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Abstract

This thesis explores the application of a modular execution environment, specifically utilizing the Move
Virtual Machine (MoveVM), within a blockchain-agnostic framework. The study aims to demonstrate
how this modular approach can enhance the execution capability of existing blockchain systems. The
case study focuses on the IOTA Distributed Ledger Technology (DLT), known for its unique Tangle
architecture, which differentiates it from traditional blockchain technologies.

The research begins by detailing the current limitations in existing blockchain platforms, such as their
dependence on specific consensus algorithms and rigid execution environments. It then introduces
the MoveVM, developed firstly by the Libra (Diem) project and now by the projects Sui and Aptos,
highlighting its advantages in terms of security, programmability, and modularity.

By integrating an object-flavored MoveVM into the IOTA framework, the study examines how the mod-
ular smart contract execution environment can operate almost independently of the underlying ledger.
The work for this thesis was conducted in two main parts. In the first part, a prototype was created by in-
tegrating a modified version of the existing IOTA node software with an object-flavored Move execution
environment. In the second part, a Move Swap smart contract was developed at the application layer to
showcase the system’s ability to support an advanced intent-based architecture. This approach, which
executes based on user intents rather than declarative smart contract commands, offers significant
economic benefits and reduces unnecessary costs for users.

To validate the effectiveness of this approach, the thesis presents empirical data and performance
metrics gathered from various test scenarios. The results demonstrate the successful integration of
the Move smart contract execution into the IOTA node software, but also significant improvements in
resource efficiency thanks to the intent-based architecture.

In conclusion, this thesis contributes to the growing body of knowledge on blockchain technology by
showcasing the potential of MoveVM in enhancing the functionality and performance of blockchain-
agnostic networks. Moreover, the findings suggest that the intent-based approach not only simplifies
user interactions but also enables advanced functionalities and custom on-chain VMs, paving the way
for innovative applications in DLTs.
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1
Introduction and Background

1.1. Definition and Characteristics of Blockchains
1.1.1. Blockchain technology
Blockchain technology first made its entrance into the world in 2008, with the release of the ground-
breaking whitepaper by Satoshi Nakamoto: ”Bitcoin: A Peer-to-Peer Electronic Cash System” [1]. This
whitepaper introduced the concept of a decentralized digital currency that allows for secure, transpar-
ent and immutable transactions between parties without any intermediate parties such as banks. It
manages to do so by making use of blockchain technology, which is a distributed set of computers that
maintain a shared ledger (state). The ledger is updated by transactions, which first have to go through
a consensus mechanism, ensuring that all participants have a synchronized, verified, and accurate
record of transactions.

A blockchain is a type of Distributed Ledger Technology (DLT). It should be noted that a blockchain is
not the only type of DLT available. A blockchain is a type of DLT with a linear data structure in which
blocks of packed transaction data are chained to each other. All blocks, except the first genesis block,
contain the hashes of the block that comes before it, hence the concept of a chain of blocks. Other
types of DLT include, but are not limited to, Directed Acyclic Graphs (DAGs) [2] and Hashgraphs [3].
The data architectures of these three types of DLTs are visualized in fig 1.1.

1



1.2. Programmability in Blockchains 2

Figure 1.1: Different types of DLTs

1.1.2. Advantages of Distributed Systems
Distributed systems like blockchains have many benefits in regards to reliability, transparency, and
security. One such benefit is the inherent ability to be resilient to single points of failure. Blockchains,
and DLTs in general, are designed to operate over a network of distributed nodes. Each of these nodes
contains a full copy of the network state, which makes the state redundant. In most blockchains, all
transactions are transparent and immutable, which are available to all the network participants, even
those that do not run a local full node which holds the full transaction history [4]. This transparency
decreases the level of fraud and manipulation in the system, as any fraudulent or non-wanted activity
can be spotted.

It is possible that such a distributed blockchain system could have prevented The Great Recession in
2008. It is general consensus that the cause of this financial crisis was the freezing of the international
inter-bank market in August 2007, which was the result of mutual distrust within the banking industry.
This turned out to be valid as banks were indeed insolvent [5].

1.2. Programmability in Blockchains
A blockchain without user programmability is sufficient in case that is the only purpose of the chain.
However, with what we have seen in the early days of the Internet, where the first widespread use
cases of it were static websites [6]. With the arrival of JavaScript and Flash, much more things were
possible on the web, such as dynamic and interactive user interfaces [7, 8]. In today’s society, the
programmability introduced by JavaScript to the static web cannot be overlooked. [9].
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A DLT is powerful as it is, and especially Bitcoin and blockchain technology. However, the addition of
programmability in blockchains opens up a whole new world of possibilities. Boring distributed ledgers
turn into bustling dynamic platforms for decentralized applications (dApps) and smart contracts. The
idea behind programmability in blockchains is the ability to execute code on the blockchain. This en-
ables the creation of smart contracts, which automate terms and conditions between parties, without
any intermediary. Nick Szabo, the inventor of the term, would illustrate it by comparing it to a vending
machine [10]. Inserting the right amount of coins will make the machine deliver the requested goods,
without trusting an intermediary, and the technological infrastructure of the machine is a guarantee that
this contract will be honored exactly as planned. With programmability in blockchains, a blockchain will
extend beyond the initial capability of only recording transactions.

As of date, smart contracts have introduced numerous innovative elements to today’s society. They
have brought us tokenization of real world assets, programmable money, streamlined automated pro-
cesses, Decentralized Autonomous Organizations (DAOs) and most notably, Decentralized Finance
(DeFi) [11]. Decentralized Exchanges (Dexs) have a high volume throughput, peaked at 235 billion
USD in the month November of 2021, as seen in figure 1.2. The ability to facilitate such volume with
little to no maintenance on its code and small project teams is what makes this feat truly revolutionary.

Figure 1.2: Monthly volume of Dexs. Source: DefiLlama.com

1.3. Blockchain Architecture
A typical blockchain consists of multiple interconnected machines which are called nodes, as seen in
figure 1.3, with each node consisting of a number of core components [12].

Figure 1.3: Example blockchain network with 4 nodes.
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1. Secure Runtime Environment
Certain transactions might have to deal with smart contract functions that require to be executed
in a secure environment. This is generally called the Smart Contract Execution Environment, or
Virtual Machine (VM).

2. Cryptographic Services
Cryptographic algorithms like hashing functions and digital signatures.

3. Smart Contracts
Smart contracts that are deployed on the chain and can be interacted with. Uses the Secure
Runtime Environment to execute functions on the node.

4. Blockchain Secondary Storage
To store all ledger information, such as transactions, but also the smart contracts.

5. Blockchain memory store
Stores the latest transactions in memory for fast retrieval and execution of transactions. This
includes the transaction mempool, which is a collection of submitted transaction, but not yet exe-
cuted or agreed upon.

6. Consensus protocol
Consensus protocol like Proof of Work (PoW), Proof of Stake (PoS) and practical Byzantine Fault
Tolerance (pBFT). Decides how the nodes agree on the validity of transactions and which trans-
actions enter the blockchain state and in which order.

7. Blockchain Services
Blockchain specific additional services, such asmembership services in a permissioned blockchain.
Could contain APIs as well.

8. Communication protocol
The communication protocol that nodes use to communicate with each other, for example HTTP(S)
and gRPC.

1.4. Introduction to Ethereum
1.4.1. Ethereum Overview
The first blockchain platform that facilitated programmablemoney through smart contracts was Ethereum,
launched in 2015 and created by Vitalik Buterin [13]. Ethereum smart contracts are written primarily in
a high level programming language called Solidity, which has syntactical resemblance with JavaScript.
This high level language is then compiled into EVM bytecode, which is run on the Ethereum Virtual
Machine (EVM).

A part of this bytecode, the runtime bytecode, is deployed on the Ethereum chain and known as the
smart contract. Other (user)parties are then able to interact with the functions of this smart contract
through transactions, or simply view the data stored in the smart contract.

As of date, Ethereum has a vast ecosystem of dApps and has the most users and developers, far
exceeding all other smart contract platforms. The reason for this position could be due to early mover
advantage.

Transactions cause world state modifications, as illustrated in 1.4. When a transaction is included in
the next block and executed, it triggers changes to the state of the system. These changes could be
value transfers between accounts, execution of smart contract functions or creation of new contracts
altogether. Each of these transactions are recorded on the blockchain and contribute to the total history
of state transitions.

1.4.2. Turing Completeness and Risks
Ethereum’s Solidity is Turing complete, meaning that the smart contracts are capable of performing any
task a computer could normally perform. It allows developers to be flexible, so that any system can be
built using Ethereum, such as custom coins, on-chain physical assets, non-fungible assets (NFTs) and
numerous variants of dApps.
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Figure 1.4: World state transition. Source: medium.com/cybermiles

However, being Turing-complete also comes with some risks, due to its possible complexity. Not only
does this make it harder for smart contract developers to write safe code, but also makes it harder
to audit the code. This design aspect has led to security issues on Ethereum and other EVM-based
chains, ultimately causing massive financial losses as seen in figure 1.5 and figure 1.6.

Figure 1.5: Value stolen, Source: Chainanalysis

A notable amount of these stolen funds come from Decentralized Finance (DeFi) apps. These apps
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are essentially smart contracts, so the value is stolen from the smart contracts.

Figure 1.6: Value stolen categories, Source: Chainanalysis

1.5. Custom VMs
After Ethereum, many other new projects adopted the EVM to achieve blockchain programmability, i.e.
Binance Smart Chain and Fantom [14]. This has proven to be a successful strategy for many of the
projects, as the EVM has all the necessary documentation, tools, developers and general infrastruc-
ture with it. Also, thanks to (token) standards [15], it became easier to transfer (bridge) tokens from
Ethereum to other EVM based chains that enforce the same standards. Not only that, but due to an
identical virtual machine (VM), all smart contracts written for one EVM chain are fully compatible with
the other. This essentially makes onboarding of developers and users more convenient for new chains,
and should make the overall user experience better.

Despite this network benefit of EVM, many other projects decided to develop their own VM due to the
inability for EVM to mold into their completely new chain [16]. It was necessary for them to create a
custom VM, which does not carry the burden of the EVM design decisions, as the EVM was specifically
built for Ethereum. This is usually a last resort, as writing your own programming language or Domain-
specific Language (DSL) and VM is time and resource consuming, especially when there is already a
working product that could be used.

One of the reasons a new blockchain could opt for a new custom VM and its associated programming
language is the previously mentioned burden aspect. A possible burden could be EVMs reliance on
one type of native GAS token to pay for EVM code execution. Each transaction on the EVM comes
with a required gas fee, depending on the amount of calculations the EVM has to make, that is paid by
the transaction issuer. A blockchain adopting EVM is therefore obliged to pay for code execution by
one native token.

Other reasons for custom VMs could be to create a more optimized language and VM, tailored to the
rest of the components that form the blockchain architecture such as the consensus layer.

1.6. Thesis Overview
This thesis explores the integration of the Move Language and Move Virtual Machine (MoveVM) within
the IOTA blockchain to facilitate Layer 1 smart contracts. The integration is structured into two primary
phases, and concludes with a prototype of an intent-based decentralized app built on the integration.
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In the initial development phase, the focus is on developing an adapter to enable theMoveVM to operate
within the IOTA environment. This involves creating a confined setup using a mock node to simulate
the IOTA network. Key tasks include implementing the adapter for MoveVM, ensuring compatibility and
smooth operation within the mock node setup, and conducting extensive testing to validate functionality
in this controlled environment.

The second development phase transitions from the mock node to the actual IOTA network by integrat-
ing with a Hornet Node, which includes the consensus mechanism. This phase involves replacing the
mock node with the Hornet Node, testing and validating the MoveVM functionality within the real IOTA
network, and ensuring seamless operation with IOTA’s consensus and transaction mechanisms.

Following successful integration, the thesis proceeds to develop a dApp prototype demonstrating intent-
based execution on the IOTA network. This includes designing and implementing a simple prototype,
showcasing the efficiency of intent-based execution and a proper functioning of the new execution
platform.

The final section also presents a more advanced design for an intent-based execution pipeline, propos-
ing enhancements and optimizations based on the prototype’s performance, discussing potential scal-
ability solutions and future developments.

This research aims to bridge the capabilities of theMove Language andMoveVMwith the IOTA blockchain,
providing a robust platform for Layer 1 smart contracts. Through the two-phase development process
and the creation of a prototype dApp, this thesis demonstrates the feasibility and advantages of this
integration, paving the way for future advancements in blockchain technology.

1.7. Related Work
In the course of this research, several other execution platforms were considered as potential candi-
dates for IOTA. Each of these VMs are built for ledgers that utilize a UTXO-based accounting system,
and are therefore worth mentioning in the context of developing Layer 1 smart contracts on the IOTA
UTXO-based DLT.

1.7.1. Cardano's Plutus
Cardano makes use of an extended UTXO based ledger, which aims at higher expressiveness of
programmability while maintaining all the benefits of Bitcoin’s UTXO model [17].

Plutus (Core) is a native smart contract language for Cardano. It is a Turing-complete language based
on Haskell, a pure functional programming language, so Plutus smart contracts are effectively Haskell
programs [18].

1.7.2. Bitcoin Script
Bitcoin users interact with the system via addresses. Transfers of Bitcoins between these addresses
are depicted as transactions. Typically, a transaction references previous transaction outputs, known as
Unspent Transaction Outputs (UTXOs), as new transaction inputs and directs all input Bitcoin values
to new outputs. The logic for linking inputs to UTXOs is defined by programmable functions called
scripts. Bitcoin Script is essentially a collection of instructions stored with each new transaction. These
instructions specify how users can access and utilize the bitcoins available on the network. A Bitcoin
transaction comprises a set of data for n input transactions and m output transactions. For each output
transaction, a lock script specifies what actions are required to use that output in the future. For each
input transaction, an unlock script specifies what is done to spend the referenced output.

1.7.3. FuelVM
The Fuel VM is a custom VM built for Fuel, and uses Sway for its smart contracts. It is designed to be
modular, so it can be used as the execution environment for any blockchain [19].

The VM is optimizes for higher throughput of transaction execution. It is UTXO based and requires
each transaction to define the UTXOs that it will touch. In this way, it can parallelize the transactions
that do not interfere with each other.
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1.7.4. Radix Engine
The Radix Engine is a custom execution environment built for the Radix DLT and uses the custom
programming language Scrypto for its smart contracts. [20]

The core difference between Radix and other VMs is that Radix makes use of well-structured Final
State Machines (FSMs) to handle tokens and assets, called resources. Radix has adopted a strategy
where resources are an integral part of the platform, instead of being repeatedly implemented at the
smart contract layer.



2
Background on Move

2.1. Move Language and MoveVM
2.1.1. Introduction
In this fast-evolving landscape, it becomes clear that it is important in which language a smart contract
is written. This shapes the security, efficiency and adaptability of the numerous dApps that are written
not only by senior programmers, but also novice ones. To grow the ecosystem, more developers need
to be onboarded, and those include junior programmers as well. As the saying goes, a chain is only
as strong as its weakest link. A language that connects with both levels of seniority is essential to
strengthen the overall blockchain security and growth.

Move has entered the space as a domain specific language (DSL), which is specifically designed for
programming assets on blockchains. Its design philosophy prioritizes first-class assets, flexibility, safety,
and verifiability, which makes it great to develop reliable and robust dApps [21].

Sam Blackshear is widely known to be the creator of Move [22]. It was a core part of Libra, Facebooks
new blockchain based payment network initiated in 2018. The goal was to create a safe and flexible
programming language for smart contracts on Libra. It was designed with a focus on scarcity, which
allows for reliable and secure smart contracts. It has features like resource types, which help prevent
bugs and vulnerabilities are typically found in other smart contract languages.

• First-class assets: One of Move’s main features is the ability to create custom resource types,
embodying semantics inspired by linear logic [23]. These resource types have a fundamental
property: they cannot be copied or implicitly discarded, but are exclusively movable between
program storage locations. This concept has a high resemblance with Rust’s ownership and
borrowing system. In Rust, ownership ensures that data is managed safely and prevents dangling
pointers or memory leaks [24].

In DLTs utilizing Move, the main coin which is used for gas payments is implemented as a reg-
ular Move resource, with no special unique features in the language. These resources can be
created, modified and destroyed in so called modules. Move modules are equivalent to smart
contracts in other blockchain languages. Resources are thus integrated at the type level, instead
of simply only supporting one resource value (e.g. Ether). This helps Move to stay blockchain-
agnostic. Developers can quickly enjoy these benefits in custom assets without having to go
through additional reimplementation processes needed for ERC20 [25] and such.

• Flexibility: Move modules provide a level of flexibility by allowing secure yet flexible code com-
position. At a broad level, the association between modules, resources and procedures in Move
mirrors that of classes, objects, and methods in object-oriented programming.

Move adds to this flexibility its built-in transaction scripts. These transaction scripts make it pos-
sible to call multiple procedures of modules in a single transaction. In other blockchains like
Ethereum, this would require a separate smart contract. In Move, this is built-in and can be in-

9
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voked with a single transaction, reducing gas fees as compared to when these transactions would
be submitted individually.

• Safety: Move’s executable format consists of typed bytecode, which has a higher level of ab-
straction from the machine code than assembly, but is lower than that of normal source code
such as Rust, Java, etc. This bytecode is then undergoing checks on-chain for resource, type,
and memory safety by the so called bytecode verifier, after which it is directly executed by the
bytecode interpreter.

• Verifiability: Move performs light on-chain verification of key safety properties, and supports
advanced off-chain static verification tools. Move has been designed with the following key de-
sign decisions in mind to make Move more approachable to static verification than most general
programming languages:

– Static dispatch: The target of each call location can be statically determined. Most other
languages are using dynamic dispatch, which makes it hard to determine the call locations.
This allows for verification tools to know what a call is actually doing, without performing
complex and expensive call reconstruction analysis.

– Limited mutability: Move’s bytecode verifier uses a process similar to Rust’s borrow checker
to guarantee that there will always be at most one mutable reference to a used value.

– Modularity: Move modules ensure that data is kept private (abstracted) and that all resource
actions such as modifications are managed within the module itself. Because of this en-
capsulation, as well as Move’s type protection, the rules set for a module’s data cannot be
violated by code from the outside. This all enables complete verification of a module’s rules
by evaluating it in isolation without considering how it interacts with outside programs.

This language was also designed with blockchain agnosticism in mind, which makes it possible for
other chains to adopt this as a programming language for their smart contracts.

2.1.2. Move Lang Features
Resource Types
One of Move’s main features is the ability to create custom resource types, embodying semantics
inspired by linear logic. These resource types have a fundamental property: they cannot be copied
or implicitly discarded, but are exclusively movable between program storage locations. This concept
has a high resemblance with Rust’s ownership and borrowing system. In Rust, ownership ensures that
data is managed safely and prevents dangling pointers or memory leaks. Another way of seeing this
concept is like a value conservation guarantee similar to (e.g.) the conservation of mass.

In DLTs utilizing Move, the main coin which is used for gas payments is implemented as a regular
Move resource, with no special unique features in the language. These resources can be created,
modified and destroyed in so called modules. Move modules are equivalent to smart contracts in other
blockchain languages.

Move Type System
What gives the resources its powerful use, is the Move type system. It prevents misuse of resources,
just like in the real world: you cannot simply duplicate, reuse, or discard physical assets. The type
system ensures that digital assets behave like physical ones.

Figure 2.1: Type system protects against these cases, Source: Mysten Labs
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Duplication of a resource (Coin in figure 2.1) is not allowed and returns an error at the type system
level. Sneaky copying by copying the value of a reference is also not allowed. You also cannot use
the same resource twice, as the resource has been consumed by the first pay function in fun h. And
finally, destruction, as in fun g, is also not allowed. In this function, you simply overwrite the resource
with another value and return before consuming this resource, which are both type system errors.

Such a resource type can only be created or deleted by the module that defines it. All these type
guarantees are enforced statically by the Move virtual machine via bytecode verification. The Move
virtual machine will refuse to run code that has not passed through the bytecode verifier.

Static typing
Worth mentioning is the static type system of Move. All variable types are known at compilation, which
prevents data type errors during run-time. Examples of other statically typed programming languages
are C, C++, Java and Solidity. These are safer than their counterpart: the dynamic type system. In
these systems, the types are not known during compilation, only during run-time. Examples of dynam-
ically typed programming languages are JavaScript and Python. In general, smart contract languages
are statically typed, as dynamic typing would cause unexpected run-time issues, which in blockchains
is not something you want to have.

Static dispatch
There is no dynamic dispatch, which means that for every function call the target is statically known.
This implies that there is no re-entrancy risk [26] possibility since that requires dynamic dispatch, which
is the case for many smart contract languages currently in existence such as Solidity for EVM. If you
send a transaction which calls a function, you will know exactly which function in the code is called
before the transaction is run. There is no possibility to inject code in between.

Bytecode Verification
The Move bytecode verifier is a verification system that has the following checks:

1. Type safety
2. Ability safety
3. Reference safety

The equivalnt to the rust borrow checker, but at the bytecode level. No dangling references, no
memory leaks and referential transparency.

4. Checks on control flow
To make sure that the control-flow graph is reducable.

5. Locals safety
Checking for nulled references, making sure that if you access a local that it is not moved yet
(MoveLoc) or that it might be empty.

6. Stack balancing analysis
Callee cannot touch caller’s stack. The operating stack is shared across multiple procedures, so
it is important to ensure that the callee cannot modify the values on the caller’s stack. The caller
might have money that they do not want to give to the callee for example. So this stack balancing
check makes sure that each function call has its own portion of the stack, that does not belong to
other functions.

This bytecode verifier is strong in a sense that it protects the programmer from themselves and from
other programmers.

Code reusability
Another feature of Move is its code reusability. Move makes use of modules, and it is possible to reuse
types and functions from other modules via imports. Move also has Generics, similar to the ones in
Rust, which allows for code to be reused with different type parameters.
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Abilities
Abilities are a feature in Move that allows you to have more control over what actions are permitted
for values of a specific kind. In early versions of Move, there were only copyable values and resource
values. The latter being types that could not be copied and had to be used. After the realization that
more fine grained control was needed for some cases, a new type control system was needed: the
abilities system [27].

These abilties can be annotated on structs in the code to add more fine grained access control:

• copy: Allows values of types with this ability to be copied.
• drop: Allows values of types with this ability to be popped/dropped.
• store: Allows values of types with this ability to exist inside a struct in global storage.
• key: Allows the type to serve as a key for global storage operations.

Resources, for example, only have the key and store ability. They cannot be copied or dropped.

Formal verification
Formal verification is the process of checking whether a design satisfies some requirements (proper-
ties).

The Move prover is a formal verification tool for smart contracts (modules) [28]. It allows developers to
mathematically prove certain specified properties of the functions in their modules. These properties
are usually specified by the module developer themself. The move prover runs for each of the specified
functions before deployment of the modules. This is different from runtime assertions or the bytecode
verifier. These last two have an impact during the runtime itself.

The Move prover uses a classical (Floyd/Hoarde) approach with explicit specifications.

• They are mathematically precise, written in their own specification language which is a logical
language.

• They are separate from implementations.
• They explicitly capture user intent.

Formal verification automatically proves that Move programs satisfy specifications for all inputs, in all
states. The goal is to prove correctness, it is not a bug hunting process. Errors in these specifications
are dangerous. They may result in false positives, or false negatives which are missed errors, the more
serious kind. So having a good and clear way to form these specifications is important.

The move prover architecture can be found in figure 2.2.
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Figure 2.2: Move Prover Architecture, Source: Novi Research

Boogie (developed at Microsoft Research) is an intermediate language for verification between program
(source code or bytecode) and SMT solver [29]. It is an abstraction layer for various theorem provers.

What themove prover does is implement each bytecode instruction as a Boogie procedure. A translated
bytecode program then looks like a sequence of procedure calls. The specifications are also translated
into boogie code + boogie assumptions and assertions.

The specifications are written in a subset of the Move language called Move Specification Language
(MSL) [30]. These MSL specifications are then statically and exhaustively proven by the Move prover.

To give an example, MSL enables to write specifications, such as post-conditions of Move functions,
which are then proven by the Move prover:

If the Move function is the increment function in Listing 2.1, then the post-condition specification can
be the one in Listing 2.2.

Listing 2.1: Increment function in Move

1 fun increment(counter: &mut u64) { *counter = *counter + 1 }

Listing 2.2: Increment post-condition specification in Move

1 spec increment {
2 ensures counter == old(counter) + 1;
3 }

As you can tell, the syntax is simple to understand, and thus enables the programmer to leverage formal
verification at a high level.

Platform Agnosticism
The case with most new blockchains which do things a bit differently, is that they tend to come up
with their own smart contract language. For example, Cardano came up with Plutus [18], Flow with
Cadence [31], and Starknet with Cairo [32]. They do this because a lot of the implementation details
of the underlying system are hardcoded, like the account, transaction, serialization format, choices of
cryptography used and possibly also some of the consensus mechanisms. So if you want to adopt an
existing programming language with an existing community, you will also inherit some of the design
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decisions of the previous blockchain. The other option is to bootstrap an entirely new programming
language including the community around it. Move keeps the language as simple and non-blockchain
related as possible. All of these design concepts are not embedded in the Move language itself. These
are put in at a higher layer. The lower layer is just Move, which does not know what is happening on
the higher layer, which consists of all blockchain related concepts, such as the ones mentioned above.

Figure 2.3: Move is Platform Agnostic, Source: Mysten Labs

In figure 2.3, everything except the VM can be customized.

Native Functions
Native functions are functions that can be used in Move modules, but do not have their implementation
in the Move language itself. Their implementation can be found in the MoveVM, written in Rust. Usually
these native functions are meant for standard library code, such as the rust vector standard library in
Listing 2.3:

Listing 2.3: Empty vector native function in Move

1 module std::vector {
2 native public fun empty<Element>(): vector<Element>;
3 ...
4 }

The implementation of this function can be found in the MoveVM rust code in Listing 2.4:

Listing 2.4: native_empty rust implementation

1 pub fn native_empty(
2 gas_params: &EmptyGasParameters,
3 _context: &mut NativeContext,
4 ty_args: Vec<Type>,
5 args: VecDeque<Value>,
6 ) -> PartialVMResult<NativeResult> {
7 debug_assert!(ty_args.len() == 1);
8 debug_assert!(args.is_empty());
9

10 NativeResult::map_partial_vm_result_one(gas_params.base, Vector::empty(&
ty_args[0]))

11 }
12

13 // This code can be found at: [https://github.com/move-language/move/blob/2412
f877a5065132f31bfc339e6d1f2b9de10e87/language/move-stdlib/src/natives/vector.
rs#L32-L42]
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All the other standard native functions can be found in the code specifically at https://github.com/
move-language/move/blob/3ef3f1f3e18ef991a0f2790a60dc7bb47e6dae49/language/move-stdlib/
src/natives/mod.rs#L105.

It is also possible to create your own custom native functions, which can be added to the MoveVM
easily by passing the natives on the MoveVM instantiation, as seen in Listing 2.5.

Listing 2.5: Adding custom native functions

1 pub fn new(
2 natives: impl IntoIterator<Item = (AccountAddress, Identifier, Identifier,

NativeFunction)>,
3 ) -> VMResult<Self> {
4 Ok(Self {
5 runtime: VMRuntime::new(natives).map_err(|err| err.finish(Location::

Undefined))?,
6 })
7 }
8

9 // This code can be found at:[https://github.com/diem/move/blob/725168
d7522a3abeeb8664b4f1498552b3657286/language/move-vm/runtime/src/move_vm.rs#L24
]

Transaction Scripts
MoveVM has the ability to natively invoke multiple already-published module procedures in one trans-
action. These procedures are written in Scripts. A Script is limited in the sense that it can only contain
one main function, and in that main function it is only able to able to call functions of already deployed
modules and cannot return a value. Scripts have very limited power—they cannot declare struct types
or access global storage. Their primary purpose is to invoke module functions. An example of a simple
script is shown in Listing 2.6.

Listing 2.6: Simple Script in Move

1 script {
2 use 0x1::Math;
3 use std::debug;
4

5 fun main(a: u64, b: u64) {
6 let sum = Math::add(a, b);
7 debug::print(&sum)
8 }
9 }

This script is then able to be executed in a transaction. Scripts cannot be reused as they are not
published. This is a key difference between scripts and modules. Scripts are executed only once in a
transaction. As a result, applications are safer, the user experience is improved, and there is greatly
more flexibility.

2.1.3. Advantage in Preventing Mistakes
With all the safety-focused features Move has, it has strongly positioned itself as a safe smart contract
programming language that is able to prevent many programming mistakes. Bugs in smart contracts
can have devastating financial consequences, as can be seen by the total amount of value stolen over
the years visualized in figure 1.5 and 1.6 of the introductory chapter.

Move could have prevented many of these hacks, as many bugs that caused these hacks are simply
not possible if the smart contracts were written in Move. For example, the most researched vulnera-
bility being the re-entrancy attack [26], where a function is called repeatedly in the same transaction
potentially draining the smart contract from all its funds, is not possible in Move due to the resource
model and explicit borrow semantics. Once a resource is moved, it cannot be moved again within the
same call.
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2.1.4. Move Syntax
Basic Structure
The syntax of a Move program defines how Move code is written and organized. Move programs are
composed of packages and modules, with the latter containing the Move structs and functions. One
package could contain multiple move modules. A typical Move program directory is organized as in
figure 2.4.

package_name.......................................................................The package
src.....................................................................Source code directory

modules
mymodule.move

scripts
main.move

tests............................................................................Test directory
mymodule_test.move
main_test.move

build..................................................Automatically generated build directory
mymodule

{...}.................................Contains all compiled files including bytecode file
main

{...}
Move.lock............................................................Automatically generated
Move.toml
README.md

Figure 2.4: Directory Structure of Move Program

Basic Elements
A simple Move module in which a Coin with a certain value is being ’minted’ to the function caller can
be seen in listing 2.7.

Listing 2.7: Simple Move Module

1 module coin_address::user_coin {
2 struct Coin has key {
3 value: u64,
4 }
5

6 public fun mint(account: signer, value: u64) {
7 move_to(&account, Coin { value })
8 }
9 }

The Move.toml contains the package manifest, and has the following syntax in listing 2.8, with an ‘*‘
character representing optional fields and an ‘+‘ character representing one or more elements. A bare
minimum implementation of Move.toml is given in listing 2.9.

Listing 2.8: Move.toml Syntax

1 [package]
2 name = <string> # e.g., "MoveStdlib"
3 version = "<uint>.<uint>.<uint>" # e.g., "0.1.1"
4 license* = <string> # e.g., "MIT", "GPL", "Apache 2.0"
5 authors* = [<string>] # e.g., ["Joe Smith", "Jane Smith"]
6

7 [addresses] # (Optional section) Declares named addresses in this package and
instantiates named addresses in the package graph

8 # One or more lines declaring named addresses in the following format



2.1. Move Language and MoveVM 17

9 <addr_name> = "_" | "<hex_address>" # e.g., Std = "_" or Addr = "0xC0FFEECAFE"
10

11 [dependencies] # (Optional section) Paths to dependencies and instantiations or
renamings of named addresses from each dependency

12 # One or more lines declaring dependencies in the following format
13 <string> = { local = <string>, addr_subst* = { (<string> = (<string> | "<

hex_address>"))+ } }
14

15 [dev-addresses] # (Optional section) Same as [addresses] section, but only
included in "dev" and "test" modes

16 # One or more lines declaring dev named addresses in the following format
17 <addr_name> = "_" | "<hex_address>" # e.g., Std = "_" or Addr = "0xC0FFEECAFE"
18

19 [dev-dependencies] # (Optional section) Same as [dependencies] section, but only
included in "dev" and "test" modes

20 # One or more lines declaring dev dependencies in the following format
21 <string> = { local = <string>, addr_subst* = { (<string> = (<string> | <address>))

+ } }

Listing 2.9: Bare minimum Move.toml file

1 [package]
2 name = "AName"
3 version = "0.0.0"

2.1.5. Architecture of MoveVM
When discussingMove, it is usually distinguished between two parts: theMove Language and theMove
VM. The full Move language stack actually consists of four parts, as seen in the language directory of
the Move Github repository [33]. This is the blockchain-agnostic part of Move that can be used to
enable Move execution in a blockchain. As will be seen in the next chapter, this is the ”Move” that is
being used by the Move blockchains. It is the engine that makes the chain move.

1. The Virtual Machine

• Contains the bytecode format, a bytecode interpreter, and infrastructure for executing a block
of transactions. This directory also contains the infrastructure to generate the genesis block.

2. The Bytecode Verifier

• Contains a static analysis tool for rejecting invalid Move bytecode. The virtual machine runs
the bytecode verifier on any new Move code it encounters before executing it. The compiler
runs the bytecode verifier on its output and surfaces the errors to the programmer.

3. The Move Compiler

• Contains the Move source language compiler.
4. The Standard Library

• The standard library is a repository of default modules and native functions that are already
developed and can be used by module developers. These are all the modules that you can
import natively from ‘std‘. Examples are std::vector, str::string and std::debug.

These core components together form Move, as is visualized in figure 2.5. To publish a move package
containing move source code, this move source code first has to go through a compiler, which produces
the move bytecode. This bytecode is then verified by the bytecode verifier before it is being published.
Being published means the code now resides on the chain. A transaction is able to invoke a state
change in the global storage (the blockchain). This is done by the Move VM. The Move VM reads the
required data for the transaction from the object store and executes this. It does so by loading all the
necessary modules and dependencies for the execution with the help of the Loader found in the repo
at move-vm/runtime/loader.rs, caches and verifies them as well. After successful execution of the
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transaction, the Transaction Effects are produced. These effects are used to create the next state of
the blockchain.

Figure 2.5: Move Compile/Publish/Run Toolchain, Source: Mysten Labs

Bytecode instructions
Move has a set of bytecode instructions which are typed. This means that the type of the instructions
is retained, thus improving readability as it is more descriptive and closer to the high level code than
untyped bytecode. These bytecode instructions can be found in the code here: https://github.com
/move-language/move/blob/main/language/move-vm/runtime/src/interpreter.rs

Move source language can be disassembled into Move bytecode with the move disassembler CLI tool:
move disassemble /path/to/move/source/file

The full bytecode of the usercoin module in Listing 2.7 is seen here in Listing 2.10:

Listing 2.10: Bytecode of User Coin Module

1 module 42.user_coin {
2 struct Coin has key {
3 value: u64
4 }
5

6 public mint(account: signer, value: u64) {
7 B0:
8 0: ImmBorrowLoc[0](account: signer)
9 1: MoveLoc[1](value: u64)

10 2: Pack[0](Coin)
11 3: MoveTo[0](Coin)
12 4: Ret
13 }
14 }

Bytecodes are variable size instructions for the Move VM. Bytecodes are composed by opcodes (1
byte) followed by a possible payload which depends on the specific opcode and specified in ”()” in the
bytecode table found in Appendix A.
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2.2. Aptos and Sui Flavors
2.2.1. Introduction
The Move discussed in the previous chapter actually has two major flavors: Aptos Move and Sui Move.
These are the two biggest players in the scene and have emerged directly from the original Diem Move
team. This chapter will focus only on the largest two projects, Aptos and Sui, due to their continuous
contribution to the MoveVM and ongoing large-scale research efforts.

Both teams consist of previous Facebook employees that worked on the Diem blockchain. Since the
downfall of the Diem project, these two teams have continued the development of Move in their own
separate blockchains. Initially, this was a joint approach/collaboration as can be seen on the original
Move github page [34]. Both Aptos and Sui worked on their flavor of Move in separate branches. Later
on, both decided to continue on their own fork and leave this joint collab alone.

Aptos released their blockchain in mainnet on October 17th 2022, while Sui reached mainnet May 3rd
2023.

As seen in the previous section of this chapter, Move is platform agnostic. This means that it is possible
to adopt Move in a different DLT, without having the burden of having to customize much of the VM.

Aptos Move basically uses Diem textbook Move, utilizing the commonly known address-centric or
account-based global storage. Sui uses a different object-centric model, in which elements such as
assets and modules on the blockchain are represented via objects.

Each deployment of the MoveVM has the ability to extend the core MoveVM with additional features
via an adapter layer. Furthermore, MoveVM has a framework to support standard operations much like
a computer has an operating system.

2.2.2. Overview of Aptos Move and Sui Move
This will be an exploration of key features and functionalities of both flavors. A high level non-exhaustive
comparison between Aptos Move and Sui Move can be seen in table 2.1.

Attribute Aptos Move Sui Move
Data storage Stored at a global address or within the

owner’s account
Stored at a global address

Parallelization Capable of inferring parallelization at
runtime within Aptos

Requires specifying all data accessed

Transaction safety Sequence number Transaction uniqueness
Type safety Module structs and generics Module structs and generics
Function calling Static dispatch Static dispatch
Authenticated stor-
age

Yes No

Object accessibility Guaranteed to be globally accessible Can be hidden

Table 2.1: High level comparison Aptos/Sui Move.

Storage Model
The main difference between Aptos and Sui is the storage model, or the state of the ledger. This
difference can be described using the physical memory analogy: Aptos uses unified memory, while Sui
uses partitioned memory.

Physical memory is a large array of bytes, and each byte (word) has an address through which it can be
accessed. Multiple programs (transactions) try to use the memory simultaneously, possibly resulting in
concurrency conflicts. The operating system (consensus engine) needs to decide which program can
use which memory location concurrently.

There are two main approaches to this:

1. Account Based: Each program has exclusive access to the whole memory. This is the approach
used by Ethereum.
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2. UTXO Based: Each program has exclusive access to a subset of the memory, and it needs to
declare upfront which memory locations it wants to use. This is the approach used by Bitcoin.

Conflicts are more easily detected in the UTXO based case, as the operating system knows which
memory locations are used by which program. In the Account based case, conflicts are resolved by
sequential execution, one program after the other.

The UTXO approach is a simple and beautiful when it is looked at from the perspective of the protocol
developer. While this is the case, it is not very suitable for complex applications that require a shared
state. Imagine a shared state, i.e. a DEX pool, is represented with a UTXO. All user transactions
interacting with this DEX pool commit to a certain state (the UTXO to spend), and there can only be
one winning transaction. All other transactions are discarded as conflicts.

So how that plays out as a user, is that the user needs to submit the trade, wait to see if that trade is
won, and if not, resign and submit the trade again. This is not a great user experience, as the user
will not know how many times the trade has to be resubmitted until it has won. This also wastes the
network bandwidth with failed transactions.

In the case of the account based ledger, the user submits the trade and waits for the consensus engine
to order the transaction. The user does not have to commit to a certain state to trade against, but it will
eventually happen. The downside is that the user has to deal with transactions that are not deterministic.
It is unclear how exactly the trade will happen, as the consensus engine can order this transaction in
any way that it wants. This is the reason that most DEX swap protocols require you to set a maximum
slippage to protect against trading against a price that is drastically different than you expected to trade
against.

An object based ledger is a middle ground between the previously mentioned two extremes. It uses
the memory access list of the UTXO approach, but allows for shared state to exist at specific memory
locations. This way, only programs that compete for the same memory location need to be ordered. If
programs compete for different memory locations, they do not need to be ordered.

Aptos makes use of an account-based global storage as visualized in 2.6, which has similarities to most
blockchains. This model is identical to the one used in the original Diem code. Ethereum for example
uses an account-based model as well, where the global state consists of addresses which contain the
data. This ledger is simply a key-value store with addresses as keys and resources as values. This
model has a few notable drawbacks:

1. It assumes that all transactions are totally ordered, as all transactions have access to the same
total global state. Each transaction updates the complete global state, after which the next trans-
action uses that newly updated state.

2. Transactions are grouped into blocks which are executed in batches. Validators pick and order
transactions based on their gas fees to maximise profits. This allows for MEV opportunities such
as front-running and sandwich attacks.

3. Since transaction execution updates the full global state, the cryptographic root hash of the state
must be calculated too. Calculating this hash is computationally expensive.

4. Parallelization of transaction execution is not an obvious ”thing”, because each transaction reads
and writes the same global state. However, it is possible and Aptos made it happen with their
Block-STM approach: [https://arxiv.org/pdf/2203.06871.pdf], an in-memory parallel execution en-
gine.

Ledger activity (due to transactions) consists mostly of state transitions which changes data associated
with addresses. This means that each transaction will invoke two ledger updates: one update on the
sender address, and one update on the receiver address.
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Figure 2.6: Account-based model of Aptos. Source: Cetrik

Sui makes use of an object-based global storage, which has similarities with UTXO models like Bitcoin,
but also some aspects of account-based models. In UTXO models, every UTXO is owned by one
owner, and only the owner is able to use this UTXO. In Sui’s model, you have two types of objects:
shared and owned objects. Owned objects have the same characteristics as UTXOs in the sense that
they can only be owned by one owner. This inherits the same benefits as UTXOs, namely that they
can be executed in parallel.

In the Sui model, ledger activity from transactions does not consist of two changes in addresses, but
only one: the object. In the case of a simple transfer of an asset between two participants, the only
change required is the one to the ”owner” label of the object.

Consensus
Aptos uses AptosBFT, which is basically LibraBFT. It makes use of Byzantine Fault Tolerance (BFT)
and Proof of Stake (PoS).

Sui uses Narwhal and Bullshark. Narwhal is the mempool engine and Bullshark is the consensus
engine. The mempool has the task of delivering the required data to the consensus engine, while the
consensus has the task of agreeing on a specific order of that data.

Move Flavor
The Aptos Move adapter features include the following [35, 36]:

• Move Objects that offer an extensible programming model for globally access to heterogeneous
set of resources stored at a single address on-chain.

• Resource accounts that offer programmable accounts on-chain, which can be useful for DAOs
(decentralized autonomous organizations), shared accounts, or building complex applications
on-chain.

• Tables for storing key, value data within an account at scale.
• Parallelism via Block-STM that enables concurrent execution of transactions without any input
from the user.

• Cryptography primitives, which include cryptographic hash functions (such as SHA2-256, SHA3-
256, Keccak256, and Blake2b-256), digital signature verification algorithms (such as Ed25519,
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ECDSA, and BLS), elliptic curve arithmetic (supporting curves like Ristretto255 and BLS12-381),
and zero-knowledge proofs (such as Groth16 ZKP verification and Bulletproofs ZK range proof
verification)

Sui Move differs from other Move versions [37]:

1. Sui uses its own object-centric global storage
2. Addresses represent Object IDs
3. Sui objects have globally unique IDs
4. Sui has module initializers (init)
5. Sui entry points take object references as input

Parallelization
Aptos parallelizes transactions through Block-STM [38]. Simply put, this method makes use of an
optimistic parallel execution approach, where the transactions are first run in parallel and only after
execution they will be validated. If anything goes wrong, the transaction can be aborted or re-executed
[39].

Sui is able to parallelize transactions due to its object-based and ownership model. Transactions con-
cerning owned objects can be executed in parallel in case there are no shared dependencies, and are
able to skip consensus since there is no ordering necessary. Shared objects logically do have to go
through consensus and can thus not be parallelized.

Move Code
The differences between these two flavors of Move has an impact on the Move module code that a
developer has to write. This can be most prominently seen in the different way of thinking that is
required for the different storage models: a Sui Move developer needs to think in objects, while an
Aptos Move developer has to think in accounts that contain these objects. For example, in a Sui Move
module, when you create a function that requires multiple different objects as input, even though they
belong to the same user, you still have to get their individual references as arguments of the function.
In Aptos Move, you do not have to provide these objects as arguments, as they are user-owned, and
therefore reside in the user address as a struct. In the function, you simply check if the user address
contains that specific struct, and access it that way.



3
Applying MoveVM to the IOTA DLT

3.1. Introducing IOTA
IOTA is an open, feeless data and value transfer protocol that utilizes a DAG-structured DLT called the
Tangle [2].

3.1.1. Overview of IOTA and the Tangle
In the IOTA protocol, new transactions validate two previous ones with a small proof-of-work, ensuring
scalability and decentralization. This means that theoretically, the more transactions occur, the faster
the chain can process new transactions. To illustrate how the Tangle works, consider the following
example:

Alice wants to send funds. She receives two previous transactions from Bob and Sarah as potential
candidates (”tips”) for verification, as they made their transactions just before her. To prevent issues
like ”double spending,” Alice’s computer verifies both transactions. After performing a small proof-of-
work, her transaction is added to the IOTA network. A supervisor (the ”coordinator”) then reviews
these verified transactions and, after a final check, broadcasts confirmation to the network through a
”milestone transaction.”

3.1.2. IOTA 2.0
IOTA comprises two main networks: the IOTA mainnet and the Shimmer staging network, used for
testing and deploying updates to the protocol. After validation, these updates can be deployed to the
IOTA mainnet.

IOTA 2.0, currently in development with a public testnet released in mid-2024, aims to remove the
coordinator and introduce MANA, a secondary token used for gas fees. This MANA token is passively
generated by IOTA holders and also awarded for delegation and validation, preserving the original
”feeless” aspect of the DLT. The lifecycle of MANA is visualized in Figure 3.1.

23
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Figure 3.1: MANA lifecycle, Source: IOTA Foundation

In IOTA 2.0, transactions are executed on arrival in parallel, utilizing a Parallel Reality-Based Ledger
[40]. Conflicts between transactions and their dependencies are tracked in a conflict DAG and resolved
there.

Understanding the life cycle of a transaction is crucial to appreciating the differences between tradi-
tional blockchains and IOTA’s Tangle. In a typical blockchain, transactions go through several stages
including broadcasting, validation, and inclusion in a block by operators. This process can involve
significant delays and fees due to the need for sequential processing and competition among miners.

In contrast, IOTA’s Tangle operates differently. Transactions are validated through a process where
each new transaction confirms two previous transactions, creating a web of interlinked transactions.
This method allows for parallel processing, reducing delays and eliminating fees.

Table 3.1 provides a step-by-step comparison of the transaction life cycle in traditional blockchains
versus IOTA.

Table 3.1: Comparison of Steps in a Typical Blockchain vs. IOTA

Typical Blockchain IOTA
1. Transaction created and gossiped to the
network

1. Transaction packaged into a block and gos-
siped

2. Transaction sits in the mempool 2. Transaction executed on arrival

3. Transaction sequenced into a block 3. Block receives approvers
4. Block issued to the network

5. Block is validated

6. Transaction executed

7. Block received approvers
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3.1.3. Consensus Mechanism
The current IOTA protocol, called Stardust [41], uses the Coordinator. The Coordinator emits milestone
blocks that nodes trust and use to confirm blocks. Blocks referenced by these milestone blocks are con-
sidered confirmed. This milestone block acts similarly to a block header in traditional blockchains, but in
the case of IOTA, it also confirms a subgraph of the DAG. The Coordinator operates on the Tendermint
Core BFT consensus, allowing a committee of validators to function as a distributed Coordinator.

In IOTA 2.0, consensus is reached through an adaptation of Nakamoto Consensus applied to a DAG
known as the Tangle. Unlike traditional blockchains, the Tangle’s architecture supports a dynamic
network of linked blocks. Each node contributes to consensus by validating transactions and blocks.
Nodes build the Tangle by linking to earlier blocks, guided by a random tip selection algorithm for block
inclusion. Consensus flags and slot commitment chains maintain consensus across nodes, switching
to the heaviest sub-chain during network issues. This ensures a unified, consistent ledger view for all
participants, enhancing the security and efficiency of the IOTA network.

3.1.4. Smart Contract Capabilities
IOTA 2.0 does not have native L1 smart contract capabilities. Instead, IOTA Smart Contracts (ISC)
allows smart contract blockchains to connect to the IOTA Tangle. This means multiple chains with
smart contract capabilities can connect to the IOTA Tangle, executing in parallel for higher throughput
and lower fees. ShimmerEVM is an example, running as a network with the Ethereum Virtual Machine
(EVM) on top of the IOTA network. Although this approach enables smart contracts on IOTA, it relies
on Layer 2 (L2) solutions, which introduce trust in L2 coordinators.

The absence of L1 programmability in IOTA limits its flexibility. L1 programmability would enhance the
network’s economic security by increasing the value of MANA, as well as its usage and demand. Ad-
ditionally, L1 programmability provides essential building blocks for zero-knowledge technology, name
services, rollups, sidechains, and other potential L2 solutions. It would also prepare the L1 for future
technological advancements.

3.1.5. Architecture Parallels between IOTA and Sui
Understanding the core principles and architectures of both Move flavors reveals some obvious sim-
ilarities between Sui and IOTA, namely the object-centric storage model (UTXOs in IOTA, Objects in
Sui) and parallelization of transactions. Neither IOTA nor Sui have a global account-based ledger like
Ethereum or Aptos.

IOTA aims for the parallelization of transactions. This is similar to what Sui aims to do with its UTXO-
object-based ledger.

The IOTA protocol mainly consists of the following primary layers:

1. Networking: Manages discovery and selection of neighbors and their connections so that in-
formation can be efficiently exchanged. It also manages the gossip between nodes and their
peers.

2. Data Structures/Communication Layer: The Tangle is a block DAG where each block has
a size of just 1. Each block can reference up to 8 parent blocks. IOTA 2.0 makes use of the
Unspent Transaction Output (UTXO) model. Write access is simultaneously permitted in parallel
by multiple participants, reflecting natural causal order. A scheduler limits write access using
MANA as sybil protection. This is part of the communication layer.

3. Tangle 2.0 Consensus: The protocol uses Tangle 2.0 consensus: Leaderless Nakamoto Con-
sensus on the Heaviest DAG.

4. Staking and Mana Incentives: MANA is the essential resource that binds all components of the
protocol together. Participants are rewarded with system access for engaging in consensus.

A Block: A block is the basic unit of information, essentially a wrapper or container for all data. Each
block contains the following information:

• Timestamp
• List of parents
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• Payload (transaction or data)
• Slot commitment: cryptographic summary of a slot
• Amount of MANA burned
• Issuer Account
• Issuer Signature

These blocks are categorized based on time slots. The timeline is divided into segments called slots,
each uniquely indexed. The slot a block belongs to can be determined based on its timestamp.

Figure 3.2: IOTA Time slot, Source: IOTA Foundation

Payloads are packages of data contained within each IOTA block, except for validation blocks, which
do not contain any payload. Each payload consists of a header that specifies the payload type. IOTA
2.0 contains two types of payloads:

• Transactions: Payloads used to transfer value. Contains two fields: header and Transaction
Essence. The latter includes all transaction data, such as Network ID, Creation Slot Index, UTXO
Input List, UTXO Output List, and Extra Payload.

• Tagged Data: Generic data payload with a customizable tag field. Contains three fields: header,
tag, and data.

3.1.6. MoveVM for IOTA L1 Programmability
MoveVM’s blockchain agnosticism suggests that achieving L1 programmability on IOTA could be pos-
sible, and the Sui Move flavor seems to be the most compatible. The practical implications and im-
plementation of such a design are documented in the following chapters. This process is split into
two phases: the first phase focuses solely on achieving programmability with MoveVM, without actual
real node software. The second phase continues the work of phase 1 by implementing the real node
software and consensus.

3.2. Phase 1 - The Adapter Prototype
3.2.1. Introduction
Making MoveVM work with IOTA requires creating an adapter for it. In essence, MoveVM is just a
black box. Bytes can enter the box, and it outputs a result. This result is a set of instructions that can
be used to modify the state, called a TransactionEffect. The black box is something that should not
be touched or modified. It was specifically designed this way so that MoveVM could be blockchain
agnostic. Tooling needs to be built around it to connect it to the rest of the IOTA DLT. The black box
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does not know of concepts like accounts, storage, addresses, transactions, etc. These need to be
defined within what is called the adapter and framework.

This section is focused mainly on the adapter, and is denominated with phase 1 of the project.

3.2.2. Prototype Architecture
The MoveVM is exposed by a simple API interface, which just outputs TransactionEffects, or a
WriteSet. Building the necessary adapter and blockchain concepts around it results in a high level
architecture like the one shown in figure 3.3.

Figure 3.3: High Level Adapter Architecture

In this architecture, the node’s function is to maintain the ledger state, run the consensus engine and
network with peers. The consensus engine runs the consensus algorithm which determines which
transactions need to be executed. In phase 1, a simplified version is used where consensus does not
play a role, as the nodes treat the Move transactions as simple binary payloads. This is the reason
consensus is not able to validate them, and the reason why a separate validation step is included in the
Move Adapter. Once a transaction passes the consensus engine, it is passed to the Execution Client
to be executed. This is handled by the Move Adapter and Move VM.

3.2.3. Phase 1 Simplification
As consensus is not necessary for this phase of the project, which focuses on getting MoveVM to work,
the decision was made to simplify the node implementation by not running the consensus algorithm
and networking. The dummy node will only maintain the ledger state, which is a collection of objects.
This node can accept incoming transactions and execute them sequentially in the current ledger state.
In this prototype, there will be no Tangle and its blocks. A user simply submits raw move transactions
to the node.

3.2.4. Transactions
Transaction Processing
Validation Phase The adapter has the task of executing a transaction and producing a writeset which
can be used to apply changes to the ledger state. However, executing any arbitrary payload is not
possible. This payload, which is the transaction, first needs to be validated before it enters the black
box, which is the MoveVM.

The validation phase consists of the following tasks, in arbitrary order:

• Ensuring the payload is well-formed and syntactically correct.
• Ensure the signatures are valid.
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• Ensure that the referenced objects exist, with correct version ID and matching digests in case of
owned/immutable objects.

• Check if the accessed objects are accessible by the sender of the transaction.
• Check if the transaction fields respect the protocol rules, such as adhering to the max number of
arguments.

• Check if gas payment objects are sufficient to cover the maximum budget of the transaction.

If any of these conditions fail, then the transaction will not pass the validation phase and will be consid-
ered an Illegal transaction. Such illegal transaction is not executed and does not produce a writeset
and thus no change in the ledger is made.

All these validation checks happen before the execution starts, and could therefore technically be done
by the node itself. It is not necessary for this logic to be incorporated in the Execution Client, as it does
not need anything from the Move Adapter. It might even be better to incorporate this logic in the Node,
but for the sake of simplicity in this phase, this is done in the Execution Client.

Execution Phase After the validation phase comes the execution phase. This is where the adapter
processes the transaction and creates a transaction context. It then creates a temporary ledger state
out of all the objects in the execution context, but retains an online link to the node’s ledger state so that
it can always fetch additional objects on-demand, which is used to facilitate Dynamic (Object) Fields
[42].

Execution will always produce a write-set that is committed to the ledger. This write-set could be one in
which the transaction is executed successfully, or one in which the transaction has failed and is aborted.
In the latter case, there will be no changes to the ledger state except for the transaction in which the
gas payment is deducted from the sender. This deduction is always committed to the ledger whenever
there is a submitted transaction.

Transaction Structure
The actual structure of a Move transaction is made of two parts:

• Intent message, which contains the transaction payload. In IOTA, this is called the TransactionEssence.
• List of signatures, which is a vector of all signatures of the senders. In our prototype, only one
signature with Ed25519 signature system will be supported.

Listing 3.1: SenderSignedTransaction struct

1 pub struct SenderSignedTransaction {
2 /// The unsigned transaction data.
3 pub intent_message: IntentMessage<TransactionData>,
4 /// The signature for the transaction data.
5 pub tx_signature: GenericSignature,
6 }

The TransactionData that can be seen in the SenderSignedTransaction struct in listing 3.1 is an-
other struct which contains the operation that the transaction wishes to perform with some additional
metadata. This TransactionData is shown in the Listing 3.2 below.

Listing 3.2: TransactionDataV1 struct

1 pub struct TransactionDataV1 {
2 /// The transaction kind. Defines the operation(s) to carry out.
3 pub kind: TransactionKind,
4 /// The sender of the transaction.
5 pub sender: IotaAddress,
6 /// Gas payment information (gas payment objects, gas budget, etc.)
7 pub gas_data: GasData,
8 }
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In phase 1 prototype, two types of transactions are supported:

• Transaction to publish a Move module.
• Transaction to Call a Move Function.

The implementation of this enum is shown below in Listing 3.3.

Listing 3.3: TransactionKind enum

1 pub enum TransactionKind {
2 MoveCall(MoveCallTransactionData),
3 Publish(MoveModulePublish),
4 }

Publish Transaction
The publish transaction is a special type of transaction that enables the user to publish a new Move
module to the ledger. This transaction contains the compiled Move bytecode of the to be published
Move package, which is simply a list of modules. The struct of this specific transaction type is shown
in Listing 3.4 below.

Listing 3.4: MoveModulePublish struct

1 pub struct MoveModulePublish {
2 pub modules: Vec<Vec<u8>>,
3 }

The Move compiler generates these bytes from the package source code using .toml package file. It
compiles all .move source files into move bytecode and adds some metadata and type information. It
then finalizes it by serializing the result into a binary format with Binary Canonical Serialization [43].

After execution of this publish transaction, a new package object is created in the ledger state with the
bytes of the compiled modules into the package’s modules field.

Call Transaction
When a module is published, it exposes its functions. These can be called by so called Call Transac-
tions. One of these is the transfer function which is a crucial function of a ledger. A Move call transaction
needs to contain the following information:

• Which function of which module and package is called.
• What are the arguments to this function.
• If it is a generic function, which type arguments to use.

These can be seen in the MoveCallTransactionData struct in Listing 3.5 below.

Listing 3.5: MoveCallTransactionData struct

1 pub struct MoveCallTransactionData {
2 /// The package containing the module and function.
3 pub package: ObjectID,
4 /// The specific module in the package containing the function.
5 pub module: Identifier,
6 /// The function to be called.
7 pub function: Identifier,
8 /// The type arguments to the function.
9 pub type_arguments: Vec<TypeTag>,

10 /// The arguments to the function.
11 pub arguments: Vec<CallArg>,
12 }

The CallArg struct contains the arguments that are supplied to the Move function, which can be seen
in Listing 3.6.
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Listing 3.6: CallArg struct

1 pub enum CallArg {
2 // contains no structs or objects
3 Pure(Vec<u8>),
4 // an object
5 Object(ObjectArg),
6 }

Pure arguments are numbers, strings, boolean values, addresses, etc. Object arguments are ref-
erences to objects in the ledger state. In these objects, a difference between the type of object
is made. If they are owned objects, the ObjectArg struct is an ImmOrOwnedObject which contains
ObjectReferences. These include ObjectID, Version and Digest.

If they are shared objects, the ObjectArg struct is an SharedObject which includes the ObjectID. The
ObjectArg struct implementation can be found in Listing 3.7.

Listing 3.7: ObjectArg struct

1 pub enum ObjectArg {
2 // A Move object, either immutable, or owned mutable.
3 ImmOrOwnedObject(ObjectRef),
4 // A Move object that's shared.
5 // SharedObject::mutable controls whether caller asks for a mutable reference

to shared
6 // object.
7 SharedObject {
8 id: ObjectID,
9 initial_shared_version: SequenceNumber,

10 mutable: bool,
11 },
12 }

3.2.5. Execution Flow
The overall execution flow of aMove transaction is depicted in figure 3.4. This is the simplified execution
flow, in which only the most crucial elements are shown. A more detailled version of the execution flow
can be found in Appendix C.

Figure 3.4: Simplified Execution flow of Move transaction in phase 1

In this figure, the red arrows outline the execution path from the node to the adapter, concluding in
the MoveVM (purple boxes). On the other hand, green arrows signify the information flow from the
VM back to the node, where the write-set (Transaction Effects) is ultimately committed to the ledger.
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Notably, transaction validation occurs prior to the execution phase and is distinct from the adapter’s
functions. Upon successful validation, the adapter initiates the transaction context, starts gas metering,
and executes the transaction based on its type.

In the following subsections two different transaction types will be explained in more detail.

Publish transaction execution

Figure 3.5: Execution flow of Publish transaction in phase 1

The general execution flow of a publish transaction is visualized in 3.5. The process begins by extracting
the module bytes from the transaction and parsing them into a CompiledModule as defined by the Move
language. Subsequently, a new package ID is generated for the package and incorporated into the
CompiledModule as the package_address. These modules are then serialized back into bytes and
forwarded to the MoveVM for publishing through its publish_module_bundle() API. At this stage, the
MoveVMexecutes integrity checks on the bytecode, resolves dependencies by linking themodules, and
upon successful completion, returns the on-chain module bytes of the package. Additionally, a custom
bytecode verifier is employed to enforce IOTA-specific constraints on the package. Given that a Move
dialect designed for object handling is used, the bytecode must adhere to this dialect’s specifications,
verified through static code analysis as part of the custom bytecode verifier process. It is important to
note that packages include an init function that must be executed before saving the package, allowing
for state initialization, creation of singleton objects, and other necessary actions.

Move call transaction execution

Figure 3.6: Execution flow of Call transaction in phase 1

Likewise, the general execution flow of a call transaction is visualized in 3.6. In the current itera-
tion of our prototype, direct calls to entry functions are restricted when executing transactions, pro-
viding a simple interface. However, our upcoming Programmable Transaction feature in the produc-
tion adapter will expand these capabilities. Despite this evolution, the primary role of the adapter re-
mains consistent: it verifies that transaction arguments align with the called function’s signature and
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injects the Transaction Context into the function’s argument list. This ensures the context’s availabil-
ity within MoveVM for on-chain code operations, such as retrieving the current time/epoch in Move
code and generating new object IDs within the runtime. The actual function invocation occurs via the
execute_function_bypass_visibility() API within MoveVM. Following MoveVM’s execution, the
adapter’s runtime processes the result, preparing the transaction effects accordingly.

Transaction Effects
After a transaction is executed, it produces TransactionEffects. These contain the references to the
write-set of the transaction. They also contain other information such as consumed gas and emitted
events. The full list of variables in a TransactionEffects struct can be found in Appendix D.

3.3. Phase 2 - Hornet Prototype Architecture
3.3.1. Introduction
Phase 2 of the project focuses on combining the built adapter prototype with the actual working node
software of IOTA. So instead of using a mocked node, the Hornet node of IOTA will be used. This phase
is called the Hornet Prototype, and will focus on its architecture in this chapter. The next chapter will
include much more detail in each of the individual components of the Hornet prototype. The diagram
in Figure 3.7 gives an overview of all components of the prototype architecture.

Figure 3.7: Prototype architecture

This figure contains the following components:

• hornet-move: The original Hornet node forked and modified to work with MoveVM and Objects
instead of UTXOs.

• iota-execution: Responsible for transaction execution, contains the adapter.
• move-inx: Handles data related to node, milestones, blocks, transactions, and objects. It accepts
transactions and forwards them for execution.

• iota-json-rpc: Provides a structured way to read, write, and stream object and transaction related
data from the node.

• iota-faucet: Sends a transaction to the user with tokens so that the user can use it for gas
payments when interacting with MoveVM.

• iota-cli: A command line interface tool which enables interactions with MoveVM and Hornet’s
object ledger.

The source code for all of these components is hosted in a private Github repository belonging to IOTA.

The objective is to demonstrate that the WhiteFlag algorithm can function as an effective sequencing
algorithm that can sequenceMove transactions and work with the results of MoveVM. Another objective
is verifying the compatibility of WhiteFlag with TransactionEffects (created, mutated and deleted)
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instead of only UTXOs (created and spent). In the end, different scenarios are tested in Move with
WhiteFlag and thereby ensured that the sequencing functions accordingly and produces the right ledger
state. With this result, it can be safely concluded that MoveVM has been successfully integrated with
IOTA.

3.3.2. Prototype Components
hornet-move
The original Hornet node software is written in Go [44], and has been modified to make it work with Ob-
jects instead of UTXOs and MoveVM for smart contract execution. The modifications are summarized
as follows:

• Swapped out the UTXO ledger state and database to facilitate object-centric operations.
• Swapped out the original transaction format with the new Move transaction format.
• Set up gRPC communication channel between Hornet and the execution engine written in Rust.
• Modified the WhiteFlag algorithm to enable Move transactions execution.
• Modified the ledger database to facilitate object management, including milestone cones, trans-
action application and rollback, pruning, and snapshotting.

• Refactored the INX modules and made some modifications to the coordinator and spammer mod-
ules.

• Testing with movement/fixtures testing suite.

Communication between Hornet and iota-execution The Hornet software written in Go needs to
communicate with the execution software written in Rust. There are numerous ways of achieving such
communication, such as direct bindings between Rust and Go by making use of libraries, or making
use of a dedicated communication protocol such as gRPC, which has already made use of in the Phase
1 adapter prototype.

The first option could be achieved by making use of the UniFFI crate for Rust, which is a tool that
automatically generates foreign-language bindings that target Rust libraries [45]. This tool generates
an iota-execution go package which can be imported by Go.

UniFFI also has a convenient flag (UNIFFI_ENABLED) which can disable the bindings on the go, which
makes it easy to compare the differences in execution time. This way, it is possible to benchmark the
end-to-end time it needs to execute four transactions. The test commands used can be found in Listing
3.8:

Listing 3.8: UniFFI Flag testing execution times

UNIFFI_ENABLED=true go test -run ^TestScenarioPublishCallSimplePackage$ github.com
/iotaledger/hornet-move/pkg/whiteflag/test -v

# iota_execution needs to be run for this test.
UNIFFI_ENABLED=false go test -run ^TestScenarioPublishCallSimplePackage$ github.

com/iotaledger/hornet-move/pkg/whiteflag/test -v

This gave the following results, running the test 100 times:

• UniFFI: 55.898 seconds.
• gRPC: 55.223 seconds.

The actual output with the results can be found in Appendix E in Listing E.1.

From the results, it can be clearly seen that the execution times are similar. In fact, using gRPC is
even a bit faster. Therefore, it is decided to go for a gRPC implementation as it brings multiple benefits
compared to direct linking:
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1. gRPC is capable of streaming requests and responses, which allows the client and/or server to
stream data. In our usecase, constant communication between the node and execution client is
expected.

2. gRPC is language agnostic.
3. Execution clients can be scaled more easily over multiple machines.

Another notable aspect is that the node and execution client need to both be client and server inter-
changeably. This is apparent in the following cases:

• Hornet as a Client: When Hornet detects a new transaction, it forwards the data over to iota-
execution for processing.

• iota-execution as a Client: When requiring additional ledger data, iota-execution sends the re-
quest(s) to Hornet.

• Hornet as a Server: Responding to iota-execution requests, Hornet provides the required ledger
data.

• iota-execution as a Server: After processing, iota-execution sends the results back to Hornet.

Thus, a gRPC bi-directional channel is defined as such in Listing 3.9:

Listing 3.9: gRPC bi-directional channel service

1 // The bi-directional stream for communication between Hornet and iota-execution.
2

3 service IotaExecutionStreamingGrpc {
4 // A bi-directional streaming RPC initiated by Hornet and implemented in iota-

execution.
5 rpc ExecutionStream(stream NodeMessage) returns (stream ExecutorMessage);
6 }

iota-execution
The iota-execution component is responsible for the execution of Move transactions and is able to do
so by receiving transactions on-demand via the previously mentioned gRPC interface.

The execution engine takes the following arguments as input:

• The transaction to execute,
• The corresponding milestone,
• Reference to the ledger view on which the transaction is to be executed.

The result of an execution results in either a legal or illegal transaction:

• Legal transaction: The execution engine returns all required changes to Hornet which commits
it to the ledger including serialization of touched objects.

• Illegal transaction: The execution engine returns an error code to Hornet. Example of such
transaction could be a conflict such as trying to mutate an already mutated object, or mutating an
already deleted object.

See the Transaction Execution Flow in Appendix C to get a better understanding of the execution
process.

inx-move
Hornet INX is a service that functions as a bridge between the Hornet node and external applications
by using gRPC. To get INX ready for the MoveVM prototype, the existing INX is extended minimally,
just enough to support the execution of Move transactions. This modified/extended version is called
inx-move.

These added functionalities are:

• SubmitTransaction: Allows clients to submit Move transactions to the node for execution.
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• DryRunTransaction: The DryRunTransaction service allows clients to simulate transaction exe-
cution without actually applying the transaction to the ledger. Useful for testing and debugging
purposes.

• Reading and listening to Objects.

The Protobufs The protobuf definitions are hosted in the inx-move repository. They are used for
Hornet INX, Hornet node and the iota-execution engine. The repo contains protobuf definitions for the
following elements:

• blocks: Reading blocks and metadata from the node.
• conflicts: Definition of errors that lead to a conflict/illegal transaction.
• effects: Definitions of the result of a transaction execution for external tools. Hornet stores the
serialized version of this for each legal transaction.

• errors: Move language errors that result in aborted transactions. Used only for external tools.
• events: Move events that are emitted during transaction execution. Used only for external tools.
• ids: Definition of transaction and object identifiers and references.
• ledger: Definitions of the ledger records and updates. These represent the types used directly
in Hornet’s ledger and database layer.

• milestones: Definitions of milestones and milestone metadata, furthermore WhiteFlag requests
triggered by the coordinator.

• move_lang: Helpers for the move language.
• objects: Move level object definitions plus wrapped types for serialized objects used duringWhite-
Flag.

• storage: Intermediate types for the storage layer.
• transactions: Transaction types and helpers. Hornet only understands RawTransaction that is
a serialized version of the transaction.

• iota_execution: Defines the bidirectional gRPC communication between Hornet and the execu-
tion engine. Contains messages for the state machine and the execution results.

iota-json-rpc
The JSON RPC provides a way of reading and writing data from and to the node. The server is con-
nected to the indexer instance which uses mongodb. This indexer continuously syncs up with Object
storage, Transactions and Events. It is being used by the IOTA CLI to interact with the node.

iota-cli
The IOTA Command Line Interface is a tool that facilitates interactions with the MoveVM and object
ledger. It is designed to provide an easy interface to the JSON RPC service. Users can install this tool
by building the rust binary and can then be used to for example send transactions.

iota-faucet
The IOTA Faucet runs as a separate service which can be used to distribute MANA tokens to users.
Users can make use of this service by calling a command on the iota-cli. These tokens can be used to
pay for transaction fees.

3.3.3. Transaction Execution and WhiteFlag
Hornet starts with the confirmation process once a milestone is reached. This process involves running
the WhiteFlag algorithm, which traverses the corresponding milestone cone.

This milestone cones (green) are visualized in Figure 3.8. They consist of all the blocks between two
milestones.
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Figure 3.8: Milestone Cones, Source: IOTA Foundation (Modified)

When a transaction is encountered in the walk, an instance of Executor (execution client) is started.
This Executor instance prepares the Hornet state machine and sets up the gRPC stream for commu-
nication with the execution environment. After initialization, Hornet forwards the specified transaction
to the execution environment to be processed.

After iota-execution receives the transaction from Hornet, it validates it. This phase verifies the trans-
action’s adherence to the required protocol, ensures it has a valid signature, and retrieves necessary
objects. Should an error arise during the retrieval of objects, it is propagated back to the Hornet state
machine, which may stop the process if the issue cannot be resolved.

The execution of the transaction begins in the execution environment after the validation phase. This
execution phase involves the potential querying for additionally required objects. A transaction can be
legal or illegal based on the execution result.

When an execution is successful, it is called a legal transaction result and contains all necessary
changes that will be committed to the ledger.

The legal transaction result is composed in protobuf as such in Listing E.3:

Listing 3.10: LegalTransactionResult message

1 message LegalTransactionResult {
2 types.id.TransactionId transaction_id = 1;
3 bytes effects = 2;
4 bytes events = 3;
5 types.object.WrittenObjects written = 4;
6 types.object.DeletedObjects deleted = 5;
7 }

When a transaction is aborted, it is also seen as a legal transaction, as the used gas fees will still have
to be written off.

An illegal transaction will have the following result, as seen in Listing 3.11:

Listing 3.11: IllegalTransactionResult message
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1 message IllegalTransactionResult {
2 types.conflict.ConflictError conflict_error = 1;
3 }

This only contains a ConflictError which contains the conflict that occurred. Hornet marks it as a
conflict using the WhiteFlag algorithm.

This dual-state machine process ensures that both Hornet and the execution environment work in
tandem, from the initial transaction request to the final commitment to the ledger, ensuring a secure,
consistent, and conflict-free ledger state.

3.3.4. Transaction ordering with WhiteFlag
The WhiteFlag algorithm is a transaction sequencing mechanism, used to maintain consistency be-
tween Hornet nodes that implement the Stardust protocol in IOTA [46]. The Hornet fork contains a
modified WhiteFlag implementation to work with an object-centric ledger and interact with the MoveVM.
The implementation was modified to:

• Recognize Move transactions.
• spin up a bi-directional gRPC stream to the execution environment.
• Request for execution.
• Correctly process resulting object mutations (written objects, deleted objects) and conflicts.

Transactions frequently need complex interactions with multiple objects. Special care was taken by
testing that resulting object mutations and conflicts arising from the execution of Move transactions are
correctly processed.

3.4. Implementation With Hornet
3.4.1. Introduction
This chapter contains the details of the implementation of all components described in the previous
chapter. The inner workings of these components are discussed in great detail.

3.4.2. Hornet Node Software
The Hornet node software version v2.0.0-rc.6 has been forked and modified to support the execution
of Move transactions. This new version is called hornet-move.

Modifications
There are a number of modifications made to the forked node:

1. Treasury, migrations and receipts have been removed.
2. The model of the ledger state has been modified by removing the UTXO logic.

This has been done through a number of modifications:

(a) The Output model has been replaced by the Object model.

The side by side comparison in code between the old model and new model can be found
in Appendix E Figure E.1.

From this object model it is clear that the node only is aware of attributes like the ID and
Sequence Number. The actual Move object data is included in the model, but it is serialized
with BCS, which is handled by MoveVM.

(b) The Spent model has been replaced by the Deleted model.

Likewise, the side by side comparison in code between the old and new model can be found
in Appendix E Figure E.2.
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(c) The interface to model the UTXO storage operations, i.e., the Manager, has been replaced
by an Object counterpart, e.g.:

Old Code
1 func (u *Manager)

ReadOutputByOutputIDWithoutLocking
(outputID iotago.OutputID) (*
Output, error) { }

New Code
1 func (m *Manager)

ReadObjectWithoutLocking(id
iotago.ObjectID) (*Object, error
) { }

(d) The database prefixes Output, Spent Output and Unspent Output were replaced for their
Object counterparts Object, Deleted Object and Alive Object.

The difference in Database structure can be found in Appendix E Figure E.3.
3. The transaction format in iota.go has been replaced by the Move transaction format. All UTXO

related models, transactions, types and addresses have been removed as well.

Likewise, the old and new code can be found in Appendix E Figure E.4.

Notably, the full validation of a transaction does not happen in the node, but rather by the Ex-
ecution layer. A transaction is only validated syntactically by the node by checking if all fields
of the transaction model are present. The Execution layer does the semantic validation of the
transaction by for example checking if an object that is given as input actually exists. This is due
to the Move object being serialized in BCS format, which the Execution Layer is deserializing.

A ConflictError type has been added to iota.go-move, so that rich expressions of conflicts can
exist. The ConflictKind and ConflictError types can be (partially) found in Appendix E Listing
E.4.

4. All tests have been removed related to UTXO manipulation. These have been replaced by tests
involving Objects and transactions.

Whiteflag confirmation algorithm
The WhiteFlag confirmation algorithm also had to be changed. At the block level, everything remains
the same. It traverses a milestone cone, collects all unreferenced blocks, and after validation of these
blocks, it marks them as referenced. What changed about the algorithm is the way the ledger is being
called and updated through transactions. To call MoveVM for the validation and execution of transac-
tions, it is necessary to have a bidirectional communication channel to the Execution Layer.

Bidirectional communication channel A communication channel was established to facilitate inter-
action between Hornet-Move (implemented in Go) and the Execution Layer (implemented in Rust).

• When Hornet-Move needs to process a new transaction, such as during the execution of the
WhiteFlag confirmation algorithm, it operates as a client, sending relevant data to the Execution
Layer for processing.

• Upon processing completion, the Execution Layer assumes the server role, sending the results
back to Hornet-Move.

• Conversely, when the Execution Layer requires additional ledger data, such as the state of a
specific object at its latest version, it initiates requests to Hornet-Move, functioning as the client.

• In response to these requests from the Execution Layer, Hornet serves as the server, providing
the necessary ledger data.

This channel is realized with gRPC where at both sides a state machine is in place. Figure 3.9 shows
the overview of these state machines. Both are described in further detail as follows:

• The hornet-move state machine:
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1. Init State - The first state where hornet-move creates the server-side state machine and
requests the creation of a bidirectional channel to the Execution Layer. It transitions into the
ExecStart state.

2. ExecStart State - The state entered into when hornet-move sends the transaction bytes to
the Execution Layer. It can transition into the DBQuery state or the ExecFinish state.

3. DBQuery State - The state entered into when the Execution Layer requests objects from
the ledger state. It processes the object request, fetches the object from the ledger db, and
returns it to the Execution Layer. When a response is sent, it transitions into the previous
state.

4. ExecFinish State - The state entered into when the Execution Layer sends the validation/ex-
ecution results (illegal/legal with errors/legal successful). It marks the end of the hornet-move
state machine.

• The Execution Layer state machine:

1. StandBy State - The first state where the Execution Layer waits for the requests of the
creation of a bidirectional channel from hornet-move. It transitions into the ValidateStart
state.

2. ValidateStart State - The state entered into when hornet-move sends the transaction bytes
to the Execution Layer. It syntactically and semantically validates the transaction, i.e., it
checks if it is legal. It can transition into the ObjQuery state or the ExecStart state or the
EndValidationError state.

3. ObjQuery State - The state entered into when the Execution Layer requests objects from
the ledger state and waits for a response. When a response is received, it transitions into
the previous state.

4. ExecStart State - The state entered into when the validation finishes and the transaction is
legal. It executes the transaction and fetches objects from the ledger state if necessary. It
can transition into the ObjQuery state or the EndSuccess state or the EndAborted state.

5. EndValidationError State - The state entered into when the validation provides an illegal
result and sends it back to hornet-move. It marks the end of the Execution Layer state
machine.

6. EndSuccess State - The state entered into when the execution provides a successful result
and sends it back to hornet-move. It marks the end of the Execution Layer state machine.

7. EndAborted State - The state entered into when the the execution provides an error result
and sends it back to hornet-move. It marks the end of the Execution Layer state machine.
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Figure 3.9: Statemachines: Hornet-move and Execution Layer
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Validation and execution of transactions First, the confirmation algorithm generates a temporary
store for object mutations and the blocks they reference. This temporary store is initialized as wfConf,
as shown in Listing 3.12.

Listing 3.12: Temporary Store for Object Mutations in WhiteFlag algorithm

1 wfConf := &WhiteFlagMutations{
2 ReferencedBlocks: make(ReferencedBlocks, 0),
3 WrittenObjects: make(map[iotago.VersionedObjectID]*object.Object),
4 DeletedObjects: make(map[iotago.VersionedObjectID]*object.Deleted),
5 writtenObjectIDToVersion: make(map[iotago.ObjectID]iotago.SequenceNumber),
6 deletedObjectIDToVersion: make(map[iotago.ObjectID]iotago.SequenceNumber),
7 }

Next, a post-order depth-first search is employed to traverse the approved blocks within the designated
milestone cone. In this traversal, the blocks are applied to the temporary repository (representing the
previous ledger state) in the sequence corresponding to their order. For each block:

• If the block does not contain a transaction, just mark it as referenced;
• Else, enter into the Init State of the state machine;
• Send the transaction bytes included in the block to the Execution Layer through the bidirectional
channel;

• Receive the processing result exiting from the ExecFinish State of the state machine:

– If the transaction is Illegal, mark the block as a conflict;
– Else if the transaction is legal:

* Get the transaction id, transaction effects BCS bytes and transaction events BCS bytes
and store them into the block metadata in the temporary store (WhiteFlagMutations);

* Get the written objects, i.e., created, modified and unwrapped objects, and store them
in the temporary store (for legal NOT successful results, only an object will be present
in this list, it is the gas object where the failing execution gas cost has been deducted);

* Get the deleted objects, i.e., deleted and wrapped objects, and store them in the tem-
porary store;

Then, the InclusionMerkleRoot and AppliedMerkleRoot is calculated.

Lastly, the algorithm updates both the ledger state and the metadata content of blocks in the node’s
storage by incorporating the mutations from the temporary store (WhiteFlagMutations). This process
ultimately invokes the object storage manager’s ApplyConfirmationWithoutLocking implementation,
which can be found in Appendix E Listing E.2.

Transaction execution results There are two types of execution results:

1. Illegal transaction:
When the transaction validation fails, the transaction is considered illegal. The Execution Layer
returns to the WhiteFlag confirmation the failure in the form of a ConflictError, which is then
saved into the transaction’s block metadata. This scenario does not alter the ledger state. A
ConflictError can include one of the following errors:

• InvalidSignature
• TransactionDeserializationError
• TransactionVersionNotSupported
• SizeLimitExceeded
• ObjectNotFound
• DependentPackageNotFound
• ObjectDeleted
• MutableObjectUsedMoreThanOnce

• MovePackageAsObject
• MoveObjectAsPackage
• InvalidObjectDigest
• ObjectVersionUnavailableForConsumption
• InvalidChildObject
• IncorrectUserSignature
• ObjectSequenceNumberTooHigh
• GasObjectNotOwnedObject
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• GasBudgetTooHigh
• GasBudgetTooLow
• GasBalanceTooLow

• InvalidGasObject
• InternalIotaExecutionError

2. Legal transaction:
If a transaction passes the validation, it is a legal transaction. This legal transaction can have two
types of execution results:

• Successful Execution:
This means that MoveVM executed the transaction successfully. This case does not the
ledger state. The Execution Layer returns to the WhiteFlag confirmation the results in the
form of a message LegalTransactionResult, which can be found in Appendix E Listing E.3.

• Aborted Execution:
Means that MoveVM has thrown an error and aborted the execution. This case does not
alter the ledger state. It works the same as the Successful Execution case, but the only
modified object is the Gas Object given as input (deducting the gas budget).

INX
The IOTA Node Extension (INX) is a gRPC interface that allows for other applications to directly com-
municate with the node [47]. The original IOTA INX has been forked (inx v1.0.0-rc.2) and modified into
the inx-move version. This version now makes it possible for Move and for Move related information
to be retrieved from the ledger.

The INX Service Methods concerning node operations, milestone retrieval, block submission/reading
tips, and REST API have not changed. All UTXO related was also replaced by Object models:

Blocks:

The information in blocks has been changed. The changes between old and new code can be found
in Appendix E Figure E.5.

In this new implementation, the following new rpc methods are created:

• ReadObject: Enables to read from the node storage the latest version of an object indexed by
the passed ObjectID. The implementation of this method ultimately resorts to the object storage’s
ReadObjectWithoutLocking and then checks and returns whether this object is Alive or Deleted.

The shortened implementation can be found in Appendix E Listing E.5.
• ReadObjects: Returns the latest version of all objects that are currently stored in the node and
that are not deleted. This is conceptually similar to ReadUnspentOutputs, i.e., the part of the
ledger that can be used, but it assumes a newmeaning in the case of objects. The implementation
of this method ultimately resorts to the object storage’s ForEachAliveObject, i.e., it gets the last
version of all the AliveObjects that are the ones that have not been deleted yet;

• ListenToLedgerUpdates: Returns created, modified, wrapped, unwrapped or deleted objects
as a result of the WhiteFlag confirmation (i.e., when the ledger is updated). The implementation
of this method ultimately resorts to the object storage’s MilestoneDiffWithoutLocking in order
to return a MilestoneDiff, i.e., the summary of the changes that shall be applied to the ledger
when a milestone is confirmed.

The MilestoneDiff type implementation can be found in Appendix E Listing E.6

Transactions
Additionally, methods specifically related to transactions and execution have been added. All of these
new rpc methods and corresponding messages can be found in Appendix E Listing E.7.

In this new implementation, the following new methods are created:
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• ReadTransaction: Enables to read from the node storage the results, i.e., transaction effects and
events bytes, of a legal transaction executed in the past and indexed by the passed TransactionID.
The implementation of this method ultimately resorts to the transaction storage’s
BlockIDByTransactionID (described later in this section of the report) to be able to get the block
(CachedBlockMetadataOrNil) that contains the TransactionResults. Listing 3.14 shows how
this is implemented.

Listing 3.13: ReadTransaction implementation

1 blkID, err := deps.Storage.BlockIDByTransactionID(txID)
2 ...
3 cachedBlockMetadata := deps.Storage.CachedBlockMetadataOrNil(*blkID)
4 ...
5 t, err := NewTransactionWithResults(ctx, *blkID, cachedBlockMetadata.Metadata

())
6

• ReadEvents, ReadEffects: Enables to read from the node storage the events bytes and trans-
action effects as transaction results.

• SubmitTransaction: Submits a raw transaction into the node, that then takes care of creating
the block, i.e., selecting block’s parents and the protocol version and doing the Proof of Work.
The block will be eventually referenced in a WhiteFlag confirmation. Listing 3.14 shows how this
is implemented.

Listing 3.14: SubmitTransaction implementation

1 blockPayload := &iotago.MoveTransaction{BCSSerializedSenderSignedTx: make([]
byte, len(rawTransaction.Data))}

2 copy(blockPayload.BCSSerializedSenderSignedTx, rawTransaction.Data[:])
3 block, err := builder.NewBlockBuilder().ProtocolVersion(protoParams.Version).

Payload(blockPayload).Build()
4 ...
5 blockID, err := attacher.AttachBlock(mergedCtx, block)
6

• DryRunTransaction: Skips the wait for a WhiteFlag confirmation and does not update the ledger.
It just executes the transaction using the hornet-move state machine and the bidirectional com-
munication with the Execution Layer and returning the results to the caller.

• ListenToTransactions, ListenEvents, ListenEffects: Work the same as their Read counter-
parts but continuously return all executed transaction results. Listing 3.15 shows how this is
implemented.

Listing 3.15: Listen* Implementation

1 unhook := deps.Tangle.Events.BlockReferenced.Hook(func(blockMeta *storage.
CachedMetadata, index iotago.MilestoneIndex, confTime uint32) {

2 defer blockMeta.Release(true) // meta -1
3 // referenced block doesn't contain a transaction, skip it
4 if blockMeta.Metadata().IsNoTransaction() {
5 return
6 }
7 payload, err := NewTransactionWithResults(ctx, blockMeta.Metadata().BlockID

(), blockMeta.Metadata())
8 ...
9 }

10

gRPC Types
Finally, when it comes to the types and models defined for hornet-move, inx-move can better under-
stand Execution Layer types. This is due to inx-move defining gRPC types that directly relate to the
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core types used by the Execution Layer. For example, while Hornet-Move is limited to working with
Object, TransactionEffects, and TransactionEvent using their BCS representation, inx-move has
a direct 1-to-1 representation as a gRPC type.

INX Plugins A few existing INX plugins have been modified to support the new Object model.

• inx-app: This is the implementation of an inx client, specifically created to provide with a pre-
defined nodebridge interface and a httpserver. The ìnx-app v1.0.0-rc.3 was forked to create the
inx-app-move version, that supports the inx-move interface.

• inx-coordinator: This is a plugin that implements the function of a Tangle Coordinator node. The
inx-coordinator v1.0.0 was forked to create the inx-coordinator-move version, that supports the
inx-move interface. No functional modifications were made, only types and dependencies were
updated to support the move flavor.

• inx-spammer: This is a plugin that implements the process of spamming blocks into a Tangle.
The inx-spammer v1.0.0 was forked to create the inx-spammer-move version, that supports the
inx-move interface. The plugin was modified to spam only tagged data block payloads. It means
that it is not able to spam blocks containing transactions.

• iota-faucet, iota-json-rpc (indexer): These are two inx-move plugins, created to specifically
operate with Move objects. Their specific functioning is discussed later in this chapter.

The Object Ledger
Storagemodel additions The storagemodel has beenmodified by removing the UTXO-related logic.
The rest remained unchanged apart from two models:

1. BlockMetadata: Has been expanded with transaction related information. This expansion is
shown in Listing 3.16.

Listing 3.16: BlockMetadata type

1 type BlockMetadata struct {
2 ...
3

4 conflict iotago.ConflictError
5

6 ...
7

8 transactionID *iotago.MoveTransactionID
9

10 \\ TransactionEffects and TransactionEvents encoded in BCS
11 transactionResult []byte
12 }
13

2. Transaction: This storage model has been added to bind a transaction id to a block id, i.e., a
reverse index that was previously feasibly obtained through a block’s outputs ids, but that is now
unfeasible to obtain from object ids (the Object model as no reference to the block containing the
transaction that manipulated it, but only to the transaction). This Transaction storage model is
shown in Listing 3.17.

Listing 3.17: Transaction Storage type

1 type Transaction struct {
2 objectstorage.StorableObjectFlags
3 transactionID iotago.MoveTransactionID
4 transactionBlockID iotago.BlockID
5 }
6
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Applying the transaction execution result to the storage During the execution of the WhiteFlag
confirmation, a temporary object manager maintains written (i.e., created, modified, unwrapped) ob-
jects and deleted (i.e., deleted, wrapped) object states. The temporary object manager is a wrapper
around the object manager plus the intermediate ledger state during WhiteFlag, as can be seen in the
implementation 3.18:

Listing 3.18: TemporaryObjectManager type

1 type TemporaryObjectManager struct {
2 LedgerStateManager *object.Manager
3 Mutations *WhiteFlagMutations
4 }

Each request to fetch the latest state of an object during the WhiteFlag confirmation transaction execu-
tion passes through this component.

Listing 3.19 shows the implementation of the ReadObject method.

Listing 3.19: ReadObject method

1 func (t *TemporaryObjectManager) ReadObject(id iotago.ObjectID) (*object.Object,
error) { ... }

The ReadObject method reads the most recent version of an object from the temporary ledger state
or, if this has not been touched by any transaction during the current WhiteFlag confirmation, from the
object manager.

This mechanism allows for a complete rollback of the transaction effects during the WhiteFlag confir-
mation in case of error.

After a successful execution of the WhiteFlag confirmation, the new versions of the written and deleted
objects are pushed to the storage. The implementation for this can be found in Appendix E Listing E.8.
Then, the metadata of all the transactions contained in the WhiteFlag referenced blocks are updated
accordingly, i.e., either with a conflict error, if they are illegal, or with a transaction result, if they are
legal. The implementation for this part of the code can be found in Appendix E Listing E.9.

Pruning Two functions are responsible for pruning data:

1. pruneMilestone: Removes the MilestoneDiff for the given milestone index and all objects
that were deleted in this milestone; it ultimately resorts to the object storage manager’s method
PruneMilestoneIndexWithoutLocking. The implementation of this function can be found in Ap-
pendix E Listing E.10.

2. pruneBlocks: Removes all the associated data of the given block IDs from the database plus
the association between transaction id and block id formed in the Transaction storage. Likewise,
the implementation can be found in Listing E.11.

Snapshots A full snapshot contains the ledger objects as of the Confirmed Milestone Index (CMI)
and the milestone diffs from the CMI back to the snapshot’s target index.

The ledger objects are all the so-called ”alive” objects, i.e., all the created objects that have not yet
been deleted.

Genesis state generation
The genesis is the starting point of a new network, block zero. In our new model, it is the process
of creating all the objects necessary to bootstrap the Tangle. This includes the packages for iota-
framework, which are fundamental Move modules, plus some initial objects for economic transactions
in the Tangle.

The genesis process is predefined in the code. Specifically in the iota-genesis library, which invokes a
function in the iota-framework called iota::genesis::create_genesis. This function does the follow-
ing:



3.4. Implementation With Hornet 46

1. The object including all the iota-framework modules is created.
2. The IOTA tokens are minted. This creates a new object containing an IOTA coin balance.
3. The MANA tokens are minted. This creates a new object containing a MANA coin balance.
4. All assets are transferred to a preset address that represents the faucet (described later in this

chapter).

3.4.3. Execution Client
The execution layer handles the execution of Move transactions, which happens on a separate layer.
This layer is responsible for validation on various levels, and for the evaluation of the transaction effects.
It is the node that applies or not those effects on the ledger state. Hence every transaction execution
can be construed as a dry run. This layer is referred to as iota-execution: it consists of a Rust library
that uses iota-adapter, and on top of that, a Grpc server able to handle transactions encoded in raw
bytes is built.

The execution layer might be detached from the node, but is not independent. Executing a transaction
requires querying the ledger state for objects and packages, and this is attained through the bidirectional
communication established between iota-execution and the hornet node. This bidirectional communi-
cation has a limited lifetime spanning the time that the transaction is sent to iota-execution, until it is
validated and its effects are evaluated to be finally sent back.

Binary canonical serialization (BCS)
Hornet is agnostic of the representation of objects and transactions in the execution layer, and the latter
is agnostic of their representation in the Move VM.

To accommodate the transfer of values between the three components, the binary canonical serializa-
tion (BCS) format is used, that is extensively used in most of the blockchains based on Move (Sui,
Aptos). BCS provides concise binary representations guaranteeing that for every value of a given type
there is only one valid representation. The latter property, in particular, has benefits in applications to
cryptography, and this reflects on how transaction signatures are evaluated.

More specifically, BCS is used in the following cases:

• Transactions and objects are represented as BCS bytes in Hornet.
• Transaction signatures are evaluated on the underlying BCS representation
• Arguments passed to smart-contract entrypoints are serialized using BCS. This includes primitive
values, as well as objects of any kind.

Move transaction kinds
Support is available for two different kinds of transactions:

1. Move-call transactions: These encapsulate all the data necessary to invoke entrypoints of pub-
lished move package modules. This includes an identifier of the entrypoint, the specification of
any generic type arguments if applicable and arguments to the entrypoint function.

2. Publish transactions: these encapsulate all the data necessary to publish new move packages,
including the compiled package modules serialized according to the move binary file format.

Each transaction is always submitted and signed by an address, which is referred to as the signer. This
address also always adds a gas object to pay for the fees. A transaction is accompanied by additional
input objects and transaction context which is referred to as TxContext.

Input objects are all objects pertaining to the scope of the transaction: Gas objects, dependent pack-
ages for publish transactions, or the calling package and its dependencies for move-call transactions,
plus any object that is part of the calling argument for an entrypoint function. These objects are resolved
by making queries to the node in order to fetch them from the ledger state.

The TxContext is a special value that can be thought of as a factory of object IDs during the execution
of the transaction. It hashes the signer address, the transaction digest, and the milestone data (index
and timestamp), along with an incremental index to derive any new object ID required.
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Transaction processing: Validation
A transaction goes through a validation process after it is received from the node. Validation starts with
the deserialization of the encoded transaction, and thus it is ensured that it is syntactically correct. Then
it is verified that the transaction signature is valid, which guarantees that the sender of the transaction
has indeed signed the transaction data.

Subsequent operations guard against errors on common and kind-specific transaction input likemissing
gas payment, or arguments being in conflict with size limits imposed by the execution protocol. Exam-
ples include exceeding maximum number or depth of type arguments, maximum number of function
arguments or modules to publish etc.

Finally, additional checks are made while resolving the input objects from the ledger state. These
checks extend in depth and breadth, and include object-kind checks, ownership checks, object integrity
checks etc. The most prominent failure in this stage of the validation is when the version of an object
declared as input is not found, or is already outdated in the ledger.

Validation failures are classified as conflicts, and the respective transactions are classified as illegal,
which causes the transaction to not be executed.

Transaction processing: Execution
Transactions that pass validation are considered legal and forwarded for execution. Execution involves
using the adapter, that acts as a high-level interface to the Move VM, to eventually invoke the bytecode
instructions that correspond to the transaction under process. In the process the necessary gas is
charged for computation and storage costs, and the transaction effects are evaluated.

Transaction effects and events It is already discussed that execution on this layer does not affect
the ledger state. Instead, an isolated temporary view on the ledger state is created before initiating the
execution. This view is referred to as the temporary store, and initially contains the input objects of the
transaction.

As the transaction is executed in the VM, the temporary store is updated to record the projected changes
in the ledger state. Two types of changes are tracked: writes and deletions.

Writes include mutations of input objects (e.g. the gas object that pays for transaction costs), creation
of new objects, and unwrapping of previously wrapped objects.

It should be noted, that objects that are simply read during the transaction are also classified asmutated,
and their version is bumped. There is an exception to this, depending of the kind of the object stored.

More specifically, objects in the ledger state belong to either of two kinds:

1. Move objects: struct values created from their defining packages
2. Move packages: programs that contain logic and struct definitions

Move packages are immutable so their version is not bumped.

Deletions include wrapping an input object, or removing it in the sense that it will not be present in the
ledger state.

When execution finishes successfully, all changes are reported back to the node in the form of a set of
written objects, and a set of deleted objects, with respect to writes and deletions recorded.

Due to the storage method of objects in the node, deleted objects include the outdated versions of
mutated objects in the written set.

In addition to projected changes in the ledger state, any events emitted while executing transactions
are also reported back to the node.

Gas metering Every operation that comes in effect during execution is associated to a gas cost. This
is measured in abstract gas units that are associated to a quantity of MANA, according to the gas price
defined on the adapter level. Operations that affect the size of the storage incur a storage cost, whereas
computational operations incur a computation cost.
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The cost is metered in various levels of the process. First gas is charged for reading objects from
storage in order to create the temporary store. VM computations charge gas on the basis of a cost
table that maps bytecode instructions to the associated cost. The cost table, as well as the exact
metering scheme are defined on the adapter level, which provides the flexibility to define metering
rules and invariant checks on top of the Move VM.

The computation cost up to this point is classified into buckets, i.e. bands of gas units that have a fixed
cost. E.g. costs that fall to the 1001 - 5000 range assume a universal cost of 5000 units, so that the
step function is not linear as the cost increases. This is to prevent obsessive gas optimization needs
by developers of smart contracts.

Besides the VM operations, gas is charged for operations that are the result of interaction with the stor-
age. Verifying and linking a package, reading or writing to the storage are associated to computational
costs, while maintaining the contents of an object into storage brings about a storage cost.

Storage costs however are refundable. Once an object is deleted from the storage the cost expended
for storing it the ledger state is refunded to the owner. This is referred to as the storage rebate.

Failures Execution might of course fail for various reasons. For example, when the gas payment
provided by the sender of the transaction is not sufficient to cover the transaction costs.

In such cases, the sender is charged for the object reads required to populate the temporary store plus
any accumulated computational cost up to the point of failure. Execution then terminates with no other
effect than the mutation of the gas objects referenced by the transaction.

Dry running a transaction
It has been already pointed out that operations on the execution layer have no effect on the ledger state
maintained on the node. Hence, every execution is essentially a dry run, evaluating the transaction
effects.

The node gets back the transaction effects, and has the sole responsibility of applying them to the
ledger state with WhiteFlag confirmation.

Thus when requesting the node to dry run a transaction, the node does not alter the ledger state, but
only returns the transaction effects evaluated on the execution layer.

Adapter tests
Execution is tested by initializing a test adapter that instantiates a new VM, and running publish and
call transactions for a set of simple test smart contracts to assert that the evaluated effects are the
expected ones.

To this end, a testing framework has been developed: the iota-transactional-test-runner that relies on
existing infastructure provided by the Move language.

Test cases are encapsulated in the iota-adapter-transactional-tests crate.

3.4.4. IOTA Move Framework
The IOTA Move Framework is a set of built-in modules that provide an on-chain API for Move develop-
ers. Some of these provide utility functions such as math and cryptography, while others provide basic
functionality functions such as object management and transfers.

The framework can be found in the iota-framework crate. This framework contains the modules written
in Move, but also some native functions written in Rust. It also contains a custom object runtime to
facilitate objects.

The Move modules reside in two packages which have been published at genesis: std at 0x1 and iota
at 0x2. These two packages are built and used by iota-genesis to create the genesis ledger state.

The native functions are not compiled and published on the ledger, rather, they are passed to the
MoveVM upon its creation in iota-execution.
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Figure 3.10: JSON-RPC

3.4.5. JSON-RPC Service
The data that is stored in Hornet is accessible through a JSON-RPC service. This service provides an
API for retrieving and modifying that data. An overview of this service architecture is given in figure
3.10.

The supported methods can be found in this table:

Parallel to the JSON-RPC service, the indexer process stores transactions, effects, and events from
the node into persistent storage. The indexer communicates with the node through INX and fetches
all transactions that have not yet been indexed up to the latest milestone. This process is called syn-
chronisation. It does so by listening for new milestones. Then, all new transactions are stored in the
database, with the encapsulated data also being stored for easy access. Whenever the JSON-RPC
service stops, the indexer also shuts down gracefully, preventing any missing data in the database.

The reason MongoDB is chosen for the database instead of PostGres, was due to the fact that Mon-
goDB has a better suited model for storing data than PostGres. PostGres uses a relational model while
MongoDB uses a documentation model. These models are visualized in figure 3.11.

It is easy to see that the relational model is a lot more complex than the documentation model. The
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API Category API Description
Read API
iota_getObject Returns the object information for the specified object ID.
iota_getTransaction Returns the transaction information for the specified transaction digest.
iota_getEvents Returns the events of a transaction for the specified transaction digest.
Write API
iota_dryRunTransaction Dry runs a transaction on the node and returns the effects without com-

mitting the underlying changes in the ledger.
iota_executeTransaction Executes a transaction on the node and returns the effects after commit-

ting the underlying changes in the ledger.
Indexer API
iotax_getOwnedObjects Get objects from the indexer DB based on multiple filters.
iotax_getTransactions Get transactions from the indexer DB based on multiple filters.
iotax_getEvents Get events from the indexer DB based on multiple filters.
Faucet API
iota_requestGas Request gas for the specified wallet address.

Table 3.2: APIs and Descriptions

latter is also a lot easier to maintain and use for prototyping, because the data that is stored changes
a lot during prototyping. Therefore, it is decided to implement MongoDB for the database needs. It
is also decided to implement data replication so that it would be possible to run atomic transactions
across multiple documents, i.e., doing multiple database interactions at the same time.

The indexer supports the following query filters:

1. Transactions

(a) Matching the given transaction digests.
(b) Sent by a wallet address.
(c) Paid the gas object with the given object ID.
(d) Of a particular kind.
(e) Calling a particular package, module, or even function.

2. Objects

(a) Matching the given object IDs.
(b) Owned by a wallet address.
(c) Of a particular kind (move object or package).
(d) Of a particular struct type (e.g. iota_framework::coin::Coin<Meta>).
(e) Of a particular version.

3. Events

(a) Emitted in transactions sent by a given wallet address.
(b) Defined in the given package, or module.
(c) With the given name.

3.4.6. Faucet
The iota-faucet is an INX plugin which exposes a method for requesting a fixed amount of MANA coins.
As all gas fees need to be paid with MANA coins, this component helps to acquire the coins needed
for ledger interactions.

This faucet is instantiated during genesis as shown in Listing 3.20.

Listing 3.20: Faucet Initialization
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Figure 3.11: DB Models

1 // create a liquidity pool for exchanging IOTA and MANA coins
2 let lp_balance = mana_pool::init_pool(p, iota_liquidity, mana_liquidity,

MANA_POOL_FEE_BASIS_POINTS);
3 // get the coins objects references
4 let iota_coin = from_balance<IOTA>(minted_iota, ctx);
5 let mana_coin = from_balance<MANA>(minted_mana, ctx);
6 // split MANA coins object in two, in order to have a new object that pays for the

faucet execution gas
7 // -> mana_gas_coin
8 let mana_gas_coin = split<MANA>(
9 &mut mana_coin,

10 available_mana_tokens / MAX_BASIS_POINTS * GAS_RESERVE_RATIO,
11 ctx,
12 );
13 let lp_coin = from_balance<MANA_POOL>(lp_balance, ctx);
14 // distribute the coins to genesis addresses
15 distribute_tokens_to_wallets<IOTA>(&iota_distribution, &mut iota_coin, ctx);
16 distribute_tokens_to_wallets<MANA>(&mana_distribution, &mut mana_coin, ctx);
17 // transfer the remaining coins to the faucet
18 public_transfer(iota_coin, faucet);
19 public_transfer(mana_coin, faucet);
20 public_transfer(mana_gas_coin, faucet);
21 public_transfer(lp_coin, faucet);

In this faucet initialization code, the process starts with creating a liquidity pool for exchanging IOTA
coins and MANA coins. Then, the object that contains the entire supply of MANA coins is retrieved
and split into two objects. This new object is needed to pay for the faucet gas fees. After this, a fixed
amount of IOTA and MANA coins is distributed to the genesis addresses. And finally, all the remaining
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coins are being sent back to the faucet address.

Faucet algorithm
• The faucet implements an INX client for dialoguing with the hornet-move node.
• It gets the latest version of the mana_gas_coin object through the INX’s read_object operation.
• It gets the latest version of the MANA coin supply object through the INX’s read_object operation.
• It creates a new transaction with a Move call to the split_and_transfer method of the pay module.

– The inputs are:

* MANA coin supply object.

* A certain amount indicated as an integer.

* The address of the faucet user, i.e., the receiver; this address is generated from a
mnemonic that is fixed for development purposes but that can be set as a configura-
tion parameter.

– This method splits the coin object passed as input and transfers the newly created object to
the address indicated as the receiver.

– The mana_gas_coin object is used to pay for the execution gas.
– It uses the INX’s submit_transaction method to create a block including this transaction (’s

bytes) and submitting it to the hornet-move node.
– It waits for the execution result by listening to referenced blocks through the INX’s method

listen_to_referenced_blocks and waiting for the issued block to be referenced.
– It finally returns the object reference (i.e., a tuple containing the object id, sequence number,

and object digest) of the newly created object containing a MANA balance for the faucet
user.

Faucet API
The faucet can be called through numerous ways:

1. gRPC:

• The faucet exposes the server to the port 6057 by default.
• The server implements a gRPC interace with just one method, shown in Listing 3.21:

Listing 3.21: IotaFaucetGrpc service

1 service IotaFaucetGrpc {
2 rpc ManaFixedAmount(ManaFixedAmountParams) returns (types.id.ObjectRef)

;
3 }
4 message ManaFixedAmountParams {
5 bytes address = 1;
6 }
7

• This method requires an address (in bytes) that will receive the MANA coin object as input
and returns the newly generated MANA coin object reference as output.

• For each request, a fixed amount of 1 MANA will be transferred to the requestor’s indicated
address.

2. JSON-RPC:

• The faucet operation is exposed by the JSON-RPC API (described above).
• A JSON-RPC client can access the faucet_api’s method request_gas:
1 let response = client.faucet_api().request_gas(address).await?;
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• This method requires an address (of JSON-RPC type IotaAddress) that will receive the
MANA coin object as input and returns the newly generated MANA coin object reference
as output.

• The implementation of request_gas is a gRPC client that invokes the ManaFixedAmount
method described above. Thus, also in this case, a fixed amount of 1 Million MANA will be
transferred to the requestor’s indicated address.

3. CLI:

• The CLI can be used to request gas: ”iota client request-gas”.
• The CLI makes use of the JSON-RPC API to send a MANA coin object to the CLI’s active
address.



4
Move application: Intents

4.1. Introduction
Now that smart contracts became possible on L1, novel modifications can be designed that were not
possible before. One of these is support for native on-chain intent execution. This chapter will show
the design and implementation for a prototype of an application-layer intent module and additionally
provide the design for a more complete novel intent-based execution pipeline. The latter will not be
implemented but will only be theoretically designed due to the complexity of building such complete
system and time constraints of this thesis. For example, Anoma, a project focusing on building an
intent-based architecture, has been in development for years [48].

4.2. Intents
An intent is an expression of what a user wants to achieve whenever they interact with a protocol.
Intents describe a desired state transition, but do not specify how to carry it out. Intents are not exact
transactions as they do not have an exact execution path, they have a solver in between ask (intention)
and outcome. The solver constructs the transaction for you. Figure 4.1 shows the difference between
the execution paths of a normal transaction and an intent transaction. Between the outcome and input
(the want) resides a matchmaking stage.

Figure 4.1: Transaction vs Intent execution path, Source: Paradigm

54
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In an intent-based world, the solver does this matchmaking for you. Solvers are entities that construct
transactions that fulfill user intent(s). For that it needs to know the constraints (intents), all available
execution paths, and evaluate all alternative paths and choose which one is optimal in that specific
situation.

4.3. Simple Intent-based architecture
The idea behind the simple intent-based architecture is as follows. We should be able to facilitate
automatic execution of lined-up intents for a specific module. These intents are simply transactions
that will be executed the most efficiently, or at least how the module dev wants it, which is usually in
the best interest of the user. An example of such an intent functionality is a batch-swap for a dex. In
batch swaps, the user wants their trade to be executed in the most efficient way possible, in terms of
cost-efficiency.

Intents will just be objects filled with all necessary information, which is sent to the relevant queue. This
is done so that intents are simply an addition to the current working transaction pipeline, and does not
require any breaking changes. Once the intents entered the queue, they will emit an event and signal
to the system that there are intents in the queue waiting to be processed. The system then sends
out a system transaction calling the process_queue() function at the checkpoint, which happens each
consensus round.

4.3.1. Design
There are numerous ways of realizing this into a basic prototype. The one chosen is a simple approach
to this problem, and can be implemented with little modification to the core code.

After each milestone, the node traverses the blocks from previous milestone to latest new milestone.
This is called the cone, which consists of transactions. The WhiteFlag algorithm traverses this cone
to create a deterministic order for the transactions. Our hornet-move prototype executes all move
transactions in the same order of the WhiteFlag traversal. Our simple approach to the intent queue
processing is to check for events emitted by the relevant module, which are emitted upon enqueueing.
If found, the system transaction is sent out to execute the intents from the queue.

4.3.2. Implementation
The module that will be used is the swap module in the batch_swap package. This module contains
a basic pool that will be used to swap tokens from A to B, and from B to A. For simplicity sake, the
intent-related functions are included in the same module.

For this example, we create a pool which allows for swapping between two tokens: MANA and USD.
MANAwe get through our faucet tool, and USD is our own token that weminted for this specific purpose.
The minted USD is only deposited to our own address upon deployment of the USD module.

The complete code for the swap and usd modules can be found in Appendix B.

The user submits a normal transaction, which is an intent of its swap. This intent is then added to
the queue. At the end of each milestone, the node checks for any intent-transaction in the sub-dag
from last milestone to current new milestone. In the current implementation, this is simply checking
for interactions with the add_intent function of that specific module. If there was an intent transaction,
then the node submits a system-transaction which calls process_queue of that module. All intents in
the queue will then be processed in a batch swap, in which each swap will only be done once. This
process_queue function is written by the developer and can do with the intents as he wishes. In our
example, it is a batch swap function, which combines all swap intents and calls the swap function once
per swap direction. Figure 4.2 shows an overview of the sequence of an intent transaction.
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Figure 4.2: Sequence diagram of the batch swap intent processing.

4.4. Advanced Intent-based architecture
This chapter will introduce the design of a custom transaction execution mechanism for IOTA 2.0. We
will use Sui’s object-based move model and will design a custom execution pipeline in which the se-
quencing of transactions will be programmable through move modules. We will not implement this
design due to time constraints.

4.4.1. Design considerations
The IOTA 2.0 protocol is not released as of date of writing. Thus, all design decisions will be made
based on the currently available knowledge of the IOTA 2.0 design. During this time, changes to the
IOTA 2.0 design are possible, which will affect the correctness of the adapter.

As this thesis will only focus on the adapter part of handling smart contracts on layer 1, other changes
to, for example, the IOTA 2.0 consensus will not be discussed in much detail. However, we will propose
some modifications to a part of the consensus.

4.4.2. Consensus and Execution
The consensus algorithm of IOTA 2.0 utilizes on-tangle voting along with a reality-based ledger to
facilitate the confirmation of transactions. This algorithm works well for UTXO-style transactions where
you choose a winner in conflicts, but it cannot sequence transactions touching the same shared state
or object. Therefore, we must think of a new way of making this work. The proposal is to leverage
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Move modules for on-chain sequencing.

This will be realized in two steps, which will be elaborated further in the coming sections:

1. Slicing
2. Sequencing

Slicing
This part of the process will fetch a new chunk of the tangle that will be sequenced in the following step.
This is already done in a way with the current coordinator milestones, in which slices are created with
blocks between each milestone. Committed leader blocks create the beginning and end of each slice.
These slices are similar to the milestone cones shown in 3.8.

As mentioned earlier, the consensus is not part of the adapter and will thus not be mentioned in more
detail. From here on, we will treat the slicing as a mechanism that is taken for granted. For this design,
and the further implementation of the adapter, we assume that the blocks received from the slicing part
is an arbitrary set of blocks. This set of blocks can then be used in the next step.

Sequencing
The sequencing step takes the set of blocks, or slice, from the previous slicing step as input. Each
block is simply a transaction. The output of the sequencing step is the order in which the transactions
will be executed. Another thing that sequencing has an impact on is MEV, which stands for Maximal
Extractable Value. In MEV, the sequential position of transactions in a block is being ”used” for personal
monetary gain. An example of MEV is front-running, in which a transaction with a large monetary
value on a decentralized exchange is being front-run by another transaction. This is usually done
automatically by bots. These bots detect such opportunities by scanning mempools for these kinds
of large transactions, and when they find one, they send a similar transaction but with a higher gas
price, which places their transaction in front of the targeted transaction, essentially front-running it. The
”victim”-transaction of the front-running transaction will now execute on a different shared state of the
decentralized exchange, usually in disfavour of the victim. Just like this example, there are many more
MEV strategies that are being used, and as you can tell, these are usually not beneficial to ordinary
users of the DLT.

Thus, the way we do sequencing is important to protect fairness between users of the DLT. We came
up with a few different sequencing algorithms that we could use:

1. Random order. This is the simplest of the bunch. Transactions will just be shuffled in a random
order.

2. Order based on transaction hash. This approach orders all transaction in a slice based on their
transaction hash, which could be in ascending or descending order.

3. Order based on MANA fee. This is a more commonly seen algorithm to determine the execution
order. A higher MANA fee means an earlier position in the order. This is also the algorithm used
by SUI.

4. Preserve the whiteflag-order that comes with the walk on the blocks.

With these sequencing algorithms, we are still not able to completely get rid of MEV. In fact, in some
cases it might even be beneficial for users. It could for example be used in the favor of users. MEV could
be used as a service instead of a hindrance. Instead of extracting additional value from transactions,
it could extract additional value for the transactions. Therefore, we came up with a novel approach for
this sequencing issue: allowing application developers to choose and/or write their own sequencing
algorithm. However, this approach comes with a consequence, which is that these applications give
up on composability with applications using a different sequencing algorithm.

In this custom sequencing approach, every application developer can opt for their own sequencing
algorithm but can also just use the default sequencer, which we call the Orchestrator. And the best
part about this approach is that these sequencing algorithms are written in Move, and are part of the
on-chain system modules. This means that upgrading the sequencing algorithm is also as simple as
upgrading a Move module.
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For simplicity sake and due to time constraints, we will partially implement the custom sequencing
approach. The implementation will only contain one default sequencer, being the Orchestrator.

4.4.3. Transaction handling
As we’re dealing with object-based Move, the transactions must specify the objects it wants to touch
and a list of operations on those objects. These objects could be one of the following:

• Immutable objects. These objects never change. They stay on the chain forever. Published
smart contracts fall in this category.

• Owned objects. These are objects owned by an address. The address is the only one capable
of utilizing this object. When this object is used in a transaction, it will be consumed and if not
deleted, their next version will be created. If this object is accessed at the same time in different
transactions, it’s called a double spend.

• Shared objects. These objects can be referenced by multiple transactions at the same time. The
sequencing algorithm decides in what order they will be executed.

Unlike in UTXO-based systems, the transactions must be executed to know their exact outcome. We
will not use a custom transaction and object format so that we can be compatible with the SUI tooling.

Transaction Pipeline
When an owned object is used in a transaction, it also carries with it its object version. Each time the
object is used in an execution of a transaction, the version increases. At any point in time, only one
transaction can consume this object at a specific version. Therefore, we can say that owned objects
are implicitly ordered. We do, however, still need to deal with double spends of these objects. In the
case of SUI, if there is a double spend detected, the system will lock this owned object until the next
epoch. We assume that double spends of owned objects are only user errors, and no explicit fraudulent
behavior is intended. When a user submits multiple transactions with the same owned object as input,
the only harm it could potentially do is to itself. Would a user try to front-run its own transaction? The
only thing a double spender could achieve is a cancelation of its previously submitted transaction, by
locking this owned object until the next epoch, where it is freed automatically.

The same applies for immutable objects, but for these objects the version never changes. So we do
not have to worry about transaction ordering for these type of objects.

The type of objects that do need to be taken care of are the shared objects. These need to be ordered
before execution.
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Figure 4.3: Execution pipeline

The full execution pipeline begins with a slice that is composed by the consensus slicing phase. This
slice is a chunk of the DAG, containing blocks of transactions. Each block contains one transaction
block, which is similar to a PTB in SUI and a Script in Aptos. This transaction block can contain multiple
Move function calls, for example, a simple token transfer function call.

1. The given slice first has to be totally ordered. This is to detect and resolve conflicts. Conflicts are
double spends: transactions that consume the same owned object with the same version.

2. Before execution, the transaction must be validated. This process involves:

• Check if the signatures are valid.
• Check if the gas object contains enough MANA to pay for the gas budget of the transaction.
• Check if the gas budget is within the minimum and maximum limits.
• Check if object-owned objects have the root object in the input list of the transaction.
• Check if the owned-objects resolve to the transaction sender.
• Check if the objects referenced in the transaction input exist in the current ledger state.
Owned objects can be checked whether their current version and digest matches the one
that was given in as input. Shared objects can be checked simply by checking if they exist
with the given object ID. We do not try to match their version, as we do not know which
version they will interact with before execution. The sequencer decides this later on in the
pipeline.

3. Transactions not passing the validation phase are counted as Illegal transactions, and are re-
jected. These transactions are simply not executed. They do not cause any change in the ledger
state. These transactions do still pay for block dissemination and pay a flat fee for validity checks.

4. Transactions that do pass the validation phase and that only contain owned objects and/or im-
mutable objects can be executed in parallel. This is due to there being no overlap in transaction
objects.

5. For the transactions passing the validation phase and that touch shared objects are wrapped
in a WrapperBox alongside all the owned and/or immutable objects that they reference. The
execution is then postponed and collected till the validation of all transactions in the slice has
been concluded.
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6. Once all the WrapperBoxes are generated, they will be transferred to their respective sequencer.
Initially, and in this thesis, there will only be one default sequencer, the Orchestrator.

7. The orchestrator is a Move module that does the ordering of the WrapperBoxes and executes
them sequentially. The default order for now will be the order in which the transactions have
been validated. This will be done only for normal transactions that touch shared objects. The
user also has the ability to send an intent transaction.

8. This intent transaction is similar to a normal transaction, but only signals to theMovemodule that it
can use its custom orchestrator to process this transaction. A custom orchestrator could include
pre- and post-processing steps surrounding the execution of the transactions. For example, a
DEX could implement their own custom orchestrator in which it executes multiple transactions in
less transactions, saving gas fees. The transactions are essentially batched like this.

9. All intents that are found during the sequential execution phase are placed into the queue of their
respective orchestrator. These could be multiple different transactions in multiple orchestrator
queues.

10. A system transaction, being a transaction initiated by the system itself, calls a function of the
orchestrator which processes and executes the transactions in their queue. This can be done in
parallel.

11. After all transactions have been executed, their TransactionEffects are collected in a list.
12. From that list, the total used gas is derived and the Reference Mana Cost (RMC) is adjusted for

the next slice.
13. Finally, the list of TransactionEffects will be committed to the ledger state.

Transaction pipeline example
To make this process a bit more clear we will give an example of the whole process.

1. Ledger state before processing a slice
The current ledger state at the end of the previous slice is like the one illustrated in 4.4:

Figure 4.4: Initial Ledger State Example

This state consists of owned objects, shared objects and an immutable package which contains
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Move modules. Each object besides the package has a version number. The shared objects also
require a version number which is being used internally by the node itself. A transaction does not
need to know that version number, only their object ID.

2. Preparing the slice
The tangle is sliced by a leader block. The result of this slicing is a slice, which is visualized in
Figure 4.5

Figure 4.5: The Slice Example

For simplicity sake, we assume that each block contains only one transaction. This transaction
is numbered after their block, so Block 1 contains Transaction 1. Block 1 and block 2 reference
blocks that are in the previous slice.

3. Ordering with WhiteFlag algorithm
WhiteFlag is an algorithm used for ordering the Tangle. It uses a post-order Depth-First-Search
(DFS) algorithm, which starts at the milestone block. In this case, it will start from the leader block.
The given slice in the previous step (Figure 4.5) will be ordered with this algorithm as shown in
Figure 4.6.
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Figure 4.6: Slice ordered with WhiteFlag

The pseudo-algorithm for the algorithm can be found in Appendix F Listing F.1

As this algorithm is already used in the current production version of IOTA, we can preserve
this algorithm and order for determining the order of the transactions in the slice. As previously
mentioned, other ordering algorithms are also possible, but this seems to be the easiest to get
the transactions in the slice totally ordered, which is required for the validation step.

4. Validation
After the slice has been ordered, it will be validated. For this validation, we must have access to
the current ledger state. If a transaction uses an owned object, it must be locked for further use
in that slice. Any other transaction that does use that owned object in the slice will be seen as
an illegal transaction. This validation process is done sequentially, since that way we are able to
detect any double spends. The actual execution of owned objects can be parallelized.

In Figure 4.7, we see the order that was determined in the previous step. Transaction 2 will be
validated first. As this transaction only has owned and immutable objects as input (all objects
that it touches), it can be executed directly. The gas payment object A v1 (version 1) is locked
after validation of Transaction 2 is done. The validation of Transaction 1 does not need to wait
for the result of the execution of Transaction 2. Since Transaction 1 uses the same gas object as
Transaction 2, which is now locked, it will not pass validation and is seen as an illegal transaction.
Consequently, the transaction is rejected and will not be passed forward in the pipeline.

Figure 4.8 shows the continuation of the validation process.
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Figure 4.7: Validation of Slice

Figure 4.8: Validation of Slice (continued)

Transactions 3 and 4 touch the same shared object, but have different gas objects, so they pass
the validation. But since they touch the same shared object in the same slice, they have to be
ordered. The ordering, or sequencing, will be prepared by wrapping them in so called Wrapper
Boxes. The execution of these transactions is deferred to a later stage. Once all the transactions
in the slice are validated, all the Wrapper Boxes are collected and ready for the next stage. Each
box has a label which states its Orchestrator ID. This dictates which sequencer will process them.
Each shared object has this ID upon its creation. A transaction that tries to send a shared object
with a different Orchestrator ID than its own, will be invalidated by the validation stage and be
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deemed illegal. For the first implementation in this thesis, we will only have a default Orchestrator.
5. Orchestration/Execution

The orchestration phase begins by passing the list of collected boxes to the Orchestrator Move
module. The orchestrator chooses an order in which it will execute the transactions. This could for
example be any of the previously mentioned ordering algorithms. For this implementation, we will
preserve theWhiteFlag order. Transactions that touch different shared objects might be executed
in parallel, but that will not be implemented for this current design. Thus, the implementation will
only support sequential execution. In Figure 4.9, Transaction 4 will execute with the next version
of Object D, as it has been ordered after the execution of Transaction 3.

Figure 4.9: Orchestration/Execution step

6. Collection of Ledger Mutations
Now that all the transactions have been executed, all the ledger mutations of both Wrapper Boxes
and Owned objects, also known as their TransactionEffects, are collected and committed to the
ledger.

Before committing, we count the consumed execution gas from the TransactionEffects and adjust
the RMC for the next slice accordingly. This is done to combat excessive computational resource
usage.
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Figure 4.10: Ledger State After Slice is Procesesed

4.4.4. Custom sequencer
The custom sequencer will be explained a bit more in detail. The functionality of the custom sequencer
will be:

• The custom sequencer will be able to have a pre-process function in the module, which is called
by the system before any other transaction. Instead of being a separate function, it could also
be implemented in a post-process function, where the last part of that function can be the pre-
processor for the next round.

• It will also be able to have a post-process function in the module, which is called by the system
through a system transaction. This function will be called at last, after all transactions in the queue
have been executed.

• The custom sequencer will also be able to pay for the gas for these transactions, which could be
by taking the gas object from a transaction.

• The module needs to be able to give feedback to the user, such as errors that occurred.
• The developer needs to be able to define the actual implementation logic of pre- and post-processing
functions.

An example of such a custom processor module can be found in the Appendix F Listing F.2.

And an example of an implementation using the module can subsequently be found in F.3 of the same
Appendix.
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Evaluation

5.1. Testing the new system
To ensure correct functionality of the new system, we created ten scenarios to test the MoveVM White-
Flag algorithm which modifies the ledger state. These scenarios involve transactions that resemble
real world interactions that could also result in conflicts in the object ledger. These scenarios include
creation, modification and deletion of objects, as well as wrapping and handling dynamic fields within
objects. For each of the scenarios we start with an initial state of the ledger, which is loaded into Hornet.
We then run the necessary transactions and compare the resulted ledger state against the expected
end state of the ledger. The environment is an isolated environment, such that no other transactions
are being executed, other than the ones specified in the specific scenario.

The ten scenarios are defined as such:

1. publish_call_simple_package: This scenario first publishes a simple move package with a sin-
gle entry function, and then calls the entry function.

2. create_owned_objects: This scenario creates a three new objects through a single transaction
calls.

3. delete_owned_objects: This scenario deletes a single owned object already present in the start-
ing ledger state.

4. dynamic_fields: This scenario adds three dynamic fields, and then reads and removes them
through three successive transactions that rely on the working_bench package. In addition, we
generate three partial scenarios for each gradual state transition. That is, from genesis to the
added fields, from the added fields to the read fields, and from the read fields to the removed
fields.

5. dynamic_object_fields: This scenario adds three dynamic objects fields, and then reads and
removes them through three successive transactions that rely on the working_bench package.
In addition, we generate three partial scenarios for each gradual state transition. That is, from
genesis to the added fields, from the added fields to the read fields, and from the read fields to
the removed fields.

6. wrap_object: This scenario creates two single owned objects already present in the starting
ledger state and wraps one of them into the other.

7. unwrap_object: This scenario unwraps a working_bench::tools::Simple object from a
working_bench::tools::SimpleWrapper object. This filled SimpleWrapper object is already
present in the starting ledger state.

8. unwrap_and_delete_object: This scenario unwraps and deletes aworking_bench::tools::Simple
object from a working_bench::tools::SimpleWrapper object. The filled SimpleWrapper object
is already present in the starting ledger state.
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9. abort: This scenario aborts the execution of a transaction due to insufficient gas. The only object
that is written is the mutated gas coin owned by the caller.

10. shared_object: In this scenario, the Whiteflag algorithm is tested with multiple transactions that
attempt tomutate a shared object. This scenariomakes use of the DonutBox, a shared object intro-
duced in the working_bench::donutsmodule. A DonutBox can contain a fixed number of Donuts.
A user can try to get a Donut from the DonutBox by calling the function donuts::get_donut func-
tion if there are any Donuts left. The scenario is intended to create a competing situation in which
two users simultaneously attempt to retrieve the last Donut from the DonutBox and only one of
them can be successful. This scenario defines 4 different users, each with their own address
and gas coin. Furthermore, we define the DonutBox with a capacity of 3 donuts, leading to a
competition for the last donut.

Each of the scenarios contains a script that produces a json file which contains a list of ”VersionedOb-
jectID : ObjectBytes”-pairs representing the starting ledger state, a list of transactions to execute for
that specific scenario, and an expected end ledger state with the same format as the starting state.

With this json file, the ledger state is initialized with each of the transaction as a block on the sub-tangle.

Finally, a forged milestone is issued to trigger the WhiteFlag algorithm, which updates the ledger state.
This new ledger state is then compared against the expected ledger state specified in the json file.

5.1.1. Publish Call Simple Package
This scenario showcases the ability to publish a package and then subsequently call an entry function
that was in the published package.

The starting ledger state consists solely of the default genesis objects and two gas coins sent to the
publisher of the package and caller of the function.

The two transactions that are executed are as follows:

1. publish_tx: The transaction to publish the package, sent and signed by the publisher.
2. call_tx: The transaction to call the package function call_me, sent and signed by the caller.

The sub tangle that is initialized is visualized in figure 5.1. As seen clearly in the figure, the publish
transaction should be executed first, and then the call transaction. The forged milestone should finally
reference the call transaction, after which the WhiteFlag algorithm modifies the ledger state.

Figure 5.1: Tangle representation of the publish-call scenario

The expected end state of the ledger is:

• Written: We expect four new objects:

1. A move package for the simple package.
2. An InitCap object created during initialization of the package.
3. The mutated gas coin owned by the publisher.
4. The mutated gas coin owned by the caller.

• Deleted: We expect two outdated objects:

1. The gas coin used in publish_tx.
2. The gas coin use in call_tx.
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This scenario has been successfully tested, as the end ledger state was the same as the expected
ledger state.

5.1.2. Other Scenarios
The rest of the scenarios are also successfully tested, and are described similarly in Appendix G.

5.1.3. Results
The testing of the WhiteFlag algorithm across ten diverse scenarios has been key in demonstrating the
feasibility of integrating MoveVM with the IOTA ledger. Each scenario was carefully designed to cover
a wide range of potential interactions and conflicts that could arise in a real-world deployment. The
successful execution and validation of these scenarios provide concrete evidence that the integration
is not merely theoretical but operationally viable.

The scenarios were specifically chosen to challenge the system’s ability to handle a wide range of trans-
actions involving object creation, modification, deletion, and dynamic field manipulation. Most notably,
the shared_object scenario tested the system’s sequencing of transactions on shared resources.

The results from each scenario showed that the modified WhiteFlag algorithm correctly updated the
ledger state as expected. This was verified by comparing the resulting ledger state after executing
the transactions with the predefined expected state. The success of these tests proves that the White-
Flag algorithm can effectively sequence Move transactions and interact with the results produced by
MoveVM.

5.2. Cost Efficiency Batch Swap Intent Processor
This section will show the evaluation of the cost efficiency of the batch_swap intent-based module,
which is designed to optimize the swap execution of buy and sell orders. The designed approach is
economically beneficial because it first attempts to directly match buy and sell intents, thereby bypass-
ing the need to go through the liquidity pool. If there are no matches, the function will use the pool for
the remaining swaps.

To assess the cost efficiency of the module, we use a predefined set of swap transactions on two
different scenarios:

1. Scenario 1: Execute the set of transactions without batch swap.

• In this scenario, all transactions are processed directly through the liquidity pool without any
attempt to match intents.

• This approach can lead to higher costs due to pool usage costs, including slippage and fees.
2. Scenario 2: Execute the set of transactions with batch swap.

• In this scenario, the batch swap functionality will first attempt to match buy and sell intents
directly. Only the remaining unmatched intents are processed through the pool.

• It is expected that this approach is more cost-effective due to the reduction of transactions
that utilize the pool, lowering overall fees and slippage costs.

The sets of transactions are as follows:

• Set 1:
1. Swap 10 USD for MANA
2. Swap 10 MANA for USD

• Set 2:
1. Swap 10 USD for MANA
2. Swap 10 MANA for USD
3. Swap 20 USD for MANA
4. Swap 10 MANA for USD

The pool is initialized with 100 MANA and 100 USD liquidity. Fee of the pool is set to 0 for the evaluation.
This means that the price is 1:1, meaning 1 MANA equals 1 USD.

All these transactions will be submitted within the same milestone, and will therefore be processed
within the same milestone cone.
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5.2.1. Results
The metrics used in the results as follows:

• Transaction Fees: The cost associated with executing a transaction.
• Slippage: The difference between the expected price of a trade and the actual price. This differ-
ence will be taken based on the actual current price from the pool without price impact consider-
ation.

• Total Cost: Sum of transaction fees and slippage.

We calculate the slippage by comparing the expected output amount with the actual output amount.
This difference in price is used in the following formulas to determine the slippage:

Expected Output Amount = Amount Used to Swap
Initial Price

(5.1)

Slippage = Expected Output Amount− Actual Output Amount (5.2)

Slippage% =

(
Slippage

Expected Output Amount

)
× 100 (5.3)

Table 5.1: Transaction Costs for Each Scenario, Set 1

Transaction Scenario 1 (Normal Swap) Scenario 2 (Batch Swap)
Fee Slippage Output Fee Slippage Output

Swap 10 USD for MANA 3.22× 10−6 9.1 9.1 4.73× 10−6 0 10
Swap 10 MANA for USD 3.22× 10−6 -9.0 10.9 4.73× 10−6 0 10

The pool has not been used. Pool liquidity is still 100 MANA and 100 USD.

Table 5.2: Transaction Costs for Each Scenario, Set 2

Transaction Scenario 1 (Normal Swap) Scenario 2 (Batch Swap)
Fee Slippage Output Fee Slippage Output

Swap 10 USD for MANA 3.22× 10−6 9.1 9.1 4.73× 10−6 0 10
Swap 10 MANA for USD 3.22× 10−6 -9.0 10.9 4.73× 10−6 0 10
Swap 20 USD for MANA 1.61× 10−6 15.3 16.9 4.73× 10−6 4.5 19.1
Swap 10 MANA for USD 1.61× 10−6 -26.8 12.7 4.73× 10−6 0 10

The pool has been used once, to swap the remaining 10 MANA for USD. Pool liquidity is 90.9 USD and
110 MANA.

It should be noted that in our prototype, the actual transaction fees of the system transaction that
triggers the post-process function of the intent module are mitigated, as the system pays for it. In other
words, the validators sponsor these transactions. In a real scenario, someone would need to pay for
these transactions, which in a normal non-intent based situation would be the user. Therefore, a more
realistic approach would be that the user also provides an extra gas-fee object which is used to pay
for the gas fees. As these can differ based on the state of the intent module, excess gas fees can be
refunded by the post-process function.

Based on the results shown in Tables 5.1 and 5.2, it is apparent that using the Batch Swap intent-based
functionality gives a more stable swap output, relative to the original intent of the user. It effectively
reduces overall slippage for the users, and therefore improves the cost-effectiveness and user experi-
ence for the user.



6
Conclusion

This thesis demonstrated that the modular execution environment MoveVM can be successfully used
on top of IOTA for layer-1 programmability. This adaptation bridged two different blockchain ecosystems
and technologies, and showed the versatility and potential of Move in various blockchain environments.

The Sui flavor of the MoveVM seemed to be the most fitting for IOTA, and its implementation was
shown in two phases. In the first phase, a prototype of MoveVM was developed with a mock IOTA
node, showcasing the potential and understanding of the new technology. In the second phase, this
implementation was integrated with the current functional IOTA node software, resulting in a fully func-
tional layer-1 smart contract execution platform for IOTA.

The basic functionality of this new system has been proven by testing the WhiteFlag algorithm for
various scenarios, as this algorithm handles the transactions and therefore the MoveVM interactions.

Furthermore, an application-layer Move module has been designed and built on top of this new system
as a practical application, and to introduce further enhancements to the new system on IOTA.

The integration of native on-chain intent execution in L1 smart contracts introduces significant potential
for enhancing user experience through abstraction and simplification. Chapter 4 presented the design
and implementation of a prototype application-layer intent module and proposed a design of a more
comprehensive intent-based execution pipeline.

Intents represent user desires for state transitions without specifying exact execution paths. This ap-
proach involves solvers that construct transactions by matching user intents with optimal execution
paths. The simple intent-based architecture facilitates automatic execution of lined-up intents, optimiz-
ing transaction efficiency. For instance, a batch-swap functionality in a DEX can execute trades in the
most cost-effective manner.

The design and implementation of the simple intent-based architecture focused on a swap module
that allows token exchanges between MANA and USD. The evaluation demonstrated the economic
benefits of the batch swap intent processor by reducing the costs associated with slippage. The results
highlighted that the intent-based approach significantly enhances cost efficiency and stability compared
to traditional transaction processing.

Ironically, the concept of intents aims to abstract and simplify the user experience. However, this added
simplicity opens up a range of new possibilities and technological freedoms. For example, with such
an advanced intent-based architecture, fully-fledged custom on-chain VMs become possible, paving
the way for innovative applications and enhanced functionality in DLTs.
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A
Move Bytecode Table

Opcode Bytecode
0x01 Bytecode::Pop
0x02 Bytecode::Ret
0x03 Bytecode::BrTrue(offset)
0x04 Bytecode::BrFalse(offset)
0x05 Bytecode::Branch(offset)
0x06 Bytecode::LdU64(int_const)
0x07 Bytecode::LdConst(idx)
0x08 Bytecode::LdTrue
0x09 Bytecode::LdFalse
0x0A Bytecode::CopyLoc(idx)
0x0B Bytecode::MoveLoc(idx)
0x0C Bytecode::StLoc(idx)
0x0D Bytecode::MutBorrowLoc(idx)
0x0E Bytecode::ImmBorrowLoc(idx)
0x0F Bytecode::MutBorrowField(fh_idx)
0x10 Bytecode::ImmBorrowField(fh_idx)
0x11 Bytecode::Call(idx)
0x12 Bytecode::Pack(sd_idx)
0x13 Bytecode::Unpack(_sd_idx)
0x14 Bytecode::ReadRef
0x15 Bytecode::WriteRef
0x16 Bytecode::Add
0x17 Bytecode::Sub
0x18 Bytecode::Mul
0x19 Bytecode::Mod
0x1A Bytecode::Div
0x1B Bytecode::BitOr
0x1C Bytecode::BitAnd
0x1D Bytecode::Xor
0x1E Bytecode::Or
0x1F Bytecode::And
0x20 Bytecode::Not
0x21 Bytecode::Eq
0x22 Bytecode::Neq
0x23 Bytecode::Lt
0x24 Bytecode::Gt
0x25 Bytecode::Le
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0x26 Bytecode::Ge
0x27 Bytecode::Abort
0x28 Bytecode::Nop
0x29 Bytecode::Exists(sd_idx)
0x2A Bytecode::MutBorrowGlobal(sd_idx)
0x2B Bytecode::ImmBorrowGlobal(sd_idx)
0x2C Bytecode::MoveFrom(sd_idx)
0x2D Bytecode::MoveTo(sd_idx)
0x2E Bytecode::FreezeRef
0x2F Bytecode::Shl
0x30 Bytecode::Shr
0x31 Bytecode::LdU8
0x32 Bytecode::LdU128
0x33 Bytecode::CastU8
0x34 Bytecode::CastU64
0x35 Bytecode::CastU128
0x36 Bytecode::MutBorrowFieldGeneric(fi_idx)
0x37 Bytecode::ImmBorrowFieldGeneric(fi_idx)
0x38 Bytecode::CallGeneric
0x39 Bytecode::PackGeneric
0x3A Bytecode::UnpackGeneric(_si_idx)
0x3B Bytecode::ExistsGeneric(si_idx)
0x3C Bytecode::MutBorrowGlobalGeneric(si_idx)
0x3D Bytecode::ImmBorrowGlobalGeneric(si_idx)
0x3E Bytecode::MoveFromGeneric(si_idx)
0x3F Bytecode::MoveToGeneric(si_idx)
0x40 Bytecode::VecPack(si, num)
0x41 Bytecode::VecLen(si)
0x42 Bytecode::VecImmBorrow(si)
0x43 Bytecode::VecMutBorrow(si)
0x44 Bytecode::VecPushBack(si)
0x45 Bytecode::VecPopBack(si)
0x46 Bytecode::VecUnpack(si, num)
0x47 Bytecode::VecSwap(si)
0x48 Bytecode::LdU16
0x49 Bytecode::LdU32
0x4A Bytecode::LdU256
0x4B Bytecode::CastU16
0x4C Bytecode::CastU32
0x4D Bytecode::CastU256



B
batch_swap package source code

1 """
2 swap.move
3 """
4

5 module batch_swap::swap {
6 use iota::vec_map::VecMap;
7 use iota::vec_map;
8 use iota::bag;
9 use iota::bag::Bag;

10 use iota::mana::MANA;
11 use iota::object::{Self, UID, ID};
12 use iota::coin::{Self, Coin};
13 use iota::balance::{Self, Supply, Balance};
14 use iota::transfer;
15 use iota::math;
16 use iota::tx_context::{Self, TxContext};
17 use batch_swap::usd::{USD};
18 use iota::event;
19

20 /// For when supplied Coin is zero.
21 const EZeroAmount: u64 = 0;
22

23 /// For when pool fee is set incorrectly.
24 /// Allowed values are: [0-10000).
25 const EWrongFee: u64 = 1;
26

27 /// For when someone tries to swap in an empty pool.
28 const EReservesEmpty: u64 = 2;
29

30 /// For when initial LSP amount is zero.
31 const EShareEmpty: u64 = 3;
32

33 /// For when someone attempts to add more liquidity than u128 Math allows.
34 const EPoolFull: u64 = 4;
35

36 /// The integer scaling setting for fees calculation.
37 const FEE_SCALING: u128 = 10000;
38

39 /// The max value that can be held in one of the Balances of
40 /// a Pool. U64 MAX / FEE_SCALING
41 const MAX_POOL_VALUE: u64 = {
42 18446744073709551615 / 10000
43 };
44

45 /// The Pool token that will be used to mark the pool share
46 /// of a liquidity provider. The first type parameter stands
47 /// for the witness type of a pool. The seconds is for the
48 /// coin held in the pool.
49 struct LSP has drop {}
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50

51 /// The pool with exchange.
52 ///
53 /// - `fee_percent` should be in the range: [0-10000), meaning
54 /// that 1000 is 100% and 1 is 0.1%
55 struct Pool has key {
56 id: UID,
57 mana: Balance<MANA>,
58 token: Balance<USD>,
59 lsp_supply: Supply<LSP>,
60 /// Fee Percent is denominated in basis points.
61 fee_percent: u64
62 }
63

64 /// Create new `Pool` for token `T`. Each Pool holds a `Coin<T>`
65 /// and a `Coin<MANA>`. Swaps are available in both directions.
66 ///
67 /// Share is calculated based on Uniswap's constant product formula:
68 /// liquidity = sqrt( X * Y )
69 public entry fun create_pool(
70 token: Coin<USD>,
71 mana: Coin<MANA>,
72 fee_percent: u64,
73 ctx: &mut TxContext
74 ) {
75 let mana_amt = coin::value(&mana);
76 let tok_amt = coin::value(&token);
77

78 assert!(mana_amt > 0 && tok_amt > 0, EZeroAmount);
79 assert!(mana_amt < MAX_POOL_VALUE && tok_amt < MAX_POOL_VALUE, EPoolFull);
80 assert!(fee_percent >= 0 && fee_percent < 10000, EWrongFee);
81

82 // Initial share of LSP is the sqrt(a) * sqrt(b)
83 let share = math::sqrt(mana_amt) * math::sqrt(tok_amt);
84 let lsp_supply = balance::create_supply(LSP {});
85 let lsp = balance::increase_supply(&mut lsp_supply, share);
86

87 transfer::share_object(Pool {
88 id: object::new(ctx),
89 token: coin::into_balance(token),
90 mana: coin::into_balance(mana),
91 lsp_supply,
92 fee_percent
93 });
94

95 transfer::public_transfer(coin::from_balance(lsp, ctx), tx_context::sender(ctx));
96 }
97

98

99 /// Entrypoint for the `swap_mana` method. Sends swapped token
100 /// to sender.
101 entry fun swap_mana_(
102 pool: &mut Pool, mana: Coin<MANA>, ctx: &mut TxContext
103 ) {
104 transfer::public_transfer(
105 swap_mana(pool, mana, ctx),
106 tx_context::sender(ctx)
107 )
108 }
109

110 /// Swap `Coin<MANA>` for the `Coin<T>`.
111 /// Returns Coin<T>.
112 public fun swap_mana(
113 pool: &mut Pool, mana: Coin<MANA>, ctx: &mut TxContext
114 ): Coin<USD> {
115 assert!(coin::value(&mana) > 0, EZeroAmount);
116

117 let mana_balance = coin::into_balance(mana);
118

119 // Calculate the output amount - fee
120 let (mana_reserve, token_reserve, _) = get_amounts(pool);
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121

122 assert!(mana_reserve > 0 && token_reserve > 0, EReservesEmpty);
123

124 let output_amount = get_input_price(
125 balance::value(&mana_balance),
126 mana_reserve,
127 token_reserve,
128 pool.fee_percent
129 );
130

131 balance::join(&mut pool.mana, mana_balance);
132 coin::take(&mut pool.token, output_amount, ctx)
133 }
134

135 /// Entry point for the `swap_token` method. Sends swapped MANA
136 /// to the sender.
137 entry fun swap_token_(
138 pool: &mut Pool, token: Coin<USD>, ctx: &mut TxContext
139 ) {
140 transfer::public_transfer(
141 swap_token(pool, token, ctx),
142 tx_context::sender(ctx)
143 )
144 }
145

146 /// Swap `Coin<T>` for the `Coin<MANA>`.
147 /// Returns the swapped `Coin<MANA>`.
148 public fun swap_token(
149 pool: &mut Pool, token: Coin<USD>, ctx: &mut TxContext
150 ): Coin<MANA> {
151 assert!(coin::value(&token) > 0, EZeroAmount);
152

153 let tok_balance = coin::into_balance(token);
154 let (mana_reserve, token_reserve, _) = get_amounts(pool);
155

156 assert!(mana_reserve > 0 && token_reserve > 0, EReservesEmpty);
157

158 let output_amount = get_input_price(
159 balance::value(&tok_balance),
160 token_reserve,
161 mana_reserve,
162 pool.fee_percent
163 );
164

165 balance::join(&mut pool.token, tok_balance);
166 coin::take(&mut pool.mana, output_amount, ctx)
167 }
168

169 /// Entrypoint for the `add_liquidity` method. Sends `Coin<LSP>` to
170 /// the transaction sender.
171 entry fun add_liquidity_(
172 pool: &mut Pool, mana: Coin<MANA>, token: Coin<USD>, ctx: &mut TxContext
173 ) {
174 transfer::public_transfer(
175 add_liquidity(pool, mana, token, ctx),
176 tx_context::sender(ctx)
177 );
178 }
179

180 /// Add liquidity to the `Pool`. Sender needs to provide both
181 /// `Coin<MANA>` and `Coin<T>`, and in exchange he gets `Coin<LSP>` -
182 /// liquidity provider tokens.
183 public fun add_liquidity(
184 pool: &mut Pool, mana: Coin<MANA>, token: Coin<USD>, ctx: &mut TxContext
185 ): Coin<LSP> {
186 assert!(coin::value(&mana) > 0, EZeroAmount);
187 assert!(coin::value(&token) > 0, EZeroAmount);
188

189 let mana_balance = coin::into_balance(mana);
190 let tok_balance = coin::into_balance(token);
191
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192 let (mana_amount, tok_amount, lsp_supply) = get_amounts(pool);
193

194 let mana_added = balance::value(&mana_balance);
195 let tok_added = balance::value(&tok_balance);
196 let share_minted = math::min(
197 (mana_added * lsp_supply) / mana_amount,
198 (tok_added * lsp_supply) / tok_amount
199 );
200

201 let mana_amt = balance::join(&mut pool.mana, mana_balance);
202 let tok_amt = balance::join(&mut pool.token, tok_balance);
203

204 assert!(mana_amt < MAX_POOL_VALUE, EPoolFull);
205 assert!(tok_amt < MAX_POOL_VALUE, EPoolFull);
206

207 let balance = balance::increase_supply(&mut pool.lsp_supply, share_minted);
208 coin::from_balance(balance, ctx)
209 }
210

211 /// Entrypoint for the `remove_liquidity` method. Transfers
212 /// withdrawn assets to the sender.
213 entry fun remove_liquidity_(
214 pool: &mut Pool,
215 lsp: Coin<LSP>,
216 ctx: &mut TxContext
217 ) {
218 let (mana, token) = remove_liquidity(pool, lsp, ctx);
219 let sender = tx_context::sender(ctx);
220

221 transfer::public_transfer(mana, sender);
222 transfer::public_transfer(token, sender);
223 }
224

225 /// Remove liquidity from the `Pool` by burning `Coin<LSP>`.
226 /// Returns `Coin<T>` and `Coin<MANA>`.
227 public fun remove_liquidity(
228 pool: &mut Pool,
229 lsp: Coin<LSP>,
230 ctx: &mut TxContext
231 ): (Coin<MANA>, Coin<USD>) {
232 let lsp_amount = coin::value(&lsp);
233

234 // If there's a non-empty LSP, we can
235 assert!(lsp_amount > 0, EZeroAmount);
236

237 let (mana_amt, tok_amt, lsp_supply) = get_amounts(pool);
238 let mana_removed = (mana_amt * lsp_amount) / lsp_supply;
239 let tok_removed = (tok_amt * lsp_amount) / lsp_supply;
240

241 balance::decrease_supply(&mut pool.lsp_supply, coin::into_balance(lsp));
242

243 (
244 coin::take(&mut pool.mana, mana_removed, ctx),
245 coin::take(&mut pool.token, tok_removed, ctx)
246 )
247 }
248

249 /// Public getter for the price of MANA in token T.
250 /// - How much MANA one will get if they send `to_sell` amount of T;
251 public fun mana_price(pool: &Pool, to_sell: u64): u64 {
252 let (mana_amt, tok_amt, _) = get_amounts(pool);
253 get_input_price(to_sell, tok_amt, mana_amt, pool.fee_percent)
254 }
255

256 /// Public getter for the price of token T in MANA.
257 /// - How much T one will get if they send `to_sell` amount of MANA;
258 public fun token_price(pool: &Pool, to_sell: u64): u64 {
259 let (mana_amt, tok_amt, _) = get_amounts(pool);
260 get_input_price(to_sell, mana_amt, tok_amt, pool.fee_percent)
261 }
262
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263

264 /// Get most used values in a handy way:
265 /// - amount of MANA
266 /// - amount of token
267 /// - total supply of LSP
268 public fun get_amounts(pool: &Pool): (u64, u64, u64) {
269 (
270 balance::value(&pool.mana),
271 balance::value(&pool.token),
272 balance::supply_value(&pool.lsp_supply)
273 )
274 }
275

276 /// Calculate the output amount minus the fee - 0.3%
277 public fun get_input_price(
278 input_amount: u64, input_reserve: u64, output_reserve: u64, fee_percent: u64
279 ): u64 {
280 // up casts
281 let (
282 input_amount,
283 input_reserve,
284 output_reserve,
285 fee_percent
286 ) = (
287 (input_amount as u128),
288 (input_reserve as u128),
289 (output_reserve as u128),
290 (fee_percent as u128)
291 );
292

293 let input_amount_with_fee = input_amount * (FEE_SCALING - fee_percent);
294 let numerator = input_amount_with_fee * output_reserve;
295 let denominator = (input_reserve * FEE_SCALING) + input_amount_with_fee;
296

297 (numerator / denominator as u64)
298 }
299

300 ///
301 /// INTENT RELATED FUNCTIONS
302 ///
303

304 /// The intent itself. The T determines the swap direction.
305 struct Intent<phantom T> has key, store {
306 id: UID,
307 pool_id: ID,
308 coin: Coin<T>,
309 sender: address
310 }
311

312 /// The queue that holds the intents.
313 struct IntentQueue has key {
314 id: UID,
315 items: Bag
316 }
317

318 /// Event for when someone enqueued an intent.
319 struct IntentEnqueued has copy, drop {
320 }
321

322 /// Initialize the module.
323 fun init(ctx: &mut TxContext) {
324 let queue = init_queue(ctx);
325

326 transfer::share_object(queue);
327 }
328

329 /// Initialize the queue.
330 public fun init_queue(ctx: &mut TxContext): IntentQueue {
331 IntentQueue {
332 id: object::new(ctx),
333 items: bag::new(ctx),



81

334 }
335 }
336

337 /// Add an intent to the queue.
338 public entry fun add_intent<T>(
339 queue: &mut IntentQueue,
340 pool: &Pool,
341 coin: Coin<T>,
342 ctx: &mut TxContext
343 ) {
344 let intent = Intent {
345 id: object::new(ctx),
346 pool_id: object::id(pool),
347 coin,
348 sender: tx_context::sender(ctx)
349 };
350

351 let length = bag::length(&queue.items);
352 bag::add(&mut queue.items, length, intent);
353

354 event::emit(IntentEnqueued {});
355 }
356

357

358 /// Process the queue!
359 /// The purpose of this specific process is to batch and match the intents, so that

sometimes
360 /// the buys and sells can be settled without the need to go through the pool.
361 /// This prevents slippage and allows for more efficient swaps.
362 public entry fun process_queue(
363 queue: &mut IntentQueue,
364 pool: &mut Pool,
365 ctx: &mut TxContext
366 ) {
367 let length = bag::length(&queue.items);
368

369 if (length == 0) {
370 return
371 };
372

373 // Collections to remember intent senders and values.
374 let mana_intents = vec_map::empty<address, u64>();
375 let usd_intents = vec_map::empty<address, u64>();
376

377 let mana_balance = balance::zero<MANA>();
378 let usd_balance = balance::zero<USD>();
379

380 // Loop through all bag items, so for `length` iterations.
381 let i = 0;
382

383 while (i < length) {
384 // Get the item and its type.
385 let is_usd = bag::contains_with_type<u64, Intent<USD>>(&queue.items, i);
386

387 if (is_usd) {
388 // If it's USD, then it's a buy MANA swap.
389 process_intent_object <USD>(queue, &mut usd_intents, &mut usd_balance, i);
390 } else {
391 // Else it's MANA, so it's a buy USD swap.
392 process_intent_object <MANA>(queue, &mut mana_intents, &mut mana_balance, i);
393 };
394

395 i = i + 1;
396 };
397

398 // Try to match intents directly without pool.
399 if (vec_map::size(&mana_intents) > 0 && vec_map::size(&usd_intents) > 0) {
400 match_swaps(pool, &mut mana_intents, &mut usd_intents, &mut mana_balance, &mut

usd_balance, ctx)
401 };
402
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403

404 // If there are any balances left, swap them through the pool.
405 if (balance::value(&mana_balance) > 0) {
406 let total_mana = balance::value(&mana_balance);
407

408 // Swap MANA for USD.
409 let usd = swap_mana(pool, coin::from_balance(mana_balance, ctx), ctx);
410

411 // Calculate shares and distribute them.
412 process_intent_swaps(&mut usd, total_mana, &mut mana_intents, ctx);
413

414 // If there are any leftovers, send them to the pool.
415 balance::join(&mut pool.token, coin::into_balance(usd));
416 } else {
417 balance::destroy_zero(mana_balance);
418 };
419

420 if (balance::value(&usd_balance) > 0) {
421 let total_usd = balance::value(&usd_balance);
422

423 // Swap USD for MANA.
424 let mana = swap_token(pool, coin::from_balance(usd_balance, ctx), ctx);
425

426 process_intent_swaps(&mut mana, total_usd, &mut usd_intents, ctx);
427 balance::join(&mut pool.mana, coin::into_balance(mana));
428 } else {
429 balance::destroy_zero(usd_balance);
430 };
431 }
432

433 /// Internal function to process the intent objects in the queue.
434 fun process_intent_object <T>(queue: &mut IntentQueue, collected_intents: &mut vec_map::

VecMap<address, u64>, balance: &mut Balance<T>, index: u64) {
435 // If it's USD, then it's a buy MANA swap.
436 let intent = bag::remove<u64, Intent<T>>(&mut queue.items, index);
437

438 let Intent<T> {
439 id,
440 pool_id: _pool_id,
441 coin,
442 sender
443 } = intent;
444

445 if (vec_map::contains(collected_intents, &sender)) {
446 let amount = vec_map::get_mut(collected_intents, &sender);
447 *amount = (*amount + coin::value(&coin));
448 } else {
449 vec_map::insert(collected_intents, sender, coin::value(&coin));
450 };
451

452 // Add the intent to the balance.
453 balance::join(balance, coin::into_balance(coin));
454 object::delete(id);
455 }
456

457 /// Internal function to calculate the individual shares of all intents and distribute
them.

458 fun process_intent_swaps <T>(coin: &mut Coin<T>, total_balance: u64, collected_intents: &
mut VecMap<address, u64>, ctx: &mut TxContext) {

459 // Calculate shares and distribute them.
460 while (vec_map::size(collected_intents) > 0) {
461 let (address, amount) = vec_map::pop(collected_intents);
462 let share = (((amount as u128) * (coin::value(coin) as u128)) / (total_balance as

u128) as u64);
463

464 // Transfer the share to the intent sender.
465 let b = coin::split(coin, share, ctx);
466 transfer::public_transfer(b, address);
467 };
468 }
469
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470 /// Match swaps directly without the need to go through the pool. Increases economical
efficiency and prevents

471 /// slippage. It is also possible to partially match the swaps, which will be the default
behavior of this function

472 /// to keep it simple. Uses the current price without considering the pool's price impact
.

473 fun match_swaps(pool: &Pool, mana_intents: &mut VecMap<address, u64>, usd_intents: &mut
VecMap<address, u64>, mana_balance: &mut Balance<MANA>, usd_balance: &mut Balance<USD
>, ctx: &mut TxContext) {

474 // Loop through all mana intents and try to match them with USD intents.
475 let i = 0;
476 let mana_price = current_mana_price_in_usd(pool);
477 let _usd_price = current_usd_price_in_mana(pool);
478

479 while (i < vec_map::size(mana_intents)) {
480 let (mana_key, mana_value) = vec_map::get_entry_by_idx_mut(mana_intents, i);
481 // now we have the key= address and value = amount of mana
482 // we want to calculate the amount of usd correlates to the amount of mana
483 let correlating_usd_amount = (mana_price * *mana_value)/(FEE_SCALING as u64); //

divide by precision factor 10^4
484 let j = 0;
485 while (*mana_value > 0 && j < vec_map::size(usd_intents)) {
486 // Just take the USD intents until we have enough to match the mana intent.
487 let (usd_key, usd_value) = vec_map::get_entry_by_idx_mut(usd_intents, j);
488 if (*usd_value >= correlating_usd_amount) {
489 // We have enough USD to match the mana intent.
490

491 // Directly transfer the mana and usd balances.
492 let usd_bal = balance::split(usd_balance, correlating_usd_amount);
493 let mana_bal = balance::split(mana_balance, *mana_value);
494

495 transfer::public_transfer(coin::from_balance(usd_bal, ctx), *mana_key);
496 transfer::public_transfer(coin::from_balance(mana_bal, ctx), *usd_key);
497

498 // Reduce the mana and usd intents.
499 *mana_value = 0;
500 *usd_value = *usd_value - correlating_usd_amount;
501

502 // We actually don't want to remove any intents, only set their value to
0.

503 // This is because we're still iterating over them!
504

505 // // Remove the USD intent if it's empty.
506 // if (*usd_value == 0) {
507 // vec_map::remove_entry_by_idx(usd_intents, j);
508 // };
509 //
510 // // Remove the MANA intent, as it's empty.
511 // vec_map::remove_entry_by_idx(mana_intents, i);
512 } else if (*usd_value > 0) {
513 // We don't have enough USD to match the mana intent.
514

515 // Directly transfer the balances.
516 let usd_bal = balance::split(usd_balance, *usd_value);
517 let mana_bal = balance::split(mana_balance, (*usd_value * (FEE_SCALING as

u64) / mana_price));
518

519 transfer::public_transfer(coin::from_balance(usd_bal, ctx), *mana_key);
520 transfer::public_transfer(coin::from_balance(mana_bal, ctx), *usd_key);
521

522 // Reduce the mana intent by the correlating USD amount.
523 *mana_value = *mana_value - (*usd_value * (FEE_SCALING as u64) /

mana_price);
524 *usd_value = 0;
525

526 // // Remove the USD intent, as it's empty.
527 // vec_map::remove_entry_by_idx(usd_intents, j);
528 };
529

530 j = j + 1;
531 };



84

532

533 i = i + 1;
534 };
535 }
536

537 /// Get the current price of MANA in USD, without considering price fluctuations in the
pool.

538 public fun current_mana_price_in_usd(pool: &Pool): u64 {
539 let (mana_amt, usd_amt, _) = get_amounts(pool);
540 let (mana_amt, usd_amt) = ((mana_amt as u128), (usd_amt as u128));
541 (((usd_amt * FEE_SCALING)/ mana_amt) as u64) // Price of 1 MANA in USD.
542 }
543

544 /// Get the current price of USD in MANA, without considering price fluctuations in the
pool.

545 public fun current_usd_price_in_mana(pool: &Pool): u64 {
546 let (mana_amt, usd_amt, _) = get_amounts(pool);
547 let (mana_amt, usd_amt) = ((mana_amt as u128), (usd_amt as u128));
548 (((mana_amt * FEE_SCALING) / usd_amt) as u64) // Price of 1 USD in MANA.
549 }
550

551 #[test_only]
552 /// Function to initialize the module for testing.
553 public fun init_test(ctx: &mut TxContext) {
554 init(ctx);
555 }
556 }

1 """
2 usd.move
3 """
4

5 module batch_swap::usd {
6 use std::option;
7 use iota::tx_context::{Self, TxContext};
8 use iota::transfer;
9 use iota::coin;

10

11 const EAlreadyMinted: u64 = 0;
12

13 /// The total supply of Mana denominated in whole USD tokens (10 Billion)
14 const TOTAL_SUPPLY_USD: u64 = 10_000_000_000;
15

16 /// The total supply of Mana denominated in miniMana (10 Billion * 10^9)
17 const TOTAL_SUPPLY_MINIUSD: u64 = 10_000_000_000_000_000_000;
18

19 /// Name of the coin
20 struct USD has drop {}
21

22 /// Mint the new coin on init and send all to user.
23 fun init(witness: USD, ctx: &mut TxContext) {
24 let (treasury, metadata) = coin::create_currency(
25 witness,
26 9,
27 b"USD",
28 b"USD",
29 b"USD EQUALS MONEY.",
30 option::none(),
31 ctx
32 );
33 transfer::public_freeze_object(metadata);
34 let coin = coin::mint(&mut treasury, TOTAL_SUPPLY_MINIUSD , ctx);
35

36 transfer::public_transfer(treasury, tx_context::sender(ctx));
37

38 // Split the coin for ease of use in our swap dapp.
39 let a = coin::split(&mut coin, 1_000_000_000, ctx);
40 let b = coin::split(&mut coin, 1_000_000_000, ctx);
41 let c = coin::split(&mut coin, 1_000_000_000, ctx);
42 let d = coin::split(&mut coin, 1_000_000_000, ctx);
43
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44 transfer::public_transfer(coin, tx_context::sender(ctx));
45 transfer::public_transfer(a, tx_context::sender(ctx));
46 transfer::public_transfer(b, tx_context::sender(ctx));
47 transfer::public_transfer(c, tx_context::sender(ctx));
48 transfer::public_transfer(d, tx_context::sender(ctx));
49 }
50 }
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Detailled Execution Flow of Phase 1

Adapter
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D
TransactionEffectsV1 struct

1 pub struct TransactionEffectsV1 {
2 /// The status of the execution
3 pub status: ExecutionStatus,
4 /// The epoch when this transaction was executed.
5 pub milestone_index: u32,
6 pub gas_used: GasCostSummary,
7 /// The version that every modified (mutated or deleted) object had before
8 /// it was modified by this transaction.
9 pub modified_at_versions: Vec<(ObjectID, SequenceNumber)>,

10 /// The object references of the shared objects used in this transaction.
11 /// Empty if no shared objects were used.
12 pub shared_objects: Vec<ObjectRef>,
13 /// The transaction digest
14 pub transaction_digest: TransactionDigest,
15 /// ObjectRef and owner of new objects created.
16 pub created: Vec<(ObjectRef, Owner)>,
17 /// ObjectRef and owner of mutated objects, including gas object.
18 pub mutated: Vec<(ObjectRef, Owner)>,
19 /// ObjectRef and owner of objects that are unwrapped in this transaction.
20 /// Unwrapped objects are objects that were wrapped into other objects in
21 /// the past, and just got extracted out.
22 pub unwrapped: Vec<(ObjectRef, Owner)>,
23 /// Object Refs of objects now deleted (the old refs).
24 pub deleted: Vec<ObjectRef>,
25 /// Object refs of objects previously wrapped in other objects but now
26 /// deleted.
27 pub unwrapped_then_deleted: Vec<ObjectRef>,
28 /// Object refs of objects now wrapped in other objects.
29 pub wrapped: Vec<ObjectRef>,
30 /// The updated gas object reference. Have a dedicated field for convenient
31 /// access. It's also included in mutated.
32 pub gas_object: (ObjectRef, Owner),
33 /// The digest of the events emitted during execution,
34 /// can be None if the transaction does not emit any event.
35 pub events_digest: Option<TransactionEventsDigest >,
36 /// The set of transaction digests this transaction depends on.
37 pub dependencies: Vec<TransactionDigest>,
38 }

88



E
Phase 2 code blocks

Listing E.1: Timing Results UniFFI vs gRPC

1 //------------------------------ Uniffi ------------------------------//
2 === RUN TestScenarioPublishCallSimplePackage
3 2023/12/15 17:13:27 Uniffi execute call duration: 9.815492ms
4 2023/12/15 17:13:27 Uniffi execute call duration: 8.478777ms
5 2023/12/15 17:13:27 Uniffi execute call duration: 9.063965ms
6 2023/12/15 17:13:27 Uniffi execute call duration: 7.912293ms
7 --- PASS: TestScenarioPublishCallSimplePackage (0.56s)
8 PASS
9 ok github.com/iotaledger/hornet-move/pkg/whiteflag/test 0.802s

10

11 === RUN TestScenarioPublishCallSimplePackage100
12 ok github.com/iotaledger/hornet-move/pkg/whiteflag/test 55.898s
13

14 //------------------------------- gRPC -------------------------------//
15 === RUN TestScenarioPublishCallSimplePackage
16 2023/12/15 17:13:30 gRPC execute call duration: 6.497809ms
17 2023/12/15 17:13:30 gRPC execute call duration: 5.760803ms
18 2023/12/15 17:13:30 gRPC execute call duration: 5.485178ms
19 2023/12/15 17:13:30 gRPC execute call duration: 6.528254ms
20 --- PASS: TestScenarioPublishCallSimplePackage (0.55s)
21 PASS
22 ok github.com/iotaledger/hornet-move/pkg/whiteflag/test 0.791s
23

24 === RUN TestScenarioPublishCallSimplePackage100
25 ok github.com/iotaledger/hornet-move/pkg/whiteflag/test 55.223s

Listing E.2: ApplyConfirmationWithoutLocking function

1 func (m *Manager) ApplyConfirmationWithoutLocking(msIndex iotago.MilestoneIndex,
written Objects, deleted DeletedObjects) error {

2 ...
3 // For each deleted object in confirmation, create a new Deleted Object in the

storage and mark it as deleted in mutations
4 for _, deletedObject := range deleted {
5 if err := storeDeletedAndMarkObjectDeleted(deletedObject, mutations); err !=

nil { ... }
6 deletedObjMap[*deletedObject.VersionedObjectID()] = struct{}{}
7 }
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8 // For each written object in confirmation, create a new Object in the storage
9 for _, object := range written {

10 if err := storeObject(object, mutations); err != nil { ... }
11 // If it is not a written object that is also deleted, mark it as Alive
12 if _, isDeleted := deletedObjMap[*object.VersionedObjectID()]; isDeleted {

continue }
13 if err := markAsAlive(object, mutations); err != nil { ... }
14 }
15 // Create the milestone diff
16 msDiff := &MilestoneDiff{
17 Index: msIndex,
18 Written: written,
19 Deleted: deleted,
20 }
21 ...
22 }

Listing E.3: LegalTransactionResult message

1 message LegalTransactionResult {
2 // The unique id of the transaction just executed.
3 types.id.TransactionId transaction_id = 1;
4 // This is the BCS form of a collection of lists of objects indexed by their

ObjectReference that indicate the effects of the transaction execution; e.g.,
lists of created objects, modified objects, etc. These are saved into the
transaction's block metadata.

5 bytes effects = 2;
6 This is the BCS form of a collection of events thrown during the execution;

these are saved into the transaction's block metadata.
7 bytes events = 3;
8 A list of ObjectReferences associated to the corresponding Move object encoded

using the BCS form; these are the objects that were created, modified or
unwrapped during the execution; these are saved into the object storage as
AliveObjects;

9 types.object.WrittenObjects written = 4;
10 A list of ObjectReferences of the objects that were deleted or wrapped during

the execution; these are used to mark the objects into the object storage as
DeletedObjects;

11 types.object.DeletedObjects deleted = 5;
12 }

Listing E.4: ConflictKind and ConflictError types

1 type ConflictKind uint8
2 const (
3 ErrorNoConflict ConflictKind = iota
4 ErrorInvalidSignature
5 ErrorTransactionDeserializationError
6 ...
7 )
8 type ConflictError struct {
9 // The error kind.

10 Kind ConflictKind
11 // The error string message.
12 Message string
13 // The specific error object
14 ErrorDetails ConflictErrorDetail
15 }
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Old Code
1 type Output struct {
2 outputID iotago.OutputID
3 blockID iotago.BlockID
4 msIndexBooked iotago.MilestoneIndex
5 msTimestampBooked uint32
6

7 outputData []byte
8 outputOnce sync.Once
9 output iotago.Output

10 }

New Code
1 // Object is a ledger state object on node level.
2 // It wraps the Move Object and additional metadata.
3 type Object struct {
4 // the ID of the object
5 objectID iotago.ObjectID
6 // the sequence number of the object (also called version)
7 sequenceNumber iotago.SequenceNumber
8 // the ID of the block that contained the transaction that created/updated the

object
9 blockID iotago.BlockID

10 // the index of the milestone that created/updated the object
11 msIndexBooked iotago.MilestoneIndex
12 // the timestamp of the milestone that created/updated the object
13 msTimestampBooked uint32
14

15 // BCS serialized Move Object
16 objectBCSData []byte
17 }

Figure E.1: Output model replaced by Object model.

Listing E.5: Read Object from Node Storage code

1 object, err := deps.ObjectManager.ReadObjectWithoutLocking(objectID)
2 ...
3 alive, err := deps.ObjectManager.IsObjectAliveWithoutLocking(version)
4 ...
5 if alive { ... }
6 ...
7 deleted, err := deps.ObjectManager.ReadDeletedObjectWithoutLocking(*version)

Listing E.6: MilestoneDiff type

1 // It contains the result of multiple executed transactions.
2 type MilestoneDiff struct {
3 // The index of the milestone.
4 Index iotago.MilestoneIndex
5 // The newly created objects with this diff.
6 Written Objects
7 // The deleted objects with this diff
8 Deleted DeletedObjects
9 }

Listing E.7: New Transaction Methods

1 service INX {
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Old Code
1 // Spent are already spent TXOs (transaction outputs).
2 type Spent struct {
3 outputID iotago.OutputID
4 // the ID of the transaction that spent the output
5 transactionIDSpent iotago.TransactionID
6 // the index of the milestone that spent the output
7 msIndexSpent iotago.MilestoneIndex
8 // the timestamp of the milestone that spent the output
9 msTimestampSpent uint32

10

11 output *Output
12 }

New Code
1 // Deleted objects are objects that were deleted by a milestone confirmation.
2 type Deleted struct {
3 objectID iotago.ObjectID
4 sequenceNumber iotago.SequenceNumber
5 // the ID of the transaction that deleted the object
6 transactionIDDeleted iotago.MoveTransactionID
7 // the index of the milestone that deleted the object
8 msIndexDeleted iotago.MilestoneIndex
9 // the timestamp of the milestone that deleted the object

10 msTimestampDeleted uint32
11

12 // the object itself
13 object *Object
14 }

Figure E.2: Spent model replaced by Deleted model.

2 ...
3

4 // Transctions
5 rpc ReadTransaction(types.id.TransactionId) returns (types.block.

TransactionWithResults);
6 rpc ReadEvents(types.id.TransactionId) returns (types.block.RawTransactionEvents

);
7 rpc ReadEffects(types.id.TransactionId) returns (types.block.

RawTransactionEffects);
8 rpc SubmitTransaction(types.transaction.RawTransaction) returns (types.block.

BlockId);
9 rpc DryRunTransaction(types.transaction.RawTransaction) returns (types.block.

DryRunTransactionResults);
10 rpc ListenToTransactions(NoParams) returns (stream types.block.

TransactionWithResults);
11 rpc ListenEvents(NoParams) returns (stream types.block.RawTransactionEvents);
12 rpc ListenEffects(NoParams) returns (stream types.block.RawTransactionEffects);
13

14 ...
15 }
16 message RawTransaction {
17 bytes data = 1;
18 }
19 message RawTransactionEffects {
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20 bytes data = 1;
21 }
22 message RawTransactionEvents {
23 bytes data = 1;
24 }
25 message TransactionResult {
26 RawTransactionEffects transaction_effects = 1;
27 RawTransactionEvents transaction_events = 2;
28 }
29 message TransactionWithResults {
30 transaction.RawTransaction transaction = 1;
31 TransactionResult transaction_result = 2;
32 }

Listing E.8: Pushing new written and deleted objects

1 for _, written := range mutations.WrittenObjects {
2 writtenObjects = append(writtenObjects, written)
3 }
4 for _, deleted := range mutations.DeletedObjects {
5 deletedObjects = append(deletedObjects, deleted)
6 }
7 if err = objectManager.ApplyConfirmationWithoutLocking(milestoneIndex,

writtenObjects, deletedObjects); err != nil {
8 return fmt.Errorf("confirmMilestone: object.ApplyConfirmation failed: %w", err)
9 }

Listing E.9: Updating metadata of all transactions

1 if err := forBlockMetadataWithBlockID(referencedBlock.BlockID, func(meta *storage.
CachedMetadata) {

2 if referencedBlock.IsTransaction {
3 if referencedBlock.Conflict.Kind != iotago.ErrorNoConflict {
4 // IllegalTx, doesn't have tx result and tx id
5 meta.Metadata().SetConflictingTx(referencedBlock.Conflict)
6 } else {
7 // if it is not a conflict, the tx is executed and has results + id
8 if err = meta.Metadata().SetTransactionResult(*referencedBlock.

TransactionResult); err != nil {
9 fmt.Println("confirmMilestone: SetTransactionResult failed: %w", err)

10 }
11 meta.Metadata().SetTransactionID(*referencedBlock.TransactionID)
12 }
13 } else { ... }
14 ...
15 })

Listing E.10: Prune MilestoneDiff Function

1 func (m *Manager) PruneMilestoneIndexWithoutLocking(msIndex iotago.MilestoneIndex)
error {

2 diff, err := m.MilestoneDiffWithoutLocking(msIndex)
3 ...
4 for _, deleted := range diff.Deleted {
5 if err := deleteObject(deleted.object, mutations); err != nil { ... }
6 if err := removeDeleted(deleted, mutations); err != nil { ... }
7 }
8 if err := deleteDiff(msIndex, mutations); err != nil { ... }
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9 ...
10 }

Listing E.11: Prune Blocks Function

1 func (p *Manager) pruneBlocks(blockIDsToDeleteMap map[iotago.BlockID]struct{}) int
{

2 for blockID := range blockIDsToDeleteMap {
3 cachedBlockMeta := p.storage.CachedBlockMetadataOrNil(blockID) // meta +1
4 ...
5 cachedBlockMeta.ConsumeMetadata(func(metadata *storagepkg.BlockMetadata) { //

meta -1
6 // Delete the reference in the parents
7 for _, parent := range metadata.Parents() {
8 p.storage.DeleteChild(parent, blockID)
9 }

10 p.storage.DeleteTransaction(*metadata.TransactionID())
11 })
12 p.storage.DeleteBlock(blockID)
13 }
14 return len(blockIDsToDeleteMap)
15 }
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Old Code
1 Output:
2 =======
3 Key:
4 UTXOStoreKeyPrefixOutput [1 byte] + iotago.OutputID [34 bytes]
5

6 Value:
7 BlockID [32 bytes] + MilestoneIndex [4 bytes] + MilestoneTimestamp [4 bytes] +

iotago.Output.Serialized() [1 byte type + X bytes]
8

9 Spent Output:
10 ================
11 Key:
12 UTXOStoreKeyPrefixSpent [1 byte] + iotago.OutputID [34 bytes]
13

14 Value:
15 TargetTransactionID (iotago.TransactionID) [32 bytes] + ConfirmationIndex (

iotago.MilestoneIndex) [4 bytes] + ConfirmationTimestamp [4 bytes]
16

17 Unspent Output:
18 ===============
19 Key:
20 UTXOStoreKeyPrefixUnspent [1 byte] + iotago.OutputID [34 bytes]
21

22 Value:
23 Empty
24 */

New Code
1 Object:
2 =======
3 Key:
4 ObjectStoreKeyPrefixObject [1 byte] + iotago.ObjectID [32 bytes]+

SequenceNumber [8 bytes]
5

6 Value:
7 BlockID [32 bytes] + MilestoneIndex [4 bytes] + MilestoneTimestamp [4 bytes] +

iotago.Object.Serialized() [X bytes]
8

9 Deleted Objects:
10 ================
11 Key:
12 ObjectStoreKeyPrefixDeleted [1 byte] + iotago.ObjectID [32 bytes] +

SequenceNumber [8 bytes]
13

14 Value:
15 TargetTransactionID (iotago.TransactionID) [32 bytes] + ConfirmationIndex (

iotago.MilestoneIndex) [4 bytes] + ConfirmationTimestamp [4 bytes]
16

17 Alive Objects:
18 ===============
19 Key:
20 ObjectStoreKeyPrefixAlive [1 byte] + iotago.ObjectID [32 bytes]
21

22 Value:
23 SequenceNumber [8 bytes]
24 */

Figure E.3: Old UTXO Database replaced by New Object Database.
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Old Code
1 // Transaction is a transaction with its inputs, outputs and unlocks.
2 type Transaction struct {
3 // The transaction essence, respectively the transfer part of a Transaction.
4 Essence *TransactionEssence
5 // The unlocks defining the unlocking data for the inputs within the Essence.
6 Unlocks Unlocks
7 }
8 // TransactionEssence is the essence part of a Transaction.
9 type TransactionEssence struct {

10 // The network ID for which this essence is valid for.
11 NetworkID NetworkID
12 // The inputs of this transaction.
13 Inputs Inputs `json:"inputs"`
14 // The commitment to the referenced inputs.
15 InputsCommitment InputsCommitment `json:"inputsCommitment"`
16 // The outputs of this transaction.
17 Outputs Outputs `json:"outputs"`
18 // The optional embedded payload.
19 Payload Payload `json:"payload"`
20 }

New Code
1 type MoveTransaction struct {
2 BCSSerializedSenderSignedTx []byte
3 }

Figure E.4: Old Transaction Format replaced by New MoveTransaction format.
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Old Code
1 service INX {
2 ...
3

4 // UTXO
5 rpc ReadOutput(OutputId) returns (OutputResponse);
6 rpc ReadUnspentOutputs(NoParams) returns (stream UnspentOutput);
7

8 rpc ListenToLedgerUpdates(MilestoneRangeRequest) returns (stream LedgerUpdate);
9 rpc ListenToTreasuryUpdates(MilestoneRangeRequest) returns (stream

TreasuryUpdate);
10 rpc ListenToMigrationReceipts(NoParams) returns (stream RawReceipt);
11

12 ...
13 }
14

15 message LedgerUpdate {
16 ...
17 oneof op {
18 Marker batch_marker = 1;
19 LedgerSpent consumed = 2;
20 LedgerOutput created = 3;
21 }
22 }
23 message LedgerOutput {
24 OutputId output_id = 1;
25 BlockId blockId = 2;
26 uint32 milestone_index_booked = 3;
27 uint32 milestone_timestamp_booked = 4;
28 RawOutput output = 5;
29 }
30 message LedgerSpent {
31 LedgerOutput output = 1;
32 TransactionId transaction_id_spent = 2;
33 uint32 milestone_index_spent = 3;
34 uint32 milestone_timestamp_spent = 4;
35 }

New Code
1 service INX {
2 ...
3

4 // Objects
5 rpc ReadObject(types.id.ObjectId) returns (types.ledger.StorageObjectResponse);
6 rpc ReadObjects(NoParams) returns (stream types.ledger.LedgerObject);
7

8 rpc ListenToLedgerUpdates(types.milestone.MilestoneRangeRequest) returns (stream
types.ledger.LedgerUpdate); // equivalent to ListenToDeletedObjects and

ListenToWrittenObjects
9

10 ...
11 }
12 message StorageObjectResponse {
13 uint32 ledger_index = 1;
14 oneof payload {
15 StorageObject object = 2;
16 StorageDeletedObject deleted_object = 3;
17 }
18 }
19 message LedgerObject {
20 uint32 ledgerIndex = 1;
21 id.ObjectRef object_ref = 2;
22 StorageObject object = 3;
23 }
24 message LedgerUpdate {
25 ...
26 oneof op {
27 Marker batch_marker = 1;
28 StorageDeletedObject deleted = 2;
29 StorageObject written = 3;
30 }
31 }
32 message StorageObject {
33 id.ObjectVersion object_version = 1;
34 block.BlockId block_id = 2;
35 uint32 milestone_index_booked = 3;
36 uint32 milestone_timestamp_booked = 4;
37 object.RawObject object = 5;
38 }
39 message StorageDeletedObject {
40 StorageObject object = 1;
41 id.TransactionId transaction_id_deleted = 2;
42 uint32 milestone_index_deleted = 3;
43 uint32 milestone_timestamp_deleted = 4;
44 }

Figure E.5: Old vs New Block code.
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Advanced Architecture Code

Listing F.1: Pseudocode WhiteFlag Algorithm

1 update_ledger_state(ledger, milestone, solid_entry_points) {
2 s = new Stack()
3 visited = new Set()
4

5 s.push(milestone)
6

7 while (!s.is_empty()) {
8 curr = s.peek()
9 next = null

10

11 // Look for the first eligible parent that was not already visited
12 for parent in curr.parents {
13 if (!solid_entry_points.contains(parent) && !parent.confirmed && !

visited.contains(parent)) {
14 next = parent
15 break
16 }
17 }
18

19 // All parents have been visited, apply and visit the current message
20 if next == null {
21 ledger.apply(curr)
22 visited.add(curr)
23 s.pop()
24 }
25 // Otherwise, go to the parent
26 else {
27 s.push(next)
28 }
29 }
30 }

Listing F.2: Custom Processor Module

1 module custom_processor::custom_processor {
2

3 use iota::table_vec::{Self, TableVec};
4 use iota::tx_context::{Self, TxContext};
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5 use std::ascii::{Self, String};
6 use iota::object::{Self, UID};
7 use std::type_name;
8

9 struct IntentQueue has key {
10 id: UID,
11 items: TableVec
12 }
13

14 struct SequencerUsedEvent has copy, drop {
15 sender: address,
16 module: String,
17 type: String,
18 }
19

20 public fun init_queue(ctx: &mut TxContext): IntentQueue {
21 IntentQueue {
22 id: object::new(ctx),
23 items: table_vec::empty(ctx),
24 }
25 }
26

27 public fun get_queue(ctx: &mut TxContext): IntentQueue {
28 // Some magic in the TxContext coming from the node ensures a set queue in

preprocessing
29 // is part of the context in postprocessing and other functions in that

module so it can be used in postprocessing
30 tx_context::current_queue(ctx)
31 }
32

33 public fun add_to_queue<T>(item: T, ctx: &mut TxContext) {
34 let queue = get_queue(ctx);
35 table_vec::push_back(queue.items, item);
36

37 let typename = type_name::get<T>();
38

39 event::emit(SequencerUsedEvent {
40 sender: tx_context::sender(ctx),
41 module: type_name::get_module(typename),
42 type: type_name::into_string(typename),
43 });
44 }
45

46 public fun queue_length(ctx: &mut TxContext): u64 {
47 let queue = get_queue(ctx);
48 table_vec::length(queue.items)
49 }
50

51 public fun queue_pop<T>(ctx: &mut TxContext): T {
52 let queue = get_queue(ctx);
53 table_vec::pop_back(queue.items)
54 }
55 }

Listing F.3: Custom Processor Module Implementation

1 module custom_processor::example {
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2

3 use custom_processor::custom_processor;
4 use iota::tx_context::{TxContext};
5 use std::vector;
6 use std::ascii::{Self, String};
7 use iota::object::{Self, UID};
8 use iota::vec_set::{Self};
9

10 struct ConcatIntent has store {
11 sender: address,
12 text: String,
13 }
14

15 struct Souvenir has key, store {
16 id: UID,
17 final_text: String
18 }
19

20 // System call, only called if a event is found for a Intent for this module
21 public fun preprocess(ctx: &mut TxContext) {
22 custom_processor::init_queue(ctx);
23 }
24 /// invocation of the intent processor by a sys tx
25 public fun postprocess(ctx: &mut TxContext) {
26 let queue = custom_processor::get_queue(ctx);
27

28 let final_string = String::from_ascii("");
29 let senders = vec_set::empty<address>();
30

31 while(custom_processor::queue_length(ctx) > 0) {
32 let item = custom_processor::queue_pop<ConcatIntent>(ctx);
33 // TODO: Maybe implement some sorting here?
34 // Move lacks some basic sorting functions though so would make the

example complex...
35 final_string = String::append(final_string, String::from_ascii(" "));
36 final_string = String::append(final_string, item.text);
37

38 if(!vec_set::contains(senders, item.sender)) {
39 senders.insert(item.sender);
40 }
41 }
42

43 while(vec_set::size(senders) > 0) {
44 let souvenir = Souvenir {
45 id: object::new(ctx),
46 final_text: final_string,
47 };
48

49 let sender = vec_set::pop(senders); // Simplified, function does not
actually exist here

50

51 transfer::public_transfer(souvenir, sender);
52 }
53

54 }
55
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56 public entry fun queue_concat(text: String, ctx: &mut TxContext) {
57

58 let item = ConcatIntent {
59 sender: tx_context::sender(ctx),
60 text: text,
61 };
62

63 // This call abstracts adding to the queue and emitting an event
64 custom_processor::add_to_queue(item, ctx);
65 }
66 }



G
WhiteFlag Testing Scenarios

G.1. Publish Call Simple Package
This scenario has been described in 5.1.1.

G.2. Create Owned Objects
This scenario creates three new objects in a single transaction call. The function it calls is in a module
that is already deployed in the genesis state.

The starting genesis state consists of the default genesis objects, a specially deployed package, and
a gas coin transferred to the caller of the function.

The transaction that is executed is the following:

1. call_tx: The transaction to call the package function tools::create_simple, sent and signed by the
caller.

The sub tangle that is initialized is visualized in Figure G.1, where the call transaction simply depends
on the genesis.

Figure G.1: Tangle representation of the create_owned_objects scenario.

The expected end state of the ledger is:

• Written: We expect four (4) new objects:

1. The mutated gas coin owned by the caller.
2. Three (3) working_bench::tools::Simple objects created through the transaction.

• Deleted: We expect one outdated object:

1. The gas coin used in call_tx.

102
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G.3. Delete Owned Objects
This scenario deletes a single owned object already present in the starting ledger state.

The transaction calls a package also present in the starting ledger state.

The starting genesis state consists of the default genesis objects, a specially deployed package, a gas
coin transferred to the caller of the transaction, and three Simple objects.

The transaction that is executed is the following:

• call_tx: The transaction to call the package function tools::delete_simple, sent and signed by the
caller.

The sub tangle that is initialized is similarly visualized as Figure G.1.

• Written: We expect one new objects:

1. The mutated gas coin owned by the caller.
• Deleted: We expect two objects:

1. The outdated gas coin used in call_tx.
2. The deleted working_bench::tools::Simple object deleted through call_tx.

G.4. Dynamic Fields
This scenario adds three dynamic fields, and then reads and removes them through three successive
transactions that rely on the working_bench package.

In addition we generate three partial scenarios for each gradual state transition. That is, from genesis
to the added fields, from the added fields to the read fields, and from the read fields to the removed
fields.

The starting ledger state consists of the default genesis objects, complemented by the working_bench
package, a working_bench::tools::Simple object to use as the collection of dynamic fields, plus three
gas coin transferred to the caller of the transactions.

The transactions that are executed are the following:

1. add_fields_tx: The transaction to call the package function tools::add_fields, sent and signed by
the caller.

2. read_fields_tx: The transaction to call the package function tools::read_fields, sent and signed
by the caller.

3. tools::remove_fields, sent and signed by the caller.

The complete scenario and partial scenarios are visualized in Figure G.2.

Figure G.2: Tangle representation of the dynamic_fields scenario.

The expected ledger end states are as follows:

Partial scenario: Add fields

• Written: We expect six new objects

– The mutation of the Simple object acting as a collection.
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– The mutation of the gas coin owned by the caller.
– The three fields added to the Simple object.

• Deleted: We expect two objects

– The outdated version of the Simple object acting as a collection.
– The outdated version of the gas coin owned by the caller.

Partial scenario: Read fields

• Written: We expect two new objects

– The mutation of the Simple object acting as a collection.
– The mutation of the gas coin owned by the caller.

• Deleted: We expect two objects

– The outdated version of the Simple object acting as a collection.
– The outdated version of the gas coin owned by the caller.

Partial scenario: Remove fields

• Written: We expect two new objects

– The mutation of the Simple object acting as a collection.
– The mutation of the gas coin owned by the caller.

• Deleted: We expect five objects

– The outdated version of the Simple object acting as a collection.
– The outdated version of the gas coin owned by the caller.
– The three removed dynamic fields from the Simple object.

Complete scenario

• Written: We expect nine new objects

– The three mutations of the Simple object acting as a collection. One mutation for every
transaction.

– The three mutations of each gas coin owned by the caller. One mutation for every transac-
tion.

– The three fields added to the Simple object.
• Deleted: We expect nine objects

– The three outdated versions of the Simple object acting as a collection, following themutation
caused by each transaction.

– The three outdated versions of each gas coin owned by the caller, following the mutations
caused by each transaction.

– The three removed dynamic fields from the Simple object during remove_fields_tx.

G.5. Dynamic Object Fields
This scenario adds three dynamic objects fields, and then reads and removes them through three
successive transactions that rely on the working_bench package.

In addition we generate three partial scenarios for each gradual state transition. That is, from genesis
to the added fields, from the added fields to the read fields, and from the read fields to the removed
fields.

The starting ledger state consists of the default genesis objects, complemented by the working_bench
package, a working_bench::tools::Simple object to use as the collection of dynamic fields, three more
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working_bench::tools::Simple objects to add as dynamic fields, plus three gas coin transferred to the
caller of the transactions.

The transactions executed are the following:

1. add_object_fields_tx: The transaction to call the package function tools::add_object_fields, sent
and signed by the caller.

2. read_object_fields_tx: The transaction to call the package function tools::read_object_fields, sent
and signed by the caller.

3. remove_object_fields_tx: The transaction to call the package function tools::remove_object_fields,
sent and signed by the caller.

The complete scenario and partial scenarios are visualized in Figure G.3.

Figure G.3: Tangle representation of the dynamic_object_fields scenario.

The expected ledger end states are as follows:

G.6. Partial scenario: Add fields
• Written: We expect eight new objects

– The mutation of the Simple object acting as a collection.
– The mutation of the gas coin owned by the caller.
– The three Field objects added to the Simple object acting as a collection.
– The three mutated Simple objects that were added as dynamic object fields through the Field

objects.
• Deleted: We expect five objects

– The outdated version of the Simple object acting as a collection.
– The outdated version of the gas coin owned by the caller.
– The three outdated Simple objects added as fields.

G.7. Partial scenario: Read fields
• Written: We expect two new objects

– The mutation of the Simple object acting as a collection.
– The mutation of the gas coin owned by the caller.

• Deleted: We expect two objects

– The outdated version of the Simple object acting as a collection.
– The outdated version of the gas coin owned by the caller.

G.8. Partial scenario: Remove fields
• Written: We expect five new objects

– The mutation of the Simple object acting as a collection.
– The mutation of the gas coin owned by the caller.
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– The three mutated Simple objects that were removed from the collection.
• Deleted: We expect eight objects

– The outdated version of the Simple object acting as a collection.
– The outdated version of the gas coin owned by the caller.
– The three removed Field objects from the Simple object acting as a collection.
– The three outdated Simple objects that were removed from the collection and transferred to

an address.

G.9. Complete scenario
• Written: We expect fifteen new objects

– The three mutations of the Simple object acting as a collection. One mutation for every
transaction.

– The three mutations of each gas coin owned by the caller. One mutation for every transac-
tion.

– The three Field objects added to the Simple object.
– Six more Simple objects accounting for the mutations while added and then removed via the

Field objects.
• Deleted: We expect fifteen objects

– The three outdated versions of the Simple object acting as a collection, following themutation
caused by each transaction.

– The three outdated versions of each gas coin owned by the caller, following the mutations
caused by each transaction.

– The three removed Field objects from the Simple object during remove_object_fields_tx.
– Six more Simple objects outdated while added and then removed via the Field objects.

G.10. Wrap Object
This scenario creates two single owned objects already present in the starting ledger state and wraps
one of them into the other.

The transaction calls a package also present in the starting ledger state.

The starting ledger state consists of the default genesis objects, complemented by the working_bench
package, a gas coin transferred to the caller of the transaction, a working_bench::tools::Simple and a
working_bench::tools::SimpleWrapper object.

The transaction that is executed is the following:

• call_tx: The transaction to call the package function tools::wrap_simple, sent and signed by the
caller with a working_bench::tools::Simple and a working_bench::tools::SimpleWrapper object as
argument.

Tangle representation of the scenario is shown in Listing G.1:

Listing G.1: Tangle Representation of wrapobjectscenario

1 <genesis> (SEP) <- [MS1] <- call_tx(wrap object) <- [MS2]

The expected ledger end states are as follows:

• written: We expect two (2) new objects

– The mutated gas coin owned by the caller.
– The mutated working_bench::tools::SimpleWrapper object filled in call_tx.

• deleted: We expect three (3) objects
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– The outdated gas coin used in call_tx.
– The working_bench::tools::Simple object wrapped in call_tx.
– The outdated working_bench::tools::SimpleWrapper object filled in call_tx.

G.11. Unwrap Object
This scenario unwraps aworking_bench::tools::Simple object from aworking_bench::tools::SimpleWrapper
object. This filled working_bench::tools::SimpleWrapper object is already present in the starting ledger
state.

The transaction calls a package also present in the starting ledger state.

The starting ledger state consists of the default genesis objects, complemented by the working_bench
package, a gas coin transferred to the caller of the transaction, a working_bench::tools::SimpleWrapper
object wrapping a working_bench::tools::Simple object.

The transaction that is executed is the following:

• call_tx: The transaction to call the package function tools::unwrap_simple, sent and signed by
the caller with a working_bench::tools::SimpleWrapper object as argument.

The tangle representation of this simple scenario is the same as the one in Figure G.1.

The expected end state of the ledger is:

• written: We expect three new objects

– The mutated gas coin owned by the caller.
– The mutated, empty working_bench::tools::SimpleWrapper object.
– The created working_bench::tools::Simple object.

• deleted: We expect two deleted objects

– The outdated gas coin used in call_tx.
– The outdated working_bench::tools::SimpleWrapper object filled in call_tx.

G.12. Unwrap and Delete Object
This scenario unwraps and deletes aworking_bench::tools::Simple object from aworking_bench::tools::SimpleWrapper
object. The filled working_bench::tools::SimpleWrapper object is already present in the starting ledger
state.

The transaction calls a package also present in the starting ledger state.

The starting ledger state consists of the default genesis objects, complemented by theworkingpackage, agascointransferredtothecallerofthetransaction, aworking_bench ::
tools :: SimpleWrapperobjectwrappingaworking_bench :: tools :: Simpleobject.

The transaction that is executed is the following:

• call_tx: The transaction to call the package function tools::unwrap_and_delete_simple, sent and
signed by the caller with a working_bench::tools::SimpleWrapper object as argument.

Likewise, the Tangle representation of this scenario is the same as the previous scenario: Figure G.1.

The expected end state of the ledger is:

• written: We expect two new objects

– The mutated gas coin owned by the caller.
– The mutated, empty working_bench::tools::SimpleWrapper object.

• deleted: We expect two objects

– The outdated gas coin used in call_tx.
– The outdated working_bench::tools::SimpleWrapper object filled in call_tx.
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G.13. Abort
This scenario aborts the execution of a transaction due to insufficient gas. The only object that is written
is the mutated gas coin owned by the caller.

The transaction calls a package already present in the starting ledger state.

The starting ledger state consists of the default genesis objects, complemented by the working_bench
package, and a gas coin transferred to the caller of the transaction.

The executed call transaction is the following:

• call_tx: The transaction to call the package function tools::create_simple, sent and signed by the
caller.

To test the execution abort, the caller specifies a gas budget of 110 (minimum gas budget for the trans-
action to be valid), which is not sufficient to fulfill the gas requirements (295) of the tools::create_simple
function.

This scenario is similar with previous simple scenarios, as it only consists of one call transaction. There-
fore, the Tangle representation is similar to the one in G.1.

The end ledger state is:

• written: We expect one new object

– The mutated gas coin owned by the caller.
• deleted: We expect one outdated object

– The gas coin used in call_tx.

G.14. Shared Object
In this scenario, the Whiteflag algorithm is tested with multiple transactions that attempt to mutate a
shared object. This scenario makes use of the DonutBox, a shared object introduced in the work-
ing_bench::donuts module. A DonutBox can contain a fixed number of Donuts. A user can try to get a
Donut from the DonutBox by calling the function donuts::get_donut function if there are any Donuts left.
The scenario is intended to create a competing situation in which two users simultaneously attempt to
retrieve the last Donut from the DonutBox and only one of them can be successful.

This scenario defines 4 different users, each with their own address and gas coin. Furthermore, we
define the DonutBox with a capacity of 3 donuts, leading to a competition for the last donut.

This scenario leverages the Whiteflag algorithm to determine a sequence in which the conflicting trans-
actions are resolved.

The starting ledger state consists of the default genesis objects, complemented by the working_bench
package with its modules working_bench::tools and working_bench::donuts, and a gas coin transferred
to 4 unique users, owning their own address and gas coin.

The transactions executed are the following:

1. call_user1: The transaction to call the package function donuts::get_donut, sent and signed by
the user 1.

2. call_user2: The transaction to call the package function donuts::get_donut, sent and signed by
the user 2.

3. call_user3: The transaction to call the package function donuts::get_donut, sent and signed by
the user 3.

4. call_user4: The transaction to call the package function donuts::get_donut, sent and signed by
the user 4.

The scenario requires following Tagged Data Blocks which help build up the Tangle structure.

• tagged_data_block1
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• tagged_data_block2
• tagged_data_block3

According to the protocol, the parents of a block must be defined in alphabetical order. This leads
to difficulties when creating a Tangle structure where we want to control the Whiteflag walk to test a
specific scenario, as Whiteflag depends on the order of the parents in the block. Block IDs get derived
by hashing the block data, and therefore we cannot simply adjust these as desired, else the block
would not match the given BlockID and we could run into protocol issues. To solve this problem, we
use so-called ”proxy blocks”. Proxy blocks are Tagged Data Blocks that contain specific content which
enables us to control the resulting Block IDs and therefore help us influence the Whiteflag walk.

In this scenario, we define following Proxy Blocks:

• proxy_user1: Tagged Data Block to influence the walk for the user 1.
• proxy_user3: Tagged Data Block to influence the walk for the user 3.
• proxy_user4: Tagged Data Block to influence the walk for the user 4.

Two sub scenarios are defined in which call_user3 and ‘call_user4 are issued simultaneously by differ-
ent users. The only difference is where they attach, and the winners shall be different.

For the scenarios to be as realistic as possible, the Tangle structure consists of three Milestones, where:

• MS1 is loaded with the genesis objects
• MS2 references data transactions
• MS3 references the actual scenario transactions (call_user1, call_user2, call_user3, call_user4)
and the tagged data blocks

The shared_object_user3_wins scenario is visualized in Figure G.4.

Figure G.4: Tangle representation of the shared_object_user3_wins scenario.

While reading theDAG structure(without considering theWhiteFlag algorithm) it is clear that call_user1
< call_user2 < call_user3.

It´s not clear if call_user3 < call_user4 or call_user4 < call_user3. This is where we need the
WhiteFlag algorithm to determine the order.

Applying the WhiteFlag algorithm at MS3 gives us:

1. Start at MS3.
2. Visit the parents of MS3: PG and PD.
3. For PG:

• Visit its parents: F
• For F, visit its unvisited parent: E.
• E’s parents are A and MS2, both of which are not part of the ordering.

4. For PD:

• Visit its parents: D
• For H, visit its parents: E and F, but both are already visited.
• For D, visit its parent: E, but E is already visited.
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the resulting order is: E, F, G, D.

The end ledger state is:

• written:

– The mutated gas coin owned by the caller 1.
– The mutated gas coin owned by the caller 2.
– The mutated gas coin owned by the caller 3.
– The mutated gas coin owned by the caller 4.
– The DonutBox that was last touched by caller 4.
– The Donut unwrapped by caller 1.
– The Donut unwrapped by caller 2.
– The Donut unwrapped by caller 3.

• deleted:

– The gas coin used in call_user1.
– The gas coin used in call_user2.
– The gas coin used in call_user3.
– The gas coin used in call_user3.
– The DonutBox that was touched by call_user1.
– The DonutBox that was touched by call_user2.
– The DonutBox that was touched by call_user3.
– The DonutBox that was touched by call_user4.

The shared_object_user4_wins scenario is visualized in Figure G.5.

Figure G.5: Tangle representation of the shared_object_user4_wins scenario.

While reading theDAG structure (without considering theWhiteFlag algorithm) it is clear that call_user4
< call_user2 < call_user3.

It is not clear if call_user1 < call_user4 or call_user4 < call_user1. This is where we need the
WhiteFlag algorithm to determine the order.

Applying the WhiteFlag algorithm at MS3 gives:

1. Start at MS3.
2. Visit the parents of MS3: PD, PE and PG.

• For PD:

– Visit its parents: D
– D’s parents are B and MS2, both of which are not part of the ordering.

• For PE:

– Visit its parents: E.
• For PG:
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– Visit its parents: G.
– For G, visit its parent: F
– For F, visit its parent D, but D is already visited.
– F’s parent is MS2, which is not part of the ordering.

The resulting order is: D, E, F, G.

By attaching the transaction in another place, user 4 even makes it to the top of the order and will get
the first donut.

The end ledger state is:

• written:

– The mutated gas coin owned by the caller 1.
– The mutated gas coin owned by the caller 2.
– The mutated gas coin owned by the caller 3.
– The mutated gas coin owned by the caller 4.
– The DonutBox that was last touched by caller 3.
– The Donut unwrapped by caller 1.
– The Donut unwrapped by caller 2.
– The Donut unwrapped by caller 4.

• deleted:

– The gas coin used in call_user1.
– The gas coin used in call_user2.
– The gas coin used in call_user3.
– The gas coin used in call_user4.
– The DonutBox that was touched by call_user1.
– The DonutBox that was touched by call_user2.
– The DonutBox that was touched by call_user3.
– The DonutBox that was touched by call_user4.
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