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Spin pumping by a moving magnetization gives rise to an electric voltage over a spin valve. Thermal
fluctuations of the magnetization manifest themselves as increased thermal voltage noise with absorption lines
at the ferromagnetic resonance frequency and/or zero frequency. The effect depends on the magnetization
configuration and can be of the same order of magnitude as the Johnson-Nyquist thermal noise. Measuring
colored voltage noise is an alternative to ferromagnetic resonance experiments for nanoscale ferromagnetic
circuits.
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I. INTRODUCTION

A spin valve consists of a thin nonmagnetic metallic
�NM� layer sandwiched by two ferromagnetic �FM� layers
with variable magnetization direction. One of the FM layers
is usually thick and its magnetization is fixed, while the other
is thin and its magnetization direction is free to move. Spin
valves have a wide range of interesting static and dynamic
properties,1–13 many of which are related to the current-
induced spin-transfer torque,1,2 which can excite magnetiza-
tion dynamics �and reversal�. Inversely, magnetization dy-
namics generates a current flow or a voltage output. Berger14

first discussed the induced voltage in an FM �NM �FM struc-
ture by magnetization dynamics. He posited that a voltage of
order �� /e can be generated when the magnetization of one
ferromagnet precesses at frequency �. Similar dynamically
induced voltages have been studied theoretically15 and
observed16 in simple FM �NM junctions and in magnetic tun-
nel junctions �MTJs�.17 In spin valves and MTJs, voltage
induced by the magnetization dynamics can be understood as
a two-step process: �i� the moving magnetization of the free
layer generates a spin current; �ii� the static magnetization of
the fixed layer filters the “pumped” spin current and converts
it into a charge current or, in an open circuit, a voltage out-
put. The electrical voltage induced by moving domain walls
can be explained analogously.18–22 In the first part of the
present paper, we derive a simple formula for the charge
pumping voltage in a spin valve by circuit theory in which
magnetization dynamics is taken into account. We find that
the magnitude of the voltage is governed by the spin-transfer
torque in the same structure. We therefore propose to mea-
sure the angular dependence of the spin-transfer torque �or
torkance, i.e., the torque divided by the voltage bias� by the
angular dependence of the charge pumping voltage.

The charge pumping voltage consists of a dc and an ac
component, even when induced by a steady magnetization
dynamics such as ferromagnetic resonance �FMR�. The con-
cept can be extended to the case of thermally activated, i.e.,
fluctuating, magnetization dynamics, which is an extra
source of thermal voltage noise that only appears in magnetic
structures. Johnson23 and Nyquist24 showed that in nonmag-

netic conductors the voltage noise is associated with the ther-
mal agitation of charge carriers �driven by fluctuating elec-
tromagnetic modes�. The power spectrum of this noise is
white and proportional to the temperature T and resistance
R :SJN���=4kBTR up to frequencies of kBT /��104 GHz at
room temperature.23,24 In magnetic structures such as spin
valves, thermal fluctuations of the magnetization direction
have to be considered.25 Some consequences of thermal fluc-
tuation in spin valves, such as noise-facilitated magnetization
switching26–28 and resistance fluctuations,29,30 have been
studied before. In the so-called thermal ferromagnetic reso-
nance, frequencies are studied by means of resistance fluc-
tuations without applied magnetic fields.31 Foros et al.30

showed that the time-averaged autocorrelator of the resis-
tance fluctuations is significantly affected by the dynamical
exchange coupling between the magnetic layers.

In the second part of this paper, we show that a magneti-
zation fluctuation-related voltage noise can be of the same
order of magnitude as the conventional thermal noise in non-
magnetic conductors. This noise is not “white” but displays
spectral features related to the FMR. The noise spectrum
therefore contains information comparable to that obtained
by FMR. For nanoscale ferromagnetic circuits the noise mea-
surements might be easier to perform than conventional
FMR experiments. Compared to the resistance noise mea-
surement, the pumping voltage noise measurement is nonin-
trusive because it does not require application of current,
which may disturb the system.

This paper is organized as follows. Section II presents a
general theoretical framework that combines the magneto-
electric circuit theory and the Landau-Lifshitz-Gilbert �LLG�
equation. In Sec. III, we derive a formula for the charge
pumping voltage in spin valves. In Sec. IV, by using the
magnetic-susceptibility function, we calculate the voltage
noise spectrum due to magnetization fluctuations for two dif-
ferent magnetic configurations. Section V contains some
general remarks on the calculation. In Appendix A we cal-
culate the angular dependence of the magnetic susceptibility
for a spin valve, and Appendix B presents an alternative
calculation of the magnetization-related thermal noise by
computing the frequency-dependent impedance of a spin
valve.
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II. CIRCUIT THEORY WITH DYNAMICS

Figure 1�a� shows a spin valve structure under consider-
ation. The magnetization in the left FM with direction m0 is
assumed to be static and m, the one of the right FM, to be
free, which can be realized by making the right layer much
thinner than the left one. For electron transport, we assume
for simplicity that the spin valve is symmetric. Such an as-
sumption may be invoked when both FM layers are of the
same material and thicker than the spin-flip diffusion length.
In that regime, the resistances of the bulk ferromagnet over
the spin-flip diffusion length are in series with the interface
resistances, whereas the remoter parts of the ferromagnets
are magnetically inert series resistances. The regime in
which the layers become thinner than the spin-flip diffusion
length was treated by Kovalev et al.32 In this and Sec. III, we
focus on the spin-active region in the spin valve, which in-
cludes the NM spacer and small part �of the order of the
spin-flip diffusion length� of the FM layers as indicated by
the dashed box in Fig. 1�a�.

When m depends on time, a spin current is pumped into
the metallic spacer layer through the F �N interface. The
magnitude and polarization of the spin-pumping current
reads33

Is
sp =

�

4�
�grm �

dm

dt
+ gi

dm

dt
� , �1�

where gr and gi are the real and imaginary part of the dimen-
sionless transverse spin-mixing conductance.33 The first term
in Is

sp corresponds to a loss of angular momentum of the free
layer magnetization to the adjacent NM layers, thus provid-
ing an extra damping torque.33 When the adjacent normal
metal is an ideal spin sink, the spin-pumping current loss can
be represented by a Gilbert damping coefficient �see below�,
and each interface contributes to the damping constant by
��= ��� /4�Mtot�gr, introducing the gyromagnetic ratio �
and the total magnetization of the right FM film Mtot. The
imaginary part gi effectively modifies the gyromagnetic ratio
for the magnetization under consideration.

In order to use magnetoelectronic circuit theory, the struc-
ture has first to be decomposed into nodes �for bulk� and
contacts �for interfaces�. For each node we may define a
charge chemical potential and a �vector� spin chemical po-
tential; let �L,R,N and �L,R,N be the charge and spin chemical
potentials in left, right FM leads, and the NM spacer. In the
ferromagnet, we may assume that the spin accumulations are
aligned with the magnetization, i.e., �L=�L

s m0 and
�R=�R

s m. The charge current Ic and the spin current IL
through the left interface connecting the left FM and the
spacer layer are given by34,35

Ic =
eg

2h
�2��L − �N� + p��L

s − �N · m0�� , �2a�

IL = −
eg

2h
�2p��L − �N� + ��L

s − �N · m0��m0

+
e

h
grm0 � �N � m0 +

e

h
gi�N � m0, �2b�

where g=g↑+g↓ is the total conductance and p= �g↑−g↓� /g is
the polarization of the F �N interface and the �longitudinal�
active regions of the FMs.32 Similarly for the right FM lead,

Ic = −
eg

2h
�2��R − �N� + p��R

s − �N · m�� , �3a�

IR = −
eg

2h
�2p��R − �N� + ��R

s − �N · m��m

+
e

h
grm � �N � m +

e

h
gi�N � m +

2e

�
Is

sp, �3b�

where the spin current IR at the right interface is modified
due to the additional spin-pumping current Is

sp emitted by the
moving magnetization m. Additionally, the spin current con-
servation in the presence of the spin flips in the NM spacer
requires

IL + IR =
e

h

h

D	sf
�N 	

e

h
gsf�N, �4�

where D is the energy density of states at the Fermi energy
and 	sf is the spin-flip relaxation time in the NM.

The spin current IR entering the free layer exerts a spin-
transfer torque on m, which is equal to its transverse com-
ponent absorbed at the interface,11,12

Nst =
�

2e
�IR − ��IR · m�m�� . �5�

The LLG equation is therefore modified as

dm

dt
= − �m � Heff + �m �

dm

dt
+

�

Mtot
Nst, �6�

where Heff is the total effective magnetic field acting on m,
and �=�0+2�� is the total magnetic damping including both
the bulk damping and the spin-pumping enhanced damping
from both interfaces.

FIG. 1. �Color online� Spin and charge currents in spin valves.
�a� For the steady state case studied in Secs. II and III. �b� For the
thermal magnetization fluctuations studied in Sec. IV

XIAO et al. PHYSICAL REVIEW B 79, 174415 �2009�

174415-2



The set of equations in Eqs. �1�, �2a�, �2b�, �3a�, �3b�, and
�4�–�6� describes the charge/spin transport and magnetization
dynamics in the metallic magnetic heterostructures. In many
cases, the transport equations in Eqs. �1�, �2a�, �2b�, �3a�,
�3b�, �4�, and �5� and the dynamical LLG equation in Eq. �6�
can be solved separately by ignoring the spin-pumping con-
tribution Is

sp in IR, in which case the transport only depends
on the instantaneous m but not on ṁ. However, for thin
magnetic layers the spin-pumping modification cannot be ne-
glected. It has possibly important consequences, such as a
voltage induced by magnetization dynamics, anisotropic
magnetic damping and susceptibility tensor, and colored
thermal noise, as will become clear from the discussion be-
low.

At first, let us calculate the static �ṁ=0� magnetoconduc-
tance of a spin valve. When a bias voltage V= ��L−�R� /e is
applied, we can calculate the charge current I= IL= IR from
Eqs. �2a�, �2b�, �3a�, �3b�, and �4�, hence the magnetocon-
ductance G= I /V. By setting �N=0 in the spacer and assum-
ing strong spin flips in the ferromagnets ��L

s =�R
s =0�, we

find �with m ·m0=cos 
�

G�
� =
G0g

4

1 − 4p��
�sin2


2
� , �7�

where G0=2e2 /h is the conductance quantum and

��
� =
pg/4

g sin2


2
+ 2g̃r cos2


2
+ gsf

�8�

is the angular-dependent spin current polarization with
g̃r	gr+2gi

2 / �2gr+gsf�. The G�
� above agrees with Eq.
�160� in Ref. 36.

III. CHARGE PUMPING IN SPIN VALVES

When a voltage difference �V is applied over a spin valve
which does not excite magnetization dynamics �ṁ=0�, Eqs.
�2a�, �2b�, �3a�, �3b�, �4�, and �5� lead to the spin-transfer
torque1

Nst�
� = �V�	ip�
�m � m0 + 	op�
�m0� � m , �9�

where 	ip and 	op are the so-called �angular-dependent�
torkances37 for the in-plane �Slonczewski’s� component and
out-of-plane �effective-field� component

	ip�
� =
e��
�

2�
g̃r and 	op�
� =

e��
�
2�

gigsf

2gr + gsf
. �10�

When the bias polarity is chosen such that the in-plane
torque in Eq. �9� works against the magnetic damping, the
current flow can excite magnetization dynamics, otherwise
they are suppressed.

Inversely, magnetization dynamics can induce a current
flow by the spin pumping; a moving magnetization �m�
pumps a spin current �with zero charge current� into adjacent
contacts, and the pumped spin current is converted into a
charge current IP �or pumping voltage VP� by a static ferro-
magnetic filter �m0�.17 In the following, we use the circuit

theory described in Sec. II to derive a simple expression for
the charge pumping voltage �current� induced by FMR in a
spin valve. We shall study two different cases: �i� when the
spin valve is open, no current flow is allowed �Ic=0�, and a
pumping voltage VP is built up; �ii� when the spin valve is
closed, i.e., the two ends of the spin valve are short circuited,
no voltage difference is allowed at the two ends ��L=�R�,
and a pumping current IP flows.

�i� Open circuit: for an open circuit, the charge current
vanishes Ic=0. By solving Eqs. �1�, �2a�, �2b�, �3a�, �3b�, and
�4�, we find an electric voltage VP= ��L−�R� /e due to the
spin-pumping current Is

sp,

VP�
� = R�
��	ip�
�m � ṁ + 	op�
�ṁ� · m0, �11�

with the magnetoresistance R�
�=1 /G�
�. Both the spin-
transfer torque in Eq. �9� and the charge pumping voltage in
Eq. �11� are governed by the torkances. Equation �11� con-
firms the two-step process for the charge pumping: �1� spin
current pumped by ṁ, �2� charge current generated by pro-
jecting on m0. Note that Eq. �11� entails all multiple scatter-
ing in the spacer.

In Eq. �11�, the charge pumping voltage is related to the
torkances, which also govern the spin-transfer torque. Cur-
rently, the latter can be accessed only indirectly by its effect
on the current-induced magnetization dynamics for
MTJs.38,39 Equation �11� can be employed to measure the
spin-transfer torque or torkances in spin valves via FMR-
induced voltages when the magnetoresistance R�
� is ob-
tained alongside as done by Urazhdin et al.40

�ii� Closed circuit: when the spin valve is short circuited,
�L=�R, Eqs. �1�, �2a�, �2b�, �3a�, �3b�, and �4� yield a pump-
ing current

IP�
� = �	ip�
�m � ṁ + 	op�
�ṁ� · m0. �12�

For comparison, in the presence of an applied current current
I,

Nst�
� = R�
�I�	ip�
�m � m0 + 	op�
�m0� � m . �13�

Usually, there is a passive series resistance in addition to
the magnetoresistance R�
�. The charge pumping voltage for
the open circuit is insensitive to such a passive resistance �for
an ideal voltage meter�.

In transition-metal ferromagnets, gi
0.1gr,
36 thus from

now on we neglect the imaginary part of the mixing conduc-
tance, i.e., gi=0, 	op=0, and 	ip=e��
�gr /2�.

IV. MAGNETIZATION-RELATED VOLTAGE NOISE
IN SPIN VALVES

According to the fluctuation-dissipation theorem �FDT�,
the electrical voltage fluctuations across a nonmagnetic con-
ductor are associated with the electron linear momentum dis-
sipation by the electrical resistance, which causes Joule heat-
ing. In ferromagnets, there are also magnetization
fluctuations associated with the angular-momentum dissipa-
tion or magnetic damping. In magnetic heterostructures such
as spin valves, the two fluctuations �electric and magnetic�
are coupled by the dynamical exchange of spin currents.
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Electronic noise increases the magnetic fluctuations via the
spin-transfer effect. Inversely, the magnetization noise in-
creases electronic fluctuations via spin/charge pumping.

We discussed in Sec. III the pumping voltage �current�
induced by an arbitrary motion of magnetization. Here the
formalism is applied to the stochastic magnetization motion
at thermal equilibrium; the thermal fluctuations of magneti-
zation induce a pumping voltage �current�, which on filtering
by the static layer becomes a noisy voltage signal. In this
section, we discuss this magnetization fluctuation-induced
voltage noise VM�t� in a spin valve at thermal equilibrium,
the power spectrum of which is the Fourier transform of its
time-correlation function,

SM��� = 2� 
VM�0�VM�t��e−i�tdt . �14�

As shown by Johnson23 and Nyquist,24 the FDT� relates
the noise power spectrum S��� to the real part of the imped-
ance Z��� which characterizes the dissipation

S��� = 4kBT Re�Z���� . �15�

We may calculate the noise spectrum from both sides of the
FDT �1� by computing the time correlation 
VM�0�VM�t��
from the response function, then using Eq. �14�, and �2� by
computing the frequency-dependent impedance Z��� of a
spin valve, which consists of an electrical and a magnetic
contribution, Z���=RE+ZM���, then making use of the
Johnson-Nyquist formula Eq. �15�. The electric part RE gives
rise to a white Johnson-Nyquist noise of SE=4kBTRE. In this
section, we focus on method �1� and calculate the voltage
noise spectrum for two special cases with m0 � x̂ �perpendicu-
lar case� and m0 � ẑ �parallel case�. In Appendix B, we repro-
duce the spectrum for m0 � x̂ by using method �2�.

In bulk ferromagnets, magnetic-moment dissipation is pa-
rametrized by the Gilbert damping constant �0, which
is associated with thermal fluctuations of the direction
of the magnetization vector.25 The magnetization fluctuations
are caused by a fluctuating torque from the lattice,
which is represented by a thermal random magnetic field
h0 :−Mtotm�h0. The autocorrelator of h is25


�hi
0�t��hj

0�0�� =
2��0kBT

Mtot
�ij��t� = �0�ij��t� ,

with i , j=x ,y �assuming that the easy axis is along z�. Simi-
larly, the ferromagnet loses energy and angular momentum
by spin pumping. The magnetic damping increment �� must
be accompanied by a fluctuating transverse spin current
�torque� Is

fl from the contacts,29 which can be represented by
another random magnetic field h� :Is

fl=−Mtotm�h� with
autocorrelator29


�hi��t��hj��0�� =
2���kBT

Mtot
�ij��t� = ���ij��t� .

h� and h0 are statistically independent 
hi�hj
0�=0.

Including spin pumping from the magnetization fluctua-
tions and the fluctuating spin current from the contacts, the
total instantaneous spin current through the F �N interface
between the spacer and the free layer is �see Fig. 1�b��

Is�t� = Is
sp + Is

fl =
Mtot

�
���m � ṁ − �m � h�� . �16�

Due to the filtering by the static layer magnetization m0,
the spin current Is�t� is converted into a charge current Ic�t�
with efficiency ��
�. If the imaginary part of the mixing
conductance is disregarded �gi=0 and 	op=0�, an electrical
voltage VM�t� is given by the same expression as Eq. �11�
with m�ṁ replaced by m�ṁ− �� /���m�h�,

VM�t� = R�
���
�
2e

�
�m0 · Is�t�� = W�
�m0 · f�t� , �17�

with W�
�=2eR�
���
�eMtot /��. Assuming that m fluctu-
ates around the ẑ axis �m� ẑ�, f reads �to the leading order in
m and h��

fx�t� = �hy� − ��ṁy , �18a�

fy�t� = − �hx� + ��ṁx, �18b�

fz�t� = ��myhx� − mxhy�� + ���mxṁy − myṁx� . �18c�

The spectrum SM depends on the direction of the polar-
izer. We need to compute, e.g., Fx�t�	
fx�0�fx�t�� when
m0 � x̂ and Fz�t�	
fz�0�fz�t�� when m0 � ẑ. The correlators of
f are composed of those between ṁ and/or h�, which in turn
can be expressed by the transverse magnetic susceptibility
���� �in frequency domain� as the response to the magnetic
field h=h0+h�+h� �h� and h� account for the random fields
from the left and right interface of the free layer�,


mx���
my��� � = ����
�hx���

�hy��� � . �19�

All correlators can be calculated from Eq. �19�,41


mi�t�mj�0�� =
�

�
� 1

�
�ij

−���e−i�td�

2�
, �20a�


ṁi�t�mj�0�� = −
�

�
� i�ij

−���e−i�td�

2�
, �20b�


ṁi�t�ṁj�0�� =
�

�
� ��ij

−���e−i�td�

2�
, �20c�

with �=�0+2�� �the factor 2 comes from the two pumping
interfaces� and �ij

−���= ��ij���−� ji
� ���� /2i, and


mi�t��hj��0�� = ��� �ij���e−i�td�

2�
, �21a�


ṁi�t��hj��0�� = − ��� i��ij���e−i�td�

2�
. �21b�

By taking all the correlators among m, ṁ, and h� into ac-
count, we confirm that the dc spin/charge current vanishes at
thermal equilibrium 
Is�t��= 
Ic�t��=0 as required by the sec-
ond law of thermodynamics.

When m0 � x̂, the voltage noise power spectrum reads
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SM
x ��� = 2W2��/2��

−�

�

dtei�tFx�t� . �22�

Using Eqs. �20� and �21�, we have

Fx�t� = ��
��t� − ��� ��yy
− ���e−i�td�

2�
� . �23�

From Eqs. �22� and �23�,

SM
x ��� = 2W2��/2����1 − ��� Im��yy����� , �24�

in terms of the imaginary part of the dynamic susceptibili-
ties, i.e., the magnetic dissipation. A measurement of the
former therefore determines the latter, serving as an alterna-
tive to, e.g., FMR measurements.

When m0 � ẑ, SM
z ��� follows from Eq. �22� by the replace-

ment Fx�t�→Fz�t� and W�� /2�→W�0�. According to Eq.
�18c�, this involves four-point correlators, which can be re-
duced to two-point correlators by Wick’s theorem30,42


abcd�= 
ab�
cd�+ 
ac�
bd�+ 
ad�
bc�. After some tedious
algebra, we reach

SM
z ��� = 2W2�0���2� 1

��
�

i

Re��ii�0��

−� d��

2�

� − 2��

��
�
i,j

�− 1��ij�ij
−�����i j

− �� − ���� ,

�25�

with x̄=y and ȳ=x. For the antiparallel configuration
�m0 �−ẑ�, the formula is identical to Eq. �25� except that
W�0� is replaced by W���. Note that � for parallel and anti-
parallel cases are different, as discussed in Appendix A.

With Eqs. �24� and �25�, the calculation of the noise
power spectrum reduces to that of the magnetic susceptibility
� for the free layer magnetization. Similar to the Gilbert
damping for the free layer magnetization in a spin valve,43 �
in general depends on the magnetization configuration of the
spin valve. We derive the angular dependent � in Appendix
A.

For simplicity we continue with an isotropic form of the
magnetic susceptibility for the free layer magnetization �,
which includes the effect of the spin-pumping enhanced
damping but not the multiple scattering of the spin-pumping
current within the spacer

���� =
1

��0 − i���2 − �2��0 − i�� − i�

i� �0 − i��
� , �26�

with �=�0+2�� and �0=�Heff. Using this �, we find

SM
x ��� = 2W2��/2���

��1 − ���
�1 + �2��4 + �0

2�2

��1 + �2��2 − �0
2�2 + 4�2�2�0

2� .

�27�

A more accurate form of SM
x ��� �Eq. �B2�� as calculated in

Appendix B using circuit theory is recovered by the method
here by using the angle-dependent susceptibility tensor Eq.
�A11� instead of Eq. �26� in Eq. �24�.

The square root of SM
x ��� is plotted in Fig. 2 for the pa-

rameters in Table I, where � is replaced by its ballistic limit
p /2 �left ordinate�. Assuming that the spin valve resistance R
is dominated by the interface resistances, R�1 /A, but does
not depend on the free layer thickness d. Considering the
volume �=Ad and ���1 /d, ����� /��1 / �Ad2�, the
white-noise background in SM

x ��� scales like R2�2���1 /A,
and thus does not depend on d. The dip in Fig. 2 at the FMR
frequency is remarkable. Its depth is proportional to ��,
hence inversely proportional to the free layer thickness,
whereas its width is proportional to ��0. The constant back-
ground of the spectrum is �SM

x ����50 nV /�MHz, whereas
the dip is about 4 nV /�MHz. For comparison, the root-
mean-square of the electrical contribution to the noise is
�SE���=�4kBTR−SM

x �0��87 nV /�MHz.
When m0 � ẑ, Eqs. �25� and �26� lead to

SM
z ��� = 2W2�0�

��2

�0

 1

��
− �

�1 + �2��2 + 4�0
2

�1 + �2�2�2 + 4�2�0
2� .

�28�

The square root of SM
z ��� is plotted as the dashed curve in

Fig. 2 �right ordinate�. In contrast to SM
x ���, the prefactor in

SM
z ����R2�2��2 /���1 / �A2d�, therefore the noise decreases

TABLE I. Typical spin valve parameters �see text�.

Quantity Values Ref.

Ms �Co� 1.42�106 A m−1 4

� �Co� 1.9�1011 �T s�−1 44

�0 �Co� 0.01 45

2�� �Co �Cu� 0.01 45

�0 10 GHz

p 0.35 46 and 47

R�RP 0.57 � Deriveda from Ref. 4

RSample 1.6 � 4

T 300 K

�=A�d �130�130 nm2��2.5 nm 4

a�RAP−RP� /RAP� p2 and RAP−RP=0.073 �4, where P/AP stands
for parallel/antiparallel.
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with increasing d. This differs from the case m0 � x̂ because
the projection on the ẑ axis involves the average deviation of
m from the equilibrium direction, which is inversely propor-
tional to the volume. The divergence at vanishing thickness
is caused by the neglect of the finite transparency of very
thin magnetic layers for transverse spin currents. Similar to
SM

x ���, the depth of the dip at �=0 is proportional to ��,
hence inversely proportional to the layer thickness and has a
width proportional to ��0.

V. DISCUSSION

The spectrum SM
x ��� consists of three contributions,

which can be seen from the decomposition of
Fx�t�= 
fx�t�fx�0��=Fx

sp+Fx
fl+Fx

ab with

Fx
sp�t� = ��2
ṁy�t�ṁy�0�� , �29a�

Fx
fl�t� = �2
hy��t�hy��0�� , �29b�

Fx
ab�t� = − ����
�t�hy��0�� + 
ṁy�0�hy��t��� . �29c�

These three contributions can be interpreted as �i� a spin-
pumping current Fx

sp, which produces a peak at �=�0, �ii� a
random torque �spin current� from the contact Fx

fl, whose
spectrum is white, and �iii� the absorption of the random
torque from the contact by the magnetization Fx

ab=−2Fx
sp,

which gives a dip at �=�0 with twice the magnitude of �i�.
The contacts therefore provide a white-noise random torque
over the ferromagnetic film, whereas the magnetization ab-
sorbs the noise power around �0. The spectrum SM

z ��� also
consists of three contributions, but the absorption line of the
ẑ component is centered at zero frequency because the fluc-
tuations of the ẑ-component magnetization do not have a
characteristic frequency such as the x̂ , ŷ components. In in-
homogeneous FM films, the single macrospin mode breaks
up into different eigenmodes. The noise power spectrum can
then provide a “fingerprint” of the various eigenmode fre-
quencies.

The three-point correlators arising in 
VM�0�VM�t�� when
m0 is at arbitrary angles in the x̂-ẑ plane vanish for normal
distributions. The power spectrum is then a linear combina-
tion of SM

x and SM
z , depending on the angle with dips at both

the FMR and zero frequencies. The modeling of magnetic
anisotropies by an easy axis is appropriate when the free
layer magnetization is oriented normal to the plane in axially
symmetric pillars. In standard pillars the dominant aniso-
tropy is an easy plane, which leads to anisotropic fluctuations
of the magnetization. The results remain qualitatively similar
but become anisotropic in the x̂-ŷ plane. For example, when
a strong anisotropy constrains the fluctuations of m to the
ŷ-ẑ plane, SM

y vanishes. We disregarded the imaginary part of
the mixing conductance in our calculation for the noise
power spectrum. When it is included, the symmetric dip in
the power spectrum in Fig. 2 is skewed by gi similar to for
the spin diode effect discussed by Kupferschmidt et al.48 and
Kovalev et al.32

For asymmetric spin valves, a nonmonotonic angular de-
pendence of the magnetoresistance and a vanishing torkance

at a noncollinear magnetization configuration has been
demonstrated.49–53 A sign change in torkance leads to a sign
change in the charge pumping voltage. The magnetic contri-
bution to the thermal noise vanishes at the zero torkance
point.

VI. SUMMARY

In conclusion, we find that a pumping voltage arises in a
spin valve when the free layer magnetization is in motion.
The angular dependence of pumping voltage under FMR
condition provides detailed information of the spin transport
in spin valves. The pumping voltage induced by the thermal
fluctuation of the free layer magnetization gives rise to addi-
tional voltage noise, which is associated with the magnetiza-
tion dissipation. Thus the equilibrium electronic noise in a
spin valve consists of two contributions: the Johnson-
Nyquist noise associated with the fluctuations of the charge
and magnetization-related noise associated with the fluctua-
tions of the spins. The magnitude of these two contributions
can be comparable. Unlike the white Johnson-Nyquist noise,
the latter is found to contain an absorption line at the FMR
frequency �and at zero frequency depending on the configu-
ration� on top of an enhanced white-noise background. The
noise spectrum can provide a fingerprint of the magnetic
eigenmodes in inhomogeneous structures.
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APPENDIX A: ANGULAR DEPENDENCE OF THE
TRANSVERSE MAGNETIC SUSCEPTIBILITY

IN SPIN VALVES

In this appendix we calculate the transverse magnetic sus-
ceptibility for the free layer magnetization in a spin valve
when no external bias is applied �Ic=0�, i.e., the only driving
force is the thermal random field h. For an isolated magnet,
the dynamics are described by the Landau-Lifshitz-Gilbert
equation,

ṁ = − �m � �Heff + h� + �0m � ṁ , �A1�

with the thermal magnetic field h and bulk damping param-
eter �0. When we consider small amplitude precession
around the ẑ direction �assuming Heff� ẑ�, the Fourier trans-
form of the linearized LLG equation becomes


mx���
my��� � = �0���
�hx���

�hy��� � , �A2�

with
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�0��� =
1

��0 − i�0��2 − �2��0 − i�0� − i�

i� �0 − i�0�
� .

�A3�

In spin valves, � for the free layer magnetization depends on
the relative orientation of m0 and m because of the multiple
scattering within the spacer, which depends on the orienta-
tion of m0, acts as spin-transfer torque on m. We now lin-
earize Eq. �6�, again assuming that m fluctuates around the ẑ
axis with small amplitude �m� ẑ�,

ṁx = − �0my − �ṁy +
�

Mtot
Nst

x + �hy , �A4a�

ṁy = + �0mx + �ṁx +
�

Mtot
Nst

y − �hx, �A4b�

where �=�0+2�� and 2�� is the enhanced damping from
the two interfaces of the free layer.

The circuit theory Eqs. �1�, �2a�, �2b�, �3a�, �3b�, and �4�
are coupled with the LLG equation in Eq. �A4� through ṁ in
Eq. �3� and IR in Eq. �A4� and they have to be solved self-
consistently. We assume that m0 is static and tilted by an
angle 
 from ẑ, i.e., ẑ ·m0=cos 
. Equations �1�, �2a�, �2b�,
�3a�, �3b�, and �4� can be converted to scalar equations by
taking the dot products with m, m0, and m�=m�m0.
Introducing the projections of an arbitrary vector
q : �q0 ,qm ,q��	q · �m0 ,m ,m��, setting gsf=0 for simplicity,
Eqs. �1�, �2a�, �2b�, �3a�, �3b�, and �4� become

0 = I =
eg

2h
�2�L − p�N

0 � = −
eg

2h
�2�R − p�N

m� , �A5a�

IL
0 =

eg

2h
�2p�L − �N

0 � , �A5b�

IL
m =

eg

2h
�2p�L − �N

0 �cos 
 −
egr

h
��N

m − �N
0 cos 
� ,

�A5c�

IL
� = −

egr

h
�N

�, �A5d�

IR
0 = −

eg

2h
�2p�R − g�N

m�cos 
 +
egr

h
��N

0 − �N
m cos 
� +

egr

2�
ṁ�,

�A5e�

IR
m = −

eg

2h
�2p�R − �N

m� , �A5f�

IR
� =

e

h
gr�N

� −
egr

2�
ṁ0, �A5g�

0 = IL
0 − IR

0 = IL
m − IR

m = IL
� − IR

�, �A5h�

where in the third and fifth equations above, we disregard the
time dependence of m0�t�=m�t� ·m0 because m� ẑ to lead-

ing order in the deviations. The solutions to Eq. �A5� are

IR
0 = �0

egr

4�
ṁ�, IR

m = �m
egr

4�
ṁ�, IR

� = −
egr

4�
ṁ0, �A6�

with

�0 =
1 − �

1 − �2 cos2 

and �m = −

�1 − ��� cos 


1 − �2 cos2 

, �A7�

and �= �2gr−g�1− p2�� / �2gr+g�1− p2��. We now define the
coordinate system in the plane normal to ẑ,

x̂ 	
m0 − ẑ cos 


sin 

and ŷ 	 ẑ � x̂ �

m�

sin 

. �A8�

Therefore ṁ0� ṁx sin 
, ṁ�� ṁy sin 
, and

�

Mtot
Nst

x �
��

2eMtot

IR
0 − IR

m cos 


sin 

=

1

2
���ṁy , �A9a�

�

Mtot
Nst

y �
��

2eMtot

IR
�

sin 

= −

1

2
��ṁx, �A9b�

with �=�0−�m cos 
, which is related to the angular-
dependent magnetic damping in Ref. 43.

Plugging Eq. �A9� into Eq. �A4�, after linearization in
terms of small fluctuations about the ẑ axis and Fourier trans-
formation, we have


�hx���
�hy��� � = ��0 − i�y� i�

− i� �0 − i�x�
�
mx���

my��� � ,

�A10�

where �x=�− 1
2��� and �y =�− 1

2�� reflect the damping an-
isotropy. From Eq. �A10�,

���� = ��0 − i�y� i�

− i� �0 − i�x�
�−1

=
1

�1 + �x�y��2 − �0
2 + i��x + �y��0�

���0 − i�x� − i�

i� �0 − i�y�
� . �A11�

Because �y depends on angle 
 through �, ���� also be-
comes angle dependent, i.e., the magnetic-susceptibility
function for the free layer magnetization in a spin valve is in
general angular dependent, for the same reason as the mag-
netic damping in spin valves.43 Equation �A11� reduces to
Eq. �26� when we identify �x��y �� by ignoring the back-
flow correction to the damping.

APPENDIX B: SPIN VALVE IMPEDANCE Z(�) FOR m0 ¸ x̂

Here, we calculate the frequency dependence of the im-
pedance of a spin valve by applying a small ac current at
frequency � : I���. We consider the perpendicular case here,
i.e., m0 � x̂ or cos 
=0, so that the circuit theory equations
equal Eq. �A5� except that we allow for a nonvanishing
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charge current I�0. Since we are now interested in the de-
terministic response, the thermal random fields h may be
ignored. We can then solve Eqs. �A4� and �A5� self-
consistently in the frequency domain. We find that the im-
pedance of the spin valve Z���= ��L���−�R���� /eI��� con-
sists of two parts, an electric part RE and a magnetic part
ZM��� :Z���=RE+ZM���,

RE =
4

G0

1

g
+ �2R2G0g�1 − p2� + �2R2G0gr, �B1a�

ZM
x = �2R2G0gr
1 −

�����y� + i�0�
�1 + �x�y��2 − �0

2 + i��x + �y���0
� ,

�B1b�

where �=��� /2� and R=R�� /2� are the polarization factor
and the dc resistance for the spin valve at 
=� /2 or m0 � x̂.
RE consists of the resistances associated with the electrical
dissipation and half of the magnetic dissipation from the in-

terface with the static magnetization which does not emit a
spin-pumping current.

By the Johnson-Nyquist formula Eq. �15�, the noise spec-
trum SM

x ��� is given by

SM
x = 4kBT Re�ZM

x ����

= 2W2��/2���

��1 − ��
�y�1 + �x�y��4 + �x�

2�0
2

��1 + �x�y��2 − �0�2 + ��x + �y�2�2�0
2� .

�B2�

This equation is identical to Eq. �27� when we that the limit
�x��y ��. This difference comes from the approximate
form of � in Eq. �26�. If we use Eq. �A11�, then the SM

x

calculated from Eq. �24� will be exactly the same as Eq.
�B2�. The frequency-dependent impedance for m0 � ẑ is sec-
ond order in mx,y; therefore it is not so straightforward to
calculate, which can also be seen from the nontrivial convo-
lution in Eq. �25� calculated from magnetic-susceptibility
functions.
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