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On Minimizing Wave Resistance or Drag

T.S Angell, G.C. Hsiao and R. E. Kleinman T. Miloh
Center for Mathmatics of Waves Dept. of Fluid Mechanics
Dept. of Mathematical sciences and Heat Transfer

University of Delaware Tel Aviv University
Newark, Delaware 19716 Romat Aviv 69978 Israel

This paper treats the problem of determining the hull form for a ship of constant
volume and fixed draft moving with constant Froude number which minimizes either
wave resistance or total drag (ignoring spraying and wave breaking). We choose one
of these quantities as a constraint and minimize the other over a set of admissible hull
forms. We treat this constrained problem by simultaneously determining the hull
form and the velocity potential for that particular hull form. Unilke the traditional
approach of minimizing the Michell integral for the wave resistance (e.g. Chapter 6
of E]), the present paper goes a step further in applying modern shape optimization
techniques to the Kelvin-Neumann integral equation by finding an optimal solution
for the total (wave plus viscous) drag. The procedure is similar to that employed
in shape optimization for zero forward speed [1],[2].

Consider a ship with wetted surface S enclosing (together with the water plane)
a constant volume Vg moving with a constant forward speed Up in the z-direction
and employ the standard linearized free surface boundary condition. We choose
to represent the velocity potential of the wave problem as a center plane source
distribution [4],

é(r) :/M(r’}G{r, r')ds' 4+ Upz (1)
So

where Sp is the center plane, a planar region contained in the projection of S on
the (z, z) plane, G(r,r’) is the Green’s function for the Kelvin-Neumann problem in
the absence of the ship and M is the unknown source distribution. M is a solution
of the first kind integral equation

%/M[r’)G(r,r')ds’ = _UyB-% ron$ @)
So

and f is taken to be the outward normal (into the fluid) on S.
In terms of the Havelock function H (r,r’)

e 1 14 1
s r—r |r+1|

where r4 = (z/,3/, —2'), the wave resistance can be expressed as

D, ://M(r)M(r')%H(r,r')dsds’ (4)
So ;5'0

+ H(r,r') (3)
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and the viscous drag, for simplicity, is assumed to be proportional to the surface
area, i.e.,

D= / ds (5)
5
We confine attention to a set of admissible surfaces, Ay, »,, with constant

volume, symmetric about the center plane with a rectangular shape of fized
draft/waterplane length as follows:

S € Ayyr, fS=STUS"

where
To Zg Vu
St ={rly= f(z,2) 20, |z| < =0, / /f(m,z)dzd:.-: =5
—.Iu 0
0 < z< 2z, f€C*suppf), suppf C [—zo, Za] X [0, 2o], i—n = Ao}
0
and

8 =fr=(z:~uz) l(z;32) €8T}
p e
On Si, we have n = %ﬂéi

Then we may define the defect in satisfying the integral equation as

d o :
g [ MGG+ Ut s ©)
»é'o
However S is not known. This quantity may be expressed in terms of integrals over
planar regions in the (z, z) plane as

N arp oI 8 8 E .‘ ’ : ~

s= [ [t + (foz- 3y+fm3z)fM(r)G(far)ds o
&g, 0 Sa = I,ZJ
1+ 2 + f2dzdz (7)

when 0 < @ < 1 is a constant and zp and 2z are respectively the half-length and
draft. This functional involves both the unknown source distribution as well as the

unknown surface.
Similarly the wave resistance has the form

arg ez alfp oZg

D, = f / [ /M(I,Z)M(x',z’)%{;-(m,z,:r’,z')drdzdr’d,z'. (8)

—axg 0 —azg D
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while the viscous drag can be expressed approximately in terms of the unknown
surface as

D, = [ / V14 f2+ f2 dzdx (9)
— T l']
Introducing new variables L& = z, LZ = 2, and defining f(z,2) = %f(:.-:, z),

the functionals J and D,, may be rewritten so as to entail integration over the fixed
domain [—a, a] x [0, Aoa]:

a aldp a aAp
i1 ; 20ROy g 10F =)t ; 2
J —~] / |Uofz + (f‘cﬁ "'8__§+ 282) [ / JM(Z‘?})G(LTHLX.);:J?(E;:J
—a 0 x

—a 0

A/ 14 f2+ f2 (L?) d2dz, (10)

a aAg Ao

and

D, =L? / [ [ M(z,z)M (&', 2') B‘LH(;E.z,f.-’,,s’}di-dzfm’dg’ (11)

—ax—a D

while D, has the form

1 Xo

D, =L2ff\/l+f§ + f2dzdz. (12)
-1 0

We choose to study, here, optimization problems which can be formulated in
terms of these expressions for fixed Ag,

(PI) minimize D, + VpJ
over the class Uy, subject to the constraint

D, <K
where K is some preassigned constant, and
(PII) minimize D, + VoJ
over the class Uy, subject to the constraint

Du < K.
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The new concept of shape optimization may be found useful in ship design.

References

1. Angell, T.S., Hsiao, G.C., and Kleinman, R.E., An optimal design problem for
submerged bodies. Math. Meth. Appl. Sci. 8 (1986), 50-76.

2. Angell, T.S., and Kleinman, R.E., A constructive method for shape optimiza-
tion: a problem in hydromechanics. IMA J. Appl. Math. 47 (1991), 265-281.

3. Kostyukov, A.A., Theory of Ship Waves and Wave Resistance (M. Oppen-
heimer, tr.), Effective Communications Inc., Iowa City, lowa, 1968.

4. Miloh, T., and Landweber, L., Ship centerplane source distribution. J. Ship
Res. 24 (1980), 8-23.



Abstracts: 13th International Workshop on Water Waves and Floating Bodies 5

Computing The Green Function for linear wave-body interaction

H. B. Bingham *

The interaction between surface gravity waves and a structure in (or near) the free-surface is often
analysed using potential theory, with linearised conditions applied on the body and the free-surface
boundaries. Having assumed linearity, the response of the structure is described by a set of canonical
radiation and diffraction response functions, which can be superposed with particular wave data to obtain
particular solutions. These response functions are solutions to special distributions of normal velocity over
the body which correspond to certain physical problems (i.e. forced motion of the body, or diffraction
of a long-crested incident wave.) Another way of representing the interaction of waves with a structure
is to compute The Green Function for the body. By “The Green Function” we refer to the particular
Green function that satisfies the homogeneous form of the initial-boundary-value problem (including
the body boundary condition) except at one singular point on the body surface (see [1]). Any desired
quantity related to wave-body interaction may be expressed in terms of The Green Function. In general,
the standard approach will be computationally more efficient than computing The Green Function, but
there exist some situations where it may be advantageous to use a discrete form of The Green Function
instead. Assume that a body is to be analysed which has J degrees of freedom, (6 rigid-body modes
plus some number of flexible modes) and is subject to incident wave forcing from N heading angles. As
explained below, computing the discrete form of The Green Function requires solving N hydrodynamic
problems where N is the number of panels required to obtain converged results for the quantities of
interest and a given body. Thus if the analysis is very complex, such that J + Ng > N, then computing
The Green Function will be more efficient. Another situation where computing The Green Function
might be attractive is when it is impractical (or impossible) to split the incident wave field into a finite
sum of long-crested (uniform along one horizontal dimension) waves. For example, a body subject to
incident waves which are diffracted and/or refracted by nearby corners or variable bottom topography.

The linear wave-body interaction problem can be expressed succinctly via the equations of motion in
convolution form,

J t
Z(Mjg + a_,'g}ffg + bj*ik + (Cj‘g + C_-;k)zg +/ dr ij;(t - T).ﬁ-('.r‘} = F}th),
k=1 =108
=12, i M

In this expression, an over-dot indicates differentiation with respect to time. The body's inertia matrix
is Mjx, and the hydrostatic restoring-force coefficients are given by Cjz. The force due to the radiation
of waves by the body motion is expressed as a convolution of the radiation impulse-response functions
Kk, ajk, bjk, and cjx; with the body velocity components in J degrees of freedom. The wave exciting
force Fjp(t) is typically taken to be a superposition of long-crested waves and is thereby expressed in the
following convolution form

in 2w 00
Fin(t) = j; B Fip(t,8) = [o » [ “dr Kyp(t=7,A)(r, ), @

where ((t,3) is a time history of the elevation of the long-crested incident wave with heading angle 3
(the angle between the positive z-axis and the wave propagation direction) and Kjp(t,3) is the impulse-
response function for the diffraction force due to an impulsive long-crested wave from heading angle 3.
(In following seas with U # 0, there are three convolutions of this form which must be summed.) The
diffraction force can also be expressed in terms of solutions to radiation problems via the Haskind-Newman
relations

Fo® = [_ar [ € [¢Enop G-~ ¢ € =it En], @

*International Research Centre for Computational Hydrodynamics (ICCH), Agern Allé 5, DK-2970 Hprsholm, Denmark,
icch@dhi.dk
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where ¢; is the solution to the “reverse-flow” radiation problem (i.e. the radiation problem with the
direction of the steady translation reversed.) Note that the Haskind-Newman relations provide the force,
but no other information about the diffraction flow, and that a number of assumptions are involved in
their derivation for U # 0, making them of limited appeal in that case.

If the incident wave is restricted to be time harmonic with frequency of encounter w, amplitude A, and
heading angle 3, then ((t) = AR{e**}, and as ¢ — oo the response becomes zy(t) = R{&k (w, B) e},
and the equation of motion tend to

J

3 {—w? (M + Ajk(w)] + iw Bjx(w) + Ce + cik} 6__»(&;, 2= w8 i=l2..J0 (4
k=1

The quantity £ /A is usually called the response-amplitude operator (RAQ). The frequency-response

functions on the left-hand side of (4) (the added-mass and damping coefficients) are related to the

radiation impulse-response functions through the Fourier transforms

1 {+ %] o0
Ajp(w) = aji — ;f dt K;x(t)sinwt; Bjk(w) = bk +f di K (t) coswt. (5)
0 0

The frequency-response function on the right-hand side of (4) (the exciting force coefficient) is related to
the diffraction impulse-response function through the Fourier transform

XjD("-‘-’s 5} = .[mdt ij(t,,@)epim. (ﬁ)

As in the time-domain, the diffraction force can be expressed in terms of radiation potentials via the
Haskind-Newman relations

Xin(ws ) = —wp [ & [0/ G105, E0) =~ 67 € )6h(E )] ™)

The physically motivated canonical radiation and diffraction problems defined above provide a com-
plete picture of the linear interaction between waves and a structure. Another, perhaps less physically
intuitive means of capturing this information is to compute The Green Function ¢(Z; £, 1) for the body.
This function satisfies the Laplace equation at every point in the fluid domain, the linear free-surface
boundary condition on the free-surface boundary, and homogeneous Neumann conditions on the body
boundary except at one singular point, thus

A-Vad(&Et) =8EF-£1); €8 (8)

Any imaginable flow quantity can be expressed in terms of this function. For example, the corresponding
first-order dynamic pressure impulse-response function (with U = 0 for illustration purposes) is

p(&E 1) = —pd(F: . 1), 9)

and the force impulse-response function is
FEn) = [[ ap@Eon@) (10)
L]

With these definitions, we can express the force on the body due to an arbitrary distribution of fluid
velocity, V' (2, t), as

F,-(t):ffgdgf_c;dr fi(€) - V(€,7) F;(€,t — 7). (11)

This expression is quite general and equally applicable to any distribution of normal velocity 7 - V. For
example, by setting 7 - V = n16(t) we can recover the six surge radiation impulse-response functions.
Diffraction of an incident wave by the fixed body can be similarly represented. Consider an incident wave,
(7, with corresponding fluid velocity V;(Z,t) and (first-order) dynamic pressure p;(Z, ). The diffraction
force on the body can be split into two parts, Fp(t) = Fjr(t) + Fjs(t), where the first term

Fir(t) = —p [ fs dz o (2,) n; (12)




|
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is often referred to as the Froude-Krilov force, and Fjs is the scattering force. Letting V =V in
Equation (11) gives the scattering force due to an arbitrary incident wave

ms)= [ & Vi chrvmrar) FEt—1). (13)

The same exercise may be carried out with a time-harmonic incident wave. In this case, let ¢(Z; £ t) =
R{p(F; £, w)e*“*} with

i-Ved(@Ew) =8@E-8), E€S. (14)

Again, any flow quantity can be defined in terms of The Green Function. For example, the dynamic
pressure frequency-response function is (again with U =0 for illustration)

B(&: & w) = —wp d(F: € w), (15)

and the force frequency-response function is
Fy(@w) = [[ a7 5@ 6 ) my(@), (16)
b

v';hich gives the corresponding general expression for the force on the body due to the fluid velocity
(&,w)

Fw) = [ j; @) - V(E w) FyEw): (17)

Similarly, the added-mass, damping, and long-crested wave exciting force coefficients can be recovered
by considering the appropriate distributions of 7 - V.

To demonstrate the practical application of The Green Function, we compute it for a bottom mounted
circular cylinder, and then use it to recover the diffraction force due to long-crested incident waves. The
accuracy is then compared to a direct solution of the canonical diffraction problem. The calculations
are made using the low-order panel method program WAMIT. In the context of a low-order (constant
strength) panel method, the discrete analogue to the boundary conditions on ¢ and ¢ are

ﬁ-vqu,(t):{ o j:’; } =10 LN =100,V (18)
and
= Liiy=k ;
- Vosn(t) ={ Crak } i=1,2,..,N; k=1,2,.., N; (19)

which can be thought of as N special generalised radiation problems.

Figure 1 shows the magnitude of the horizontal wave exciting force on the cylinder as a function of
frequency, while Figure 2 shows the absolute error in the two calculations. Both calculations where made
using N = 252 panels at 120 evenly spaced frequencies. Using The Green Function produces results
of comparable, although typically slightly lower accuracy. This is not surprising since using The Green
Function requires another set of integrations over the body surface which can be expected to introduce
additional errors into the calculations.
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RUNUP ON A Bopy IN WAVES AND CURRENT.
FuLLy NON-LINEAR AND FINITE ORDER CALCULATIONS.

Bjarne Biichmann', Pierre Ferrant? and Jesper Skourup®.

INTRODUCTION

At the previous workshop last year in Marseille, a comparison was proposed between a fully non-linear Boundary
Element Model (BEM) by Ferrant (1997) and a second order BEM by Skourup et al. (1997). This paper is
dedicated to such a comparison.

Water waves are basically a non-linear phenomenon, and in recent years the interaction between waves, currents
and structures in the sea has been given much attention. The fully non-linear BEMs tend to be very demanding
with respect to computational time, and to reduce the computational time needed to solve such problems, finite
order BEMs based on perturbation theory have been developed both in the frequency domain and in the time
domain. Linear frequency domain models for strong and weak current have been developed by Nakos (1990)
and by Nossen ef al. (1991), or Malenica et al. (1995), while lower order time domain models with current have
been developed by e.g. Kring (1994), Cheung et al. (1996) and Sierevogel and Hermans (1996).

By the very nature of the perturbation procedure about the still water level, the lower order models are restricted
to the wave steepness not being too large. In order to find the range of validity of lower order models with
respect to incoming wave steepness and Froude number, comparison with results from a fully nonlinear model
is especially useful.

This abstract concerns the comparison of two particular BEMs, namely the fully non-linear BEM ANSWAVE by
Ferrant (1997) and the lower order BEM WAVETANK by Skourup el al. (1997). This comparison will serve both
as validation of both models in the low Froude number and low wave steepness regime, and as a method for
defining the domain of validity of the finite order model.

MATHEMATICAL FORMULATIONS

The problems considered fall in the frame of potential theory. The governing equation for the velocity potential,
®, is the Laplace equation. Using Gauss' theorem this equation can be transformed into an integral equation
on the boundary of the domain.

A collocation procedure is used employing linear and continuous basis functions over triangular or quadrilateral
elements and collocation points (nodes) at the element, vertices. In points where the boundary has discontinuous
derivative, multiple nodes are placed at the same geometrical position satisfying one boundary condition per
normal direction. Thus the Boundary Integral Equation is reduced to a dense linear system of equations to be
solved for the normal velocity at the free surface and the potential on the remaining boundaries. The resulting
linear system of equations depends only on the boundary geometry.

The potential and surface elevation, n, are divided into an incident field, which is unaffected by the structure,
and a scattered field, which radiates from the body of interest, and the numerical problem is solved for the
scattered field alone., The fully non-linear model uses stream function theory to describe the incident wave field,
whereas the lower order model uses a formulation for second order Stokes waves riding on a uniform current.

To time integrate the potential and the free surface elevation the fully non-linear model follows a semi-Lagrangian
formulation of the kinematic and dynamic free surface boundary conditions, nodes being allowed to move in
the vertical direction only. Neumann conditions are implemented to model both the impermeable boundary
at the body and truncation boundaries. At each time step the boundary conditions are used to update ¢ and
7 on the free surface and d¢/dn on the rest of the boundaries. Time integration is made using a 4th order
Runge-Kutta method with frozen coefficients. The boundary integral equations are solved to obtain the rest
of the unknowns. For further details see Ferrant (1996), The lower order model apply Taylor series of the
free surface conditions and perturbation expansions of the variables to reduce the problem to finite order at a
time invariant geometry. In the present formulation terms are kept to second order with respect to the wave

!Department of Hydrodynamics and Water Resources, Technical University of Denmark, DK-2800 Lyngby, Denmark

25IREHNA, 1 rue de la No#, BP 42105, 44321 Nantes Cedex 3, France

3International Research Centre for Computational Hydrodynamics, Danish Hydraulic Institute, Agern Allé 5, DK-2970
Hgrsholm, Denmark




Abstracts: 13th International Workshop on Water Waves and Floating Bodies

steepness perturbation parameter and to first order with respect to the current speed perturbation parameter.
Time integration is accomplished using the Adams-Bashforth-Moulton method. Further details can be found
in Biichmann et al. (1997).

Since the boundary integral equations depends only on the geometry, the finite order model can apply LU-
decomposition of the linear system at the onset and then use back-substitution to solve at each time step. This
procedure represents an initial O(N?) cost, where N is the number of collocation points, and an O(N®) cost
per time step, where the O(N?) cost dominates for the values of N considered.

Using a fully non-linear model, the boundary geometry changes at each time step requiring both the construction
and solution of a new linear system at each time step. Preconditioned GMRES is used to solve this system
requiring O(N?) cost per time step. Even though both methods use O(N?) operations per time step, for the
same number of nodes the lower order method is much faster. Also for the lower order model the wave steepness
can be chosen in the post-processing procedure, and thus a whole range of wave steepnesses can be calculated
in one computation. On the other hand the lower order model may require more nodes than the fully non-linear
model to resolve the same physical problem. This is due to the fact that the scattered free second order waves
may be much shorter than the incident waves, and is especially true for increasing Froude numbers. The increase
in the number of nodes required in the finite order model is particular important since both models use O(N?)
memory, and for the finite order model, with a lower cost per time step, it turns ont that it is memory rather
than CPU time that limits the problem size.

NUMERICAL RESULTS

The two models have been used to calculate the runup on a bottom mounted vertical circular cylinder in waves
and current. Simulations have been made for kh = ka = 1, where k is the wave number, h is the water depth
and a is the radius of the eylinder, and for incident wave heights H/h up to 0.300 (wave steepness /L up to
0.0477, where L = 27 /k is the wave length). For this value of kh Stokes second order wave theory is invalid for
H/h > 0.365 (H/L > 0.058). This means that the incident wave height should be well below this limit when the
lower model is used. The runup profile has been found for a range of different Froude numbers, fr = U//qh,
and wave heights, H.

The runup profile around the cylinder has been plotted on Figure 1 as function of the angle, g, for three
different Froude numbers and two different wave heights. The agreement between the two models is very good
for low Froude numbers (e.g. Fr = 0.025), while for larger Froude numbers (e.g. Fr = 0.100) some differences
are observed. The analysis of these differences motivated the introduction of a correction to the finite order
results, accounting for the steady wave elevation due to the current alone. Being of second or higher order in
the current strength, steady waves due to the current were not taken into account in the original finite order
formulation. Using the dynamic free surface boundary condition (the Bernoulli equation) the so-called “double
body elevation” can be found to improve the results from the lower order model. The results from the lower
order model with the double body elevations added are also shown on Figure 1. The correction due to “double
body elevations” is seen to improve the agreement between the two models significantly. This is particularly
true for low wave steepnesses, where the double body elevation is the dominant nonlinear contribution. For
higher values of the wave steepness, both higher order diffraction effects and interactions between steady and
oscillatory flows come into play. With the double body elevations added, however, the agreement between the
models is good for a sensibly wider range of Froude numbers and wave steepnesses.

Even though the profiles compare well in all the cases shown, in Figure 1.d) some short wave features are
observed in the lower order model results close to @ = 0.7x. A convergence study has been made, and it has
been shown that the second order solution is not fully converged in space. Also, it has not been possible to
make a finer discretization without bringing the truncation boundaries too close to the cylinder. It should be
noted also, that for waves in an opposing current of intermediate strength, say Fr = —0.100, the results from
the two models differs significantly on the side of the cylinder near § = m/2.

Figure 2 shows the runup at the front of the cylinder, R = maxn(3 = 0), as function of wave height for different
Froude numbers. This figure confirms the very good agreement of the models in the low Froude number — low
wave steepness regime. For higher inputs, the increasing influence of nonlinear phenomena not included in the
finite order model is clearly observed. Also it is clear from Figure 2 that the non-linear contributions to the
runup are very significant.

CONCLUSIONS

A comparison has been made between the fully non-linear BEM by Ferrant (1997) and the lower order BEM
by Biichmann et al. (1997) with the focus on calculating runup on a bottom mounted vertical circular eylinder
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Figure 1: Examples of runup profiles on a cylinder for kh = ka = 1. Results from the fully non-linear model
(), the lower order model () and the lower order model with double body elevations added (— ).

in waves and current. Runup results from these two models agree very well for low Froude numbers and up
to medium wave steepness. For large wave steepness and Froude numbers the difference between the results
from the two models increases. However, the correction due to “double body elevations” is seen to improve the
agreement between the two models significantly.

Thus for low Froude numbers and small to medium wave steepness the lower order method represents an
accurate and computationally fast alternative to the fully nonlinear approach, at least for the present geometry
and wavenumber. For increasing Froude numbers the difference between the results from the two models
becomes larger and the lower order method also becomes less efficient due to a demand of finer discretization
than the non-linear method. For higher Froude numbers and wave steepnesses the fully non-linear approach
should be used. Note also the versatility of the fully nonlinear model which can be applied to a variety of
problems among which is wave-current interaction as presented here and calculation of higher order forces as

presented by Ferrant (1996).
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Figure 22 Runup at the front of the cylinder for kh = ka = L. Results from the fully non-linear model

(°), the lower order model to first order in H/h (- ), to second order in H/h (") and to second order in H /h
with double body elevations added (—).
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Stability analysis for solving the 3D unsteady free-surface condition
with raised panels

Tim H.J. Bunnik and Aad J. Hermans
Department of Applied Mathematics, Delft University of Technology, The Netherlands

1 Introduction

When the wave pattern around a sailing ship is predicted with an integral equation formulation, the
amplitudes and lengths of these waves contain errors because the integral equation and boundary
conditions must be discretized in order to solve it numerically. Of course we want these errors to be
as small as possible, but we also want the computational effort to be as small as possible. We have
therefore investigated how these errors depend on the discretization of the integral equation and the
free-surface boundary condition with a stability analysis.

Recently, other people have also investigated the stability or accuracy of their numerical schemes. We
combine the work of Raven [3], who analysed the accuracy of his numerical scheme for solving the
steady problem, and Sierevogel [2], who analysed the stability of her numerical scheme for solving the
unsteady problem. Both restricted their analysis to the two-dimensional case. We extend the analysis
of Sierevogel to three dimensions and include the opportunity to use a raised panel surface like Raven
did.

2 The time-domain algorithm

We consider a ship sailing at a constant high speed U in waves with an encounter frequency w. We
assume that the hydrodynamics can be described by potential flow and linear boundary conditions on
the free surface and the hull of the ship. In [1] we show how the boundary conditions can be linearized
about the flow and wave pattern caused by a steady moving ship in calm water. Far away from the
ship, this flow can be approximated by a uniform flow. The boundary condition on the free surface
then becomes
2 2 2

09 nd +Uﬁ?—¢+ga—¢

ot? otz dz? 0z
Because of simplicity we will use this condition, and not the complicated condition that we actually
use, to analyse the accuracy and stability of our time-domain algorithm. The unknown potential is
found by putting sources on the hull of the ship, Q5, and on a surface, Q;, at a short distance zj,
above the free surface. This raised surface has some advantages as we shall see. The potential is found

to be
¢(-:n:t):ffa({.t)c(f.f')d€+ffg(é,r)(;(f,§)dé' G=% 2)
2

[

=0 onz=10 (1)

If this expression is substituted in the boundary condition (1), a boundary integral equation for the
source strength o on the raised surface is found

Wio = RHS (3)

Integrals over the hull of the ship are shifted into a Right Hand Side, because in this abstract we
only look at errors caused by discretizing the free surface. The raised surface is now divided into
panels and on each panel the source strength is assumed to be constant. The integral (2) now turns
into a summation over all panels of source strength times the integrated Green function, If we also
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introduce difference schemes for the time derivatives and tangential space derivatives, we can solve
the potential and corresponding wave pattern numerically. Because we solve discretized equations,
the waves are different from the waves that would follow from the continuous equations (1) and (2).
We will investigate the difference in wave length and wave amplitude by studying the linear operator
Wi in Fourier space.

3 The continuous case

The Fourier transform of the continuous free surface condition (1) and the continuous integral equation
(2) can be obtained with the following pair of transforms

o (k,0,w) = jff¢,(1~‘y‘t)e—n.[wt—kxms&—kysinﬂ]dzdydt (4)
— 00— =00
= i 00 oo
= i 1wt —kx cos§—ky sinf) 1,
o (z,y, f]———{%]g, ff o(k,0,w)e kdkdfdw (5)
—oo—m0

k is the wave number; @ the wave angle and w the wave frequency. After some calculations it can be
shown that the Fourier transform of the linear operator W, equals

Wi = G (~w? + 2Ukw cos 8 — Uk? cos® 8 + gk) (6)

After transforming back, the potential turns out to be

(ﬁ(.}: y,t . l)?—}i ff RH‘SG :[ul—krcosﬂ—kysinﬂ)kdkdgm (T)

—oo—m 0

The zeros of the operator W; give the wave-like contributions of this integral. The dispersion relation
Wi (k, 8,w) = 0 therefore has to be solved. It can be shown that the behaviour of the solution depends
on the Strouhal number 7 = “‘T”. We will restrict our analysis to speeds and frequencies for which
7 > L. This can be done because we assume the speed of the ship, and therefore also the encounter
frequenc1es of the incoming waves, to be high. When = > }, the solutions of the dispersion relation
are

2 {w (1 £4/1+4rcos } if 14+47cosé >0, ®)

g (1 iy/=1—drcosf)’ if 1+4rcos <0

So, if 1447 cosf@ < 0, the wave number has a non-zero imaginary part, which means that these waves
disappear rapidly when they propagate up- or downstream. If 1+47 cos@ > 0, the integration contour
in (7) can be chosen such, that the solution only contains waves that propagate downstream, see for
example [4]. We therefore only concentrate on downstream wave angles i.e. 5 <6 < 7.

4 The discrete case

We now discretize the raised surface and the time and space derivatives in the free surface condition (1).
The raised surface is divided into rectangular panels of size Az X Ay. The height of this raised surface
above the free surface z = 0 is proportional to the area of these panels according to zj, = an/AzAy.
The potential can now be written as an infinite sum over all panels:

L. (#has (bay

r : —dzodyo
¢(Zm,Yn) = Z Z W f -/ 4“’\/(2,1, - 20)? + (yn —y0)®* + 22 =
y s

1I=—00 j=—00 ( i

-baz (-h)a
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The collocation points (Zm,yn) lie on the free surface at a vertical distance zy, from the middle of a
panel, so z,, = mAz and y, = nAy.
The derivatives can be discretized as follows:

8% 1 (o, (tt) (22)
e i) = Ry (f‘n Btirr) + d V() + AL b(tinr) + d U8 (8 2)) (10)
azcl) ]' rr rr xrxr rr
527 1) = a2 (d‘ o(zip) +d550(x:) + 5 b(xinn) + d5 (i) (11)
Similar formulaes apply to the first order derivatives %; 'md . The coefficients d(*!), d(=7) 4() and

d") can be chosen such that a first or second order dlﬂeronce scheme is obtained. We use upwind
differences for the space derivatives, which means that only points upstream from the collocation point
in question are used in the difference scheme. We do this, because it is the only way to obtain a stable
scheme for high speeds as shown in [2]. We now use the discrete Fourier transform to obtain the wave
number in the discretized case. This transform and its inverse are defined by

(s <] o0 o0
$(,0,0) = A2AYAL Y 3 Y G(emitntp) e PAbmATcostokndyaing) (19

M==00 N=—00 p==—00

A By BF
q')[;m._ y".tp) = (9;)3 f f f &(R, B'w) B*(upd-‘—km&:cosﬂ—kn&ysinﬂ]d(kcﬂs 9]d(k5in g]w {13)

If we apply this transform to the discretized boundary condition and integral equation, we find the
discrete Fourier transform of the operator W,.

‘r G 1 (tt) (tt) —iwAt (tt) —2iwAt () —3iwAt
Wi = Rzny ((m)* (a6 +dPent 1 de +dlemsint) 4

22U (z) () ikAx cosd (z) 2ikAzxcos@ (t) (t) —iwAt (t) —2iwAt
e (a5 +d%e +d%e )(du +d®)emiwat 4 g )+

U (zx) | (@) ikAzcosd | (zz) 2ikAzcosf , (rz) 3ikArcosd Q
{Az}z (du +{l_l el I COs + d‘_z e 1 I COos +d{_3 e 1 I COS ) +g§ (14}
G is the discrete Fourier transform of the integrated green function, and Q the discrete Fourier
transform of the integrated vertical derivative of the Green function, %. After some complicated
manipulations it can be shown that these transforms equal

S il

m==o0 n=—00

( —iul:am e—;-i&zam) (e—%—iﬁyﬁn = E]T:'Ayﬂn) (15}

o o5 =Zfas\ al, +82,
Q i Z Z € 2; : (eu;—iazum _ e%é-ﬁ:um) (e- LidyBn _ e,lﬂyﬁn) (16)
am m

where &y, = kcosf + 22 and §, = ksin 0+ T2 2‘"‘ . Only a small number of terms has to be taken into
account because these series converge very fast. The zeros of the discrete operator Wi correspond with
the discrete wave numbers and can be found numerically. They can be compared with the continuous
ones and any differences indicate errors.
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5 Damping, dispersion and temporal stability
We can relate the continuous wave number k. and the discrete wave number kg by writing
kg =k.(1+ Cg (w,U, 8, At, Az, Ay, a) + iCy (w, U, 8, At, Az, Ay, ) (17)

Non-zero C, or C indicate an error in the discrete wave number. If Cp is negative, this means the
wave number is too small, so the predicted wave length is too large. A positive Cp indicates an under
estimation of the wave length. A positive Cy indicates numerical amplification, and a negative Cj
numerical damping. We have investigated the dependence of these errors on the difference schemes,
the time step, the grid size and the distance from panels to free surface for various speeds, frequencies
and wave angles. It turned out that the use of second order difference schemes for the space derivatives
reduces damping drastically compared to the use of first order difference schemes, as can be seen in
figure 1(b). Furthermore, it was found that the use of raised panels reduces numerical dispersion.
As can be seen in figure 1(a), the dispersion decreases if the distance from panels to free surface is
increased. If this distance becomes too large, the time integration is not temporal stable anymore.
This temporal stability can be investigated by rewriting the dispersion relation. If we substitute
Z = ¢~™At we obtain a third order complex relation for Z, which has three roots. If one or more of
these roots is outside the unit circle in the complex plane, the numerical scheme is temporal unstable.
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Super Green Functions for Generic Dispersive Waves

Xiao-Bo Chen (Bureau Veritas, France)
Francis Noblesse (David Taylor Model Basin, USA)

Green functions and super Green functions
In potential flows, a Green function G (f , ) defines
the velocity potential of the flow created at a point
£=(£.7.¢) by a source of unit strength located at
a point £= (z,y,2). The Green function for an
unbounded incompressible fluid is

4G = —-1/r

where r = /(€ —=2)% + (y —n)? + (2 — ¢)? is the
distance between the field point € and the singu-
lar point . In free-surface hydrodynamics, Green
functions can be expressed as

GC=G°+GF

where GF accounts for free-surface effects and G°
is defined in terms of simple singularities. E.g.,
for time-harmonic ship waves in deep water, the
simple-singularity component G¥ is given by

4rG® = -1/r + 1/r’

where ' = /[ —z)2+ (y —n)? + (2 + ()% The
free-surface component G¥ is given by the Fourier
superposition of elementary waves

AR eZk-i(Xa+Ya)
4n°G" = l:.m fdﬁfd D+iESlgn(D_|r) (1a)

where k =+/a?+3? is the wavenumber and
(X.Y,Z<0)= (E—2,n—y,C+2)  (1b)

Furthermore, D is the dispersion function
= (f-Fa)*-
and sign(Dy) = sign(8D/a8f) is given by
sign(Dy) = sign(f - Fa)

The nondimensional frequency f and the Froude
number F are defined as

f=wVI]s F=U/\/gL

where w is the encounter frequency of the regular
ambient waves exciting the ship motions, L and U
are the ship length and forward speed, and g is the
acceleration of gravity.

Two fundamental difficulties greatly restrict
the practical utility of free-surface Green functions.

A first major difficulty is that the singular double
Fourier integral representation (la) of free-surface
effects is nearly impossible to compute accurately
(except in very few relatively simple cases for which
the near-field behavior of GF can be determined
analytically [1]) in the critically-important limit
(X,Y,Z) — 0 where (la) has a very complex sin-
gularity. A second major difficulty is that although
Green functions provide valuable insights, they are
not directly useful (except for idealized cases in-
volving flows about a sphere) for practical appli-
cations, which require flows generated by distri-
butions of singularities (sources and dipoles) over
hull-panels and waterline-segments. Indeed, prac-
tical calculations involve distributions of singulari-
ties (rather than point singularities) of the form

Go
b P{.{VG'S} @

where P, stands for a hull-panel or a waterline-
segment near a point! T, = (%, ¥, .2, <0), and o
and & = (6, .8y ,8;) are source and dipole densi-
ties, respectively. A function (2) associated with a
distribution of singularities is called a super Green
function to emphasize its similarities and differ-
ences with usual Green functions associated with
point singularities. Evaluation of super Green func-
tions G for free-surface flows in the usual approach,
in which G and VG are evaluated using (1) and sub-
sequently integrated over a panel or a segment as in
(2), is a hopeless task which cannot be performed
accurately (notably for time-harmonic ship waves)
for field points near a waterline-segment or a hull-
panel at the free surface.

Fourier-Kochin representation
of super Green functions

However, the super Green functions G of main
interest in free-surface hydrodynamics, and their
first? derivatives VG , can be evaluated in a remark-
ably simple way using Kochin's formulation and the
Fourier representation of free-surface effects sum-
marized below. Within the Fourier-Kochin formu-
lation (2], the free-surface-effect component

T GFO'
: "/P.J{VGF- 5} )

!The reference point &, may be taken at (or near) the
centroid of P,
2and indeed higher
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of the super Green function
G=6°+6"

is defined by substituting (1) into (3) and perform-
ing the space integration over the hull-panel or the
waterline-segment before the Fourier integration.
Thus, the free-surface component G is given by
the double Fourier integral representation

4m?GF = lin /dﬁ]w i ae ) (4a)
. Temto D+z=s1gu(Df)

where

(X,Y.Z<0)=(£—zo.n— U0, +2)  (4b)

and S is the spectrum function defined as

—— a -
= “fpf{ma, +iB6, +k6,_} (52)

with £ = ek{z—zn]‘d-i[u[.:-zu}-a—;?{y_w” {5b]

The integral representations (1) and (4) of the
free-surface components G¥ and G¥ of the related
Green function G and super Green function G show
that GF is a special case of G¥ corresponding to

S=1

An essential property of the spectrum function (5)
associated with a distribution of singularities is
S§—0 as k=ya?+ 3% —00

As a result, the super Green function G defined
by (4) is not singular in the limit (X,¥,Z) — 0,
unlike GF which has a complex singularity in this
limit. Furthermore, space integration over a hull-
panel or a waterline-segment is incomparably sim-
pler in (5a), where the elementary wave-function
(5b) is infinitely differentiable, than in (3) which in-
volves functions GF and VG¥ singular in the limit
(X,Y,Z) — 0. Thus, the Fourier-Kochin repre-
sentation of super Green functions given by (4)
and (5) effectively circumvents the two previously-
noted fundamental difficulties restricting the utility
of the classical approach based on (1) and (3). In
this usual approach, influence coefficients® in fact
cannot be evaluated with accuracy for field (con-
trol) points in the vicinity of a distribution of sin-
gularities over a waterline segment or a hull-panel
at the free surface. However, the Fourier-Kochin
representation.(4) and (5) makes it possible to eval-
nate influence coefficients in all cases, including the

3which are super Green functions

most difficult and important? case involving a wa-
terline segment or a hull-panel at the free surface.

The space integration (5) in the Fourier-
Kochin representation of super Green functions is
a trivial task, as was already noted. However,
the Fourier integration (4a) is a nontrivial issue.
This critical issue is considered in [3-5| and in a
forthcoming study [6] for an arbitrary spectrum
function S and an arbitrary dispersion function
D, ie. for generic dispersive waves generated by
an arbitrary distribution of singularities. Indeed,
while super Green functions are defined above for
time-harmonic ship waves in deep water, a broad
class of dispersive waves, including steady or time-
harmonic water waves in finite water depth (with
or without forward speed) and internal waves in a
density-stratified fluid, are defined by the generic
Fourier representation (4). The most important
results given in [3] and [5] and in the unpublished
study [6] are summarized here.

Far-field waves

The generic super Green function GF(X,Y) defined
by the Fourier representation

F ‘ r:_t e g e—t(Xa+¥a)
o= i, [ oy ©

is now considered for generic dispersion and am-
plitude functions D and A. We may assume that
the amplitude function A(a,f) in (6) vanishes as
k — oo and does not oscillate rapidly, as follows
from (5). We have

as H=VX?+YZ—o00  (7)

where G represents the far-field waves contained
in GF. The far-field waves G" are given by sin-
gle Fourier integrals along curves, called dispersion
curves, defined by the dispersion relation® D=0 :

“" —tl,\'ﬂ +¥3)
Gt f BT wnu (8a)

ko(XDa+YDp)
o |IVD||
Here, 3~ ,_, means summation over all the disper-
sion curves, ds is the differential element of arc
length of a dispersion curve, |VD|? = D2 + D3
with D, = D/8a and Dg = dD/adp, erf is the

gF oo g'r'r"

with © = sign(Dy)+erf( ) (8b)

4bhecause free-surface effects are largest in this case

5The dispersion relation typically defines several distinct
dispersion curves, although a single dispersion curve may
exist in simple cases; e.g. wave diffraction-radiation without
forward speed
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usual error function, o is a positive real constant
whose role is explained further on, and k. is a ref-
erence wavenumber. The reference wavenumber
k. may be taken equal to the local value of the
wavenumber k at the dispersion curve, although
other reference wavenumbers may be used. E.g.,
for free-surface flows, k. = f? and k. = 1/F? are
proper choices for time-harmonic flows without for-
ward speed and steady flows, respectively.
In the far-field limit H —cc, (8) yields

gWer —t'rroz_o ./D:gs{sign(Df} + sign(X-VD))
Aexpl-i(Xa +YB)/IVD|  (9)

Expressions (9) and (8) , given in [3] and [5] respec-
tively, are asymptotically equivalent Fourier repre-
sentations of the far-field waves G contained in
GF . The radiation condition is satisfied via the sign
function sign(Dy), which stems from the £ — +0
limit in (6). Expression (9) is independent of the
constant  in (8). The far-field Fourier representa-
tion (9) is applied to the important case of time-
harmonic ship waves in deep water in [7]. This
Fourier integral representation of far-field waves in
generic dispersive media can be further approxi-
mated using the method of stationary phase. The
stationary-phase approximation of (9) yields sim-
ple relations, given in [8], between the dispersion
curves associated with the dispersion relation D=0
and important aspects (wavelengths, directions of
wave propagation, phase and group velocities, and
cusp angles) of the corresponding far-field waves.

Wave and local components

In the near field, the super Green function (6) can
be expressed as the sum of a wave component G"
and a local (near-field) component G" :

gF e g'i‘r'+ gN (10)

where GW is given by (8). The positive real con-
stant ¢ in (8) may be chosen so that the local
component GV decays without oscillations, i.e. so
that the wave component G W fully accounts for the
waves included in G¥ in the near field (as well as in
the far field where GV is negligible and G Fri Gw)‘
Thus, both the wave component G¥ and the local
component G in (10) involve the constant o, al-
though the sum GW4GY is of course independent of
o, like the representation (9) of the far-field waves
contained in GF.

The decomposition (10) into wave and local
components is nonunique. The wave component

G in (10) is taken as the representation (9) in (3]
and [4], where a Fourier representation of the corre-
sponding local component GV suited for numerical
evaluation is given. In the present study, the wave
component G" in (10) is taken as the represen-
tation (8) obtained in [5]. The wave component
(9) used in (3] and [4] is a particular case® of the
wave component (8). The integrand of the double
Fourier integral representation of the local compo-
nent GV given in [4] is continuous everywhere but
varies rapidly across a dispersion curve. Here, the
more general expression (8) for the wave compo-
nent is used, and a remarkably simple Fourier rep-
resentation of the corresponding local component
GV is given. The near-field representation of G*
given here is mathematically exact” and is quite
well suited for accurate and efficient numerical eval-
uation. In particular, the integrand of the double
Fourier integral representation of the local compo-
nent GV given further on is continuous everywhere
and varies slowly across a dispersion curve.

Local component

Practical Fourier representations, suited for accu-
rate and efficient numerical evaluation, of the wave
component GV associated with the Fourier rep-
resentation of generic dispersive waves defined by
(6), (10), (8) are given in [6] for generic dispersive
waves and for the specific case of time-harmonic
ship waves. A dispersion relation D=0 may define
several basic types of dispersion curves, including
closed dispersion curves surrounding points (&, 3, )
in the Fourier plane and open dispersion curves.
These various cases are considered in [6]. The
case of a dispersion relation which yields open dis-
persion curves defined by single-valued functions
a = ay;(B) with —oo < § < 0 is considered here.
Steady ship waves and wave diffraction-radiation
by a ship for 7 = Uw/g > +/2/27 = 0.272, are
examples of this type of dispersion curves, called
open dispersion curves of type A. In this case® the
wave and local components in (10) are given by

k.X)]

o
Aexp[—i(Xa+Y3)|/D,

W= —irrz /mdﬁ[sign(DfDa) + erf(
1 -0

Here o and k. are the positive real constant and the
reference number already introduced in (8b). The

SExpression (9) corresponds to the far-field limit H — oo
or the limit o —0 of (8)

Twhereas the representation of GV given in [4] involves
numerical approximations

Sfor which constant-3 lines intersect each dispersion
curve only once
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relation d3/|D,| =ds/||VD|| yields the alternative
expression

w_ _; ; g 5X
GW— W;fr; dssign(Dy) +sign(Do) exf( )]
Aexpl~i (Xa +YB)|/|VD||

The local component GV is given by

g.l'\"= adcﬁe—i'l’;? D;ae-:.\fn(_‘i _z
—oa =T D

3

EfA; )
(a—a;) D3
where A; and DJ stand for the values of the
functions A and D, at the ;" dispersion curve?
a=a;(3), and E is the localizing function

a—0y
-
A‘.‘-"

0.2
EJQ = exp[_ T(

2]

Here k_; is the reference wavenumber attached to
the j** dispersion curve. The integrand of the dou-
ble Fourier integral representation of the local com-
ponent GV is finite at a dispersion curve. Specifi-
cally, we have
A EfA;

AID{—A;D1, /2
D (a-ey)Da

(D3)?

where AZ and D], are the values of A, and D, at
the j*" dispersion curve. Furthermore, the localiz-
ing function £, and consequently the integrand of
the Fourier representation of GV, vary slowly across
a dispersion curve because it is not necessary to use
small values'? of the constant o .

As was already noted, the foregoing Fourier
representation of the super Green function (6) may
be used for open dispersion curves of type A. An
analogous Fourier representation may be used if the
dispersion function D yields one or more disper-
sion curve, called open dispersion curves of type B,
defined by single-valued functions 3 = 3;(a) with
—00 < a < o0o. This Fourier representation of the
super Green function (6) is given in [6] , where sim-
ilar expressions for the case of a closed dispersion
curve and dispersion curves of arbitrary shape are
also given. Applications of these Fourier repre-
sentations of generic dispersive waves to the case
of time-harmonic free-surface flows with forward
speed may also be found in [6].

9E.g., for steady ship waves and wave diffraction-
radiation by a ship for = > {/2/27 = 0.27 we have two
distinct dispersion curves, and therefore j=1,2

1%whereas the representation given in [d] requires thin dis-
persion strips, corresponding to very small values of ¢

as Q—’Q;

Conclusion

The foregoing Fourier representation of the generic
super Green function (6) is remarkable in view of
its generality'!, its simplicity and elegance, and
the fact that it is well suited for accurate and effi-
cient numerical evaluation'?. Also, the decomposi-
tion (10) into wave and local components yields
a natural decomposition of hydrodynamic loads
into added-mass and wave-damping components in
which damping effects are defined by single Fourier
integrals.

Thus, free-surface Green functions, which of-
fer important built-in advantages'?, can be used
as effectively as simple Rankine sources. E.g., free-
surface Green functions can be used in a calculation
method based on linearization about the double-
body flow!?, and to couple a nonlinear and/or vis-
cous near-field calculation method and a far-field
potential-flow representation [9].
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Computation of impulse response function using differential
properties of the time-domain Green function.

A.H. CLEMENT

ECOLE CENTRALE de NANTES
Laboratoire de Mécanique des Fluides - division Hydrodynamique Navale
b CNRS URA 1217, E.C.N , Nantes, FRANCE

In this paper, three methods for evaluating the time-domain Green function
during BEM computations of impulse response functions of floating bodies are
compared, in terms of cpu time performances. The impulsive wave radiation
problem is solved in the general frame of linear free-surface potential flow. The
comparison is made by considering a single degree of freedom, say heave motion,
without loss of generality.
A body of wetted surface C, in equilibrium on the fluid at rest, is given at ¢=0 an
impulsive motion defined by a step velocity. We shall work here on the heave
motion: V,=zH() . The resulting velocity potential is the solution of the
Fredholm-Volterra integral equation :
‘”A;'T)—jjccb(M'.Tl%Gn(M’,M) dc=  ~HD|] Gy, Min, (M) dc
T (1)
~[dT [ FoM, 7", M,0)n,(M"dC +_[TdT'”_dh(M‘,T‘)—i;—_F(M’,T‘.M.THC
3 fis ) ¢ an

where the Green function is given by :

G(M’,t’,M.t]=-;1;[6(!-:')G(,(M‘,M)»fH(:-f')?(M’.r‘,M,H] : GUEM‘.M)=[%-RLJ (2-a/b)
1
and : :F(M',:',M,c)=F(r,(z+z'),u-z’n=2L:J‘,(Kr1e"“”"-.ff?sin-.f?u—:'}dK (2-c)

The term (2-b) is the impulsive part of the function, whereas (2-c) is generally
referred to as the memory part.

Since the early eighties, several authors have proposed numerical algorithms for
the solution of the above 3D problem, or some variant (Liapis 1986, King 1987,
Kormeyer 1988, Magee 1991, Bingham 1994,...). In his program, Ferrant (1988) used a
zeroth order direct BEM method. His computer code was used as a basis in the
present study; it was adapted to take into account the new computational
techniques for the Green function. Let us briefly summarize here the main
features of the code. The body surface C is discretized into plane triangular or
quadrilateral panels C;. Sources of constant density o=d®/on, and dipoles of

constant density u(=-®) are distributed over the panels. The source strength ¢,
on each panel is known through the body no-flux boundary condition. Denoting :

k) A y

D‘f”‘CJ_‘;G“(M‘.,Mj) dc; s,-j_J‘ijGu(M,-,Mj) dc; @3)
T F(M;,0,M di; (T) = d_p(M;,0,M;,T)X

s ):”C) (M,0,M;,T)C; i _”CJ—: HOM;THC; (4)

the continuous integral equation (1) degenerates into a discrete finite order
algebraic system :
Vil T
[Dy ][] = -H @[S, [0, )] - [dT s, (T, @]+ [ dT [dy(T = T |[p1, (7] (5)

0 0
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Coefficient matrices [D;] and [S;] (3) are computed by the classical Hess et Smith

formula. Since they are time independent, they are evaluated once for all, and
the first one is inverted at the onset by a gaussian procedure. The solution at
each time step is then obtained by a simple matrix product after updating the
RHS. It requires the computation of convolution products of the past solution
with the Green function and its gradient [see (5)]. The matrices s; and d; must
be evaluated at each time step, and stored in order to compute the kernel of the
convolution integral from 0 to the current time ¢. This is the main burden in this
kind of time-domain computations, and the most time consuming.

The original expression (2) is not well suited for numerical evaluation; then, in
the eighties, several authors (Jami 1981, Liapis 1986, King 1987, Newman 1985-1992,...)
developed numerical procedures based on: series or asymptotic expansions, Filon
quadratures, recursive relations,... The first method to be implemented in our
code was based on these formulas (King (1987)); it will be referred to as “series
expansions method" in the sequel.

The second numerical method for the evaluation of the Green function memory
term (2-c) is based on a bi-linear interpolation in a pre-computed table. (Ferrant
1988b, Magee & Beck 1989). This is made possible by the change of variable 1 = KR, in

(2-c) yielding: Fir,z,t)=2R"" [ 3,4 1-p?)e ™ VA sin(VAt)da , (6)
where the integral is a function of only two "natural variables": u=-z/R, ,

r=t/\R, . This second method, which was already implemented in the original
code, will be denoted: “tabulation method” in the following.

At the last Workshop in Marseille (Clément 1997), we gave a third alternative way
to compute the time-domain Green function and its gradient. It is based on a
general lemma (Clément 1998) which establishes that these functions satisfy very
simple fourth order Ordinary Differential Equation (ODE). It was shown for
instance that F(r,Z,¢), is a solution of:
i P e P*F TtaF 9

(r2+22}?—Zt?+[7—42]§2—+—4—§+zf‘=0 (7]
The spatial derivatives of F satisfy similar ODE, differing only by their numerical
coefficients. Then, since the time grows monotonously in the time stepping
methods considered, these functions may be computed "in-line" by integrating
the ODE with respect to the time variable using standard algorithms like Runge-
Kutta or predictor-corrector. In the present study, second and fourth order
Runge-Kutta methods where tested. (see Fig.3).
The integrals over the panels (4) may then be computed by Gauss point
quadratures rules. Both the one point and the four points rules were tested; it
was found that, for a given final accuracy, the single point algorithm which
requires a finer meshing, was relatively more efficient than the four points, due
to a better approximation of the Rankine part of the solution. We therefore kept
this one point integration rule in all the computations reported herein.
The impulsive hydrodynamic forces are finally computed as:

My(T)= [[_ @&,(M",T)n,(M"MC Ly(T)= jjc% @, (M, T)n,(M"XdC (8)
IRF of a heaving hemisphere.

As a test case to compare the three above mentioned methods, we began with the
simple problem of the heaving hemisphere.
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Fig 1: Floating hemisphere : a 4x49 panels mesh.

The responses functions My, (T) and Lg,(T) resulting from a step vertical velocity
are computed. A typical result for 0<t<20 is plotted in figure 2. Convergence with
the mesh size was investigated by varying systematically the number of panels.
It was found that the mesh illustrated by Figure 1 above (i.e 4x7x7 panels) gave
results converged to within 1% in the vicinity of +=1.475, where L,,(T) reaches its
maximum value.

The oscillations observed in the tail of the response, for t>6, are the time-domain
counterpart of the well known “irregular frequencies”, and arise from the same
origin. Since we were mainly interested here in cpu time statistics, we did not
tried to suppress this phenomenon by the help of the usual dedicated methods.
This point is left for a further study.

Let us now compare the epu time required by the three methods of Green
function evaluation (Fig.3). The
numerical process of the con-
volution integral suggests a L
quadratic growth of the comput-  4[

2 0.4

CM33
il

TNt Sl

0.3
ing time. Such a behaviour was :
observed with both the tabulation 4
and the ODE methods, whereas 16 02
the series expansion method pre- & ] =
sents two different regimes. For E ] 5

t<18, we observe a quasi-linear 14 0.1
growth of the cpu-time. In this
area, the Green function is
evaluated by series expansion or

by Filon quadrature, according to

I

the relative position of source and ‘-' SN S ST | N .:m
field points. These methods are . 2 TINE 18 '

far more time consuming than the

asymptotic expansion which is Fig.2: time-domain “added mass” My3(T) , and
used when r>14. When all the impulse response function Lyy(7'). dt=0.025, 4x49
couples of points satisfy this panels.

conditions, the program speeds up

and a quadratic behaviour is recovered. The benefit of using the ODE method is
clearly illustrated by Figure 3. One should notice that these curves correspond to
quite long simulations. In the present case of the heaving hemisphere, a
simulation up to ¢=20 should be sufficient from a practical point of view (see Fig.2).
It would result in the computing time shown in the table below, when using a
DEC Alpha 500 workstation, at 330MHz.
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N Time steps
400 BOO 1200 1600

2000

4000 T T T T

Further results for other differ-
ent floating bodies, including the
ISSC TLP platform, will be given
at the conference.

METHODS

series expansion

— = bulation

———  [Diff. equations RK4

2000 [~

CPU (sec)

1000

This first application of the
differential properties of the
time-domain Green function is

” v encouragi inan i
Y/ N — Diff equations RK2 |~ ery aging, umerical

point of view, and we recommend
to use this powerful approach
whenever a numerical evaluation
of this function, or its spatial
derivatives, is needed.

Other applications of the above
mentioned Green function ODE,
in the time-domain and in the

Process Time

Fig.3 : Floating hemisphere. (4x49 panels); cpu time

requirement

Method
series

cpu-time (sec.)
3398

tabulation | 413 (=1/8)

ODE RK4 211 (=1/16)

ODE RK2 | 104 (=1/33)
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A Fully 3-d Rankine Method for Ship Seakeeping

Heike Cramer, Volker Bertram (TU Hamburg-Harburg)
Gerhard Thiart (Univ. of Stellenbosch)

We will present here a 'fully’ three-dimensional Rankine panel method, capturing both the steady
and the time-harmonic potentials three-dimensionally. Our method captures all forward-speed effects,
namely - in addition to the change in encounter frequency — dynamic trim and sinkage, steady wave
profile (average wetted surface) and the steady wave elevation on the free surface, and local the steady
flow field

We consider a ship with average speed U in a regular wave of small amplitude . The boundary
conditions will be linearized with respect to h. The method will only be outlined here. Bertram
(1996,1998) give more details, We limit ourselves to cases where 7 > 0.25. Then only downstream
waves will be created by the ship. We solve the problem in the frequency domain using an indirect
Rankine singularity method, i.e. solving for source strengths as unknowns. The elements are first-
order elements (plane and constant strength).

The problem is formulated in right-handed Cartesian coordinate systems. The inertial Ozyz system
moves uniformly with velocity U. @ points forward, 2 downwards. The Ozyz system is fixed at the
ship and follows its motions. When the ship is at rest position, z, y, z coincide with =, y, z. The
rigid body motion expressed in the motion vector i = {uy,u2,u3}" and the rotational motion vector
@ = {uq,us, u6}T = {a1,az,05}7. All motions are assumed to be of first order small.

A perturbation formulation for the potential is used omitting higher-order terms:
¢ = ¢ 4 ol1) (1)

#{9) is the steady contribution and (1) the time-harmonic contribution proportional to h. We describe
the elevation of the free surface ¢ in a similar form as the potential where we specify explicitly that
quantities are time-harmonic in encounter frequency we:

Q‘;“’{;r. Y25 f} = (ﬁ{u](;t.’. U, .’:) + ¢“)[$, Y, %5 f) = ¢{0}(_J"v Y, Z}-'l' Re(é(”(i‘s Y,y Z)B‘-WJ) f2)
¢!z, u;t) CO(z,y) + ¢V, y;t) = ¢z, y) + Re((W(z, y)e™") (3)

1]

The symbol ~ denotes generally the complex amplitude of a time-harmonic quantity. The harmonic
potential ¢(1) is decomposed into the potential of the incident wave ¢, the diffraction potential 49,
and 6 radiation potentials:

6
o) = ¢? 4 6% + ) d'u; (4)
i=1

The steady potential ¢(°) can be computed by a 'fully nonlinear’ wave resistance program which yields
also second derivatives of the potential using higher-order panels on the hull. The potential of the
incident wave ¢" is also known as usual. So the remaining unknowns are the diffraction and (unit
motion) radiation potentials. These are determined by solving the Laplace equation subject to the
boundary conditions:

At the average free surface (2 = ¢(0)):
(—w? + Biw,)oW + ((2iw, + B)V® +a© + a)vé") + v (Vev)veld = o (5)

i=(VeOV)Ve®, @ =id- {0,0,9)7, B = —(1/a})5=(Vo)ar).
On the ship hull S(Z) = 0, using m = (AV )V O

AV + G — iwe) + G(Z X (1 — iw,id) + i X Vo{V) =0 (6)
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The ’shifting’ technique developed originally for the steady wave-resistance case can be adapted
without problems to the time-harmonic problem and fulfills also automatically the open-boundary
condition (no reflection at the downstream boundary).

Incident wave and diffraction potentials are decomposed into symmetrical and antimetrical compo-
nents. Boundary conditions (4) and (5) then form systems of linear equations in the source strengths
for the 8 unknown potentials (6%%, 344, &' i = 1...6). The four symmetrical (likewise the four anti-
metrical) systems of equations share the same coefficient matrix with only the r.h.s. being different,
All four cases are solved simultaneously using Gauss elimination. Then the computation of all po-
tentials and their derivatives at all collocation points is straight-forward. But for the total potential,
the so-far unknown motion amplitudes still need to be determined. The expressions for this final step
are derived in principle from ‘force = mass - acceleration’ to:

m(ii+ 6 x £,) = —ﬁxé+[{p‘”—p{ﬁaﬂ+a(gxa'ﬂ))}ﬁd§ (7)
‘E[U]
m(Z, x @)+ I = —i.'gx(&'x(?}i—[{p‘”—p{iﬁ”+a"(§x&'9))}{ix ii) dS (8)

5(0)

p‘Y) is the total unsteady pressure. G = {0,0, mg}” is the ship’s weight, m the displacement mass, £,
the center of gravity, I the matrix of mass inertia moments with respect to the origin of the ship-fixed
system. Eqs.(7) and (8) yield a system of linear equations for u; (i = 1,...,6) which is quickly solved

by Gauss elimination.

We added recently an ad hoc correction to account for the propulsion characteristics. Thrust and
resistance forces acting on the ship are affected by the motions. One could include thrust and
resistance vectors similar to the weight vector G to account for all motions. However, the main effect
comes from surge motions in long waves and this allows a somewhat simpler treatment. Surge motions
change the longitudinal velocity of the ship. Correspondingly changed resistance and propulsion
characteristics of the ship will induce considerable damping of surge motions especially for long waves.
Also the local orbital velocity of the waves may have some influence. Inclusion of these effects yields,
Bertram and Thiart (1998):

(1=)Th — R = ((1 = )i — w)T} = R')in — (1= t)(1 — w)Th($4(Z,) + ¢2(Z,)) + Bais R’ (9)

T;, R' are derivatives of thrust and resistance with respect to speed, ¢ thrust deduction fraction ¢, w
Taylor wake fraction. These are approximated by empirical formulas. #3;; approximates the influence
of the orbital velocity averaging over the wetted surface of the ship:

Baif = m} /(¢w+¢>, ds (10)

50

Eq.(9) is added as correction on the r.h.s. of the first component of vector eq.(7). The i,; term can
be interpreted as surge damping, the remaining terms contribute to the exciting surge force.

We present results for the 5-175 ITTC containership at F,, = 0.275. The hull was discretized by
631 elements. The hull was modified in the aft region by integrating the rudder into the hull. For
symmetric motions, this will have only negligible effect, but for antimetric motions this should capture
the physics better than omitting the rudder totally. In a first step, the nonlinear wave-resistance
problem was solved to determine the steady potential and its derivatives. The same discretized hull
model was used for the seakeeping computations. The grid on the free surface had then about 1300
elements for each case. Fig.l shows the RAOs for motions in head waves. The results of our panel
method agree generally very well with experiments. The surge motions for low frequencies are still
computed somewhat higher than measured. The reason is unclear, but could lie in nonlinear effects or
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margins of errors in the experiments. We also show results for the same grids, but with the classical
steady-flow approximation, i.e. no trim and sinkage, flat free surface, uniform flow, and integration
only to the calm-waterline. This approximation yields differences in the heave and pitch motions of
up to 20% for medium wave lengths. Similar effects were observed for a Series-60 ship by Bertram
(1997). '
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Fig.1: RAOs for §-175, p = 180°, F, = 0.275; e experiment, o Rankine panel method (RPM) with
all forward-speed effects, ¥ RPM with classical uniform flow approximation.
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Multiple-body Simulations Esing a Higher-Order Panel
Code

Donald Danmeier !

Formulation

Potential theory is used to formulate an initial-boundary value problem (IBVP) directly in
the time domain. The free-surface is linearized about its calm position, but the exact body
boundary condition is imposed on its instantaneous position. Thus, we allow large-amplitude
motions, but the waves generated by the body must be small. Assuming an ideal fluid and
irrotational flow, the these boundary condition and are:

Gy +9P. =0 on Z=0 (1)
&, = (U —Veg) i on B(t). (2)

Here, B(t) is the instantaneous body surface, with velocity 7. The incident potential is ¢,
and ® represents the disturbance due to the presence of the body. The Z = 0 plane lies at
the mean sea level.

Global forces on the body are found from direct pressure integration.

F= _p/f (@, A %vw VU +gZ) iidS + §f Ui dl (3)
Bit) = JI(t)

where, I'(t) represents the waterline, and the potential of the total flow is ¥ = ® + . The
quadratic terms from Bernoulli’s expression and the waterline contribution may be loosely
thought of ‘second-order’ effects due to a ‘first-order’ solution, and are the leading-order
contributors to the steady drift force.

In order to facilitate a solution, Green’s theorem is used to recast the above IBVP into
an integral equation.

2
2nd + j[ (®GE — G°®,) dS = [ dr ff (®H, — H,,)dS (4)
Bt) o B(r)
-
4 f dr f (®H,, — H,®,) Uy - figadl
9Ja r(r)

where, G° and H are, respectively, the Rankine and wave parts of the transient free-surface
Green function. U4 and fiyq are projections of the body’s velocity and normal vector onto

the XY plane,

Numerical Solution

We use higher-order panel methods to efficiently solve the integral equation. The body
surface and velocity potential are mapped to a square parametric plane via the B-spline
basis. A Galerkin procedure gives a linear system of equations. The success of this B-spline
based panel method in the frequency domain has been demonstrated by Maniar [1] [2]. A
major advantage of the method is the ability to analytically differentiate the solution, and
we exploit this by including the (V® - V@) term in the Bernoulli pressure.

The results presented in this abstract only include horizontal modes, however, if our
finite-amplitude simulations include vertical motion, the body needs to be remeshed at every
time step. In these cases, an automated marching algorithm detects the body/free-surface
intersection in the parametric plane. We then produce new B-spline coefficients for the
portion of the body below the mean free-surface by a least-square fit.

! Department of Ocean Engineering, MIT, USA (danmeier@imit.edu)

Abstracts: 13th International Workshop on Water Waves and Floating Bodies




Abstracts: 13th International Workshop on Water Waves and Floating Bodies 29

N-body Simulation

Hydrodynamic interactions may greatly change wave loads when multiple bodies operate
in close proximity. Ohkusu [3] examined the motions of a ship in the neighborhood of an
offshore structure. His ship-structure system included a large moored cylindrical structure
with a horizontal axis. The floating ship lies parallel to the structure’s longitudinal axis
and is subject to monochromatic beam waves. Ohkusu looked at how the fixed structure
influenced the wave-frequency motions, as well as the drift force on the freely floating ship.
At certain wavelength/separation conditions, his calculations predicted the npwave drift of
the ship observed during model testing. We will use the finite-amplitude IBVP formulation
to study the hydrodynamic interactions of two truncated circular cylinders.

Figure 1 shows two identical truncated circular cylinders, with planar waves incident in
the —z direction. The upwave cylinder is free to move in surge, but the downwave body is
fixed. The initial separation between centers is 2d = 5, and the cylinders have unit radius
and draft. From Ohkusu’s experience, we may expect the fixed cylinder to repel the floating
body at some critical spacing. In order to confirm this prediction, the 3D frequency domain
panel code WAMIT is used to calculate the mean force on the upwave cylinder for a variety
of wave frequencies. Results from three different separation distances are given in Figure 2.
From this preliminary computation, we see that negative drift forces arise for a range of
wavelength /spacing values.

Results from the finite-amplitude simulation are shown in Figure 3. The large initial
separation produces weak interaction effects, but the hydrodynamic coupling grows as the
free cylinder drifts downwave. After several wave periods, the upwave cylinder experiences
a negative drift force and is repelled from the fixed cylinder. Note that the body's acceler-
ation and velocity are O(e), but its motions are (1) in magnitude. This requires an exact
treatment of the body boundary condition. The steady flow induced by the slow drift is of
secondary interest, since the diffraction field produces the strong interactions effects. For this
reason, a linear free-surface boundary condition captures the hydrodynamics to the desired
accuracy.
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Figure 1: Two interacting cylinders with unit radii and draft. Distance between centers is 5.
Waves in —z direction. Upwave cylinder is free in surge, downwave body is fixed.
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Figure 2: Mean drift force on upwave cylinder calculated from WAMIT, Non-dimensional
force is F = m_f‘-’ﬁ‘ where A is incident wave amplitude and R is radius of cylinder.
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WATER ENTRY OF A WEDGE INTO A CHANNEL

Odd M. Faltinsen' and Rong Zhao®
! Norw. Univ. of Science and Techn., N-7034 Trondheim, Norway
*MARINTEK, 7002 Trondheim, Norway

Full scale experiments of wetdeck slamming on a high-speed catamaran have demonstrated that
significant local stresses can occur [1]. The wetdeck has a wedge-like cross-section. The deadrise angles
are between 5° and 15° in the impact areas. This implies that local hydroelastic effects are not
dominant. Strains in longitudinal stiffeners between transverse stiffeners were measured. What is
important for the local strains is not the peak pressures by themselves, but representative spatially
averaged pressures during the impact. Significant global accelerations of the vessel occurred during the
impact. A consequence is reduced water entry velocities.There are several uncertainties associated with
estimation of the experimental water entry velocities. An example is determination of the incident flow
velocities to the wetdeck. This is affected by the side hulls. The objective is to develop a theoretical
method that can estimate the side-hull effect. Since the local rise up of the water at the wetdeck is
important, the local flow at the intersection between the water and the wetdeck must be accurately
described.

Consider a cross-section of a catamaran with wedge-formed side hulls and wetdeck. During water
entry of the wetdeck the free surface condition =0 is satisfied at horizontal lines from the intersection
points between the free surface and the wetdeck. Cross-flow past the side hulls is neglected. The channel
flow presented in Fig. 1 describes the instantaneous flow at the wetdeck. The line A_ E_ represents the
centerline of the catamaran cross-section. The straight line from L_to F_ is the center line of a side
hull. The free surface condition ¢=0 is satisfied at the line CH. The velocity V at the far ends of the
channel can be interpreted as the instantaneous water entry velocity. We will first limit ourselves to y=0,
i.e. the side hulls are vertical plates. The deadrise angle P of the wetdeck is assumed small. B can be
approximated as zero in the solution of the instantaneous flow. Analytical expressions can to a large
extent be derived.

By defining z as the physical complex plane and introducing ¢ as an auxilliary complex plane, it
follows by Schwartz-Christoffel transformation that

dg/d=-i(Um)(C+e); ' +1) A(Ce?) " ()
The complex velocity potential is
w=d+iy=-V(U/m)log(-C/c) (2)

Here {=-1, -c and -c 2 correspond to respectively B, C and D in Fig. 1. Further (=0 represents E_ F .
i is the complex unit and ¢ is the maximum breadth of the channel. Eq. (1) gives for x between B and C
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Fig. 1 Channel flow representing instantaneous flow during water entry of the wetdeck.
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x:i sin ’[ __7{—0.5( i) —sin ! Oi5tite yre il teYre’ll , —l<f<~c (3)
m 0.5(1-¢?) 0.5(1-¢?)

The corresponding velocity potential is given by Eq. (2) . It follows from Eqg. (3) that the half beam a

of the wetdeck at the instantaneous water line can be related to ¢ by

e=(1-sin(0.57a/t))/(1 +sin(0.5mwa/l) (4)

We need the vertical velocity v at the free surface in predicting the instantaneous water line. The water
line is at (=ce™® with 0<6<m. We find from Egs. (1) and (2) that

v=V(c2+2ccos0+1)2(2¢(cosO +1)) "2 by
cos® =-{0.25(1-c)¥c+sin(m(x+a)/t)(1-¢) ¢ "Z+(1-0.25(1 —c)c)cos(n(x+a)/t)} (6)
Eq. (5) is singular at x=-a. When x~-a,

v=V(0.5(1-¢) e "2Im)' 2 (~(x+a)) '? D

The intersection point x=-a as a function of time is found similarly as in [2]. One first determine the
intersection points and then find the time it takes for the free surface to move from one intersection point
to the next. In the very near vicinity of x=-a, Eq. (7) is used to integrate partly analytically the path of
a free surface particle.

The solution is inconvenient if (/a is large. Instead a far-field approach is followed when (/a>3
and used as a starting condition for the complete soluti on. The far-field solution considers an image
system of a horizontal plate with length 2a and centre x=0, y=0 about the vertical walls x=x{. This
means cross-flow past an infinite number of horizontal plates in the free surface. The individual plates
have equal length 2a, There is a constant horizontal distance 20 between the centres of two adjacent
plates. The vertical velocity at the centre x=0, y=0 of the real plate induced by the image plates can be
represented as an infinite series with sum V(0.5ma/0)?/6. We concentrate now on the real plate and
follow Wagner's analysis for water entry of a wedge in infinite free surface (Ch. 9 in [3]). We write
V=V,+V,1, where V, represents the acceleration and =0 corresponds to initial impact time. The
integral equation that determines the intersection point x=-a between free surface and body surface is

1xl

tanB|x| = [ 21(@)da 2
o Vx*-a?
Further
l.l[g'): V( | +(0»5ﬂ:(hm )zfﬁ}dﬂdﬂ (9)

Since solution of Eq. (8) is p(a)=2tanf/m, solution of Eq. (9) is
2ktanf tan ’(afk)='rt(‘4,:+0.5‘u’l.'1] (10)

where k=2,/61/7. Eq. (10) determines  as a function of time. The free surface elevation 1 and vertical
free surface velocity v are

n=2|x|tanBsin ' (a/|x|)/n (1D

v=V(1+(0.5malt)?/6)|x|(x*-a?)*? (12)




34 Abstracts: 13th International Workshop on Water Waves and Floating Bodies

When the complete theory is started, Eqgs. (11) and (12) are used as initial conditions.
The pressure p on the wedge is found from pdd/dr, where p is the mass density of water. The
far-field solution gives

plp=V,(VIV)(a?-x*)"2+V (daldt) a((0.5malty(a?-x*)"213 + (V/IV)(a®-x?)"'?) (13)

where V/V=1 +(0.5malt)*/6. Eq. (13) can be analytically integrated to obtain space-averaged pressures
and total force. The space-averaged pressure in the complete theory is obtained by first numerically
integrating ¢ from x. to «x, , for each time step and then numerically time differentiate this expression.
The total vertical force F can also be expressed as d(a,,V)/dt where a,, is the vertical added mass of
the plate. a,, can be analytically expressed [4]. It follows that

Fip ==V, 40°m 'Incos(0.5ma/t) +20 VEC" tan(0.5ma/l)/tanp (14)

where the wetting factor C, =a - tanP/d(t) and d(r)=vu:+o.5v,:2. Non-dimensional force, space-
averaged pressure and time are introduced. Ftan’B/(pV?d(r)) and p, tanB/(0.5pV?) are presented as
“function of d(t)/(a, tanP). a means maximum value ofa. When V=V, non-dimensional force
and pressure will only depend on /a__ . Resul's are shown in Fig. 2 for 0/a_ between 1.2 and 2.0
Ftan®  p,, tanp
pVad(t), 0.5pV?
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Fig. 2 Non-dimensional force F, space-averaged pressure p_ and wetting factor € as a function
of non-dimensional time during water entry of a wedge. Constant entry velocity V.

together with the wetting factor C, . The pressure is averaged from x=a_ /3 to 2a__ /3. There is
a small jump in the force when the complete theory is started. This is not noticeable in the figure. The
similar behaviour of the far-field solution and the complete theory represents a good verification test.
When time goes to zero, the non-dimensional force is /4. When Efam-l and the water is at a .o
the force goes to infinity. This can be seen from the last term in Eq. (14). The factor tan(0.5ma/l)
behaves like (l-a)' when a-0. The singular behaviour of the force will be stronger since C,
increases when a-(. The increase of C, is caused by meicased fluid velocities at the free surface when
a-0. A large force on the wetdeck means a large acceleration of the catamaran and a subsequent drop
in the impact velocities. This implies that the actual force is not infinite. The space-averaged pressure
has a peak, then drops and increases again. The peak occurs when the spray root of the jet (x-a) is
at x=x, , . The far-field solution is then a good approximation. The later increase is caused by decreased
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(/a-values. The first peak of the non-dimensional pressure is of main concern in the structural analysis.
The reasons are the decreasing entry velocity during the water entry and that maximum pressure can be
approximated by the pressure term presented in Fig 2. There is an additional pressure term proportional
to the acceleration V. Since V, is negative, this “added mass™ pressure causes a pressure reduction
and can as time goes on provide a negative total pressure.

The presented expressions do not describe the jet flow (spray) at the body surface. However, since
the velocity potential has a square root singularity, we can match with the inner 2-D jet flow solution
by Wagner [5]. The far-field solution gives a jet thickness =0.5atan’p/m . The complete theory gives
&=(Vidaldt)* (1-¢)i/(8y/c). Fig. 2 gives a anddaldt from C, . Eq. (5) determines c.

The previous procedure cannot be used for finite interior half angle y of the side hulls. y was about
25° at one of the tested impact areas. The side hull effect can be examined by setting =m/2 in Fig. 1
and using a Schwartz-Christoffel transformation. G, H and K in Fig. | correspond to respectively ¢?, ¢
and | in the ¢-plane. On the free surface C=ce(0<B<m), dx/dO=(1/m)(2¢(] ~cos0)/(c?-2ecosO +1))1"
and the vertical velocity v=V(0/1)d/dx. ¢ can be related to the x-value of H by integrating dx/df from
0=0to 7. v at x=0 is a good measure of the incident velocity to the wetdeck. The instantaneous draft
D(r) of the side hull was about [ at initial time of impact. Results of v/Vare presented in Fig. 3 and
show the importance of the side hulls for finite y-values. v, means v at x=0. If the wetdeck is introduced
into the analysis, the flow around the wetdeck is influenced by the side hulls. The results in the first part
of the paper can be used to judge the importance of this effect. However, all effects can be combined
simultaneously. The Schwartz-Christoffel transformation requires then four parameters that have to be
related to physical coordinates. A complete solution will be presented and verified with the more

analytically based results presented in this paper.

m= N
el
Fig. 3 Influence of side hulls on water entry velocity.

A simplified procedure where the instantaneous flow picture for y=0, B=0 and finite y, B=m/2
were combined, has been used to predict the structural loads in the wetdeck. A procedure like this can
predict similar maximum strains as measured by [1]. However, since the flow was not measured, errors
in estimates of incident wave velocities cause errors in water entry velocities and structural loads. A
numerical method that should predict also the water entry velocities must include the non-linear effects
due to side hulls and the wetdeck on global vessel accelerations.
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On the generation of wave free oscillatory bodies
and of trapped modes

E. Fontaine and M.P. Tulin

University of California, Ocean Engineering Laboratory, Santa Barbara CA 93106-1080.

1 Introduction

The motion of bodies piercing a free surface
in the presence of gravity usually leads to the
formation of waves on the surface, which prop-
agate away from the body. In this paper, we
explore within the framework of first order po-
tential flow theory, the existence of wave-free
two dimensional flows past surface piercing os-
cillating bodies. The shape of the body is found
by constructing a wave free potential which de-
cays to zero at infinity and interpreting some of
its streamlines as body boundaries. Two differ-
ent. general techniques can be used fo construct
such a potential. First, through phase cancel-
lation of the wave fields due to discrete singu-
larities with appropriate spacings. For exam-
ple, Mclver (1997) considers two sources sepa-
rated by half a critical wavelength. There ex-
ists then a relation between the characteristic
length of the body shape and the critical wave
frequency. The use of this method is thus limited
to higher frequencies. Another technique, intro-
duced by Tulin (1976, 1982) in connection with
ship waves, is based on the use of wave-free com-
pound singularities. It has been successfully ap-
plied in three-dimensions for the minimization of
ship wave resistance by Tulin & Oshri (1994). A
portion of Tulin’s results were re-discovered and
applied by Tuck (1992). In this paper, we apply
this technique to the seakeeping problem in or-
der to find shapes of bodies that do not generate
waves while oscillating at a given frequency. It is
also shown how body shapes that generate the so
called “trapped modes” can be derived using this
theory. Simple examples are considered here us-
ing a single wave-free compound singularity, but
results for singularity distributions, which can be
interpreted in terms of body volume and verti-

cal force distributions, can also be derived nsing
the same basic ideas. These results can also be
extended in three-dimensions as carried out by
Tulin in the case of bodies in uniform streams.

2 Wave-free compound
singularities

Figure 1: Geometric definitions.

We consider the two-dimensional case of a sur-
face piercing body oscillating with pulsation w in
heave, sway and roll (see. fig.1). The variables
are non-dimensionalized using 1/w as the time
scale and g/w? as the length scale, where g is the
acceleration due to gravity

. Wiz - w'zy "

T=—, y=—: T=uwit,
g g9

4 w2n - w"‘qi:

n=—, b=— 1
5 ) (1)

The complex potential
U =[p+ip]ed = [Th(2) + Ty(2)] e (2)

is considered as the sum of a hard singularity
system, W,, generating only horizontal veloci-
ties on the free surface, and a soft system W,
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which generates only vertical velocities on the
free surface. W, and U, are defined so that'
S [w:ﬁ]y=l)] = S( [‘ph]yﬁﬂ) = 0 and R( [\I’;ly‘:@) =
R([¥s]y=0) = 0. It follows that the complex po-
tential ¥ will satisfy the linearized free surface
boundary condition

R([¥ —i0]y=0)=0 (3)

provided that EH([‘P;, —1 \I’l;.!”:l]) = (), This last

relation is verified by simply choosing
W, =i, (4)

Finally, the compound singularity defined by
= (le + 14 lI';}lr:”‘_ satisfies the free surface
boundary condition and is wave free. Simple
wave-free compound systems can be constructed
directly using soft systems based on standard sin-
gularities such as sources and vortices, centered
about a fixed point and its image (see Tulin,
1994). On the other hand, soft systems can be
obtained from the hard ones, and vice et versa,
by using (4). It can also be checked that if ¥, is
a soft system, then its derivatives also represent
soft systems. There is therefore a wide range of
possibilities for the choice of the wave-free po-
tential. Given the potential generated by a real
oscillating body, the body shape must be deter-
mined.

3 Generation of wave-free oscil-
lating bodies and of trapped
modes

We now look for body shapes that would gen-
erate, while oscillating, the wave-free flow de-
scribed by a given complex potential ¥. The os-
cillations of the body are given by V = g Vo/w e
for heave, U = g Up/w et for sway and Q2 =
wS e for roll. Using 7 = f(6) as a parame-
terization for the shape of the body, the body
boundary condition is written as

(,)—(p=(U€,+V€y+Slé'sz]-ﬁ (5)
dn
where 7i = —&, + 1/f - df /df & is the normal to
the body. This leads to the following differential

'the notation R and 9 stands for real and imaginary
parts of a complex number. ¥ indicate a derivation of
analytic function ¥ with respect to the complex variable

F=z+ig=re’

equation for f

= (6)
where

N(7,68) = cos(pz — Uy +7Qsind) (7)
+sin@ (¢ — Vo — 7 Qo cos 6),
and
D7, 0) = —sind(gz — Uy +7Qsing) (8)
+{:(159{Q7:,;. — Vo — T Qg cosd).

Families of body shapes that do not generate
waves at a given frequency while oscillating with
velocities [y, Vo, 2y can therefore be constructed
by numerical integration of equation (6), start-
ing from different initial conditions. Of course in
our linear approximation, the amplitude of body
motion must remain small when compared to the
characteristic length describing the body shape.

On the other hand, bodies which would not
oscillate in the presence of an oscillating free sur-
face perturbation must obey the same differen-
tial equation (6) with Up = Vo = Qg = 0, which
may also be recognized as the equation of stream
lines in polar coordinates. These bodies there-
fore generate the so called “trapped modes”. It
is therefore expected that resonance phenomena
oceur while oscillating these bodies. This leads
to non-uniqueness of the solution and infinite
added mass, Mclver (1997).

For the examples presented below, the integra-
tion has performed using a standard fourth order
Runge Kutta algorithm with adaptation of the
incremental step to the solution.

4 Simple examples

As an illustration of the previous ideas, we now
look for symmetric bodies that do not generate
waves while oscillating at a given frequency in
heave. The velocity field has to satisfy the sym-
metry condition ¢z (F,m — 0) = —s (7,0) and
oy (7, m — 0) = ¢ (7, 0) so that the shape of the
body obtained by integrating (6) remains sym-
metric. A simple wave-free compound singular-
ity centered at z = 0 which satisfies this condi-
tion is given by

Bl (et ;—2] R(e') (9)

b | ==
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which leads for the free surface elevation n =
—asin(t)/z2. The oscillations of the body there-
fore generate an evanescent free surface deforma-
tion.”

Considering « as a parameter, a family of Hat
bottom bodies can be found (see fig. 2) starting
from initial conditions # = —n /2, f = —1y where
i is the only real root of equation —(Vp/a) i3 +
g+ 2 =0 (a > 0). Let us denote xy the half
width of the flat body at the waterline. For each
value of o, two additional one parameter families
can be obtained, starting from initial conditions
8 =0, f = fo. For fo > &g, body shapes are
wine glass like and extend down to —oo (see fig.
3) while for fy < Tg, twin hull closed bodies are
obtained. For the resonant problem, a family of
twin hull bodies is obtained (fig. 4).

We now consider the case of a forced roll mo-
tion, i.e. Up = Vg = 0. In order to respect the
symmetry condition, the velocity field has to sat-
isfy ¢z (7, — 0) = ¢z (7, 0) and ¢; (7,7 — 0) =
-—ff),} (r,6). A simple wave-free compound singu-
larity centered at z = 0 satisfying this condition
is given by

¥=a (é - ) R(e) (10)
Starting the integration of eq. (6) from 8 = 0,
f = fo leads to the definition of two families of
bodies (see fig. 5 and 6), For large values of
fo, bodies are very close to circular since eq. (6)
leads to df /df = 0 as r goes to infinity. For small
values of fp a family of twin hull bodies is found.
The resonant problem also leads to a family of
twin hull bodies (fig. 7).

5 Summary & conclusions

A method is presented using compound wave-
free singularities for the determination of families
of two dimensional body shapes that do not pro-
duce waves while oscillating at a given frequency
in heave, sway or roll. Body shapes that gener-
ate trapped modes are also derived. Examples
are given showing that a wide range of shapes
can be generated even with a simple singularity
system.

In view of the Haskind formula relating ra-
diation damping and wave exitation, Newman
(1977), bodies which are wave free when oscil-
lated will be force free in the same mode when

placed in an incident wave field at the same fre-
quency. The latter can be chosen, for example,
as the natural resonant frequency of the body.
suggesting an application for this theory.

Using distributed compound singularities, a
wide variety of wave-free realistic bodies can he
developed, and the method can be extended to
the axially symmetric case.

Acknowledgement: The authors are grate-
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Figure 2: Heave motion. One parameter fam-
ily of wave free flat bottom bodies for a/V}
varying from 1072 (smallest body) to 5.
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Figure 3: Heave motion. For o = 1. inside
and outside families of body shapes.
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Figure 4: Heave motion, resonant case. One
parameter family of body shapes that gener-
ate trapped modes.
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Figure 5: Roll motion. One parameter family
of wave free flat bottom bodies for a/€y = 10.
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Figure 6: Roll motion. One parameter family
of wave free twin hull bodies (a/Qy = 10).
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Figure 7: Roll motion, resonant case. One pa-
rameter family of body shapes that generate
trapped modes (a/Qy = 10).
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Modeling of instabilities of oil containment systems by a vortex sheet method

Stéphan T. Grilli' and Zhimin Hu
Department of Ocean Engng., University of Rhode Island, Narragansett, R 02881, USA.

Floating booms with a catenary shape are the classical means of oil spill containment in the
ocean or in rivers (Fig. 1). Due to the relative boom-water velocity U, oil is forced to accumulate
in the boom’s apex, as a gradually thickening slick; other equipments such as skimmers are then
used to pick-up the oil. In the ocean, for optimum efficiency of the clean-up process, U should
be as large as possible; various instabilities at the oil slick/water interface—both small and large
scale—however, put a low practical limit to this velocity at about U, ~ 0.5 m/s (see Grilli et al.
(1996) (GHS) for details and literature review).

Experiments have shown that such instabilities are triggered by small scale shear instabilities
at the oil/water interface, i.e., so-called Kelvin-Helmholtz (KH) instabilities (GHS) : beyond a
critical value, the KH instability growth rate increases as a function of U and the density ratio
p = po/pw (with p, the oil density and p,, the water density), and decreases with an increase in
oil/water interfacial tension g,,,. Increasing nonlinear effects, as interfacial KH waves develop
and roll-up, are expected to reduce the instability growth rate to some extent, but only a numerical
model can quantify these effects.

In this study, a vortex-sheet (VS) model of the fully nonlinear time evolution of KH instabil-
ities at the interface between two fluids is developed and applied to the oil-water-boom system. To
gain a better physical understanding of the effects of controlling parameters on nonlinear KH in-
stabilities, we first restricted our scope to the simplified case of spatially-periodic two-dimensional
KH instabilities. A periodic higher-order VS Boundary Element Model, combining the solution
of Biot-Savart (BS) equation and a time evolution equation for the interfacial vorticity, was devel-
oped. Details of model development, implementation, and validation can be found in Grilli and
Hu (1997). This model accurately predicts the fully-nonlinear growth rate of periodic interfacial
KH instabilities, including situations where intense roll-up of interfacial VSs occurs (Fig. 2).

The application of this model to non-periodic cases is considered in the present study. Fig.
3 shows a sketch for the computational domain for an oil-water-boom system, in a vertical plane
through the boom’s apex. The central region is discretized by higher-order VSs and the semi-
infinite regions before and beyond the boom, where the relative water velocity U is uniform, are
represented by semi-infinite VSs over which BS’s equations are analytically integrated. Fig. 4
shows a typical result obtained for a so-called headwave instability of the oil layer.

Details of the model equations, numerical implementation, and results will be presented and
discussed at the workshop.
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a) b) Bank

— Boom
River

Boom Configurations a) towed
b) static

Boom

Figure 1: Floating booms used in oil containment systems : (a) towed boom in the ocean; (b) fixed
boom across a river. Relative oil-water velocity is U.
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Figure 2: Typical computational result for the periodic KH instability at the interface between two
fluids. a: initial sinusoidal perturbation; b: computational profile at some later time.
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Figure 3: Sketch of computational domain for the non-periodic model. si : semi-infinite V8s; ds :
discretized VSs.
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Figure 4: Typical computational result for the headwave instability of an oil slick contained by a
boom (non-dimensional lengths have been used). (—o—) initial discretized oil slick shape; (——)
computed oil slick shape at some later time,

19th Arctic and Marine Oil spill Prog. Tech. Seminar (AMOP), pps. 343-376. Environment Canada,

1996.
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An experimental investigation of higher harmonic
forces on a vertical cylinder in long waves

b
Morten Husebyyand John Grue

Mechanics Division, Department of Mathematics
University of Oslo, Norway

In recent time considerable efforts have been made to analyze wave loads which
lead to sudden high frequency responses of floating or stationary offshore platforms.
On the theoretical side various models have been developed to analyze this problem.
Perturbation methods have been developed under the assumption of incoming Stokes
waves, to capture the wave loads up to the third harmonic component (Faltinsen,
Newman & Vinje [1], Malenica & Molin [2]). Fully nonlinear methods have also been
developed to analyze this problem (Cai & Mehlum [3], Ferrant [4]). Several model
tests and small scale experiments have been undertaken, primarily in focused waves or
irregular waves. A thorough understanding of this problem is still lacking, however.
With regard to the perturbation methods, it is uncertain what are their domain of
validity. The available fully nonlinear methods assume potential theory, and break
down when local wave breaking occurs in vicinity of the body. An important question
is then if the main trends of the wave forces are continuous when (local) wave breaking
takes place.

This has motivated us to set up small scale experiments on higher harmonic wave
loads on a slender vertical circular cylinder in a wave tank. We have chosen to work
with incoming Stokes waves in deep water. This corresponds to the assumptions in
the perturbation methods. Moreover, the velocity field of the incoming waves has only
one frequency, up to a relatively large wave slope. The higher harmonic wave forces
are then caused by the presence of the cylinder in the waves, The purpose is a direct
comparison between the experiments and the theoretical methods for a relatively large
range of wave amplitude to cylinder diameter ratio, at several non dimensional wave
numbers. While the experiments are carried out in a relatively narrow wave tank,
with a ratio of about 8 between the tank width and the cylinder diameter, the theories
assume no vertical boundaries. We find, however, that the effect of a limited width of
the wave tank is not very important to the investigation. Somewhat surprisingly, the
distance from the wave maker to the cylinder must be very large to avoid unwanted
nonlinear wave effects.

The experiment and results

The measurements are carried out in a wave tank which is 24.6m long, 0.5m wide
and filled with water to a depth of 0.6m. In one end there is a wave maker which is
a vertical plate controlled and monitored by a computer. At the other end there is
an absorbing beach. The recordings are performed before any (small) reflected wave
has reached the cylinder. The waves are generated by periodic motions of the wave
maker. After a leading transient part the wave train becomes periodic, to a good
approximation. Recordings of the incoming waves confirm a shape corresponding to
Stokes waves for wave slopes less than 0.19, which is the largest wave slope in the
experiment.

The cylinder is R = 3cm of radius and is extending throughout the entire water
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depth. The non dimensional wavenumber in the presented results is kR = 0.245. The
wave amplitude, A, is varying so that Ak is ranging from Ak = 0.06 to Ak = 0.19,
and the ratio of the wave amplitude and the radius of the cylinder is ranging from
£ =024 to % = 0.78. The distance from the wave maker to the cylinder is ranging
from 6.33m to 15.45m. The total force F(t) in the horizontal direction is recorded
by two force transducers. The first four harmonic components of F are obtained by
Fourier transform over 10 wave periods, i.e.

F(t) = Re(Fie™* + Fpe™ + Fae®®! 4 Fiet +..)) (1)

For the first harmonic force we find an excellent agreement between the measurements
and linear theory for all wave amplitudes. We have taken into account the effect of the
laminar boundary layer at the cylinder.

In figure 1 we compare our measurements on | F,| with second order theory (Newman
5], figure 5 and Molin [6]). The experiments are in good agreement with the theory
for small Ak. For moderate wave slope the measured |F| becomes smaller than the
theoretical value. We find, on the other hand, good agreement between theory and
experiment for the phase of the second harmonic force for all A (results not shown).

In figure 2 we compare our results with the third order theories of Malenica & Molin
[2] (figures 6 and 8) and FNV [1]. We see that both theories are in good agreement
with our measurements of the amplitude |F3|. For the phase of the third harmonic, the
results of Malenica & Molin are in excellent agreement with the measurements. The
theory of FNV predicts a value of the phase that are roughly speaking 180 degrees out
of phase with our measurements. We notice that the third harmonic force seems to be
well predicted by third order theory up to wave slopes as large as Ak = 0.19.

For the fourth harmonic component we give data for Ak exceeding 0.1, since this
force is too small to be measured at smaller wave slopes. We find that |Fy|R/pgA* is
approximately 3.3. The phase of Fj is about 2.5.

When we place the cylinder too close to the wave maker, an oscillation as function
of the wave amplitude appears in the higher harmonic forces. An example is displayed
for [F;| in figure 1. This effect disappears when the distance to the wave maker is
increased.

At the workshop more results for various wave numbers will be presented.

This work was conducted under the DEEPER JIP with financial support from the Research
Council of Norway and a consortium of industrial sponsors.
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Figure 1: The second harmonic force calculated taking the Fourier transform over 10
wave periods. Upper figure: The distance from the cylinder to the wave maker is
12.41m and 15.45m from. Bottom figure: The distance from the cylinder to the wave
maker is 6.33m.
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Figure 2: The third harmonic force calculated taking the Fourier transform over 10
wave periods. The distance from the cylinder to the wave maker is 12.41m and 15.45m.
Upper figure: The amplitude of the third harmonic force. Bottom figure: The phase
of the third harmonic force.
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. Trapped modes in wave channel with an elastic plate
on the bottom

D.Indejtchev, Yu.Mochalova
Institute of Problems of Mechanical Engineering. Russian Academy of Seiences

1. Introduction

This present paper is concerned with trapped modes in a finite depth channel occupied by
an inviscid, incompressible fluid under gravity with an elastic thin plate on the bottom. The
mathematical model of the problem is considered in the framework of linearized water-wave
theory.

The existence of trapped modes was first demonstrated by Ursell [1] in the case of an
infinitely long, totally submerged cylinder in the infinite depth fluid. Further research in the
trapped modes theory mainly concentrated on the investigation in the fluid either having a
specific geometry of the bottom or including rigid bodies. The review of the more recent
developments in the theory of trapped modes in water wave has been presented by Evans &
Kuznetsov [2].

It should be noted that there exists another class of problems where the trapped modes
phenomenon can also occur. It is the oscillation of the elastic body with inclusion having
at least one infinite boundary. The possibility of trapped modes in the elastic systems was
demonstrated in [4], [5], [6].

The similarity between these classes of the problems permits the possibility of the trapped
modes phenomenon in "fluid-elastic body” systems. We consider such types of the bottom
geometry for which no trapped modes exist, if the bottom is rigid [3]. The aim of the paper
is to demonstrate that the elastic inclusion in the bottom can lead to the existence of trapped
modes.

2. Statement of the problem

Consider the three-dimensional channel with the rectangular trench on the bottom. The bottom
of the trench can be modeled by an infinite elastic thin plate. Cartesian axes are chosen so
that y is directed vertically upwards and z and z are in the plane of the unperturbed bottom.
The geometry is sketched in Fig.l. The motion of the fluid is described by velocity potential
®(z,y, z,t) which must satisfy the boundary problem:

V2® in the domain occupied by fluid, (1)
®, +g®, =0 on the free surface y = H, (2)
®, = w; on the moving part of boundary, (3)
3% /dn =0 on the rigid part, (4)

where H is the depth of the channel, g is the acceleration due to gravity , w is the small plate

displacement determined by the equation

Dw.... + kw + Mw, = pfﬂ (D, + gw)dx (5)

on the moving part of the boundary. Here M is the elastic construction mass per unit length,
D is the cylindrical rigidity, k is the elastic foundation rigidity, p is the liquid density. Trapped
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Figure 1: Sketch of geometry

mode solutions of the problem (1)-(5) are sought in the form
w(z,t) = Re {inuﬁi("“"_"'”}, (6)
B(z,y,2,1) = Re {p(z,y)e! ™},
where w is the frequency, m is the wavenumber, wy is an arbitrary constant. Substituting (6)

into (1)-(5), that the function y defined on a two-dimensional domain W which is a cross-section
of fluid orthogonal to the =-axis, satisfies the following boundary value problem:

1
Viop=m?p in W, EH— I""—l,.:’ when —oo <z < 400, y=H, (7)
q
py, = —iwwy when |z|<a, y=-—h, @,=0 when |z|]>a, y=0, (8)
pe =0 when z=4a, —h<y<0, (9)
(."Em — Mw?)wy = —ipw/ elz,y)dz, |z|<a, y=0, (10)

where k,, = Dm* 4 k is the generalized rigidity of the plate, kn =k, — 2agp. The radiation
condition requires that ¢ and Vi decay at infinity in such a way that the energy of trapped
fluid motion is finite and therefore

2
/W [Ve|*dedy + ‘%/Fsv?dz < 0. (11)

3. The case of an even bottom

For the even bottom, h = 0, we define a solution of the problem (7)-(9) with the help of

the Green function which describes the fluid motion of a source placed on the bottom of the

channel. The integral representation of the Green function is given in paper [6] and the Green
function can be present as a series of exponents

Aoly,w)e=ll 572 Ay wie=el < wy

G(lz|,y,w) = { iA[(,?y,u])e“ﬂ’" + E’i‘?_-: A,,Ef,,w;e-fﬂwl‘ o

) 2£g cosh y& A, 265 cos y& .
AR o= Co(sinh 2RE, + 3&60)’ fe= Ci(sin 2h&; + gk‘E*)l

&o 1s the positive root of the equation below

2 _ 2
g€ tanh hé :;_.,31 (o= { m, w < wp,

E—m? w > uwy;

(12)
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£: is the positive root of the equation below

gétanhé = —w?, G=\&+m?, k21

It should be mentioned for the rigid bottom, wy = 0, our spectral problem has only contin-
uous spectrum beginning with the cut-off frequency wy, where w;, = v/gm tanh mH.
The solution of the problem (7)-(9) has the following form

olz,y) = —iwwy [ Glx = n].y.w)dn. (13)

Setting m,k, M, D arbitrary parameters, on which the spectral parameter w (fundamental
frequency) depends, and substituting (13) into (10) we can have the following transcendental

equation to determine the fundamental frequencies
kp — Mw? = My(w)w?, M,(w)= —,a_// G(|z —n|.0,w)dndz. (14)

Analyzing the frequency equation (14) one can come to the following results.

o For w < wy,
the unique fundamental frequency wy exists. if and only if Dm* + k > 2apg;

the following estimate 0 < w; < min {ub.w.ifm/M}. holds for the fundamental frequency
and the corresponding trapped mode is
. i, Bily,w)[l — e~ cosh (px]. |z] < a,
Sanm; =0
.,a[.r,y) 1w1mu{ Zk’tu Bk(y.wl)ff‘{"lxl- F-"] > a:

if ma >> 1. the fundamental frequency can be given by the follywing approzimation

km

M + %%E coth m”b

wlz

e For w = wy, the problem has only trivial solution w = 0.
e For w > wy, the Green function is the complex, with a cousequent formation of surface
travelling waves carrying the energy to infinity. The condition (11) is fulfilled when w = wyy,,,

wi? = gy/m? + 7?n?/a tanh (H/m* + r2n2/a?). n 2 0. (13)

The frequency wy, (15) is fundamental one. if and only if the generalized rigidity ky, is de-

fined in terms of another parameters as kyn, = (M + M, (wii, ) )wii, +2apg, and the corresponding
trapped mode is expressed by

. A Bo(y, wit)[1—cos Coa cos Coz] + 72y Bily, wit,)[1— e~ cosh (x2], |z| < a,
A {z;: Bu(y,wiin)e™Hl, 2| > a.

4. The case of a rectangular trench with an elastic bottom

Let us consider the channel with an uneven bottom. We divide the infinite domain W into to
parts W = WH U W= (see Fig.1). We give equivalent formulation of our problem (7)-(10)
that is set only in the bounded domain W)

Vi =m?p in W), o= Byp when |z]<a, y=0, (16)
@y,= —AByp when |z|<a, y=—h, @:.=0 when z = +a. (17)

2
where By = [, ¢y(n.0)G(z — 7,0,w)dn, Bap = -L——/—hf_“u @(z,—h)dz and G is the
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Green function (12). Further the solution of the problem (16)-(17) will be sought for w < w.
We tread the parameter A = {7 as a spectral parameter. The potential ¢ is expressed by the
unknown function # in the following way

plx,y) = —Av(a,y)Bap, (18)
where 1 is the solution of the following problem

V& =m?p in W), o= B when |z| <a;, y=0, (19)

py=1 when |z|<a, y=—h, ¥, =0 when z= +a. (20)

Separating of variables in the problem (19)-(20) vields the nonhomogeneous infinite system of
algebraic equations. It can be shown that the system has the unique bounded solution and the
solution of the problem (19)-(20) exists and is unique. Integrating (18) with respect to ' from
—a to a we determine the spectral parameter

1 w? i
3= m]_ b(z, —h)dz. (21)
It can be shown by analysis of the problem (19)-(20) that [*, #(x.—k)dz < 0. Then we obtain
the following results

o Forw < wy, if the frequency satisfying the inequalities 0 < w < min {w,g. v ko .;‘:W}. there
ezists only one spectral parameter X and the corvesponding trapped mode is given by (18). If
ma >> 1, the fundamental frequency can be expressed by

1 & ke : coth mH + tanh mnh
AT :(_x—.‘)m; T am[l + tanh rh coth mH)

e Forw = wy, there exists only one spectral parameter X which is given by

1 = 1 [k, cothm H + 2agp(coth mH — coth mh)]
A mgp

and the corresponding eigenfunction is o(2,y) =0 in W) and o(z,y) = ¢(y) in W),
Then we have the interesting phenomenon. The fluid oscillations occur only in the bounded
domain, W) and the fluid is rest in the infinite domain W(+),

5. Conclusion
The possibility of the trapped modes phenomenon in the finite depth channel with elastic
inclusion on the bottom has been demonstrated. Two cases of the geometry of the rigid bottom
for which no trapped modes exist has been considered. We have obtained the conditions of the
existence trapped modes for the different ranges of the frequency.

Acknowledgments. This work was done in collaboration with N.G. Kuznetsov.
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Influence of the Steady Flow in Seakeeping of a Blunt Ship
(18) through the Free-Surface Condition
Hidetsugu IWASHITA
‘ Engineering Systems, Hiroshima University

(19) Kagamiyama 1-4-1, Higashi-Hiroshima 739, JAPAN

(20)

i of Introduction

i_ the The accurate estimation of the wave pressure locally acting on a ship in a seaway is an imprtant
from topic for the practical ship design besides general estimations of total hydrodynamic forces and/or
ship motions. In the last workshop [1] we presented some numerical results based on the 3-D Green
function method (GFM) and investigated numerically the influence of the steady flow in seakeeping,
(21) especially in the wave pressure on a blunt ship (HSVA tanker). There we obtained a conclusion that the
influence of the steady Kelvin-wave field through the body boundary condition seems not so remarkable
T in the local wave pressure distributions against our experimental data for a blunt VLCC [2] , where
the experimental wave pressure indicates considerably larger value than the theoretical estimation of
| the GFM at the bow part although some numerical improvements are observed by taking into account
here the steady Kelvin-wave field instead of the double-body flow through the body boundary condition.
e B Then it is suspected that another influence of the steady flow through the free-surface condition might
affect more strongly the local wave pressure especially at the bow part.
In this paper we develop a Rankine panel method (RPM), which was originally presented by Jensen
[3] and Ando [4] for the steady wave-making problem and extended to the unsteady problem by
Bertram [5], mixing a numerical technique to make the method effective even for the blunt ship.
The numerical method developed here is applied to a blunt VLCC advancing in oblique short waves.
Numerical results are compared with the experiments and another numerical results of GFM or strip
theory, and the influence of the steady flow in the wave pressure through the free-surface condition is
discussed.

ded Formulation

We consider a ship advancing at constant forward speed
U in oblique regular waves encountered at angle x, Fig.1.
The ship motion £;e*t(j = 1 ~ 6) around its equilibrium

istic position and the wave amplitude A of the incident wave
tom are assumed to be small. wy is the circular frequency and
the K the wave number of the incident wave. The encounter

circular frequency is we(= wo— KU cos x). The linear the-
ory is employed for this problem assuming ideal (potential)
flow.

The velocity potential ¥ governed by Laplace’s equation Fig. 1 Coordinate system
can be expressed as

U(z,y, 2:t) = U[B(z,, 2) + 9(2, 9, 2)] + RB(2, ¥, 2)e*] (1)
where

6
¢= %(éu + by E e S Cabsy ) o=iels R XY (2)
J=1
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® means the double-body flow, ¢ the steady wave field and ¢ the unsteady wave field. Assuming
small disturbance due to the ship, we can linearize the free-surface conditions for @ and ¢ in several
forms. In this paper we adopted the following free-surface conditions derived by Yasukawa (6] and
corresponding body boundary conditions. For ¢ it becomes

1 08. (V8. V) + LVE. V(VE Vo) + o V(VE-V8) - Vo + L =0 onz=0 (3)
Ky 2K0 'z

2Ko (3]

a

%:0 on Sy (4)
and for ¢;

K.¢; +2irVe® -V -+—I-V¢' V(V®-V¢;) ! V(V‘D-V‘D)-V¢'+%—‘O =0(5)

—Kedpj + 2iT - Vié; 7 . ¢; +-2?0 Ei onz=0(d

1 S IS e o¢r _ _0%

o Rl A s @
where

(nl,nz,n3)=ﬂ, (ml,mg,m;;):—(n-V)V,

(714‘715,716) =rXxn, ('ﬂ“lsmﬁsn]'ﬁ) =—('RV}[|"X V)!
r=(z,4,2), V=V Ky = g/U? K. =w?/g and 7 = Uw,/g. m; in eq.(6) derived by Timman
& Newman [7] is an influence term from the steady flow to the unsteady flow on the body surface.
Eq.(3) coincides with the Dawson’s free-surface condition in the steady problem (8] and eq.(5) is a
corresponding form in the unsteady problem.
If we put ® = —z, dp/On = n; and V = V[-z + ¢, the formulation (3) ~ (6) leads to the
Neumann-Kelvin formulation which is applied to the GFM.

Numerical methods

The RPM applied in this study is a collocation method developed by Jensen [3] and Ando [4] for the
steady problem and extended to the unsteady problem by Bertram [5]. The radiation condition is
satisfied by shifting the collocation point one panel upward on the free surface. Recently Eguchi [9]
and Nakatake [10] proposed its extended computation method which is quite robust and stable even
for the blunt ship in the steady problem. We solve our problem applying this method to the unsteady
problem.

The steady and unsteady potentials, ¢ and ¢;, are both expressed by the source distributions on
the body surface Sy and the free surface Sp as follows:

@(P) L 75(Q)
¢,—{P)} e {o,—(Q) } GihQas )
where ‘
_J@/r+1/r")/4n for Q on Sy s i T
awa - { G el S PP R e

The body surface and the free-surface are discretized into the finite number of constant panels, and
numerical solutions for steady and unsteady problems are obtained such that a corresponding set of
the free-surface condition and the body boundary condition are satisfied at collocation points. The
collocation points on Sy coincides with the geometric center of each panel and those on Sr are shifted
one panel upward in order to force the radiation condition numerically. This numerical radiation
condition is valid only for 7 > 1/4 in the unsteady problem where the waves do not propagate to the
forward direction of the ship. Fig. 2 and 3 illustrate the computation grids on Sy and Sg. For the
panels inside the waterline on Sy, source distributions are forced to be zero, or those panels are totally
removed from the computation domain (9], [10].
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The GFM is also attempted in this study for the blunt VLCC. The free surface and body boundary
conditions for the steady and unsteady problems are reduced to the well known Neumann-Kelvin
formulation as noted in the previous section. The computation domain is restricted only on Sy by
introducing the Green function which satisfys the free-surface condition and the radiation condition
analytically. Instead of this advantage we need to evaluate this complicated function accurately.
The special algorithm presented by Iwashita & Ohkusu [11] is employed for evaluating this Green
function, and the direct method incorporated with the spline element [2] is adopted for solving the
boundary value problem. Although the influence of the non-uniform steady flow cannot be taken
into account through the free-surface condition, the Kelvin wave field can affect through the body
boundary condition, m;.

Numerical results

Fig. 4 shows the perspective view of the steady wave around the VLCC obtained by the present RPM
with conditions (3) and (4). Fig. 5 is its 2-D profile along the ship-side. A large steady bow wave is
simulated well compared with a picture of experiment, Fig. 6.

Fig. 7 and 8 show the comparison of mg distribution on the ship surface evaluated from ® and
—z + . The former is used in the computation of the RPM and the later is in the GFM. The wavy
distribution can be observed in Fig.8.

Fig. 9 illustrates the diffraction wave around the VLCC at F, = 0.2, A/L = 0.5 and x = 180 deg.
So called ko-wave system is simulated remarkably in the figure.

Fig.10 is a wave pressure distribution on VLCC at ordinate 9. The present RPM estimates the wave
pressure well among other computations by reflecting the influence of the steady flow around blunt

bow part.
Further calculations are now in progress and the results will be presented in the workshop.
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Fig. 2 Hull form and computation grids of VLCC
(1200 panels) Fig. 3 Computation grids on Sy and Sg
(600 and 2666 panels on half)
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Fig. 4 Perspective view of the steady wave

Fig. 5 Computed steady wave along ship-side
at I, =0.2

at F, =0.2
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Fig. 7 mg distribution on Sy Fig. 8 my distribution on Sy Fig. 6 Picture of the steady wave
(double-body flow) (Kelvin wave flow) along ship-side at F,, = 0.2
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L\ ------- : GFN (double-body flow)
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Fig. 9 Perspective view of the diffraction wave
at t =0 (F, =0.2, A/L = 0.5, x = 180 deg.)

Fig.10 Wave pressure distribution at ord.9
(Fn = 0.2, A\/L = 0.5, x = 180 deg.)
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Wave decay characteristics along a long array of cylindrical legs
Hiroshi Kagemoto
University of Tokyo, Japan

1.Introduction

A very large floating structure(VLES) of several kilometers in length and in width is now considered as
a possible alternative of such land-based structures as an airport. Although there can be various types
of structures that are used for such purposes, the structures proposed so far are roughly categorized
into two types of structures. One is a simple thin box-shaped structure and the other one is a structure
supported on a large number of cylindrical legs. For the design of a floating structure, we need to
be able to estimate the hydrodynamic forces on the structure correctly. However, when the structure
is so large as extends several kilometers horizontally, the computational burden for the analysis of
hydrodynamic forces is so large that it is practically impossible to carry out. For a thin box-shaped
structure, the author proposed an approximate but quite accurate method in exploting the fact that
the structure is far larger than the ambient wavelength and thus the flow field can be assumed with
good approximation to be the same as that around the structure which extends infinitely in horizontal
direction!), For a structure supported on a large number of legs, similar approximation can be applied
in which the flow field around an array of a large number of legs is assumed to be the same as that
around an array composed of an infinite number of legs (except at the vicinity of the ends of the
array)?). When the structure is located in head waves, however, these approximations do not work
well because waves actually decay as they propagate through the structure while, if we stick to the
infinite-length or the infinite-leg assumptions described above, wave amplitudes can not decay since
the approximations impose that there should be no way other than the phase to distinguish the wave
at one place from that at another place. For a box-shaped structure, the decay characteristics of head
waves have been found to be proportional to the inverse squre-root of the distance along which the
wave propagated from the up-wave end of the structure. This result coincides with that predicted by
a slender-body theory. By exploiting this quantitative decay characteristics of waves, an approximate
computation is still possible for the hydrodynamic analysis of a box-shaped structure in head waves?),
If similar quantitative decay characteristics of head waves propagating along a structure supported on
a large number of legs could be found, an approximate hydrodynamic analysis of the structure may
be possible in a similar way as conducted for a box-shaped structure. This is the motivation of the
Present work.

2.Experiment

A 3%20 array of truncated composite cylinders were fixed in regular head waves as shown in Fig.1
and the surface elevations between the cylinders were measured. Fig.2 shows the results on the
amplitude of the surface elevation in waves of 4 representative wave periods. 'Cal’ in the legends
stands for the results obtained by the calculations based on a linear potential theory. An interesting
feature is that short waves decay as they propagate from the head of the array toward the end of the
array(Fig.2(a)) whereas, as the wave period becomes longer, the distribution of the wave amplitudes
begins to oscillate spacewise(Fig.2(b)) and even be enhanced rather than be decayed as the wave is
further elongated(Fig.2(c),(d)).

3.Parametric numerical computation

Since, as is observed in Fig.2, the linear potential theory agrees well with the experimental results, de-
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tailed computation was carried out for an array of 1x60 vertical truncated cylinders (D /d=1.0,A/d=2.0,
¢/ D=2.0 where D:diameter, d:draft,h:water depth,f:distance between adjacent cylinders) while vary-
ing the wavelength systematically. Fig.3 shows some of the typical results of the computation. It
should be noted that a tiny difference of the wavelength(AA/€ = 0.002) induces a big difference of the
surface elevations as shown in Fig.3(b) and Fig.3(c). The large surface elevation that occurs at a cer-
tain particular wavelength(£/A = 0.449) may correspond to one of the resonant phenomena indicated
by Maniar and Newman®. Anocther interesting feature is that as the wavelength becomes longer,
the amplitude of the surface elevation begins to oscillate spacewise (Fig.3(d)) and the wavelength of
the spacewise oscillation becomes shorter as the wavelength becomes still longer(Fig.3(e)). It is also
noticeable that the wave amplitude is enhanced rather than be decayed as the wave propagates along
the array. This enhancement of wave amplitudes persists up to the longest wavelength(£/A = 0.359)
conducted in the present computation, although, in principle, it should converge to the amplitude of
the incident wave((,) as the wavelength becomes very long. In order to extract some of the hidden
features of these wave-decay(or wave-enhancement) characteristics, Fig.3 were replotted in log — log
papers as in Fig.4. From this figure it can be known that, when waves decay, the decay rate is roughly
proportional to the inverse square-root of the traveled distance of waves measured from the head of the
array, which is also the case for a box-shaped very long structure. On the other hand, if we examine
the relationship between the consecutive difference of (;(amplitude of the surface elevation measured
at i-th measured point) as shown in Fig.5, we now know that

Gy = G~ a6 —G-1) (1)

in the vicinity of the head of the array, which implys that the waves decay exponentionally there.

Acknowledgement
The experimental results shown in Fig.3 were obtained by M.Saito and H.Ioku of the University of
Tokyo as part of their graduation project.

Reference

(1)H.Kagemoto, M.Fujino, and T.Zhu: J. Applied Ocean Research, 19, 49-60, 1997.
(2)H.Kagemoto and D.K.P.Yue: Proc. 5th OMAE, Voll, 206-211, 1986.
(3)H.D.Maniar and J.N.Newman: J. Fluid Mech., 339, 309-330, 1997.

measured point of surface elevation

D

‘0.9:0:0:0.0:0:0:0:0:0:0:0.8-0:-0.9-

0-e%e
000000000000 OOO 0O Eg‘“‘*"
© ©0 09O 00O00QOO©®6 60 0 0 =

amitm

truncated cylinder

e e o
e 0

Fig.1 A 3x20 array of truncated composite cylinders
(center to center distance: 0.540m)




=2.0,
vary-

f the
L Cer-
-ated
nger,
th of
- also
long
.359)
de of
dden
— log
1ghly
f the
mine
sured

(1)

ty of

Abstracts: 13th International Workshop on Water Waves and Floating Bodies 57

¢/Ca ¢/ Ca
1.0 I ] A el T ) i P TR T e R TR R R 3.0 | T FER A SR BT FC BN LY ER [ [T A e [T
L i | 3 4 : ":Cal:
oo : ; Gl | L. 2 Exp. 1
Lo ; T T .0 i 2 2 -\'-':Eip'. i I
S B i i I (0 Exp: 2 ] F £ e s 3
.,ui—-"g ' Loy ; P Lof-o-B.m gp 20 8878 B 90 o i
L - Ed OB b i E 3 P ST i I
I A.a nLWW e P R O T % A W P R %t 0 0 |
= T T Sinl=% e hi 4 la_ 17 18 19°20 B 5 6 T & %10 11 121304 15 16 17 18 19 20
(a) T=0.6 sec.  cvlinder No. (c) T=1.2 sec.
C}/Cﬂ L,/'IICa
10 ; JAITY SR Do cEaieh FES ) GL B B EELI P AT 2 1 0 S [ D 30 B | ) (i (UL FTdT A OB 50 ) G i i, 2 |
3 [ e e E 5:Cal |
: BiCall Pl 0 Exp. T
&I : DiEip; X .0 B e ; ] (®Exp. 2
i o Expi 21 Bi E e O R TR 1
N 21 8 el o#-BoBeg-R-B.0.9.8.9.0.0.8.0.0.0 802,
R EE e RN R EREEER I : :
a | ESPAE [PE S IS E SPN SRRl I e GO R ) I O R G B L. L : | 1 1 1 l | | | S S I TN N e |
T2 O3 408 BT Y 103 1201 1Y RELT 1e 1920 | TS I | S 6 1 § § 1011 12 13 14 15 16 17 18 19 20
(b) T=0.8 sec. (d) T=1.5 sec.
Fig.2 Comparisons of the measured amplitude of surface elevation with numerical calculations
/G (/Ca
Lgl T 19 T T T T
Lt t - . - | o P UL S 15 4
= i - T e Al el
[l -_ i — = 4 A 2= = ) {7__..._._.,.. — W =
" L L I i ’ L I I A 1
C/ ol L] -] ] ] W (1] = L} ! u -] n “w “w ]
ba (a)/A =1.777  cylinder No. ¢/Ce (b)£/A =0.451
g T T T T T 19,9 T T T :
Le  CLLX U 22 e = S ] b eI B =R SR, VR = ]
18— ._‘_‘ ——— - 0o - b P
La o S— L3 — e _—
Ll - . | Tl L p—— - e -
gL 1 I | 1 1 9 1 L ] ] 1
L ] H " ] ] L] 1] ® ] w

(l:.)w Z0.449

(z)e,u =0.448

Fig.3 The variation of the amplitude of surface elevation along an array of 1x60 cylinders




Abstracts: 13th International Workshop on Water Waves and Floating Bodies

‘ (e)f/A =0.434 cylinder No. (f)¢/X =0.359

Fig.3 The variation of the amplitude of surface elevation along an array of 1x60 cylinders
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Unsteady bow wave field and added resistance of ships in short waves

by Seppo Kalske
Ship Laboratory, Helsinki University of Technology

e Introduction

— An application of ray theory is presented to compute ray pattern and wave amplitude distribution

- around the bow region of a blunt ship hull form. The solution of an eikonal equation gives the ray

g pattern. Wave amplitudes are solved from a transport equation along rays. Free-surface boundary

— condition has a considerable effect on the results. A study on these effects is included in the work.

— The wave action conservation law that applies to the wave amplitude computation in a non-uniform
current is also applied here. Added resistance is computed using the pressure integral approach, and
wave amplitude distribution around the bow is computed using both incident and reflected rays, and
taking their interaction into account.

The extended ray theory

The ray theory formulation by Hermans (1993) is applied and extended in the present paper. The
total velocity potential is represented as a sum of a double-body potential ¢, steady wave potential
¢, and unsteady potential ¢. A ray expansion

0 =a(x,y,z;k)ekS(xy:D-10f i

is introduced to represent the unsteady potential, where a is the amplitude function and S is the
eikonal function. X, y, and z are Cartesian coordinates, of which z is oriented in vertical direction,
positive upwards. @ is the encounter frequency, k = w’/g, and t is time. Incident wave length A is
assumed to be so small that wave induced ship motions are very small and can be neglected. The
free-surface condition derived by Sakamoto & Baba (1986)

T T T
[5?“‘% S —J'JH 8 af = (2)

is applied for ¢, where u, and v, are the horizontal scalar components of the double body velocity
Vo,. This free-surface condition and Laplace equation are used to derive the two basic equations in
ray theory: the eikonal equation and the transport equation. They are solved using the method of
characteristics. In the solution of the transport equation, second order spatial derivatives of the
eikonal function S are needed. In the present approach they are solved also along rays, which
requires that the second order spatial derivatives of the velocity components u, and v; are evaluated.
They are computed by numerical differentiation.

The original ray method was applied by Hermans only for simple bodies, for which analytical
evaluation of u, and v, is possible. In this work, the ray method is extended to practical ship hull
forms in two ways. In the first way, the velocity field is computed by a two-dimensional panel
method using only the geometry of the waterline of a body. This corresponds to a ship with a very
large draft. In the second way, the velocity field is computed by a three-dimensional panel method,
where the total underwater part of the ship hull is modelled, and finite draft effects are correctly
taken into account in computing u, and v, . The three-dimensional approach was accomplished by
using the velocity field output from the Shipflow computer program package (Larsson et al., 1990).
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Free surface boundary condition

The above free surface condition, Eq. 2, makes a pair with the free surface condition in the low
speed theory for steady ship motion. Other free surface conditions can in principle also be used.
One example is the so-called low speed free surface condition that can be derived from slightly
different assumptions than used by Sakamoto & Baba (1986) for the unsteady potential ¢. By
assuming that the wave length of the unsteady motion is larger than for the steady motion, namely

2 R le=0a 3)
ox'dy'dz ) . (s
where U is speed of advance of the ship, and taking into account only linear terms in ¢, the

following low speed free surface condition on z = 0 can be derived

aZ

—¢+2 +2v = E}_¢_ 4
arZ ur¢xr "r¢yl gaz— 2 (4)

When Eq. 4 is compared with Eq. 2, it can be seen that the non-linear terms in V¢, are ignored. This
free-surface condition yields a slightly different ray pattern than the other free-surface condition.
Added resistance values differ more, especially when the reduced frequency T = UnVg increases.
Wave amplitude can be also computed by using the wave action conservation law that can be
applied in the steady form in the present case. It can be shown that the application of the wave
action conservation law reduces to the transport equation derived by Hermans (1993) when a two-
dimensional double body flow approximation is used. This corresponds to an infinite draft
assumption. When a more realistic three-dimensional double body flow approximation is used, an
additional term remains in the wave action equation compared with Hermans’ transport equation.
This additional term affects the wave amplitude and added resistance results but not the ray pattern.

Unsteady wave elevation around a blunt bow

Measured data exist for the unsteady wave elevation for the Series 60 Cy = 0.8 model near the bow
region in short waves (Ohkusu, 1996). An approximate approach to compute also the wave
elevation with ray theory is developed in this work. First, a set of points is selected where the total
unsteady wave elevation is to be computed. For each point the values of the wave elevation and
eikonal function of the nearest incident ray passing the point are saved. These values are stored also
for the nearest passing reflected ray, and the total wave elevation at each point can be computed.

In ray theory, computation of wave elevation along a reflected ray is in many cases difficult and
very small steps in integration of the ray and transport equations are required. In addition, there are
caustic curves, where wave amplitudes tend to infinity, and no realistic wave amplitude results can
be obtained. Caustics are defined as envelopes of reflected rays, and their location can be predicted
numerically. Thus, the caustic curves can be avoided in the wave elevation computation.

In physical terms, waves become steeper and tend to break when they approach a caustic curve.
Naito et al. (1987) explain that this breaking happens when a complex valued wave number is
obtained as a solution of the local dispersion relation. In the present method, the eikonal equation is
equivalent to the dispersion relation, and ray tracing gives the solution for the local wave number.
When the reflected rays are traced with the present method, no complex valued solutions for the
local wave number are obtained when an adaptive stepsize control is used in the integration. If too
large values for the step are used, reflected rays do not bend enough, and complex valued wave
numbers are obtained. This fact does not support the use of Naito's breaking criterion.
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Hermans (1993) derived a uniform expansion for wave elevation computation in an essentially one-
dimensional case, where he is able to reduce the transport equation to a simple form well-known in
optics. A boundary-layer solution near the caustic point is presented, but only very few numerical
results are given. It is difficult to extend this approach to a practical ship hull form.

Results and discussion
At present stage, results are available for the Series 60 Cg = 0.8 hull form at full and ballast draft

and for a bulk carrier hull form OHS with a bulbous bow at ballast condition. Examples of result
for ray patterns near ship bows are given in Figures 1 and 2.

0.3 0.3

0.2 - 0.2
: / /

0.1 - 04 -

0.0 o R D L 0.0 T i s

-0.1 00 0.1 02 03 04 05 -0.1 0.0 01 02 03 04 05
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Figure 1. Ray pattern for Series 60 Cp=0.8 Figure 2. Ray pattern for the OHS hull form
hull form at ballast draft. Fn=0.1, A/L=0.5. at ballast draft. Fn=0.17, A/L=0.5.

Wave elevation results are most interesting in the region around the bow, where both indicent and
reflected rays exist. This region lies between the ship hull and the caustic curve, and examples of
caustic location computed numerically are shown in Figure 3 as a function of reduced frequency T.
Computed wave elevations with comparison of measured results are shown in Figure 4 for an
example case. The results are divided with the far field amplitude values. The agreement is good
especially near the ship hull and near the bow.

Added resistance is computed with the pressure integral approach using an equation derived by
Hermans (1993). Results for the Series 60 Cg = 0.8 hull at Fn = 0.10 at full draft are shown in
Figure 5. The results with a two-dimensional velocity field computation are shown in Figure 6 for
the so-called blunt ship model (Nakamura et al., 1983), which has an extremely blunt bow form. In
this case, results by the method of Sakamoto & Baba (1986) are also included. It can be concluded
that the low speed free-surface condition, Eq. 4, can be applied for relatively small values of
reduced frequency T. When T increases, overestimation of added resistance occurs. The use of
wave action equation gives in most cases improved results especially as T increases. For an
extremely blunt bow form ray theory results are in good agreement with experimental results.
Additional computations will be made to validate the method further.
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A New Direct Method for Calculating Hydroelastic Deflection
of a Very Large Floating Structure in Waves

by Masashi KASHIWAGI

Research Institute for Applied Mechanies, Kyushu University
6-1 Kasuga-koen, Kasuga-city, Fukuoka 816-8580, Japan

1. Introduction

Very large floating structures with shallow draft, considered as an airport, are featured in that the hydroelastic
responses are more important than the rigid-body motions due to relatively small flexural rigidity. Several
methods for caleulating hydroelastic responses have been developed; those are categorized roughly into the
mode-expansion method"™® and the direct (FEM-BEM combined) method %)

In the mode-expansion method, the deflection of a structure is represented generally by a superposition of
so-called dry eigenmodes. Then the amplitude of each mode is determined by solving the vibration equation
of a thin plate, with the added mass and damping force corresponding to specified mode shapes computed in
advance. One problem in this method is that an analytical solution of the dry eigenmode, satisfying the free-end
boundary condition along the periphery of a structure, is not yet known. However, it has been recently confirmed
that an orthogonal system of mathematical functions can be used to represent the elastic deflection, and the
free-end boundary conditions can be satisfied subsequently as natural boundary conditions in the process of
partial integrations in solving the vibration equation with a Galerkin scheme.

If our interest is placed not on the contribution of each mode function but on the elastic deflection as a whole,
the direct method is more lucid than the mode-expansion method. However, the direct method is generally
time consuming, because the vibration equation must be solved simultaneously with the integral equation for
the pressure distribution beneath a structure. In most prior works*®) based on the direct method, the vibration
equation has been solved using a commercial software of FEM, and the pressure at nodal points used in FEM
analyses has been determined by means of BEM. Therefore, the relation between the direct method and the
mode-expansion method seems not clear, from a viewpoint of numerical calculation scheme.

The present paper is intended to develop a new direct solution method, which does not rely on the FEM, and

o make clear the relation of the new method with Kashiwagi's numerical scheme!) based on the mode-expansion
method.

2. Mathematical Formulation

Cartesian coordinates are defined with z = 0 as the plane of the undisturbed free surface and z = h as the
horizontal sea bottom. The incident regular wave comes from the negative z-axis with incidence angle 3.

Time-harmonic motions of small amplitude are considered, with the complex time dependence ! applied
%o all first-order oscillatory quantities. The boundary conditions on the body and free surface are linearized,
and the potential flow is assumed. The plan view of the structure is rectangular with length L and width B,
and the draft is regarded as zero because of its very small value relative to L and B.

We express the velocity potential, ¢(x,y, z), the pressure distribution, p(z,y), the vertical displacement of
the free surface, ¢ (z,y), and the elastic deflection of a structure, w(z, y), in nondimensional form as follows:
é(z,y,2) = iwa(L/2) ¢'(z,9,2), p(z,y) = pgap/(z,y) 1)
- ((z,y) = al(z,y), w(z,y) =aw'(z,y)

Where q is the amplitude of incident wave, w the circular frequency, p the fluid density, and g the gravitational
acceleration. The prime denotes nondimensional quantities, but it will be omitted for brevity in what follows.

The coordinates (z,y, z) are also made nondimension in terms of L/2, and thus the structure exists in the
region of |z| < 1 and |y| < b= B/L on z = 0.
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Hydrodynamically, the disturbance due to the presence of a structure can be expressed by the pressure
applied on the free surface. Then the dynamic and kinematic free-surface boundary conditions are given by

d ]
p=Kp+(, ze=¢ onz=0 @)

where K = w?/g. Note that p = 0 outside of a structure and ¢ = w beneath a structure.

Since the velocity potential can be given by the convolution integral of the pressure, p(z,y), and the Green
function, G(z,y, ), satisfying (2) with p = 0, it is of relative ease to show that the integral equation for the
unknown pressure takes the form

plz,y) — Kffb pl&,n) Glx — &,y — n,0) dédn = w(z, y) (3)

where Sy denotes the bottom of a structure with zero dralft.
The body boundary condition can be satisfied by writing the deflection of a structure in the following form:

w(z,y) = ws(z,y) + wrlz,y) = —G(z,y) + wr(z,v) (4)
where iz, y) = exp{—iko(z cos f+ ysin f) } (5)
is the elevation of incident wave, and subscripts § and R mean the scattering and radiation components,

respectively.
Substituting (4) in (3) gives the equation to be solved:

M%M—K[LP%MG@—&y—mmﬁﬁ—wMLMZ—Q@J) ©)

The radiation component of the deflection, wg(x, ¥), is unknown and subject to the vibration equation of a
thin plate:

6
azt a_—ﬁay 3 4) wg(z,y) = —plz,y) 7

where M is the mass of a structure (divided by pLBd), D is the flexural rigidity (divided by pg(L/2)*), and
A = 2d/L with d being the draft.

Since’ the structure is freely floating, wg(z,y) must satisfy the free-end boundary conditions along the pe-
riphery of the structure. Those conditions can be written as

4
—MKAwR(:r,y]-i-D(—al gl

Pwgp  Pwg a 3’11};,: HPuwg
. R %{ = } 8 (®)
where n and s denote the normal and tangential directions, respectively, and v is Poisson's ratio.
In the case of a rectangular plate, a concentrated force, stemming from the replacement of the torsional
moment with an equivalent shear force, acts at four corners, which must be also zero. Namely

% wr
Ozdy
In summary, (6) and (7) are the simultaneous equations for the two unknowns: the pressure distribution
p(z,y) and the vertical elastic deflection wg(z, y). Solving (6) and (7) at the same time while satisfying (8) and
(9) is referred to as the direct method®®)
If wr(z,y) is expressed in terms of a system of appropriate known functions, wy(z,y) (G =1,2,---), in the
form

R=2D(1-v) =0 at z=+1, y=4b (9)

wr(z,y) = Y X;w;(@,v), (10)
Ji=1

the corresponding pressure can be sought from (6) in the form

p(z,v) = ps(z,9) + ) Xips(2.9) (11)
j=1

Here the amplitude X is unknown, but can be determined subsequently by solving (7) with free-end boundary

conditions, (8) and (9), sat.1sﬁed in an appropriate manner. This solution method is referred to as the mode-
expansion method and featured in solving (6) and (7) separately.
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3. A New Numerical Method

In the mode-expansion method developed by Kashiwagi'), the pressure distribution is represented using bi-cubic
B-spline functions. It may be natural in the direct method to express the elastic deflection, wg(z, y), with the
same B-spline functions. Therefore we try to obtain numerical solutions in the following form:

NX+2 NY+2

play)= Y. D oreBel@)Bi(y)
k=0 E=0
(12)
NX+2NY+2
wr(@,y) = > Y ke Be(z)Bew)
k=0 £=0

where Bg(z) and By(y) are the cubic B-spline functions. NX and NY are the number of panel division in
the z- and y-directions, respectively. Since one cubic spline function extends its influence over four panels, the
number of total unknowns in each of p(z,y) and wg(z,y) is (NX +3) * (NY +3).

Substituting (12) into (6) and (7) and applying a Galerkin scheme with By(x)Be(y) (p=0~ NX + 2,.1g=
0~ NY + 2) as the weight function, we obtain a linear system of simultaneous equations, in the form

NX42NY+2
> [au{ﬁﬁ,},fu =< cha}.u} ~ Tt Cufu] = Raq (13)

Nx2NY 12
S 3 [ L+ me{ ~MEALG + DL }] =0 (14)

k=0 £=0
where

ﬁ;},u: ]L By(x) Bq(y) Bi(z) Be(y) dzdy (15)
Lot = f [S By(@)B, ) f fs Be(€)Be(n) Gle &y —n,0) dédn | dady (16)
Loqe = f fs By(2) By (y) V* { Bx(x) Be(y) } dedy an
Roo == [ Byla)Bulw) s 3) ey a8)

The stiffness matrix, (17), must be transformed by partial integrations to incorporate the free-end boundary
conditions, (8) and (9). The procedure is the same as that used in the mode-expansion method of Kashiwagi®,
and the result takes the form

L= [ [3 V2 Bpy V2 B dzdy
H

BzBN 6% Bis 62817@ & Byg 323N 2B
=il=1) f jsﬂ{ 52 oF | op 0% - 9xdy Oudy

Where B;u; — Bp{z}Bq(y) and BH — Bk(I)Bl(y)‘

The mass matrix, EL;’ 4¢» Serves also as the cross-coupling matrix between the pressure and elastic deflection,
which has been computéd using Clenshaw-Curtis quadrature with absolute error less than 10-7 required. The
integral L‘:;‘;’M given by (16) is the most time-consuming part but the same as that appearing in Kashiwagi’s

mode-expansion method. Therefore, by taking advantage of ‘relative similarity relations’, it can be computed
with less computational time.

} dzdy (19)

4. Numerical Results

It is confirmed that the present method gives substantially the same results as those by the mode-expansion
method using products of one-dimensional free-free beam modes to represent the elastic deflection.

Since the present method uses only the B-spline functions as a basis function, the computer code is simpler
than the mode-expansion method. However, in the present method, the symmetry relation is not used, and
thus the number of unknowns and the computational time are greater than that in the mode-expansion method
of Kashiwagj.!)
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Various computations have been performed, including the comparison with the experiments conducted at Ship
Research Institute in Japan using a 1/30.8 scale model for a floating structure of L x B x d = 300m x 60m x 0.5m.
Those results will be presented at the Workshop. Here, instead, we show one example of the wave profile around
a structure of L/ B = 4. Since the pressure is zero on the free surface, the total wave elevation can be computed
from (2) and (5) by the equation:

Cr(z,9) = Gi(z,y) — K f l_ p(E,7) G(z — &,y — 1, 0) dedn (20)

Figure 1 is the result computed for L/A = 10 and # = 30° in deep water, with NX = 40 and NY = 10.
The flexural rigidity was taken equal to 1.875 x 10~% which might be stiffer than a realistic floating airport.
For comparison, Fig. 2 shows the wave profile around a rigid structure with the same dimensions. We can see
that the wave reflection from an elastic plate is small near the bow and the transmitted wave is visible even
downstream. The pattern of elastic deflection on the plate is different from that of water wave both in the wave
length of fluctuation and the propagation angle.
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Fig. 1: Wave pattern around an elastic plate of Fig. 2: Wave pattern around a rigid plate. Geo-
L/B=4and D = 1.875 % 107° L/X\ = 10 and metrical dimensions and wave data are the same
#=30° in deep water. as Fig. 1.
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One-side inequalities in the problem of wave impact

T.I.Khabakhpasheva, A.A.Korobkin

Lavrentyev Institute of Hydrodynamics,
Novosibirsk, 630090, RUSSIA

The plane unsteady problem of wave impact onto an elastic beam is considered. Initially
a wave crest touches the horizontal and beam at its left edge and hits the beam from below
thereafter at a constant velocity. The problem is coupled, the beam deflection is determined
by the hydrodynamic loads, which themselves depend on velocities of beam elements. The
wetted part of the beam, where the hydrodynamic loads are applied, is unknown and has
to be found together with the liquid flow and the beam deflection. The original formulation
of the impact problem contains not only equations of motion and boundary conditions but
one-side inequalities as well. The first inequality implies that the liquid particles cannot
penetrate the plate and the second one that the pressure in the contact region cannot be less
than a limiting value pags, which depends on adhesive forces between liquid and the plate
surface. The additional limitations make us to control both the pressure distribution along
the wetted area and the free surface elevation at every time step and to change the boundary
conditions when and where the mentioned one-side inequalities fail.

If the pressure on the plate drops down to the limiting value p,an, a new ’inner’ free
surface has to be introduced. After that we shall consider the wave impact onto the plate with
attached cavity. Within the framework of incompressible liquid we do not know any approach
to describe the asymptotic behaviour of the ’inner’ free surface just after its appearance.
Separation of compressible liquid from the surface of a rigid plate under its impact onto the
liquid was described by Korobkin (1994). In this case the formation of the 'inner’ free surface
is due to relief wave interaction, which come from the periphery of the plate. For elastic-plate
impact the pressure in the contact region can drop down to the limiting value owing to the
plate flexibility, which reduce the local impact velocities. The numerical codes available to
deal with the elastic plate impact is mainly to evaluate the plate deflection and the stress
distribution in the plate but not the pressure distribution along the wetted area. Moreover,
experiments on elastic plate impact indicate great scattering of the measured pressure which
does not encourage us to treat the problem in a deterministic way. In order to evaluate
the pressure on the contact region, it is suggested to proceed as follows: (i) determine the
beam deflection and its velocity; (ii) evaluate the pressure from the hydrodynamic part of
the problem taking the beam deformation as given and taking into account the singularity
of the pressure close to the contact points. This approach makes it possible to distinguish
low-pressure zones, where liquid can separate from the beam surface (see Korobkin (1996)).
But a model to describe the initial stage of the liquid separation and the cavity evolution
thereafter is still not available. This is a reason why at present the one-side inequality for
the pressure cannot be incorporated into computer codes.

The one-side inequality for the surface elevation implies that the shape of the free surface
has to be evaluated at every time step together with the beam deflection and we need to
check that the free surface does not intersect the surface of the entering body. The moment
t., when the free boundary of the liquid touches the body surface outside the contact region,
has to be distinguished, and the scheme of the flow has to be changed at this instant of time.
At this instant a new part of the contact region appears, which is started from the point
of the first contact. These two parts of the contact region are separated by the cavity filled
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with air. At stage where t > ¢, the interaction between the body and the liquid continues
but in presence of the cavity. This effect is similar to the air-cushion effect well-known in the
impact theory but it has also its own peculiarities. Namely, at the moment of time, when
the cavity has been formed, a part of body is already submerged in the liquid and the value
t. is determined by both the body deformations and the liquid flow at ¢ < t..

This effect was discovered in the problem of wave impact onto an elastic beam at its
edge. Parameters of the beam and the wave responsible for this effect were distinguished. In
particular, the cavity formation was detected for impact of the wave with the initial radius
of curvature at its top R = 10m at the velocity V = 3, 5m onto the elastic plate of mild steel
with its length 2L and thickness h being 1m and lem respectively. The wave hits the plate
from below at its left-hand side edge. The plate is assumed simply supported at its edges.
Numerical calculations were performed within the framework of the Wagner approach with
5 and 10 "dry” modes of the beam taken into account. The numerical method was described
by Khabakhpasheva and Korobkin (1997). In the case under consideration the shape of the
free surface was controlled and it was revealed that the free surface touches the right edge
of the plate when only about 75cm of the plate is wetted. Therefore the initial dimension
of the cavity is about 15cm. The formation of the cavity is due to the strong interaction of
the plate with the liquid. The plate deformations are not great but they are sufficient to
decrease the rate of the contact region expansion so much that the beam edge touches the
liquid surface before the whole plate is wetted.

There are two dimensionless parameters o, 3, which determine the peculiarities of elastic
plate impact. Two regions in the plane of the parameters (a, 3), where the Wagner approach
fails, were distinguished without taking into account the one-side inequalities. In the first
region, the size of the contact region is not monotonic function of time, which is prohib-
ited by the classical Wagner theory. In the second region, the rate of the contact region
expansion is unlimited, which indicates very high hydrodynamic loads. These loads cannot
be described correctly with the incompressible liquid model and acoustic effects have to be
taken into account. Within both regions the numerical calculations were performed using
the numerical code described by Khabakhpasheva and Korobkin (1997). The second region
of the parameters a, 3 is of great interest because it distinguishes the impact conditions with
very high loads. It should be noted that these loads are much higher than those for a rigid
plate and are due to the plate flexibility. The high hydrodynamic loads increase the beam
deflection and make it possible that the beam edge touches the liquid free surface well before
the beam is totally wetted or the Wagner approach fails.

1 Formulation of the problem

Until the time moment t. the problem of wave impact onto an elastic plate at its edge is
solved within the framework of classical Wagner approach. At the next stage, t > t., the
liquid flow and the beam deflection are governed by the following equations

Per + Py =0 (y<0), (1)

ey =—l+w(z,t) (y=0, 0<z<clt), dit)<z<?2) (2)
e=0 (y=0, 2<0, >2 cft)<z<d)) (3)
w—+0 (22 +y* = o), (4)

p(z,y,t) = —pi(z,y,t),
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9w &w
QW +,3'a—‘r"1'—p(3‘10,f) (0(3(2, f>f.), (6)
w =0, W=l (2= ==2); (7)
w(z,t.) = wo(z), w(z,t.) = wi(z) (< x< 2t =1). (8)

Here c(t) indicates the position of the left end of the cavity and d(t) the position of its right
end. It is assumed that the air in the cavity is absent, which leads to the boundary condition
@ = 0, where y = 0, ¢(t) < = < d(t). The function wo(z) and wy(z) are determined by the
solution of the problem at the initial stage, 0 < ¢ < .. The shape of the elastic surface y,(z,)
is given by y(z,t) = 2/2 — t + w(z, 1) in the both parts of the contact region, 0 < = < ¢(t)
and d(t) < = < 2. Condition (3) shows that outside the contact region, y =0, z <0, z > 2
and ¢(t) < = < d(t), the liquid particle can move only vertically. The function ¢(¢) and d(t)
are unknown in advance and have to be determined together with the liquid flow.

2 Hydrodynamic problem

The hydrodynamic part of the problem (1)-(4) provides the deformation of the free surface.
In particular,

1 wrtW(r), ﬁy:,{r,t}w(?)dﬂ+ D(t)

ﬂﬁ"[x)! 0 T—x d T—Z aW(z)'

Y(z,0,t) = (9)

where c(t) < z < d(t), W(r) = \/T(c— ) 2—7)(d—7)for 0 < 7 < ¢(t) and d(t) < z <
2, Wiz) = \/.r(z —¢)(2 — z)(d — z), D(t) is an arbitrary function of time, X —iY is the
analytical function of the complex variable z = z+ 1y in the lower half-plane, X(z,y,t) is the
horizontal displacement of a liquid particle and Y(z,y,t) is its vertical displacement. The
one-side inequality

Y(z,0,1t) < yp(z,t) (c(t) <z < d(t))

leads to the following two equations with respect to the unknown functions ¢(t) and d(t)

c l T(2—r71) 2 T2 —-1) %
.[n yb(f‘i) (c_—'T—){d*_‘.")dT - -/; yb(T,f) (T—_—mdf =

j;ya(ni) &MdHf ys(7, 1) M___‘i}dr = D(t).

Gl =G
Differentiation of the last equations in time provides the system

ayi(c,d,t)e + apz(e, d, t)d = by(e,d, t), (10)
an(c,d,t)é + ag(c,d, t)d = by(c,d,t) + D(t). (11)

Far away the contact region, |2| — oo, the asymptotic behaviours of the displacements and
the liquid velocity are given as

D : 10(t)
X —1iY ~ W' Pr — W2y TW(z)
The asymptotic formulae imply )
D =C(t) (12)

where dot stands for derivative in time. The value C(t) as function of ¢ and d is determined
by the condition that ¢(z,0,t) = 0 where c(t) < = < d(t).
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3 Elastic problem

The beam deflection w(z,1) is sought in the form
w(z,t) = ) ay(t)sin(rnz/2),
n=1

Where the coefficients a,(t) are satisfied the system, which follows from (5) and (6),

dd iy i it dq
o =(al+x9)7'(BD7+f), L=

Here @ = (a1,a3,03,...)%, ¢ is the vector § = (q1,q2,@3,--)"s @ = (BA) (i, + b)),
f = (file,d), fale,d), fa(e,d),...)T, I is the unit matrix, D is the diagonal matrix, D =
diag{A{,A3,A3,...}. S = (Sum)m=1 is the matrix with the elements

—. (13)

c 2
Somle,d) =L ap,.(r.ﬂ,c,d)sin(rrmx/‘Z]dx+L @n(z,0,¢,d)sin(rnz/2)dz,

where ¢, is the solution of the following boundary value problem

Ap,=0 (y<0) pa=l (=07 o<, e<z<d, £>2)
Opn _ .
;y =sin(mnz/2) (y=0: 0<z<e d<z<?2)
The initial conditions for the sistem (10)-(13) are
ai=10p0 g=il e=ep d=A (te=it2) (14)

The initial-value problem (10)-(14) is solved numerically by the fourth-order Runge-Kutta
method with uniform step Ac. The variable ¢ was chosen as independent variable instead of
time .

4 Numerical results

The calculations were performed for @ = 0.157,3 = 0.03, with 2, 5 and 10 modes. The
presence of air in the cavity is not taken into account. It was found that the cavity is very
thin and localized near the right edge of the plate. The hydrodynamic pressures during the
cavity collapse are very high but are of short duration. Main effect of the high pressures is
on the stresses, which grow significantly close to the edge. It was revealed that the value ¢,
has to be evaluated very precisely to make the numerical scheme stable. This condition is
not easy to fulfil. But it was proved that system (10), (11) provides d(t.) = 0. Therefore, in
order to make the scheme stable, we can keep d(t) = 0 at several initial steps in time. The
equality d(t.) = 0 demonstrates that we cannot consider the impact of the right edge of the
beam onto free surface independently on the total geometry of the beam even just after the
impact occurs. This conclusion shows that "local effects” have to be treated very carefully
and that our intuition can give us wrong ideas.
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A Finite-Depth Unified Theory of Ship Motion

Yonghwan Kim, P.D. Sclavounos
Massachusettes Institute of Technology

1 Introduction

In deep water strip theory has been refined to the unified theory of [1][2]. There are not many
studies on the slender-body seakeeping in finite depth problem. In the present study, a new slender-
body theory is introduced as the extension of unified theory to the finite-depth radiation problem
with zero speed. Borresen[3] formulated a finite depth unified theory with forward speed, and he
wrote the the kernel of integral equation as the double integral in the Fourier domain. However, he
was not successful to get the hydrodynamic coefficients or motions. In the present study, the series
form of the kernel is derived, and the ship motion RAO is obtained. The computation extends to
the second-order mean drift forces following the same idea of Kim & Sclavounos[4]. The results
are compared with WAMIT"s.

2 Theoretical Background
2.1 The Far-Field Solution

4)

The far-field solution of heave and pitch motion is written as a distribution of the three-dimensional
'“} Green function Gap along the center line of a ship.
o e _

bz y,2) = / q(§)Gap (€ —x y, 2)dE = — f due™*q" (u)G* (u; y, 2) (1)
T 2n o
where g(€) is the strength of Green function and
o0 i shin/ e (s

he G (uyyy 2) = e dvel'y : cosh{ .u +Iv {4+ h)} _ 2)
v 2 I cosh{v/u? + v?h}[Vu? + vitanh{vu® + v?h} — <]
he The superscript * means the Fourier transform, and G (u; y, z) recovers the infinite depth case of
is Ogilvie and Tuck when h — oo. When y is very small, this can be approximated as
t.
is dlz,p,2) = a(=)Gap(y,2) + f (&) f(§ — =,0,0)d (3)
. L
in
he with f*(u;y,2) = G*(wiw, 2) = G* (039, 2) = G* (w39, 2) — Gap (¥, 2)-
he ; .
he 2.2 The Near-Field Solution

lly The velocity potential of the near-field solution is written as the sum of a homogeneous solution
¢y and a particular solution ¢p.

! C‘l(.ﬂ.y. 3)=¢P(Ivy;3)+C(37)¢H(T--§-. 3’} (4}
1ICS

V8.

th




Adopting the same concept with the deep water theory, the outer expansion of the near-field
solution can be written as

¢(z,v,2) = {o(z) + C(2)lo(z) + a(2)]}Gan(y, 2) — C(2)a(2)[G2p(y, 2) — Gan(y, 2)] (5)

with
100 ) Gl ) O] mh
Gao (1 2) = Ganlh ) = 2= o P cosma) +0) (@

where o(2),a(z) are the sectional strength and its complex conjugate of the two-dimensional Green

function, G2p. These can be obtained after solving the two-dimensional boundary value problem
. . 2

at each.section. Besides, v = 5"; = mytanh(m,h).

2.3 Matching

Two matching conditions can be founded from Eq.(3) and (4), and an integral equation is derived
from them.

vh+ (el )? :
a(e) + (1 22 [ (€)1~ 2,0,0)d€ = o(e) ™

This integral is the most important key in unified theory. To check the consistency of this integral
equation with that of infinite depth, the kernel of the integral should be studied in more detail.

2.4 The Kernel of Integral Equation
The Fourier transformation of the kernel is written as follows:

fluyz) = Gipluy,z) = Gap(y,2)
L /”" doeV| cosh{vu? + v%(z + h)}
T rdnilis cosh{vu® + v*h}[vu? + vitanh{vu? + vZh} — v]
3 cosh{|v|(z + h)} ] ()
cosh(|v|h)([|v[tanh(|v|h) — v]

The contour integral and inverse Fourier transformation lead to the series form of the kernel when
(#2) = (0,0),

f(z,0,0) = %[N £ (u;0,0)e™du

2

T S i
= ‘.!m%h—u?h—i-v{ iYo(moz) + Jo(m,z) moé[m}}
= m2 L] 1
_; W_—U{;ho[rnnl) Tis E‘J(l‘}} (E]}

where —v = mytan(m,h). The é singularity of the three-dimensional Green function cancels out
with the logarithmic singularity of the two-dimensional Green function when it is integrated with
respect to x. Also the Bessel function has a logarithmic singularity which is integrable. Fig.1 shows
the Fourier-transformed kernel of the integral equation, and the kernel for finite depth approaches
that of infinite depth as the depth becomes large.
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2.5 Hydrodynamic Coefficients and Motions

The three dimensional correction terms on the added mass and damping coefficient. can be added
when the integral equation is solved[1][2]. To compute the wave excitation forces and moments,
the far-field formula is applied in the present study[4]. Unified theory is applicable to heave-pitch
coupled motion, but the finite-depth strip theory has to be used for sway-yaw-roll coupled motion.

2.6 The Second-Order Mean Drift Forces

The finite-depth mean drift forces and moment on surge, sway and yaw direction are computed
using the formula in [5]. In particular, when there is no external work on a body, the formula
which is positive definite provides more accurate results.

3 Computational Results

Fig.1 shows the added mass and damping coeflicient of the heave motion. The ship model is
a mathematical hull of parabolic shape. The beam(B) and length(L) ratio of hull is 0.15, and
the draft(T) and length ratio is 0.1. As expected, unified theory is in very good agreement with
WAMIT, especially in low frequency range. Fig.2 shows the wave excitation force for heave. The
agreement with WAMIT is also favorable. Fig.3 shows the motion RAO of heave and pitch. It
is interesting that the result of strip theory is not bad at low frequencies although strip theory
is not accurate for the hydrodynamic coefficients. It is because the dominant force for motion
at low frequency comes not from the mass and damping but the restoring force Fig.4 shows the
longitudinal mean drift force at head sea. In order to get an accurate value of this parameter,
the accurate computation of the Kochin function, i.e. the velocity potential, is essential as well as
the motion RAO. Therefore Fig.4 indicates the accuracy of all solutions in the linear problem. As
expected, unified theory provides the closer result to WAMIT than strip theory.
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Long time evolution of gravity wave systems

M. LANDRINI*, O. Osur1™, T. WASEDAT AND M. P, TuLIN T
« INSEAN, Rome, Italy + Ocean Engineering Lab, UCSB

Introduction

Four main avenues for the non-linear prediction of conservative wave evolution exist: kinetic equations, the
narrow banded cubic PDE of Schrédinger type (called here NLS), NLS plus (Dysthe), fully non-linear com-
putational (FNL). The first three comprise the weakly non-linear family, based on truncation of expansions
beyond third order in wave steepness, ka. Dysthe corrects a crucial shortcoming of the NLS, which predicts
only symmetric wave envelopes. They are both derivable from kinetic equations. The latter permits evolution
in both horizontal dimensions on the free surface and it is inherently free of narrow banded assumptions. It
does, however require a pre-selection of the pertinent modes, a critical process. The preferred form of the kinetic
equations which originated with Hasselman (1962) and Zakharov (1968), is that of Krasitskii (1994) preserving
the Hamiltonian form of the free surface problem, discovered by Zakharov. These important Krasitskii equa-
tions have hardly been applied. Neither have these four major methods been previously compared with each
other systematically, or with experiments. This was our purpose.

Recently at the OEL-UCSB we have carried out systematic experiments in a large wave tank! (50 m 1, 4.2
m w, 2.1 m d) on the evolution of a carrier wave seeded with side bands, Tulin & Waseda (1997), as well as
analytical-computational studies of evolution using various avenues, including Krasitskii (Oshri, 1996)

Meanwhile one of us (ML) has implemented a high resolution fully non-linear calculation method based on
boundary integral equations. The method adopts the particular Eulerian-Lagrangian approach of Dold and
Peregrine (1986). A significant speed up of the computations is obtained by coupling the spectral convergence
properties of the Euler Mclaurin quadrature formula with a fast summation multipole expansion technique
allowing for an O(N log N) operation count and an O(N) storage requirement. This development allows for
the high resolution prediction of wave trains with O(10?) waves.

Here, in collaboration, we present some of our first results showing comparisons of the evolution of a system
beginning as a carrier wave plus small closely spaced side-bands, (w, + 6w), which begins as a Benjamin-Feir
instability. Four different methods are used: FNL, Krasitskii, NLS; Dysthe. In particular, Krasitskii's four-
waves reduced equations for discrete wave systems (Krasitskii, 1994) are solved and, for the first time using
this model, the evolution of an arbitrary number of wave components is allowed for. More specifically, in the
computations shown below, the number of waves is always large enough to achieve the invariance of the results
under further refinement (in most of the computations at least 24 equally spaced wave components are used).

With FNL as a benchmark, the rank order of performance was: Krasitskii, Dysthe, NLS. The success of
Krasitskii is due to the large number of waves allowed for: by reducing the number of waves Krasitskii fails and,
eventually, NLS-like results are recovered.

Results

The experiments, covering a range of ka. and of dw, followed the evolution of a carrier plus seeded sidebands
over about one cycle of modulation, usually ending in breaking (cfr. fig. 1). The lower sideband, —éw, always
grew relative to the upper one, +dw, in contrast to well known results based on NLS but as predicted by
Krasitskii (with a number of waves large enough) and Dysthe.

In particular, this behaviour is numerically studied for ka. = 0.1 (upper plot in fig. 2) where FNL, Kra-
sitskii, Dysthe and NLS spectra are contrasted. The excellent performance of Krasitskii in predicting even the
waveforms can be appreciated in the lower diagram.

The energy was markedly discretized in the experiments, with a spreading toward higher frequency modes,
both free and bound. Only after breaking was widening of the major spectral peaks noticeable, probably due
to breaking. This consistent discretization in the first cycle validates the kinetic equation approach, which
considers only modes capable of interaction in the conservative theory of interaction. Breaking first occurs at a
small value of ka., near 0.1, as observed in Su & Green (1985) and in the ocean.

1The OEL wavemaker is of plunging hydraulic type, computer controlled, designed and built-in-house and featuring an innovative
plunger design
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Figure 1: Summary of the experiments [4] and of the numerical computations performed. The experimental
area where breaking events are observed is denoted by thin lines. Thicker lines indicate intense breaking close
to the wave maker. Circles refer to numerical computations.

In the present computations, as breaking conditions are approached, differences appear in the predictions
of weakly and fully non-linear methods. In particular, with small changes in ka. the relative performance of
Krasitskii, best of the weakly non-linear models, rapidly deteriorates in the second cycle of modulation (cfr.
figures 3-4). We speculate that this is because, due to the weakly non-linear assumption, Krasitskii is unable
to take into account the strong non-linearity at peak modulation that alters the energy exchange among wave
modes, albeit in small quantity.

The high resolution of FNL is evidenced by its ability to follow waves through deformation to breaking; in
figure 5, ka. = 0.11, we note that the appearance of two simultaneous breakers may be very unusual. The
general ability of FNL to predict the onset of breaking is shown by comparison with experiments (cfr. fig. 1).
Clearly the FNL can prove very useful in the further study of evolution and breaking. The further development
of Krasitskii may also prove worthwhile, as its use can be extended to two surface dimensions. In the long
run, unfortunately, the use of any of these methods, even in one dimension, will fail after breaking. The
experiments here clearly showed that breaking radically changes the evolution of the wave system. There have
been attempts to deal with this using weakly non-linear theory, but no predictions have yet been tested by
experimental comparison.
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Experiments on the Ringing Response
of an Elastic Cylinder in Breaking Wave Groups

C. Levi, S. Welch, E. Fontaine, M. P. Tulin*

Ocean Engineering Laboratory, UCSB, Santa Barbara, CA 93106-1080

Summary

In order to gain understanding of the physical
mechanism involved in the observed excitation of the
structural response of lurge ocean structures by North
Sea wind waves, experimental hydroelastic studies have
been carried out in the OEL at UCSB. The experiment
evolved through three separate tests beginning in
October 1996, and concluding in August 1997. Since
this work was begun very similar experiments with
results overlapping those found here have been
conducted in the UK by Chaplin et al. [1]

A thin-walled vertical cylinder pivoted at the tank
bottom and held by an adjustable vertical tension wire
was subjected to loadings by both non-breaking Stokes
waves and by waves breaking in modulated wave
groups, with a wave length of 2.3 m. Both downtank
displacement and acceleration were measured in time.
Two frequencies, the rigid body and first bending, were
excited in the ringing style by the breaking waves, but
not observably by the monochromatic waves, The free
surface around the cylinder was visualized by a high-
speed (250 Hz) video camera and a vertical jet is often
seen to be produced at the front face during impact of
the deformed-breaking waves. Tests were conducted
over a large range of variables, and only a small sample
is given here. The system parameters were deduced
from free ringing experiments, and the loading was
subsequently deduced from the measured responses. A
strong correlation was found between the rigid body
loading and the local wave slope at the cylinder. The
onset of the high frequency response, however, was
correlated with breaking jet impact on the cylinder. The
rigid body response at frequencies in excess of the wave
frequency decreased with increase in the former, and the
response amplitudes depended on the phase between jet
initiation and impact of the wave on the cylinder. In
general, the highest loads were obtained when the
plunging jet impacted the cylinder. Accelerations as
large as 0.25g were measured.

The Experiments

Experimental techniques continuously evolved
through a series of three different tests beginning in
1996, The present experiments were carried out during
August 1997 in the large OEL wind-wave tank [150" L,
14" W, 8 D] using seeded side-bands [2,4], to generate
groups of 2.3m waves, with initial steepness, ak
between 0.12 und 0.28, Periodic deformation and

breaking at the wave group frequency occurred in the
test section in the vicinity of a thin walled circular
cylinder, elastically restrained with freedom of rotation
about its bottom mounting, see fig. |. Rigid body motion
and bending deformation of the elastic cylinder are
measured using accelerometer and displacement probes.
Wave wires are disposed on the front and back faces of
the cylinder as well as in the far field. Two video
cameras, 30 and 250 Hz, provide views of the
deforming wave surface as it impacts the cylinder; this
allows temporal correlation of the response and the
wave shape. The rigid body natural frequency
normalized by the wave frequency could be adjusted
through the upper tension wire mounting, in the range
1.5 = 5.5; and high bending flexural frequency, 20, was
also typically observed during deforming breaking wave
impact.
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Figure 1: Experimental set-up.

Monochromatic Response vs. Wave Groups

In tank tests with irregular waves, it has previously
been reported, [3], that a correlation exists between
ringing responses and impact by deformed breaking
waves in wave groups. On the other hand, several
studies have attempted to find the source of ringing
response solely within the high frequency structure of
Stokes waves. It was the chief purpose of these tests to
compare monochromatic and wave group response in

* To contact the authors: + 805-893-4937 ; mpt@vortex.ucsb.edu
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order to clarity the physical cause of ringing, and the
set-up described above is well able to do this. The
loading is well in the inertial range (wave amplitude /
cylinder diameter < 0.70 here), and the response in
Stokes waves was found be highly periodic and linear in
the peak values up to the highest steepnesses tested,
ak,=0.28. Despite this linearity, the effect of harmonics
on the temporal response is evident, see Figure 2a. For
all rigid body frequencies tested, there was no clear
evidence of “ringing” type behavior during the Stokes
wave loading, i.e. suddenly large response decaying in
time. until the next excitation. On the other hand,
ringing responses were highly noticeable during loading
in  breaking wave groups, the excitation clearly
originating during impact by the deformed or breaking
wave, see fig. 3. but not in the other, smaller waves in
the group. The period of ringing response is thus the
period of the wave group, in this case six times the wave
period. The temporal response for a discrete ringing
event is shown in fig.2b, where the height of the
breaking wave just before 105s was chosen identical to
the height of the Stokes wave with which it is
compared, fig. 2a. The peak displacement is abour rwice
those in the Stokes waves and the peak accelerations
over 5 times as great. These factors would be even
larger had the comparison been made with a wave group
of the same time-averaged energy density as for the
Stokes wave. Notice, too, the excitation of high
frequency bending mode accelerations by the breaking
wave. .

Ringing Responses

As might be anticipated, the observed level of the
response increases as the normalized pitching resonant
frequency reduces toward unity, fig.3. It is also
observed that the level of response depends on the phase
between the deforming-breaking wave and the front
face of the cylinder. We utilize the following brief
classification of wave regimes, see fig.5 and 6, based on
a more precise description [ 4]

» Steepening - Cresting (CR, ECR). The wave is
deforming assymmetrically. its crest rising, front
face steepening, and crest sharpening, as shown in
fig.5. The nomenclature (CR) means that this
process is culminating in the immediate vicinity of
the front face of the cylinder; (ECR) means that the
process has not yet culminated there, but will
before the crest reach the rear face of the cylinder.

e Plunging Jet (JT). A jet has formed at the crest of
the deformed wave and is moving forward and
downward, see fig.6, while impacting the front face
of the cylinder.

e  Splashing — Ploughing (SP)._ The plunging jet has
splashed into the front face of the wave. throwing
water upwards as it ploughs forward and strikes the
cyhinder,

As shown in fig.3, waves impacting during the plunging
Jet phase (JT) usually produce the highest response, for
all natural frequencies; during the evolution of the
breaking wave, the free surface becomes vertical in this
regime.

Wave Loads

Data from an example of a jetting breaker
impacting the cylinder are presented in fig. da-c,
showing, respectively, the displacement, acceleration,
and wave induced moment. The latter, fig. 4c, has been
deduced from the response data using a linear response
equation of the mass-spring type; the added mass,
damping, and restraint stiffness were determined from
free oscillation tests in water, at the structural resonant
frequency. The wave elevation measured at the front
(#1) and the back (#2) of the cylinder are also shown in
fig. 4d: their difference, which s proportional 1o the
local wave slope at the cylinder is denoted by #3 in the
same figure.

It is remarkable to note that the variation of the
hydrodynamic moment on the cylinder, fig. 4c, is highly
correlated with the local wave slope there, as measured
by the cylinder mounted wave wires. This is simply
seen by comparing the time at which both the peak
hydrodynamic moment and its zero are reached, with
the same times for the wave height difference. Perhaps
this new experimental correlation can be used in the
development of a useful engineering theory for the
prediction of ringing loads in this frequency range
Incidentally, the same correlation between transverse
loading and wave slope is predicted by Morison's
formula when applied to cylinder wave loadings in
waves of small steepness.

The excitation of the high frequency bending mode
is indicated by the vertical arrows in fig. 4b-¢, and this
seems closely to coincide with a very rapid change in
the slope of the longitudinal displucement of the system,
1.e. to a “discontinuity™ in the velocity. The equations of
motion show that this requires the application of an
impulse in momentum applied to the cylinder. The
timing of this event indicates that the source of this
impulse was the impact of the jet itself on the cylinder
surface.
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Figure 5: The Deformation of a Breaking Wave, Beginning at far Left. Front Face Steepens. Crest is a Maximum Near
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Rapidly convergent representations for
free-surface Green’s functions

by C M Linton
Department of Mathematical Sciences, Loughborough University,
Leicestershire, LE11 3TU, UK

Introduction

There are two key ingredients to the derivations of the formulas in this paper. The first
is the observation that solutions to Poisson’s equation are related to solutions of the heat
equation. Thus if

Viu=if inQ (1)

and
Vo = v, in 2, (2)
g=c ! at i 3)

with u and v satisfying the same time-independent boundary conditions on 99, then

= /uwvdt (4)

provided this integral exists.

The other important step in the derivations below is to find two complementary representa-
tions for v, v and vy, the first of which is easy to calculate for small values of ¢, the latter
being easily evaluated for large t. We can then introduce an arbitrary positive parameter a
and hence obtain a one-parameter family of formulas for u in the form

u:fuvldt+fm1Jgdt. (5)
0 a

These ideas were used by Strain (1992) to derive rapidly convergent series for the Green’s
function associated with Laplace’s equation in an n-dimensional cube.

In this work we will apply these ideas in order to derive rapidly convergent expressions for
Green’s functions associated with water-wave problems in which the water depth is constant.
One consequence of the fact that the domain € is unbounded is that the integral in (4) does
not exist and the above procedure has to be modified slightly. Thus we choose # so that
Jo* (v + ©)dt does exist. Then the value of this integral is u + % where

V-z__ .
= ?JL:U. (6)
Provided we can solve this equation we then have

u=fﬂm(v+ﬁ)dt—ﬂ, (7)
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New representations for free-surface Green’s functions

We will use the following definitions:

r=[2 4P+ (=02, ' =[+ P+ (2h+ 2+ Y,
R=[Z2+41"2, =[P+ (-0 o =[z"+Ch+2z+()Y"
YW =onh—¢—2 XD =9mh—(+z,

X =omh+¢—2, xP=2mh+(+2

The exponential integral, £,(z), the incomplete Gamma function, I'(a,z) and the comple-
mentary error function erfc(z) will also be used.

Two dimensions

We consider the two-dimensional fluid domain —c0 < z < o0, —h < z < 0 with the
undisturbed free surface being z = 0 so that the Green’s function representing an oscillating
point source at £ = 0, z = ( is Re(G exp{—iwt}) where G is the solution to

V2.G = §(z)8(z = ¢) SRzl —hie (<0, (8)
G.=K@G on z =0, (9)
G.=0 on z = —h, (10)

and we require G to behave like outgoing waves as |z| — oc.

Numerous representations exist for this Green’s function. In particular we have the eigen-
function expansion

= COS (2 + h) cos pm (C + h) e Hmlzl
G= ::‘u 20 N e

where pi,, m > 1 are the positive solutions to pm, tan g, h+ K = 0, g = —ip where p is the
positive root of gtanh ph = K and

_h sin 2p,, b
Nep = 3 (1+ T ) (12)

This series converges rapidly provided |z| is not too small.

Following the procedure outlined in the introduction we can derive the new representation
for G,

ip)z| oo
G=-— IZZN cosh pu(z + h) cosh u(¢ + k) — > ;—mcos pm(2 + h) cos pm(C + h)
m=0*"'m
(13)

_1p o L o i (~=1)"L
ar '\ a2h? 47r a2h2 b

n=1
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where a is an arbitrary positive parameter,

a?h2fa o-z'/4t 2,
= — e _pliEdt 14
Ag /0 @) 2 et td (14)
1 o 1 n Sitet 1 ) o0 (—1)"‘32’“
= r— el e " F =it S 1 15
4z1/2 nz=;:| n! (2) [[.r:[ ( 5l 1 mzzg mi(m —n — 3)(ah)?m-2n-1 (15)
o e—z‘*/dt 5
A‘m =f T4 _ar1/9 _pmtdt 16
a2h2fa (4mwt)V/? = (16)
1 00 (—l)" (I#m 2n 1 ﬂz azhz
= RS Ry m
22y, ,; n! 2 ) 5™ T4 ! (17)
ah?/4 o—x'/4t m @ ) @)
L" == ‘/(; W (I‘n,n(Xn—l) T ‘!n,n(xn }) =+ Iﬂ_n(xi‘ ) T Iﬂ.n(Xn+l ) dt (18)

and I.(x) is a known function. If we set a = 0 in (13) we recover the eigenfunction
expansion (11).

For large values of |z| the integrals Ap and A are best evaluated numerically, whereas
for small |z| the series representations can be used. The integrals L, must be evaluated
numerically but provided a is chosen small enough only L, is required. We note that

a?h?[4 e"z?{"u
j{; WII.I(X) dt =
IE $2+X2 Ke Kx rah/2 K222 [4u? X
s 1( i )- =y fu e erfc (E—Ku) du. (19)

Both the sums in (13) converge exponentially with the parameter a controlling the relative
rates of convergence of the two series. For a = 0 the eigenfunction expansion (11) is recovered.
The second sum in (13) is exponentially localized in space and so we can think of it as
representing local information whereas global low-frequency information is represented by
the first sum. This type of decomposition is known as Ewald summation.

Three dimensions

Next we consider the three-dimensional problem
V2G = §(z)6(y)d(z — €) —h<z<0,—h<(<0 (20)

together with (9) and (10), and we require G to behave like outgoing waves as R — oo.
The eigenfunction expansion for G is

G= —EOK—gfme—fcosum(ﬂrh) cos pm(C + h). (21)

Computations by Newman (1985), (1992) show that when R/h > 1/2 this expansion is
sufficient. Our new representation for G is

== ﬁHén(pR) cosh pu(z + h) cosh (¢ + h) = 3 %cos,um(z + h) cos pm(¢ + h)
0 m=0""m

1 r 1 ! ot a
= Eerfc (E) — merfc (E) - (=1L, (22)

n=1




Abstracts: 13th International Workshop on Water Waves and Floating Bodies

where
Ao== f:zm 4:4 ot dt (23)
- L (e a e S ER Y LR L () (2,
fm = ﬁ, e—::ﬂ"'”s"‘df (25)
oo f__ 2n 2 2212
-2 () (), o)
L= [ 47”: ® (T O) + Lun () + n (069) + Tan(x2)) . (27)

If we set @ = 0 in (22) we recover the eigenfunction expansion (21). The logarithmic
singularity in Ag as R — 0 is, of course, exactly that required to cancel the singularity in the
Hankel function. Hence, by writing —%Hé”(,uﬁ!} — 5= In R as a power series, (22) is easily
computed for small R.

For the evaluation of L, we note that

a?h? /4 =R /4t
/ Ia(x) dt =

At
1 (RQ + )(2)1'{2 Ke BX /“"‘ﬂ K?u?— R2/4u? ( X )
-— - u - - du.
By erfc ( =5 e | B erfc 2 Ku | du. (28)
Discussion

New representations have been derived for the finite-depth free-surface Green’s function in
two and three dimensions. These representations contain an arbitrary positive parameter a
which can be varied so as to achieve the optimum convergence rate for the given physical
parameters. Preliminary numerical calculations suggest that the method is very efficient.
Numerical results showing the relative strengths and weaknesses of these new formulas com-
pared with other techniques for calculating these Green’s functions will be shown at the
workshop.

The same techniques can be used to derive formulas for other Green’s functions associated
with water-wave problems and these will also be discussed.
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NUMERICAL SIMULATION OF SLOSHING WAVES IN A 3D TANK

Q.W. Ma', G.X. Wu' and R. Eatock Taylor™

+ Department of Mechanical Engineering, University College London, Torrington Place,
London, WCI1E 7JE, UK

++ Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ,
UK

Introduction

Sloshing waves are associated with various engineering pre yblems, such as the liquid oscillations
in large storage tanks caused by earthquakes, the motions of liguid fuel in aircraft and spacecraft, the
liquid motions in containers and the water flow on the deck of ships. These motions are often very
large and their behaviour is strongly non-linear when the excitation is large or when the excitation
is near to the natural frequencies. The wave pattern may behave like a standing wave, a travelling
wave or a hydraulic jump. During the process, large pressures may be created, Here we consider the
sloshing waves in a 3D rectangular tank undergoing translational motions in three directions. The
numerical algorithm is based on the finite element method discussed in the last workshop (Ma, Wu &
Eatock Taylor, 1997).

Mathematical formulation / y

A Cartesian co-ordinate system, Oxyz, fixed with the ; /
tank is used. Its origin is located at the centre of the free / i .
surface, as shown in Figure 1. The displacement of the tank e T =
in x, y and z directions are defined as: ;

- 3
(1) X, =[x %@, z0)] Kil
The total velocity potential ¢ can be split into: 7 -
(2) ¢=p+xu+yv+zw 5
X
where w, v and w are the components of U =‘T" in the  Figure | Tank and co-ordinate system
[

x, y and z directions, respectively. @ in (2) satisties the following equations:
(3) V’p=0 in the fluid

ap ;
4) —=0 on the side walls

an
(5) P - _90 9 _ (XS + L) on the free surface

ot o hd &

bp dpdf 1 . dn  dv dw ) :
L% _ _YpeVp—gl-x——y——C— on the free surface
()&‘ dz o 2(,0 0ol dr =l =l

dpla, wllx, wiekt] 2

where £ is free surface elevation measured in Oxyz and __[—5(_-_] = -5@ +%ﬂ% These

equations are then combined with the initial conditions which can be given as;
D L(xy0)=0 @(x,00)=—xu(0)-y(0)

Results

In the analysis below, some parameters are nondimensionalized as follows:

(x,%,z. L, B.a)—= (x,3,z, L, B.a)d, t - t,d/g . w— wyfefd




We first consider a 2D case in which L=2,B=02 and the motion of the tank is governed by
u(t) = awcos(wr)and v=w =0 . Figure 2 shows the history of the wave elevation at x =-10 with
a=0.00186 and at four different frequencies either higher or lower than the natural frequency
w, = Jbr/ L)tanh(z/L) . It shows that the numerical results are in an excellent agreement with the
linearised analytical solution (Faltinsen, 1978).

The second case considered is a 3D problem in a square tank of L=B=4, which movesin a
vertical direction with an initial horizontal disturbance defined hy:

0.0283 =0
0 >0
We have made calculation for four different amplitudes and frequencies. The corresponding wave
history recorded at one corner is presented in Figure 3 where @, given above is also a natural
frequency of this square tank. The wave elevation due to purely vertical motion is theoretically zero.
It, however, can become quite large when a small initial horizontal perturbation exists, as can be

seen from Figures 3b to 3d. Furthermore, these large responses are not in the forced frequency but in
one near to @,. A similar phenomenon was also reported by Su and Warg (1986) when they

8) w(t)=w,a,cos(w.1), u(r)=v(r)= {

considered the motion at about twice the natural frequency.
In the third case , the tank of L= B=8 undergoes only horizontal motions defined as

u(t)=v(1) = aacos(wr) with «=00372 and @ =0.9999w, . A travelling wave can be observed in
Figure 4 which shows the sequence of a wave crest maving from the comer (-L/2,-B/2) to the
comner (L/2,B/2). Figure 5 gives the wave history at the two comers. It can be seen that the
wave can become very sharp. Figure 6 illustrates the pressure history at two points, which behaves
like pulses hitting the walls of the tank repeatedly.

In the fourth case, the tank of L==8 and B=4 is moving with velocities u(r) = w,a, cos(w, ),

W(1) = 0,4, cos(@,7) and w=0 where a, =0.0372,ay = 00186, o, =0.9999/(x/L)tanh(z/L)

and @, =0.9999,/(r/B)tanh(x/B) . Some typical snapshots of the wave profiles are illustrated in

Figure 7. The travelling wave is also evident in this case.
The last case we considered corresponds to very shallow water. The tank of L=B=25 is

moving only in horizontal directions with a, =a, =12 and o, =, = 0.998,/(z/L)tanh(x/L) . A
hydraulic jump has been observed in this case, as shown in Figure 8. It should be noted that there are
some higher frequency waves superimposed on the wave system in our case. Huang and Hsiung
(1996) also observed the hydraulic jump based on a shallow water formulation but no higher
frequency waves seem to exist in their analysis. More results will be presented in the workshop.
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GEOMETRIC SYNTHESIS OF 2D SUBMERGED BODIES
Matos,V.L.F. & Simos, A.N. & Aranha,J.A.P.

Department of Naval and Ocean Eng. - EPUSP
S.Paulo, S.P., Brazil

1. INTRODUCTION

Consider the cross-section of a slender submerged body symmetric with respect to the
vertical axis and let d be the distance between the origin O of the coordinated system and the free
surface. The point O is within the cross-section and along the symmetry axis. If S is the cross-
section area and B, = (Cy+1)S/27 let a = (B,)" be the characteristic length, where Cy is the heave
added mass coefficient in infinite fluid, namely, in a fluid region without free surface. The heave
potential in this case can be expressed by means of the Fourier (Laurent) series

n--'l D :\_n—'l . B
d(x,y) =B, -G(z) = BZ(H D) D“ ;n.(s”r' ];

G(Z)=—nz:(—i)“.[)n‘[ﬁz]u, (1a)

where v is the vertical coordinate, z = x + iy is the complex variable and G(z) is the complex

potential.
The coefficients {D. ; n = 1,2,3,.....} define completely the geometry of the cross-section

and one can introduce then the function of form

FKa)= 3 (- (5D 2o (1b)

n=0 D'I

It can be shown (see Aranha & Pinto (1994)) that the sectional heave exciting force due to a
harmonic wave with amplitude A, frequency o and wavenumber K = /g is asymptotically given by

the expression

M

Wo(t)= [_&h] =-inAe e ™,

aZ x=z=0

(2a)
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with an error of the form [1 + O(8)] where

8= (C,, +1)-K*S-F(Ka)-e X = (Ka)’ S (2b)

In the above expression a is the radius of the circle that circumscribes the cross-section and
since & < 0.135(a/d)’ the error is of order 3% when the equivalent cross-section radius a is half the

distance d between the point O and the free surface.
Notice that F(Ka) — 1 when Ka — 0 and so (2a) recovers the inertia term of Morison

formula in the low frequency limit; in this sense this expression represents an extension to the whole
range of frequencies of this well known formula. Also, F(Ka) = 1 for a circle, indicating that

Morison formula can be used in the whole range of frequencies for this geometry.

2. GEOMETRIC SYNTHESIS

The importance of such approximated solution is that it enables one to address, within
certain limitations, the inverse problem, namely, the one where the behavior of the exciting force is

defined and the geometry of the cross-section is then obtained. By defining a convenient function of

form F(Ka) one can determine the coefficients {D, ; n = 1,2,3,.....} and so the geometry of the

cross-section that it is associated with the chosen F(Ka). The purpose of this work is fo present an

example of this geometric synthesis and an experimental validation of the final result, by direct

of the exciting force in the wave tank. The example chosen was fitted to provide a
that could be easily built and such that the final result could have been obtained by

measurement
simple geometry,
an ad hoc extension of Morison formula to the whole frequency range.

Consider then the function of form

F(Ka) = cos’ (0Ka) = % + %cos(zaKa) + % cos(4oKa) . (3a)

The geometry related to this one-parameter functions of form are such that the heave

exciting force have a very flat zero at the frequency Ka = n/2c.. Expanding (3a) in power series one

|

can determine the coefficients {D, ; n=1,2,3,.....} from (1b) and using them into the expression for |
|

|

G(z) the following complex potential is determined (see Simos (1997)):

2 - 2 . 2 s 2 * 2 -
G(z)z_h;i_a_ L N i @ b, (3b)
8 z 4 z+2aa 4 z—20a 16z+40a 16 z—4oa

For o = 0 the complex potential G(z) represents a circle with radius a centered at the origin
0; as o increases this circle is continuously distorted and for a large enough one obtains five circles
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with centers placed at { z=(0,0); z= (¥204.0); z = (+40.a,0)} and with radius {(3/8)"?a; a/2; a/4}
) respectively.
The figure below shows how the geometry changes with the increase of runing parameier
o. Observing that the standard Morison formula can be used for a circle. irrespective of the value of
the wavenumber, one obtains from this formula applied to the five circles exactly the expression
(2a;3a). This result not only enhance the confidence in the proposed approximation but also
displays a simple geometry that can be easily built in order to check experimemally expression (2a).
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FIG.(1): Geometric synthesis of the function of form (3a) for different values of the parameter .
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3. EXPERIMENTAL SET UP

Five cylinders with length / = 0.950 m and with diameters {0.150m; 0.122m; 0.061m} were
fixed in a rigid frame with the centers equidistant from each other by an adjustable distance ». The
length /s a bit smaller than the wave tank width and if S = 0.047 m’ is the total cross section area,
then a = (S/)"* = 0.122 m and the parameter o is defined by the equality » = 2ca. So by changing
b one can change the value of the tuning parameter o. Two load cells were placed along the
transversal arms of the frame, the line joining the load cells being coincident with the longitudinal
axis of the wave tank. A low amplitude harmonic wave was then imposed by the wave maker and
the resultant heave force was obtained by the sum of the forces in each load cell.

Preliminary experimental results seems to confirm the proposed approximation, a consistent
set of experimental results being planned to be presented at the workshop.

Different functions of form can be synthesized leading to geometries that can be usefull as
cross sections of the pontoons of a TLP or a semi-submersible platform. The same approximation
can also be developed in 3D and, in particular, for a body of revolution, where a stream function
can be introduced, the same Hamiltonian approach can be used to generated the body geometry.
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Uniqueness, trapped modes and the cut-off frequency

Maureen Mclver
Loughborough University, Loughborough, Leicestershire, LE11 3TU, U.K.

Introduction

For several years many authors tried to prove that the two-dimensional, linear water-wave
problem was uniquely posed at all frequencies until Mclver (1996) showed that trapped
modes exist for pairs of special bodies placed in the free surface. Trapped modes are
defined to be non-zero solutions of the homogeneous problem which have finite energy.
Their existence at a specific frequency means that the forced problem does not have a
unique solution at that frequency. The question of whether or not trapped modes exist for
purely submerged bodies or variable sea-bed topography is still open. Uniqueness has been
proved for some geometrical configurations of bodies and topography (see McIver 1996 for
a review of the literature) but recently Evans & Porter (1998) showed that trapped modes
exist for submerged bodies in the presence of surface-piercing bodies.

Trapped modes are known to occur in other types of boundary value problems. A
classic example is the Stokes’ edge wave which is trapped above a sloping beach and
propagates along the shoreline. More recently Evans, Levitin & Vassiliev (1994) proved
that trapped modes exist when bodies are symmetrically placed in water wave channels
or guides. Unlike the modes found by Mclver (1996), both of these types of trapped
modes occur at frequencies which are less than a ‘cut-off” value, below which waves cannot
propagate to infinity. In the terminology of spectral theory, the trapped modes occur at
frequencies (‘eigenvalues’) which are below the bottom of the continuous spectrum for the
problem and they can be shown to exist with the use of a variational principle. However,
if there is no cut-off in the problem, the variational argument fails to prove the existence
of trapped modes and this is one reason why the two-dimensional water wave problem is
difficult to analyse.

The purpose of this work is to show how a cut-off may be artificially introduced into
the two-dimensional water-wave problem and how, for a wide class of bodies and variable
topography, uniqueness may be established below this cut-off. Work is currently in progress
to see whether trapped modes may be shown to exist below this cut-off and whether the
trapped mode found by Mclver (1996) is associated with a cut-off.

A cut-off frequency for the two-dimensional problem
The velocity potential which describes the two-dimensional, small oscillations of an inviscid

and incompressible fluid at angular frequency w is given by Re[p(z,y)e ] where ¢
satisfies

V24 = 0, in the fluid (1)
and

K¢+%§=Uony=0. (2)

Axes are chosen so that the origin is in the mean free surface and the y-axis points vertically
downwards and the parameter K = w?/g where g is the acceleration due to gravity. In
addition, no flow through any rigid surface means that

¢

pf 0 on the sea-bed and any bodies. (3)
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If trapped modes are sought then the radiation condition is replaced by
¢ — 0 as |z| — oo. (4)

Uniqueness is established if the only solution to (1)-(4) is the trivial solution ¢ = 0.
Without loss of generality, ¢ may be assumed to be real because if it were complex then the
real and imaginary parts would separately satisfy the governing equations and boundary
conditions. To be specific the problem in which there are no bodies in the fluid but there
is a variable sea-bed which lies between z = +a, as illustrated in figure 1, is studied.

K¢+¢v=0 .X__

Figure 1 - Definition sketch and illustration of a nodal line

Greens theorem

Y d¢
E — 2 - —_ = —_ y
fnw P —PV2pdV fm)%n V- dS (5)
is applied to ¢ and the harmonic function
¥ =sink(z — b) cosh k(y — h) (6)

in the region z > b > a, 0 < y < h, where h is the uniform depth of the layer in the region
z > a and kh is the real, positive root of the dispersion relation Kh = khtanhkh. In
this region, both ¢ and ) are harmonic and satisfy the same boundary conditions on the
sea-bed and the free surface. As ¢ — 0 as z — oo the only contribution to (5) comes from
the line x = b and yields

/U ¢(b, y) cosh k(y — h) dy = 0. (7)

The function cosh k(y — k) is strictly positive and as ¢(b,y) is a continuous function of ¥,

for some yq(b) such that 0 < yg < h. A value of Yy may be found for every b > a and so by
continuity, there is a nodal line on which ¢ = 0 in the interior of the fluid which extends to
infinity in the region z > a. Moreover in z > a, ¢ may be represented by an eigenfunction
expansion, namely

o0
¢ = Z an cos kn(y — h)e~kn(z=a) (9)

n=1
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where {knh} is the monotonically increasing sequence of positive roots of the dispersion
relation Kh = —kphtank,h. If ¢ is not identically equal to zero then for z > a it is
dominated by the first non-zero term in this series, so for some j

¢ = ajcosk;(y — h)e*:(z=2) L O(e % +'%) as 2 — o0 (10)

and so there is a nodal line which asymptotes to the horizontal line y = d as x — oo, where
k;d is the smallest root of the equation cos kj(y — h) = 0. Furthermore, if the potential
does correspond to a trapped mode, the other end of this line cannot lie on the sea-bed or
go to either infinity. If it did then there would be a region in the fluid which was open to
infinity and partially surrounded by lines on which either ¢ or its normal derivative were
zero and a simple application of the divergence theorem would mean that ¢ = 0 everywhere
within that region and, by analytic continuation, ¢ = 0 everywhere in the fluid. Thus if
¢ represents a trapped mode there is a nodal line which asymptotes to the line y = d as
z — oo and whose other end lies on the free surface, as illustrated in figure 1. Although
the precise position of the line is unknown, it defines the lower boundary of a subregion
of the fluid contained between it and the free surface. In the next section it will be shown
that there is a cut-off for this new region, below which waves cannot propagate to infinity
and uniqueness will be established for Khpay < 1 where Amay is the maximum depth of
the fluid.

Uniqueness below the cut-off

The velocity potential for waves which propagate in a fluid layer of uniform depth d and
which satisfies the condition ¢ = 0 on the lower boundary, is given by

¢ = sinh k(y — d)e*™*=, (11)
where, to satisfy the free surface condition (2), kd is a root of the dispersion relation
Kd = kdcoth kd. (12)

By examining the graph of y = zcothz it is straightforward to show that there are no
real roots of (12) if Kd < 1. Thus there is a cut-off frequency below which waves cannot
propagate in a uniform layer and satisfy ¢ = 0 on the lower boundary.

The region D is defined to be the region contained between the nodal line and the
free surface and the coordinate axes are redefined so that the origin is at the intersection
of the nodal line and the free surface. Integration down a vertical line from any point b on
the free surface of this new region gives

a®) g
o(6,0) =~ [J 3—§’(b,y}dy, (13)

where d(b) is the smallest value of y such that the point (b, d(b)) lies on the nodal line. (If
there is only one such value then y = d(b) is the equation of the nodal line.) By squaring
(13) and using the Cauchy-Schwarz inequality it may be shown that

d(b) d®) 7 5g\ 2 db) 7 5\ 2
2 A T d max . 3
#(,0) < [fu ! dy} [fn (ay) y] <d fu (By) dy,  (14)
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where dnay is the maximum depth of the nodal line. An application of the divergence
theorem with the use of (4) and (14) gives

oo oo pdiz) 2
/(vqs}‘zdv = Kj #*(z,0)dz < Kdmf f (3—¢) dydz < Kdpax / (V)2 dV.
D 0 0 0 ()y JD

(15)
If Kdmax < 1 the inequality in (15) is only satisfied if (V¢)? is identically equal to zero
which means that ¢ is a constant and this constant must be zero from the nodal line
condition. So there are no trapped modes in the subregion for Kdpax < 1. As max < Amax,
the maximum depth of the fluid, there are no frapped modes in the subregion and by
analytic continuation, the whole fluid, if Khy., < 1.

Uniqueness for bodies and variable topography

The analysis of the previous section may be extended to the case where there are a finite
number of nonbulbous, surface-piercing bodies in a fluid layer of variable depth. In this
case, the nodal line may end on one of the bodies instead of the free surface. However, the
nodal line and a portion of the body would still define the lower boundary of a subregion of
the fluid and if the body is nonbulbous, vertical lines may be extended from every point on
the free surface in the subregion to the nodal line and the analysis of the previous section
will apply. In addition the proof of uniqueness for Khmax < 1 extends to the case where
there is a single submerged or surface-piercing body of any shape. This is because there is
also a nodal line which asymptotes to the line y =const as z — —oo and it is impossible for
both nodal lines to end on the body unless the potential is identically equal to zero. Thus,
at least one of the nodal lines must end on the free surface and this defines a subregion of
the fluid in which the argument of the previous section may be applied.

Conclusion

Uniqueness of potential for the two-dimensional, linear boundary value problem for water
waves has been proved for general sea-bed topographies for Khmax < 1. The result has
also been extended to prove uniqueness for the same range of frequencies when there are
any finite number of nonbulbous, surface-piercing bodies in the fluid or a single submerged
or surface-piercing body of any shape. The numerical evidence is that the nodal line for the
trapped mode potential obtained by Mclver (1996) ends on one of the bodies. However,
because the bodies found are bulbous it is not possible to extend vertical lines from every
point on the free surface in the subregion to the nodal line and so there is no contradiction

between the existence of this mode and the uniqueness results generated in this paper.

References

Evans, D.V., Levitin, M. & Vassiliev, D. 1994 ‘Existence theorems for trapped modes.’ J.
Fluid Mechanics, Vol. 261, pp 21 - 31.

Evans, D.V. & Porter, R. 1998 ‘An example of non-uniqueness in the two-dimensional

linear water wave problem involving a submerged body.” Submitted to Proc. Roy. Soc.
Lond. A .

Mclver, M. 1996 ‘An example of non-uniqueness in the two-dimensional linear water wave
problem.’ J. Fluid Mechanics, Vol. 315, pp 257 - 266.



Abstracts: 13th International Workshop on Water Waves and Floating Bodies 99

On the completeness of eigenfunction expansions in water-wave problems

P. Mclver
Department of Mathematical Sciences, Loughborough University, UK

1 Introduction

The method of eigenfunction expansions is a popular tool for the solution of the linear water-wave
problem in constant depth water. The key result is that there exists a complete set of orthonormal
vertical eigenfunctions so that any ‘reasonable’ function of the vertical coordinate may be expanded
in terms of this complete set. This result comes from the theory of self-adjoint linear differential
operators which is used extensively in many engineering applications of mathematics.

There are a number of problems involving wave interaction with a permeable breakwater or a
perforated barrier for which the vertical eigenvalue problem is no longer self adjoint. A consequence
of this is that the familiar theorems required to construct an eigenfunction expansion no longer
apply and the ‘obvious’ eigenfunctions may not form a complete set. Perhaps the simplest problem
of this type is examined in detail here, but first of all some aspects of the ‘standard’ water-wave

problem are recalled.

2 The water-wave problem
Consider the linear water-wave problem for time-harmonic motion of angular frequency w in a region
of constant depth h, and let ¥ be the vertical coordinate with origin in the free surface and directed
upwards. An attempt to find a solution in terms of vertical eigenfunctions leads to consideration of
the differential equation
d‘l
sz--—];:,\)( for —h<y<0 (1)
dy
together with the boundary conditions
dx dx
= =0 on =—h and ——=Kx on y=0, 2
dy Y dy X y (2)
where K is the real number w?/g and g is the acceleration due to gravity. It is well known that the
solutions of this problem are of the form

X = cosk(y + h) ®3)
where k = A2 is a root of the dispersion relation
K = —ktan kh. (4)

This dispersion relation has two purely imaginary roots k = %k and an infinity of purely real roots
{k = £km;m = 1,2,...}. The set of vertical eigenfunctions

o= YLD, 0,02, ()
m
og 1 in 2kl

2 _1( sin m;)

N2 2(+——~—2kmh : (6)

form a complete orthonormal set satisfying

0
% f—h Xm(¥)Xn(y) dy = dmn (7)
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where Oy is the Kronecker delta.
It is convenient to introduce an inner product notation. Let u and v be any two functions that
are square-integrable over the depth and define their inner product by

1 0

) == uvd 8

(wo) =7 [ wrdy ®)

where the over bar denotes complex conjugate. In this notation, the orthogonality condition (7) is

(Xrnsxvl) = fmn. (9)

By the expansion theorem, any function f that is square integrable over the depth may be written

M8

f= (f Xm) Xm- (10)

0

3
1l

3 Wave motion in a permeable breakwater
A model for time-harmonic motion in a permeable breakwater! leads again to the consideration
of the boundary-value problem (1-2) but with K now a complex number. This problem has been
examined in some detail by Dalrymple, Losada & Martin®. In particular, they note that for certain
values of the complex parameter K there are double roots of the dispersion relation (4) and, for
these values of K, the eigenfunctions (5) no longer form a complete set. Dalrymple et al. obtain
the missing eigenfunctions by an indirect argument based on the Green’s function for the particular
water-wave problem under consideration. Here, the problem is re-examined from the point of view
of the general theory of non-self-adjoint linear differential operators.

An operator T is self adjoint if, for all suitable functions w and v,

(Tu,v) = (u,Tv). (11)

Integration by parts shows that this relation is satisfied by the operator defined by (1-2) provided
K is real. The corresponding breakwater problem, where K is complex, is not self adjoint and the
familiar expansion theorems do not apply.

Fortunately, this particular problem falls into a class discussed in Chapter 12 of the text by
Coddington & Levinson®. The eigenvalues of the problem (1-2) are given by A = k?, where k is a,
now complex, root of the dispersion relation (4). Let C,, be a closed contour in the complex A plane
which encircles in an anticlockwise direction the eigenvalues {A;, A2, ..., An}, arranged in order of
increasing modulus. The expansion theorem® says that, for suitable functions f,

0
fw) == Jim [ P f(mn (12)
where 1
Palyrm) = g [ GlusmN)a) (13)

G is the Green's function for the particular problem under consideration, and provided suitable
convergence criteria can be established. The Green's function for the problem (1-2) is

vy (kcoskys + Ksinkys) cosk(y< + h)
Gly,mA) = k(K cos kh + ksin kh) '

k= AY2, (14)

where

Yy< =min(y,n) and y, = max(y,n).
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This Green’s function has poles at values of A corresponding to the roots of the dispersion relation
(4) so that, by the residue theorem,

n

Pa(y,m) = Y Rmly:m) (16)
m=1
where Ry, is the residue of G at A = Ap,. If the eigenvalues are known then the residues at the poles
of the Green'’s function can be calculated and the form of the general expansion found. There are
two difficulties with this, one numerical and one theoretical.
The numerical difficulty is in locating the eigenvalues in the complex plane. In the case of real
K the roots of the dispersion relation lie on either the real or imaginary axis in the complex k plane
and are therefore easily located. For complex K, Dalymple et al.? used a numerical scheme in which
the roots are tracked individually as the imaginary part of K is increased from zero. Some new
results have been obtained that should allow a more direct computation of these roots.
The theoretical problem is that for isolated values of K there is a double root of the disperion
relation and therefore a double pole of the Green’s function. These double roots correspond to zeros

in the complex k plane of the normalisation factor Ny, defined in equation (6); the corresponding
value of K follows from the dispersion relation (4). For almost all values of K there are no double
roots.

The residue of the Green’s function for a pole of order py, at A = XAy, is readily evaluated and

may be written
Pm

Bm(y,m) = Zam.pm—q+1(”'}?(m.q(y}- (17)

q=1
For the case of a simple pole, p, = 1. the so-called ‘generalised eigenfunctions’ are given by

_ coskm(y+ h)

Xm,l = N and wm,! = Ym,l with (Xm,h"i{’m,o =1 {18)

For the case of a double pole, p,, = 2, the generalised eigenfunctions are

2coskm(y+ h)
cos? kh

Xml = — and Ym1 = lelr (19)

Xma = L(4sin® kh — 3) cos km(y + h) + km(y + h) sinkp(y+ 1) and  ¥m2 = Xm2, (20)
with
<Xm,l;wm.l) = ('Xm.ﬂ‘ 'ﬂbm“z) =0 and (Xm.h wm.ﬁ) = {Xm,i:’vbm‘ﬂ =1 (21)

In the double-pole case, although the residue is well defined, there is a degree of arbitrariness
in the choice of the generalised eigenfunctions {Xm,q, ¥m,q;¢ = 1,2}. Generalised eigenfunctions
corresponding to different eigenvalues are biorthogonal so that

{Xm.q: Ynr) =0, m#n. (22)

With the above definitions, the general expansion theorem is

m

=3 3 (fi¥mpn-g+)Xma (23)

m=1

=

o
(]

For real K, all poles of the Green’s function are simple and ¥m1 = Xm,1 = Xm so that (23) reduces
to (10), after a suitable relabelling of the eigenfunctions.
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4 Solutions of Laplace’s equation
The expansion theorem (23) may be used to find solutions of water wave problems. For example,
suppose that a solution ¢(z,y) of Laplace’s equation is required satisfying the boundary condiitons

g—i:ﬂ on y=-—h and g—j:qu on y=0. (24)
The solution is sought in the form
00 Pm
$(z,y) = 3 > Crmig(%)Xm,e(¥) (25)
m=1qg=1
which satisfies the Laplace equation provided
o2 Pm
> 3 {Cra@xma®) + Cong(@)Xim o) } =0 (26)
m=1 g=1
Now
X1 = —k&xmy and X = —kZXm2 — k* cos® kh xm,1 : (27)

so that (22) may be used to isolate terms corresponding to distinct eigenvalues, For a simple pole
Cly—kiCnr=0 andso  Cra(z)=ome"" +8ne =, (28)

For a double pole, application of the biothogonality properties (21) yields

Cla—kiCma2=0 and Cpq—kHOm1 =k cos®khCn2 (29)
which have solutions
Cm,2(x) = Tm ekmr +6m e~k".x (30}
and
Crnalz)=lom efm® 1 g e~ kme +%k:r cos® kh ('ym ekmz g e"k"“) ¥ (31)

5 Conclusion

This work is concerned with a simple model for the propagation of water waves in a porous medium.
The model has been extended to a two-layer flow by Yu & Chwang® and the problem is again not
self adjoint. This modified problem involves additional matching conditions at an intermediate
depth and the theorems given by Coddington & Levinson®, and others, do not apply to this case.
Thus, it is not clear that the expansion theorem is valid even when there are no double roots of the
dispersion relation. This and other models are currently under further investigation.
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A procedure to remove secularity in third-order numerical wave tanks

B. Molin, ESIM & Y. Stassen, [fremer

Introduction

Many 2D numerical wave tanks have been developed worldwide. Most of them tackle the fully
nonlinear problem, but some are based on the Stokes expansion procedure ® = ¢ ®(!) 4 ¢* §(2) 4
... and are restricted to first (linear) or second-order effects. At the eleventh Workshop in
Hamburg Biichmann presented a code with a third-order extension (Biichmann, 96). A similar
model has been developed more recently by Stassen (Stassen et al, 1998).

In Biichmann and Stassen’s codes successive boundary value problems are solved at orders
i = 1,2,3, with the free surface conditions given as (at y = 0)

o) +gn® = fO© (

)
W) -6 = KO 2

[

where fU) and k") are zero at order i = 1 and depend on the solution(s) obtained at the pre-
vious order(s) for 1 = 2,3.

When a regular wave is being produced in the numerical tank, a problem that has been ob-
served is that the third-order component to the wave elevation, associated with @), tends
to increase steadily in amplitude as the wave travels down the tank. As a result when
n = en 4 e ¥ + € is being recomposed at a finite value of ¢ (for comparison with exper-
imental results for instance), the third-order term ¢*5'®) gradually overruns the second-order
and first-order ones, invalidating the perturbation procedure. This is illustrated in figure 2.

This phenomenon is due to secularity. In the frequency domain the remedy is well known and
consists in slightly modifying the wave number, the frequency being imposed by the wave maker
motion. In deep water regular waves the wave number correction is simply Ak = —e? k. k being
the wave number w?/g.

In the time domain, with the wave front gradually advancing over still water (and the generated
waves not necessarily being regular), a different procedure must be sought for. A possible one
consists in stretching the coordinate system, as is proposed below.

Theory

We consider two coordinate systems (z,y) and (X,Y), (2,y) corresponding to the physical
domain, and (X,Y) to the computational domain. Both are centered at the free surface wave
maker intersection.

The mapping between the computational domain and the physical domain is given by

X+ P(X.Y,t) (3)
Y +EQ(X,Y,1) (4)

Y
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with the following restrictions on P and ():
VP =0(1) Vo =0(1) PO.Y.t) =0 (Q(0,0,t) =0 EQ(X,0,t) = 0O(1)

k P(X,Y,t) being unrestricted.

For the sake of conveniency we will also assume that the waterdepth h is rather shallow, or
EQ(X,—h.t) = O(1), but the problem can be worked out without this assumption. (As a
matter of fact it is even simpler when the waterdepth is infinite).

As a result the boundaries of the physical domain correspond to the following curves in the
computational domain:

z-=1 (wavemaker) — X =10
y=10 (free surface) — Y = —2Q(X,0,1)
y=—h (bottom) =Y =—h—eQ(X,—h,tl)

The following step is to formulate the BVP satisfied by ®(z,y,t) in the computational domain
(X,Y). Partial derivatives are transformed by

By Bz 0 . d s
et (1 —e Fx) ax =1 Q\W (5)
i i 3 d 2 1

e (1—¢"Qy) ¥ Py ax (6)
d g o p oo "
E —F E—‘L Pfﬂ-t Qrd}. [[)

the time derivative being the eulerian one, at = and y fixed.

At orders 1 and 2 the BVP’s are unchanged. At order 3 the Laplace equation for &) is
maintained provided P and @ verify the Cauchy-Riemann conditions Py = Qy, Py = —Qx,
or P(X,Y,1)+1Q(X,Y,t) = f(X +iY,t).

The boundary conditions on the wave maker, bottom and free surface are transformed as follows.

Wave maker
For the sake of simplicity we assume the wave maker to be vertical at # = 0. The no-flow
condition in the physical domain is of the type

& (0,y,1) = ¢ (y, 1)

with ¢!®! depending on the solutions at orders 1 and 2.
The condition in the computational domain is then

®(0,Y,1) = ¢ (Y. 1) + Px 8% + Qx 8} = g¥)(Y, 1) + Px 8§ (8)

sinceQy = Py =0at e =X =0.

Bottom (y = —h)
Similarly the no-flow condition ®{*(x, —h,1) = 0 becomes

o —yol) — oY) —Qall) =0

at Y =—h, or

o) = = (Q2F) (9)
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Free surface (y = 0)
The new conditions at ¥ = 0 are

o — Py — Q.0 — Qo +gn® = fOX,1) (10)
i = P — 0 + Qy @ + Py 0% + QoF) = a¥(X,1) (11)
where n( X, t) = e (X, 1) + €93 (X, 1) + EnP)(X, 1).

Thanks to the free surface conditions verified by ) and n!); these two equations can be
rewritten as

7] ,

T [q)(s) e P¢l[] 2 ¢E}}] +g I?il'“} o P?}f\}}] = Jrl-'ﬂ (12)

d ;

9 _ Pl @ _ poell) _poll)] = @ :
that is the same equations as in the secular case are obtained with ®B)(z,0,t) being replaced
by ®3)(X,0,t) — P o) — Q& and ®(z,t) replaced by n®(X,t) — P i,

This result would have been obtained readily if one had assumed both k£ P and k@ to be O(1)
at the free surface, through Taylor developments in X and V. Actually only £Q = O(1) is
required (and to be checked later).

The procedure to get rid of secularity is now straight-forward. Be (13}93] and 0{3) the (secular)
solutions obtained when P = ) = 0. Then q_(siﬂ contains a secular component at the same
spatial frequencies as ). This suggests to take P(X,0.t) equal to the slowly-varying part (in
X and () of —:;:};‘r;;}. Then, hopefully, 7t* will reduce to the expected small, high frequency
components.

Once P has been thus determined on the free surface, P and @ are obtained in the whole
computational domain through

P+iQ(2) =% /: [PEC;[J:AU = P(C‘CG‘” de (14)

with Z = X +1Y and P(—(,0,1) = —P((,0,t). Then the modified boundary conditions, at
the wave maker and on the bottom, can be accounted for.

Figures 1 through 4 show some preliminary results relating to experiments carried out in the
towing tank of Ecole Centrale de Nantes. The length of the tank is 63 m, the waterdepth 2.8 m,
the wave period 2.1 s and the wave amplitude 0.12 m.

Figure 1, 2 and 3 show, 35 s after the wavemaker got started, values of ni ) ) and —qf]/r;f\-”
along the tank. Figure 4 shows, at different instants, values obtained for P at the free surface,
through low-pass filtering. All these results are dimensional, corresponding to € = ka = 0.11.
It can be seen that P, which is nothing but the distance the first-order wave profile must be
shifted forward, slowly adjusts to the steady state solution P = k*a* X as the wave system gets
established in the tank.
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Non-uniqueness in the water-wave problem:
an example violating the inside John condition
by O. Motygin and N. Kuznetsov
Laboratory for Mathematical Modelling of Wave Phenomena,

Institute of Mechanical Engineering Problems, Russian Academy of Seciences

1. Introduction

During the last decade uniqueness of the time-harmonic solution has been in the focus of much
research in the linearized theory of water waves. A substantial breakthrough was the first
example of non-uniqueness constructed by M. Mclver (1996) in the two-dimensional water-wave
problem. She applied the so-called inverse procedure which determines a physically admissible
domain for a given solution instead of seeking a solution to the problem in a given domain.
Developing this approach P. Mclver & M. Mclver (1997) obtained a non-uniqueness example
for the axisymmetric water-wave problem, whilst Kuznetsov & Porter (1997) constructed a
number of examples with different properties for the two-dimensional problem. Shortly after
appearing the first non-uniqueness examples, one of the authors of the present work has proved
the following uniqueness theorem for the two-dimensional problem (see Appendix in Linton &
Kuznetsov 1997).

Let two surface-piercing bodies be immersed symmetrically about the y-axis in deep water
and satisfy the inside John (1J) condition, that is, any vertical straight line through the portion
of the free surface between the bodies, say Fy = {—b < = < b, y = 0}, has no common points
with the wetted bodies’ contours.

Then the homogeneous water-wave problem has only trivial symmetric (antisymmetric)

solution, if the inequality
r(r':‘1+li])<fb<r(n 3i1) (1)
T = 4 o T
PG S A

holds with the sign + (=) for somem = 0,1,....

This theorem means that the 1J condition is sufficient for uniqueness of symmetric/anti-
symmetric solution within the complementary intervals given by (1) for the non-dimensional
spectral parameter vb. The examples constructed by Kuznetsov & Porter (1997), which include
that of M. Mclver (1996) as a particular case, show that this theorem can hardly be improved.
The reason is that every interval where the symmetric solution is unique contains a subinterval
of vb, for which there exists a two-body structure satisfying the 1J condition and trapping
antisymmetric mode. The same result is shown to be true for the first three intervals where the
antisymmetric solution is unique. Numerical calculations demonstrate that the same should be
true for all intervals of vb, where (1) guarantees the uniqueness of antisymmetric solution.

The aim of the present work is to demonstrate that the 1J condition is not only sufficient,
but also necessary for uniqueness in the intervals given by (1). We consider in detail the interval

(w/2,7), where the symmetric solution u{*) is unique, and outline how our approach works for
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other intervals. The idea of the proof is to construct a pair of bodies violating the IJ condition,

trapping a svmmetric mode and such, that vh € (x/2.7) for them.

2. Statement of the problem
The small-amplitude two-dimensional motion of an inviscid, incompressible fluid under grav-
ity is considered. We assume the motion to be w-periodic in time ¢ and irrotational. Thus, it
is described by a velocity potential H(-{u(.r.y)('"i“"'}. where (x,y) are Cartesian coordinates
with the origin in the mean [ree surface and the y-axis directed vertically upwards.
Y
/i (=b,0) £ (b,0) I

D,

Figure 1: A definition sketch of the water domain.

Let W ={-00c < 2 < +2¢, y < 0} \ (D4 U D_) denote the domain oceupied by water.
We assume W to have infinite depth and to be symmetric about the y-axis (see fig. 1). Two
rigid surface-piercing bodies Dy and D_ are the mirror reflections of each other in the y-axis.
The free surface is denoted by F' and consists of three portions, two outside the bodies and
one hetween them (it was referred to as Fy); the wetted boundary of D is labelled S, and
S =rSES

The eigenfunction u corresponding to a point eigenvalue v (usually referred to as trapped

mode solution) must satisfy the following homogeneous boundary value problem:

Viu=0 in W, (2)
Uy —vu=10 on F, (3)
dufdn=0 on S, (4)

and belong to the class of functions having the finite energy, that is,

o)
—

b [Vul*dedy + » JF [u]? da < oo.
Without loss of generality. u satisfying (2)-(5) may be considered to be real.
3. Trapped mode solution violating the 1J condition
To formulate the main result we need two functions. We define the first of them as follows:
u(e.y) = (20) 7' G (0, y; =7/, 0) — Gy (x,y;7/1.0)]., (6)

where the two-dimensional Green function is given by the usual formula (see Wehausen &
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Laitone 1960)

oklutn) OS5 “_‘__,'Q
k—w

Glaay:€.np) = —log |z — | +log |z — | + '_’[ dk.

= r4iy. € = €+ in. and [ denotes the contour going along the positive hall-axis and
indented below at 1. By the choice of the dipole points the integrals along indentations cancel

in (6). and one immediately obtains that

ulr.y)=— =1 ™ dk.
J0 =

1 T+l r =7y < sin k(pe —x) —sink(ve + )
v |+ mjv 4yt (e—m/v)?+ y-’] iq

where the integrand is bounded because the singularity in the denominator coincide with the
zero of the numerator. Thus. u is a real harmonic function in the lower half-plane. Moreover,
u(x.y) is even with respect to r. and the free surface boundary condition holds for it on
{r # +x/v. y = 0}. The last integral is bounded as = — £r/v as was shown by Mclver
(1996), and it decays as |z| — oo as follows from Bochner (1959) Lectures on Fourier Integrals,
§8 2.5.8. Thus, u satisfies (5) in every fluid domain W. which does not contain a neighbourhood
of the dipole points (£7/v.0).

The second required function is as [ollows:

1 J 1
v(z.y) = = ’ -

. - : . e dk,
v {e+r/v)i+y?t (z—7n/v)i+y?

[* cos k(px — m) — cos k(ve + )
Jo k—1

that is, v is the streamfunction which corresponds to the velocity potential u, and has an
arbitrary constant term to be equal to zero.
A family of fluid domains W, such that the IJ condition does not hold for W and u satisfies

(2)-(5) in W can be constructed with the help of v. In fact, any streamline may be used

(a)

v(.e,0)

WD = O oW

vl

2.6 3.0 3.4 3.8 4.2

Figure 2: (a) the value of the streamfunction on y = 0, and (b) streamlines for v,
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as Sy, if it has the following two properties. It connects with the positive r-axis on either
side of the dipole point (7/r.0). The angle directed into W between the streamline and the
positive r-axis is acute on the left of (r/».0). On fig. 2(b) a number of streamlines defined by
v(x.y) and having these properties are plotted. and on fig. 2(a) the graph of v(x.0) is shown for
convenience. Since v(r.y)is an odd function with respect to . the reflection of Sy in the y-axis
is also a streamline which we take as S_. Now. let us formulate the main theorem concerning

the existence of streamlines with these properties.

For every level V' > 0 there exists only one streamline Sy(V) = {(x.y) : v(r,y) = V}
with all internal points in {x > 0. y < 0} and the endpoints (x\,0), such that .a"l_-ﬂ > 0,
:I:(.rt\-i} —n/v) > 0. and 2y v > 25 /3. For every streamline S (V') the 1) condition does not
hold.

We note that 2\’ = b for the water domain W having Sy (V') and its reflection in the y-axis
as the wetted rigid contours. Thus, we have 2x/3 < vb = va\;) < 7 for the defined W. Since
u given by (6) delivers a symmetric eigenfunction satisfying (2)-(5) in this domain W. the

immediate consequence of the main theorem is the following corollary:

The 1] condition is necessary for the interval (rx/2,7) to be free of non-dimensional point

eigenvalues vb corresponding to symmetric eigenfunctions.
s 1 5

4. Concluding remarks

We restricted ourselves with the case of symmetric solution and of the uniqueness interval
T2 < vb < x, where 2b is the distance between two surface-piercing bodies along the free
surface. Our choice is not a restriction, and has been made in order to be specific. For either
symmetric and antisymmetric solution and for all intervals of uniqueness (1) examples of non-
uniqueness, guaranteeing the necessity of the 1J condition, can be constructed. For this purpose
the non-trivial potentials proposed by Kuznetsov & Porter (1997) should be modified in the
same way as the potential of M. Mclver (1996) has been modified in § 3.

Furthermore, the similar method works in the case of axisymmetric problem. Modifying
the non-uniqueness example proposed by P. Mclver & M. Mclver (1997), one easily obtains
that the IJ condition is necessary for the uniqueness theorem proved by Kuznetsov & Mclver

(1997) to be true in the axisymmetric problem.
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Added Resistance of Surface Effect Ships

Joost Moulijn
Ship Hydromechanics Laboratory, Delft University of Technology

1 Introduction

This abstract presents some results from a PhD research project on seakeeping of Surface Effect Ships
(SESs). The project is jointly sponsored by MARIN and the Royal Netherlands Navy.

A Surface Effect Ship is a hybridization of a catamaran and a hovercraft. An air cushion is en-
closed by the side hulls, the deck, the water surface and flexible seals at the bow and stern (Figure 1).
The bow seal is usually of the finger-type; a row of vertical loops of flexible material which are open
to the cushion. The stern seal is usually of the bag-type; a horizontal loop of flexible material which is
open to the sides, where the bag is closed by the side-hulls. Internal webs restrain the aft-side of the
bag, and divide the bag into several (usually two or three) lobes. The bag is pressurized at a slightly
higher pressure than the air cushion. Most of the vessel's weight is carried by the air cushion. The
remainder is carried by the buoyancy of the hulls. The air ¢ushion is pressurized by a system of fans.
Air leaks under the seals from the cushion.

Up to now Surface Effect Ships were mainly operating in sheltered waters. In these days however there
is an increasing interest in large SESs sailing in open seas. The design of these large vessels requires
an accurate prediction method for motions and added resistance. The development and validation of
such a method is the goal of this research project.

This abstract will focus on the topic of added resistance (i.e. the extra resistance of the vessel
due to the ambient waves). SESs are found to have a large speed loss when sailing in waves, although
Ehrenberg[1] states that an SES has much less speed loss than a catamaran. At MARIN an added
resistance about as large as the calm water resistance was measured. For normal ships added resis-
tance appears to be equal to the wave height squared. Kapsenberg[2] showed that this relation does
not hold for SESs.

The aim of this extended abstract is to verify the following hypothesis:

The origin of the large added resistance in waves of Surface Effect Ships can be attributed
to the air cushion.

The next section presents an argumentation for this hypotheses. It also presents a simple expression
for the added resistance of the air cushion. Section 3 presents a brief description of a computational
method for motions and added resistance due to the air cushion. Section 4 presents computational
and experimental results. Finally a conclusion concerning the hypothesis is drawn.

2 Added resistance components

Several components contributing to the added resistance in waves of a SES are distinguished:
e the “normal” added resistance of the hulls
e the extra resistance due to sinkage
e the extra resistance of the air cushion

The “normal” added resistance of the hulls should be small because only a minor part of the vessel’s
weight is carried by the buoyancy of the hulls and because the hulls are very slender.
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When an SES is sailing in a seaway, the amount of air leakage from the cushion increases as the
ambient cause large air gaps under the seals. This causes a decrease of the excess pressure in the air
cushion, so a larger part of the vessel’s weight has to be carried by the buoyancy of the hulls. Therefore
the vessel will sink into the water, and the resistance of the hulls will increase. Kapsenberg(2] showed
that the extra resistance due to this sinkage is relatively small.

As the first two components are small, the major part of the large added resistance of SESs must
be caused by the air eushion. The (normal) resistance of the air eushion follows from:

Rm: ="a (‘:fj -— CSJ z Br‘. {].}

where p. is the excess pressure in the air enshion, ¢, and ¢, are the mean wave height at the bow and
stern seal respectively, and B, is the width of the cushion. The increase of the mean value of R,. is
the added resistance of the air cushion. The resistance due to the momentum of the air flows into
and out of the cushion is neglected. This momentum drag is only small because of the low density of air.

As the added resistance of the air cushion is supposed to give the largest contribution to the to-
tal added resistance of SESs, it was decided to focus on this component first. It can be calculated
easily using equation (1).

3 Computational method

In this section the computational method for motions and air cushion resistance is briefly deseribed.
A more complete description can be found in reference [3].

First some basic assumption of the method are presented. The excess pressures in the eushion and
stern seal plena are constant in space. This implies that acoustic phenomena of the air in the cushion
cannot be resolved (i.e. the cobblestone effect is neglected). Further, the motions of the vessel are
assumed to be small. This implies that linear equations of motion and linear hydrodynamics can be
used. The dynamics of the air cushion are highly non-linear. Therefore the motions and excess pres-
sures have to be solved in a time simulation procedure. Up to now only heave and pitch displacement
are considered.

Next to the unknown heave and pitch displacement two additional unknowns occur: the excess pres-
sure in the cushion plenum p,, and the excess pressure in the stern seal plenum p,. Therefore two
additional equations are needed. These equations follow from the combination of the equation of
continuity for a plenum with the equation of state for the air in that plenum, which is taken to be the
isentropic gas law. They represent the dynamical behavior of the air in the cushion and seal plena.
Especially the terms representing the leakage of air from the cushion are highly non-linear. When the
relative wave height at the seals is large, no air leakage will occur. When this relative wave height
becomes smaller the seals may leave a gap. The air leakage flow is proportional to the area of this
gap. The sudden opening of a leakage gap cannot be linearized.

The hydromechanical problem is solved using a 3-dimensional Rankine panel method. The bound-
ary value problem was linearized around the undisturbed flow (i.e. Neumann-Kelvin linearization).
The interaction of the air cushion with the wave surface is taken into account. Attention has been
payed to the flow around the transom sterns. The problem is solved in the frequency domain. The
frequency domain results of the panel method are transformed to the time domain using the theory
of Cimmmins[4] and Ogilvie[5].

The stern seal geometry and force are computed using a two-dimensional model (longitudinal plane).
The eurvature of the wave surface is neglected, which is reasonable for not too short waves. Grav-
itational and inertial forces acting on the seal canvas are also neglected. The canvas is assumed to
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have no bending stiffness. The dynamic pressure distribution which occurs under the seal due to air
leakage is taken into account. The seal may either touch the water surface or leave a leakage gap.

4 Results

This section presents results for the HYDROSES target vessel; a large SES (cushion length is about
145m) which sails at a speed of 45 Kn. The computational results will be compared with experimental

results of MARIN.

Figure 2 and Figure 3 present the RAOs for heave motions and cushion excess pressure, Results
for several levels of wave steepness are shown. The agreement is good. The non-linear cushion dy-
namics appear to have only a small effect on the heave and pressure amplitude. The non-linear cushion
dynamics manifest themselves most prominently as sinkage and drop of the mean cushion pressure.

Figure 4 presents the mean resistance of the air cushion in regular waves. Again results for sev-
eral levels of wave steepness are shown. Contrary to expectations the resistance decreases in waves.
This is caused by a drop of the mean cushion pressure. The smaller excess pressure in the air cushion
causes a smaller (steady) wave resistance of the air cushion. This decrease of the air cushion resistance
is counteracted by an increasing resistance of the hulls due to sinkage, which has not been computed.

Figure 5 presents the added resistance divided by the wave height squared. The computational
data only include the added resistance of the air cushion, while the MARIN data include all added
resistance components. There seems to be no correlation between the computational and experimental
results at all. The experimental data show that the added resistance is not proportional to the wave
height squared. Sometimes the measured added resistance is even negative. The hypothesis that the
origin of the large added resistance in waves of SESs can be attributed to the air cushion cannot be
confirmed.

5 conclusion

The origin of the large added resistance of Surface Effect Ships is not clear yet. According to the
caleulations the air cushion does not give a large contribution to added resistance. The other compo-
nents are not likely to be large either. Therefore new model experiments will be carried out. These
experiments will be focused on the origin and magnitude of added resistance of Surface Effect Ships.
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Hydrodynamic analysis of the Mclver toroid

J. N. Newman
Department of Ocean Engineering, MIT, Cambrdige, MA 02139, USA

Recently M. & P. Mclver have shown, for certain floating bodies of finite dimensions, that a homogeneous
solution of the linear water-wave radiation problem exists at a particular frequency wy and corresponding
wavenumber kq. In two dimensions the body is generated by a pair of point sources separated by an odd
multiple of a half wavelength. In three dimensions the body is a toroid, generated by a ring source of radius
r = ¢, where kgc is a zero of the Bessel function Jg. In both cases an interior free surface exists, similar to a
‘moon pool’,

In discussions of two papers [1,2] at the last Workshop, questions were raised concerning (1) the local
behavior of the added mass as k — ko (damping was not mentioned explicitly), and (2) the conjecture that
standard numerical methods would fail in the same limit. The present work is intended to address these
issues, in the three-dimensional context, by applying the radiation/diffraction panel code WAMIT to the
Melver toroid.

Geometrical construction

The first task is to consider the stream surface induced by a ring source of radius c. Nondimensional
coordinates are used, with ¢ = 1.

In (3] the velocity potential for a ring source is evaluated using analytic integration around the circle,
but the remaining semi-infinite integral in wavenumber space is evaluated numerically with a truncation
correction. A complementary procedure is followed here, using the subroutine for a point source based on the
algorithms described in [4]. The Rankine singularity 1/ R is replaced by elliptic integrals. The remaining part
of the free-surface point source is integrated around the ring nsing an adaptive Gauss-Chebyshev quadrature.
The wavenumber is fixed, with k£ = jo1 = 2.4048..., the first zero of Jo. The streamlines, defined by the
relation ¢,dz — ¢.dr = 0, are traced by Runge-Kutta integration. This procedure is easily extended to a
submerged ring source, or to a finite fluid depth, with typical results shown in Figure 1. For the case of zero
submergence in a fluid of infinite depth the results agree within graphical precision with the body contours
shown in [3].

Radiation and diffraction analysis

The radiation and diffraction potentials on the body surface are evaluated from Green's theorem using
the free-surface source potential as the Green function. The fluid depth is assumed infinite and the toroid
is generated by rotating the outermost contour shown in Figure 1 about the vertical z-axis. Three different
panelizations are used, with 512, 2048, and 8192 panels on the complete submerged surface. Except where
otherwise noted, the irregular-frequency effects have been removed by imposing a Neumann condition on the
plane z = 0 inside the body. Figure 2 shows the discretization with 2048 panels on the submerged surface
and 1600 additional panels on z = 0 inside the body, giving a total of 3648 panels. Since two planes of
symmetry are utilized, the total number of unknowns is reduced by a factor of 4.

The parameters evaluated include the heave added-mass, damping, and exciting-force coefficients, and the
free-surface elevation at the center of the moon pool in the diffraction problem. The added-mass and damping
coefficients are nondimensionalized by the factors pe? and pclw, respectively, where p is the fluid density
and ¢ the radius of the ring source. The exciting force is nondimensionalized by the factor pgc? A, where 4
is the incident-wave amplitude. The free-surface elevation is nondimensionalized by A. Approximately 200
closely-spaced wavenumbers have been used in the computations to define the details shown.
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Figure 3 shows the added-mass and damping coefficients. Two sets of curves are included, where the
effects of irregular frequencies are present (dashed) or removed (solid), to emphasize the distinction between
the irregular frequencies and the physically relevant moon-pool resonance, The resonance, which occurs near
the theoretical value k = 2.4048, is present in both sets of curves. The two extra singularities in the dashed
curves are due to the irregular frequencies which exist in the vicinity of k = 1.51 and 2.81. Figure 4 compares
the results based on the three different discretizations, in the vicinity of resonance. As k — kg the number
of panels must be increased to achieve a given accuracy, The peak of the damping coefficient is relatively
narrow, and within this resonant regime the numerical results are not reliable as indicated by the negative
damping peak for the intermediate discretization.

The precise wavenumber where resonance occurs depends on the number of panels, and differs according
as whether or not the irregular-frequency removal algorithm is used. [Figure 5 shows the wavenumber
at which resonance occurs in each case, determined from the values of k at which the added mass passes
through zero and the other parameters achieve their maximum amplitudes. As the number of panels increases
both resonant wavenumbers tend to the correct theoretical value, with errors which appear to be inversely
proportional to the number of panels.

Figure 6 shows the results from the diffraction solution including the moon-pool elevation and exciting
force. The exciting force is evaluated both directly from integration of the diffraction pressure, and indirectly
using the Haskind relations. Differences between the two methods are noticeable in the vicinity of the
resonant wavenumber, where the diffraction exciting force has a very sharp peak and the width of the
Haskind peak is somewhat greater. The exciting force and damping vanish at k = 1.84....

An explanation of the results in the resonant regime can be developed, along similar lines to the large
added-mass and damping variations for bodies in channels, or submerged close to the free surface. Thus
we assume that the solution matrix is singular, with a pole in the complex wavenumber plane. With the
complex time factor e! the pole is generally above the real axis, but for the Mclver toroid the pole is on the
real axis at k = ko = jo1. Each discretized body is a perturbation of the toroid, with the pole shifted above
the real axis by a small distance ¢. As the number of panels tends to infinity, ¢ — 0. These assumptions
imply that the added-mass and damping coefficients are approximated in the forms

- k—kq = €
=A e B=B+By—m—mmm—.
i i R TR E TR )
where A and B are bounded near k& = kg, Bg > 0, and Ag = —Bp. The numerical results in Figures 3-4

are consistent with these approximations. The singular behavior of the added mass occurs over a relatively
broad band of wavenumbers, with the limiting form of the singularity proportional to (k — kg)~!, whereas
the damping coefficient is similar to a delta-function. For an axisymmetric body the Haskind relations can
be used to show that the damping coefficient is proportional to the square of the exciting force. Thus the
singularity in the exciting force is weaker than for the damping coefficient, but with the same narrow width
O(e). Assuming that the diffraction pressure is singular in the same manner, the amplitude of the free-
surface elevation in the moon pool is similar. These conjectures are consistent with the results shown in
Figure 6.

Further details are given in a paper which has been submitted for publication in the Journal of Engineering
Mathematics Special Edition on Ocean Mechanics. [ am indebted to Dr. C.-H. Lee and Dr. P. Mclver for
substantive discussions and assistance.
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Figure 1: Contours of cross-sections generated by a ring source. In the left figure the source is submerged at
the depths ¢ = 0, 0.2, 0.25, 0.26, 0.265, 0.269, respectively, proceeding from the outermost to the innermost
section; the fluid depth is infinite. In the right figure the source is in the free surface and the fluid depths
are h = 0o, 2.0, 1.0, 0.5, 0.36. In both cases the inner radius is fixed at 0.2 .

Figure 2: Perspective view of the body panelization, generated from the outermost contour in Figure 2, with
32 cosine-spaced segments along the contour and 64 equally-spaced azimuthal segments, giving a total of
2048 panels on the submerged surface. The 45°-sector of the interior free surface shows the additional panels
used for the removal of irregular-frequency effects.
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Figure 3: Heave added mass (left) and damping (right). The dashed curves include irregular-frequency
effects, which are removed in the other results. The dashed and solid curves denote computations using 2048
panels on the body and ‘x’ represents computations with 8192 panels.
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Figure 4: Added mass (left) and damping (right) in the vicinity of resonance, showing the convergence of
results using 512 (dashed curve), 2048 (solid curve), and 8192 (x) panels on the submerged body surface.
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Figure 5: The resonant wavenumber for each discretization, showing the convergence to the theoretical limit
Jo1 = 2.4048.... The dashed curve is based on computations including the irregular-frequency effects.

-

Figure 6: Free-surface elevation in the moon pool (left) and heave exciting force (right) for the body fixed
in incident waves. The dashed curve in the left figure includes irregular-frequency effects, and the marks *x’
represent computations with 8192 panels. The dashed curve in the right figure represents the exciting force
based on the Haskind relations.
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Some Problems of Hydroelastic Behavior of a Floating Thin Plate
in Shallow Water Waves

M. Ohkusu and Y.Nanba
Research Institute for Applied Mechanics, Kyushu University, Japan

1. Introduction

Analysis of the vibration of a large but thin floating plate, a conceptual configuration of floating
airpors, when it is modeled as a membrane sheet of small bending rigidity on the water surface, is
extremely simplified in the framework of linear shallow water theory. There is no reason that we do
not use the linear shallow water theory to discuss the behaviors of floating airports in waves. The
shallow water approximation is rather more realistic; very large structures like the floating airports
are supposed to be located not offshore but near-shore. Consequently the horizontal size of them and
wave length of our concern are very large compared with the water depth.

In this report we present some examples of analysis of hydroelastic response of a thin plate to waves
in shallow water theory. Essential idea of formulating the boundary value problem to determine the
plate deflection and the fluid flow is not different from that we presented in the papers (Ohkusu &
Nanba (1996), (1997)) at 11th and 12th Workshop; the draft of the plate is assumed very small and
the kinematic condition underneath the plate is imposed on the level of calm water surface. Equation
of the plate vibration is combined with the kinematic condition to derive a quasi free surface condition
for waves on the plate representing the vertical deflection of the plate. Difference is that all those
formulations are carried out by the linear shallow water.

2. Elongate plate in head waves

Analysis of vibration of a thin plate of elongate form in waves al oblique incidence is straightforward
in the linear shallow water theory. We present here the analysis not in oblique waves but in head
waves. We assume the plate width 2b is very small compared with the length L (e = 2b/L). Water
depth h is constant and shallow compared with other length scale. z axis is vertically upward and
the z — y plane coincides with calm water surface. The plate is on z = 0 surface and occupies it at

0<a<L-b<y<b

Under the plate we have the kinematic condition
¢ # o )
e L A ke At 1
at h(@xz ay? ¢ )

where ¢ is the deflection, the local vertical displacement of the plate and ¢ is the velocity potential
representing the average flow from z =0 to —h.

The kinematic condition is combined with the dynamical condition that is the equation of the vertical
vibration of the plate to derive

8  #\* pgfd* & pg w?
)= e fich S et —— + 22— a=0 ¢
(8m2+6y2) o+ 5\52 T 57 )T D gr? (2)

where D is the bending rigidity of the plate and w the wave frequency.

In the region of the free water surface not covered with the plate over it ¢ will satisfy the equation

* & w? ,
(5 +50)4* =1 6

The kinematic condition at this part is identical to the equation (1)
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We consider the case that incident wave of wave number k(= w/\/gh) are head on the plate from the
direction of the positive . When we assume the plate is elongate in the 2 direction and kb = O(1),
the following form of the solution will be reasonable.

d(@,y) = (@ y)e™** (4)

Sufficiently away from the front edge at # = 0, 1 is a slowly varying function of z. Hereafter we
suppress the time-dependent term ¢*“* in the formulation.

To the lowest order of approximation equation (4) in the region |y| = O(e%) is rewritten as

L Y

—2ik =0 (5)

Bar+W—

Substitute (4) into the plate equation (2) and retain the lowest order terms considering 8/dy = O(z~')
on the plate, we have

P (.-)2 3
(—k‘ + a‘z?) D (6)

Solution of equation (6) is straightforward. It will be written in the form
¥ = [a1(2) + as(2)y + as(2)y?]e" + [az(z) + as(@)y + as(2)y?le ™™ (7)
i given by (7) must satisfy the edge condition representing zero shear force and zero bending moment

at y = +b. The edge conditions to the same order of approximation as equation (5) are the following
four linear equations of a;

[a1(2) Py (y) + as(2) Ps(y) + as(z) Ps(y))e*” + [a2(2) P2(y) + aa(x) Pa(y) + as(z) Ps(y)]le ™ = 0

at y=+£b (&)
[a1(2)Q1(y) + as(2)Qs(y) + as(x)Qs(y)]e + [a2(z)Q2(y) + aa(x)Q4(y) + as(z)Qs(y)) *¥ =0 (9)
at y==b
Here
Pria(y) = k*, Psa(y) = £4k° + k'y, Pss(y) = 12k + 8k%y + k*y? (10)
Q12(y) = £k, Qs.4(y) = 5k* £ k°y, Qs,6(y) = £20k* + 10k*y + k5 (11)

1 on the plate given by equation (7) must match with the solution of (5) on the free water surface.
The solution of (5) symmetrical in y for the head waves (Tuck (1965), Mei & Tuck (1980)) is

x

14 VIE)  iky2/26z—8) (12)

2vwk Jo dfv$_£

Matching condition will be formulated following Mei & Tuck (1980). When y approaches zero ( the
breadth of the plate is of the order O(g) ), ¥ of (12) will become

Y=1-—

¥ =%o(z) + V(2)ly| (13)
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IEq IfE V()
ff —== y
vk Jo 3 Tz — € (14)

Matching conditions are that mass flux and energy flux given by (7) and (13) must be equal respectively
at y = £b. They are

Yo(z) =1—

[a)(x) + as(2)y + as(2)y*]e™ + [az(z) + as(x)y + as(z)y?le ™ =o(x) at y=+b (15)

[a) (2)k+as(x)(ky + 1) + as(z)(ky?® + 2y)]e™?
— [a2(2)k + aq(x)(ky — 1) + as(x) (ky® — 2y)le ™™ =+V(z) at y==+b

Our solution must be symmetrical in y and therefore a; = az,a3 = —04, @5 = dg. Four linear equations
(8),(9),(15) and (16) for y = +b determine four constants aj(j = 1,3,5) and (), which are linear
to V(z) such as a;(z) = A;V(z) and ¥o(z) = aV(z). A; and a are independent of 2. Their algebraic
expression is lengthy and not given here. Those solutions and equation (14) give an Abel integral
equation

(16)

1+4+i [* ¢ V(&)

2vrk Jo VI —E§
The solution V(z) of (17) is given in the form of the complementary error function and eventually
determines the deflection ¢ of the plate.

=1 —2V(x)[(As + Asb?®) cosh kb + Asbsinh kb] (17)

3. Wide plate in head waves

Floating airports are generally of elongate form. Their width is, however, very large compared with
the length of incident waves. The assumption of kb = O(1) as employed in the previous section is not
always practical. In this section we consider a plate extending from z = 0 to @ = +oco and from y =0
to y = —oo; the plate occupies a quarter of the whole water plane. Other 2/3 of the plane is the free
water surface. Incident waves uniform in y direction of the wave number k come from z = —oo. Here
we are concerned with the plate deflection away from the front edge at & = 0.

Effect of the waves propagating in the region of the free water surface y = 0 t0 the plate deflection is
analyzed almost the same way as in the previous section. The solution is given in the form (4) and 1
on the plate part is given by (7) with az = a4 = as = 0 for the deflection to vanish far away (y ~ —o0)
from the edge at y = 0. (7) can be matched with the solution on the free water part given in the form
of (12) in the same manner as in the previous section.

The incident waves will come into the plate through the front edge at (z = 0,y < 0). They are given
by
¢ = Age~ k0" (18)

where kg is positive one of two real roots of the equation

kS + ki — 6k* =0 (19)
and Ao is determined by the edge conditions at z = 0. Other wave components are all zero because
we are away from the edges and no waves come from z = oc.

Though it is straightforward to have e—tko* close to the y = 0 edge of the plate to be matched with

(18) and the waves on the free water part y > 0 of the form e~ V¥ ~%3¥ the matching of them are

not completed. Details of the difficulty will be presented in the Workshop.
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4. Trapped waves on the plate
Existence of eigenfrequencies will be possible which correspond to modes of waves trapped over the
plate. It was suggested by Prof. Evans at 12th INWWFB.
We assume a solution of the form

o =Y(y)e* (20)
as in the section 2, while here we consider the case of v > k(= w?/gh). Governing equation for v
under the plate of infinite length in x direction and finite width in y direction will be

K—w‘+ﬁ)1+@(—w2+£)+ﬂk”]w=n (21)
' oy? D - ay? D
A solution is
6
W= Zb}n'\,u (22)
Jj=1

Here b;(j = 1,2, ...6) are constants and A; are six roots of the equation

(=72 4+ M)+ 8(—* + M) + 6K* =0 (23)
On the free water part with no plate over it the equation (3) is rewritten as
3%y y
el + (k2 =¥ =0 (24)
Solutions with no progressive wave are possible with this equation:
W= AeV ¥ (w) at. < —b (25)
Y = Be~ V1=K (y=b) at 2>b (26)

If the solutions given by equation (22) happen to match with the solutions (25) and (26) at y = +b,
then they are trapped modes over the plate. Matching condition is obtained by imposing the conditions
similar to (8),(9),(15) and (16) as:

M-xT =0 (27)
where x is the vector x = (b, bz, ba, by, bs, bg, A, B) and M is a matrix.
If the frequencies exist at which the determinant of the matrix M is zero, the solutions will be the

trapped modes. Simple algebraic expression of the determinant seems not possible and the frequency
of zero determinant is numerically searched.

The condition of v > k(= w?/gh) is never realized with water waves and those trapped modes, if
they exist, will be induced by other causes such as some wave impact force or wind effect. Practical
implication of this phenomenon with the floating airports is to be discussed in future study.
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On the Wave Field due to a Moving Two-Dimensional,
Submergded Body Oscillating Near the Critical Frequency

E. Palm and J. Grue
Department of Mathematics, University of Oslo,
P.0.Box 1053 Blindern, N-0316 Oslo, Norway

1 Introduction

The problem of a body translating on or beneath a free surface while performing an oscillating
motion. is of fundamental interest in marin fluid dynamics. It is of practical importance in
the seakeeping of ships, and in the studying of offshore structures and devices for exploiting
wave energy. The oscillations are often of small amplitudes such that the conditions required
for linearization of the problem is fulfilled. It is then appropriate to solve the problem by
using a Green function. For a body moving with a constant velocity U, or equivalently, a
body embedded in a uniform current —U, the Green function generated by an oscillating,
concentrated source is well-known.

This Green function is, however, unbounded for a certain value of the frequency w, cor-
responding to the non-dimensional number 7 = Uw/g = 1/4. Here g is the accelaration of
gravity. Physically speaking, in the two-dimensional case four waves are generated in the far-
field when 7 is less than 1/4. Three of these waves have negative group velocities and are
located downstream. One wave has positive group velocity and are located upstream. When
T — 1/4, two of the waves merge into one wave which has zero group velocity. This wave is not
able to transport wave energy upstream and we get a wave cut-off such that the two merged
waves do not exist for 7 > 1/4. The singularity in the Green function for 7 = 1/4 has therefore
two causes: two of the waves merge into one which is expected to give a resonance situation,
and the resulting wave is not able to transport wave energy.

The motion generated by a body of non-zero volume, oscillating or exposed to an incoming
wave. may be found by using a distribution of sources located at the body surface. Since a
single source is unbounded at 7 = 1/4, it was long believed that this is so also for a body.
Grue & Palm [1] found, however, for a submerged circular cylinder in two dimensions that the
motion and physical forces are bounded as 7 — 1/4. The result was shown aumerically as well
as from the mathematical equations. Similar numerical results were obtained by Mo & Palm
(2] for a submerged elliptical cylinder and by Grue. Mo & Palm [3] for a submerged foil.

This result was generalized by Liu & Yue [4] who were able to show that in two dimensions
the motion at 7 = 1/4 is bounded for a submerged body of arbitrary form, provided that
the body has a non-zero cross-section area. They also extended their theory to floating two-
dimensional bodies and three-dimensional submerged bodies. The paper was followed up by
a new paper, Liu & Yue (5] where their result on the motion being finite at 7 = 1/4, is
applied to the study of the time dependence of the wave resistance of a body accelerating from
rest. It is known that if the motion is started impulsively from rest to a constant translating
velocity, the transient Green function decays slowly. viz. as t=/2 in two dimensions (and ¢!
in three dimensions), where ¢ is time. The reason for this slow decay is the occurrence of the
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singularity at the frequency corresponding to 7 = 1/4. It was shown that for bodies with
non-zero volumes the transient motion decays an order faster: as ™2 in two dimensions (and
2 in three dimensions). For bodies of zero volumes they find that the decay is the same order
as for the single source, however.

There are still shortcomings with the mathematical description of the physical problem at
7 close to 1/4. The first relates specifically to the work [4] in which it is claimed that a finite
solution exists if and only if the cross-section area is non-zero. We prove here that a finite
solution of the problem exists for the motion near the singularity also when the body has zero
cross-section area, namely for a thin two-dimensional foil. The result is independent of the
value of the velocity circulation around the foil. Secondly, for a body with finite submergence
the mathematical solution of the physical problem is bounded for 7 = 1/4. This solution tends,
however, to infinity as the submergence of the body tends to infinity, as noted by Zhang & Zhu
[6]. Such a behaviour is of course meaningless from a physical point of view.

2 Mathematical Formulation

a. Bodies of non-zero cross-section

We consider a body in two dimensions embedded in a uniform current beneath a free surface,
performing small oscillations in heave or sway. There may in general also be an incoming wave
of the same frequency. It is assumed that a velocity potential ¢ exists, satisfying the Laplace
equation. ¢ is properly divided into two parts: @ = @ + 1 where g is the potential of the
incoming wave. ¢ and ¢; may be written

¢o = Re;Re;fo(z) exp(jwt), 1 = Re;Re; fi(z) exp(jwi) (2.1)

where fo(z) and fi(z) are analytic functions of z = z + iy with r and y being the horizontal
and vertical coordinates, respectively. Origin is in the undisturbed free surface and y is positive
upwards. fi(z) is written as

filz) = fo(s}Ga(z,C(s)}ds (2.2)

-

where G,(z.2g) is the Green function for the problem (concentrated source at z = 2z,). The
contour of the body is determined by z = ¢(s) where s is the arclength, and o(s) is the source
strength. The integral equation for ¢ is singular for 7 = 1/4. Near this singularity the integral
equation takes the form

o(s') + 2%‘I(n:(S’) + jny(s")) exp(—=jk((s’ ]f s) exp(jk((s)

+f $)M(s, s')ds + O(8) = H(s') (2.3)

Here
§=(1-41)"2  k=w/U,
nr and n, are the z- and y-components of the normal vector of the body, and M and H are
non-singular functions. A bar indicates the complex conjugate.
In [4] (2.3) was transformed into the following form

ola )= 2k(n; + iny) exp(—jkC(s

) ’ P,
o(s)ds | M(s,s')exp(jk((s)ds
ey

§ + 2jkT
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) ' ng +1in )exp(—jk{(s' ' =N gy
" 5] o(s)M (s, )ds = H(s) ~ ST OBLIKL) Sf H(s') exp(RT(s)ds  (2.4)
where
I =2k f exp(2ky)dB (2.5)
B

and B denotes the body section. Since I' # 0, all the terms in (2.4) are finite and hence o is
finite also for 6 = 0.

b. Bodies of zero cross section (the foil)

We consider now a thin oscillating foil submerged in a uniform current under a free surface
[3]. A thin moving foil may be used to extract wave energy. It is assumed that the foil has a
small camber and angle of attack. For the oscillatory part of the flow the effects of camber and
thickness are only secondary and the foil may mathematically be replaced by a flat plate. The

boundary conditions at the free surface may be linearized, even if the foil is placed close to the

free surface.
The velocity circulation around the foil oscillates in time. Hence vortices are shed at the

trailing edge and an infinite long vortex wake will be formed behind the foil. fi(z) may now

be written ’

fil) = [ 161G (=€ — id)de (2.6)
where G, (2. %) is the Green function for the problem (concentrated vortex at z = zp) and d is
the depth of the foil. v is now given by an integral equation of the form

¢ .
1 AR [ (2 —n*)'? .
= o f U 2] | et e —1k
Hz)= =3 (2 — 2212 { = )[ = exp(—jkn)dn +

2 —n f =
f — [ @0 €)dg + Him + Fola) = (o) | dn =T} (27)

=N 25
Here :
R _ Ty +DuJo(kat) = kexp(=3ki8)/(k + k1)) (2.8)
5 6+ jg1(kr€) '

with k; denoting the wave number for one of the two waves which merge at 7 = 1/4. T, is the
velocity circulation and Jy denotes Bessel function of the first kind of order zero. It is proved
that gy(k;€) is always positive. The other functions involved are all regular.

Discussion

It is noted that (2.7) and (2.8) define an integral equation where all terms are finite for 6 — 0,
even though the cross-section is zero. It is easily shown that also fi(z) is finite at this limit.
The result is true independent of the value of the velocity circulation.

It should also be noted that the equations (2.4) and (2.7) are singular at § — 0, even though
o and « are finite at this limit. Physically this may be explained by the fact that for 7 < 1/4
four waves are present, while two of these disappear for 7 > 1/4. It will be shown that some
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of the physical forces may have infinite derivatives with respect to w at 7 = 1/4. This is also
true for the source strengths o and 1.

It is seen from (2.4) that for § = 0 the second term becomes for large submergence propor-
tional to exp(kd) (d the depth). Also the velocities become proportional to exp(kd), which is
a meaningless result from a physical point of view. A similar behviour is also found for the
foil. It was proposed in [6] to solve the problem by introducing non-linear effects. They exploit
a quasi-linear model using a Green function, originally derived by Dagan & Miloh [7], which
satisfies the free surface conditions up to third order in the small parameter ¢, By this they
obtain that the wave motion set up at the free surface by a deeply situated body decays expo-
nentially with the submergence of the body at 7 = 1/4 which is a reasonable result. However,
we believe that any other Green fuction may be used, having the merit that for ¢ — 0 the
classical Green function is recovered, and for deeply submerged bodies the wave motion at the
free surface decays rapidly with the depth of the body.

We conclude that there are three different routes which may be taken to solve the problem.
The first one is to integrate the integral equation directly through the singularity ([1], [2], [3])
which can be performed without difficulty. The second one is to develop the integral equation
to a form where the source strength is finite at 7 = 1/4 [4], and the third one is to use a Green
function which is non-singular at + = 1/4 [6]. Each of these methods have their advantages
and disadvantages.
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Prediction of resonances due to waves interacting with
finite linear arrays of cylinders

R. Porter and D. V. Evans
School of Mathematics, University of Bristol, Bristol, BS8 1TW, UK

1 Introduction

In this abstract we show how information concerning the trapped modes in the vicinity of an infinite
array of bottom-mounted cylinders can be used to make accurate predictions of the frequencies at which
large forces will oceur on finite arrays of cylinders. Results are given here for circular cylinders, and it
is hoped further results will be presented at the Workshop. Recently Maniar & Newman (1997) have
shown how the interaction between an incident wave field and a long periodic array of vertical circular
cylinders extending throughout the depth can generate large free-surface amplitudes and forces on the
cylinders. They found that the frequencies at which these large resonances occurred corresponded to
frequencies at which trapped modes exist for the corresponding infinite array of cylinders. Trapped
modes represent a localised oscillation of finite energy which does not propagate away to infinity and
they are simply the non-trivial solutions to the homogeneous problem. Using symmetry arguments in
the trapped mode problem, the infinite array can be regarded as being equal to the problem of a single
cylinder placed symmetrically in a channel with parallel walls having either Neumann or Dirichlet
condition imposed upon them. Furthermore, it is also necessary to place a Dirichlet (antisymmetry)
condition on the channel centreplane in order to generate a cut-off frequency. For the channel with
Neumann conditions on the walls, this cut-off is given by kd = %ﬂ' where k is the wavenumber and
the channel is of width 2d. For the channel having Dirichlet conditions on the walls, the cut-off is
at kd = m. In each case, provided that the wavenumber is below its respective cut-off and provided
that the motion is antisymmetric about the channel centreline, any oscillation localised about the
cylinder is unable to propagate to infinity along the channel and is therefore trapped. The Neumann
trapped mode was first shown to exist for circular cylinders of all sizes 0 < a/d < 1, with a the
cylinder radius, by Callan et al (1991). The Dirichlet trapped modes computed by Maniar & Newman
(1997) only exist if 0 < a/d < 0.678, that is for sufficiently small cylinders. Evans et al (1994) proved
that all symmetric obstacles placed symmetrically in a channel having Neumann conditions on the
walls exhibit a trapped mode below the cut-off kd = 7. The same is not true for a channel having
Dirichlet conditions on the walls (as demonstrated, for example, by the circular cylinder), though the
techniques used in Evans et al (1994) can be adapted to the Dirichlet case to provide a powerful result
for the existence of Dirichlet trapped modes. More recently, Evans & Porter (1997) have shown that
further isolated trapped modes exist above the cut-off for the circular cylinder in both the Neumann
and Dirichlet case. In each case, they only exist at a precise wavenumber and for a precise cylinder
size.

All the resonances appearing for a finite periodic array of cylinders in waves can be attributed
to the presence of one of these trapped modes for the infinite array (see figure 1(a)). However, the
values of kd at which maximum response occurs for the finite array is dependent on the number of
elements, N, in the array and only tends to the trapped mode wavenumber as N — oo. Similarly,
the amplitude of resonance increases (roughly linearly with N) as N increases, though for an infinite
array the response would be infinite. In the present paper we attempt to go further by predicting the
value of kd and the amplitude of resonance for a finite array of N elements using only information
from an infinite array. Though this appears on the face of it to be a step backwards, an infinite array
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Figure 1: (a) Maximum exciting force on the middle cylinder in array of 25 cylinders in head seas
with a/d = % (b) kd versus fd for Rayleigh-Bloch waves along an array of circular cylinders with
afd=1% ()} C--) 3 (o).

is simpler to deal with analytically and so this concept provides a useful tool for predicting forces and
frequencies on finite arrays of cylinder with general cross sections.

The trapped modes described above are just special cases of a more generalised frapped mode
motion which are usually referred to as Rayleigh-Bloch waves (sometimes also called guided waves or
edge waves).

Briefly, Rayleigh-Bloch waves describe oscillations in the vicinity of a periodic array or grating
which do not radiate energy away from the grating but, in general, have some transport of energy
along the array. They are characterised by a dominant wavenumber £ in the direction of periodicity,
the wavenumber & then having to satisfy the cut-off criterion k < 3 so as to ensure no outgoing waves.
Thus fd = %rr and fd = 7 are equivalent to the Neumann and Dirichlet trapped modes described
earlier. Rayleigh-Bloch waves are explained in more detail in the following section.

2 Rayleigh-Bloch waves along periodic gratings

Consider an infinite periodic linear array of cylinders each of arbitrary cross section, having boundary
AD, uniform throughout the depth. The generators of the cylinders are aligned with the depth
coordinate, z, and positioned at (z,y) = (0,2jd), where j is an integer running from —oo to co.
According to classical linearised theory and assuming time harmonic motion whilst also removing the
depth variation through a term proportional to cosh k(z — h) where h is the constant fluid depth, the
two-dimensional complex velocity potential describing the flow satisfies the Helmholtz equation,

Puz + by + K =0 (1)
everywhere in the field apart from on the boundaries of the cylinders where
$n =0, (2)

and 7 denotes the normal derivative with respect to the cylinder surface. Because the geometry has
periodicity of 2d in the y-direction, we may relate the potential through

d(z,y + 2jd) = 72U (z,y), —00< j< o0 (3)

which simply expresses that there is a change in phase of ei#2d from the field point at y to the field point
at y+2d in the adjacent ‘cell’. Thus the total field can be obtained by referring to a single strip of width
2d containing the cylinder. We therefore restrict our attention to the strip (z,y) € (—00,00) x [—d,d]
and impose appropriate periodicity conditions on the lines y = =+d of

#(z,d) = e p(z,—d),  ¢y(z,d) =Py (z,~d), (4)
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with (3) providing the extension to all (z,y). The Green’s function for the problem defined by (1),
(2) with (4) may be written as the integral representation

1 [efdSEN-1) ginh ky|y — 7| + sinh ky(d — |y — 7])
Gale, &) = —5= el L cosk(z —€)tdt  (5)

wherey = (1—t2)Y/2 =i(t2—1)"/? and r = ((z—&)%—(y—mn)?)"/%. See Linton (1998) for its derivation
and other representations of the periodic Green’s functions in (5). Applying Greens theorem to Gy
and ¢ in the rectangle (z,y) = (=X, X) x [—d, d], X — oo yields the following integral equation for ¢:

%d?(lp}f p € 9D,
é(p), p & aD.

Following Linton & Evans (1992), we use a polar parametrisation for 9D of p(0), 0 < 8 < 27 and
write (6,1) for (p,q). Discretising the integral equation into M segments over the interval (0, 2m),
writing ; = (2 — 1)x/M, j=1,...,M and collocating reduces the above to the following algebraic

aﬁ(P)(r)?—Gﬁ(p; q) dsg = &

oD tq

system of equations:

M
2 :
A_j;z¢(8}}1{”u}3 :%¢(9:]‘ 1= 1,...,M (7}
=1
where Ky = 3G 5(6::0;) | Ong, w; = (p2(93) + 02 (ej))lf‘z_ (8)

It turns out that if we are below the cut-off, k < 3, the above system can be recast as a real system
despite the apparent complex nature of Gg in (5). Rayleigh-Bloch modes correspond to the non-trivial
solutions to (7) or, equivalently, the vanishing of the determinant of the system, for which the realness
of the system is vital.

For example, when the infinite array consists of circular cylinders of radius a, the Rayleigh-Bloch
solutions in fd < % are shown in figure 1(b). Notice that Ad = %wr corresponds to a Neumann trapped
mode, whence the well-known results of Callan et al (1991) are recovered.

3 Near-trapping by a finite linear array

In figure 1(a) we show the variation of the maximum exciting force on the middle cylinder in an array
of 25 cylinders of non-dimensional radius a/d = % with non-dimensional wavenumber kd/w. We are
interested in predicting the values of kd at which large peaks in forces occur. Maniar & Newmann
(1997) made the connection between the Neumann and Dirichlet trapped modes in an infinite array
(Bd = :}ﬂ and fBd = 7 respectively) and these peaks. In fact, for 25 cylinders, the peak resonance
oceurs at a value of kd = 1.3820 as opposed to the corresponding Neumann trapped mode wavenumber
of kd = 1.3913. In what follows, we allow ourselves to consider general fAd and the resulting Rayleigh-
Bloch waves in the infinite array to improve upon the estimate to kd at which resonance occurs for
a finite array. Our motivation comes from the form of the wave field along the finite array, shown
for 25 cylinders at the resonant wavenumber kd = 1.3820 in figure 2(b). In each ‘cell’ containing a
cylinder, the wave field is similar to that for a trapped mode in a Neumann channel, but is modulated
by a cosine-type envelope along the array. We can construct a similar solution for the Rayleigh-Bloch

waves by choosing 8d = i (1 —¢). Then from (3),
B(z,y + 24d) = 7" "g(z,y) = e *[(=1)é(z, y)]. (9)

The term in the square brackets represents the standing wave component of the solution whilst the
exponential term contains a modulation of one half wavelength given by je = 1. Matching this
modulation with the finite array of N elements gives Ne = 1, and so

fd = (1 —1/N) (10)

and the corresponding Rayleigh-Bloch wavenumber kd(f3d) can be computed using the method outlined
in the preceding section. This resulting value of kd provides the estimate to the wavenumber at which
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N (no. of cylinders) fd = %rr{l —-1/N) kd(5d) kd(peak force)

100 1.5550 1.3907 1.3907
50 1.5394 1.3889 1.3889
25 1.5080 1.3818 1.3820
20 1.4923 1.3767 1.3775
15 1.4661 1.3659 1.3680
10 1.4137 1.3376 1.3470

Table 1: Table showing the values of kd at which large forces occur in a linear array of N cylinders,
a/d = § and the wavenumbers predicted using Rayleigh-Bloch theory.

(a) 10 - - .

5

Re{¢(a,y/d)} °

]
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(b) 1 -
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0 lIJ 'IlO 2.0 y‘}{d {;D 40 50
Figure 2: (a) The free-surface elevation along N = 25 cylinders at the near-trapping frequency (a/d =
%), and (b) overlayed (---) on the Rayleigh-Bloch surface profile (—) along a corresponding infinite
array with Gd given by (10).

the peak resonance occurs in the finite array and a comparison between the two is shown in table 1.
For N > 25 the agreement is excellent and even for N = 10, the discrepancy is only 1%. Figure 2(b)
shows an overlay of the wave profile along the finite array of N = 25 cylinders and the corresponding
Rayleigh-Bloch wave profile computed using (10). In the range occupied by cylinders, the agreement
is excellent, confirming the connection between near-trapping or resonance in finite linear arrays and
Rayleigh-Bloch waves in infinite arrays.
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Wave pattern analysis applied to nonlinear ship wave calculations

Hoyte C. Raven and Henk J. Prins
Maritime Research Institute Netherlands (MARIN), P.O.Box 28, 6700AA Wageningen, Netherlands.

Calculation methods for the steady wave pattern of a ship in still water usually suppose potential flow, and today often
impose nonlinear free surface boundary conditions. Advantages of including all nonlinear effects have been demonstrated
before [1]. One of these is that an accurate prediction of the wave resistance in principle becomes possible: Unlike
Dawson-type linearisations, the full nonlinear free-surface conditions theoretically ensure full agreement between the
resistance found from a far-field momentum balance and that from pressure integration over the hull. Thereby they rule
out the occurrence of negative wave resistance predictions and similar problems.

Even so, computing wave resistance by hull pressure integration remains less attractive, having significant sensitivity to
the hull panelling, in particular at low Froude numbers. The predicted wave partern, however, is much less sensitive to
the hull panelling. This suggests to evaluate the wave resistance from the calculated wave pattern, using a wave pattern
analysis technique as developed in the past for towing tank experiments. For use in a computational method a transverse
cut technique is most suitable, and has been applied before. Nakos (2] used it succesfully for a linearised wave pattern
calculation. Busch [3] used wave pattern analysis in a nonlinear method, obtained good results for a very slender hull
form but did not pursue the application to other cases.

The RAPID method

The method used in the present study is RAPID [4, 5]. It solves the steady potential flow problem with fully nonlinear
free-surface boundary conditions by an iterative technique. Each iteration linearises with respect to the free-surface shape
and velocity field found in the previous iteration. The solution is generated by source distributions on the hull surface and
on a plane at a small distance above the free surface. The free-surface collocation points are on the wave surface itself, and
are distributed over a finite domain around the ship. The method is quite efficient, converging usually in 8 to 15 iterations;
each iteration asks some 6 sec. at 2500 panels, 50 sec. at 8000 panels, on a CRAY 916 vector computer. It is in routine
use at MARIN since 1994, several hundreds of calculations being made each year; and besides is used at a few shipyards,

Transverse cut analysis

Transverse cut analysis (see e.g. [6]) uses an expression for the wave resistance in terms of the amplitude of the wave
components proceeding in all directions:

T 2 V1 +4du?
Rw,i= —- FYu) + Gu)) ———=du , (1)
Wpat Bfr[o (F(u) ( ))“_ T
for a wave pattern represented by :
Lo [
nix,z) = o= ] [F(u) sin(sx + uz) + G(u) cos(sx + uz)ldu (2)
—-00

where the dispersion relation is 5 = /(1 + V1 + 4u?)/2. The amplitudes F and G can be found by applying a particular
Fourier analysis to the wave height distribution along two transverse lines far behind the ship. In [3] it is shown that a
larger number of wave cuts is preferable to provide redundancy and increase the accuracy of the result. In our study 8 cuts
appeared to work well. The overdetermined system is solved in a least-squares sense.

The transverse cuts must be located far enough aft of the hull, they must extend laterally to outside the Kelvin wedge, they
must be free of reflection effects, and the free-surface panel width must be small enough to resolve all wave components
of interest. With some adjustments the ensuing requirements to the free-surface panelling can easily be met.

Dependence on longitudinal position

Evidently, the wave pattern resistance is supposed to be independent of the longitudinal position of the cuts. But without
further precautions it is not, as Fig, 1 illustrates for the case of a slender vessel at Fn = 0.33 . In general we observe that:
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s Close to the stern, there is a rather quick variation of the resistance found;
e The resistance displays wavy variations around a mean line, with a slowly decreasing amplitude;
o The wave pattern resistance gradually decreases with distance of the cuts behind the stern;

e All values found are significantly lower than the pressure integration resistance level.

The first point is an expected symptom of the near-field disturbance around the hull, which violates the basic assumptions
of the analysis. As far as our experience goes, further than 0.3 to 0.5 L aft of the stern this effect is mostly negligible. The
second effect was unexpected and is studied below. The last two points are discussed in the last section.

Effect of nonlinearities on transverse cut analysis

To detect the cause of the wavy variations we go back to the derivation of transverse cut analysis. The starting point is a
momentum or energy balance for a control volume surrounding the ship hull, bounded by the wave surface, an inlet plane
and lateral boundaries at infinity, and a transverse outlet plane at any distance behind the stern. This provides the wave
resistance in terms of an integral over the outlet plane, plus a line integral along its intersection with the wave surface:

1 ) 1
Rwpyr = ;[u[(—u‘ +v+whdS + = / qzd:. (3)
= “Jip

Here, u, v and w are disturbance velocity components relative to the undisturbed flow.

The first term is not easily evaluated accurately and therefore is recast in an expression in terms of wave heights only. To
this purpose, the far-field wave pattern is assumed to have the form (2), i.e. to be a superposition of simple sinusoidal
wave components that satisfy the dispersion relation for the steady wave pattern. Substituting the corresponding potential
field into (3) provides the expression (1) for the wave resistance in terms of the amplitude of the wave components.

If fully nonlinear boundary conditions are imposed, the resistance from (3) of course is independent of the position of the
outlet plane, as there is no energy flux through the wave surface. Therefore, the wavy variations of the resistance must
be due to an incorrect approximation of the integral over the outlet plane, in particular the assumed linearity of the wave
components. This is confirmed by the fact that for a Neumann-Kelvin result (obtained with the same numerical method)
the wavy variations of the wave pattern resistance are almost absent, as Fig. | shows: in that case the expression (2)
is consistent with the linear free-surface boundary condition imposed, so the approximation of the outlet plane energy
flux is exact. However, using a full Bernoulli expression for the wave height in the Neumann-Kelvin result disturbs this
consistency and already introduces a pronounced waviness. We conclude that the wavy variations in the wave pattern
resistance are a consequence of the inconsistency of applying a linear analysis to a wave pattern that satisfies nonlinear
boundary conditions.

While the amplitude of the resistance variations decays, they persist up to 2 ship lengths aft of the stern in the cases studied.
The nonlinear effects therefore extend over a much larger distance than has always been assumed, and this will apply to
experimental transverse cut analysis as well.

In order to eliminate the resistance variations, we have tried to replace the wave pattern at the location of the transverse
cuts by a 'corresponding’ linear wave pattern. One attempt was 1o use the linear (Kelvin) expression for 7 , using the
free-surface velocities computed by the nonlinear method; but this turned out to increase the amplitude of variations even
further. A second attempt was to use again the Kelvin expression, but in terms of the velocities at the still water level.
In the case studied this eliminated most of the resistance variations (Fig. 2). However, this procedure is less suitable for
routine application and seems to lack a theoretical justification.

A more obvious alternative, and the procedure adopted now, is to spread out the transverse cuts over a longer area. In all
cases tried, the waviness in the resistance had a length quite close to the fundamental wave length A = 2rFn® . If the 8
transverse cuts we use are distributed over an area of this length, the wavy variations are “averaged out”, and a much more
stable result is obtained, as Fig.2 shows.

To get some confirmation that this average value agrees with the true wave resistance as would be obtained from (3), a
simple analysis has been carried out. As suggested by the appearance of the fundamental wave length, we represent the
wave shape by a single 2D component and make a perturbation expansion in the wave height. For the first order wave
7n= %H. sin x, substitution in (1) yields:

l 3
—H?
16 '

Rwpur =
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so for a linear wave component the resistance from wave pattern analysis 1s independent of x. Moreover, substituting
the associated potential field into (3) produces the same expression for the resistance to leading order. However, for a

second-order wave,
|
n=c

: (i [
_)H, sin.x + EHg siny — gH, COS X,

the resistance from the wave pattern analysis is

ol 1 !
Rwpur = —I—H{ + —H Ha + i-Z_HF sinx .

16 8
while the control volume integration produces the same but without the sin x term. Therefore, eliminating the wavy part
of Rwp, by averaging over a wavelength brings it in agreement with the energy balance and yields the correct result in
this case.

Effect of numerical damping

We now come back to the last two features noted above: the gradual decrease of the average resistance level with x, and
the fact that Rwy,_is less than the resistance from pressure integration. Both are obvious consequences of the numerical
damping inherent to the method. While this damping has little effect in the near field, it causes a slightly too quick decay
of the wave amplitude and affects the far field resistance evaluation (which is quadratic in wave amplitudes).

The numerical damping has been analysed theoretically in [5], and indeed there appears to be a direct correspondence
between the results of that analysis and the slope of the Rw(x)—line. E.g. for the raised-panel method used, the analysis
tells that the damping increases when the distance of the panels above the free surface is reduced, and this is reflected in a
steeper decrease of the resistance. This resistance decrease may be supposed to be an exponential function of the distance
from the point where the waves have been generated. If, as a rough approximation, this virtual origin is chosen at e.g. half
the ship length, as a sort of average for bow and stern wave systems, the Riwp(x) line can be extrapolated backwards to
that origin. This largely compensates the dependence of the wave pattern resistance on numerical parameters that affect
the damping.

In principle, a better approach is to reduce the slope of the resistance line by reducing the numerical damping. This can
be done by optimising the difference scheme in the free surface boundary conditions. The theoretical analysis of the
dispersion and damping in [5] indicates how to design a special-purpose difference scheme that virtually eliminates the
damping for panellings as coarse as 10 panels per wavelength. Experience with such schemes is now being collected.

Conclusions

o As a result of the inconsistency of applying linear wave pattern analysis to the wave pattern computed with a
nonlinear method, the wave pattern resistance has a wavy dependence on the distance aft of the stern.

o The nonlinear effects causing these resistance variations may persist to as far as 2 ship lengths astern; the same will
also be true for experimental wave pattern analysis.

o The variations can and may be largely eliminated by spreading the wave cuts over a fundamental wave length.

o While the wave pattern resistance is much less sensitive to the hull panelling than the hull pressure integration, it
is affected by cumulative numerical damping effects and thus poses some additional demands to the numerics. At

present its use is for comparative rather than absolute predictions.
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Experimental and numerical second order diffracted waves around
an array of 4 cylinders.

Scolan Y.-M., ESIM, Marseille, France
Malenica S, BUREAU VERITAS, La Défense, France

1. Introduction

The diffraction of regular waves around an array of 4 vertical cylinders is investigated.
Results from existing theoretical models are compared with experimental data acquired in the
frame of a french CLAROM project started in 1996. Encouraging results are obtained for both
first and second order quantities in the limit of small wave steepness.

Another aspect is also emphasized concerning the existence of high localised second order
wave elevations in the spacing between the two front columns. The computations show that
second order maxima is only due to diffraction and they occur precisely where the first order
envelop vanishes. The existence of trapped modes may explain these resonant like phenomena.

In the following developments, the experimental set-up is first described, then the two
different numerical approaches are outlined. Some significant results of comparison are finally
shown.

2. The experimental set-up

The set-up (described below) is simply composed of bottom mounted vertical cylinders of
circular cross section. One of the longitudinal walls of the basin is used as a symmetry plane;
the TLP model is thus composed of 2 cylinders at incidence 0°. With this choice the problems of
blockage are practically avoided and it significantly r_educes the pcrturba,t]_on due to the rt?ﬂectecl
waves on the opposite longitudinal wall. An additional wave absorber is placed on this wall.
These precautions are necessary to obtain a sufficiently long period for data acquisition without
spurious harmonics. This is of crucial importance pa.rti(:u!a;]_v when second order quantitiesf are
to be measured. Seven wave gauges are placed in the vicinity of the four columns as described
below.
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3. The numerical tools

The second order diffraction problem can be formulated for the corresponding potentiel qbg}
as follows:

3 e

AP =0 in the fluid domain
P, — L:—qu'ﬁ} =o' +a® on the free surface z = 0
Pg‘” qﬁgf', = —¢{f3 on the cylinders (1)
g‘)z =1 on the sea-bottom z = —h
Rad(qb(g’) in the far field

The 2™ order incident potential qﬁgﬂ is known analytically. The right hand side of the free
surface condition exhibits in the far field two wave interactions; here o'¢ and o correspond
to the interactions incident/diffracted and diffracted/diffracted respectively. The radiation
condition usually follows from an analysis of the far field wave decomposition into free and
locked components.

To solve this BVP, two different numerical approaches are used: semi-analytical formula-
tions and numerical diffraction programs developed in the frame of potential flow theory. Both
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approaches use semi-analytical first order solutions to account for the interaction of cylin-
ders. The formulation by Melver & Evans (1984) is approximate and the other one by Linton
& Evans (1990) is exact. Discrepancies exist and some of them are exposed here and in Scolan
et al. (1997).

The second order semi-analytical approach uses the Linton & Evans’ first order solution.
It is based on the decomposition of the second order potential into several potentials, each ver-
ifying a particular Boundary Value Problem (BVP) solved semi-analytically. This is presented
in Malenica (1997).

The other approach is a full numerical solution of the BVP expressed above by using an
integral equation and the Rankine Green function (see Scolan 1989). The main aspect concerns
the radiation condition which is based on the decomposition of the far field into locked and free
waves (see Molin 1979).

4. Some results
Figures (1) compare the numerical or experimental total second order quantities. Those in-

clude the incident and diffracted components (noted r;ﬁz] and ng) respectively) and the quadratic

contributions (noted 7,:83,,) coming from first order.

Figure 1: (left) modulus of the 2" order wave elevation vs period (sec) at gauge N5, radius
0.280 and spacing 1.334; experimental data are marked for different wave steepnesses; (right)
numerical and semi-analytical real and imaginary parts of (3.

The plotted quantities are non dimensioned with kA? where k and A are the wave number and
the incident wave amplitude respectively. The highest second order elevations n2 /kA% ~ 8
occur at the gauge N°5 (z/d = 0.398 and at about T' = 1.5s. The shift of period illustrates the
differences between the two first order formulation. The overall trend is however very similar.

pariod (sec)

Figure 2: locations of 7!} modulus minima at mid-point between the two front cylinders.
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A study of the second order wave pattern shows that localised high elevations occur between
the two front cylinders. This could suggest resonant like phenomena somewhere between the
cylinders. A more precise study shows that first order wave elevations vanish in the same
area. Hence a parametric study should first provide couples of spacing and wave period for
which there exist areas where first order elevations vanish. Such locations are determined
along the symmetry axis (y = 0) and between either upstream or downstream cylinders. For
example figure (2) shows the locations in the plane (spacing, period) of the 7Y modulus minima
calculated exactly at the mid-point between the two front cylinders, Computations are thus
performed for different couples ranging along a line which joins the 2 points (1.0, 1.348) and
(1.25,1.48). As a matter of fact, the obtained results (not reproduced here) show the same
characteristics. To illustrate this the total second order wave pattern is plotted in figure (3)
for the data d = 100 and T = 13.48 with the radius a = 28 (corresponding to a geometry 100
times larger than the model one). A spot of high elevation is clearly noticeable exactly between
the two upstream cylinders. A question arises whether this is due to forcing term of the free
surface condition or this is due to pure diffraction. For that in the left figure, the 1** order
elevation is compared to the different 2"¢ order quantities. One may note that:

o the second order diffraction is clearly the dominant contribution, ‘

e this component reaches its maximum precisely where the total 1% order elevation vanishes,
e the 2" order diffraction is the only explanation for this local effect since the quadratic

terms bring almost negligible contribution even if it is thought that V2 should contribute
significantly,
o the 1** order elevation, the right hand side (o' + o) and the mean value have a very similar
variation along the axis, : ; .
e the forcing term of the free surface condition seems not important enough to explain this
phenomenon. A Y
Another couple is then computed for a different location of vanishing first order elevation; the
listed conclusions above seem confirmed as shown in figures (4?. Here one should note that the
forcing term of the free surface condition decreases significantly at the location of interest.
From the first studied data (see figure 3) one can compute the positions of the near-trapped
modes (if existing) associated to this configuration. This is done by Calcuiat'{ng the force acting
on each cylinder. This force (F) is usually made non dimensioned with the force (F}) acting on
a single cylinder in isolation as it is done in Evans and Porter (1997). From our computations
a very sharp peak of force (F/F, ~ 12) is observed at ka = 0.7957 corresponding here to
T ~ 11.9s and for a spacing d/a = 2.5 (made non dimensioned with the cylinder radius). This
result must be considered with precaution as the approximated first order solution is used.
However, as the spacing increases the peak of force is shifted towards higher Perlods. For
the present spacing d/a = 3.57, a peak of the force (F'/Fy ~ 1.6) is at about 7' ~ 13.7s. This is
close to the first order incident wave but far from the period of the corresponding second order
free wave system. A parametric study by varying both the spacing and the period should bring
some more elements of answer. Those will be presented at the workshop.
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Suppression of Wave-Breaking in Nonlinear Water Wave Computations

Anil K. Subramani, Robert F. Beck, and William W. Schultz
The University of Michigan, Ann Arbor, Michigan 48109, U.S.A.

INTRODUCTION

Over the past several years, a multipole-accelerated,
desingularized boundary integral method has been
developed to compute fully nonlinear water waves in
the time domain (Scorpio and Beck, 1996). The
method---denominated UM-DELTA, for University of
Michigan Desingularized Euler-Lagrange
Time-Domain  Approach---has  been  successfully
applied to a wide variety of problems, with marked
improvements over results obtained using linearized
methods. A major difficulty is encountered, though, by
this and similar. methods for computing nonlinear water
waves and wave loads: the characteristic occurrence of
spray and wave-breaking in free-surface flows causes
the computations to stop, as figure 1 demonstrates.
Therefore, for the present method to realize its full
capability, it is important to prevent the generation of
spray and breaking waves from terminating the
simulations of highly nonlinear flows. However, with
the goal being for the method to remain efficient and
useful in the marine design process, a detailed and
expensive simulation of the wave-breaking event itself
is*less desirable an approach than one that models the
event adequately enough for the calculations to
proceed.

To this end, recognizing that wave-breaking is
essentially a process with which is associated a local
dissipation of energy, a technique is herein proposed to
absorb energy locally from waves that are about to
break, thereby suppressing wave-breaking. The
features of this "local absorbing patch” model are: (i)
detecting the likely occurrence of wave-breaking, and
(ii) determining the appropriate amount of local
damping so as to render reasonably realistic waves in
the post-breaking regime; these are discussed below.

CRITERION FOR BREAKING

Important as the problem is, wave-breaking has
received considerable attention, but it is not yet
completely understood. A survey of the literature
reveals that a number of studies have been conducted to
understand why waves break and to determine a reliable
criterion for the inception of breaking. For brevity, we
cite only Griffin et al. (1994) for they point to the
pertinent references in their review of the existing
criteria,

Following Stokes' theorizing of a limiting
height (H) to a wave in terms of the wavelength (L), the

wave steepness (often measured by ak, where a is the
wave amplitude and k=2m/A is the wave number) has
been the most commonly examined index for
wave-breaking. Empirical data, however, show the
steepness to be an imprecise criterion---see figure | and
table 1 of Griffin et al., 1994, which indicate that waves
break at lower steepnesses than that suggested by
Stokes' criterion and also show the scatter in the data.
Another widely pursued idea has been the prescribing
of a limiting value to the fluid velocity at a crest. For
example, recenily, Wang et al. (1994) provided data
obtained from a two-dimensional numerical wave tank
in support of the criterion that a wave breaks when the
horizontal particle velocity reaches the local group
velocity. The possibility of breaking has also been
related to the energy content in the waves, by others,
but these last two criteria are difficult to extend to
three-dimensional flows. Criteria based on the wave
slope and accelerations of the free-surface have also
been suggested, but the consensus is that none of the
above constitutes a simple, precise, and universally
valid criterion.

In this light, we pursue a criterion based on the
wave steepness because of its simplicity and its
applicability in threc-dimension. A stecpness criterion
that requires an estimate of the local wavelength,
however, is not easy to implement, especially when
waves of different frequencies are present and interact.
We exploit instead that when waves break-—or are
about to-—-they attain a profile with a sharp crest of
infinite curvature (x). Furthermore, empirical studies
of steep but non-breaking regular waves indicate that
waves that do not possess a sharp crest obey the
approximate non-dimensional bound, [xx |< 6. Figure
2 depicts how this applies to waves of steepness,
H/A = 1/12, whose leading front went on to break. We
therefore seek to use the exceeding of this bound---as
when any wave steepens to a sharp crest---as a "trigger”
for the activation of a localized wave damper in the
fully nonlinear computations.

To implement the idea, we then proceed to
reformulate the steepness criterion in terms of a
limiting value of ka: Adopting the approximate
criterion that a wave breaks when its steepness, H/A
exceeds 1/12 and using the above bound on | kA |, we
obtain the condition, | kH | £ 0.5 for a wave not to
break. We convert this into one based on Ka since the
crest-to-trough wave-height is not as easily available;
we do so on the basis of the observable geometric
property of incipient breaking waves that a = 0.7 H on
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an average (e.g., Bonmarin, 1989), obtaining, finally,
| ka |<0.35.

In order to examine the reliability of this
curvature-based criterion, regular, deep-water gravity
waves of varying steepnesses (as generated in a
two-dimensional wave tank by a wedge wave-maker)
were simulated, and the variation of | xa | with the
steepness, ak was noted. (Note that, in the evaluation
of the abscissas, the nominal wavelength given by

k = @'/g was used.) This variation is depicted in figure
3; for comparison, that for a second-order Stokes wave
is also presented. For all waves of steepness, ak less
than about 0.25, the prescribed threshold value of | xa |
= (035 is never exceeded. For higher ak, this limit is
exceeded at times by waves that attain a sharp crest,
especially at the leading wave front. Not all waves that
do so go on to break; therefore, the present threshold
poses a conservative, if imprecise limit. However, a
conservative criterion is necessary lo ensure that all
likely instances of breaking are detected so that they
may be suppressed.

Although some of the scatter in the data in
figure 3 is due to the non-uniformities in fully nonlinear
waveforms, it is largely due to the inevitable noise in
the numerical evaluation of the curvature. We compute
the curvature using a local three-point formula arising
from the fitting of a circle through three consecutive
free-surface nodes---a formula that does give agreeable
results with the analytically obtained curvatures for
smoother profiles. Nonetheless, this scatter does not
appear to affect the nature of the | xa l-ak curve or the
limiting | xa | value considerably.

Finally, the sensitivity of the curvature
computations to the fineness of the node distribution
was studied through a convergence study: The
curvature of the free-surface was computed for one
particular case of wave-maker motion amplitude and
frequency (the resulting waves had a steepness of about
ak=0.21) using three different node distributions---25,
50, and 100 nodes per wavelength (the usual
distribution adopted---the minimum recommended--—-is
30 nodes per wavelength; the results presented in
figures 2 and 3 were obtained using 40 nodes per
wavelength). A sample comparison of the results is
presented in figure 4. Notice that although there is a lot
more noise in the calculations as the node density
increases, the important maximum values of the
curvature do not change much between the three cases.

Thus, we have arrived at a curvature-based
criterion for breaking that is simple and easy to
implement, even when waves of different frequencies
are present. The mechanism by which energy is
absorbed locally from the waves when this criterion is
met is discussed in the next section.

SUPPRESSION OF A BREAKING WAVE

We employ a variation of the numerical absorbing
beach used by Cao et al. (1993), in order to suppress
wave-breaking locally; the basic idea, though, is the
same---it consists of exerting an additional, external
pressure on the wave in the vicinity of the location
where the likelihood of wave-breaking has been
detected. By causing the wave to work against this
external pressure, the energy necessary o prevent the
wave from breaking is extracted locally from the fluid
(hence, "local absorbing patch"). Mathematically, this

consists of the inclusion of an additional term, P, in
the dynamic free-surface boundary condition:

|

=0,
dt

Note that P, is non-existent outside the
damg

absorbing patch; within the patch, we prescribe the
following form to the damping term:

1
@+—V¢.V¢+B—+ gz+
2 P

0
Py = 0 V() | VOI® sgn(_—¢)
dn

The [VN: term determines the magnitude of the
damping; ¢ is a coefficient that may be varied to
increase or decrease the amount of damping; the
signum function ensures that the pressure is acting
against the wave; and v(x) is a shape function chosen to
ensure that the damper takes the form of a smoothly
varying patch:

n(x-x,)

v(x)=0.5]1+cos

(]

Here, X, is the location where | ka |=0.35 is exceeded ,
and L, is half the length, centered about %, over which
the damper acts. We prescribe L, to be a,/0.35 (a, is the

wave amplitude at X )---again, from considerations of

the geometry of breaking waves, so that the energy is
extracted from approximately the portion of the wave
between zero-crossings,

RESULTS

The effectiveness of the present "local absorbing patch”
model is demonstrated by application to the breaking
wave encountered in figure 1. As shown in figure 5,
the wave-breaking is successfully detected and

suppressed sufficiently for the calculations to proceed.
The strength of the damping constant used was 0=12.5.
An uncertainty with the present model, however, is that
the amount

of damping required to suppress




v ¥ Us

- O 24

- ok 6 L 6

Abstracts: 13th International Workshop on Water Waves and Floating Bodies 141

wave-breaking is not easily determined-—-some other
calculations have required larger values of ¢ (of about
25) to suppress the wave-breaking. Moreover, 1l may
well be that for extreme cases suppressing the tendency
of waves to break while obtaining reasonable results in
the post-breaking regime is an impossible task. These
call for additional investigations.

The effects of prescribing a ¢ greater than that
which is necessary to suppress the breaking may be
small, as the results plotted in figure 6 suggest.
Therein, a comparison is made of the calculations
presented in figures 1 and 5 and an additional
calculation obtained using damping equivalent to 0=25.
Not only does the plot clearly show the difference in
the wave profile due to the extraction of the energy
associated with the breaking, but also, the difference in
the calculations obtained with the two different
damping strengths is imperceptible. This is due to the
feature of the model that damping is present only when
triggered by high values of [ xa | Ka | greater than
0.35) and only as long as | ka | is above the threshold
value.

The present model therefore holds much
promise for extending fully nonlincar water wave
computations into the important highly nonlinear
regime. An important step involves the validation of
the post-breaking calculations against experimental
data, which we are currently seeking. Efforts are also
underway to develop a strategy for extending the model
to three-dimensional flow computations. A proposed
approach, especially for ship-flow calculations, is to
detect the occurrence of and suppress wave-breaking
along prescribed free-surface paths (these are the paths
on which the Lagrangian nodes are convected in the
UM-DELTA method; they generally take the
appearance of free-surface streamlines).

Future work will involve the extensive testing
of the model over a wide variety of breaking wave
conditions. We also plan to compule the total energy in
the fluid domain and the fraction of the total energy that
is absorbed by the wave damper. We hope to relate the
computed energy losses to the numerous experimental
studies of wave-breaking.
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Figure 1. Time-history of the surface displacement in

a numerical simulation, using UM-DELTA, of shallow-
water waves generated by a piston wave-maker in a two-
dimensional wave-tank. The calculations cease at about
t=11.4 due to the occurrence of a breaking wave caused
by the coalescing of waves of different frequencies.

04 ! —_ T |
o e SR B ) '
st AR AR R
F ob i U4 ji-f\v,-.._‘___i
VMV VY 7]
o ' '

|

3 30 0 30
Distance along tank (m)
(a)
)
o A o
o SEUE
g i
i !
| ”

|

Curvature, & {(m ')

3 30
Dislnné'c along tank (m)
(b)

Figure 2. A representative snapshot at t=18.8 of:

(a) the surface displacement, and (b) the curvature of
the surface, for waves as generated by a wedge wave-
maker of motion amplitude 0.12m and frequency
0.559Hz (nomimal A=5m). The leading wave front
broke at about 1=23.3 in this simulation. Note that for
the other wave crests, | KA| <6, approximately.
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Figure 3. Observed variation with wave steepness, ak,
of the proposed wave-breaking index, |xal, for
regular, deep-water gravity waves. The variation for
a 2™ order Stokes wave is presented for comparison.
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Figure 4. A representative snapshot of the computed
curvature of the surface (for waves generated by a wedge
wave-maker of motion amplitude 0.08m and frequency
0.559Hz), using: (a) 100 nodes per wavelength, (b) 50
nodes per wavelength, and (c) 25 nodes per wavelength.
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Figure 5. Time-history of the surface displacement in a
repeat of the numerical simulation shown in figure 1, but
differing (only) in that a "local absorbing patch” model
has been implemented. The model detects the likely
occurrence of and suppresses the wave-breaking.
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Figure 6. Time-history of the surface displacement
in simulations involving: no damping (solid line);
damping with 0=12.5 (dashed line); and damping
with 0=25 (dotted line).
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WATER WAVES BENEATH A FLOATING ELASTIC PLATE
by Ken Takagi

Dept. of Naval Architecture and Ocean Engineering, Osaka University

1. Introduction

Recently the estimation of elastic motion of a very large floating structure (VLFS) has been carried
out for the Mega-Float project in Japan. Dimensions of the floating structure in this project is 5,000
m length and 1,500 m width. The typical wave period of the installation point is 6 seconds. Several
reliable numerical works have been completed, however it was very tough job to obtain the reliable
result since the length of incident waves is very short compaired to the dimensions of VLFS. Following
the numerical results, it is found that the elastic motion of VLFS is seems like a propagation of
water waves beneath a thin elastic-plate. However, since those numerical works are based on the
modal analysis, it is difficult to imagine a image of the motion of VLFS as propagating waves before
summing up each modes. Therefore, another approach is needed to make simple image of the motion
of VLFS. Ohkus and Nanba [1996] treated this problem as a wave propagation beneath a thin elastic-
plate and presented a free surface condition which is imposed on the region covered with the plate.
Helmans [1997] also presented a similar treatment in which he applied the assumption of very short
wave length. In the present paper, a similar free surface condition for the region covered with the plate
is applied and a Green function of that problem is derived. The eigen function expansion method is
evolved from Green's second identity.

2. Free Surface Condition

Suppose a flat floating platform of draft d (d =1~ 2m in Mega-Float project) located in the x-y
plane which coincides with the still water surface. Following previous works, the assumption of d/A < 1
is applied. Since the motion of the fluid is supposed to be invicid, irrotational and incompressible. The
velocity potential satisfying Laplace's equation is introduced. Further assumption is that the motion
is sinusoidal with the angular frequency w.

Thin elastic plate theory gives the equation of the vertical displacement ¢ of the plate.

2 2 2Ly
m%£=—0(£;+§7)§—mc—mwﬁmﬁ) (1)
Where, m is the mass of unit area of the plate, p the density of the water and g the gravitational
acceleration. D is the flexural rigidity of the platform given by D = ET®/12(1 - *). Where T is the
thickness, E the equivalent Young’s modulus of the plate and v Poisson’s ratio. Since the mass of
plate is uniformly distributed, it is obvious that the left hand side of (1) is negligible.

Substituting the body boundary condition of the plate into equation (1), the free surface condition

is obtained.
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Where, 8 = D/(pg) and K = w?/g. In the two-dimensional case the free surface condition is reduced
as follows:

—K¢+(+,6 )g‘f 0 o z=0 (3)

Where, 8 = %i and E] presents the bending rigidity. Suppose the plane progressive waves on the
plate floating on the water of depth h. Where the water depth is assumed to be as same order as the
wave length. The following dispersion relation is obtained.

K = a(l + Ba*) tanh ah (4)

It is apparent that two roots of equation (4) are located on the positive and negative real axis and
innumerable roots are located on the imaginary axis. Other four roots are also found on each quarter

planes.
3. Two-Dimensional Green Function

A two-dimensional Green function which satisfies Laplace's equation, the free surface condition (3)
and the bottom condition is obtained as follows:

e 2, e~enlz=H{ K sinh a2 + (1 + Bad)an cosh an £} cosh an(z + h) (5)
s bt on{sha, + (1+ 50ad) sinh anh} :

Where, an(n = 0,1,2---) denote the roots of equation (4) located in the lower half plane. Applying
Green's second identity to the region z < 0, the following integral equation is obtained.

A1 ,g 9GdC PG & &G d oG .
I, 9z &3 O20zdz® | 0220zdx 020z ”
oG a
/°(¢ - Bz (6)

Where, it is assumed that the plate is infinitely long and covers all left half plane. The regular radiation
condition is imposed on the left end boundary.
If the boundary condition at z = 0 and the end conditions of the plate are given, above integral

equation would be solved.
4. Eigen Function Expansion

If the integral appeared in equation (6) can be carried out in advance, the following series expansion
would be obtained.

w eoshan(z+h) ;o 2
scbemeetd WML 7
U5 Z Lo an  sinhazh 5 (7)

Orthogonality
The eigen functions appeared in equation (7) are not orthogonal. However, the following relations

are obtained.

icESn+t,ﬂn S (8)

[ = f] a gffmsh an(z+ h)dz = GuTn — & Cs.l ﬁa,fs‘,. (9)
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Where,
i w h 1
h= = — ( =—=— + (1 + 50a,*)sinh azh
= (sinhanh+f({ BoisiRt o ) (10)
In = —i0ngn (11)
s e -
Sn = —w—ﬁansmh anh (12)

5. Examples of 2-D Problem

Transmission and Reflection of Incident Waves

When plane waves incident on the elastic plate, same are reflected at the edge of the plate and others
are transmitted into the region covered with the elastic plate. The velocity potential is represented
by the series of eigen functions in the region z > 0.

w coshkg(z + h)

LW z pikoz w coshkn(z4+h) _i =
%= lkg sinh kgh z E Rﬂ kn  sinhkqh = (13)
Where, k,, denetes the roots of the disparsion relation of water waves.
K = kptanh kyh (14)

The velocity potential in the region z < 0 is represented by the series expansion (7).

It is well known that the eigen functions appeared in equation (13) are orthogonal. Therefore,
employing the condition that the velocity potential and the horizontal velocity are continuos at the
matching boundary, we can get the same number of equations as the number of coefficients R, and
T,.. However, we also have other unknowns C;+ and (. The end condition of the plate i.e. the shearing
force and the moment at the end are free gives the following two equations.

o o0
Z aiTR == 0, Z GE‘T.-‘ = 0 (15)
n=0 n=0

Then, the problem can be solved, since the number of equations is as same as the number of unknowns.

Reduction of Transmitted Waves
It is strongly required that the motion of VLFS must be very small. However, it was found in the

previous works that the motion of VLFS is not negligible. Then, some ideas for the reduction of the
motion is proposed. One simple method is attaching a plate or block at the tip of the VLFS to block

the transmission of incident waves.
Suppose a block of draft d and bredth 2b attaching at the edge of the plate, the velocity potential

under the block is represented as follows:

o= — Z( z? + 2 +2h}+—8{ z° + 322 + 6hzz)

21 6l
£ cosh Fx sinh %z &
+Z ook 5 + An hn,b)cos g (24 b)(-1)". (16)

Where, | = h— d, Z the heave amplitude and © the roll amplitude. The equation of motion of the
block is given by

Z(2bg — 2% = Fy + EI13% an
oW - oM’ w?log) = My + —EIZS — b- E1SS
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Where, Fy and M are fluid dynamic forces, W weight of the block, GM metacentric height and Igg
moment of inertia of the block. End conditions of the plate are given by

5 d¢
Z—b0=¢ 0=22. (18)

Now the number of equations is as same as the number of unknowns. We can get the solution.

6. Conclusions

The treatment of the motion of VLFS as a propagation of water waves beneath a elastic plate
is presented in this paper. Some examples of solution for the two-dimensional problem are shown.
Further results will be demonstrated at the workshop.
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Spectral response surfaces, designer waves and the ringing of offshore structures

Peter S. Tromans (presenting author),
Shell International, PO Box 60, 2280 AB Rijswijk, The Netherlands.
Tel: +31 70 311 3565; fax: +31 70 311 2085; e-mail: p.s.tromans@sidsbyv. shell.com

1. Ketut Suastika,
Dept. Civil Engineering, TU Delft.

The purpose of this paper is to present a novel approach to offshore wave load
analysis, the spectral response surface method, and demonstrate its application to the
ringing problem. A distinguishing feature of the method is its ability to relate an
extreme response to a particular ocean surface history, the “designer wave.”.

We briefly overview the essential features of the method. A linear random sea can be
represented by the sum of many un-correlated frequency components which obey a
joint normal distribution. In many cases, a structural response (or an ocean surface
property) can be expressed as a function of these frequency components and their
Hilbert transforms (the same signal phase shifted by 7/2). A constant value of the
structural response defines a hyper-plane in the multi-dimensional space of the
frequency components. Since, the statistics of the spectral components are joint
normal, it is straightforward to estimate the combination of frequency components
(and their phases) most likely to generate an extreme response and the probability of a
response level being exceeded. We summarise the method and its application to the
ringing problem more fully below.

Ringing might be described as a transient structural response which resembles that
generated by an impulse excitation of a linear oscillator. The response exhibits a rapid
build up and slow decay of energy concentrated around the natural frequency of the
structure. It has been observed in model experiments on gravity base structures during
the passage of steep wave crests. The ringing response contains frequencies that are
relatively high compared to the dominant frequency of the wave field, indicating that
non-linearity in the load process might determine its occurrence. In this study,
Newman's long wave-length force-model [1] is used for calculating the wave loads on
a column standing in a random sea. Diffraction is included in the analysis. The model
allows non-linear wave forces up to the third-order to be calculated using linear wave
theory as input.

We have re-formulated Newman’s results in terms of the frequency components of the
ocean surface elevation process and their Hilbert transforms. The frequency
components are all standardised; that is transformed to unit variance and zero mean
variables. By treating the structure as a single degree of freedom oscillator, the
dynamic response of the structure can also be expressed in terms of the standardised
variables. Using these expressions, it is possible to generate surfaces of constant
response level for both static and dynamic response in the space of the spectral
components of the ocean surface.
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A random sea can be described by the superposition of a finite number of spectral
components; these are the standarised variables each multiplied by a standard deviation
to match an appropriate surface energy spectrum. Each component is narrow banded
(a pure harmonic modulated by a slowly varying amplitude) and is normally
distributed. As the spectral components and their Hilbert transforms are un-correlated,
linear processes, they obey a joint normal distribution with zero cross correlation.
Surfaces of constant probability density are concentric spheres in the space of the
standardised variables representing the spectral components of the ocean surface. The
probability density is highest at the origin and falls montonically as a function of
distance from the origin that is independent of direction. Under these circumstances, it
is straightforward to treat the response surfaces as limit states in a FORM (first order
reliability method) type of analysis. The point on a surface of constant response where
the distance to the origin is shortest is called the “design point.” The design point is, to
a good approximation, the point on the surface where a maximum is most likely to be
found. The accuracy of the approximation increases as the severity of the response
increases and, in consequence, the distance of the design point from the origin
increases.

The design point defines the amplitude and phase of the standardised variables at the
instant when the extreme occurs. Thus, it allows us to deduce the time histories of the
response and related variables around the time of the extreme. These histories are the
ones that are the ones most likely to be associated with a response maximum of the
chosen level. Thus, in the case of the ringing problem, we can identify if ringing occurs
or not; that is if ringing determines the extreme response. It allows us to identify the
type of applied load history that excites a ringing response. In addition, it provides the
surface history (the “designer wave™) that generated the applied load and the response.
Finally, we can estimate the exceedance probabilities of extreme ringing responses very
efficiently. We achieve this by calculating the probability of finding a maximum above a
hyper-plane tangent to the response surface at the design point.

We studied the case of a 10 m diameter column in a sea of significant wave height of
12 m and a zero crossing period of 13.5 s that obeys a JONSWAP spectrum. The
water depth is 300 m. The dynamics are modelled by an oscillator with a natural
frequency of 1.57 rad/s, while the peak of the surface energy spectrum is
approximately 0.36 rad/s. We investigated the effects of using the Newman load model
to first order, to second order and to third order and drew the following conclusions:

1. The method is tractable.

2. The non-linear terms in Newman’s model have a much greater effect on dynamic
response than on applied load.

3. Some ringing effects can be found in the response with only second order
excitation.

4. The third order terms lead to a double impulse (positive impulse followed
immediately by a negative impulse) loading that excites a strong ringing type of
response. The double impulse is associated with a wave crest; the positive impulse
immediately precedes it and the negative impulse follows it. Apart from the isolated
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double impulse the third order excitation is insignificant. The response time series is
shown in Figure 1, the associated surface history in Figure 2 and the third order
component of load in Figure 3

5. For the sea state studied, the non-linear effects and consequent ringing, lead to
much larger responses for exceedance probabilities of order 1/100 and rarer

6. The method is many times faster than random time domain simulation.

As well as presenting the ringing study and results, the paper discusses the general
merits of this approach to structural analysis. The method generates ocean surface
histories that generate extreme responses, “designer waves,” very quickly and easily
This is potentially of great practical value since designer waves can be used to provide
the type of information that would otherwise involve many hours of time domain
simulation. As such, the method may be of value in engineering design as well as in
general analysis.
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FREE-SURFACE EVOLUTION AT THE EDGE OF AN
IMPULSIVELY UPWELLING FLUID LAYER

Peder A. Tyvand

Department of Agricultural Engineering
Agricultural University of Norway

1432 As, Norway

INTRODUCTION

Impulsive free-surface flows provide opportunities for
studying analytically the early evolution of hydrodynamic
nonlinearities. This type of research started with the
wavemaker analysis of Peregrine (1972) . The wavemaker problem
is difficult because of the free-surface singularity arising
at the intersection between the free surface and the moving
plate. This singularity reveals that the asymptotic series is
not unifotrmly valid. The Taylor series in time constitutes an
outer expansion, and an inner expansion must be introduced to
remove the singularity (King & Needham 1994). When the
impulsive free-surface flow is due to submerged objects, one
avoids free-surface singularities.

The present paper introduces a new variety of impulsive flow
problems: a given flux through a fixed bottom is turned on at
time zero. The present model is one of the cases where the
exact surface elevation of a small-time expansion can be
calculated to third order. Other examples are the submerged
line vortex (Tyvand 1991), and the line source, either
submerged (Tyvand 1992) or located at a bottom (Tyvand 1998) .
The solution for the submerged line source has been verified
numerically by Kim (1997). A review of small-time expansions
for impulsive free-surface flows is given by Tyvand & Miloh
(1998) .

We will investigate the evolution of nonlinear free-surface
effects at the border between a region of forced uniform
upwelling and a region of stagnant fluid. For small times the
initial depth is the only characteristic length. This implies
that all early nonlinear effects will be localized within a
few length units around the edge between upwelling fluid and
stagnant fluid. The early wave generation must also take place
at the edge of the upwelling region. But the later wave
propagation away from this edge cannot be captured by our
analytical small-time expansion. :

MATHEMATICAL FORMULATION

We consider an inviscid fluid layer of constant depth which is
at rest at negative times. The layer depth h* is the only




152 Abstracts: 13th International Workshop on Water Waves and Floating Bodies

length scale of the initial flow problem. So the Froude number
F is defined as :

F = W*(g* h*) (1)

The gravitational acceleration is g*, and W* is the upwelling
fluid velocity plus the downwelling fluid velocity. In
general, the fluid is upwelling along the bottom for positive
x and downwelling for negative x. From now on we work with
non-dimensional quantities based on the units W* and h*.

The inviscid flow is governed by Laplace's equation for the

velocity potential ®(x,y,t). The surface elevation is m(x,t).
The free-surface conditions are:

m/ot+ V& -Vn = db/dy at y = n(x.t) (2)
o/t + (1/2)|ve|* + FPq =0 at  y = n(x,t) (3)

As initial state we take an impulsive start from a situation
at rest with a horizontal free surface:

nix,0) =0 (4)
®(x,0,0) =0 (5)

The dimensionless upwelling and downwelling velocities for
positive and negative x will be denoted by V, and V,
respectively. By definition we have V, + V. = 1. The
impulsively forced flow is given by:

a®b/dy = V. , y=-1, x>0, ¢t>0 (6a)
ob/dy = - V. , y=-1, %<0, t>0 (6b)
RESULTS

The velocity potential and surface elevation are expanded as
Taylor series in time (Tyvand 1991):

(®,m) = H(t) [(®,,0) + t (®,m,) + t° (®,,M,) + ..] (7)
H(t) denotes the Heaviside unit step function. We choose to
develop the sclution in terms of a Fourier series with an

artificial periodicity of length L in x-direction. Then the
first-order elevation is (sum taken over positive n):

M= (V.-V)/2 + 21" X n' sech (2nn/L) sin (27nx/L) (8)
n odd

The exact solution in the limit L->e is:
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(==}

N, = (V,=V)/2 + 2 e
k=1

ksl

arctan [x/(2k-1)] (9)

This exact solution is found by differentiating the bottom
source solution (Tyvand 1998). The convergence of eq. (8) is
good when L>20. The second-order elevation consists of one odd
and one even function of X:

TI‘?{X} =n2.-:u:kl +n2,even (10)
e = (1la)
L' (V. - V) X sech(2nn/L) tanh (27n/L) sin (27 n x/L)
n odd
i s 5 (11b)
= T ¥ £ [ (m*-n?') tanh (27 (n-m)/L) cos (27 (n-m) X/L)
n,m odd

- (m*+n') tanh (2% (n+m) /L) cos (2m (n+m) x/L) ]

sech (2mn/L) sech (27m/L)

Both these terms are important except for the case of
antisymmetric upwelling/downwelling (V,= V. = 1/2), where the
odd term vanishes.

Tn this note we omit the third-order terms due to nonlinear

interaction. We consider only the gravity-dependent term m,",
where superscript F refers to Froude number. It is
proportional to the odd contribution to the second-order
elevation:

3 "™ =2 n,, (evaluated for pure upwelling) )

In figure 1 some snapshots of the total surface elevation to
third order is shown, for pure upwelling: (V,, V.) = (1,0). The
Froude number is 0.5.
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Figure 1: Snapshots of free surface shape y=1(x,t), to third

order in the small-time expansion. Pure upwelling:
(V., V.)=(1,0). F=0.5. Increments of 0.2 are chosen
in the dimensionless time t (= t* W*/h*).
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ON THE VALIDITY OF MULTIPOLE EXPANSIONS

by

F. URSELL
DEPARTMENT OF MATHEMATICS. MANCHESTER UNIVERSITY, M13 9PL, U.K.

1 Introduction

The Method of Multipoles is an effective method for solving certain scattering problems in linear wave
theory, particularly those involving immersed and submerged cireles (in two dimensions) and spheres (in
three dimensions). An example is the submerged sphere between parallel walls which has been treated
by G.X.Wu and for which an alternative treatment was suggested by me at the last Workshop. During
the discussion David Evans raised the following question : Can the potential always be expressed as the
sum of the appropriate multipoles ? For the proof we need to find good bounds for the image potentials
and there is no simple method for this, In the present note [ shall show that there is a simple argument
for two dimensions. and a more complicated argument for three dimensions. [ have no serious doubts
about the validity of multipole expansions. (including the expansions in Wu's problem, ) but it is curious

that the mathematical arguments are not more obvious.

2 The circle

We consider first the classical problem of the submerged cirele in two dimensions, The velocity potential
o(x. y)e—"" is defined in the part of the region (=00 <& <, 0 <y < ) outside the circle

2+ ly—f) = a’,

where a < f . and satisfies Laplace's equation

liks a* 2
(ﬁ—f—w)ﬂ[.f\_fﬂrn- (21
The free-surface condition is
; do 5
Ko+ —=0ony=0. (2.2)
dy

where i = w?/g. On the circle the normal velocity 1s prescribed.
do .
— =), (2.3)
dr
where & = rsin#, y = f+rcosf. Actually this boundary condition is not used in the following argument.
There is also a radiation condition: at » = £oc the waves travel ontwards.

Clearly U(8) is the sum of an even and an odd function of #. We shall assume that [/(6) is an even
function, an analogous theory can evidently be given for odd functions. For the sake of simplicity we
shall also assume that fj’r U(#) d6 = 0. (When this last condition is not satisfied a wave source

. 1. 224y =fPF o [T koD ou e O
Cvn(ixg]:ifngm—_ﬁ ¢ cos ki - (2.4)

must be added.) There is one obvious method: According to Green's theorem, the potential can be
expressed as a distribution of wave sources and wave dipoles over the submerged circle (or sphere) . It
is therefore sufficient to show that wave sources or dipoles can be expressed as a series of multipoles at
the centre of the cirele. This construction has been carried out for a half-immersed circle in [Ursell 1981]
but the argument is elaborate. Here a much simpler argument will be given. We assume that a solution
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@(r,y) exists, and we wish to show that this potential can be expressed as the smn of multipoles at the
centre of the cirele, which (as is well known, see [Ursell 1950]. ) are of the form

05 mé —-1)" " b+ K :
Gmlz,y)= 2L & / = —i—\‘ e D cog b dbeom = 1,2,3.+ - (2.5)
o (m =1 Jo k=K

where the contour of integration passes helow k = I to satisfy the radiation condition. Note that the
integrand in (2.5) is a solution of Laplace’s equation.

PROOF: It is well known that. if the potential exists, it can be expanded in the annulus a < r < f
as n Laurent series of the form

e m Jm
dlr.y) = Z cos mb (!;,,, % + G }';) (2.6)
1

where the series
g m

It
E cos mb pg, B

1
converges when a < r < oo, and the series

s L

T
E cos mb g —
,f‘“

1
converges when 0 < r < f , actually when 0 <r < 2a — f. In particular, we have a bound

Ipm| < M(a")a"[fa)™

for any a' > a. Now consider the expression

=

B(x,y) = Y pma" Gml.y). (2.7)

i

where the coefficients p,, are the same as in (2.6) We shall show that this expression is a uniformly
convergent series and thus defines a potential everywhere in the field of flow . For this purpose we find
bounds for the image potentials

(=)™ [>= _ g k+K _;
A= | gt RO cos ke di, 2.
(m— u!ﬁ E—. oikiod (28)

where. as before, the contour of integration passes below the pole k = K. (It is this pole in the integrand
which complicates the mathematical argument. ) In (2.8) we write

S 1 ;
coskr = 5{'“" o Ef_'”rl. (2.9)
Then

o q r aa explin) . =
gt KK vty = P m K K k) giklel gy (2.10)

o k=K s TR
i _1m-l\-mr_—.'\'iy+nrx.'\p| (2.11)
= I(m,+)+aniK™ e KON any, (2.12)

where the term (2.11) is the residue at the pole k =
later; see(2.17) below. Note that the integrands in (2.10)
equation. Similarly

I and where the acute angle n will be defined
) and the term (2.11) are solutions of Laplace's

o ;- i [\' 4 acexpl—in) i ]. -+ h’ iy
e Ky —iklzl gp = pm—l 20 =kl )il gp - (9013
/u ke Ty ‘ r dk : Tk ¢ ¢ « ( )

= [(m,—), say. (2.14)
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In (2.10) we write k = g¢” and note that |exp(ik|z])| < [exp(—ig|z|cosn)| < 1, and that

oc"+ K

e N 9
— k| = cot(1/2).

Then .
(m — 1) cot(n/2)

51s
{(y+ F)™ cos™ (2.15)

o0
[I{m.+)| = f a™=1 cot(n/2) exp{—aly + f)eosy} da =
0

with the same bound for [I(m,—)|. Thus the contribution of this part of the image potential to the

series (2.7) is bounded by

1 i |Pm la™ I )]+ 1T W) < Mia") i (a')™ cot(n/2) 5.
< B m. - T — VLA P e e S L 1% 2.
2 P (m — 1]! [ [L{m m | / — (y + )™ cost™ (2.16)
and this series converges uniformly for all y > 0. provided that
cosy = da'[ f., (2.17)

i.e. provided that the angle 7 is small enough. Now consider the contribution to ®(r,y) from the terms
(2.11) . This is bounded by the series

(Ka')"

(m—1)" (215)

e s

1 = g i

§ |f’m| am 'g;r-t_"l_}'h m Kiy+f) < 2 M| ”i Je Kig+[) §
Xrk== .

m=1

m=1

a convergent series. Thus (2.7) defines a potential in the whole field of flow.

Consider now the difference potential
ol y) — e y)
which is defined in the whole field of flow . In the annulus a < r < f the Laurent expansion contains
no negative powers ( since the coefficients p,, in (2.6) and (2.7) are identical), and ¢ — @ is thus defined
in the whole of the half-plane (—x < & < oc. 0 <y < =), including the interior of the circle. By a
well-known uniqueness theorem it follows that
6—&=4Ae "Vcos Kz,
if A = 0. This completes the proof of the expansion theo-

and this satisfies the radiation condition only
rem.

We have now shown that any solution of our boundary value problem must have the form (2.7). To show
that a solution actually exists we expand the terms in (2.7) in polar coordinates and apply the boundary

condition (2.3). An infinite system of equations is obtained for the unknowns pp, see e.g. [Ursell 1950].

3 The sphere

We may now attempt the same method for the submerged sphere, but this leads to unexpected difficulties.
Only a brief outline can be given. Let the velocity potential be denoted by (. y. =), and let us assume,
for the sake of simplicity, that ¢ is an even function of z. We write x = rsinflcosa, y = f+rcosf, z =
rsinfsina . The boundary condition (2.3) is replaced by

dg

ke U(f.a)= %U{.lﬁ'} + Z U () cosme. (3.1)

m=l|

Then the typical multipole potential can be shown to be

. PM{cosf) (=1)" IR e e ’
G" = —__;"‘+‘ cosma + (——-—” _.m}!.[j P ke Ky n.fm(kp] dk cosma. (3.2)
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We must find a bound for the image potential

(=1 (kK .
og <Ry / ksk !\_ ke Rt g (kp) dk cos sa, (3.3)
(n—stJy k-—K

which appears in (3.2). The obvious analogue to (2.9) is the decomposition
1 (1) (2)
Jao(kp) = 5 (H_. (kp)+ H, tkm) ! (3.4)

but for s > 1 this evidently leads to integrals which are divergent at & = 0, and the earlier method is no

longer applicable. Instead. in the upper-half k-plane we use the function \51 '(Z) defined by

1 f7
\EH[Z] =— / exp(iZ sinv — isv) dv = J,(Z) — 1EZ). (3.5)

0
where E,(Z) is H.F.Weber’s function ([Watson 1922|, ch.10). Then. when ¥ = 0,

j\il]i.'\' +iY)| = . / lexp((iX — Y )sinv — isv)| dv = i -[ expl—Ysinv)do <1, (3.6)
T Jo ™ Jo

and it is not difficult to show that y\'(Z) ~ const. ¢ /Z1/? when Z — oo in the upper-half Z-plane.
Similarly in the lower-half Z-plane we use the conjugate function

., 1
\L"IZI = — / expl —1Z sinv + isv) dv = JAZY+iE(Z). (3.7)
L 0
It follows that
“hk+ K :
/ A——‘ ke Mutl) rkp) dk (3.8)
s k—K
1 scexplin) k4 K 1 oo expl —ind e+ K : =
Flbs " —kiyg+f), (1) b e 4 _/ I —k{y+f), (2} L 1k
2£ L G \preET S Ry i Xn, URR)
(3.9)
+ 2mik e Kty (DK p), (3.10)

and the convergence of the resulting series for the potential can now be shown as for (2.7) above. Note,

however, that products like
e kRN (1) cos sa (3.11)

are not solutions of Laplace's equation.

Another obvious approach is by means of Poisson’s Integral which expresses the values of a poten-
tial inside a sphere as an integral over the values on the surface on the sphere. (An analogous argument
was used in [Ursell 1950].) The bounds for derivatives which [ have obtained by this method are adequate
only when the radius of the sphere is sufficiently small and not for all values of a < f.
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Analogies for resonances in wave diffraction problems

T. Utsunomiya®and R. Eatock Taylor
Department of Engineering Science

University of Ozford, OX1 3PJ, U.K.

Introduction

[t has been reported that on large numbers of equally spaced, bottom-mounted circular cylinders
in line, large wave forces will be excited on each of the cylinders at particular wavenumbers close
to those of trapped modes [1]. Similar observations have been made for circular arrays of bottom
mounted circular cylinders, and these may be understood as "near-trapping” [2].

The existence of trapped modes for a bottom mounted circular cylinder placed on the centreline of
a wave channel was first established by Callan et al. [3]. Tt is now known that they may arise not only
at the wavenumbers below the cut-off value (kNd/7 = 1/2 for a Neumann boundary condition (B.C.)
applied on the channel walls, and kPd/x = 1 for a Dirichlet B.C., both for anti-symmetric waves with
respect to the centreline of the channel, where k is the wavenumber and d is the half width of the
channel); but also in the region above the cut-off wavenumber, or in the continuous spectrum [4, 5].

This paper first discusses other examples of trapped modes embedded in the continuous spectrum,
e.g. when N bottom-mounted circular cylinders having the same radius a are equally spaced in line
along the perpendicular plane to the channel walls in the wave channel. Evans and Porter [6] examined
centreline of the channel, and observed the existence
In this paper, we will show numerically the
up to N trapped modes for the Dirichlet

the trapped modes for multiple cylinders along the
of up to N trapped modes below the cut-off wavenu mber.
existence of N trapped modes for the Neumann B.C., and
B.C.. for the case a/s = 0.5. In both cases, the trapped modes except that corresponding to the lowest
frequency are shown to be embedded in the continuous spectrum region.

Next, an analogy is given between the trapped modes for a row of equally-spaced cylinders in the
channel and the near-resonant modes for cylinders in the open sea. Another analogy with a spring-

mass oscillating system is also given. which may offer some insights into such resonant phenomena in

wave diffraction problems.

Trapped modes for equally spaced cylinders in a channel
The complex potential ¢(z.y) which satisfies the Helmholtz equation (V* + k*)¢ = 0 is considered
liere. The boundary conditions on the channel walls are ¢, = 0 on y = +d (Neumann B.C.),or¢ =10

on y = +d (Dirichlet B.C.). A Neumann B.C. is applied on each cylinder, ie., ¢,, = 0 on r; = a,

where the centre of each cylinder is placed at (0,y;), ¥; = —d + (27 —1)s, ] = l,---, N, and polar
. Moreover, the radiation condition ¢ — 0

coordinates (r;, ;) are employed with their origins at (0,4;)
for & — 400 must be satisfied for trapped modes.
The multipole expansion method is employed here. The appropriate expressions for this problem

can be found in McIver and Bennett [7] and in Linton and MclIver [8]. The complex potential ¢(z,y)

is expressed in the following form:

N oo
=33 Za(ALd) + Bivd), 1)
j=1ln=0
where
@ = H,(kr;) cos ‘uf)J- 5
+ s /'” ekr(y=d) (= 267d & o267y 4 e=Rrlu=d)(e=21d f o=2hWy ]. —tkzt cosh nrdl
2r J-co v sinh 2kvyd E
i = Hy(kr;)sinnb, ®
i" = f_-k'r(g;—rfi e—2k7d e2kyy ) — e—kr(y—d){ o—2kvd ¢ =2k,
+ : ( < : ; ¥ ]f:_‘k” sinhnrdt,

2 J-co v sinh 2kvyd
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and Z, = Ji(ka)/H,(ka), T = cosh™'t, v = sinh 7. Also, the upper and lower signs of =+ and F
correspond to Neumann and Dirichlet B.C. respectively, on the sides of the channel. Expanding the
multipoles singular at one point (0,y;) about another point, (0,4,), and applying the boundary condi-
tions on each of the cylinder surfaces, we obtain the following homogeneous systems of equations [8]:

oo N o0

AR+ S (Aloh, + Bhahy) + D0 D U[AL(CH + anin) + Bu(Eu + an)] = 0, (4)
n=0 1=1#Fpn=0
aLI L. N 0o y I o y

B, + S (ABBR, + BRBL,) + - S(A(DIE + k) + Bi(FR + k)] =0, (5)
n=0 i=1#pn=0

where p = 1,-+-,N; m=0,1,--, in both cases, and the expressions AJ = Z, Al and B} = Z, B}, are
used.

The infinite systems of equations are then truncated with m,n = 0.1,---, M. (In the following
numerical computations, M = 7 has been employed). The symmetry of the trapped modes about the
y-axis can be assumed [3], and thus A}, = Bj, = 0 for k=0,1,:-- have been applied. Also, from
the symmetry of the cylinder arrangements, it can easily be proved that A} = AN=Itl and B) =
— BN=i+1 for symmetric modes with respect to centreline of the channel; and that Al = —AN=I+1 and
B) = BN=7*1 for anti-symmetric modes; so these have been employed to reduce the computations.

The complex determinants of the truncated systems of equations (4) and (5) have been calculated
for various values of k, and it has been found that points exist where both real and imaginary parts
of the complex determinants vanish. The homogeneous equations were then solved numerically in
order to obtain non-trivial solutions for the values of k where the complex determinants vanish.
Substituting the obtained values of k, A and Bj into Eq. (1), we have obtained numerically pure
imaginary potentials, which indicate that we have obtained pure-trapped modes. The above procedure
was tepeated for the equations having only the imaginary parts of Egs. (4) and (5), and we obtained
the same results, which also shows that the complex potential becomes pure imaginary when the
determinant vanishes.

The trapped wavenumbers at which the determinants vanish are shown in Table 1 for Nenmann
B.C. and in Table 2 for Dirichlet B.C., both for the case a/s = 0.5. In Tables 1 and 2, (s) indicates
the symmetric mode of the corresponding trapped wave with respect to the centreline of the channel,
and (a) indicates the anti-symmetric mode. Tigure 1 shows equipotential contours of the trapped
waves for N = 4. It can be seen that only the lowest trapped wavenumbers for each arrangement of
cylinders are below the corresponding cut-off wavenumber in both Neumann and Dirichlet boundary
conditions, and all except those are embedded in the continuous spectrum. The highest trapped mode
in each case is equivalent to that for the case of one cylinder, since the same trapped wavenumber
is obtained and the trapped wave satisfies ¢, = 0 for a Neumann B.C. or ¢ = 0 for a Dirichlet
B.C. along the centreline between two adjacent cylinders. For a Neumann B.C., the second mode for
four cylinders is also identical to the first mode for two cylinders. Similar relationships can be found
between the trapped modes for five cylinders and those for ten cylinders. It should be noted that the
trapped wavenumber ks/m = 0.442869 for a Dirichlet B.C. can not be obtained, in which case the
non-existence of the trapped mode has already been proved [9].

Next, we focus our attention on the total wave forces induced on each cylinder. We have found
that the coefficients Bj, which directly relate fo the first-order force on cylinder j in the y-direction,
precisely follow the formulae below:

ir : 04— - ! N
Hi{ ) = gin %l—]ﬁ, 1 <j<N;1<r< N;N >1, (for Nenmann B}, (6)
= T 127 —1 : .
B‘;( ) = cos Ei%(;;—)ﬁ, | <j<Ni1<r< N-2N >3, (for Dirichlet B.C.), (7)

where r is the mode number of the trapped mode.

Figure 2 indicates the distribution of wave forces at the trapped wavenumbers given by ks/m =
0.442099 (r = 48) and ks/m = 0.439844 (r = 47) for N = 50 with Dirichlet B.C. As seen in Figure 2,
the distribution of forces in these trapped mode conditions for a row of cylinders in a wave *channel”
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with Dirichlet boundary conditions has close similarities with the forces on the arrays in the open
seas discussed by Maniar and Newman [1]. Table 3 compares the trapped wavenumbers of the second
highest modes in the channel with the wavenumber at which the peak load oceurs within a finite array
of N cylinders in the open sea. For a sufficient number of cylinders they agree very well, in spite of
the different boundary conditions between these two cases.

Analogy with a spring-mass oscillating system
The basic unit in the mechanical analogue corresponds to one cylinder. It consists of a uniform

massless eylindrical bar of unit eross-section, unit length and unit modulus elasticity, with a unit point
mass attached at its mid-length. The mass is allowed to oscillate in the direction of the axis of the
bar. If the two free ends of the bar are fixed, the square of the natural frequency of vibration of the
point mass is 4, which may correspond to the trapped mode for one cylinder with Neumann B.C. The
basic unit is now replicated N times in a straight line, by attaching the right hand end of one unit to
the left hand end of the neighbouring unit. Both ends are then fixed (fixed B.C.) or allowed to be free
to move (free B.C.). In both cases, we can deduce the eigenvalues of the discrete system (omitting
the rigid-body mode of the free B.C. system) as (10]

w;z =2 2(‘.05'[%)« r=1.--+,N(for fixed B.C.); and r =1,---, N — 1(for free B.C.). (8)

The corresponding eigenvectors giving the displacements are

rﬂf,r} = sin ‘J‘("Z;\;—]}F- 1 <j<N;1<r<N;N 21, (for fixed B.C.), (9)
d.ﬁ"’ = cos 'T“-i’; £l 7, 1<j<Nil<r<N-LN22, (forfreeB.C.), (10)

where index r designates the number of the mode, and the subscript j identifies the mass.

We see that such a mechanical model appears to display some of the characteristics of the array
of cylinders in water waves. In particular, the distribution of displacements in the eigenmodes for
the free B.C. case is identical to the distribution of forces on the cylinders at the Dirichlet mode

trapped wavenumbers. These analogies open up several opportunities for the analysis of hydrodynamic

resonances in periodic systems.
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Table 1 Trapped wavenumber ks/r for Neumann boundary conditions.

Mode number 1/6 2/7 3/8 4/9 5/10
1 cylinder 0.442869(a) — =
2 cylinders 0.248370(a) | 0.442869(s) — == —
3 cylinders 0.166245(a) | 0.328444(s) | 0.442869(a) — —
4 cylinders 0.124830(a) | 0.248370(s) | 0.3666T1(a) | 0.442869(s)
5 cylinders | 0.0999145(a) | 0.109238(s) | 0.206807(a) | 0.388389(s) | 0.442869(a)
10 cylinders | 0.0499896(a) | 0.0999145(s) | 0.149699(a) | 0.199238(s) | 0.248370(a)
0.296807(s) | 0.343958(a) | 0.388389(s) | 0.425787(a) | 0.442869(s)

Table 2 Trapped wavenumber ks/x for Dirichlet boundary conditions.

Mode number 1/6 2/ 3/8 4/9 5/10
1 cylinder 0.977759(a) — — -
2 cylinders 0.977759(a) -
3 cylinders 0.328444(a) | 0.977759(a) — — —
7 cylinders | 0.248370(a) | 0.366671(s) | 0.977759(a) = =
5 cylinders 0.199238(a) | 0.296807(s) | 0.388389(a) | 0.977759(a) —
10 cylinders | 0.0999145(a) | 0.149699(s) | 0.199238(a) | 0.248370(s) | 0.296807(a)
0.343958(s) | 0.388389(a) | 0.425783(s) | 0.977759(n)

Table 3 Comparison of the trapped wavenumber for Dirichlet B.C. and the near-resonant wavenumber
for an array of N cylinders in the open sea (in ks/m, a/s = 0.5).

Number of cylinders, N 100 50 25 10
Trapped wavenumber 0.442676 | 0442099 | 0.439844 | 0.425783
Near-resonant wavenumber[1] | 0.442676 | 0.442104 [ 0.439921 [ 0.428557
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Figure 2 Distribution of wave forces for N = 50 with Dirichlet B.C.
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Experimental validation of a Rankine Panel Method

Riaan van 't Veer
Ship Hydromechanics Laboratory, Delft University of Technology

1 Introduction

Over the past four years, a Rankine panel method has been designed at Delft University. The resulting program
SEASCAPE can be applied to catamaran vessels. Special flow conditions are implemented to model the
smooth separation of a transom stern flow. To validate the numerical work, a series of experiments with a
catamaran model has been carried out in the towing tanks of Delft University and MARIN. The test results
presented in this abstract are heave and pitch measurements in oblique waves.

2 First-order Rankine panel method

A first-order Rankine panel method has been implemented using flat quadrilateral panels and a constant sin-
gularity distributions on each panel. The nonlinear free-surface and hull boundary conditions have been
linearised to, respectively, the calm water surface z = 0 and the mean position of the vessel, by means of
Taylor expansions. The resulting boundary conditions have been presented in e.g. Van 't Veer (1997), and
are almost similar to the linearisations used by Nakos (1990). The overall velocity potential is represented by
a summation of three different potentials, the double-body base-flow potential ®(Z) (solved using the Hess
and Smith (1962) method), the steady wave resistance potential (), and the unsteady ship motion potential
(&, t). The latter two potentials are solved using the Green’s identity form of the boundary value problem.
The motion response functions of the (catamaran) are solved in the frequency domain. The quadratic spline
technique presented by Sclavounos and Nakos ( 1988) is used to discretise the tangential derivatives of the hull
and free-surface boundary condition.

To obtain the motion responses in oblique waves, the calculation procedure is slightly different than for
head waves. Besides the effect on the wave encounter frequency, the hydrodynamic coefficients (radiation
potentials) are not influenced by the wave angle. The diffraction force however, is influenced by the wave
heading, due to the effect of the incident wave in the hull and free-surface boundary conditions. This will
result in different wave loading on both hulls.

If the solution vector on the port hull (or port side of the vessel) is denoted as &, and & represents the
solution on the starboard hull, the following matrix equation can be written down to solve the unsteady poten-

tials,
Gy Co [T 21| % A BlTZ] _[h
[G,p o |5 [5] 50 sty = A 2 b, )

The matrix G, represents the influences of a singularity on the port hull in a collocation point on the port
hull, while the matrix G, represents the cross-influences between the two hulls. The elements of the matrices
are calculated using the Green's influence coefficients and the discretised boundary conditions. Due to the
geometrical symmetry around the centreline of the vessel, the sub-matrices with influence coefficients have
symmetric properties as well, resulting in the matrix equation with A and B.

From equation (1) the two matrix equations can be extracted from which the solution vector on both hulls
can be obtained by summation and subtraction of the two solution vectors,

[A+B](f?’+f‘) = (§P+55) lcﬂding to = ﬁp: %(I_’p+£‘5}+ %(—P_:FS)
[A — B](&p — @) = (bp — bs Ty = %('Fp + &) — %(’-'p — Ty)

Using this technique only two matrix equations have to be solved and the forcing on each hull can than be
derived by simple mathematics.
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3 Influence of the m-terms on hydrodynamic coefficients

The exact hull boundary condition for the radiation potentials are nonlinear since the instantaneous hull loca-
tion and orientation are unknown a priori. Linearisation of the boundary condition (to the mean position Sy of
the vessel) has been carried out by Timman and Newman (1962), and can be written in an elegant way using
the m-terms defined by Ogilvie and Tuck (1969),

Qﬂ — d_a,: it — ((@ - V)V — (VW - V)ay) - i = ngng + mgnx k=B (2)
dn ot
where @y is the oscillatory displacement vector of the hull, for the k*" mode, in respect to the mean position
of the vessel: & = (11,72, 7m3) + & X (14,75, 76). The steady flow field is expressed by the potential ¥y, The
last term in equation (2) is the correction term which accounts for the effect that the integration is carried out
on Sy and not on the instantaneous hull surface S.

The overall steady flow field can be written as: V¥ = U + V&' + V¢, where U is the ship’s velocity.
Using this decomposition, the exact m-terms consist of three different contributions. In view of general
linearisations, the following m-terms are defined: 1) the Neumann-Kelvin m-terms, which include only the
effect of [7, 2) the double-body m-terms, which include the effect of [/ and V@', and finally 3) the complete
mm-terms, which include all three components.

Neumann-Kelvin m-terms: The Neumann-Kelvin /n-terms are most commonly used in seakeeping theo-
ries. They are calculated using only the uniform stream velocity U and neglect thereby the correction term in
the linearised hull boundary condition, which accounts for the effect of the oscillating body in the steady flow
field. The resulting expression for the m-terms is:

(my,mg,ma) = —(it-V)(U)=(0,0,0)
(mg,ms.me) = & X (mg,ma, mg) — 7l X = (0, =Ung, Ung) 3)

The Neumann-Kelvin m-terms are used in the strip-theory calculations and can be used in 3D Rankine panel
methods as well, as approximation for the more complicated double-body m-terms.

The double-body n-terms: The double-body flow is a more realistic base-flow for describing the velocity
perturbations around the (fully submerged) vessel than the uniform Neumann-Kelvin flow. The resulting m-
terms are complicated due to the second derivatives of the base-flow potential,

—(i-V)(V@)
—(ny @2z + naPay + na®us, 1y Py + 2Py + 13 Py, Qo + no®zy + n3®:;)

(mq, mg, m3)

Il

(mg,ms,mg) = T x (my,mg,ms)—1i X Vo
= F x (my,mg,mz) + (n3®y — no®.,n1®. — na®y, na®y — i dy) @

Since the double-body velocities can be written as V& = U + V&', it is easily verified that the double-body
m-terms include the Neumann-Kelvin m-terms. Since only the pitch and yaw Neumann-Kelvin terms are
nonzero, the double-body contributions are of first-order for all other terms.

The spatial derivatives of the double-body velocities, are calculated on the hull surface using the spatial
derivatives in the fluid domain. For each collocation point, three extra points are selected (in the direction
of the panel normal vector) in which the second derivatives of the velocity potential are calculated, Using a
quadratic spline, the derivatives on the hull surface are obtained.

The complete m-terms: The definition of the m-terms up till now only include contributions due to the
velocity potential around a fully submerged body. The free-surface steady potential ¢ has not been incorpo-
rated in the hull boundary condition, while this free-surface velocity field is certainly present. However, based
on order analysis, it can be verified that the contributions of V¢ are of secondary order compared to the V&
terms, and they are therefore not included in SEASCAPE.
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Figure 1: Comparison of added mass and fluid damping coefficients using different definitions for the m-
terms. Wigley II1, Fn = 0.30. Double-body and Neumann-Kelvin coefficients from SEASCAPE. Strip theory

calculations from SEAWAY.

4 Test case: the Wigley III

The influence of the m-terms on the hydrodynamic coefficients for the Wigley III has been investigated. The
Wigley hull form is often chosen for numerical validation since the hull surface can be easily discretised by
any number of panels, and extensive experimental data exist, presented by Journée (1992). The calculations
presented here, are all carried out using 30 panels lengthwise and 8 panels girthwise on the hull surface. The
main parameters of the Wigley III model were L = 3.0 m, L/B = 10, and B/T = 1.6.

The hydrodynamic mass and damping coefficients, calculated using different sn-term definitions, are pre-
sented in Figure 1. The experimental data obtained by Journée (1992), and the calculated coefficients using a
strip-theory method (SEAWAY, developed at Delft University) are included as well.

Although the vessel is rather slender Figure 1 shows remarkable differences. In general, the 3D calculations
using the double-body m-terms correlate excellent with the experimental data. All other predictions show a
slightly worse correlation with the experiments, especially for the coupled fluid damping terms, Bss and Bsj.
It is interesting to notice that the strip-theory generally predicts more fluid damping in the coupling terms and
pitch-to-pitch term Bss. While the trend in the fluid damping terms is much better predicted by the Neumann-
Kelvin method, the error is opposite in the coupling terms; Bas is over-predicted and Bsj is under-predicted.
Similar conclusions follow from the comparison of the added mass values. Due to space limitations the results
for A3z and Bjg are not included, but the predictions for the heave-to-heave coefficients were all close to each

other.

5 Test case: the DUT catamaran in oblique waves

The aim of the research project was to develop a seakeeping prediction tool applicable to catamarans. There-
fore, a series of experiments have been carried out with a catamaran model. A lines plan of the vessel is
presented in Figure 2.

Model experiments in head waves have been carried out at Delft University and at MARIN the model has
been tested in oblique waves, = 165 and 135 degrees. In oblique waves, the experiments were carried out at
three different Froude numbers, Fn 0.35, 0.60 and 0.75. In Figure 3 the heave and pitch results are presented
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Figure 3: Heave and pitch motion response, DUT catamaran, oblique waves

AFT
for 3 = 135 degrees. The calculations are performed : ]
using the double-body m-terms. The hull surface grid i
consisted of 20 panels lengthwise and 10 panels girth-
wise along one demi-hull. The steady trim and sinkage :
(significant at Fn = 0.75) are taken into account in the ——
calculations.

6 Conclusions Figure 2: Lines plan DUT catamaran

It has been shown that the m-terms have a significant influence on the hydrodynamic coefficients. Using the
double-body m-terms good correlations with experimental data were obtained.

Using the proposed calculation procedure for oblique waves, good correlations between experiments and
calculations were obtained for the heave and pitch motions of a catamaran vessel.
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A Waterfall Springing from Unsteady Flow over an Uneven Bottom

William C. Webster, Xinyu Zhang
University of California, Berkeley, USA
December 1997

1. Introduction

The goal of the research presented here is to investi-
gate the unsteady flow over an uneven bottom resulting in
a waterfall at its terminus as shown in Figure . Thisisa
problem that has not received much attention either
through theoretical investigation or through experimenta-
tion. Such a flow might arise from a stream with waves
approaching the waterfall or even from an earthquake
causing an uplift of the stream bottom near the waterfall.
This flow itself is clearly not of immediate practical sig-
nificance, especially for the naval architect or ocean engi-
neer, but it is related in a way to the flow in a plunging
breaking wave as we shall describe later in this paper. The
work described here is still in its formative stage and the
results presented here are only for the steady flow over an
uneven bottom.

2. Model

The model chosen for this study, the Green-Naghdi
(GN) method of fluid sheets, always yields a three-
dimensional, unsteady model for such flows. The GN ap-
proach is a continuum model in which the kinematic char-
acter of the flow is prescribed in the vertical direction.
With this restriction, the equations for modeling the flow
satisfy the boundary conditions exactly, satisfy conserva-
tion of mass and momentum exactly and are Gallilean in-
variant. In the GN method surface tension and viscosity
can be included without real penalty although such flows
are limited to laminar flows (see, for instance, Kim and
Webster, 1995). For the flow here, both surface tension
and viscosity will be neglected. Different levels of GN
theory depending on the degree of specified kinematic
complexity in the flow.

This approach is very different from the more classi-
cal approach in that the model for the flow (inviscid flow)
is combined with the simplification (proscription of the
vertical kinematic complexity) right from the outset. In
the classical approach, the model of inviscid flow as a po-

Zz
T Region | Region Il

| Region Il

incoming unsteady fiow

Figure 1. Schematic of Waterfall

tential flow field is developed with an appeal to Kel-
vin's theorem. Subsequently a simplification, usually
perturbation scheme involving a systematic expansion
of the field equations and boundary conditions, is in-
volved using a small parameter as a gauge for retaining
or discarding terms.

In the end, each approach has its advantages and
its blemishes. In the GN approach, the boundary con-
ditions and the conservation laws are satisfied exactly
but the fluid field is not exactly irrotational. In the
classical approach, the fluid field is irrotational but the
boundary conditions and the conservation laws are only
approximately satisfied (i.e., satisfied only up to the
order of the terms discarded in the expansions). An-
other way of looking at the difference is that the classi-
cal method is correct locally but approximate globally,
and the GN method is the opposite. As with all mod-
eling problems, determination of which approximation
scheme is the most appropriate for a given problem
must be left to comparison with physical experiments.
After all, both approaches ignore the vorticity due to
viscosity that is certainly there. Some approximation
schemes result in models with other blemishes. For
instance the Korteweg-DeVries (KdV) and super KdV
models are not Gallilean invariant.

3. Waterfall problem

Consider the steady two-dimensional flow of an
incompressible, inviscid fluid under the action of grav-
ity over a cliff leading to a free overfall (as shown in
Fig. 1). Three distinct regions of flow may be associ-
ated with this problem. The upstream region (region I)
is characterized by a free top surface and an even bot-
tom. The middle region (Region II) is characterized by
a free top surface and an uneven bottom. For the study
here we shall restrict the unevenness to be a uniform
slope, although there is no limitation in the theory in
this regard. In the downstream region (labeled as IIT)
both the top and bottom surface of the fluid are free.
Far upstream the fluid is assumed to flow as a uniform
stream, while downstream the fluid falls freely under
the action of gravity. Of particular interest in analyzing
the problem is the prediction of the height of the whole
flow region and the determination of the downstream
solution, i.e., the shape of the free surfaces and the ver-
tical thickness of the jet.
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Green-Naghdi Theory Level-]

Here we use Green-Naghdi theory level-l with the
formulae and notations derived by J. Shields and W. Web-
ster (1988). We consider here only two-dimensional prob-
lems. The Level-I theory is summarized as follows:

The velocity profile (u,v) is assumed to be of the form:

ulx, z,t)=u, (x,1) )
v(x,z,t)= vo(x.r}ﬁ- vy (x,2)¢.

The kinematic boundary conditions are:

VotV =a, U0, (-))
Yo +\‘|ﬁ = »Bi +u.r)ﬁ1'

where = fB(x.t) and a=a(x,1) represent the top and
bottom surfaces respectively.

The continuity equation is
Uy +v; =0 (3)
The momentum equations are as follows:
1 A =
Uy P + P U Uiy =;(_‘Pax +pB.—pa;)
1 & =
h'rji'¢l + ¢l"auox = ;("PI,\' + pﬂﬁx -paa,)
“'gr¢n + éouovox + ¢uvovl +
Vi + PV +fﬁ"i"l @)
— _{_mﬂ: -p+ nb—)
P

Voulhy + B Ve + vy +

iy + Gath Vi + B2V
- %(Pu - PRt - P+ Pa)

where p and P are the pressure on the top and bottom
surfaces respectively, and where

¢°=‘]B”“; s)
¢ =5(ﬂ2 ~a’);

b=3(F -a)
B
P, = [pcrdc.

Since P, only exists in the second equation of (4), it
is then only a dependent variable and need not be solved
simultaneously with the other variables.

Formulation of the problem

A statement of the problem under consideration is
given in section 1 and for this study we consider only

steady flow. With reference to Figure 2, we choose the
x-y co-ordinate axes as shown in Figure 2: Region [ is
the domain x < -a; Region 11 is the domain -a <x <0
and Region I1I is the domain x > 0. It follows that the
pressure P at the top surface equals the atmospheric
pressure p, in the whole region, The given quantities
and unknowns are as follows:

n= L= 0
Region [ (x < —a) lp Po. @ }

P, B unknown,

fa=pn.atx)=xx+xa.}

Region Il (—~a<x <0) '_
P, B unknown

f’=Po-ﬁ=Pu}

Region III 0
sponlll (= ){a. B unknown

where K is the slope of the bottom in region Il. After
Simplifying, we can obtain the governing equations for
three regions:

Region I:
1 :
592%2 -0 +g¢4,’ -2R4," +25,4, =0

Py gt 10186 152 o
5 gy — 0 pe ;0 Py -0 4
Region II: (6)
Qoe 10z 3 gl
W A
3 38 4R
+Q2 (qéﬂ+a)+2 4 —392
f_) 2 ¢01 1 2 950.\'2 1 2 éOxx
L - gpy-a, 00 P17 Por_i 102 Pox
. % P #
Region III:
Q*
H'ﬁ.{: =% -25:¢, +2R:4;
2| ¥s
i | =S=ggr,
i )

where R, R,, Rs. S, and S, are constants of integration,
which can be determined by boundary conditions and
matching conditions. Q is the total flow through any
section.

Boundary conditions

It is assumed in the statement of problem that far
upstream the fluid flows as a uniform stream. Then the
far upstream boundary conditions are as follows:

as x —» —0 (@)

¢y > Hy, o >0, ug—>uy, Py—>LpgH}
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where the constants H, and u; denotes the depth and ve-
locity far upstream respectively.

As for the far downstream boundary conditions, we
follow Naghdi's assumption, i.e., far downstream the pres-
sure distribution (in the three-dimensional theory) is uni-
form throughout the thickness of the fluid sheet and is
equal to the atmospheric pressure pg. This assumption
leads to the following boundary conditions:

as x —» +o (8)
¢a _’Hd' ¢m _’Ga ¢an _>0‘ Pn -0

where the constant vertical thickness H of the fluid sheet
far downstream is to be determined in the course of solu-
tion.

Matching conditions

In order to obtain a solution which holds throughout
(—o0 < x <+), the solutions in region L, 11 and I11 must be
matched at x=-a and x=0. This matching is accomplished
by using the standard jump conditions associated with the
integral balance laws of the theory of a directed fluid
sheet. Assuming that the fluid flows smoothly at x=-a and
leaves the edge of the cliff smoothly at x=0, the
appropriate two-dimensional form of the jump conditions
for a fluid sheet of variable initial depth may be written as:

[uﬂ¢0]|,=_ﬂ =0; [¢g]lx=_a =0;
[ﬁm]]xz--a ==K; [Pa"x:-g =0
(&)
and
) =0 B]l,=0

[¢N]|x=0 =0 [Po]L.—n =0

where the notation [f] stands for

[l =7 =

Results

Unfortunately, to date we have not been able to find
experimental data for comparison with this development.
Naghdi and Rubin (1981) using different (but equivalent)
form of the Green-Naghdi method analyzed the waterfall
springing from the flow over a flat bottom. For this case
there are some experimental results from Rouse (1936).
Figure 2 shows our calculated profile for this special case
for Fr = 2.0, and H; = 0.9201 meter. The shape and
particularly the value of Hy = 0.8889 meter (at x = 0) agree
extremely well with the experiments.

Several cases with sloped bottoms have been calcu-
lated. The upstream height H, = 1 meter. Figure 3 shows
the flow profiles of fluid sheet with different upstream
Froude Number (Fr=1.25, 1.5, 2.5 and even 8.0) for a
bottom slope K =0.1.

4. Future Research

Progress is now being made on performing similar
calculations using GN Level II theory where the kine-
matic model for the vertical variation in velocity
involves an additional term in both the horizontal and
vertical velocities. That is, for Level II, the kinematic
approximation corresponding to (1) is

ulx, z,1) = 1y (1) + 1 (e.1)¢

wx,2,0) = volxt) + v(x1) € + vy () £
With this kinematic model it is possible to treat the

flow over a weir (Figure 4). In particular, it is possible

to model the jet streaming vertically from the gate of

the weir.

(10)

Relation to Plunging Breakers

Consider the flow in a wave approaching a beach
and experiencing the effects of shoaling. At any instant
of its evolution, a stagnation streamline separates the
flow downstream of the crest (i.e., towards the beach)
from that upstream (towards the ocean). Before the
wave breaks this streamline terminates at the crest.
However, as the wave begins to break, this streamline
bends over and a jet is formed creating the plunging
part of the breaker. The upstream flow including the
jet is not unlike the unsteady flow over a weir as
sketched in Figure 5. Use of the GN method to model
this evolution would require treating the downstream
(beachside) flow as a separate fluid sheet with appro-
priate matching conditions. Further, such a model
would also require some treatment of the impact of the
jet with the water in the downstream sheet. This proc-
ess is clearly non-conservative and would take some
care to develop.
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Applying the Finite Element Method in numerically
solving the two dimensional free-surface water wave
equations
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1 Introduction

As part of the research project 'a scientific infrastructure for laboratory generated
surface waves’, we have been developing a computer code to simulate free surface
water waves on a two dimensional bounded domain. It is well known that if the water
is assumed to be inviscid, incompressible and irrotational, the velocity field of the
water can be characterized with a potential function.

The set of equations describing the dynamic behaviour contains two time depen-
dent conditions at the free surface (dynamic and kinematic boundary conditions) and
Laplace’s equation for the potential in the interior of the water domain. At this mo-
ment we have assumed the other boundaries to be fixed and impermeable, but our
research aims at including moving wave generators and beaches.

When the equations are linearized, they can be solved in the frequency domain,
but for some applications solutions of the original equations are necessary. In order
to solve the nonlinear equations, the nonlinear time dependent free surface equations
have to be integrated over time and at every time stage Laplace’s equation has to be
solved on the region bounded by the free surface and the fixed walls.

Solving Laplace’s equation is the most computer-time consuming part of the nu-
merical computations. For this reason a boundary integral description of Laplace’s
equation is usually discretized (e.g. boundary element method), thus reducing the
number of unknowns. However, computing the coefficient matrix and solving the full
matrix associated with the BEM formulation are computational intensive procedures.

Instead of using a boundary element method, we have implemented a finite element
method (triangular elements and linear base functions) to solve Laplace’s equation.
The use of a finite element method was initiated by the article A finite element method
for fully nonlinear water waves’ by Xing Cai, et. al. (1996). In this article a method
based on a time-dependent mapping of the water domain to a fixed computational
rectangle is proposed. Numerical calculations have shown however that discretizing




the domain directly and thus regridding the nodes at every time-stage gives more
accurate results.

Although the number of unknowns using FEM is larger than using BEM, evaluation
of the elements of the associated sparse matrix is relatively fast and because of the
banded and symmetric structure of the matrix an efficient Gauss-Elimination solver
can be used.

2 Contents of the presentation

We will discuss the benefits and limitations of applying a finite element method to
sulve the nonlinear wave equations numerically, The main advantages seem to be:

e speed and memory usage: we have applied our code (on a pentium PC) to
a wavegroup propagation problem that could not be computed using a BEM
without domain decomposition (on a Cray C98)

o flexibility: the finite element grid is constructed inside the domain, providing
more control over the numerical accuracy near critical geometries.

Results will be presented of comparisons in which we have applied the numerical code
to the following three problems that have relative simple geometries:

e Sloshing wave: compared with results of the sloshing wave problem in 'Compara-
tive study of fully non-linear wave simulation programs’ initiated by Det Norske
Veritas, 1994. Given the dimensions of the water tank (70m x 160m) and an
initially steady surface profile, participants in the comparative study were asked
to compute the surface elevation at t=9.2s at x=60m. For our computations we
used a 70 x 160 grid, a 5 stage 4'th order RK method and a timestep of At = 0.1.
The table below summarizes their results added with the result obtained by using

our code.
part. nr. | resuls || part nr. result
1 -3.803 || 5 -3.820
2 -3.860 || 6 -3.803
3 -3.815 || 7 -3.720
4 -3.759 || our result | -3.798

s Propagation of wavegroups: compared with results in the PhD thesis "Numerical
simulation of nonlinear water waves using a panel method; domain decomposition
and applications’ by Paul de Haas, 1997. The figures on the next page show the

initial surface of the wavegroup (propagating to the right), the result obtained

by Paul de Haas at ¢t = 180 and the result of our computations at t = 180 using

a 2001 x 7 grid. The depth of the water is 12 meters and in both computations

Atr=0.3
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- Wavegroup: surface after 180 seconds computed by Paul de Haas using a panel
method and domain decomposition (copied from his thesis)
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- Wavegroup: surface after 180 seconds computed with our code (no domain
decomposition and on a desktop PC)

Soliton splitting over a varying bottom: compared with results from the paper
'BEM-numerics and KdV-model analysis for solitary wave split-up’ by E. van
Daalen, E. van Groesen and S. Pudjaprasetya in Computation Mechanics, vol
19: 197-187 ,1997. The figures on the next page show the topography and the
computed surface at t=8 and t=80 of a solitary wave propagating to the right
and splitting into three solitons. For this computation a uniform grid (2001 x 6)
and a 5 stage 4'th order Runga-Kutta time integration with Af = 0.1 were used.
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-Soliton splitting: ¢ = 80s, original solitary wave has split into three separate
solitons

3 Conclusion

A FEM based numerical solver for the kind of problems as described above seems to
be a good alternative for conventional boundary integral methods. Although more
work has to be done to investigate accuracy, stability and applicability to a wider
range of problems, results so far are encouraging. Future objectives are to implement
higher order FEM base functions, incorporate moving boundaries, introduce realistic
wave absorbers (as are being used in hydrodynamic laboratories) and to implement
the code for three dimensional situations.

on Water Waves and Floating Bodies
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Pressure-impulse theory for water wave impact on a structure with trapped air.

D.J.Wood and D.H. Peregrine
School of Mathematics, University of Bristol, Bristol BS8 1TW, UK
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Introduction

Research into wave impact on a vertical wall is of particular importance for the design of sea
walls and breakwaters. A wave which is breaking or near breaking when it hits a structure can cause
large peaks in pressure. These pressures though often of very short duration (1ms in the laboratory,
10-50ms in prototype), are sometimes substantial enough to shift or blow holes in a coastal structure.
When a wave is breaking or near breaking when it hits a structure often a large amount of air becomes
trapped. The amount of air which is trapped and the manner in which it is present has a significant
effect on the pressures which occur. Bagnold (1939) made many observations of the impact pressures
which occur when a wave hits a wall and noted the importance of any air pocket which may occur.
In particular he noted that for nominally fixed wave conditions the pressures occurring vary from one
wave to the next, but examination of the integral of pressure, with respect to time, over the short
duration of impact (pressure-impulse) gives more stable results.

Air can be present in one of two forms: as a trapped air bubble or as dispersed air, or most
likely as a combination of both. In particular Topliss (1994) looked at a theoretical model of the
trapped air using an oscillating cylindrical air bubble. Peregrine (1994) gives a review of some of the
methods used to model air entrainment/trapping during impact. Peregrine and Thais (1996) model
scaling for entrained air in violent water wave impacts by using a ‘filling flow’ model (where a region is
rapidly filled with liquid), following on from Peregrine and Kalliadasis (1996). This model has many
similarities to the ‘flip through’ flow. Peregrine and Thais give an estimate of the reduction in pressure
caused by the presence of the air.

In this section we consider a large air bubble trapped at the wall which produces oscillatory
pressures. The impulse due to the first oscillation instead of bringing the water to rest, may bounce
the water backwards. So the velocity of the part of the wave impacting may reverse in sign. Cooker
and Peregrine (1990 b) looked at a pressure-impulse model for the ‘flip through’ conditions which
corresponds to water motion normal to the wall ceasing on impact. If the compressed air causes the
water to be pushed back, then the boundary conditions corresponding to a reversal of the component
of velocity may be more appropriate. We call this effect ‘bounce back’.

Pressure-impulse for ‘bounce back’

We extend the Cooker and Peregrine (1990 a,b, 1992, 1995) model for impact of a wave on a vertical
wall to allow for a trapped air bubble. We begin by assuming that the bounce back velocity is equal in
magnitude, but opposite in sign to the ingoing velocity of the wave. Figure 1 shows pressure-impulse
contour plots for the no ‘bounce back’ and ‘bounce back’ situations, where the bubble is supposed
to be thin. The peak P is almost twice as big for the bounce back situation as for the no bounce
back case. Pressure-impulse contours give a fair approximation to maximum pressure contours if a
good estimate of impact duration is available. However in the case of bounce back, the time scale
is dependent on the compression of the air, and hence is longer. Since bounce back gives a longer
duration the estimated maximum pressures are generally smaller. If the duration is too long the
pressure-impulse approximation becomes inappropriate.

Experimental comparisons

Experimental comparisons are full of complications. Firstly it is unclear over which period of time we
should integrate the pressures to obtain the pressure-impulse. To begin with we have made comparisons
with data from Hattori and Arami (1992 and private communication) using a very simple analysis
procedure. A triangular distribution of pressure against time was chosen. Hence the pressure-impulse
was calculated by multiplying the rise time (the time taken for the pressure to rise from zero to its
first peak value) by the first peak in pressure. Figure 2 shows a comparison of the pressure-impulse
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Figure 1: (a) Pressure-impulse contours for wave impact on a wall with no bounce back. (b) Pressure-
impulse contours for wave impact on a wall with bounce back.
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down the wall obtained in these experiments and the pressure-impulse predicted by the Cooker and
Peregrine 2D wall impact model and the ‘bounce back’ model. The bubble position is denoted by
a dark line. The ‘bounce back’ and ‘no bounce back’ are over and under predictions in comparison
with some of the experimental data. The magnitude of the pressure-impulse is predicted reasonably
well, but the shape of the pressure-impulse distribution is not reflected in the theoretical values. Total
impulse for the ‘bounce back’, no bounce back and Hattori data are 1.746, 1.078 and 1.742 respectively.
The value of total impulse is predicted well by using the ‘bounce back’ method, whereas the ‘no bounce
back’ method under predicts.

Holtor

0.06 -

+ — Normal bounce b
" ... no bounce back

= 0.naf- % W X
9041 x Hattori’s experiments

30 40

Pz(ﬂN s)

Figure 2: Pressure-impulse along the left hand wall, for ‘bounce back’, ‘no bounce back’ and Hattori’s
experiments (1992).

Further comparisons

A relatively new method of experimentally obtaining a velocity profile for an impact is Particle Image
Velocimetry (PIV). Oumeraci, Bruce, Klammer and Easson (1995) and QOumeraci, Partenscky, Klam-
mer and Kortenhaus (1997) describe PIV measurements made at the University of Edinburgh. We
use these experiments to make further comparisons.

Two further improvements were carried out firstly in the numerical model and secondly in the
analysis of the experimental data. As mentioned in the analysis of Hattori's experimental values,
the ‘bounce back’ method produces values of pressure-impulse which are too high as we make an
assumption that the bubble bounces back with the in going velocity. A more realistic approach is to
consider the bubble bouncing back with a cosine velocity profile, i.e. that there is no ‘bounce back’
at the edges of the bubble and the maximum ‘bounce back’ is at the centre of the bubble. This is
similar to considering the bubble as being spherical and just ‘bouncing back’ with a component of the
velocity. This gives a slightly better prediction of the pressure-impulse.

Secondly a more complex analysis of the experimental data was used in order to separate the
relatively slowly varying part of the pressure from the impulsive part. The pressure-impulse was
calculated by integrating from the start in the rise in force, to the first ‘flat’ part of the force graph after
the peak, keeping within the time limit within which pressure-impulse theory is valid. A triangular (or
trapezoidal) distribution of pressure was subtracted off the pressure- impulse so as to remove the effect
of a background pressure. Figure 3 shows the comparison of the Edinburgh PIV data and the ‘bounce
back’ and no ‘bounce back’ prediction methods. The distribution prediction is far from perfect but
adequate. The ‘bounce back” model also gives good predictions along the berm in front of the wall.

Conclusion

The ‘bounce back’ model gives predictions of within 40% of the experimental pressure-impulse values.
Currently there has been little theoretical work carried out to model this problem, so even these
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Figure 3: Pressure-impulse on the wall, for impact of a plunging breaker trapping a large air pocket

estimates are an improvement. The bounce back model also gives good predictions for pressure-
impulse along a berm in front of a vertical wall. It is hoped to use new experimental data from the
MAST 3 project (details below) to compare and improve the model of impact with air.
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1. Introduction

This paper presents a 3-D time-domain boundary-element method using a combination
of the transient Green's function and the Rankine source. The focus of this study is to solve
free-surface ship hydrodynamics problems involving highly non-wall-sided ship geometries with or
without forward speed.

As practical ship designs have become more complex and computer capabilities have ad-
vanced, there has been a tremendous push in the development of 3-D time-domain methods for
solving sea-keeping related problems. In the context of time-domain potential flow boundary-
element methods, the most commonly used approaches fall in two categories: (1) methods using
the transient Green's function and (2) methods using the Rankine source. In the first category
(e.g. Lin, et al, 1994), the transient Green’s function satisfies the linearized free-surface boundary
condition and the far field radiation condition, so that the singularities need to be distributed on
the wetted body surface only. For ships with highly non-wall-sided geometry, numerical difficulties
may arise in the area where the intersection angles between the body surface and the free surface
become small. This is mainly due to the highly oscillatory nature of the transient Green’s func-
tion adjacent to the free surface. In the second category (e.g. Nakos, Kring & Sclavounos, 1993),
the Rankine source is used as a kernel in the boundary integral equation. The Rankine source is
fairly robust for modeling either wall-sided or non-wall-sided geometry. To satisfy the free-surface
boundary condition, the Rankine source has to be distributed not only on the body surface but also
on the free surface. In order to limit the size of the computation domain, the free surface region is
typically truncated at several ship lengths away from the ship and an ad-hoc numerical damping
zone has to be employed to absorb the wave energy.

In view of the pros and cons of the two methods, a natural and optimal choice is to take
full advantage of the two methods by using a combination of the transient Green's function and
the Rankine source in formulating the approach. This hybrid method has recently been developed
by the authors for motion and load computations of modern hull forms with highly non-wall-sided
geometry. In this method, the fluid domain is divided, through a matching surface, into an inner
domain and an outer domain. In the inner domain, the Rankine source is employed. In the outer
domain, the transient Green’s function is used. The transient Green's function satisfies both the
linearized free-surface boundary conditions and radiation condition, implying that the matching
surface can be placed fairly close to the body.

Some developments based on this type of hybrid method have been made in recent years.
Dommermuth & Yue (1987) solved a nonlinear axisymmetrical flow with a free surface; Yeung &
Cermelli (1993) calculated forced heaving motion of a 2-D submerged body with a free surface.
Using similar approach but a different Green's function in the outer domain, Sierevogel, Hermans
& Huijsmans (1996) solved the linear problem of a 3-D floating body with forward speed. The
progress made in the present study includes development and validation of a body-nonliner hybrid
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boundary-element method as well as application of the method to highly non-wall-sided bodies
with or without forward speed.

2. Approach

The fluid flow is described by the potential flow theory. As shown in Figure 1, the fluid
domain is decomposed into an inner domain (I) and an outer domain (7). The inner domain is
enclosed by the wetted body surface S, a part of the free surface Sy surrounding the body, and a
matching surface S,, away from the body, while the outer domain is enclosed by Sp,, the remaining
free surface and an imaginary surface S, at infinity. In the inner domain, the boundary integral
equation in terms of the Rankine source is expressed as

2#@’(}3’}+LJ(¢’G,.-<I>%G]¢£S=0 (1)

where @/ is the disturbance velocity potential in domain I, G = 1/|5—4l, (7,9 € S = SpUSrU Sy,
with 7" and § denoting the field point and source point, respectively. The subscript n denotes the
directional derivative with respect to the outward normal n on S/. In the outer domain, the
boundary integral equation in terms of the transient Green’s function is written as

20! (5) +[3 (@G0 - 81G%)dS = M(5,1) )
where ®// is the disturbance velocity potential in domain IJ. The memory function M (7, t) is

t
Mzt = fﬂd'r{/s @I, - o!lGl) ds
M
g if (¢“GJ,',—<1=”TG£)VN4L} 3)
g JTp

where I')ys is the water line of the matching surface, Viy is the outward normal velocity of I'j
relative to domain /, and G° and G/ are associated with the transient Green's function (see Lin &
Yue (1990) for details). The matching surface Sy, is treated as a control surface and moves with the
body. On S, the matching conditions are imposed, requiring the disturbance velocity potentials in
the inner and outer domains are continuous, so are their normal derivatives. This forms a coupled
equation system for the velocity potential ® on S,, ® on § 7, and &/ and ®! on Sp,.

On the body surface Sj, the nonlinear body-boundary condition is satisfied on the wetted
body surface under the undisturbed incident wave profile, On the free surface Sy in the inner
domain, the linearized free-surface boundary conditions are satisfied on the incident wave surface.
The resulting hyperbolic equations for the disturbance velocity potential and the disturbance free
surface elevation are solved with fourth order Adams-Bashforth-Moulton formulas for time inte-
gration and the second order upwind finite difference for the gradient calculations. The solution is
obtained at each time step in order to update the linearized free-surface boundary condition on Sj.

3. Results

To illustrate that the present method is suitable for non-wall-sided bodies, the calculation
of a flared body undergoing forced large-amplitude heaving motion is carried out. The calculated
hydrodynamic force as shown in Fingure 2 agrees quite well with the experimental result (Troesch &
Wang, 1994) and a fully nonlinear calculation. This is a significant improvement over the method
using the transient Green’s function, which gives non-physical high-frequency oscillations in the
hydrodynamic force results for this non-wall-sided body.
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Another example related to a non-wall-sided body moving with forward speed is presented
in Figure 3. In this figure, the motion of a modern Navy ship (CG47) with a large bow flare
traveling in storm-sea condition is presented. It shows that the calculation using the present hybrid
boundary-element method is very close to experimental measurements.

Further validation of the method is underway concerning the calculation of large amplitude
ship motions involving “bow-out-of-water” and water-entry phenomena.

References

Dommermuth, D.G. & Yue, D.K.P. (1987), “Numerical Simulations of Nonlinear Axisymmetric Flows with
a Free Surface”, J. Fluid Mech., Vol. 178, pp. 195-219

Sierevogel, L., Hermans, A. & Huijsmans, R. (1996), “Time-Domain Calculations of First- and Second-Order
Forces on a Vessel Sailing in Waves”, Proc. 21st Symp. Naval Hydro., Trondheim, Norway.

Lin, W.M., Meinhold, M., Salvesen, N. & Yue, D.K.P. (1994), “Large-Amplitude Motions and Wave Loads
for Ship Design”, Proc. 20th Symp. Naval Hydro., The University of California, Santa Barbara, CA, U.S.A.
Nakos, D.E., Kring, D. & Sclavounos, P.D. (1993), “Rankine Panel Methods for Transient Free-Surface
Flows”, Proc. 16th Symp. Naval Hydro., Iowa City, Iowa, U.5.A.

Troesch, A.W. & Wang, M. (1994), “An Experimental Study for Slamming Flow and Green Water on Deck”,
Technical Report No. 327, Dept. of Naval Arch. & Marine Eng., Univ. of Michigan.

Yeung, R. & Cermelli, C.A. (1993), “The Shell Functions: A Global Method for Computing Free-Surface
Time-Dependent Flows”, Proc. 8th Int. Workshop Water Waves & Floating Bodies, St. John'’s, Newfound-
land,

Figure 1: The definitions of the two fluid domains and boundaries used in the hybrid boundary-
element method
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Figure 2: The nondimensional hydrodynamic heaving force versus time for a forced-heaving flared
body with f = 0.6H, and a = 2.1in.
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Figure 3: Nodimensional heave and pitch motions of CGAT traveling at 10 knots in head sea and

storm condition.










