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HueLoc: Localization Through LEDs’
Hue Spectrum

Jagdeep Singh , Marco Zuniga, Tim Farnham, and Qing Wang , Senior Member, IEEE

Abstract—Over the past decade, visible light positioning has
become increasingly important for precise localization systems,
yet its widespread adoption is limited due to the necessity of
modifying existing lighting systems. This article presents HueLoc,
a novel method that bypasses this issue by using inherent features
of light, such as the dominant colors in white light-emitting
diode (LED) lights, and employs affordable, energy-efficient hue
sensors for location services. We propose that by extracting
the power at dominant wavelengths of LEDs, these can be
uniquely identified using a specifically designed signature. The
unique signatures can be used by mobile objects for spatial
awareness and further localization using the proposed regression-
based learning approach. Our experiments demonstrate that
HueLoc attains a location-mapping accuracy of 100% and
achieves decimeter-level localization precision with a moving
object in uncontrolled lighting conditions. Moreover, these unique
signatures can be combined with other RF-based technologies
to enhance their localization accuracy. As an example, this
article details the integration of Bluetooth features with light
signatures using a three-stage incremental learning approach.
The experimental results show that this fusion method signifi-
cantly improves Bluetooth localization by over 75%, overcoming
challenges associated with severe indoor multipath and achieving
highly precise location accuracy within decimeters.

Index Terms—Bluetooth low energy, color sensors, machine
learning, passive visible light positioning (VLP).

I. INTRODUCTION

SPATIAL awareness in mobile objects (e.g., robots) is
increasingly crucial in the evolving smart Internet of

Things (IoT) ecosystem, especially for intralogistics opera-
tions, which include transporting goods, managing inventory,
handling materials efficiently, and distributing products [1].
Achieving greater precision in these tasks hinges on accurate
localization. In this context, visible light positioning (VLP) has
emerged as a prominent solution. Over the past decade, VLP
has attracted attention for its precise location awareness capa-
bilities, leveraging the directive nature of light. Additionally,
VLP has several advantages: it uses a wide unregulated
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spectrum, avoids multipath propagation issues, ensures secu-
rity, and employs cost-effective, low-power receivers such as
photodetectors (PDs). These characteristics allow for both cost
efficiency and high accuracy in geolocation, making VLP a
favored choice in smart IoT applications [2].

VLP technology typically employs light sources, such as
light-emitting diodes (LEDs) as transmitters, with a camera
or PDs serving as receivers. A significant challenge in com-
mercializing these systems is the need for modulated light
sources, which requires integrating an additional control unit
into the lighting system for transmitting location beacons [3].
This modification necessitates changes to the existing lighting
infrastructure. Alternatively, there are passive VLP systems in
the literature that do not require light source modulation [4].
These systems perform localization by extracting intrinsic light
features that act as location beacons. However, most rely on
cameras as receivers and multiple PDs to realize the system.
For example, LiTell [5] harnesses the characteristic frequency
of fluorescent lights (FLs) to create a low-cost passive VLP
system. Yet, determining this frequency is feasible only in
FLs and requires high-resolution cameras, which are not cost-
effective. Additionally, the use of power-intensive cameras
as receivers limits their application in certain low-power IoT
devices. Another approach, iLAMP [6], extracts the spatial-
radiation pattern, or the intensity distribution across the light
source. Nevertheless, this method also depends on power-
consuming cameras and ambient light sensors, complicating
the passive VLP system.

In this article, we introduce HueLoc, building upon our
previous work HueSense [7]. HueLoc represents an innovative
approach to passive VLP, aiming to identify unmodified light
sources and leverage them for localization. HueLoc utilizes
off-the-shelf power-efficient color sensors as receivers and
by employing unmodulated and unmodified existing LED
lights as anchors, HueLoc addresses several commercialization
challenges in VLP systems. Our objective with HueLoc is
to develop a passive VLP system that is low-power, cost-
effective, easy to integrate, and computationally efficient,
making it ideal for IoT devices needing ubiquitous location
awareness and tracking. Our key observation lies in that LEDs
emit slightly different color spectra that are indistinguishable
to the human eye but can be detected by color sensors. This
means that a light source can be uniquely identified by its
spectrum without the need for modulation or modification.

Fig. 1 illustrates the motivation behind HueLoc. The
key challenge lies in effectively and efficiently distinguish-
ing among unmodulated lights so that no additional light
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Fig. 1. Motivation of HueLoc: LEDs have slightly different color spectrum
that human eyes cannot distinguish. Still, the differences can be detected
by color sensors, indicating that an LED can be uniquely identified by its
spectrum without the need to modulate it.

identification (ID) information is required to be sent. While
this approach can be implemented using PDs, it requires
multiple PDs with spectral sensitivity wavelengths correspond-
ing to the dominant colors present in the light source. In
contrast, HueLoc uses single-pixel color sensors to extract the
light hue-spectrum, which are cheaper and power-efficient,
lowering the system complexity. However, the simplicity
of using single-pixel detectors and the spectral information
introduces a new challenge: it is hard to perform localization
using standard methods like channel-based or angle-based
techniques [3], [8]. This difficulty arises because the light
intensity at dominant wavelengths varies with the distance
or angle from different LEDs, making traditional distance or
angle calculations unreliable. To overcome this, we propose a
regression-based learning approach. This method learns how
light intensity at certain wavelengths changes with distance
or angle for different LEDs, enabling accurate localization.
To our knowledge, this is the first passive VLP system that
uses single-pixel color sensors to map light hues for location
services. We outline our key contributions as follows.

1) We present a novel method for efficient passive light
feature extraction, using single-pixel color sensors to
identify dominant wavelengths in white LEDs.

2) This technique is further leveraged to distinguish
unmodified and unmodulated white LEDs, a vital initial
step in providing spatial awareness services to mobile
objects.

3) We utilize this feature to provide accurate localization
to mobile objects with a proposed dual approach that
integrates classical mathematical methods with a con-
temporary, learning-based regression model.

4) We experimentally test HueLoc through a full-fledged
implementation on the Arduino boards equipped with
sensor modules, in a 25m2 uncontrolled LED network.
Our results show HueLoc achieves 100% light ID
precision and decimeter-level localization accuracy.

5) Additionally, we exploit this feature to augment
BLE-based localization systems. Our proposed

three-stage incremental learning fusion method inte-
grates HueLoc features with BLE’s received signal
strength (RSS) data. With testing in the same LED
network, now supplemented with BLE nodes, our
approach achieves decimeter-level localization with a
mean localization error of about 12 cm, demonstrating a
significant improvement–over 75% compared to existing
SOTA BLE techniques.

Manuscript Outline: This article is structured as follows.
Section II reviews existing VLP systems. Section III details
HueLoc’s light attributes and their extraction. Section IV
explores using these attributes for light ID, mobile object
localization, and BLE localization improvement. Section V
evaluates our methods in a dense VLP testbed, discusses
limitations, and suggests future work. This article concludes
in Section VI.

II. BACKGROUND

VLP systems can be broadly classified into two main
categories: 1) active VLP and 2) passive VLP systems. In active
VLP, the transmitter sends modulated information encoding the
location beacons to the receiver [9]. Conversely, in passive-
VLP, the transmitter does not transmit any location beacon
information; instead, intrinsic properties of the light are studied
to uniquely identify the light source and map the unique
ID to the installed locations to offer location services [4].
LiTell [5] was the pioneering work in the passive-VLP category,
utilizing unmodified FLs as location landmarks and commodity
smartphones as light sensors. LiTell’s method is limited to FLs,
which restricts its usage in current indoor environments [5], [10].
It also requires high-resolution back cameras with RAW output,
and it suffers from a high-misidentification rate (around 40%).
A similar feature is extracted by Pulsar [11] for LEDs, using
dual-PDs, but the system demands specially designed detectors
with a specific field of view (FOV), making it a complex VLP
system. Auto-LiTell [12] also employs a similar feature as
LiTell [5], using a deep-learning model for ID only. However,
the localization accuracy was not evaluated. In another work,
iLAMP [13] extracts the spatial radiance pattern of the lights,
i.e., the radiance intensity distribution across a light’s surface,
from images captured by a smartphone’s camera. This approach
is power-hungry and achieved close to 100% accuracy in
identifying the location but was tested only under one FL,
with the target placed at 25 random spots, achieving 3.5-cm
accuracy.

The other passive-VLP works reported in the literature are
primarily focused on occupancy determination and gesture
monitoring [14], lacking the capability to provide location
services to mobile targets. On the other hand, most of the
active VLP systems are designed for localization and navi-
gation services, but they often require modifying the lighting
unit- cost ineffective and rely on power-hungry cameras
(power hungry) as receiving units, resulting in significant
processing latency [15]. While camera-based systems [16]
are more readily available compared to photodiode-based
alternatives [17], they necessitate additional units on the
receiver side. Nevertheless, the cost of adding extra sensing
units to the receivers is considerably lower than the expense
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Fig. 2. Overview of HueLoc, which uses off-the-shelf color sensors to uniquely identify white LEDs based on dominant wavelengths for location services.
It also integrates these unique IDs with BLE RSS measurements to enhance BLE localization.

of changing lighting units. Our research, HueLoc, aligns with
the objectives of passive-VLP systems, aiming to eliminate
the need for altering existing lighting units, offering location
services. Additionally, HueLoc offers the advantage of using
cheaper, power-efficient color sensors and requires no strict
arrangement of sensors, making them easily integratable with
low-power IoT devices.

Machine learning-based systems have been proposed to
enhance positioning accuracy in active VLP systems. Some
studies [18] combine RSS with AoA information using a single
LED for RSS, and a steerable laser to provide angle data,
employing methods, such as decision trees, support vector
machines, and neural networks (NNs). One approach [19],
utilizes deep learning to analyze changes in light reflections,
captured through variations in impulse responses, for object
positioning without requiring an active receiver on the target.
However, the method is limited to a single, fixed-height object
and requires extensive training to adapt to impulse response
changes, restricting its ability to track multiple objects or
operate in real-time.

To address varying indoor environments, Hua et al. [20]
proposed an unsupervised adversarial training method to
improve the robustness of VLP systems under chang-
ing parameters like LED characteristics, light power, and
environmental noise. Although promising, its performance
in real-world scenarios with random light noise remains
uncertain, and the model’s computational complexity could
challenge real-time adaptation. DIALux [21] offers a
simulation-based approach for generating training data, reduc-
ing the need for large-scale real-world data collection.
However, it relies heavily on vendor-specific LED information
and results in uneven errors across the room. Another
method [22] employs a sigmoid function to preprocess RSS
data, enhancing lower signal strengths in low-light conditions
to improve positioning accuracy. This approach, however, is
tested only in a small, controlled environment (50 cm ×
50 cm), limiting its practical applicability.

Overall, these systems often require modifications to the
lighting infrastructure and focus on static targets, overlook-
ing real-world challenges, such as ambient noise, low-light
conditions (dark spots), mobile targets, and the need for
minimal infrastructure changes and training data. Our research
in HueLoc aims to address these issues and provide a more
adaptable ML-based VLP system.

III. HUELOC DESIGN

In this section, we provide an overview of the HueLoc
system. We describe how to distinguish between unmodulated
LEDs and present our technique for extracting and analyzing
their unique features (referred to as light ID) using color
sensors.

A. Overview

Fig. 2 represents the block diagram of HueLoc, where the
first step is to extract the intrinsic features from LEDs, specif-
ically the power at dominant wavelengths, and then assign
a unique identification as explained in Section III-B. The
defined LED signatures can provide location awareness to the
target device, i.e., to convey the area information- under which
LED they are present. Furthermore, these signatures can be
employed to determine the precise location coordinates within
the specified area using the approach outlined in Section IV-B.
Additionally, the unique signatures can be combined with
the BLE RSS measurements from BLE anchor nodes to
enhance their localization performance. The fusion approach
for achieving this enhancement is detailed in Section IV-B.

B. Preliminary

The wavelength of light emitted by LEDs, and thus its
color, depends on the materials forming the LED chip. Due to
unavoidable manufacturing imperfections, e.g., the variations
in the phosphor coating thickness and the nonuniformity,
different optical properties of the light originate, such as the
change in radiant flux and color temperature. These imperfec-
tions make LEDs’ radiated power for particular wavelengths
different, which motivates the design of HueLoc.

In the case of white LEDs, the three dominant emitted
wavelengths are λR, λG, and λB at the red (R), green (G), and
blue (B) channels, with more contribution from the B and G
channels, compared to the R channel. To generalize this prop-
erty, we use the spectrometer1 to extract the LED spectrum
from four different white LEDs of the same model and brand
in a room. The resultant experimentally extracted spectrum is
shown in Fig. 3, which plots the moving average of intensity to
remove unwanted peaks/intensity fluctuations due to ambient
noise. We capture the spectrum for different LEDs within

1https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=3482
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(a) (b) (c) (d)

Fig. 3. Detected LED spectrum using high-spectrum resolution spectrometer at different incident angle (θ). (a) θ = −45◦. (b) θ = −30◦. (c) θ = 30◦.
(d) θ = 45◦.

Fig. 4. Experimentally obtained RGB power ratios for two sets of off-the-shelf LEDs: (a) The first set of LEDs used in the existing lab environment; (b)
The RGB power ratios measured for the set in (a); (c) The second set of LEDs in a lab testbed; (d) The RGB power ratios obtained for the set in (c). In both
cases, the LEDs are of the same model and brand within each environment.

their FOV, showing that each LED has a unique hue-spectrum
and verifying that the spectrum properties remain constant
at different positions. Moreover, in our HueSense study [7],
we showed the statistical difference in the spectrum series by
conducting a t-test.

Furthermore, more variations in the light spectrum can be
observed around 450 nm wavelength. The emitted wavelength
corresponding to the maximum power peak in this wavelength
range of 400–500 nm is also different for different lights.
Fig. 1 shows the maximum power peak wavelengths for four
lights in this wavelength range (the maximum power variation
region). This interesting feature can be used as the ID of
LED lights. However, the extraction is feasible only using
the spectrometer, an expensive solution and difficult to fit
into small IoT devices. In Section III-C, we will present an
alternative cost-effective approach to realize the hue properties
of LED lights using off-the-shelf hue sensors.

C. Light ID—Distinguishing LEDs Through Their Hidden
Color Features

An important hidden feature, which can be derived from
Fig. 3, is that the ratio of power at dominant wavelengths (i.e.,
λR, λG, and λB, in case of the white LED lights) at different
positions remains constant. The principle of HueLoc is to
extract the power around the dominant wavelengths present in
the unmodulated white LED bulbs and use this hidden feature
as a discriminative feature among lights. To obtain this hidden
feature, small off-the-shelf hue sensors2 can be used to extract

2https://www.hamamatsu.com/eu/en/product/optical-sensors/photo-ic/color-
sensor/rgb-color-sensor.html

the spectral power at λR, λG, and λB wavelengths. This type of
sensor can be easily deployed into the tiniest IoT devices, and
they can directly extract the dominant wavelengths of white
LEDs. For example, Fig. 4 shows the experimentally obtained
power ratios for two different off-the-shelf LED models. The
first set, consisting of 12 LEDs, is installed in our lab, while
the second set includes 9 LEDs from our lab test environment,
with both sets tested under Line-of-Sight (LoS) conditions.
The average marginal differences are in the range of ≈ 0.672
to 1.897, with larger differences observed between LEDs from
different manufacturers due to variations in their production
processes.

Proposed LED’s Light ID: Based on the captured power
ratio values, we propose to construct the ID Li of the ith LED
using the following tuple:

Li :

〈
PBi

PGi

,
PGi

PRi

,
PBi

PRi

〉
(1)

where i = {1, . . . , N}, N is the total number of LEDs; PRi ,
PGi , and PBi are the received spectral power at R, G, and B
channels, respectively. In reality, these IDs can be calculated
from the measurements of the LEDs and are stored in a
database for location services.

However, how do we differentiate between light sources
with the same power ratios of R, G, B channels or approx-
imately negligible difference between the power ratios? To
eliminate this problem, we employ multiple sensors with
different incident angles. This approach facilitates the sensor
modules to have the information of neighboring LEDs that
will help with the ID. The design is shown in the bottom part
(top of mobile tag) of Fig. 7, where sensors S2 and S3 are
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inclined at 45-degree angles with respect to the center sensor
S1. The optimum inclination angle can be found based on the
separation between different light sources and link distance.
However, with HueLoc, the motivation is to design a flexible
solution which works for different illumination infrastructures.
We choose the inclination angle as 45 degrees as the minimum
separation between light sources is usually a few meters.
The three sensors extract the hue-spectrum properties of the
nearest LED and its neighboring LED lights, provided these
LED lights are in the sensor’s FoV. To elaborate, the power
ratio observed at the central sensor (S1), which is aligned
parallel to the LED, typically captures the highest power from
the target LED. Conversely, the other sensors (S2 and S3),
depending upon their FoVs, may detect power ratios that are
influenced by neighboring LEDs or a combination of signals
from both the target and adjacent LEDs. This arrangement
enables the differentiation of LEDs that may appear identical
when only a single sensor is used. Even if the power ratios
observed by the S1 sensor are the same for identical LEDs,
the measurements from the other sensors will differ, allowing
for unique identification.

IV. HUELOC INNER WORKINGS

This section describes how HueLoc determines the light IDs
and details methods for the exact location. Then, we present a
use case of HueLoc – enhancing RF localization performance.

A. Determining the Light Identification

HueLoc employs the procedure outlined in Algorithm 1 for
passive positioning, which involves identifying LED lights
using detected hue properties. The sensor module, as depicted
in Fig. 7, can be positioned atop a target device, such as a
robot, equipped with a stored LED ID database. This database
allows the system to estimate the device’s location within
a room, specifically under which LEDs it is moving. This
estimation is done by finding the minimum Euclidean error
between the stored LED ID values and newly measured power
ratios at dominant wavelengths, denoted as L̃. Once the LED
unit is identified, we can pinpoint the target’s accurate location
by focusing on the area lit up by that specific LED unit. The
steps to accomplish this are explained in Section IV-B.

B. Performing Accurate Localization

The light ID is unique and independent of the position under
the LED, i.e., remains constant with the link distance and
at different FoV, as proved in our previous paper [7]. This
feature can only be used for the LEDs’ identification but for
localization—the feature should vary either w.r.t distance or
angle. In classical RSS methods, the received power values
are used to determine either the distance or angle w.r.t LED to
determine the receiver location w.r.t the LED, i.e., by utilizing
the channel model [11], [23]. However, due to the usage
of single pixel color sensors the distance cannot be directly
determined from the received power. Moreover, the power
received at dominant wavelengths at a fixed distance under
different LEDs is different, making it challenging to perform
localization with channel models [3]. A direct mathematical

Algorithm 1 ID
1: procedure LED LIGHT ID ASSIGNMENT
2: For each sensor Sj, j ∈ {1, 2, 3}, extract the power at R, G, B

wavelengths for each light Li, i ∈ {1, 2, . . . , N} in the database
as PRij , PGij , PBij , and store the ID as

Lij :

〈
PBij

PGij

,
PGij

PRij

,
PBij

PRij

〉

3: procedure LIGHT IDENTIFICATION
4: Let L̃kj denote the measured ID values at location k.
5: At current location k, calculate the Euclidean error as Ei

kj =√
(Lij[1] − L̃kj[1])2 + (Lij[2] − L̃kj[2])2 + (Lij[3] − L̃kj[3])2

6: Find the minimum error value for each sensor as

Dkj = min
i

Ei
kj

and store the corresponding argument where the minimum is
obtained as Mkj.

7: For location k, find the predicted values Pk as
8: if Mk1 �= Mk2 �= Mk3 then
9: Pk = arg min

j
Dkj

10: else
11: Pk = Mk1

relation for power variation with distance and angle cannot
be determined from the IDs as they differ for different LEDs
(HueLoc’s principle). To solve this, we propose a combined
classical and learning-based approach for accurate localization.

In simple words, after the successful ID, we use sensors S2
and S3, to further reduce the search area to half or a quarter
of the detected area; subsequently, the next step involves
determining the target’s position within this reduced area,
which is determined using regression-based learning methods.
Our training involves the model being exposed to power values
at dominant wavelengths generated by a single LED at varying
distances from its central position, to learn the behavior of
power with distance. One significant challenge associated with
learning approaches is the necessity to train the model across
all possible locations within a specified area, a process that is
both cumbersome and time-consuming. However, in HueLoc,
we streamline the training process by focusing on learning the
variations in power relative to distance under a single LED.
This simplification is based on the theoretical assumption that
the intensity behavior in relation to distance remains consistent
across all LEDs. The distinctive factor, however, lies in the
varying power levels at dominant wavelengths, which differ
between LEDs even at the same distance and ideal channel
conditions. This power disparity between LEDs at the same
link distance necessitates adjusting or compensating for the
power levels of LEDs other than the one used during training,
before feeding the data into the trained model for distance
prediction. The detailed steps to address this are outlined in
Algorithm 2, and the proposed method is analyzed below. A
visual illustration of the process is provided in Fig. 5.

Localization Approach: After successful light ID, the detec-
tion/search area is restricted to the region where the light falls
on the ground. Just for simplicity, assume a circular light
emission pattern falling on the ground and the goal is to
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Fig. 5. Steps in HueLoc localization process—The circle depicts the emission pattern of light, with the shaded area indicating the potential target location
zone.

determine the receiver’s position within this circle (see Fig. 5).
Below are the steps in HueLoc to determine the target position.

Step 1 (Determine the Forward Direction of the Mobile
Target):

1) Choose the forward sensor (e.g., S2) to identify the
forward direction of the mobile target.

2) Determine the minimum Euclidean error in light fin-
gerprints from neighboring lights using the procedure
described in Algorithm 1. This narrows the search area
for the receiver’s position to half the detection area, i.e.,
a semi-circle aligned with the forward direction of the
light receiver (third circle from left in Fig. 5).

Step 2 (Determine Which Side/Direction of the Light Source,
the Target Is Present): Repeat step 1 to determine which side
of the light source the receiver is located. This step helps to
determine whether the receiver is on the left or right side of the
light source within the semi-circle search area (fourth circle
from left in Fig. 5). Please note that in this case, the search for
the minimum Euclidean error with the installed lighting unit
is limited to only the light units present around the detected
light source in step 1. This focused search approach helps
streamline the localization process and increases efficiency by
considering only the relevant light units in the vicinity of the
detected light source. The detected area in this step can further
be reduced to one by eight (fifth circle from left in Fig. 5)
by repeating steps 1 and 2 provided the neighbor LEDs are
present. If a wall is present on the side of the searching area,
this step would be omitted. The identified quarter search area
would be used for further position estimation.

Step 3 (Determine the Precise Location): To determine the
mobile target’s precise location relative to the detected LED,
HueLoc employs a regression-based learning model, M, as
detailed in Algorithm 2. This model calculates the distance
between the target device and the LED and then utilizes the
LED’s known coordinates to ascertain the target’s location
coordinates.

C. Enhancing RF-Based Localization

We harnessed RF features from our BLE-based localization
system, BLoB [24], to enhance its localization precision down
to the decimeter level. BLE is particularly advantageous due to
its low cost, low-power consumption, and ease of deployment,
making it ideal for large-scale localization tasks in energy-
constrained environments. Moreover, the direction-finding

Algorithm 2 Regression-Based Learning Method
Require: Sensor S1, LED Ltrain
Ensure: Trained localization model M

1: Data Collection:
2: for each location (xi, yi, zi) under Ltrain do
3: Measure light features PRi , PGi , PBi using S1.

4: Model Training:
5: Let Pi = [PRi , PGi , PBi ]

T be the feature vector for xi.
6: Define di as the distance or angle from Ltrain to (xi, yi, zi).
7: Train model M:P �→ d with {(Pi, di)}.
8: Model Evaluation:
9: Calculate test error �e using 80% of data for training and 20%

for testing.
10: Model Storage:
11: Archive M for runtime use.
12: Runtime Localization:
13: On detecting Ltest, extract PID

Ltest
.

14: Compute �P = PID
Ltrain

− PID
Ltest

.
15: Adjust Padjusted = PLtest + �P.
16: Use M(Padjusted) to predict DR.
17: Final Location Determination:
18: Find location minimizing �e within DR ± �e range.
19: Assign coordinates based on minimized �e and known Ltest

position.

Fig. 6. HueLoc-fusion model: A 3-stage incremental learning method to
blend BLE and VLP features for enhanced localization.

capabilities introduced in BLE 5.1 significantly enhance posi-
tioning accuracy, which is especially beneficial for indoor
settings [25]. By integrating BLE with HueLoc, we create an
energy-efficient system that leverages the latest advancements
in BLE technology to provide more accurate and reliable
localization.

Our methodology incorporates an incremental learning (IL)
approach to fuse data from these two distinct technologies.
Incremental learning, as used in this research, pertains to a
machine learning paradigm where the model continually learns
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Fig. 7. HueLoc experimental testbed and implemented prototype: A robot
equipped with three hue sensors and a BLE receiver to collect light and BLE
features, transmitting them over a WiFi network for localization.

and adapts as new data becomes available. This approach
empowers the model to continuously refine its knowledge,
opening up new possibilities for joint RF- and VLP-based
localization. The fundamental assumption underlying IL in
this study is that, despite their differences, both RF and
optical or VLP modalities convey information about the signal-
location relationship or distribution within a specific indoor
environment.

Furthermore, IL could reduce the feature interference of
different sources, so in one stage, the model learning will
only be affected by one signal feature. The architecture
of the proposed approach is shown in Fig. 6. This is an
advanced version of our architecture proposed in [26] with
improved localization performance. In the training phase, the
first two steps incorporate features from BLE, specifically
those extracted from the signal and beating spectrums [24].
As proved in BLoB [24] studying the beating spectrum can
enhance the localization performance, we proved here that
by training the model in an IL approach the model performs
better. This approach helps the deep NN (DNN) model to
improve its comprehension of location-related features. In
the third stage, the trained model continues to enhance and
increment its localization capabilities by leveraging the light
signature features. The optical features are more fine-tuned;
however, missing locations are more frequent in this due to
the blockage of light signal frequently. The evaluation of
localization performance can be conducted at either the BLE
or VLP stage. In Section V, we will present the experimental
setup and results.

V. PERFORMANCE EVALUATION

This section introduces our prototype of HueLoc, assess-
ing its ability to passively identify LEDs and for accurate
locations. We focus on evaluating HueLoc’s localization
performance and enhancement for RF-based localization.

A. Implementation

Prototype: The prototype we developed is shown in Fig. 7.
It serves to experimentally, analyze and test the performance
of HueLoc. We implement HueLoc using three HAMATASU

color sensors and integrate the sensors with an Arduino
board to simultaneously collect the R, G, and B channel
power, i.e., PR, PG, and PB, respectively, from each sensor.
The employed sensors are power efficient and can run on a
3.3-volt (V) battery. The integration of sensors with Arduino
is done using the repository3 defined for TCS34725-color-
sensors, with modifications in alignment with our sensors in
the MATLAB Simulink. The Arduino board is 33-Nano
IoT4 with integrated WiFi capability, compact and power-
efficient runs on 3.3 V, perfect for low-power IoT devices.
The designed Simulink model is deployed on the Arduino
board, which will collect and transmit the extracted light
information over the WiFi network to the host machine.
The host machine runs the algorithm used for light ID and
localization in MATLAB. Further, to provide the ground truth
location information against which we compare our analysis,
we employ a highly accurate Optitrack system. Moreover, to
test the performance of the fusion approach, we added the BLE
receiver in the same prototype, with four BLE anchor nodes
tuned at frequencies f1, f2, f3, f4 and collected the data from
both technologies simultaneously. The BLE stack protocol is
acquired from our paper [24].

Testbed: We built a dense LED network with 9 off-the-shelf
white LEDs covering an area of 10 m2, refer to Fig. 7. The
interseparation distance between the LEDs is ≈ 55 cm from
the center of each LED to create interference as the FOV is
36◦. For the BLE technology, we added four BLE devices
close to the LED network setup, at the four corners spanning
an area of 25 m2.

B. HueLoc Localization Performance

We will initially showcase the results of our regression-
based learning algorithm’s efficiency by training it with a
single LED and testing it under both the same and different
LEDs. This demonstrates that our approach necessitates train-
ing with just one LED, effectively capturing power variations
at dominant wavelengths with distance for all LEDs. We
collect the data by placing the sensor module at various
fixed locations within the LED’s FOV, collecting more than
500 samples. We employ an 80% (training) and 20% (testing)
data split ratio. Additionally, we collect unseen data from
a different LED for testing under varying LED conditions.
Fig. 8(a) shows our results, demonstrating 75% of the localiza-
tion under the decimeter level for both the cases, i.e., when we
use the testing data (same LED) and data from new LED. The
mean generalization error is ≈ 7 cm. It is worth noting that
even when testing under different LED the localization results
obtained are similar, which validates the proposed approach.

Moving Object: Next, we will test the localization
performance of HueLoc with a moving target, in which the first
step is to determine under which light the target is moving and
then determine the location coordinates. We use our prototyped
robot shown in Fig. 8(b) and move it from LED “LED3” to
“LED7” following an L shaped path to determine first the
correct LED. Please note the LED numbers are provided here

3https://github.com/adafruit/Adafruit_TCS34725
4https://docs.arduino.cc/hardware/nano-33-iot
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(a) (b) (c)

Fig. 8. HueLoc performance analysis. (a) Distance estimation error. (b) Light ID accuracy. (c) Localization accuracy.

just for differentiation between the LEDs. The sensor module
collects the power values and transmits the collected light hue
information to the system. We run the MATLAB code for light
ID and localization on the system, which has the data stored
of light’s IDs collected during the light ID collection phase
and the light installation map. We followed the procedure
described in Algorithm 1 to identify the true LED under which
the robot is moving and using Algorithm 2 to determine the
coordinates. The robot is moved from LED3 toward LED7
[robot trajectory shown in Fig. 8(b)]. The results can be seen
in Fig. 8(b), demonstrating 100% light ID accuracy. We also
determined the localization coordinates using Algorithm 2,
and compared them against the ground truth to determine the
error. We present the results statistically by plotting the CDF
of the localization error, shown in Fig. 8(c), where 90% of
the errors are within decimeter-level, evading the proposed
technique’s validity.

Furthermore, Table I presents a comprehensive performance
comparison of our findings with various SOTA approaches. It
is important to note that the design goals and novel features of
different passive VLP systems vary significantly [2], [4]. The
unique characteristics of these systems, including differences
in design objectives, experimental areas, and lighting condi-
tions, make direct comparisons challenging due to the lack
of a common benchmark. Therefore, to address this, we have
outlined key features, novelties, and testing conditions, such as
the size of the testing area, whether experiments conducted in
controlled environments (i.e., without ambient noise or shad-
ows), consideration of low-light conditions (dark spots), and
mobile object tracking. Achieving high-localization accuracy
is relatively straightforward, but the conditions and parameters
used to achieve it are crucial. These parameters are essential
to demonstrate the practical applicability and advantages of
the designed systems in real-world environments.

For example, the systems [27], [28] provides remarkable
localization accuracy (<2 cm); however, this accuracy is
achieved within a small area, with no moving targets involved,
and under controlled lighting conditions. Additionally, the
system [28] requires a complex PD structure to attain this level
of accuracy in a confined 50 cm × 50 cm area. In contrast,
HueLoc has been tested in various environments, including
corridors and testbeds, with varying lighting conditions and
involving a mobile target.

Fig. 9. Designed DNN architecture in HueLoc.

Other ML-based systems, such as those in [18], [19], [20],
and [29], are currently limited to simulated environments,
which restricts their practical applicability. Moreover, these
systems involve an intensive training phase and require com-
putationally expensive resources. HueLoc adopts a hybrid
and computationally efficient localization approach, using
regression-based learning for distance estimation and requiring
limited training under a single LED.

Moreover, to address low-light conditions (dark spots),
HueLoc operates in hybrid mode with BLE, offering dual
benefits: enhancing VLP performance in low-light and shad-
owed areas while improving BLE localization. This hybrid
enhancement includes a training phase, which may be further
reduced in the future with advanced methods, such as hyper-
parameter tuning for optimal efficiency [30]. A comprehensive
performance comparison is presented in Table I. Next, we
demonstrate how HueLoc enhances BLE-based localization
accuracy.

C. Enhancing BLE Localization

We are using the machine learning approaches especially
DNNs to improve the BLE localization by fusing the data
from both technologies. The architecture employed for this
purpose is shown in Fig. 9. The DNN model adopted in
HueLoc is a fully connected NN, whose architecture is shown
in Fig. 9. The input is a 4 × 1(f1, f2, f3, f4), 6 × 1(f1 −
f2, f2 − f3, f1 − f3, f1 − f4, f2 − f4, f3 − f4) vector for BLE,
and 10 × 1(PBi/PGi , PGi/PRi , PBi/PRi , PG1 − PR1) vector for
VLP (please refer [26] for more details). The output is
the estimated location coordinates (x, y, z). SELU is adopted
as the activation function in the layers between input and
output. First, we collected the data simultaneously from both
technologies considering the locations directly under the LEDs
with no ambient light source, low-light conditions (near the
walls), and blocking of the sensor (due to human or testbed
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TABLE I
PERFORMANCE COMPARISON OF THE SOTA TECHNIQUES WITH HUELOC

Fig. 10. HueLoc: Fusion performance analysis.

metals). Our data collection aims to achieve two goals: first,
to show that BLE performance will enhance and second, to
demonstrate how VLP technology can overcome limitations
like low-light conditions or blocked light signals. A total of 5
datasets are collected with different target heights, comprising
8813 samples for the BLE and 4776 samples for the VLP.
We adopt an 80%-20% data split, allocating 80% for training
and the remaining 20% for testing. We statistically evaluate
the performance of our proposed approach, i.e., the three-
stage incremental learning approach and compare it against
our system [26]. Further, showing the performance of the alone
BLE localization system to demonstrate the improvement in
localization performance. Fig. 10 reveals that 50% of the 2-D
localization error is under decimeter-level, with 90% under
≈ 20 cm achieving a mean 2-D localization error of 12 cm.
Moreover, the 3-D achieved mean localization error is 18.4
cm. Compared to the BLE localization system, the proposed
approach has demonstrated an increment of > 75%, due to
the more fine localization data from the VLP measurements.
Moreover, the proposed approach offers ≈ 37% performance
increment against SOTA system [26].

D. Limitations and Discussion

1) Model Training: Training a model to learn power
changes at dominant wavelengths with just one LED might

affect accuracy due to varying power levels across LEDs. An
alternative, as mentioned in [32], uses unique LED features
across an area, improving performance but increasing data
collection time. While this technique could enhance model
performance, it necessitates extended data collection times
proportional to the area’s size. Nonetheless, HueLoc achieves
decimeter-level accuracy efficiently without extensive data
needs. Furthermore, power variation at different wavelengths
is affected by the material’s reflection properties at those wave-
lengths. Unlike the experiments in [32], with participants in
white clothing, HueLoc’s testing was conducted independent
of clothing color, showing that adjusting color sensors can
mitigate reflections from specific colors or materials. Further
detailed studies could be pursued in the future.

2) Low-Light Conditions: VLP systems, particularly
passive-VLP, encounter challenges in ambient and low-
light conditions. This article demonstrates that combining
different technologies makes HueLoc a viable solution for
real-world applications. Notably, HueLoc operates effectively
in various scenarios without the need for RF fusion, especially
in contexts where continuous tracking is unnecessary. In
HueLoc fusion, the integration of additional light features
with BLE localization results in a performance improvement
of 1.75-fold. However, changes in location necessitate model
retraining due to the variability in LED features. Despite this,
such an approach enhances existing RF-based localization
solutions without incurring additional transmitter costs.
Moreover, HueLoc’s integration surpasses current SOTA
methods, such as [33] and [34], by achieving decimeter-level
accuracy and introducing unique data integration. A distinctive
feature is leveraging data from LEDs within existing lighting
infrastructure, combined with BLE features, offering a novel
approach. This method distinguishes HueLoc from typical
SOTA implementations [35], which often limit tests to a few
LEDs under controlled conditions.

3) ID Normalization: The LED IDs in HueLoc are
constructed using the power ratios of RGB components
([PBi/PGi ], [PGi/PRi ], [PBi/PRi ]), which capture the relative
hue differences between LEDs and remain robust to external
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Fig. 11. Impact of room temperature.

factors like distance and angle. These ratios inherently act as
a form of normalization, reflecting the intrinsic hue properties
rather than absolute power values. While normalizing the
ID components could further standardize the vectors and
potentially reduce minor variations in Euclidean distance
calculations, our experiments (please refer Fig. 7) indicate no
significant impact on identification accuracy without normal-
ization. Future work may explore normalization as a way to
enhance system performance in environments with extreme
variations in LED brightness or color characteristics.

4) Impact of Temperature and Aging: To investigate the
impact of temperature on the extracted power ratios at the RGB
channels, we conduct an experiment where the temperature
varies from 17.5 ◦C to 27 ◦C. The results, as shown in
Fig. 11, indicate a clear decreasing trend in power as the tem-
perature increases. However, despite this reduction in power,
the extracted ratios (features) exhibit only minor fluctuations,
with no significant patterns or variations due to temperature
changes. Additionally, considering that most public buildings
maintain tightly regulated indoor temperatures between 19 ◦C
and 23 ◦C, we focus on this range and find that the standard
deviation of the features remains small, fluctuating between
0.0006 and 0.0018. These variations are unlikely to affect the
system’s performance in typical indoor environments.

Over a nearly half-year observation period, the power ratios
of the LEDs used in the experiment show no significant
changes, suggesting that the system continues to perform
reliably even with potential LED deterioration. In the unlikely
event of substantial long-term LED deterioration leading to
identification mismatches, affected LEDs can be isolated or
replaced to ensure continued accuracy.

VI. CONCLUSION

This manuscript introduces HueLoc, a passive VLP system
that leverages the hue spectrum of unmodulated LEDs for
ID, utilizing a single-pixel hue sensor. We have successfully
demonstrated the system’s capability to distinguish between
various unmodulated LED lights by exploiting their inherent
color properties. The extracted salient features are subse-
quently utilized to provide location-based services, achieving
decimeter-level accuracy in localization. Moreover, we demon-
strate that combining these features substantially enhances
RF-based localization systems, improving their effectiveness
by a notable 75%.
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