device for connectivity, the stack is not compatible with FUOTA
fragmentation and multicast capabilities and it is not clear if this is going to be
implemented[12, 14, 5].

The Fragmentation Decoder (Frag Decoder) is studied by taking a look at
the embedded example application provided by Semtech’s LoRaWAN firmware
for STM32 devices[7]. This FUOTA example implements the LDPC code.

5.3.3 Low-Density Parity Checks

The FUOTA specification has been publicly provided by Semtech, which pro-
poses a fragmentation block decoder based on LDPC[22]. This is a fixed-rate
block decoder (refer to Section 4.1.2).
It is fact that LDPC has a limited decoding efficiency. Each generation requires
between roughly 2% up for large generations (large blocks) to 10% for small
generations (small blocks) of extra fragments in order to decode succesfully[22].
Based on the decoding probability for RLNC provided in Section 4.3.2, it is
clear that RLNC requires almost 0% extra fragments if GF(28) is used, which is
an overall improvement. This is not the only property for which RLNC is more
favorable.
The LDPC code rate must be determined beforehand. No dynamic adjustments
are possible, so options similar to sliding-window RLNC are not available. More
importantly, the proposed code starts with systematic transmission of all block
packets. Such a systematic coding phase is also available for RLNC simply be-
cause it is a transmission of uncoded fragments. Only after this phase will LDPC
transmit encoded fragments. Surprisingly, when it is known that the network
has packet erasure, the code is not orchestrated to encode packets immediately.
Section 6.1 presents simulation data proving that randomly scrambled system-
atic coding performs very poorly against uniform packet loss and burst loss.
Systematic coding is not an optimal setting for a FUOTA under poor network
conditions.
RLNC is useful in multi-hop networks using the re-encoding feature. Trans-

mitted fragments could be recoded or remixed by intermediate nodes (like in-
termediate nodes or gateways in LoRa) to generate innovative packets. This
feature is not very useful for the current network topology of LoRaWAN. Still,
the possibility that this is an option for custom private LoRa networks is a
benefit of RLNC over LDPC.

50

Chapter 6

Evaluation

This chapter presents evaluations of the testbed using measurements in real
situations. Section 6.1 shows indoor and outdoor experiments to create an un-
derstanding of the testbed system. Secondly, it shows the robustness of the
measurement storage system and complete testbed. Finally, an analysis of ex-
periments classifies multiple types of channel conditions. Following, Section 6.2
uses uniform packet loss to present an analysis of the robustness of a block-
based RLNC decoder and provides a method of analytically establishing the
worst-case performance of a network of devices. The result is the generation
success threshold, which extends to the worst-case network success threshold.
Continuing, Section 6.3 provides time-discrete simulation results for testing a
single decoder against different kinds of burst loss. Finally, scrambling methods
similar to systematic coding are compared to RLNC. These methods provide
insights into why RLNC is such a strong decoding method in case of burst loss,
which concludes this chapter.

6.1 Experimental validation

Multiple outdoor experiments led to the following results, of which two specific
locations: indoor (faculty) and outdoor (park). Although the experimental
setup is detailed, the methodology used did not include reproducibility. Instead,
it serves different purposes.

6.1.1 Indoor test results

The indoor experiments serve four goals set beforehand:

1. Prove the aspects of Configs C and D (one host and flash storage) work.

2. Show that the testbed firmware is able to run for long duration without
crashing.

3. Show only monotonic increase in received sequence numbers (no packet
symbol errors).

4. Prove flash storage is able to retain data.

51

5. Prove no unknown packets are included in the data set.

Experiments were performed, which ran for almost 10 hours, proving goal 1.
These confirm that the firmware is stable and the main functionality is bug-free
(goal 2).
Figure 6.1 and 6.2 show two measurement sets for two different receivers on the
3rd floor and 4th floor of our faculty. Although more data sets were collected on
other floors, these two sets, specifically, were selected as they provide sufficient
insights.
Both receivers sample the same messages transmitted by one transmitter on the
2nd floor of the building. The sample data points contain three measurements:
SNR, RSSI and sequence number. The latter is post-processed to estimate the
PER from Equation (5.2) using a window W = 41 messages1.

(a) 3rd floor RSSI and SNR samples.

(b) 3rd floor PER estimation (W = 41).

Figure 6.1: 10 hour long indoor session from 7PM to 5AM on the 3rd
and 4th floor at the university faculty. The transmitter was sending 4
dummy messages per second from the 2nd floor. Left side: (Yellow:
RSSI), (Blue: SNR). Right side: (Yellow: PER), (Blue: Sequence
number). SF7, BW = 500 kHz, PTX = 14dBm, 872MHz.

Figure 6.1b and 6.2b show that the received sequence numbers never de-
creased. Consequently, both plots indicate that goal 2 was met, which has also

1Window size W needs to be odd for the underlying mathematical toolbox to work, which
has no impact on the result.

52

(a) 4th floor RSSI and SNR samples.

(b) 4th floor PER estimation (W = 41).

Figure 6.2: 10 hour long indoor session from 7PM to 5AM on the 4th
floor at the university faculty. Left side: (Yellow: RSSI), (Blue:
SNR). Right side: (Yellow: PER), (Blue: Sequence number). SF7,
BW = 500 kHz, PTX = 14dBm, 872MHz.

been verified on the data points directly. Therefore, goal 3 was met. Finally,
goal 4 was verified by turning off the transmitter. No alien packets were accep-
ted, therefore goal 4 was met. This is possible because of the packet filter for
the control plane introduced in Section 5.1.
Observations: Figure 6.1a and 6.2a show reduced RSSI and SNR in the first
3 hours, which stopped afterwards. Figure 6.2a shows lower PER, SNR, and
RSSI even thought this receiver was located one floor higher with respect to
the transmitter. but this is not seen in the plot. The PER plot in Figure 6.2b
shows that almost no packet loss occurred for this receiver. Consequently, the
4th floor data set is an experimental control group and the 3rd floor represents
the actual experiment. The PER plot in Figure 6.1b shows increased PER in
the first three hours of the experiment, after which no packet loss was measured.
Without context, it is unclear from the four plots what happened at the start
as some packet loss occurred. This loss went away once the faculty closed late
in the night. One apparent cause became clear. During the evening, students
moved around the transmitter in the faculty and, more importantly, in the same
room. After closing time, these people left the building.

Inference 6.1 Channel conditions can deteriorate with the presence and move-

53

ment of the human body. People moving around the transmitter can cause dis-
ruptions resulting in increased PER.

Inference 6.2 Indoor measurements sampled during night-time result in little
fluctuation.

6.1.2 Outdoor test results

The following goals describe the purpose of the outdoor experiments:

1. Prove synchronous sampling using Config A and B (two independent PC
hosts).

2. Prove the radio and antenna configuration are able to set up a > 1 km
wireless link.

3. Characterize causes of packet loss.

4. Characterize PER associated with burst loss.

Figure 6.3b shows similar measurements stored by one receiver mounted on
the rear of a bicycle. An independent host controls the transmitter(goal 1).
The whole experiment iterated multiple spreading factors. Specifically, SF8 was
selected as it resulted in interesting details highlighted in Figure 6.3b. o The
experiment was a dynamic range test from 0m to 1.2m (goal 2). While riding
the bicycle with a receiver attached to the rear end, the distance was steadily
increased while measurements were stored. The cycled route was quite straight,
visible on the travel route in Figure 6.4. Note that after 800m a concrete bridge
was passed, which is visible on the map. The Start position is synchronous
with the start of the plot. The End marking, however, was reached around the
14min timestamp.
Observations: Figure 6.3a shows that the RSSI started to decrease roughly
at time 3min and the SNR 4.5min. At this time, more trees and other cyclists
started to occlude the direct line of sight to the gateway. The figure also shows
that, between time 11min and 15min, many packets did not arrive. The PER in
Figure 6.3b confirms this in more detail. Secondly, it is clear from this plot that
after time 6min the channel conditions deteriorated slightly. At time 8.5min
high packet loss was measured, which shortly disappeared after, followed by
higher packet loss. Finally, complete outage as the PER approached 100%.
This outage comes from a partial line of sight occlusion due to the concrete
bridge suddenly being between the transmitter and receiver (goal 4).

Inference 6.3 Three typical types of channel conditions are classified: stable,
lossy and bursty (outage).

Inference 6.4 During outage the PER approaches 100% (goal 4).

54

(a) Experiment RSSI and SNR data set.

(b) Experiment PER estimation (W = 201).

Figure 6.3: Experiment on bike with a statically mounted end device
(source) at 2m elevation using a tripod. Three types of packet loss
are marked with the respective labels Stable, Loss and Outage.

55

Figure 6.4: Cycling route near the Technical University of Delft cover-
ing a distance of 0 km to 1.2 km from a source transmitter end device.
The starting point and end point are marked. Between 11min and
14.5min the concrete bridge was passed, which caused outage due to
lack of line-of-sight.

56

6.2 Decoder model validation

It has been established that normal packet loss and burst loss can occur when
conditions like range and line-of-sight change. With this in mind, the RLNC
decoder has been tested using artificial packet loss. This packet loss is con-
figured with the ϵ-parameter. Although it can be adjusted dynamically during
a RLNC decoding session, the ϵ-parameter will initially be kept constant for
clear validation. In Section 6.2.1, the packet loss distribution is presented2.
This distribution verifies that the receiver performs the artificial packet loss fil-
ter properly. This filter is applied in Section 6.2.1, proving that the decoding
probability of one decoder approximates the provided model of Section 4.3.2
closely. Finally, the worst-case decoding probability is studied for a network of
many devices (3000) and constant ϵ to give insight into what faulty conditions
RLNC can repair packet loss.

6.2.1 Packet error rate

Figure 6.5) shows PER boxplots. This information aims to verify that the
artificial packet loss filter works: it is random and behaves similarly to the
expected probability distribution. Each plot represents 30 generations of size
G = 20. The redundancy is δ = 3 (R = 80), or in other words 400% of G. The
PER is estimated over each generation with maximum redundancy, which is a
constant of 80 fragments.

10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0
Configured PER () [%]

0

10

20

30

40

50

60

70

80

Es
tim

at
ed

 P
ER

 (
)

Estimated PER vs input PER ([10%-80%], G=20, R=80)
PER expected value [%]

Figure 6.5: The configured PER resulting in a Bernouilli PER distri-
bution. It is visible from 10% to 80% that the mean PER approaches
the expected value.

Observations: The PER boxplots are evenly distributed around the PER

2The following transmission settings can be assumed SF7, BW = 500 kHz, PTX = 14dBm
unless specified otherwise.

57

filter probability ϵ. Also, the mean PER is generally near ϵ. The mean and
distribution for 80% is on the low side. However, it is shown in Section 6.2.2
that this PER still results in much poorer decoding success rate overall.

Inference 6.5 2400 fragments are sufficient to approximate an Bernouilli ϵ-
distribution.

6.2.2 Single decoder

The effect of artifical packet loss on a single decoder is visualized using the
expression Psuccess = 1 − Pfail from Equation (4.9) in Section 4.3.2. Figure 6.6
shows the modeled probability for different amounts of redundancy (0% up to
400%). The PER is low, which means that only 65% redundancy is needed to
decode a generation. Therefore, only up to 150% redundancy is plotted.
Note, the underlying histogram has been plotted as well for completeness.

0% 20% 40% 60% 80% 100% 120% 140%
Redundancy [%]

0.0

0.2

0.4

0.6

0.8

1.0

De
co

di
ng

 P
ro

ba
bi

lit
y

Su
cc

es
s

Fa
ilu

re

Decoding probability vs redundancy (=20%, G=20, R=80)

Decoder measured
Decoder model
Measured success threshold
Measured success histogram

Figure 6.6: Histogram (yellow). Modeled (black, dotted) and measured
(red) decoder probability for G = 20, R = 80, and artificial packet
loss ϵ = 20%. The resulting generation success threshold is at 65%
redundancy, beyond which decoding success is likely.

Observations: This experiment closely follows the theoretical model. The
success threshold, determined by finding the model 0.995 decoding probability
intersection point, lies at 65%. This fact is similarly observed in the exper-
imental data with artificial packet loss. If, for example, 80% redundancy is
added to the generation size, or 36 fragments in total, the generation will be
decoded with high probability.

Inference 6.6 The redundancy threshold depends on the Psuccess decoding prob-
ability model. Consequently, exceeding this threshold compensates for packet loss
accurately.

58

Multiple PER values have been configured for the real decoder. The data
sets and model have been plotted in Figure6.7. Observations: The plot shows
that ϵ = 70% and ϵ = 80% could not complete successfully with the maximum
redundancy of 300% added to the generation. These conclusions are supported
by the model, which succeeds and fails for the same PER values. Also, the
redundancy threshold does not increase linearly with PER. This is supported
by plots in Figure 6.8. That plot is the Probability Density Function (PDF)
of the model. It shows that for increasing PER, the required number of extra
fragments increases quickly.

Inference 6.7 The decoding probability based on Bernouilli packet loss con-
verges to a normal distribution.

Inference 6.8 For higher PER the decoding PDF increases in standard devi-
ation; compensating this with redundancy is very expensive.

0% 50% 100% 150% 200% 250% 300%
Redundancy [%]

0.0

0.2

0.4

0.6

0.8

1.0

De
co

di
ng

 P
ro

ba
bi

lit
y

=0.1 =0.2 =0.3 =0.4 =0.5 =0.6
Decoding probability vs redundancy ([10%-80%], G=20)

Thr. 35%
Thr. 65%
Thr. 95%
Thr. 140%
Thr. 195%
Thr. 280%
=0.7 (fail)
=0.8 (fail)

Figure 6.7: Measured average generation decoding probability for dif-
ferent channel ϵ conditions. Each data point is represented by 30
independently decoded generations. The redundancy threshold for
succesful iterations is shown in the legend as Thr. Decoding failed
for ϵ=70% and ϵ=80%.

6.2.3 Network decoding

By itself, the decoding probability is not sufficient for determining if a firmware
update session completes successfully. All generations must be received and
decoded fully for the firmware to be of any value. As such, one failed genera-
tion results in complete failure, represented by Equation (6.1). Note that this

59

0% 20% 40% 60% 80% 100% 120%
Redundancy [%]

0.00

0.05

0.10

0.15

0.20

0.25

De
co

di
ng

 p
ro

ba
bi

lit
y

Decoding PDF ([10%-80%], G=20)

PER 10%
PER 20%
PER 30%
PER 40%
PER 50%
PER 60%
PER 70%
PER 80%

Figure 6.8: Model PDF distributions for decoding probability for dif-
ferent PER. The deviation of each distribution increases for higher
PER.

equation is based on Pfail defined with Equation (4.9). It expresses the require-
ment that not only one generation must be decoded successfully, but all G of
them. Secondly, the probability of several devices in a network to succeed is
incorporated using parameter D. A different approach would be required to get
the statistical decoding distribution for a small number of devices (single device
distribution). By taking a high device count, f.e. D = 3000, the individual
device distribution is completely represented with ((Pfail)

G)D.

PGD(G,R, ϵ, k,D) = (1− Pfail(G,R, ϵ, k))GD (6.1)

Figure 6.9 presents the decoding probability of an arbitrary network of 3000
devices presented with the channel condition of ϵ=40%. Similarly, Figure 6.10
introduces ϵ=50% to the network.
Observations: The decoding probability of all generations is lower than one
generation. In other words, the amount of redundancy is greater, and the all-
generation success threshold is shifted to the right. Also, the all-device success
threshold is shifted to the right, where the green region is drawn. This region
indicates the redundancy configurations which will complete decoding. This
region starts at R ≥ 72 fragments or 260% redundancy for ϵ=40%. However,
for ϵ=50% the decoding does not succeed. The 10% additional packet loss had
a ripple effect, and the network required much more redundancy.

60

100% 50% 0% 50% 100% 150% 200% 250% 300%
Redundancy [%]

0.0

0.2

0.4

0.6

0.8

1.0

De
co

di
ng

 P
ro

ba
bi

lit
y

Su
cc

es
s

Fa
ilu

re

Decoding Probability vs Redundancy (Ufirmware=6kB,G=20,R=80, =40%)
Single Generation
All Generations
All Devices
99.9% success threshold

Figure 6.9: RLNC probability distribution for D=3000 devices decod-
ing a 6 kB firmware image with ϵ=40% on all channels. The decoding
session is successful with more than 99.9% chance, given that more
than 260% redundancy (δ=2.6, R=52+G=72) is added.

100% 50% 0% 50% 100% 150% 200% 250% 300%
Redundancy [%]

0.0

0.2

0.4

0.6

0.8

1.0

De
co

di
ng

 P
ro

ba
bi

lit
y

Fa
ilu

re

Decoding Probability vs Redundancy (Ufirmware=6kB,G=20,R=80, =50%)
Single Generation
All Generations
All Devices

Figure 6.10: Failure RLNC probability distribution for D=3000 devices
decoding a 6 kB firmware image with ϵ=50% on all channels.

61

6.3 Burst loss

The effect of multiple packets erased in a sequence has been identified as burst
loss. Burst loss shows itself in a sudden increase in PER for a particular dura-
tion. Statistically, the burst loss random variable is correlated in time instead
of being Independent and Identically Distributed (IID). One example of such an
occurrence is a temporary change in channel conditions, which occurred in the
data sets presented in Section 6.1. To give a better overview of the probability
of failure of RLNC, modeling the burst loss is essential. For example, if burst
loss occurs during a vital part of transmitting a generation, the generation is
probably lost altogether. Many generations after still succeed when the burst
loss has disappeared. So, the mean PER might still be low, and it does not
represent the channel conditions or the burst loss well.
The Gilbert-Elliott burst model introduces a temporal correlation for sudden
packet erasure, which increases PER and causes multiple packets to be dropped[50,
51]. The model is based on a 2-state Markov chain presented in Figure 6.11,
so two exit probabilities p and r are configured to model the chance of leaving
the state of burst loss or good packet reception. The model is quite simplistic
and should only be used for testing robustness against specific burst loss. For
example, the model cannot simultaneously mimic minor changes of PER in that
configuration - at least not without dynamically changing the Markov model.

πG =
r

p+ r
(6.2)

πB =
p

p+ r
(6.3)

πE = (1− k)πG + (1− h)πB = πB (6.4)

The burst will be modeled with ϵ = 1 packet erasure for ratio πB (Equa-
tion (6.3)) and ϵ = 0 for ratio πG (Equation (6.2)). The good/gap state G
and bad/burst state B represent toggling between stable and outage channel
conditions. Equation (6.4) is the expected PER due to this toggling effect.
The parameter k is the PER in good state and the parameter h is the PER of
burst state. Often, k is set to 1 and h is set to 0 in this equation. Therefore,
Equation (6.4) reduces to πB , the ratio of time spent in the burst state related
to the time spent in the good state. Because the burst and gap states either
represent packet loss or perfect reception, πB is equal to the expected value of
the packet error rate.

In order to change the burst duration, but not the mean PER, πE should
be kept constant. This is briefly discussed in the context of LoRaWAN MAC
layer. Referring to Section 2.2.1, it is known that LoRaWAN Class B and C are
characterized by low data rate and high inter-arrival time of transmitted frames.
Therefore, in the case of temporary outage, the channel conditions have changed
deteriorated for a certain duration.

Inference 6.9 k = 1 and h = 0 are justifyable for deteriorated channel condi-
tions in LoRaWAN Class B and C.

Therefore, the ideal model configuration for burst loss must provide ability
to sweep over varying burst time durations to study variable burst intensity.

62

πG πB1− p

p = xπB

r = x(1− πB)

1− r

Figure 6.11: Gilbert-Elliot 2-state Markov chain for burst loss simula-
tion.

So, in order to keep the mean PER the same while sweeping over different
burst behaviour, the exit probabilities p and r are related with a coefficient x
as presented in Equation (6.5) and 6.6:

p = xπB (6.5)

r = x(1− πB) (6.6)

Pduration[i] = r(1− r)i (6.7)

Equation (6.7) provides the PMF given i burst time-steps. Figure 6.12 shows
the histogram of pseudo-randomized simulation using the Gilbert-Elliot Markov
chain.
Observations: The histogram tracks the model PMF very closely. Therefore,
the simulation and model are suitable for analyzing a network with burst loss for
the same expected PER. Also, higher values of coefficient x result in less spread
of the burst duration (time steps). Similarly, a lower value of x will increase
the expected burst duration while decreasing the frequency as the distribution
becomes flat.

0 5 10 15 20 25 30
Burst Duration [Bin Size: 1 time-steps]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Du
ra

tio
n

Pr
ob

ab
ilit

y

Duration histograms and PMFs
Burst Duration PMF (heavy, x=0.25)
Burst Duration PMF (light, x=0.6)
Burst histogram (heavy, x=0.25)
Burst histogram (light, x=0.6)

Figure 6.12: Histogram and PMF for 5 million messages in good (x =
0.6) and bad (x = 0.25) burst mode.

63

Figure 6.13 shows a simulation of 5 million fragments for values of 0 < x ≤ 1
and mean PER πE = πB = 0.6. Although the full range was simulated, only
x > 0.25 is relevant. Below this value, bursts become extremely long and
infrequent. This is not apparent from the plots in Figure 6.13. The plots
contain temporal PER, the decoding success rate, and needed redundancy (min,
mean, and max). The needed redundancy is the redundancy required to succeed
in decoding a generation. Note, the redundancy Used (max) plot is bounded by
a redundancy limit of 200% to keep the simulation tractable. Secondly, note
that failed generations will not count for the used redundancy as this made the
data harder to interpret.

0.0 0.2 0.4 0.6 0.8 1.0
Burst Frequency/Duration coefficient (x)

0

25

50

75

100

125

150

175

200

Re
qu

ire
d

Re
du

nd
an

cy
 [%

]

Decoding Burst Resistance (G=20,R=60,PER=60%)

Redundancy Used (min)
Redundancy Used (mean)
Redundancy Used (max)

0

20

40

60

80

100

Su
cc

es
s R

at
e

[%
]

Success Rate
Temporal PER

Figure 6.13: Burst success rate simulation with the required redund-
ancy. 5 million fragments are transmitted to one decoder under differ-
ent burst loss conditions. Heavy burst (left) requires less redundancy
overall, but also shows much lower success rate.

Observations: The PER is roughly constant at 60% as was enforced by πE

from Equations (6.5), (6.6) and (6.4). The maximum redundancy used is always
nearly at the maximum available redundancy of 200%. However, the success
rate is lowered when lowering x. Similarly, the min and mean used redundancy
lowered as fewer generations succeeded. In other words, the redundancy did
not play an effective role in providing a higher success rate when the bursts are
increased in duration.

Inference 6.10 The Gilbert-Elliot model correctly maintains constant mean
PER with Equation (6.4) for variable burst frequency/duration ratio x.

Inference 6.11 Heavier burst loss (for example, x < 0.5) results in long and
infrequent outages. This results in 1) lower decoding success rate and 2) inef-
fective use of redundancy.

64

6.4 Comparison RLNC and systematic coding

The following three generation-based dissemination methods are compared using
time-discrete simulation:

• Random Linear Network Coding, block-based (Rlnc)

• Randomly Mixed (Rngmixed)

• Semi-Randomly Mixed (Semi-Rngmixed)

Systematic coding effectively disables the mixing feature of the chosen encoding
mechanism. Fragments are transmitted with the rows of the identity matrix in-
stead of a randomized encoding vector (see Section 4.2.4). Such a dissemination
method is not a robust solution for packet loss or burst loss. The purpose of
system coding is to transmit packets and to provide re-encoding capabilities for
intermediate nodes in a multi-hop network[37]. Therefore, it is not intended to
be robust against varying channel conditions, nor is it suitable for a single-hop
star network such as LoRaWAN (Section 2.2.3). To make comparison between
systematic RLNC and randomized RLNC (or LDPC for that matter) fair, two
methods have been developed: Rngmixed and Semi-Rngmixed.
Instead of mixing fragment symbols, the first systematic approach Rngmixed
randomly scrambles the order of a generation’s fragments, storing the result in
a generation buffer BG. The redundancy is generated by copying the same gen-
eration fragments multiple times. Consequently, the Rngmixed method reorders
duplicate fragments. It is likely that two fragments with the same content are
put next to each other. When burst loss occurs during the transmission of
such equivalent fragments, the symbols in those fragments are lost altogether.
Therefore, that generation will fail decoding. The hypothesis is that this is a
primitive approach. It was chosen to serve as a comparative method concerning
burst loss robustness.
Another variant, Semi-Rngmixed, has been developed for this comparative study.
The Semi-Rngmixed approach extends and improves Rngmixed by ensuring that
any two fragments are separated by at least the half the generation size in frag-
ment count. The following steps are performed by the method:

1. The method allocates an empty generation array (buffer BG).

2. The original generation of size G is split into two sets G1 and G2.

3. The scrambling method will be repeated 2(1 + δ) times (δ being the gen-
eration redundancy factor)

4. The method will keep toggling between G1 and G2, scrambling each set
(1 + δ) times.

5. Each step randomly permutes either G1 and G2 and adds the resulting
fragment symbols to the BG.

The method is evaluated against burst loss applied to buffer BG. Each genera-
tion succeeds decoding if at least each original fragment is received after packet
loss is applied. Figure 6.14 shows how resilient the three methods are against
burst loss. The parameter R = 60 was kept below generation threshold to re-
duce simulation duration. The resulting insights remain unaltered. Instead,

65

a high generation count Ng = 1000 was chosen, ensuring enough burst loss
opportunities.

0.0 0.2 0.4 0.6 0.8 1.0
Burst Frequency/Duration coefficient (x)

0

20

40

60

80

100

Su
cc

es
s R

at
e

[%
]

+38% +75% +88%

Success rate comparison Rngmixed vs Rlnc (60% PER expected)
Rlnc
Rngmixed
Semi-Rngmixed

Figure 6.14: Burst success rate for RLNC, Rngmixed and Semi-
Rngmixed using Ng = 1000 generations per sample. Each generation
is simulated with δ = 2, R = 60 fragments. Note, only roughly x > 0.2
is relevant.

Observations: The plot shows that the three methods never succeed with
100% success rate, which was chosen on purpose. RLNC outmatches Rngmixed
and Semi-Rngmixed for all kinds of burst loss. As stated before, only the domain
x > 0.2 is relevant, because lower ratio models irrealistic burst loss duration
(see distribution of Figure 6.12). Secondly, Semi-Rngmixed clearly outperforms
Rngmixed for 0.2 < x < 0.4. Thirdly, it is visible that burst loss has both a
negative impact on RLNC success rate as well as a slightly positive impact on
scrambled approaches. Concluding, it is visible that for 0.2 < x < 0.4 RLNC
performs between 38% and 88% better than systematic coding, even if non-
primitive scrambling with minimum separation distance of equal fragments if
applied.

Inference 6.12 Systematic (scrambled) coding performs badly in network con-
ditions with burst loss and should be avoided at all cost for LoRa.

We know that LDPC has roughly 2%-10% decoding overhead dependent on
the generation size (large to small size respectively). Since it has been shown
that RLNC is able to tolerate burst loss and it has near negligible decoding
overhead, this method should be preferred.
More importantly, LDPC for FUOTA transmits all fragments with systematic
coding first. This means that, for example, with an overhead of 100% or coding
rate CR = 1

2 , 50% of the fragments are systematically coded. If the coding rate
is reduced, the portion of systematically coded fragments becomes less. Still, as
this portion of fragments is large, RLNC will outperform during this stage.

66

Chapter 7

Conclusions and Future
Work

7.1 Future work

Firmware updates are pretty disruptive operations for LoRaWAN networks.
Results have shown RLNC to work even with high packet loss. Following work
needs to explore and standardize this.

• Large network simulation: simulating RLNC and LDPC in simulators
like FUOTASim or ns-3 will lead to a complete overview of FUOTA for
large LoRaWAN networks with multiple gateways and channel conditions.
Realistic effects like multipath, Fresnel (gateway), capture effect, power
effect could be implemented in either of these simulators. One interesting
aspect to study could be to measure the decoding success distribution.

• MAC layer testbed: Implementing the complete MAC layer will lead to
realistic network. An end device and gateway which connects the Chirp-
Stack and the ChirpStack FUOTA server must completely implement the
MAC layer. This could be studied to see how much RLNC reduces the
FUOTA session duration and, therefore, how much energy could be saved
for the end device.

• Closed-loop FUOTA control plane: It can be assumed that end
devices in a network experience different channel conditions. Implement-
ing a feedback mechanism that avoids ACK-implosion and which is de-
signed for scalability could provide a solution to optimize decoding para-
meters like generation size and redundancy dynamically. This could lead
to a more efficient redundancy factor for specific groups of devices in the
network. One approach could be to cluster devices in multiple multicast
groups and adjust the decoding parameters for said multicast groups in
isolation from the NS.

• Differentation algorithm for update compression: Firmware up-
dates are large payloads that must be split into fragments. That is why
this work was quite elaborate on adding redundancy. This way, it is en-
sured that all fragments can be reconstructed into an update payload. It

67

has been previously discussed to use algorithms like RSync or RMTD to
reduce this large payload beforehand. Alternatively, utilities like JojoDiff
and JojoPatch could be implemented for comparison. This could lead to
novel work for an incremental firmware update strategy.

7.2 Conclusions

Due to low network throughput and high packet loss, firmware updates have
been identified as a challenge for LoRaWAN devices. This work presents a
novel approach to FUOTA sessions for LoRaWAN using Random Linear Net-
work Coding instead of Low-Density Parity Checks. Using rateless generation-
based coding like RLNC means that coding configuration is adjustable on-the-
fly, which results in feedback and coding adjustments as new possibilities. In our
work, the finite field size, generation size, and redundancy coding parameters of
RLNC are evaluated concerning the generation decoding success distribution.
This results in the knowledge that GF(28) has practically nonexistent decoding
overhead, where LDPC has 2% to 10% overhead dependent on generation size.
Also, it leads to the definition of the generation success threshold, a redundancy
region where decoding can deal with worst-case packet loss.
To the best of the author’s knowledge, available research does not critically

evaluate the choice of code in poor network conditions. For that reason, we have
developed a testbed that replaces the essential modules of LoRaWAN. This test-
bed is able to store received measurements, replay encoded fragments remotely,
and introduce artificial packet loss to test an application with a fragment coder.
This way, we evaluated the influence of poor channel conditions resulting in
packet erasure to show how RLNC needs to be configured to restore a certain
number of lost packets for a predefined amount of redundancy.
The Gilbert-Elliot model has been applied to analyze the effect is of burst loss

(time-correlated packet loss) on RLNC performance. The parameters of this
model are normalized (constrained) for the constant mean packet-error rate.
Consequently, the performance results of different burst loss conditions have
become comparable. Conclusions of these results are that systematic coding will
show between 38% and 88% lower decoding success rate, depending on burst
loss intensity. Since systematic coding is part of the first phase of fragments
coded with LDPC in FUOTA, we conclude that RLNC is overall more suitable
in any kind of poor network conditions.

68

Bibliography

[1] A. Krishnan. Lorawan multi-ran architecture connecting the next billion
iot devices. Technical report, ABI Research, December 2020.

[2] I. Mavromatis, A. Stanoev, A. J. Portelli, C. Lockie, M. Ammann, Y. Jin,
and M. Sooriyabandara. Reliable iot firmware updates: A large-scale mesh
network performance investigation. In 2022 IEEE Wireless Communica-
tions and Networking Conference (WCNC), pages 108–113, 2022.

[3] PubNub. A new approach to iot security. Technical report, PubNub Inc.,
2015.

[4] STMicroelectronics NV. Application Note AN5554 LoRaWAN® firmware
update over the air with STM32CubeWL, Feb 2022. Rev. 3.

[5] TheThingsNetwork. The things stack fuota process reference. https:

//www.thethingsindustries.com/docs/reference/fuota/. (last visited
on 06/22/2022).

[6] J. Jongboom. Firmware-updates enabled lorawan example application.
https://github.com/ARMmbed/mbed-os-example-lorawan-fuota, 2019.
(last visited on 06/20/2022).

[7] M. Luis. Lorawan end-device stack implementation and example pro-
jects. https://github.com/Lora-net/LoRaMac-node, 2021. (last visited
06/26/2022).

[8] K. Zandberg, K. Schleiser, F. Acosta, H. Tschofenig, and E. Baccelli. Se-
cure firmware updates for constrained iot devices using open standards: A
reality check. IEEE Access, 7:71907–71920, 2019.

[9] Y. W. Shiferaw. Lorawan class b multicast: Scalability. MSc thesis, Tech-
nical University of Delft, September 2019.

[10] D. Heeger, M. Garigan, E. Eleni Tsiropoulou, and J. Plusquellic. Secure
lora firmware update with adaptive data rate techniques. Sensors, 21(7),
2021.

[11] S. van Nieuwamerongen. Energy consumption and scalability of transmit-
ting firmware updates over lora. MSc thesis, Technical University of Delft,
08 2021.

69

https://www.thethingsindustries.com/docs/reference/fuota/
https://www.thethingsindustries.com/docs/reference/fuota/
https://github.com/ARMmbed/mbed-os-example-lorawan-fuota
https://github.com/Lora-net/LoRaMac-node

[12] FUOTA Working Group of the LoRa Alliance Technical Committee. LoR-
aWAN Fragmented Data Block Transport Specification v1.0.0. Standard,
LoRa Alliance, Fremont, CA 94538, USA, September 2018.

[13] FUOTA Working Group of the LoRa Alliance Technical Committee.
LoRaWAN Application Layer Clock Synchronization Specification v1.0.0.
Standard, LoRa Alliance, Fremont, CA 94538, USA, September 2018.

[14] FUOTA Working Group of the LoRa Alliance Technical Committee. LoR-
aWAN Remote Multicast Setup Specification v1.0.0. Standard, LoRa Alli-
ance, Fremont, CA 94538, USA, September 2018.

[15] Semtech. Lora® and lorawan®. https://lora-developers.semtech.

com/documentation/tech-papers-and-guides/lora-and-lorawan/.
(Last visited on 06/08/2022).

[16] L. Angrisani, P. Arpaia, F. Bonavolontà, M. Conti, and A. Liccardo. Lora
protocol performance assessment in critical noise conditions. In 2017 IEEE
3rd International Forum on Research and Technologies for Society and In-
dustry (RTSI), pages 1–5, 2017.

[17] J. Petajajarvi, K. Mikhaylov, M. Pettissalo, J. Janhunen, and J. Iinatti.
Performance of a low-power wide-area network based on lora technology:
Doppler robustness, scalability, and coverage. International Journal of Dis-
tributed Sensor Networks, Vol. 13:1–16, 03 2017.

[18] K. Abdelfadeel, T. Farrell, D. McDonald, and D. Pesch. How to make
firmware updates over lorawan possible. In IEEE WOWMOM 2020, pages
16–25, 2020.

[19] SemTech. SX1261/2 DataSheet DS.SX1261-2.W.APP, Dec 2021. Rev. 2.1.

[20] LoRa Alliance Technical Committee. LoRaWAN 1.1 Specification. Stand-
ard, LoRa Alliance, Inc, Beaverton, OR 97003, USA, October 2017.

[21] Y. W. Shiferaw, A. Arora, and F. Kuipers. Lorawan class b multicast
scalability. In 2020 IFIP Networking Conference (Networking), pages 609–
613, 2020.

[22] FUOTA Working Group of the LoRa Alliance Technical Committee.
FUOTA Process Summary Technical Recommendation TR002 v1.0.0.
Standard, LoRa Alliance, Fremont, CA 94538, USA, January 2019.

[23] T. Feng and K. Yang. A nimble decompression algorithm for zigbee firm-
ware update in smart home environment. In 2017 14th IEEE Annual Con-
sumer Communications Networking Conference (CCNC), pages 630–631,
2017.

[24] A. Hagedorn, D. Starobinski, and A. Trachtenberg. Rateless deluge: Over-
the-air programming of wireless sensor networks using random linear codes.
In 2008 International Conference on Information Processing in Sensor Net-
works (ipsn 2008), pages 457–466, 2008.

70

https://lora-developers.semtech.com/documentation/tech-papers-and-guides/lora-and-lorawan/
https://lora-developers.semtech.com/documentation/tech-papers-and-guides/lora-and-lorawan/

[25] K. Arakadakis, P. Charalampidis, A. Makrogiannakis, and A. G. Fragki-
adakis. Firmware over-the-air programming techniques for iot networks -
A survey. CoRR, abs/2009.02260, 2020.

[26] N. Sornin. LoRaWAN:Firmware Updates Over-the-Air. Standard, Semtech
Corporation, Camarillo, CA 93012, USA, April 2020.

[27] C. Charilaou, S. Lavdas, A. Khalifeh, V. Vassiliou, and Z. Zinonos. Firm-
ware update using multiple gateways in lorawan networks. Sensors, 21(19),
2021.

[28] F. Li, C. Zhang, K. Peng, A. E. Krylov, A. A. Katyushnyj, A. V. Rashich,
D. A. Tkachenko, S. B. Makarov, and J. Song. Review on 5g nr ldpc code:
Recommendations for dttb system. IEEE Access, 9:155413–155424, 2021.

[29] P. Marcelis, V. Rao, and V. Prasad. Dare: Data recovery through applic-
ation layer coding for lorawan. In IoTDI 2017: Proceedings of the Second
International Conference on Internet-of-Things Design and Implementa-
tion, pages 97–108, 04 2017.

[30] T. Ho, M. Medard, R. Koetter, D.R. Karger, M. Effros, J. Shi, and B. Le-
ong. A random linear network coding approach to multicast. IEEE Trans-
actions on Information Theory, 52(10):4413–4430, 2006.

[31] Y. Rivera, I. Gutiérrez, J. Márquez, R. Porto, and S. Castaño. Perform-
ance dynamic coding rlnc lora on smart cities. In 2021 IEEE CHILEAN
Conference on Electrical, Electronics Engineering, Information and Com-
munication Technologies (CHILECON), pages 1–7, 2021.

[32] I. Chatzigeorgiou and A. Tassi. Decoding delay performance of random lin-
ear network coding for broadcast. IEEE Transactions on Vehicular Tech-
nology, 66(8):7050–7060, 2017.

[33] V. Nguyen, J. A. Cabrera, G. T. Nguyen, F. Gabriel, C. Lehmann, S.
Mudriievskyi, and F. H. P. Fitzek. Adaptive decoding for fulcrum codes.
In 2018 IEEE 9th Annual Information Technology, ElectFronics and Mobile
Communication Conference (IEMCON), pages 133–139, 2018.

[34] S. Abboud, N. el Rachkidy, A. Guitton, and H. Safa. Gateway selection
for downlink communication in lorawan. In 2019 IEEE Wireless Commu-
nications and Networking Conference (WCNC), pages 1–6, 2019.

[35] Y. Shiferaw. Lorawan ns-3 module. https://github.com/yoniwt/

lorawan-private, 2021. (last visited on 05/29/22).

[36] K. Q. Abdelfadeel. Fuotasim. https://github.com/kqorany/FUOTASim,
2020. (last visited on 06/10/2022).

[37] J. Heide. Random Linear Network Coding (RLNC)-Based Symbol Repres-
entation. Standard, Steinwurf Aps, September 2019.

[38] J. Jeong and D. Culler. Incremental network programming for wireless
sensors. In 2004 First Annual IEEE Communications Society Confer-
ence on Sensor and Ad Hoc Communications and Networks, 2004. IEEE
SECON 2004., pages 25–33, 2004.

71

https://github.com/yoniwt/lorawan-private
https://github.com/yoniwt/lorawan-private
https://github.com/kqorany/FUOTASim

[39] J. Hu, C. J. Xue, Y. He, and E. H.-M. Sha. Reprogramming with minimal
transferred data on wireless sensor network. In 2009 IEEE 6th International
Conference on Mobile Adhoc and Sensor Systems, pages 160–167, 2009.

[40] W. Dong, B. Mo, C. Huang, Y. Liu, and C. Chen. R3: Optimizing relo-
catable code for efficient reprogramming in networked embedded systems.
In 2013 Proceedings IEEE INFOCOM, pages 315–319, 2013.

[41] P. C. van Oorschot A. J. Menezes and S. A. Vanstone. Handbook of Applied
Cryptography. CRC Press, Dec. 1996.

[42] E. Tasdemir, J. A. Cabrera, F. Gabriel, D. You, and F. H. P. Fitzek. Sliding
window rlnc on multi-hop communication for low latency. In 2021 IEEE
93rd Vehicular Technology Conference (VTC2021-Spring), pages 1–6, 2021.

[43] R. S. Katti and R. G. Kavasseri. Secure pseudo-random bit sequence gen-
eration using coupled linear congruential generators. In 2008 IEEE Inter-
national Symposium on Circuits and Systems, pages 2929–2932, 2008.

[44] D. Blackman and S. Vigna. Scrambled linear pseudorandom number gen-
erators. ACM Trans. Math. Softw., 47(4), sep 2021.

[45] D. Zwart. Local uart gateway proxy and configurator for stm32 lora devices.
https://github.com/davidzwa/LoRaConfigurator, Jun 2022.

[46] D. Zwart. Lora stm32 firmware with embeddedproto interface. https:

//github.com/davidzwa/F446_ProtoBufDevice, Jun 2022.

[47] Datasheet - STM32F446xC/E - Arm® Cortex®-M4 32-bit MCU, Jan
2021. DS10693 Rev 10.

[48] STMicroelectronics. Datasheet - STM32WLE5xx STM32WLE4xx - Multi-
protocol LPWAN 32-bit Arm® Cortex®-M4 MCUs, Mar 2022. DS13105
Rev 10.

[49] O. Brocaar. Chirpstack fuota server. https://github.com/brocaar/

chirpstack-fuota-server, Jul 2021. (last visited on 06/22/2022).

[50] E. N. Gilbert. Capacity of a burst-noise channel. The Bell System Technical
Journal, 39(5):1253–1265, 1960.

[51] E. O. Elliott. Estimates of error rates for codes on burst-noise channels.
The Bell System Technical Journal, 42(5):1977–1997, 1963.

72

https://github.com/davidzwa/LoRaConfigurator
https://github.com/davidzwa/F446_ProtoBufDevice
https://github.com/davidzwa/F446_ProtoBufDevice
https://github.com/brocaar/chirpstack-fuota-server
https://github.com/brocaar/chirpstack-fuota-server

Appendix A

LoRaWAN FUOTA
extension

MAC commands are defined for LoRaWAN presented in Figure A.1 for the ap-
plication to join and use a network with the proper configuration. Figure A.2
shows an extension for this MAC layer for illustration. Finally Figure A.3
presents how a Class C device would join a multicast, time-synchronized, frag-
mentation session. There are multiple exchanges of messages required to start
a FUOTA session.

73

Figure A.1: LoRaWAN core MAC layer commands. Image source:
Semtech[20]

.

Figure A.2: LoRaWAN Fragmentation MAC layer extension. Image
source: Semtech[12]

.

74

Figure A.3: FUOTA message exchange overview[18].

75

	Preface
	Acronyms
	Symbols
	Introduction
	Reducing device maintenance
	Contributions
	Thesis structure

	Background
	LoRa physical layer
	Packet duration

	LoRaWAN layer
	Class A, B, and C
	LoRaWAN Medium Access Control
	Network topology

	Related work
	Scalability
	State-of-the-art

	Network Coding for Firmware Updates
	Firmware Dissemination
	Encoding and decoding
	Fixed-rate and rateless coding
	Network Coding

	Random Linear Network Coding
	Coding system overview
	Finite field mapping
	Generation-based encoding
	Randomized encoding
	Pseudo-random number generator
	Decoding algorithm

	Decoding performance
	Decoding matrix size
	Decoding probability
	Decoding latency

	Testbed Design
	Wireless and wired interfaces
	Configurations with Source and Sinks
	Flash replay RLNC session

	Decoder tests
	Packet error rate
	Artificial packet loss
	Generation success threshold

	Projecting onto LoRaWAN
	FUOTA firmware layers
	Comparison TheThingsNetwork and ChirpStack
	Low-Density Parity Checks

	Evaluation
	Experimental validation
	Indoor test results
	Outdoor test results

	Decoder model validation
	Packet error rate
	Single decoder
	Network decoding

	Burst loss
	Comparison RLNC and systematic coding

	Conclusions and Future Work
	Future work
	Conclusions

	LoRaWAN FUOTA extension

