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Abstract
Understanding mutational processes active in cancer at the single-cell level is essential for charac-
terizing intra-tumor heterogeneity. Previous studies extracted these processes, called mutational
signatures, and the known signatures can be found in the Catalogue of Somatic Mutations in
Cancer (COSMIC) database. These signatures were derived based on bulk sequencing data of
thousands of whole genomes. This study proposes and applies a systematic method to compare
single-cell-derived de novo mutational signatures to the COSMIC signatures. Using two single-cell
cancer datasets (breast and neck cancer), two stable signatures were extracted per dataset. Within
each dataset, the de novo signatures were extremely similar (cosine similarity > 0.96), suggesting
uniform mutational processes within individual tumors. No direct one-to-one matches were found
between de novo and COSMIC signatures. However, the de novo signatures can be interpreted as
combinations of known mutational processes. These results demonstrate the feasibility of extract-
ing de novo signatures based on single-cell data, while also highlighting limitations due to possible
overfitting. Future work should include simulation experiments, analysis of additional tumors, and
evaluation of alternative signature extraction methods.

Introduction
Cancer is caused by somatic mutations in the DNA that allow the cell to start reproducing rapidly.
These mutations include, for example, single base substitutions (SBS) where one base is replaced
by another, and deletions or insertions of DNA. Mutations are caused by mutagens, e.g. UV light
and tobacco smoke, and high exposure to the mutagens will result in a higher likelihood that
a mutation occurs and is not repaired. After a cell becomes malignant, it can start to acquire
many more mutations that cause the tumor to become heterogeneous within itself. Due to the
evolutionary nature of cancer, some mutations can allow a cell to increase its likelihood of survival
during chemotherapy, resulting possibly in a relapsing tumor (Stratton, Campbell, and Futreal
2009).

Mutagens leave behind characteristic patterns in the somatic mutations, called mutational
signatures. For example, one of the signatures that results from smoking causes predominantly
C:G>A:T substitutions, while one of the signatures caused by UV light exposure results in mainly
C:G>T:A substitutions. Finding the signatures responsible for the mutations in cancer leads to
a better understanding of the cause of the tumor. This can, in some cases, be used to determine
the best treatment options and predict the effectiveness of the treatment (Abbasi and Alexandrov
2021). Knowing the underlying signatures behind cancer is therefore an important area of cancer
research.

Somatic mutations in a sample can be summarized by a mutational profile. This is a count
vector of SBS and the mutated base’s immediate 5’ and 3’ base neighbors, resulting in 96 total
mutation types, which can later be normalized to yield a probability distribution over mutation
types. Each mutation is categorized into one of 96 types, where all mutations are added together
in one vector. Mutational signatures are inferred from these profiles.

The combined somatic mutations of the genome are the result of exposures to different mu-
tagens. Each cancer genome, represented by a mutational profile, can be expressed as a linear
combination of mutational signatures and the corresponding number of mutations caused by this
process, reflecting the exposure to different mutagens.

The best method available for extracting de novo mutational signatures is the SigProfilerEx-
tractor algorithm (Islam et al. 2022; Alexandrov, Nik-Zainal, et al. 2013). Here, the mutational
signatures are found by making use of non-negative matrix factorization (NMF) (Lee and Seung
1999), where the whole mutational catalog is decomposed into a matrix representing the signatures
and another matrix representing the signature exposures for each cell (Alexandrov, Nik-Zainal, et
al. 2013).

The COSMIC (Catalogue Of Somatic Mutations In Cancer) database provides a comprehensive
collection of known mutational signatures derived from large-scale bulk sequencing data, such as
the Pan-Cancer Analysis of Whole Genomes (PCAWG) dataset, which contains mutational data
of more than 2,500 donors (“Pan-cancer analysis of whole genomes” 2020). Here, a total of 67
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SBS signatures were identified, many of which do not have a known process that causes them
(Alexandrov, Kim, et al. 2020; Sondka et al. 2024).

The mutational signature extraction process has so far been based on bulk sequencing data,
which aggregates mutations from many cells (“Pan-cancer analysis of whole genomes” 2020). How-
ever, individual cells gather many more mutations after becoming cancerous, resulting in a diverse
spectrum of mutations. A better understanding of the mutations of individual cells results in a bet-
ter understanding of tumor heterogeneity. With most research so far having been conducted based
on bulk sequencing data, research on single-cell sequencing data remains relatively new and less
validated, making it unclear how well the existing methodologies translate when using single-cell
data.

Single-cell data allows for more precise mutation analysis, as each rare mutation can be analyzed
rather than being averaged out by bulk data. De novo mutational signatures, patterns of mutations
inferred directly from the data without prior assumptions, can be obtained from this data. Leading
to the potential discovery of novel signatures that would not be found from just the bulk data.
Interpretation of de novo extracted signatures requires the comparison to known signatures, such
as those cataloged in the COSMIC database, allowing researchers to validate their findings and
the biological phenomena they correlate with.

In this study, we address the gap between mutational signature analysis in bulk sequencing and
single-cell sequencing data. We present a method to systematically compare de novo signatures
derived from single-cell data with reference signatures in the COSMIC database. This approach
allows us to evaluate whether known mutagenic processes can be detected at the single-cell level
and to identify novel, previously unobserved mutational signatures. This method is then applied
to two single-cell sequenced datasets of breast and neck cancer, containing 688 and 53065 samples,
respectively.

Methodology
This methodology explains the steps required to compare de novo signatures based on single-cell
data. The purpose is to classify de novo mutational signatures based on their relation with a
set of reference signatures. Here, the mutational signatures are first extracted de novo. Then
the samples are fitted to a known set of mutational signatures to find the reconstruction based
on known signatures. Based on the found signatures, a method combining a direct one-to-one
comparison between de novo and reference signatures and a decomposition of de novo signatures
into reference signatures. Lastly, Statistics on the diversity of the samples are then calculated.

analysis of the mutational profiles
Knowing the diversity of mutational profiles across single-cell samples helps determine the expected
number of signatures. Moreover, single-cell datasets can contain thousands of samples per donor,
with highly variable sample sizes across different datasets. To avoid a bias towards datasets with
disproportionately large sample counts, we reduce the number of cells analyzed per dataset. This
also ensures computational feasibility, as having more samples primarily increases the computation
time without improving the quality of signatures found. Previous work has shown that 200 cancer
genomes are sufficient to accurately decipher up to 20 signatures (Alexandrov, Nik-Zainal, et al.
2013).

For the mutational profile clustering, K-medoids is applied on the mutational catalogs using
cosine similarity. K-means has been used before to cluster mutational signatures (Alexandrov,
Nik-Zainal, et al. 2013); however, it requires Euclidean distances. This cannot be used for non-
normalized mutational profiles, as mutation counts vary substantially between samples. K-medoids
works similarly to K-means; they differ in that K-medoids selects an existing data point as a
centroid rather than using the cluster mean. This also allows other distance metrics to be used.
The number of clusters is determined by making use of the elbow method in combination with the
silhouette score.

To visualize the data, UMAP is applied based on cosine similarity, which is a nonlinear method
for dimensionality reduction. UMAP has a similar performance to other nonlinear methods on
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single-cell data; however, it is much faster (Becht et al. 2019). Data points are then labeled based
on the cluster assignment. The visualization shows the general structures of the data and how well
the cluster assignments are separated.

To reduce the sample space, 30 samples are randomly selected from each cluster. This paper
focuses on de novo signature extraction based on a single cancer tissue, and having 30 samples
per cluster allows for sufficient data to capture the various signatures (Alexandrov, Nik-Zainal,
et al. 2013). If there are not enough samples in a cluster, resampling with replacement is applied
to ensure balanced representation of various processes. When multiple single-cell datasets are
analyzed, this number can be decreased since multiple samples from a single cluster tend to have
similar mutational profiles and therefore contribute less unique information.

Extraction of de novo mutational signatures
NMF-based Extraction

De novo signatures are extracted using SigProfilerExtractor, which applies Non-negative matrix
factorization (NMF) as is described by Alexandrov et al (Alexandrov, Nik-Zainal, et al. 2013).
Samples are represented by a mutation count matrix M (mutation types x samples). This matrix is
approximated using two matrices: P (mutation types x signatures), representing all the mutational
signatures, and E (signatures x samples), representing each sample’s exposure to those signatures,
as can be seen in Equation 1. The number of signatures k needs to be much smaller than the
number of samples n, leading to the discovery of general patterns in the P and E matrices. Using
NMF, the matrices P and E can then be estimated.


m1,1 m1,2 · · · m1,n

m2,1 m2,2 · · · m2,n

...
...

. . .
...

mm,1 mm,2 · · · mm,n


︸ ︷︷ ︸

Mutational catalog M
(m×n)

≈


p1,1 p1,2 · · · p1,k
p2,1 p2,2 · · · p2,k
...

...
. . .

...
pm,1 pm,2 · · · pm,k


︸ ︷︷ ︸

Signatures Matrix P
(m×k)

×


e1,1 e1,2 · · · e1,n
e2,1 e2,2 · · · e2,n
...

...
. . .

...
ek,1 ek,2 · · · ek,n


︸ ︷︷ ︸

Exposures Matrix E
(k×n)

(1)

The NMF is performed on bootstrapped data across multiple iterations. The extracted sig-
natures are clustered, and the centroids of each cluster are taken as the final de novo signatures.
The performance of the de novo solution is evaluated using the average silhouette width of each
cluster, referred to as stability. This represents the consistency of the solutions across iterations.
Additionally, average cosine similarity between original samples and their reconstruction is used
to assess the reconstruction quality (Alexandrov, Nik-Zainal, et al. 2013).

Extraction of de novo signatures

For this, the SigProfilerExtraction package for Python is used. The number of NMF replicates
is set to 25, which corresponds to the NMF iterations mentioned in the previous section. The
number of candidate signatures is explored, ranging from 1 up to a maximum determined by
the number of mutational clusters identified during sub-sampling, typically capped at one above
the cluster count. The number of clusters approximates the upper bound of distinct mutational
processes present, therefore being a natural constraint for the number of signatures. The maximum
number of signatures is capped at 25 to reduce computation time. The solution right before the
stability drops below 0.8 is selected. When the stability does not drop below 0.8, additional
signatures are extracted until the solution is no longer stable.

Fitting of known mutational signatures
Explanation of the method

To decompose the samples into a set of reference mutational signatures, SigProfilerAssignment
is used. Let v⃗ be a column vector of matrix M , representing the mutational profile of a sample,
and let S be a matrix containing k reference signatures. The objective is to estimate the exposure
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vector a⃗ of length k as described by Equation 2, where the goal is to estimate a⃗ by finding a
solution that both minimizes the reconstruction error and the number of signatures fitted.

v⃗ ≈ S × a⃗ (2)

SigProfilerAssignment solves this using an iterative method based on nonnegative least squares
(NNLS). First, the NNLS solution is computed using all signatures; then, each signature’s contri-
bution is evaluated by removing that signature and calculating the reconstruction error increase
for the new NNLS solution. The signature causing the smallest increase, provided it is below a
predefined threshold, is removed. This process is repeated until no signature removal can be done
without exceeding the threshold. This process is then reversed, continually reintroducing signa-
tures that reduce the error beyond a second threshold. These removal and reintroduction steps are
repeated until convergence (Díaz-Gay et al. 2023).

Fitting reference signatures

Decomposition of the samples into a set of reference signatures reveals the known active signatures
present in the samples, which sets an expectation for the de novo signatures extracted. Additionally,
the cosine reconstruction similarity provides insight into how well-known the mutational processes
behind the samples are. The SigProfilerAssignment Python package is used, using Cosmic
version 3.4.

Comparison between signatures
Similarity metric

Signatures are compared using cosine similarity, as defined in Equation 3. Cosine similarity is
chosen because it measures the degree of alignment between two vectors, independent of their
magnitude. This property also makes it well-suited for comparing mutational catalogs with signa-
tures, as it effectively accounts for differences in mutation counts by only taking the angle between
vectors into account. Furthermore, cosine similarity has been widely used in prior studies for
mutational signature comparison, including foundational work by Alexandrov et al. (Alexandrov,
Nik-Zainal, et al. 2013; Alexandrov, Kim, et al. 2020), which supports its applicability in this
context.

similarity(A,B) =
A⃗ · B⃗

∥A⃗∥∥B⃗∥
(3)

Direct comparison

To accommodate a systematic comparison between de novo signatures and a set of reference sig-
natures, a one-to-one matching between both sets of signatures is employed. This method is
particularly appropriate when it is expected that the de novo signatures are closely related to the
existing set of reference signatures. This will function as a first check to see what signatures have
a strong match (cosine similarity above 0.85) to existing signatures and what signatures could
represent either novel or a combination of known processes.

For this problem, we try to maximize the total sum of cosine similarities between the matched
signatures. Here let D = {d1, d2, . . . , dn} be the set of de novo signatures, and C = {c1, c2, . . . , cm}
be the set of COSMIC signatures. Note that these sets of signatures are not necessarily the same
size. Let M ⊆ D × C be the set of matched signature pairs in a one-to-one matching. Then, the
1-to-1 matching problem can be formulated as the following optimization:

max
M

∑
(di,cj)∈M

cos(di, cj) (4)

Subject to the following constraints that enforce strict one-to-one matching:

∀di ∈ D,
∑
c∈C

(di, c) ∈ M ≤ 1 (5)
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∀ci ∈ D,
∑
d∈D

(d, ci) ∈ M ≤ 1 (6)

This problem can be efficiently solved by modeling it as a minimum cost maximum flow
(MCMF) algorithm. For this algorithm, we model each signature d ∈ D and signature c ∈ C
as a separate node in a flow graph. Edges are added between each d and c, where the capacity is 1
with the edge having a cost of 1− cos(d, c). The source is then connected exactly once to each of
the d ∈ D with a capacity of 1 and a zero cost; similarly, each c ∈ C is connected to the sink with
capacity 1 and zero cost. Having only a single edge between the source, sink, and the other nodes
ensures that Equations 5 and 6 are enforced. In this study, we implement this approach using the
NetworkX Python library.

Analysis of composite signatures

Some de novo signatures may not match any COSMIC signature with high similarity, above 0.85.
The remaining de novo signatures could then be either composite, based on multiple known pro-
cesses, or novel signatures. To analyze this, we additionally decompose the de novo signatures into
a set of reference signatures using the SigProfilerAssignment algorithm, which is also used to
determine the contributions of known mutational processes in a sample.

The reconstruction cosine similarity of the signatures can then be used to determine the type
of signature found; A cosine similarity above 0.85 for the direct comparison suggests it is well-
explained by a known signature, whereas a decomposition similarity above 0.85 indicates the
signature is likely composite, if neither is true, it hints at a possible novel signature.

Results
This study analyzes two single-cell mutational datasets to evaluate the proposed methodology. The
first dataset consists of 688 mutational profiles from a breast cancer sample. The second dataset
includes 53,065 single-cell samples from a Laryngeal Squamous Cell Carcinoma (neck cancer),
collected across four spatial regions of the tumor. These datasets illustrate both the heterogeneous
nature of cancer and the large scale of single-cell sequencing data.

Data comparison

The optimal number of clusters for the breast cancer sample was determined based on Figure 1c,
which shows the change in cluster assignment cost and silhouette score as the number of clusters
increases. No elbow is observed in the cost curve, while the silhouette score starts to decline more
rapidly beyond three clusters. Based on this, three clusters are chosen. Having no clear inflection
point indicates that the data might not contain distinct substructures. Likewise, figure 1f illustrates
the equivalent plot for the neck cancer dataset. Both a clear peak in the silhouette score and an
elbow in the total cost are observed at 5 clusters, resulting in five clusters being chosen.

Figures 1d and 1g show the UMAP projection of the mutational profile data, colored by k-
medoids cluster assignment. No distinct visual groupings are observed in the breast cancer dataset,
although the assigned clusters show moderate separation in UMAP space. In contrast, the neck
cancer samples show five distinct groups. However, the K-medoids assignment does not align
perfectly with the visually apparent groups. This may be due to the different objectives of both
algorithms; UMAP preserves local structures in high-dimensional space, whereas k-medoids assigns
each sample to the closest medoid.

Figures 1e and 1h show the heatmap of cosine similarities between the medoids of each group.
In both datasets, the minimum pairwise cosine similarity exceeds 0.97, suggesting that there might
not be distinct processes behind the mutational profiles. Though the clusters are more clearly
distinguished for neck cancer in the UMAP projection, the similarity between the medoids is also
very high. The groupings might be caused by subtle regional differences within the tumor, as the
samples were collected across four spatially distinct regions.

Figures 1a and 1b show the contributions of COSMIC mutational signatures in the mutational
profiles. Some signatures appear consistently across all samples, for example, SBS1 in the breast
cancer dataset and both SBS1 and SBS5 in the neck cancer dataset. While the proportions of these
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COSMIC signatures differ slightly between samples, no major differences are observed. Therefore,
it is expected to extract superpositions of these processes rather than isolate individual, directly
correlated COSMIC signatures.

Table 1 presents the cosine similarity between the mutational profiles and their COSMIC-based
reconstruction. In the breast cancer dataset, average similarity is approximately 0.85, but nearly
half of the samples fall below this threshold, indicating poor reconstruction by known COSMIC
signatures. In contrast, the neck cancer reconstruction shows higher similarity values, averaging at
0.927, with no samples falling below the 0.85 threshold. This suggests known mutational processes
are behind the mutations in the neck cancer.

The poorer reconstruction of the breast cancer dataset may reflect differences between single-
cell and bulk sequencing, resulting in a different set of underlying signatures. Alternatively, low
mutation counts per cell could cause greater stochastic variability of mutational profiles, which
may appear novel. However, with more mutations, they may converge towards known processes.
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(a) Breast cancer: COSMIC sig-
nature occurrence in the sam-
ples, the x-axis shows the num-
ber of cells with at least one
mutation attributed to this sig-
nature. All signatures occur in
similar proportions throughout
the samples.

(b) Neck cancer: same format as 1a, similar behavior is observed
here, with no large difference in proportions of various processes.

(c) Breast cancer: k-medoids
cluster quality assessment based
on silhouette score (green) and
clustering cost (blue). The sil-
houette score starts to drop
slightly more after three clus-
ters, thus three clusters are cho-
sen.

(d) Breast cancer: UMAP visu-
alization of the mutational pro-
files based on cosine similar-
ity. Each point represents a sin-
gle cell, colored by its cluster
assignment, revealing no well-
separated structures.

(e) Breast cancer: heatmap of
cosine similarity between clus-
ter centroids derived from the
single-cell mutational profiles.
High similarities are observed,
all above 0.97, suggesting poor
separation of the mutational
profiles.

(f) Neck cancer: showing same
plot as 1c. The peak in silhou-
ette score and a slight elbow in
total cost at five clusters results
in five clusters being chosen.

(g) Neck cancer: same format as
1d. Distinct visual clusters are
observed in the UMAP space.
Illustrating distinct mutational
processes present in the sam-
ples.

(h) Neck cancer: same plot as
1e. Even though clear clus-
ters are illustrated in 1g, high
similarity is observed between
the medoids, suggesting low di-
versity of mutational processes
present in the samples.

Figure 1: Visualization of mutational profile diversity and clustering for breast and neck cancer
datasets. Figures show COSMIC sample reconstruction, UMAP projections, and cosine similarity
heatmaps based on k-medoids clustering of mutational profiles.
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Table 1: Summary statistics of cosine similarities between COSMIC-based reconstructions and
original mutational profiles.

Statistic Breast cancer Neck cancer

Mean 0.852 0.927
Minimum 0.814 0.896
Maximum 0.885 0.953
Average number of mutations 272 614
Sample count 90 150
Poorly explained sample count (< 0.85) 42 0

De novo signatures

Figure 2a and 2b display the reconstruction similarity and stability with increasing numbers of
extracted signatures. In both datasets, the final solution with a stability above 0.8 corresponds
to two signatures, after which, a steep decline in stability is observed. The similarity between the
two de novo signatures is 0.968 and 0.965 for the breast and neck cancer, respectively, indicating
overlapping processes.

Reconstruction cosine similarity remains high for both samples at low signature counts. When
extracting a single signature, the reconstruction similarity exceeds 0.985 for both datasets. This
is much higher than reported in Table 1 for the COSMIC reconstruction. This, in combination
with the immediate steep stability decline, could imply that the extraction process is overfitting
the data by finding more than one signature. Given the high similarity between clusters, it could
be that the only difference in processes observed is due to slight variations caused by the random
nature of somatic mutations rather than different underlying mutational processes.

(a) Breast cancer: Plot of average stability
(green) and reconstruction similarity (blue) ver-
sus number of extracted signatures. Stability
declines sharply after two signatures, resulting
in the selection of two signatures.

(b) Neck cancer: Similar trend as in 2a. Stabil-
ity drops beyond two signatures, confirming the
choice of two as the optimal count.

Direct comparison

To see the potential processes that correspond to the de novo signatures, Figures 4a and 4b present
heatmaps of the pairwise cosine similarities between COSMIC and de novo signatures. As the de
novo signatures within both datasets are closely related, the 2 signatures show high similarity to
the same COSMIC signatures.

Tables 2 and 3 show the direct one-to-one matching of the de novo signatures with COSMIC
reference signatures. For both datasets, all direct matches fall below the set threshold. This
suggests that, when viewed in isolation, the signatures are either novel or represented by a mixture
of multiple known processes.
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(a) Breast cancer: Cosine similar-
ity between the two de novo sig-
natures and COSMIC references.
No match exceeds the threshold of
0.85, indicating no one-to-one cor-
respondence.

(b) Neck cancer: Cosine similar-
ity between the two de novo sig-
natures and COSMIC references.
Same as for 3a, no matches exceed
the threshold of 0.85.

Figure 3: Heatmaps show cosine similarity between each de novo signature and COSMIC reference
signatures, helping to assess whether the extracted signatures represent known processes. Only
COSMIC signatures with similarity > 0.5 to any de novo signature are shown.

Cosmic decomposition

Figures 4a and 4b show the decomposition of the de novo signatures into linear combinations of
known COSMIC signatures. In the breast cancer dataset, both de novo signatures consist of the
same COSMIC signatures, with minor variations in proportions. In contrast, the neck cancer de
novo signatures are comprised of distinct COSMIC processes.

Despite the lack of strong direct matches, the COSMIC-based reconstruction of the de novo
signatures yields high cosine similarities, all exceeding 0.85, as can be seen in Tables 2 and 3. This
suggests that the de novo signatures likely reflect mixtures of known mutational signatures rather
than novel processes.
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Table 2: Comparison of de novo signatures from the breast cancer dataset to COSMIC reference
signaturess.

Statistic SBS96A SBS96B

Direct match SBS12 SBS26
Direct matching cosine similarity 0.790 0.831
COSMIC decomposition signatures SBS1, SBS26, SBS40c SBS1, SBS26, SBS40c
Decomposition cosine similarity 0.859 0.865
Signature type Composite Composite

Table 3: Comparison of de novo signatures from the neck cancer dataset to COSMIC reference
signatures.

Statistic SBS96A SBS96B

Direct match SBS5 SBS40c
Direct matching cosine similarity 0.833 0.790
COSMIC decomposition signatures SBS1, SBS5, SBS12, SBS32, SBS54, SBS87 SBS1, SBS5, SBS21, SBS40c
Decomposition cosine similarity 0.946 0.888
Signature type Composite Composite

(a) Breast cancer: both de
novo signatures are recon-
structed from the same set
of COSMIC reference signa-
tures. Reconstruction simi-
larities are above 0.85, indi-
cating a likely composite ori-
gin for the signatures.

(b) Neck cancer: contrary to
4a, both signatures are re-
composed of a different set of
COSMIC signatures. Where
SBS1 and SBS5 occur in both
signatures. SBS96B has a
significantly lower reconstruc-
tion similarity at 0.888 com-
pared to 0.946 for SBS96A.

Figure 4: Stacked bar plots illustrate how each de novo signature can be expressed as a linear
combination of known COSMIC signatures using non-negative least squares fitting.
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conclusion
This study proposed and applied a systematic method to compare single-cell-derived de novo
signatures to COSMIC reference signatures, using two single-cell sequenced datasets, breast and
neck cancer. Each de novo signature was classified as either a known COSMIC signature, a
composite of multiple COSMIC signatures, or potentially a novel signature.

Analysis of the mutational profiles of the data shows low cosine distances between cell clusters.
For both datasets, two stable signatures were consistently identified. These de novo signatures
show high similarity within each dataset (cosine similarity > 0.96). This suggests that, despite
somatic heterogeneity at the mutational level, the driving mutational processes may be largely
uniform within each tumor. This is further supported by the high reconstruction similarity with
the extraction of a single de novo signature.

Direct one-to-one matching of de novo signatures to individual COSMIC signatures yielded no
strong alignments. However, decomposition into combinations of COSMIC signatures resulted in
high reconstruction similarities (all > 0.85), indicating that the signatures are likely composed of
multiple mutational mechanisms rather than entirely novel ones. Whether this pattern is shared
among other single-cell samples remains unclear and warrants further study.

These results demonstrate both the promises and current challenges of single-cell data for
mutational signature analysis. While de novo extraction is feasible, the low mutation counts per
cell may introduce stochastic variation, potentially inflating apparent heterogeneity. In the neck
cancer dataset, mutational profiles appeared less distinct despite a larger sample size, likely due
to higher mutation counts per sample. However, as this study is limited to two datasets, broader
validation across a wider range of tumors is essential to assess the generalization of these findings
and to gain deeper insights into intra-tumor mutational process diversity.

Future work
To explore the limits of single-cell de novo mutational signature extraction, further research should
include simulation studies. Simulated single-cell datasets allow precise control over the mutational
processes, the number of mutations per cell, and the total sample count. Varying these parameters
enables systematic benchmarking of de novo signature extraction. This way, the limitations and
sensitivity of the extraction and comparison methods used in this study can be assessed.

Future studies should also perform de novo extraction across multiple single-cell datasets. Ide-
ally, tumors would also have corresponding bulk sequencing data available. This would enable a
direct comparison between the signatures extracted from both data types and would help to clar-
ify whether single-cell data provides additional resolution or introduces greater variability. These
samples can also be analyzed using the same methodology as this paper to validate and expand
upon the conclusions of this study.

This study has been conducted based on the SigProfiler tools for signature extraction and
comparison. However, single-cell data presents unique challenges, such as lower mutation counts
and risk of overfitting. Other tools may be more suited to these conditions, and additional methods
could be evaluated. Alternatively, new tools, specifically designed for the challenges of single-cell
data, could be developed.

Responsible Research
All data used in this study are anonymized and publicly available. No personally identifiable infor-
mation was accessed or processed. The source for the breast cancer is: https://www.10xgenomics.com/datasets/750-
sorted-cells-from-human-invasive-ductal-carcinoma-3-lt-v-3-1-3-1-low-6-0-0, and for the Laryngeal
Squamous Cell Carcinoma (neck cancer): https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE206332.
Software tools and parameter settings are fully described in the Methodology section to ensure re-
producibility. The analysis was performed using Python 3.12.4 with the following package versions:

• SigProfilerAssignment v0.2.1 - for fitting known COSMIC signatures to samples and de
novo signatures.

• SigProfilerMatrixGenerator v1.3.3 - for generating of the mutational profiles.
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• SigProfilerExtractor v1.2.0 - for de novo extraction of mutational signatures.

• umap-learn v0.5.7 - for umap dimensionality reduction.

• networkx v3.4.2 - for implementation of the minimum cost maximum flow algorithm.

• pyclustering v0.10.1.2 - for k-medoids clustering.

All parameters, thresholds, and decision criteria (e.g., stability cutoff, similarity thresholds) are
specified in the text, allowing others to replicate the pipeline.

Due to time constraints, only two datasets were analyzed. These datasets may not be rep-
resentative of tumors in other patients. Therefore, the results are not generalized beyond these
specific datasets. As no simulated data was used, there is no ground truth to the data, making
it unclear whether the various signatures found are caused by distinct combinations of COSMIC
processes or are the results of overfitting on the data. Future work involving additional, more di-
verse, or simulated datasets is necessary to draw broader conclusions about the differences between
single-cell-derived de novo signatures and COSMIC reference signatures.
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