
Space Systems Engineering

Design of an Integral Propulsion
System Analysis Tool (IPSAT)
The Design and Construction of a Modular Propulsion
System Design Tool

V.R. Huijsman

(Image: NASA Marshall Space Flight Center)

M
a

st
e

ro
fS

c
ie

n
c

e
Th

e
sis

Design of an Integral Propulsion
System Analysis Tool (IPSAT)

The Design and Construction of a Modular Propulsion
System Design Tool

Master of Science Thesis

For the degree of Master of Science in Aerospace
Engineering at Delft University of Technology

V.R. Huijsman

May 30, 2018

Faculty of Aerospace Engineering (AE) · Delft University of Technology

Copyright c© Space Systems Engineering
All rights reserved.

Table of Contents

Preface ix

Acknowledgements xi

Glossary xiii

List of Acronyms . xiii

List of Symbols . xiv

1 Introduction 1

2 Project Setup 3

2-1 Problem Statement . 3
2-2 Research Objective . 4

2-3 Project Goals . 5

2-4 Computer Program Requirements . 7

3 Literature Survey 13

3-1 General Propulsion System Design Tools . 13

3-1-1 Automated Combustor Design Code 13

3-1-2 Generalized Fluid System Simulation Program 15

3-1-3 European Space Propulsion System Simulation 16

3-2 Chemical Reaction Analysis Tools . 18

3-2-1 Chemical Equilibrium and Applications 18

3-2-2 Rocket Propulsion Analysis . 19

3-3 Thermophysical Property Tools . 20

3-3-1 CoolProp . 20

3-3-2 Reference Fluid Properties . 21

3-4 Conclusion . 23

Master of Science Thesis V.R. Huijsman

ii Table of Contents

4 IPSAT Computer Program 25

4-1 Program Requirement Implementation . 25

4-1-1 Program Modularity . 26

4-1-2 Program Transparency . 27

4-1-3 Program Flexibility . 28

4-2 Program architecture . 28

4-3 Nodes and branches model . 30
4-4 Module Definition . 31
4-5 Program data structure . 33

4-5-1 Nodes . 33
4-5-2 Branches . 35
4-5-3 Settings . 37

5 Modules 45
5-1 Thermophysics Module . 45

5-1-1 Equation of State . 47

5-1-2 Vapour Pressure . 52

5-1-3 Melting Pressure . 52

5-1-4 Saturated Liquid Density . 54

5-1-5 Saturated Vapour Density . 54

5-1-6 Surface Tension . 55
5-1-7 Viscosity . 55

5-1-8 Thermal Conductivity . 56

5-1-9 Thermophysics Module Architecture . 58

5-2 Fluid Friction Module . 60
5-2-1 Pipe flow friction . 60

5-2-2 Non-circular ducts friction . 61
5-2-3 Fluid Friction Module Architecture . 64

5-3 Solver Module . 65
5-3-1 Root Finding Methods . 65

5-3-2 Conservation Equations . 71

5-3-3 Relaxation Factor . 77
5-3-4 Convergence Criteria . 77

5-3-5 Solver Module Architecture . 78
5-4 Fluid System Initialization Module . 80

5-4-1 Fluid Nodes Initialization Methods . 80
5-4-2 Fluid Branches Initialization Methods . 81
5-4-3 Fluid System Initialization Module Architecture 82

5-5 System Initialization Module . 83

5-5-1 Load Settings . 83

5-5-2 System Initialization . 84

5-5-3 Module initialization . 85
5-5-4 System Initialization Module Architecture 85

V.R. Huijsman Master of Science Thesis

Table of Contents iii

6 Computer Program Verification 87

6-1 Module Verification . 87
6-1-1 Thermophysics Module Verification . 87

6-1-2 Fluid Friction Module Verification . 94
6-1-3 Solver Module Verification . 96
6-1-4 Fluid System Initialization Module Verification 104

7 Test Setup and Results 109

7-1 DHX-200 Aurora Engine . 109

7-2 DHX-200 Aurora Test setup . 110

7-3 DHX-200 Aurora Test Results . 113

8 Computer Program Validation 119

8-1 Systematic Diagram of the DHX-200 Aurora Feed System 119

8-2 Computer Program Setup . 120

8-2-1 Nodes and Branches settings . 120

8-2-2 Program settings . 121

8-2-3 Input Data . 122

8-3 Computer Program Results . 125

8-4 Computer Program Results Discussion . 128

9 Conclusions and Recommendations 131
9-1 Conclusions . 131
9-2 Recommendations . 133

Bibliography 135

A Calculation of δ and τ for Two Given Thermodynamic Variables 141

A-1 Pressure and Temperature as the Independent Variables 142

A-2 Pressure and Density as the Independent Variables 144

A-3 Pressure and Enthalpy as the Independent Variables 145

B IPSAT Data structure summary 147

C Derivatives of the Helmholtz Energy Function 153

C-1 Derivatives of the Residual Component of the Helmholtz Energy Function . . 153

C-2 Derivatives of the Ideal Component of the Helmholtz Energy Function 155

Master of Science Thesis V.R. Huijsman

iv Table of Contents

V.R. Huijsman Master of Science Thesis

List of Figures

3-1 Example of the injector design optimization logic in AUTOCOM 15

3-2 Example of a fluid system in GFSSP . 16

3-3 Example of a fluid system in ESPSS . 18

3-4 Example of the CEA program interface . 19

3-5 Example of the RPA program interface . 20

3-6 Example of the REFPROP program interface . 22

4-1 Top level program architecture . 30

4-2 The two basic components of the IPSAT fluid system architecture 31

4-3 Generalized fluid system node in IPSAT . 31

4-4 Definition of a module in IPSAT . 32
4-5 IPSAT node data structure . 33
4-6 IPSAT branch data structure . 35
4-7 IPSAT settings data structure . 37

4-8 IPSAT system initialization setting data structure 37

4-9 IPSAT fluid system initialization settings data structure 39

4-10 IPSAT solver module setting data structure . 40

4-11 IPSAT thermophysics module settings data structure 42

5-1 Phase diagram of a typical fluid . 48

5-2 Thermophysics module architecture as implemented in IPSAT 59

5-3 Non circular duct shapes which can be modeled by IPSAT 62

5-4 The variation of the Poiseuille number . 63
5-5 Fluid friction module architecture as implemented in IPSAT 64

5-6 Solver module architecture as implemented in IPSAT 79

5-7 Fluid system initialization module architecture as implemented in IPSAT . . . 82

5-8 Example of a settings initialization input file . 84

Master of Science Thesis V.R. Huijsman

vi List of Figures

5-9 System initialization module architecture as implemented in IPSAT 86

6-1 Moody diagram as crated by IPSAT . 95

6-2 Nodes and branches architecture of the solver verification problem 96

6-3 Newton-Raphson method residuals with a relaxation factor of 1 99

6-4 Newton-Raphson method residuals with a relaxation factor of 0.1 99

6-5 Broyden’s method residuals with a relaxation factor of 0.5 100

6-6 Broyden’s method residuals with a relaxation factor of 0.1 101

6-7 Modified Broyden’s method residuals with a relaxation factor of 0.5 101

6-8 Modified Broyden’s method residuals with a relaxation factor of 0.1 102

6-9 Brent’s method residuals with a relaxation factor of 0.1 103
6-10 Brent’s method residuals with a relaxation factor of 0.01 103
6-11 Architecture of the fluid system initialization module verification case 1 . . . 104

6-12 Architecture of the fluid system initialization module verification case 2 . . . 104

7-1 DHX-200 Aurora test bench at TNO in Rijswijk. 110

7-2 Feed system schematic of the DHX-200 Aurora test engine 112

7-3 Engineering drawing of the DHX-200 main feedsystem 113

7-4 Test data from DHX-200 Aurora test 6 . 115
7-5 Test data from DHX-200 Aurora test 9 . 116
7-6 Test data from DHX-200 Aurora test 10 . 116
7-7 Test data from DHX-200 Aurora test 13 . 116
7-8 Test data from DHX-200 Aurora test 14 . 117

8-1 Systematic diagram of the DHX-200 Aurora main feedystem 120

A-1 Example of the roots of the Helmholtz energy equation 142

V.R. Huijsman Master of Science Thesis

List of Tables

2-1 Computer program modularity requirements 8

2-2 Computer program functionality requirements 9

2-3 Computer program transparency requirements 10

2-4 Computer program flexibility requirements . 10

2-5 Computer program verification requirements 10

2-6 Computer program validation requirements 11

5-1 Overview of pure fluids and available models 46

5-2 Overview of different thermophysics models available IPSAT 47

5-3 Ideal-gas Helmholtz energy coefficients for nitrogen 49

5-4 Residual Helmholtz energy coefficients for nitrogen 50

5-5 List of equations to calculate the various thermodynamic state properties. . 51

5-6 Poiseuille number constants . 63
5-7 Variables and equations solved by the solver module 71

5-8 Standard convergence criteria used in IPSAT 78

6-1 Definition of the data points used to verify the program results 88

6-2 verification of nitrogen density . 90

6-3 Verification of the thermophysical properties of nitrogen 90

6-4 Verification of nitrogen viscosity and thermal conductivity 91

6-5 Verification of the thermophysical properties of oxygen 91

6-6 Verification of oxygen viscosity and thermal conductivity 92

6-7 Verification of the thermophysical properties of argon 92

6-8 Verification of argon viscosity and thermal conductivity 92

6-9 Verification of the thermophysical properties of methane 93

6-10 Verification of the thermophysical properties of ethane 93

6-11 Verification of the thermophysical properties of nitrous oxide 94

Master of Science Thesis V.R. Huijsman

viii List of Tables

6-12 Verification of Darcy friction factor . 95

6-13 Solver module verification branches properties 97

6-14 Solver module verification boundary nodes properties 97

6-15 Solver module verification program settings . 98

6-16 Linear interpolation nodes initialization method results case 1 105

6-17 Linear interpolation nodes initialization method results case 2 106

6-18 Bernoulli massflow branches initialization method results case 1 106
6-19 Bernoulli massflow branches initialization method results case 2 107

7-1 Performance parameters of the DHX-200 Aurora engine 109

7-2 Sensor overview of the DHX-200 Aurora engine 111

7-3 DHX-200 Aurora test overview . 114
7-4 DHX-200 Aurora test data parameters . 115

8-1 List of nodes for the validation of IPSAT . 120
8-2 List of branches for the validation of IPSAT . 121
8-3 Program settings for the validation of IPSAT . 122

8-4 Input data test 6 . 123

8-5 Input data test 9 . 123

8-6 Input data test 10 . 124

8-7 Input data test 13 . 124

8-8 Input data test 14 . 125

8-9 IPSAT results test 6 . 126
8-10 IPSAT results test 9 . 126
8-11 IPSAT results test 10 . 126
8-12 IPSAT results test 13 . 127
8-13 IPSAT results test 14 . 128

B-1 Table showing all the fields in the nodes data struct 147

B-2 Table showing all the fields in the branches data struct 148

B-3 Table showing all the fields in the settings struct 149

V.R. Huijsman Master of Science Thesis

Preface

At the start of the writing of this thesis, I have spend a total of seven years participating
in the student rocket society called DARE. Here I have had many years of practical ex-
perience designing and building small rocket systems. I see my time at DARE as a very
valuable practical addition to the theory focused study of Aerospace Engineering at the
TU Delft. The work which I am going to present in this thesis would not have existed if I
would not have been able to do my work at DARE. I would like dedicate this space to
introduce my time at DARE and provide the context which forms the backdrop of the
work presented in this thesis project.

My fascination and dedication towards developing rocket systems began when a group
DARE members founded project DAWN in 2010. Project DAWN had the goal of de-
veloping the hybrid rocket propulsion system for the Stratos II rocket (a DARE sounding
rocket planned to deliver a payload to 50 km). The project began with almost no pre-
knowledge about hybrid propulsion systems and was executed by a group of undergrad-
uate students. Despite this seemingly disadvantageous position, the team managed to
build and fire the first hybrid rocket engine in the history of DARE within the first year of its
founding.

In 2011 I participated in a minor organized by DARE and supervised by the TU Delft. Within
this minor I initiated and oversaw the development of a basic hybrid rocket modeling
tool. This tool was the first step in starting to understand the theory behind combustion
dynamics and provided a crucial link between practice and theory. This project also
sparked my interest in the development of modeling tools and has greatly contributed
to work which is currently presented. The tool eventually would prove useful for predicting
the performance of later hybrid motors.

Most of the people that participated in the minor continued their work in the develop-
ment of the motor for Stratos II. This motor, named the DHX-200 Aurora, was a hybrid
rocket motor running on liquid nitrous oxide as oxidizer and an exotic combination of
sorbitol, paraffin and aluminium powder as fuel. This motor was, at that time, the largest
and most powerful rocket motor ever developed by DARE.

Whilst the DHX-200 Aurora engine development was still ongoing I was also heavily in-
volved with the technical design of the Stratos II rocket. Here I focused my efforts in
solving the problems which plagued the Stratos II rocket in 2014. Finally, in October of
2015, the improved Stratos II rocket soared to a record altitude of 21.5 km in the south of
spain. This launch was the accumulation of 5 years of dedication of many students. I am
very grateful to all the other Stratos members to have been part of this inspiring project.
With the results of this thesis project I would like to provide DARE with more powerful mod-
eling abilities which will hopefully help the new generation of students in achieving their
goals.

Master of Science Thesis V.R. Huijsman

x Preface

V.R. Huijsman Master of Science Thesis

Acknowledgements

First and foremost I would like to take this opportunity to thank my parents and my sister
for their unconditional support and love. This support was essential for the completion of
this thesis project and it helped me greatly during the many difficult times which I faced
during the completion of my study.

I would also like to thank my supervisor Angelo Cervone for giving me the opportunity
and freedom to completely personalize the contents of this thesis project. I also appre-
ciate his support in the guidance and evaluation of the work that is presented here.

My time at DARE has completely shaped my student life. I am very thankful for the many
inspirational people which I have met during my time at DARE, especially the people
with whom I have worked closely during the Stratos II project. Without those people this
thesis would not have taken shape.

Special thanks goes to Johannes Ehlen, for his help in the error checking of this thesis
report.

Delft, University of Technology V.R. Huijsman
May 30, 2018

Master of Science Thesis V.R. Huijsman

xii Acknowledgements

V.R. Huijsman Master of Science Thesis

Glossary

List of Acronyms

ASIC Application Specific Integrated Circuit

AST Angewandte System Technik Gruppe (Applied System Technology
Group)

AUTOCOM Automated Combustor Design Code

BWR Benedict-Webb-Rubin equation of state

CEA Chemical Equilibrium Analysis

CFD Computational Fluid Dynamics

CICM Coaxial Injection Combustion Model

DARE Delft Aerospace Rocket Engineering

DAE Differential-Algebraic Equations

DHX Delft Hybrid Experimental

DOD Department of Defense

EAI Empresarios Agrupados Internacional (International Engineering Group)

EL EcosimPro Language

EoS Equation of State

ESA European Space Agency

ESPSS European Space Propulsion System Simulation

FEM Finite Element Method

FVM Finite Volume Method

GFSSP Generalized Fluid System Simulation Program

GIM Generalized Instability Model

GSTP General Support Technology Programme

Master of Science Thesis V.R. Huijsman

xiv Glossary

IPSAT Integral Propulsion System Analysis Tool

LISP Liquid Injector Spray Pattern

MATLAB MATrix LABoratory

mBWR modified Benedict-Webb-Rubin equation of state

MEOS Multivariable Equation of State

NASA National Aeronautics and Space Administration

NIST National Institute of Standards and Technology

ODE Ordinary Differential Equations

PTFE Polytetrafluorethylene (Teflon)

REFPROP NIST Reference Fluid Thermodynamic and Transport Properties
Database

ROCCID Rocket Combustor Interactive Design

RPA Rocket Propulsion Analysis

TNO Toegepast Natuurwetenschappelijk Onderzoek (Applied Scientific
Research)

TU Delft Delft University of Technology

U.S. United States

VTASC Visual Thermofluid Dynamics Analyzer for Systems and Components

List of Symbols

Greek Symbols

α − Reduced Helmholtz energy
αr − Residual component of the reduced Helmholtz energy
α0 − Ideal gas component of the reduced Helmholtz energy
Γ m Amplitude
δ − Reduced density (ρ/ρc)
δ◦ − Reduced density at reference conditions
ε m Surface roughness
ε/k K Lennard-Jones energy parameter
η N·s·m−2 Viscosity
η0 N·s·m−2 Dilute gas viscosity component
ηr N·s·m−2 Residual viscosity component
θ rad Angle
λ W·m−1·K−1 Thermal conductivity
λ0 W·m−1·K−1 Dilute gas thermal conductivity component
λc W·m−1·K−1 Critical enhancement of the thermal conductivity component
λr W·m−1·K−1 Residual thermal conductivity component
ξ m Correlation length
ξ0 m Amplitude

V.R. Huijsman Master of Science Thesis

xv

ρ kg·m−3 Density
ρc kg·m−3 Density at the critical point
ρl,sat kg·m−3 Density of the saturated liquid
ρv,sat kg·m−3 Density of the saturated vapour
σ N·m−1 Surface tension
σLJ m Lennard-Jones size parameter
τ − Reduced temperature (Tc/T)
τ◦ − Reduced temperature at reference conditions
Ω − Collision integral
ω − Acentric factor

Latin Symbols

A m2 Area
C − Constant, or fitting coefficient
c m Circumference
cp J·kg−1·K−1 Specific heat capacity at constant pressure
c◦p J·kg−1·K−1 Specific heat capacity at constant pressure at reference con-

ditions
cv J·kg−1·K−1 Specific heat capacity at constant volume
D m Diameter
Deff m Effective diameter
Dh m Hydraulic diameter
E J Energy
Ė J·s−1 Energy flow
F N Force
f − Darcy friction factor
H J Enthalpy
H◦ J Enthalpy at reference conditions
h J·kg−1 Specific enthalpy
Kf kg−1·m−1 Fluid friction factor
k − Relaxation factor
L m Length
m kg Mass
ṁ kg·s−1 Massflow
M kg·mol−1 Molar mass
P N·m−2 Pressure
Pc N·m−2 Pressure at the critical point
Pm N·m−2 Pressure at the melting point
Po − Poseuille number
Ptp N·m−2 Pressure at the triple point
Pv N·m−2 Vapour pressure
Q J Heat
Q̇ J·s−1 Heat flow
qD m Maximum cutoff wave number
Re − Reynolds number
Reeff − Effective Reynolds number
Reh − Hydraulic equivalent Reynolds number
S J·K−1 Entropy
S◦ J·K−1 Entropy at reference conditions
s J·K−1·kg−1 specific entropy
T K Temperature
Tc K Temperature at the critical point

Master of Science Thesis V.R. Huijsman

xvi Glossary

Tm K Temperature at the melting line
Ttp K Temperature at the triple point
t s Time
U J Internal energy
u J·kg−1 Specific internal energy
v m·s−1 Velocity
V m3 Volume
W J Work
Ẇ J·s−1 Work flow
w m·s−1 Speed of sound
z − Real gas compressibility factor

Physical Constants

ν − Critical exponent ≈ 5.07451·10−1

g0 m·s−2 Gravitational acceleration at sea level ≈ 9.80665
k J·K−1 Boltzmann constant (R/NA) ≈ 1.38065·10−23

NA mol−1 Avogadro constant ≈ 6.022140·1023

R J·K−1mol−1 Universal gas constant ≈ 8.31446
R0 − Amplitude ≈ 1.01

Mathematical Operators

a − Mean value
|a| − Absolute value
||A|| − Matrix norm
A−1 − Matrix inverse
Aᵀ − Matrix transpose
∂ − Partial derivative
∆ − Single value difference
∆ − Matrix difference
exp() − exponent of e
f − Single function value
f ′ − Derivative of a function
f − Function value vector
J − Jacobian matrix
ln() − logarithm with base e, or natural logarithm
logx() − logarithm with base x∑

− Discrete summation∫
− Normal Integral∮
− Volume integral

' − Equivalence
x − Single variable value
ẋ − Derivative of a variable
x − Variable value vector

Mathematical Constants

e − Exponential number ≈ 2.71828
π − Ratio of circumference over diameter of a circle ≈ 3.14159

V.R. Huijsman Master of Science Thesis

Chapter 1

Introduction

In the early design phase of a propulsion system, the first step is to generate propulsion
system designs which satisfy the top level system requirements. Most designs will then
be eliminated by incorporating a trade-off scheme in order to select a best concept.
In this phase of the design, the designer is faced with a difficult task. Analyzing the pros
and cons of designs requires an in-depth analysis of the entire propulsion system. A good
trade-off requires the designer to quantify how much benefit can be gained by changing
the design in specific parts. Therefore, it is necessary to know how a design change in
one part influences the overall performance of the propulsion system.

In order to address this problem, a number of design tools are available to the designer.
There are two types of design tools. The first type is specifically aimed at a single aspect
of rocket engine design. A few examples include RPA [1] and CEA [2] for equilibrium
combustion performance, Coolprop [3] and REFPROP [4] for thermophysical properties
of propellants, CICM [5] and LISP [6] for injector performance modeling, and ROCCID [7]
and GIM [8] for combustion instability analysis.

The second type of tools are general propulsion system design tools. These tools allow
the designer to investigate the propulsion system in its entirety. A few examples include
AUTOCOM [9], GFSSP [10] and EcosimPro [11]. These tools are a collection of specialized
modules aimed at specific parts of the propulsion system design.

The aforementioned tools generally perform well, however they do have several down-
sides when it comes to the initial design phase of a propulsion system. A few of the main
downsides include:

1. Many of the aforementioned tools are specialized to perform only one task. A de-
sign cycle often requires the use of a number of these tools, making quick design
iterations difficult. Additionally, the input and output of most of the available tools
is optimized for a specific type of analysis, intended by the designer of the tool.
Different tools are optimized for different types of analyses, and therefore are often
incompatible with each other. This makes it difficult to incorporate multiple design
tools into a single environment without modification of the tools.

2. Most of the tools are proprietary, which restricts its use and/or restricts the mod-
ification of the tool. The modification of the tools is further complicated by the
different programming languages and environments used to construct these tools,

Master of Science Thesis V.R. Huijsman

2 Introduction

which are often incompatible with each other. Additionally, these tools offer little to
no explanation of their inner workings. This adds to the so called ‘black box’ user
experience, where information is retrieved from the program but with little to no
explanation about how it is produced.

3. many of the design tools do not mention the (complete) source of the data and/or
the assumptions which are made. Therefore, a measure of the uncertainty of the
outcome is difficult, if not impossible, to get. This lack of guidance not only adds to
the ‘black box’ experience, in the worst case this creates a false sense of certainty
and might lead to a misleading design.

The goal of this research project is to address these problems by creating an integral
propulsion system analysis tool, which is to be named IPSAT in the remainder of this report.
The aim of this tool is to create a platform which integrates different models in order
to create a single design environment. The focus in this research project lies mainly in
the construction of the platform. A minimal set of essential modules are constructed to
demonstrate the capabilities. It is expected that future research projects will focus more
on the addition of specific modules to increase the efficacy of the tool.

Delft Aerospace Rocket Engineering (DARE) is highly interested in such a design tool, due
to its increased activity in propulsion system development. Most recently, DARE aims to
develop a hybrid rocket which is capable of reaching 100 kilometers altitude. For this
rocket, DARE is improving the existing DHX-200 Aurora hybrid rocket engine. The improve-
ment process involves the analysis of many different design options. An analysis tool,
which is able to analyze the impact of these options, is highly sought after. Additionally,
such a tool will be useful for the early design phase of many other projects within DARE.
An example of such a project is the design of a 10 kN LOx/CH4 liquid rocket engine for
use in future high altitude sounding rockets. DARE is seen as a major stakeholder in this
research and has a big role in defining the requirements of the program.

The main goals and requirements of IPSAT are described in chapter 2. This chapter
will also present the setup of this research project. The main concepts are introduced
through a brief literature survey which is presented in chapter 3. The focus of the litera-
ture survey is mainly to investigate and map out different models and programs which are
commonly used in industry. The IPSAT program and the computer program architecture
is explained in chapter 4. The modules, which form the backbone of IPSAT, are explained
and discussed in chapter 5. The verification procedures, which have been implemented
for the different modules, are presented in chapter 6. The program is validated by us-
ing the DHX-200 Aurora test data gathered during the Stratos II development program,
which is presented in chapter 7. The validation process is presented in chapter 8. Lastly,
chapter 9 presents the main conclusions of this project and further recommendations for
future projects.

V.R. Huijsman Master of Science Thesis

Chapter 2

Project Setup

This chapter will introduce the thesis project and will explain the motivation behind the
decisions made during the project. It is imperative that the project has a clearly defined
structure and that its success can be measured against what is expected. The goal of this
chapter is to provide a clear structure for the thesis and to derive a set of requirements
which form the baseline of the project.

This chapter is divided into four sections. Section 2-1 will highlight the motivation behind
this thesis project. Section 2-2 presents the research objective that defines the thesis
project. A number of top level goals are derived from the problem statement and the
research objective. These top level goals are presented in section 2-3. Finally, section 2-
4 gives a full list of requirements for the program which are derived from the top level
program goals.

2-1 Problem Statement

Delft Aerospace Rocket Engineering wants to partake in more ambitious projects. The
main goal of this student society is to develop a rocket which is able to reach 100 km.
In order to meet this ambitious goal, larger and more complex propulsion systems need
to be developed. The design and development of a propulsion system currently makes
up more than 40% of the total rocket development program budget [12]. Most of this is
spend on propulsion system testing needed for the characterization of the engine design.
A tool that would help to reduce these engine characterization tests would be able to
significantly reduce the cost for the development of the rocket. The development of
computational tools are not a new phenomenon within DARE. Many tools have been
developed in the past. However, none of these tools have been able to address all of
the problems laid out below.

DARE currently works with many different specialized tools which deal with isolated parts
of a propulsion system. These tools are well suited for addressing specific design questions
(e.g. what is the combustion temperature of a oxygen - methane engine). However,
the design of a complete propulsion system encompasses a multitude of these specific
design problems, which are often inter related. The design needs can also change de-
pending on the type of propulsion system (e.g. designing a liquid rocket requires different
models and tools compared to designing a hybrid rocket). Furthermore, working with

Master of Science Thesis V.R. Huijsman

4 Project Setup

many different specialized tools can be very cumbersome when an existing design is it-
erated or, in the worst case, the design needs to be changed completely. Within DARE
there is a need for a tool which is able to bring together many specialized tools into one
environment where each part of the tool is able to perform a specific analysis.

The initial design of a propulsion system is generally not an issue. Ideal rocket theory is
sufficient to correctly design for the main parameters. It is relatively straight forward to
arrive at an initial design which meets the top level requirements. The issues arise after
testing the propulsion system, when discrepancies are found between the predicted
and the actual engine behavior. These problems are often contributed to complex feed
system transients and rapidly changing thermo-physical properties of the propellant(s).
It often takes many costly design iterations, which all need to be tested, to arrive at an
acceptable engine design. There is a need for a tool that is able to encapsulate many
of these complex phenomena for different types of engine configurations.

DARE is a student society where students join and leave in a period of only a few years. It
is inevitable that much of the experience, gained during the timespan of a project, is lost
when they leave after that project is finished. Every few years new students need to be
able to design larger and more complex propulsion systems without the large expanse
of knowledge that was obtained during the last project. This only worsens the aforemen-
tioned knowledge gap problem significantly. There is a need for tools which guide new
designers when designing more complex propulsion systems. Although the knowledge
gap problem is especially true for DARE, it also impacts many research institutes and
companies.

It is customary within DARE to create custom computer models in order to analyze spe-
cific physical phenomena. These computer models often have a short lifetime, serve
specific needs and are poorly documented. This leads to problems when new design-
ers are tasked to use these computer programs or extend these programs to increase its
functionality. In the worst case, the designer needs to spend time to create the exact
same tool personalized to his/her preference. It is evident that time can be saved if a
computer program is developed which is well documented and flexible by facilitating
the designer to change and tweak the program in order to increase its functionality.

2-2 Research Objective

If DARE wants to develop rockets with ever increasing complexity and performance
needs, it is inevitable that the problems mentioned in section 2-1 need to be addressed.
It is the objective of this thesis project to address these problems by creating a general
purpose fluid system design tool. This tool will combine a number of different modules
to work together and provide the designer with an in-depth analysis of the propulsion
system that is being designed. These objectives are captured best in the following sen-
tence:

The aim of this thesis project is to develop a general purpose fluid system analysis
tool for the design of a propulsion system by integrating various modules into one
computer program.

The goal is to provide DARE with a fluid system design tool that has a large library of
customizable modules. The inherent flexibility will enable the designer to design propul-
sion systems of varying types and in various stages of the design process. Additionally,
the customizable modules will keep the program state-of-the art because designers can

V.R. Huijsman Master of Science Thesis

2-3 Project Goals 5

actively tweak the existing models and/or add new modules when required. Lastly, the
standardized inputs and outputs of each module, and the structured breakup in mod-
ules, allows for a clear presentation of the capabilities of the program. This will increase
the educational and academic potential of the design tool.

2-3 Project Goals

In order to meet the stated research objective and address the problems stated in sec-
tion 2-1, a number of project goals have been formulated. The research objective is met
if all the project goals are met. It is the aim of this thesis project to meet these goals
and therefore complete the research objective. The project goals can therefore also be
seen as a list of top level requirements for the computer program. The project goals are
defined as follows:

1. A computer program shall be constructed which is modular.

2. A computer program shall be constructed which contains the basic modules
for the analysis of a propulsion system.

3. A computer program shall be constructed which is transparent.

4. A computer program shall be constructed which provides flexibility to the de-
signer.

5. The computer program shall be verified.

6. The computer program shall be validated.

The first project goal is derived from the need for a broader and more encompassing
propulsion system design tool. Modularity plays an essential part in the relevance of
the tool. Especially in an organization as DARE where the designer and developer base
changes rapidly. As an academic tool, modularity should also provide customization to
suit specific academic problems. A developer can create custom modules which suits
his or her specific needs. The modularity of the computer program is specified as follows:

• Modularity on a system level. The goal is to create a program which is split in a num-
ber of modules where each module has its own defined function. These modules
should be able to interact with each other through universal variables.

• Modularity on a module level. Each module can contain a number of different
models. New models should be able to be integrated easily in the existing modules.
This means that within each module the inputs and outputs need to be communi-
cated in a structured way.

The second project goal is derived from the first goal and sets the minimum functionality
of the program. It is important that this minimum functionality is sufficient to demonstrate
the current and future capabilities of the program. Furthermore, the program should be
able to demonstrate that the concept of linking specialized modules together can be
used to analyze a larger system. The research goal is to develop a general purpose fluid
system analysis tool, the following modules are selected to reflect that:

Master of Science Thesis V.R. Huijsman

6 Project Setup

• An initialization module. This module should be able initialize the universal variables
and prepare the inputs required for each module

• A solver module. This module should be able to solve a set of (non linear) equations.

• A fluid friction module. This module contains the methods that are used to evaluate
feed system pressure losses due to fluid friction.

• A thermophysical module. This module should be able to accurately describe the
thermophysical properties of different commonly used fluids in the relevant states
(e.g. liquid, super critical).

• A conservation equation module. This module should be able to calculate the
results of a number of fundamental conservation equations.

An in depth description of the exact functionality of these modules will be presented in
the section 2-4. These modules define the first version of the program and the scope of
this thesis project. It is expected that more modules shall be added in future projects.

The third project goal is derived from the need for a tool which is able to assist new
designers in the design of complex fluid systems. This goal suggests the formatting of
the communication with the designer. The computer program is intended to be used
by students and academics. It is therefore deemed important to provide transparency
to the designer. It is also an important factor in the legitimacy of the tool. If it is clear
where the information comes from and how it is used in the system, it is much easier for a
designer to correctly evaluate the results. The project goal is to implement transparency
by the following means:

• The program shall provide insight into the models which are used. Models are an es-
sential part of the program. It is important to inform the designer about the different
models which are used to evaluate the problem and how they work.

• The program shall provide insight into the sources used in the evaluation of the prob-
lem. In many different parts of the program values are used which originate from
a specific source. It is important to recognize this and to convey to the designer
where this information can be found.

• Each part of the program code shall include documentation explaining the func-
tion it fulfills. In case the program is extended, it is important for the designer to
understand the structure of the program code.

The fourth project goal is derived from the need for a tool which can cope with a large
and varying user base. The goal will determine the way the designer will interact with the
program. The project goal is to create a computer program which gives the designer
a large amount of freedom of how to solve the problem. The flexibility of the computer
program is defined as follows:

• Flexibility in operating the program. When interacting with the program interface,
the designer shall be able to use and select all of the available functions of the
program.

• Customization of the model inputs. When solving a problem, the designer should
be able to customize the model inputs to suit the needs of the designer.

V.R. Huijsman Master of Science Thesis

2-4 Computer Program Requirements 7

The fifth project goal is derived from the need of a functioning computer program. The
verification process of a program guarantees that the program functions as designed.
According to the U.S. Department of Defense (DOD) documentation of verification, vali-
dation and accreditation for models and simulations [13], the definition of the verification
process for computer models is defined as:

“The process of determining that a model, simulation or federation of models
and simulations implementations and their associated data accurately repre-
sents the developer’s conceptual description and specifications.”

It is important for the designer to know that eventual discrepancies between the pro-
gram results and the experiments are not caused by faults in the computer program
implementation. The verification process is divided into the following two steps:

• Each module shall be verified individually. After the construction of each module,
it is important that it is verified before implementing it into the computer program.
It also guarantees that verification can be guaranteed even if new modules are
added. The exact verifications steps that need to be taken depend on the module
and the models used in each module.

• The program shall be verified as a whole. Once all the modules are implemented
and verified, the last step is to verify the collaboration of the different modules.

The sixth project goal is derived from the need of a program that models reality. The
validation process guarantees that the results of the program accurately predict what
can be obtained from experiments. According to the U.S. DOD documentation of verifi-
cation, validation and accreditation for models and simulations [13], the definition of the
validation process for computer models is defined as:

“The process of determining the degree to which a model, simulation, or fed-
eration of models and simulations implementations and their associated data
are accurate representations of the real world from the perspective of the
intended use(s).”

Even if the program does not fully predict reality, it is important to know what can and
what cannot be modeled by the program and what kind of uncertainty can be ex-
pected from the program. The validation process requires relevant test data to be avail-
able. For this project the goal is to compare the results of the program with the following
source of validation test data:

• The program shall be validated using the DHX-200 Aurora engine test data. The
DHX-200 Aurora [14] is a hybrid engine developed by DARE between 2012 and 2015.
Many different design configurations were tested during this time period and the
available data can provide a valuable source of validation data.

2-4 Computer Program Requirements

The project goals, as presented in the previous section, denote the overall functionality of
the program. These goals can be distilled further into more detailed requirements which
will stipulate the exact steps required to arrive at the desired program. Tables 2-1 till 2-6
list the computer program requirements which are obtained from the project goals.

Master of Science Thesis V.R. Huijsman

8 Project Setup

Table 2-1: Computer program requirements derived from the goal that the program shall
be modular.

1 The computer program shall be designed to be modular.
1.1 The computer program shall be modular on a system level.

1.1.1 The computer program shall be constructed out of distinct mod-
ules.

1.1.2 The computer program modules shall be able to communicate to
each other by universal variables.

1.1.3 The computer program modules shall be able to be added to and
removed from the computer program.

1.1.4 The computer program modules shall be able to operate indepen-
dently from each other.

1.2 The computer program shall be modular on a model level.
1.2.1 Each module shall be able to contain different models.
1.2.1 Each model in a specific module has the same in- and outputs.

V.R. Huijsman Master of Science Thesis

2-4 Computer Program Requirements 9

Table 2-2: Computer program requirements derived from the goal that the program shall
provide basic functionality.

2 The computer program shall contain the basic modules for the
analysis of a propulsion system.

2.1 The computer program shall contain an initialization module.
2.1.1 The initialization module shall be able to verify the designer inputs
2.1.2 The initialization module shall be able to initialize the settings of

other modules.
2.1.3 The initialization module shall be able to provide the initial values

required by the solver module.
2.1 The computer program shall contain a solver module.

2.2.1 The solver module shall incorporate the fundamental fluid conser-
vation equations.

2.2.2 The solver module shall be able to successfully iterate towards a
solution.

2.2.3 The solver module shall be able to call other modules in order to
update variables.

2.3 The computer program shall contain a thermophysics module.
2.3.1 The thermophysics module shall be able to determine the thermo-

physical properties of a fluid in every fluid node.
2.3.2 The thermophysics module shall be able to determine the following

set of thermophysical variables: pressure, temperature, compress-
ibility, enthalpy, internal energy, entropy, heat capacity at constant
pressure, heat capacity at constant volume and speed of sound.

2.3.3 The thermophysics module shall be able to determine the following
set of transport properties: surface tension, viscosity and thermal
conductivity.

2.3.4 The thermophysics module shall be able to determine the proper-
ties listed in 2.3.2 and 2.3.3 of commonly used fluids in rocket en-
gines.

2.3.5 The thermophysics module shall be able to determine the proper-
ties listed in 2.3.2 and 2.3.3 of fluids in the following states: liquid,
gaseous, vapour and super critical.

2.4 The computer program shall contain a fluid friction module.
2.4.2 The fluid friction module shall be able to determine the fluid friction

factor in every fluid branch.
2.4.1 The fluid friction module shall be able to determine the friction fac-

tor for commonly used orifice shapes.

Master of Science Thesis V.R. Huijsman

10 Project Setup

Table 2-3: Computer program requirements derived from the goal that the program shall
be transparent.

3 The computer program shall be designed to be transparent.
3.1 The computer program shall provide insight into the models which

are used.
3.1.1 A list of available models for each module shall be available to the

designer.
3.1.2 The models which are used shall be presented in the output file.

3.2 The computer program shall provide insight into the sources used
in the evaluation of the problem.

3.2.1 The sources for the model constants shall be presented in the out-
put file.

3.3 The computer program shall provide insight into the uncertainties
figures where available.

3.3.1 The uncertainty figures shall be incorporated in the model when
available.

3.3.2 The uncertainty figures for each model shall be presented in the
output file when available.

3.4 The computer program code shall be able to be understandable
to the designer.

3.4.1 Each part of the program code shall include comments explaining
the function it fulfills.

Table 2-4: Computer program requirements derived from the goal that the program shall
be flexible.

4 The computer program shall be designed to provide flexibility to
the designer.

4.1 The computer program shall provide flexibility when operating the
program.

4.1.1 The designer shall be able to select the modules of the program.
4.1.2 The designer shall be able to select the models used in each mod-

ule.
4.1.3 The designer shall be able to construct a propulsion system in a

systematic way.
4.2 The computer program shall provide customization of the model

inputs.
4.2.1 Model constants shall be able to be accessed and changed by

the designer.

Table 2-5: Computer program requirements derived from the goal that the program shall
be verified.

5 The computer program shall be verified
5.1 Each module shall be verified individually.

5.1.1 Each individual module shall be verified for functionality.
5.2 The basic computer program shall be verified.

5.2.1 The basic computer program shall be verified for functionality.

V.R. Huijsman Master of Science Thesis

2-4 Computer Program Requirements 11

Table 2-6: Computer program requirements derived from the goal that the program shall
be validated.

6 The computer program shall be validated
6.1 The computer program shall be validated using the DHX-200 Aurora

test data.
6.1.1 The computer program shall take a systematic diagram of the DHX-

200 Aurora static test engine as input.
6.1.2 The computer program shall take tank pressure data and combus-

tion pressure data from the DHX-200 Aurora test as input.
6.1.3 The computer program shall provide the fluid system response of

the DHX-200 Aurora engine as output.
6.1.4 The computer program output shall be compared to the original

test data.

Master of Science Thesis V.R. Huijsman

12 Project Setup

V.R. Huijsman Master of Science Thesis

Chapter 3

Literature Survey

The first step in the development of a new design tool, is to investigate the different types
of modeling techniques which are currently in use and/or have been used in the past.
This investigation serves to give an overview of the state-of-the-art models and tech-
niques.

The goal of this literature survey is to investigate a small number of design tools which are
often used, or have been used in the past, in the development of propulsion systems. This
chapter will map out what kind of models and techniques are convenient and relevant
to use, while also trying to map out the most state-of-the art methods currently imple-
mented. The survey will not provide an extensive overview of all methods and models.
Instead, it will focus more on the currently popular and relevant models.

This chapter is divided into two main sections. The first section, 3-1, presents a number
of general propulsion system design tools. These tools are similar to what IPSAT tries to
achieve in that they contain different models for different design problems and they are
intended to be used for the design of a complete propulsion system.

The second part of this chapter, which is covered by sections 3-2 to 3-3, presents a num-
ber of specialized tools intended to provide information regarding a specific part of a
propulsion system design. These sections are ordered according to their field of appli-
cation. Section 3-2 presents tools which are used to characterize chemical reactions.
Section 3-3 presents tools which are used to characterize fluid properties.

3-1 General Propulsion System Design Tools

3-1-1 Automated Combustor Design Code

In the beginning of the 1970’s the Aerophysics Research Corporation developed the
Automated Combustor Design Code (AUTOCOM). The project was funded and super-
vised by NASA with the aim of developing a liquid rocket engine design code. Although
the code mainly focuses on the design of the combustor, it encompasses many ideas of
an overall engine design tool.

AUTOCOM optimizes a combustor design for a given set of characteristics. A design
is given a rating based of the weighted sum of these characteristics. The code then

Master of Science Thesis V.R. Huijsman

14 Literature Survey

tries to minimize this rating in order to find the design which best fulfills the given set of
characteristics. The standard set of characteristics which are considered by AUTOCOM
are:

1. Performance

2. Stability

3. Pressure Drop

4. Injector Complexity

5. Chamber Length

6. Chamber Diameter

7. Mixture Ratio

The values for each of these characteristics are calculated by making use of various
models which are defined as different subroutines and can be customized by the de-
signer. The program therefore successfully separates the optimization part from the de-
tailed analysis part. This provides the designer with a general optimization platform which
can be heavily customized.

An interesting feature provided by AUTOCOM is the option to analyze the combustion
stability of a combustor design. There is no clear analytical method to analyze the com-
bustion stability of a given combustor design. However, there are several empirical and
semi-empirical methods, that have been developed in the past, which can provide in-
formation regarding the combustion stability of an engine for a given set of parameters.
AUTOCOM provides the designer with the option to select a preferred method for opti-
mization, as well as the ability to see the results from all the methods.

The program itself is written in Fortran and is not openly published. Detailed information
about the program and the models used are well documented [9, 15] which makes it
possible to find information about the different models and methods behind the AUTOCOM
program. Figure 3-1 shows an example of a subroutine dedicated to the characterization
of injector droplets.

Although the program is relatively old, it has some interesting concepts. The designer
is able to select from a set of different models whilst maintaining an overarching solver.
This feature increases the flexibility and applicability of the program. Additionally, the
ability to compare the results from different models is a valuable mechanism to provide
context and value to the results. The available documentation also provides a list of
empirical methods to analyze the combustion instability phenomena. These methods
can be used to provide the stability data of the combustor part of the program.

V.R. Huijsman Master of Science Thesis

3-1 General Propulsion System Design Tools 15

Figure 3-1: Example of the injector design optimization logic in AUTOCOM [15].

3-1-2 Generalized Fluid System Simulation Program

The Generalized Fluid System Simulation Program (GFSSP) is a program developed by
Majumdar, van Hooser and colleagues at the Marshall Space Flight Center in the mid
1990’s [16]. The program was originally developed with the aim to analyze the complex
fluid flow in rocket engine turbomachinery [16, 17, 18, 19]. The program was later used
in the analysis of general propulsion feed systems [10, 20, 21, 22]. GFSSP was notably
used in the development of the turbopump of the Fastrac engine [23], the Simplex tur-
bopump [19] and the X-34 propulsion system [20, 24, 25]. The program is also often used
as a reference program for the verification of other, mostly in-house developed, pro-
grams [26]. GFSSP still receives regular updates and as of 2016 the program has entered
it 6th version [10].

GFSSP is a general purpose computer program which is able to analyze fluid systems in
steady state and transient mode [10]. The fluid system is discretized into nodes, branches,
and conductors. The nodes act as the control volumes in a finite volume method solver,
and the branches and conductors act as the interfaces between the volumes. The con-
servation equations for mass, fluid energy and species are solved in each node whilst the
equation for conservation of momentum and conservation of energy in a solid is solved
in each branch and conductor respectively.

To solve the set of equations GFSSP uses a combination of a Newton-Raphson method
and a successive substitution method. The conservation of mass momentum and specie
concentration are solved with a Newton-Raphson method whilst the conservation of fluid
and solid energy are solved by with a successive substitution method. The idea behind

Master of Science Thesis V.R. Huijsman

16 Literature Survey

Figure 3-2: Example of a fluid system in GFSSP [10].

this split is that the strongly coupled equations are grouped together and solved by a
high convergence solver (Newton-Raphson) whilst the weakly coupled equations are
solved using a more slowly converging solver with increased stability (successive substitu-
tion) [10].

GFSSP is capable of modeling real fluids including phase changes, gas compressibility
and mixture thermodynamics. The thermophysical properties of the fluids are retrieved
by two thermodynamic property programs GASP/WASP and GASPAK [10]. The program
also allows the designer to provide tabulated fluid property data to add a custom fluid
which does not exists in the provided library of either GASP/WASP or GASPAK.

In the more recent versions of GFSSP the visual thermofluid dynamics analyzer for sys-
tems and components, VTASC for short, has been introduced [10]. VTASC adds a user
interface on top of the existing program architecture similar to other general fluid system
simulation programs. The user interface allows the designer to visually construct a fluid
system by dragging and attaching different components to each other. This allows the
designer to directly translate a visual feed system diagram into a GFSSP analysis case.
VTASC will translate the visual construct into a GFSSP input file once an analysis is con-
ducted [10]. An example of a fluid system constructed in VTASC is shown in figure 3-2.

The technique used to evaluate the fluid system is intuitive and relatively user friendly. The
technique also allows for modular additions of different analysis techniques. For exam-
ple, a combustion chamber node, with its own analysis methods, can be added to the
existing library of nodes without the need of changing the solver or solution methods.
The implemented solving method is also relatively straightforward and can be modified
for solving a large range of problems.

3-1-3 European Space Propulsion System Simulation

The European Space Propulsion System Simulation (ESPSS) is a module in the analysis
software EcosimPro. ESPSS has been developed in 2008 by a joint European team in
the frame of a General Support Technology Programme (GSTP), and is coordinated

V.R. Huijsman Master of Science Thesis

3-1 General Propulsion System Design Tools 17

and funded by ESA. EcosimPro is a general purpose solver developed by Empresarios
Agrupados Internacional (International Engineering Group) (EAI). EcosimPro is optimized
to model dynamic systems which are represented by Differential-Algebraic Equations
(DAE)’s, Ordinary Differential Equations (ODE)’s or discrete events. EAI has developed
its own object oriented programming language called EcosimPro Language (EL). This
language is custom tailored to be used for modeling discrete and continuous processes.
The language can be used to simulate both steady state and transient problems [11].

ESPSS uses a list of libraries to model a complete propulsion system. The main libraries
which are implemented by ESPSS are: a fluid properties library, a one dimensional fluid
flow library, a combustion chamber library, a fluid tank library and a turbo machinery
library. Each library contains models and functions which define the properties of the
object.

The fluid properties library contains different types of options to calculate fluid proper-
ties. ESPSS can calculate fluid properties of perfect gases, where the state variables are
temperature dependent and the transport and heat capacity properties are obtained
from property tables [27]. In the case of properties of gases, resulting from a combustion
process, the transport and heat capacity properties are obtained through temperature
dependent polynomials [11]. Fluids can be modeled as either simplified fluids or real flu-
ids. The properties of simplified fluids only depend on temperature and are obtained by
interpolating real fluid property tables as function of temperature [11, 27]. Real fluids are
obtained by a search algorithm, which tries to find the fluid properties by searching for
the right combination of two thermodynamic properties [11, 27].

The one dimensional fluid flow library in ESPSS works similarly to the fluid flow system of
GFSSP. Feed system components are connected together to assemble a bigger fluid
system. Figure 3-3 shows an example of such a feed system constructed in ESPSS. In
ESPSS a feed system element is either capacitive or resistive [27]. A capacitive element
receives the flow variables as input and returns the state variables. A resistive element
receives the state variables as input and returns the flow variables. Capacitive elements
can only connect to resistive elements and vice versa [27]. This method is comparable
to the nodes and branches method of GFSSP. Every capacitive element solves the con-
servation of mass, energy and specie in differentiable form. Every resistive element solves
the conservation on momentum in differentiable form [11].

The combustion chambers library contains a list of methods to simulate combustion
chambers. ESPSS can calculate combustion at equilibrium conditions using the same
method as is used in CEA, see section 3-2-1. The program is also able to simulate non-
equilibrium combustion transients, using a time delay method. The combustion cham-
bers library also contains a large number of combustion chamber periphery systems.
These include the modeling of cooling jackets, pre-burners, nozzles and igniters. The
combustion chambers library can be combined with components from the one dimen-
sional fluid flow library and works similarly with respect to connecting different compo-
nents to each other.

The fluid tanks library contains models for different types of fluid tanks, each with its own
tank emptying mechanic for an in-depth tank transient analysis [27]. The tanks can be
linked to the one dimensional fluid flow library and are filled with fluids which are de-
fined by the fluid properties library. ESPSS accommodates the modeling of heat trans-
fer through the tank wall for different commonly used tank shapes. Tanks can also be
customized by creating a custom number of nodes which increases the fidelity of the
analysis. This also allows the designer to define a liquid and a gas region in the tank [27].

The turbo machinery library contains a list of turbo machinery components which can
be linked to existing feed system components available in the one dimensional fluid
flow library. The three main components in this library are pumps, compressors and tur-
bines [11, 27]. For all three components, performance is calculated by implementing

Master of Science Thesis V.R. Huijsman

18 Literature Survey

Figure 3-3: Example of a fluid system in ESPSS [28].

performance curves defined by the designer [11]. These dimensionless performance
curves allow the components to be used with all types of fluids. If these performance
curves are not available, ESPSS also offers the ability to use generic performance curves
which covers the entire operating range [11].

ESPSS provides a vast library of different components and simulation methods. Especially,
the components and analysis methods of both the one dimensional fluid flow library and
the combustion chambers library are state-of-the-art. ESPSS also comes with an extensive
user interface and a simple drag and drop method to build a complete rocket propulsion
system. A major downside is that the program is proprietary due to its integration in the
general EcosimPro software. Furthermore, information regarding the inner workings of
the program is scarce, and most information seems to come from external studies.

3-2 Chemical Reaction Analysis Tools

3-2-1 Chemical Equilibrium and Applications

Starting from the early 1950’s, NASA’s Lewis Research center has been developing com-
puter programs and methods to calculate the chemical equilibrium and thermodynamic
properties of equilibrium mixtures [2]. Early research focused mainly on the development
of a generalized procedure of calculating the equilibrium conditions of complex chemi-
cal reactions [29, 30, 31]. In general, a chemical equilibrium for a given set of reactants
and products can be calculated by solving for the conservation of mass, minimization of
free energy, Dalton’s law of partial pressure and either the conservation of enthalpy in
case of adiabatic combustion or the conservation of entropy in case of isentropic expan-
sion [29, 30, 31]. From 1962 onwards, these methods were implemented in one chemical
equilibrium calculation program which received regular updates [32, 33]. In 1994 the
latest version of the chemical equilibrium calculation program was created which was
named the Chemical Equilibrium and Applications (CEA) [2, 34].

CEA can calculate the chemical equilibrium compositions by assigning two thermody-
namic states. These states can be two of the following list of thermophysical properties:

V.R. Huijsman Master of Science Thesis

3-2 Chemical Reaction Analysis Tools 19

temperature, pressure, density, internal energy, enthalpy and entropy. The program is
also able to calculate Chapman-Jouget detonations and shock tube parameters for
both incident and reflected shocks. Figure 3-4 shows the CEA interface where multiple
problem types can be selected. The chemical equilibrium compositions are calculated
by the minimization of Gibbs or Helmholtz energy depending on the selection of the two
thermodynamic states [2]. Next to calculating the composition of the products, CEA also
calculates the transport properties of the products.

In order to obtain the equilibrium parameters, CEA consults a database of thermody-
namic properties. These properties include the variation of heat capacity, enthalpy, en-
tropy and Gibbs energy over temperature for a large number of species. CEA uses an
interpolation function [2] which fits the tabulated data coming from a number of ther-
modynamic reference documents, such as the works of Mc Bride [35] and Chase [36].

Figure 3-4: Example of the CEA program interface.

The calculation of chemical equilibrium forms the basis of characterizing any type of
combustion. The techniques presented and utilized by CEA [2] are widely used in many
types of problems which includes combustion. This makes these methods ideal for the
implementation in a general propulsion system solver. The input (pressure, reactants con-
centration) and output data (species concentration, temperature, transport properties)
allows for a smooth integration in a fluid system.

3-2-2 Rocket Propulsion Analysis

The Rocket Propulsion Analysis computer program (RPA), is a top level propulsion system
design tool developed by Ponomarenko in 2010 [37]. The initial program focused solely
on solving of combustion equilibrium. In order to achieve this, RPA incorporates the same
method of calculating chemical equilibrium as CEA. Later version started including more
thrust chamber specific design tools. These tools include, combustion chamber cooling

Master of Science Thesis V.R. Huijsman

20 Literature Survey

design [38], performance parameters estimation [39], rocket engine cycle performance
analysis [40], and rocket engine mass estimations [41]. As of 2015 RPA has become a
versatile and robust top level propulsion system design tool capable of obtaining ther-
modynamic properties of combustion products, combustion chamber and nozzle design
and sizing, combustion chamber thermal analysis, engine cycle analysis and propulsion
system mass estimations [1, 40].

The combustion module of RPA uses the same methods as used in CEA. Combustion
equilibrium properties are obtained by assigning two thermodynamic states and mini-
mizing Gibbs energy [37]. The combustion chamber and nozzle performance estima-
tions are obtained through one dimensional thrust coefficient equation including estima-
tions of the turbulent boundary layer [39, 40]. RPA allows the designer to optimize the
contour of the combustion chamber and nozzle for maximum thrust by optimizing this
performance estimation.

Figure 3-5: Example of the combustion chamber performance analysis module in RPA [1].

The thermal analysis of the thrust chamber and nozzle is done via the implementation of
a various number of emperical methods. The hot gas side heat transfer can be calcu-
lated using either Levlev’s method or Bartz’s method [38]. The designer can select either
of the two methods or the average of both. Equilibrium wall temperature and heat flux is
calculated by constructing a heat balance. The designer can include convective and
radiative heat fluxes in this balance. RPA can also evaluate cooling of thrust chambers
by gas film cooling, liquid film cooling and regenerative cooling [38, 40]. Figure 3-5 shows
an example of the RPA chamber performance analysis module.

RPA is a state-of-the-art preliminary thrust chamber design tool. The combustion module
allows calculation of combustion temperature, and species, by the use of an intuitive
and minimal user interface. The results of this combustion module can be used by other
modules within RPA for further analyses. The procedure of implementing different tools,
to broaden the analysis, is a powerful method to increase the utility of the entire tool.

3-3 Thermophysical Property Tools

3-3-1 CoolProp

Coolprop is an open source fluid thermophysical property calculation tool. The tool was
created in 2013 as a collaboration between the University of Liége and the Technical

V.R. Huijsman Master of Science Thesis

3-3 Thermophysical Property Tools 21

University of Denmark [3]. The aim of the tool is to create an open source thermophysical
reference database using the most state-of-the-art methods. Coolprop excels at calcu-
lating the thermophysical properties of pure fluids, but lacks accuracy when dealing with
fluid mixtures.

Coolprop uses a Helmholtz-energy-explicit formulation, using reduced temperature and
density as input, to calculate the state properties [3]. This method, also known as a
multivariable equation of state, is state-of-the-art and builds on the work of Span [42]. In
the explicit Helmholtz formulation, a Helmholtz energy function is constructed, as function
of two thermodynamic parameters, using a large set of empirical fitting parameters. The
thermophysical properties are the derivatives of this Helmholtz function. More information
regarding the Helmholtz formulation is presented in section 5-1.

The advantage of such a formulation is that it not only allows for the calculation of the
associated pressure temperature or density, but it also provides other thermodynamic
variables like cp, cv, h, s, etc. These state variables can be obtained by the differentiation
of the Helmholtz energy function. Another advantage offered by the Helmholtz energy
multivariable equation of state is that it gives accurate state properties in the critical
region, whereas most other methods struggle in that region.

Transport properties have to be obtained by implementing more traditional methods
depending on both the property and the fluid [3]. The three main transport properties
which are calculated are: viscosity, thermal conductivity and surface tension. Coolprop
implements different types of formulations for these properties depending on the fluid.
However, most of the formulations share a similar kind of structure to the Helmholtz en-
ergy formulation, where the property is depended on two state properties (e.g. reduced
temperature and reduced density) and the property value is a linear combination of a di-
lute gas component, a residual component, and in some cases a critical enhancement
component. More information regarding these techniques are presented in section 5-1.

The state-of-the-art techniques implemented and described by Coolprop [3] are well
suited for a general fluid solver. An additional benefit of the models used by Coolprop is
the accuracy of the results around the critical region. Fluids used in rocket engines often
go through this region and it is therefore important to describe the fluid properties in this
region well.

Coolprop openly publishes the sources and constants that are used in the thermophys-
ical functions for each fluid on their website. The source papers also report the uncer-
tainties that one can expect when using their formulation. Coolprop, however, does not
implement these uncertainty figures in their tool and only reports the results of the state
function.

3-3-2 Reference Fluid Properties

The NIST Reference Fluid Thermodynamic and Transport Properties Database (REFPROP)
program is a fluid properties reference program developed by the National Institute
of Standards and Technology (NIST). REFPROP can calculate the thermodynamic and
transport properties of common industrial fluids and their mixtures [4]. The first version of
REFPROP was released in 1989 under the name Refrigerant Properties. This initial version,
and versions that came out shortly after, were mainly focused on calculating the prop-
erties of refrigerants and refrigerant mixtures. from version 7 onwards, released in 2002,
the program started to include other types of commonly used industrial fluids and the
program was renamed to Reference Fluid Properties. Figure 3-6 shows an example of
the REFPROP user interface.

REFPROP implements the following three methods for the calculation of the thermody-
namic properties of fluids:

Master of Science Thesis V.R. Huijsman

22 Literature Survey

Figure 3-6: Example of theREFPROP program interface.

• Explicit Helmholtz energy formulation.

• Extended corresponding states model.

• Modified Benedict-Webb-Rubin equation of state.

The explicit Helmholtz energy formulation is a method which is also used in Coolprop, see
section 3-3-1. A Helmholtz energy function is constructed which is a function of reduced
temperature and reduced density. The thermodynamic properties are then derived from
this Helmholtz function. The explicit helmholtz energy formulation is the most accurate
multiparameter equation of state if correctly implemented [42].

The corresponding states model is derived from the van der Waals equation of state.
The model assumes that any two dimensional equation of state in reduced form can
be assumed to be a universal function independent of fluid. This means that if one is
able to characterize one fluid in great detail, other fluids can be characterized without
additional characterization. Real fluids deviate from this corresponding states model due
to differences in molecular parameters compared to the ideal parameters assumed in
the van der Waals model.

The extended corresponding states model improves the regular corresponding states
model by including fluid specific terms. This means that an improvement in accuracy is
traded for a loss in convenience. However, the extended corresponding states model
still outperforms most other real fluid equations of state when it comes to accuracy and
implementation convenience, especially when it comes to fluids which are close in com-
position.

V.R. Huijsman Master of Science Thesis

3-4 Conclusion 23

The Benedict-Webb-Rubin equation of state (BWR) equation of state is one of the more
simple real fluid equations of state. The original form of this real fluid equation of state
was first proposed by Benedict, Webb and Rubin in 1940 [43]. The BWR equation finds
its roots in the Beattie-Bridgeman equation of state [43]. Both forms share the property
that the pressure is an explicit function of temperature and density. In the original form
of the BWR equation of state, the fluid specific constants, used in the calculation of the
pressure, are obtained by finding the fitting constants of several isometrics [43].

The modified Benedict-Webb-Rubin equation of state (mBWR), originally proposed by
Jacobsen and Steward [44], adds to the original BWR equation of state by introduc-
ing more fitting constants. The original BWR equation of state had about 8 fitting con-
stants [43] whereas the mBWR equation of state often contains around 32 fitting coeffi-
cients [45, 44]. Other thermodynamic properties (e.g. entropy, enthalpy, specific heat at
constant pressure, etc.) are obtained by integrating the mBWR equation of state in com-
bination with the equation of the ideal gas heat capacity, the vapour pressure equation
and the melting curve [44].

REFPROP represents the industry standard fluid property calculator. The methods used to
calculate the properties of real fluids are state-of-the-art and the results are often used
as reference data against which other tools are validated [42]. Implementing these
methods in a general fluid system solver will greatly increase their confidence level and
utility.

3-4 Conclusion

This chapter provided a brief overview of the different available computer programs for
the the design of propulsion system elements at different stages of the design process.
The goal of this literature survey is to gather a number of common practices and find
a good combination of design practices which can be implemented in the top level
design of IPSAT. The following list of recommendations can be made with respect to the
top level design of IPSAT:

• The fluid system design method as used by GFSSP and ESPSS blend in very well with
a modular design tool. The construction of a fluid system by connecting separate
components allows the designer to be free to construct a fluid system of arbitrary
complexity. Each fluid system component can be part of a distinct module in the
program.

• The approach of the AUTOCOM to the implementation of models gives the designer
the freedom to customize the design approach. Each module can contain multi-
ple models from which the designer can choose. This approach of implementing
models creates a flexible program which is able to be easily extended.

Next to the general propulsion system design tools there are several examples of special-
ized state-of-the-art modeling tools which are suitable to be made into modules. The
following list of recommendations can be made with respect module design of IPSAT:

• Both CEA and RPA uses a minimization of Gibbs free energy approach in order to
calculate the chemical equilibrium of a set of reactions. This technique can be
used to model a wide number of combustion related problems and should form
the basis of a chemical reactions module.

Master of Science Thesis V.R. Huijsman

24 Literature Survey

• The approach to solving the set of conservation equations as implemented by
GFSSP forms a good basis to approach the solving of a flexible fluid system. The
usage of multiple solving methods simultaneously is also something that should be
considered when constructing the solver module.

• Both REFPROP and Coolprop implement a state-of-the-art Helmholtz energy func-
tion to calculate the thermodynamic state properties of pure fluids for a large range
of states. Since IPSAT operates across a number of fluid phases (e.g. liquid, gas, su-
percritical) it is recommended to implement such a Helmholtz energy function to
calculate the main thermodynamic state variables.

V.R. Huijsman Master of Science Thesis

Chapter 4

IPSAT Computer Program

The design of the program is guided by the program requirements set out in section 2-4 in
combination with common practices found in literature, which was covered in chapter 3.
The following project goals influence the design of the top level program architecture:

• The computer program shall be designed to be modular (requirements 1.1 - 1.2 in
table 2-1).

• The computer program shall be designed to be transparent (requirements 3.1 - 3.4
in table 2-3).

• The computer program shall be designed to be flexible (requirements 4.1 - 4.2 in
table 2-4).

This chapter shows how these requirements are incorporated into the IPSAT computer
program architecture. Furthermore, this chapter describes the underlying philosophy
and data structure of the IPSAT computer program and provides the reader with a guide-
line to interact with IPSAT.

The underlying fluid system model used by IPSAT is presented in section 4-3. Section 4-4 ex-
plains the definition of a module and presents universal variables which are exchanged
between modules. The computer program architecture is explained in section 4-2. The
data structure, which is used in IPSAT and the options for the designer to interact with the
variables used in the computer program, are presented in section 4-5.

4-1 Program Requirement Implementation

The first step in the development of the computer program is to analyze the project
goals as presented in section 2-3 and the derived program requirements as stated in
section 2-4. The following section explains how the project goals and computer program
requirements are implemented in the core structure of IPSAT.

Master of Science Thesis V.R. Huijsman

26 IPSAT Computer Program

4-1-1 Program Modularity

One of the main project goals is to create a program which is modular. This goal ties
directly with the research objective. For the top level program architecture the following
list of derived sub requirements are relevant:

• 1.1.1 The computer program shall be constructed out of distinct modules.

• 1.1.2 The computer program modules shall be able to communicate to each other
by universal variables.

• 1.1.3 The computer program modules shall be able to be added to and removed
from the computer program.

• 1.1.4 The computer program modules shall be able to operate independently from
each other.

Requirement 1.1.1 is identified to be the most influential requirement with respect to the
top level program design, because it directly influences the fundamental data structure
within the program. In IPSAT a module is defined as a part of the program that fulfills a
specific function. The program can call on internal subroutines in order to achieve the
functional requirement. This is inspired by programs like AUTOCOM and GFSSP, see chap-
ter 3. The advantage of using a modular architecture is that a complex program can be
systematically structured and managed. In the current version of IPSAT this requirement
is met by dividing the program into 5 modules. These modules are:

1. A Thermophysics module.

2. A Fluid friction module.

3. A Solver module.

4. A System initialization module.

5. A Fluid system initialization module.

These modules represent the basic functionality of a fluid system based on common
practices found in literature in programs like GFSSP. These modules are also outlined
in the program requirements listed in table 2-2. Section 4-4 describes the definition of
the modules in IPSAT in more detail. Information regarding the modules themselves is
presented in chapter 5.

Requirement 1.1.2 is essential to ensure that the modular architecture, as presented by
requirement 1.1.1, is implemented effectively. It is also inextricably linked to requirement
1.1.3. In IPSAT information is passed using three universal data structures which are sub-
mitted to every module:

1. The Nodes data structure, containing the information of all the nodes in the fluid
system.

2. The Branches data structure, containing the information of all the branches of the
fluid system.

3. The Settings data structure, containing the program settings defined by the de-
signer.

V.R. Huijsman Master of Science Thesis

4-1 Program Requirement Implementation 27

The fluid system definition is further explained in section 4-3. More information regard-
ing the implementation and content of these universal data structures is presented in
section 4-5.

Requirement 1.1.3 guarantees that the program can be extended by the designer and
that existing modules can be replaced if needed. IPSAT facilitates this process by stan-
dardizing the module architecture. Each module has its own folder inside the program
architecture. By using a standardized naming convention, new modules can be added
in the correct folder and called via the settings without changing anything drastically to
the program. More information regarding this process can be found in section 4-4.

Requirement 1.1.4 is aimed at simplifying the verification procedure. It ensures that each
module can be verified separately. In the IPSAT program each module has its own in-
ternal folder. This creates an isolated environment where all the functions of the module
are located. An internal module initialization procedure should be able to generate the
required data fields in order to run the module independently. The only exception to this
rule is the solver module. The solver module has the ability to call other modules and is
therefore not able to function in isolation.

4-1-2 Program Transparency

The fourth project goal states that the program should be transparent to the designer and
developer. For the top level program architecture the following list of sub requirements
are relevant:

• 3.1.1 A list of available models for each module shall be available to the designer.

• 3.1.2 The models which are used shall be presented in the output file.

• 3.2.1 The sources for the model constants shall be presented in the output file.

• 3.3.1 The uncertainty figures shall be incorporated in the model when available.

• 3.3.2 The uncertainty figures for each model shall be presented in the output file
when available.

• 3.4.1 Each part of the program code shall include comments explaining the func-
tion it fulfills.

Requirement 3.1.1 will be met by the implementation of a listing file in each of the module
folders. This listing file will list the available models and methods for the given module.

Requirement 3.1.2 will be met twofold. First, the Settings data structure will provide
a comprehensive overview of the modules used because it is the module selection in-
put file for IPSAT itself. In order to provide an extra, easily to understand, overview, the
program will return a summary file after completion displaying the modules and models
which are used to solve the problem and additional information like the validity range of
the data.

Requirement 3.2.1 ties in with requirement 3.1.2. This requirement ensures that the de-
signer knows how the results are obtained and which sources are used. The problem
summary file will present the source of the data (where applicable) next to the model
which is used to solve the problem. This allows the designer to check if the model that is
used to evaluate the problem is valid.

Requirement 3.3.1 and 3.3.2 help the designer interpret the results and the limitations
of these results which are provided by the program. Requirement 3.3.1 will be met by

Master of Science Thesis V.R. Huijsman

28 IPSAT Computer Program

the implementation of a uncertainty and validity range into the input data files for the
modules which utilize source data (e.g. thermophysics module). Requirement 3.3.2 will
be met by the implementation of a summary file after completion.

Requirement 3.4.1 will ensure that the designer is able to easily extend function files. Every
piece of code used by IPSAT is documented in a structured way. Furthermore, each part
of the program is constructed systematically which will help the designer in identifying
the procedure that is described by the code.

4-1-3 Program Flexibility

The third project goal states that the program needs to be flexible. For the top level
program architecture the following list of derived sub requirements are relevant:

• 4.1.1 The designer shall be able to select the modules of the program.

• 4.1.2 The designer shall be able to select the models used in each module.

• 4.1.3 The designer shall be able to construct a propulsion system in a systematic
way.

• 4.2.1 Model constants shall be able to be accessed and changed by the designer.

Requirement 4.1.1 ties in with requirement 1.1.3. The designer should have control over
the parts of the program that are most suitable for the problem at hand. The IPSAT pro-
gram accommodates this by allowing the modules to be called by the designer in the
program settings. Additionally, the order of operations can be altered by the designer in
order to provide maximum flexibility over the program.

Requirement 4.1.2 extends requirement 4.1.1 by also allowing the designer to select the
desired models and methods that are used in each module. Each module in IPSAT con-
tains a function library of methods and/or models. All the functions in each function
library share the same inputs and outputs. The available modules and/or methods can
be selected by the designer in the Settings data structure.

Requirement 4.1.3 ensures that the designer shall be able to construct a wide array of
fluid systems in the program. IPSAT implements a Finite Volume Method (FVM) functional-
ity which allows control volumes to be connected to neighboring control volumes. Each
control volume can have a different modeling requirement depending on the environ-
ment that it models. For example, a fluid tank be differently modeled compared to a
combustion chamber. Each environment functionality is captured by a different module
of the program.

Requirement 4.2.1 ensures that the model constants are freely accessible to the designer
and not coded into the software itself. This makes the program more flexible and trans-
parent to the designer. This requirement will be met by the implementation of model
specific input files containing the model specific constants. These files are read and in-
terpreted by the program during the module initialization subroutine.

4-2 Program architecture

The current version of IPSAT is constructed in the MATLAB programming environment.
MATLAB offers a wide variety of build-in functions and has a large community base.
MATLAB also has build-in tools for function management and complex data structures,

V.R. Huijsman Master of Science Thesis

4-2 Program architecture 29

both of which are extensively utilized in IPSAT. It is envisioned that future version will be
written in an open source programming language to make distribution easier.

The program consists of a main interface offering several functions and a large number of
modules, which are used by the program, but can be modified by the designer. The cur-
rent version of IPSAT does not have a graphical user interface and it is a recommended
feature for future versions.

The top level program architecture can be seen in figure 4-1. The first step is for the de-
signer to define the system of nodes and branches using both the functions add_node()
and add_branch(). These functions are used to input the relevant geometric informa-
tion, the connectivity of the fluid system, and the module specific information (e.g. the
two thermophysical state properties) for each node and branch of the fluid system.

After the fluid system layout is constructed, the program needs to initialize the program
using the system initialization module. The initialization procedure will interpret the de-
signer specified program settings and will initialize each of the selected modules. The
system initialization module is described in more detail in section 5-5.

After the program is initialized the program starts the execution of the pre-solver modules.
This program space can be used for modules which initialize the system before the solver
routine is executed. An example of this is the fluid system initialization module described
in further detail in section 5-4.

After the pre-solver modules are successfully executed, a solution will be obtained iter-
atively by the solver module. The solver module will call all in-solver modules which are
selected by the designer, and which are part of the iteration scheme. These modules will
be called during each iteration. In case of a transient problem, there will be two loops:
an inner loop, which will iterate to find a solution at each time step, and an outer loop,
which will iterate through every time step until the desired final time has been reached.
The solver module is described in more detail in section 5-3. Examples of in-solver mod-
ules are the thermophysics module which is described in section 5-1, which calculates
the thermophysical state properties of the fluid in each internal fluid node at each itera-
tion, and the fluid friction module which is described in section 5-2, which calculates the
the friction force in each of the fluid branches at each iteration.

If a solution is obtained, the program starts the execution of the post-solver modules.
This program space can be used for modules which interpret the results, like a results
visualization module or a output file construction module.

Master of Science Thesis V.R. Huijsman

30 IPSAT Computer Program

System definition

IPSAT

System init... module

Pre-solver modules

Solver module

Post-solver modules

add_node()

add_branch()

In-solver module
library:

Thermophysics module

Fluid friction module

. . .

Nodes

Branches

Nodes Branches Settings

Nodes Branches Settings

Nodes Branches Settings

Nodes

Branches

Settings

Nodes Branches Settings

Figure 4-1: Top level program architecture.

4-3 Nodes and branches model

The underlying fluid system model as implemented in IPSAT is based around the nodes
and branches method introduced by GFSSP, see section 3-1-2. This method allows for
a flexible and intuitive way to build up a fluid system. The fluid nodes and branches
method also provides the designer with a possibility of scaling the problem from a simple
preliminary design stage to an arbitrarily complex fluid system in later stages of the de-
sign. The designer will be able to construct an arbitrarily complex fluid system by simply
connecting nodes and branches.

The nodes and branches model is based around solving the fundamental conservation

V.R. Huijsman Master of Science Thesis

4-4 Module Definition 31

equations in a system containing a number of nodes of finite volume which are con-
nected to each other by branches. Each node contains a fluid, or a mixture of fluids,
with each its own thermophysical properties. Each branch utilizes these thermophysical
properties to determine the flow properties between two nodes. Figure 4-2 shows the
basic concept of two fluid nodes connected by a branch.

Node, p,
h, ρ, T

Node, p,
h, ρ, T

Branch, ṁ

Figure 4-2: The two basic components of the IPSAT fluid system architecture.

Each node can be connected to an arbitrary number of neighboring nodes, making
it more flexible compared to structured grid meshes most often used in CFD programs.
The Nodes and Branches method allows the designer to map an arbitrarily complex fluid
system one-to-one into a computer model which can be analyzed. Figure 4-3 shows the
generalized concept of how a feed system can be constructed.

ni

Downstream nodesUpstream nodes

nUS,1

nUS,2

nUS,m

nDS,1

nDS,2

nDS,n

. . .

. . .

. . .

. . .

. . .

. . .

ṁin,1

ṁin,2

ṁin,n

ṁout,1

ṁout,2

ṁout,m

Figure 4-3: The general concept of a fluid node within the IPSAT fluid system architec-
ture. Each node can have an unlimited number of neighboring upstream (US) and down-
stream (DS) nodes.

The Nodes and Branches method forms the basis of the IPSAT computer program. All
modules are constructed around this fundamental concept.

4-4 Module Definition

IPSAT interacts with various modules, which are selected by the designer, in order to solve
a system of equations. Each module can be seen as its own program with custom func-
tions and custom variables. A developer can freely add functions to a module in order
to enhance the functionality of the module or add new modules in order to enhance
the functionality of the entire program.

Master of Science Thesis V.R. Huijsman

32 IPSAT Computer Program

The models and methods in each module are grouped in function libraries. The functions
in each function library have a common input and output system and represent alter-
native options for the designer to achieve the same objective. For example, the solver
module contains a root finding method library which contains a list of methods which all
have the same objective, i.e. finding the root of a function. A function can be added
to a function library by adhering to a simple naming convention. The first part of the
function name is a custom name that can be chosen by the designer the last part of
the function name is the selected library identifier. This means that a function file inside a
function library adheres to the following naming convention: (custom name)_(library
identfier).m.

Each module receives three inputs variables which are considered to be the three uni-
versal variables. These three universal variables are; Nodes which contains all the infor-
mation about all nodes in the fluid system, Branches which contains all the information
about all branches in the fluid system, and Settings which contains the program setting
defined by the designer. The last variable can be used to transfer model specific settings
which determine which module to run and which functions in a module should be used
to analyze the problem. With these inputs, the module can change and/or add fields in
the existing data structure. Each module will return the Nodes and Branches variables
as output. A visual representation of this process can be seen in figure 4-4.

Module

custom function 1 ()
custom function 2 ()

...

Nodes

Settings

Branches

Nodes

Branches

Figure 4-4: Definition of a module in IPSAT with the standardized inputs and outputs.

Modules can be executed in different parts of the program. This module hierarchy is
captured in the module settings which are specified by the designer. The designer is free
to change this hierarchy for existing modules if required. However, the module hierarchy
is of particular use when creating new modules. The designer can create modules to be
executed at specific location in the program. In the current version of IPSAT the following
list of module types exist:

• system: Specifies that the module is fixed in the structure of the IPSAT program and
cannot be changed.

• presolver: Modules of this type are executed before the solver, and is used for
the initialization of certain variables before the solver subroutine is executed.

• postsolver: Modules of this type are executed after the solver, and is used for the
refinement of data, visualization of data and any other output related actions.

• in_solver: Modules of this type are executed inside the solver, and will be called
in each successive iteration of the solver and are required to update variables
throughout the solver process.

V.R. Huijsman Master of Science Thesis

4-5 Program data structure 33

4-5 Program data structure

The IPSAT program uses relational data structures in Matlab, called structs, to pass infor-
mation. A struct is a high level variable which can store different types of data under
field names specified by the designer. This allows for an intuitive method of conveniently
passing large volumes of variables. The three main structs that need to be defined and
initialized by the designer are Nodes, Branches and Settings.

The individual fields inside a struct are accessed by putting a dot (.) in between the field
and the subfield. For example, A.B.C gives the value of variable C in subfield B in struct A.
Sections 4-5-1, 4-5-2 and 4-5-3 describes the structure and all callable fields of the structs
Nodes, Branches and Settings respectively.

4-5-1 Nodes

The information of all the nodes in the feed system are stored in the structure Nodes. The
Nodes struct is a universal variable which is passed to all modules. Figure 4-5 shows the
complete top level data structure for the nodes structure. Each feed system node has
a unique identifier field name, or (ID), in which data is stored for each node. A fluid
system node can be added with the function add_node().

Nodes

(ID)

name

type

connectivity

properties

solver

equations

system

names

amounts

Figure 4-5: Node data structure, the gray text indicates that the data is only available for
fluid nodes.

Node types

The field Node.(ID).type contains the type of node. In the current version of IPSAT there
are four different types of nodes from which the designer can choose:

• internal An internal node is a node for which IPSAT will resolve the thermophysical
properties. When a transient analysis option is selected, the program will require the
designer to specify the initial conditions for an internal node. For the steady state
analysis, IPSAT will guess a solution according to a fluid system initialization method.
The designer is not required to specify an initial guess.

Master of Science Thesis V.R. Huijsman

34 IPSAT Computer Program

• boundaryA boundary node is a node with specified conditions which do not change
over time. The designer will have to specify the pressure, temperature and species.

• solid A solid node is a solid material which is connected to a fluid node. The
designer must specify a material and its heat conductive properties.

• ambient An ambient node is a special kind of boundary node where the conditions
are ambient conditions.

Node connectivity

The field Node.(ID).connectivity is a cell which contains a list of branch identifiers,
(ID), which are connected to the specific node. This list is not sorted in any way, how-
ever, each element in the list is unique.

Node properties

The field Node.(ID).properties contains the values of a list of properties which are
resolved by IPSAT. Each property contains 1 entry in case of a steady state analysis or 2
entries in case of a transient analysis, where the first entry is the value at time t and the
second entry is the value at time t−∆t. The properties which are resolved by the current
version of IPSAT for each fluid node are:

pressure (static)• temperature (static)•

delta• tau•

vapor_pressure• saturated_liquid_density•

saturated_vapor_density• surface_tension•

viscosity (dynamic)• thermal_conductivity•

density• compressibility_factor•

internal_energy (specific)• entropy (specific)•

enthalpy (specific)• isochoric_heat_capacity (specific)•

isobaric_heat_capacity (specific)• speed_of_sound•

dp_drho• drho_dp•

Node solver

The field Node.(ID).solver contains the results of the solving process. this field contains
one subfield Node.(ID).solver.equations which list the properties of each equa-
tion which is solved in the node. For each internal fluid node the conservation of fluid
mass (Node.(ID).solver.equations.fluid_mass) and the conservation of fluid en-
ergy (Node.(ID).solver.equations.fluid_energy) is solved.

For each of these equations the residual is stored in the field Nodes.(ID).solver.
equations.(equation).residual The unit of the residual is dependent on the equa-
tion and is equal to the units used in the respective equation. For example the residual of
the fluid mass equation is kg·s−1. Each equation is constructed out of a set of terms. The
value of each term is stored in the field Nodes.(ID).solver.equations.(equation).
(term). The unit of each equation term is dependent on the equation and the same as
the unit of the residual.

V.R. Huijsman Master of Science Thesis

4-5 Program data structure 35

Node system

Node.system is a field which describes the quantities of the whole system. It contains two
different fields: names and amount. The initialization function categorizes and creates
this field during the fluid system initialization subroutine. These fields are therefore only
available after the initialization of the system.

The field names contains the identifiers, (ID), of nodes of a specific type. For example,
the field Nodes.system.names.internal contains a list of identifiers of all the internal
nodes in the system. The field amounts contains the number of nodes of a specific type.
For example, the field Nodes.system.amounts.internal contains the number of inter-
nal nodes in the system.

4-5-2 Branches

The information of all the branches in the feed system is stored in the structure Branches.
Figure 4-6 shows the top level data structure for the Branches structure. Each branch
has a unique identifier field name, (ID), in which data is stored for each branch.

Branches

(ID)

name

type

connectivity

properties

geometry

solver

equationssystem

names

amounts

Figure 4-6: Branches data structure.

Branch types

The field Branches.(ID).type contains the type of branches. In the current version of
IPSAT there are four different types of branch from which the designer can choose:

• pipe

• restriction

• non_circular_duct

• thin_orifice

• thick_orifice

Master of Science Thesis V.R. Huijsman

36 IPSAT Computer Program

Branch connectivity

The field Branches.(ID).connectivity is a cell which contains the identifiers, (ID),
of the two nodes which are connected by the branch. These node identifiers are not
ordered in a particular way. The upstream or downstream node is determined based on
the pressure in the two nodes which can change between solver iteration steps.

Branch properties

The field Branches.(ID).properties contains the values of a list of properties which
are resolved by IPSAT for each branch. Similarly to the Nodes properties, each property
contains 1 entry in case of a steady state analysis or 2 entries in case of a transient analysis
where the first entry is the value at time t and the second entry is the value at time t−∆t.
The current properties which are determined for each fluid branch are:

massflow• reynolds_number•

velocity (of the flow)• delta_p•

Branch geometry

The field Branches.(ID).geometry contains a number of geometric parameters that
define the branch based on its type. It includes things like area, diameter, friction coeffi-
cient, etc. Not all of this information needs to be available for every branch, it depends
on the branch type.

Branch solver

The field Branches.(ID).solver contains the results of the solving process. this field
contains one subfield Branches.(ID).solver.equations which list the properties of
each equation which is solved in the node. For each fluid branch the conservation of
fluid momentum (Branches.(ID).solver.equations.fluid_momentum) is solved.

The residual is stored in the field Branches.(ID).solver.equations.(equation).
residual Each equation is constructed out of a set of terms. The value of each term is
stored in the field Branches.(ID).solver.equations.(equation).(term).

Branch system

Similarly to the nodes structure, the struct Branches.system contains two different fields:
names and amount. The field names contains the identifiers, (ID), of branches of a spe-
cific type. For example, the field Branches.system.names.fluid_branch contains a
list of identifiers of all the fluid branches in the system.

The field amounts contains the number of nodes of a specific type. For example, the
field Branches.system.amounts.fluid_branch contains the number of fluid branches
in the system.

V.R. Huijsman Master of Science Thesis

4-5 Program data structure 37

4-5-3 Settings

All the data related to the settings of the computer program is stored in the struct Settings.
Each subfield in the struct Settings contains information for a module in the computer
program.

Settings

system_initialization

fluid_system_initialization

solver

thermophysics

global_constants

variables

[specie]

Figure 4-7: Settings data structure.

System initialization

The field Settings.system_initialization contains the settings for the system initial-
ization module. This field contains three subfields: settings, modules and initialization.
Figure 4-8 shows the data structure of the Settings.system_initialization struct.

system_initialization

settings

file

modules

[module]

type

folder

function

system

total

[type]

initialization

system

modules

Figure 4-8: System initialization settings data structure.

Master of Science Thesis V.R. Huijsman

38 IPSAT Computer Program

The subfield Settings.system_initialization.settings contains the name of the
custom settings file, unique to each analysis, which is stored in the settings folder.

The subfield Settings.system_initialization.modules contains the data of each
module used in the analyis. Currently, there are 5 modules:

• system_initialization_module

• fluid_system_initialization_module

• solver_module

• fluid_friction_module

• thermophysics_module

For each module, three different subfields are available:

• Settings.system_initialization.modules.(module).type. The module type
specifying in which part of the program the module is executed. Currently the
following types of modules are available in IPSAT:

– fixed, this module is fixed in the IPSAT in a pre-allocated location.

– pre-solver, this module runs before the solver.

– in-solver, this module runs inside the solver loop.

– post-solver, this module runs after the solver.

• Settings.system_initialization.modules.(module).folder. The name of
the folder containing the module functions.

• Settings.system_initialization.modules.(module).function. The function
handle of the main module function.

The subfield Settings.system_initialization.initialization lists the initialization
functions which need to be executed by the system initialization procedure. These initial-
ization functions are grouped in two different function libraries:

• Settings.system_initialization.initialization.system. A cell contain-
ing the system initialization function names which are to be executed by the system
initialization module.

• Settings.system_initialization.initialization.modules. A cell contain-
ing the list of modules which are to be initialized by the system initialization module.

Fluid system initialization

The field Settings.fluid_system_initialization contains the settings for the fluid
system initialization module. This field contains two subfields: method and function.
Figure 4-9 shows the data structure of the Settings.fluid_system_initialization
struct.

V.R. Huijsman Master of Science Thesis

4-5 Program data structure 39

fluid_system_initialization

method

nodes

branches

function

nodes

branches

Figure 4-9: Fluid system initialization settings data structure.

The subfield Settings.fluid_system_initialization.method contains the initializa-
tion methods which are used to initialize the different elements of the fluid system.

The subfield Settings.fluid_system_initialization.function contains the func-
tion calls for the fluid system initialization methods which are used for each element of
the fluid system.

Solver

The field Settings.solver contains six subfields, mode, iteration, equations, variables,
methods and system. The first subfield, Settings.solver_module.mode specifies if the
problem is a steady state problem or a transient problem by either specifying steady_state
or transient.

The subfield Settings.solver_module.iteration contains the minimum and maxi-
mum number of iterations that the program needs to perform in the inner loop. These
values are contained in the fields Settings.solver_module.iteration.max and
Settings.solver_module.iteration.min.

The subfield Settings.solver_module.equations contains the settings of the selected
list of coupled conservation equations which are to be solved by IPSAT for the specific
analysis. The current list of available conservation equations is:

• fluid_mass

• fluid_momentum

• fluid_energy

Master of Science Thesis V.R. Huijsman

40 IPSAT Computer Program

solver

mode

iteration

min

max

equations

(equation)

method

terms

location

convergence

divergence

function

system_type

term_functions

variables

(variables)

system_type

location

methods

(method)

function

equations

neq

system_type

variables

locations

system

equations

variables

neq

Figure 4-10: Solver module settings data structure.

V.R. Huijsman Master of Science Thesis

4-5 Program data structure 41

For each equation, eight different subfields are available:

• Settings.solver.equations.(equation).method. The solving method that is
used to solve this equation.

• Settings.solver.equations.(equation).terms. A cell containing the equa-
tion terms that are active for this equation.

• Settings.solver.equations.(equation).location. The location in the fluid
system where this equation is solved.

• Settings.solver.equations.(equation).convergence. The convergence limit
for the residual of this equation.

• Settings.solver.equations.(equation).divergence. The divergence limit for
the residual of this equation.

• Settings.solver.equations.(equation).function. The function handle for
this equation.

• Settings.solver.equations.(equation).system_type. The data structure which
is associated with this equation.

• Settings.solver.equations.(equation).term_functions. A cell containing
the function handles of all the equation terms.

The subfield Settings.solver_module.variables contains a list of fundamental vari-
ables from which the values are obtained by IPSAT by solving the aforementioned con-
servation equations. The current list of available variables is:

• pressure

• density

• massflow

• enthalpy

Note that these are not all the variables which are obtained by IPSAT. All other variables
are obtained by consulting the various modules. For example, the fluid temperature
can be obtained by the thermophysics module by entering the fluid pressure and fluid
enthalpy. For each variable, two different subfields are available:

• Settings.solver.variables.(variable).location. The location in the fluid
system where this variable is obtained.

• Settings.solver.variables.(variable).system_type. The data structure which
is associated with this variable.

The subfield Settings.solver_module.methods contains a list of solving methods which
are available in IPSAT in order to solve the aforementioned conservation equations. The
current list of available methods is:

• newton_raphson

• broydens

Master of Science Thesis V.R. Huijsman

42 IPSAT Computer Program

• modified_broydens

• brents

For each method, six different subfields are available:

• Settings.solver.methods.(method).function. The function handle for this
method.

• Settings.solver.methods.(method).equations. A cell containing the equa-
tions that are solved by this method.

• Settings.solver.methods.(method).neq. A vector containing the number of
equations to be solved by this method for each equation type to be solved by this
method.

• Settings.solver.methods.(method).system_type. A cell containing the name
of the data structures that are associated with each equation type to be solved by
this method.

• Settings.solver.methods.(method).variables. A cell containing the names
of the variables that are obtained by the solving of the equation types solved by
this method.

• Settings.solver.methods.(method).locations. A cell containing the loca-
tions of the equation types that are solved by this method.

Thermophysics

The field Settings.thermophysics contains the settings for thermophysics module. This
field contains three subfields: variables, global_constants and (specie). Figure 4-
11 shows the data structure of the Settings.thermophsyics struct.

thermophysics

variables

global_constants

(specie)

constants

models

(model)

type

function

constants

Figure 4-11: Thermophysics module settings data structure.

The field Settings.thermophysics.variables contains the two variables which will
be used to calculate the other thermophysical properties using the available equation
of state. More information on this process is presented in appendix A.

V.R. Huijsman Master of Science Thesis

4-5 Program data structure 43

The field Settings.thermophysics.global_constants contains the global constants
that are used by the various procedures. The following global constants are stored in this
field.

• g0 The gravitational acceleration at sea level.

• R The universal gas constant.

• Na Avogadro’s number.

• k The Stefan Boltzmann constant.

The field Settings.thermophysics.(specie) contains the specie specific constants
and model settings. This field has two subfields, Settings.thermophysics.(specie).
constants and Settings.thermophsyics.(specie).models.

The field Settings.thermophysics.(specie).constants contains a list of fluid spe-
cific constants which are required for the different types of thermophysical models. The
current list of constants include:

P_c, Pressure at the critical point.• M, Molar mass.•

T_c, Temperature at the critical point.• P_0, Reference pressure.•

Rho_c, density at the critical point.• T_0, Reference temperature.•

P_tp, Pressure at the triple point.• H_0, Reference enthalpy.•

T_tp, Temperature at the triple point.• S_0, Reference entropy.•

The field Settings.thermophysics.(specie).models contains information about the
models that are used to model the various thermophysical variables. The following list of
models to model the thermophysical variables are available for a single species:

• variable_transform

• melting_pressure

• vapor_pressure

• saturated_liquid_density

• saturated_vapor_density

• equation_of_state (determines p,T ,ρ,u,h,s,cv,cp and w)

• surface_tension

• viscosity

• thermal_conductivity

Master of Science Thesis V.R. Huijsman

44 IPSAT Computer Program

Note that the variable_transform and equation_of_state model do not provide a
number of variables and not a single variable. For each model the following three fields
are available:

• Settings.thermophysics.(specie).models.type. This field contains the name
of the method which is used to calculate the specified variable. This name is used
to construct the function handle.

• Settings.thermophysics.(specie).models.functions. This field contains the
function handle for the model which is used to calculate the specified variable.

• Settings.thermophysics.(specie).models.constants. This field contains the
model constants which are used by the model in order to calculate the specified
variable.

V.R. Huijsman Master of Science Thesis

Chapter 5

Modules

Modules are at the core of IPSAT. By providing a modular structure for delivering the func-
tions, the program can easily be extended and modified. There is a common mecha-
nism with which various modules interact with the program, see section 4-4. This chapter
presents the modules currently available in IPSAT and how each is implemented in the
software tool. In the current version of IPSAT, the following five modules are available:

1. The thermophysics module, section 5-1, determines the thermophysical properties
of a fluid in a fluid node.

2. The fluid friction module, section 5-2, determines the fluid friction coefficient in a
fluid branch.

3. The solver module, section 5-3, implements mathematical tools in order to minimize
the residuals of the conservation equations.

4. The fluid system initialization module, section 5-4, provides initial values for the inter-
nal fluid nodes and branches.

5. The system initialization module, section 5-5, initializes the program settings.

These five modules are the core set of modules in accordance to the project goals out-
lined in section 2-3. Each module will be explained in further detail in the following sec-
tions.

5-1 Thermophysics Module

Accurately modeling the thermophysical parameters of fluids, and the change thereof,
is essential in order to determine other derived parameters in the fluid system. This section
describes the thermophysical models which are currently available in the thermophysics
module in IPSAT. The thermophysics module determines the thermodynamic state, and
transport, variables as function of two other state variables for all fluid nodes.

Master of Science Thesis V.R. Huijsman

46 Modules

The thermophysics module requires the following fields to exists:

• Settings.thermophysics.global_constants, contains the global constants data.

• Settings.thermophysics.variables, contains the two thermophysical variables
that are used as input, the same variables that are specified in the
Settings.solver.variables field and are linked to a fluid node.

• Settings.thermophsyics.(specie), contains the fluid specific information. This
field is created in the thermophysics module initialize subroutine. The field is subdi-
vided into the following three fields:

– Settings.thermophysics.(specie).constants, contains the fluid specific
constants.

– Settings.thermophysics.(specie).models, contains the model types, the
model specific constants, and the model function calls.

• Nodes.(ID).properties, contains the name of the species in the node and the
values of the two state properties which are known. All properties calculated by
the thermophysics module will be submitted to this field.

Due to the inherently empirical nature of modeling thermophysical data, the modeling
process is heavily dependent on the source data. It is therefore chosen to maximize
the flexibility of the designer by allowing the designer to select the available models
according to their requirements. The designer is also free to edit or add to the available
source data where required. It is also possible to change or extend the formulation used
in each model.

Section 5-1-1 describes the equation of state models used in IPSAT. The vapour pressure
curve and melting pressure line are described by the models presented in sections 5-1-2
and 5-1-3 respectively. Section 5-1-6 presents the model used to calculate the surface
tension. The models for viscosity and thermal conductivity are presented in sections 5-1-7
and 5-1-8 respectively. Lastly, the models for the saturated liquid and saturated vapour
density are given in sections 5-1-4 and 5-1-5 respectively.

Table 5-1 provides an overview of the fluids which are available in the IPSAT program and
the models which are available for each fluid. Table 5-2 further clarifies the available
model types for each variable. All the models which are presented in table 5-2 are
further explained in sections 5-1-1 to 5-1-4.

Table 5-1: Overview of pure fluids and the available models to choose from in IPSAT. The
letters designate the type of model used to model the respective property. The models
which correspond to the letters can be found in table 5-2.

Fluid EoS pm pv σ η λ ρl,sat ρv,sat
Air A [46] A [47] A [47]
Argon A [48] A [48] A [48] A [49] A [47] A [47] A [48] A [48]
Ethane A [50] B [50] A [50] A [49] A [51] A [50] A [50]
Ethanol A [52] A [53] A [52] A [49] C [54] B [52] A [52]
Helium A [55] D [56] A [55] A [49] A [55] A [55]
Hydrogen A [57] D [56] A [57] A [49] C [58]
Methane A [59] B [59] A [60] A [49] A [59] A [59]
Nitrogen A [61] B [61] A [61] A [49] A [47] A [47] A [61] A [61]
Nitrous Ox. A [62] A [63] A [49] A [63] A [63]
Oxygen A [64] C [64] A [64] A [49] A [47],B A [47] B [64] A [64]

V.R. Huijsman Master of Science Thesis

5-1 Thermophysics Module 47

The selection of fluids given in table 5-1 represent fluids which are currently in use within
DARE (e.g. nitrous oxide, ethanol, ethane, nitrogen) or are planned to be used by DARE
in the near future (e.g. oxygen, methane, helium) plus a small number of additional fluids
commonly associated with propulsion system design.

Table 5-2: Overview of the different thermophysics models available in IPSAT.

Property Model A Model B Model C Model D
EoS Helmholtz
pm Simon-original Simon-general Polylogarithmic Kechin
pv Polylogarithmic
σ REFPROP
η Lemmon Laesecke
λ Lemmon Laesecke Assael
ρl,sat Polylogarithmic Polynomial
ρv,sat Polylogarithmic Polynomial

5-1-1 Equation of State

The equation of state forms the basis of the thermophysical property model. Depending
on the form, the equation of state can determine the thermophysical properties accu-
rately for a single or multiple fluid states. The equation of state determines the pressure,
density and/or temperature from one or two of the other variables. In order to increase
the accuracy of the model over all regimes of the fluid, IPSAT makes use of a multiparam-
eter equation of state. The derivatives of a multiparameter equation of state will also be
able to provide other thermodynamic properties which are used in the program.

Helmholtz Energy Multiparameter Equation of State

The most state-of-the-art method of getting accurate thermophysical data, in a large
regime crossing different fluid states, is to use the multiparameter equation of state writ-
ten as a function of a fundamental thermodynamic parameter. There are different types
of multiparameter equations of state. Four typical examples are: equations of state in
terms of internal energy u(s, ρ), enthalpy, h(s, p), Helmholtz energy, α(ρ, T) and Gibbs en-
ergy, g(T, P) [55]. Usually the first two types are not used, because it is impossible to
directly measure entropy from experiments. Out of the last two forms, the Gibbs energy
formulation is more convenient to use, because pressure and temperature can be di-
rectly measured from experiments. However, the Gibbs energy formulation suffers from
a discontinuity in the slope at the saturation line [55]. This discontinuity becomes a prob-
lem when analyzing the thermodynamic parameters derived from the derivatives of the
Gibbs energy close to the saturation line. Therefore, most commonly a formulation is
given in terms of the Helmholtz energy [42]. This is also the formulation which is used in
IPSAT and described in this section.

A multiparameter equation of state is constructed by fitting different measurement points
from many different sources. When properly designed, the multiparameter equation of
state can represent the thermophysical data within the accuracy given by the mea-
sured data. This means that multiparameter equations of state are used to generate the
reference table data of thermophysical properties for most pure fluids [42]. The strength
of the multiparameter equation of state is its accurate description of the critical region,
which is where most other models experience large inaccuracies.

Master of Science Thesis V.R. Huijsman

48 Modules

Due to the recent increase in computational power, it has become more suitable to
directly use the results from the multiparameter equation of state instead of the inter-
polation of tabular data. Programs like REFPROP[4] and CoolProp [3] are examples of
programs which utilize a multiparameter equation of state to calculate thermophysical
data for a given set of inputs.

A Helmholtz multivariable equation of state can provide accurate thermodynamic data
across different states of a fluid. A phase diagram of a typical fluid is shown in figure 5-
1. The typical validity region of a Helmholtz equation of state model is illustrated by the
colored region. The minimum temperature is determined by the melting line or is equal
to the triple point temperature, in case an equation for the melting line is not specified.
The maximum pressure and temperature are usually specified by the source of the fitting
constants.

Figure 5-1: Phase diagram for a typical fluid depicting the most important parameters.
The dashed area denotes the region of each state. The colored area denotes the region
which can be modeled by IPSAT.

To get the relevant thermophysical properties, the Helmholtz energy is described as func-
tion of the reduced parameters, δ and τ . Thermophysical properties at both the critical
point and the triple point serve as convenient reduction constants:

α(δ, τ) = α0(δ, τ) + αr(δ, τ), δ = ρ/ρc, τ = Tc/T (5-1)

Where α0 is the reduced Helmholtz energy of an ideal gas and αr is the real gas, or
residual, contribution of the reduced Helmholtz energy. The exact formulation for both α0

and αr are dependent on the fluid. The ideal-gas component of the reduced Helmholtz
energy is given by:

α0 = H◦τ

RTc
− S◦

R
− 1 + ln

[
δ

δ◦
τ◦

τ

]
− τ

R

∫ τ

τ0

c◦p
τ2 dτ + 1

R

∫ τ

τ0

c◦p
τ
dτ (5-2)

V.R. Huijsman Master of Science Thesis

5-1 Thermophysics Module 49

Where H◦, S◦, δ◦, τ◦ and C◦p are respectively: the enthalpy, entropy, reduced density, re-
duced temperature and specific heat capacity at constant pressure at reference con-
ditions where, usually, T0 = 298.15 K and p0 = 0.101325 MPa. Often, equation 5-2 is also
presented in the following simpler form:

α0 = ln(δ) +
n∑
i=1

C1,iτ
C2,i ln(τ)C3,i ln(1− exp(−C4,iτ))C5,i (5-3)

Where C1,i, C2,i and C4, i are fitting coefficients and C3,i and C5,i are equal to 1, if the
term is used, or equal to 0, if the term is not used. As an example, the coefficients for
nitrogen are shown in table 5-3.

Table 5-3: Ideal-gas Helmholtz energy coefficients for nitrogen [61].

i C1,i C2,i C3,i C4,i C5,i
1 2.5 0 1 0 0
2 -1.276 952 708·101 0 0 0 0
3 -0.007 841 63 1 0 0 0
4 -1.934 819·10−4 -1 0 0 0
5 -1.237 742·10−5 -2 0 0 0
6 6.678 326·10−8 -3 0 0 0
7 1.012 941 0 0 26.657 88 1

If equation 5-3 is not available for a given fluid, equation 5-2 will be used to analytically
evaluate the derivatives. The residual part of the reduced Helmholtz energy is often
written in the following empirical structure:

αr =
n∑
i=1

C1,iδ
C2,iτC3,i exp(−C4,iδ

C5,i) exp(−C6,i(δ − C7,i)2 − C8,i(τ − C9,i)2) (5-4)

Where C1,i, C2,i, C3,i, C5,i, C6,i, C7,i, C8,i and C9,i are fitting coefficients and C4,i is equal to
1 if the term is used, or equal to 0, if the term is not used. These coefficients are obtained
from a bank of terms using an optimization procedure as described by Setzmann and
Wagner [65]. As an example the coefficients for nitrogen are shown in table 5-4.

Master of Science Thesis V.R. Huijsman

50 Modules

Table 5-4: Residual helmholtz energy coefficients for nitrogen [61].

i C1,i C2,i C3,i C4,i C5,i C6,i C7,i C8,i C9,i
1 0.924 803 575 275 1.0 0.25 0 0 0 0 0 0
2 -0.492 448 489 428 1.0 0.875 0 0 0 0 0 0
3 0.661 883 336 938 2.0 0.5 0 0 0 0 0 0
4 -0.192 902 649 201·101 2.0 0.875 0 0 0 0 0 0
5 -0.622 469 309 629·10−1 3.0 0.375 0 0 0 0 0 0
6 0.349 943 957 581 3.0 0.75 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...

30 -0.441 513 370 350·10−2 5.0 7.0 1 4 0 0 0 0
31 0.133 722 924 858·10−2 6.0 4.0 1 4 0 0 0 0
32 0.264 832 491 957·10−3 9.0 16.0 1 4 0 0 0 0
33 0.196 688 194 015·102 1.0 0.0 0 0 20 1 325 1.16
34 -0.209 115 600 730·102 1.0 1.0 0 0 20 1 325 1.16
35 0.167 788 306 989·10−1 3.0 2.0 0 0 15 1 300 1.13
36 0.262 767 566 274·104 2.0 3.0 0 0 25 1 275 1.25

The relevant thermophysical properties of the fluid are represented by the partial deriva-
tives of α0 and αr. The equations for the main thermophysical properties are shown in
table 5-5. IPSAT uses the analytical derivative of equations 5-3 and 5-4, see Appendix C,
to calculate the values of the partial derivatives listed in table 5-5.

V.R. Huijsman Master of Science Thesis

5-1 Thermophysics Module 51

Table 5-5: List of equations to calculate the various thermodynamic state properties.

Property Equation

Compressibility fac-
tor

z = p

ρRT
= 1 + δ

(
∂αr

∂δ

)
τ

(5-5)

Pressure

p = ρRT

[
1 + δ

(
∂αr

∂δ

)
τ

]
(5-6)

Specific internal en-
ergy

u = τRT

[(
∂α0

∂τ

)
δ

+
(
∂αr

∂τ

)
δ

]
(5-7)

Specific enthalpy

h = τRT

[(
∂α0

∂τ

)
δ

+
(
∂αr

∂τ

)
δ

]
+ δ

(
∂αr

∂δ

)
τ

+ 1 (5-8)

Specific entropy

s = τR

[(
∂α0

∂τ

)
δ

+
(
∂αr

∂τ

)
δ

]
− α0 − αr (5-9)

Specific heat ca-
pacity at constant
volume

cv = −τ2R

[(
∂2α0

∂τ2

)
δ

+
(
∂2αr

∂τ2

)
δ

]
(5-10)

Specific heat ca-
pacity at constant
pressure

cp = cv +R

[
1 + δ

(
∂αr

∂δ

)
τ
− δτ

(
∂2αr

∂δ∂τ

)]2
[
1 + 2δ

(
∂αr

∂δ

)
τ

+ δ2
(
∂2αr

∂δ2

)
τ

] (5-11)

Speed of sound

w =

√
RT

cp
cv

[
1 + 2δ

(
∂αr

∂δ

)
τ

+ δ2
(
∂2αr

∂δ2

)
τ

]
(5-12)

Equations 5-3 and 5-4 are written explicitly as function of density and temperature. In
the case that one or more of the thermodynamic state variables listed in table 5-5 are
the independent variables, the other state variables can be found by implementing an
iterative procedure. This is explained in more detail in appendix A.

Master of Science Thesis V.R. Huijsman

52 Modules

5-1-2 Vapour Pressure

The vapour pressure line determines the transition of the fluid between liquid and vapour
state from the triple point to the critical point. The vapour pressure is used to determine
the state of the fluid between the liquid and vapour region. The state is then used to
determine an appropriate guess for the density when evaluating the multiparameter
equation of state when density or temperature are dependent variables. The vapour
pressure, at a given temperature, is an output of the thermophysics module. The default
unit of the vapour pressure is Pa.

Polylogarithmic Formulation

In a study published by Wagner [66] a new method for establishing vapour pressure
equations was proposed. In this method a preliminary vapour pressure equation is con-
structed with a large bank of terms. For each fluid the terms are reduced iteratively
according to their statistical significance. This means that the equation does not have a
fixed amount of terms. The general form of the equation in polylogarithmic form is shown
in equation 5-13.

ln
(
pv
pc

)
= τ

n∑
i=1

C1,i

(
1− 1

τ

)C2,i

τ = Tc/T (5-13)

Where pv is the vapour pressure in Pa, pc is the critical pressure in Pa, T is the temperature
in K, Tc is the critical temperature in K and C1,i and C2,i are fitting constants. It must be
noted that when T > Tc this equation becomes invalid, and pv is automatically set to
zero. The same holds for T < Ttp

5-1-3 Melting Pressure

The melting line determines the transition of the fluid between solid and liquid state from
the triple point. The melting line serves as a lower temperature boundary for the multipa-
rameter equation of state in case a formulation for the melting line is available. When an
equation for the melting line is not available, IPSAT will assume a lower temperature limit
equal to the triple point temperature for all values of pressure. The melting pressure, at
a given temperature, is an output of the thermophysics module. The default unit of the
melting pressure is Pa.

Original Simon-Glatzel Formulation

Simon and Glatzel formulated a melting pressure relation in 1928 [67] which is still com-
monly used to describe the melting line. This formulation is shown in equation 5-14.

Tm = Tr

(
pm − pr

a
+ 1
) 1

c

(5-14)

Where pm and Tm are the melting pressure and melting temperature respectively, a and c
are fitting constants and pr and Tr are a reference pressure and reference temperature
respectively. The reference temperature and pressure are usually taken to be the triple
point pressure and temperature.

V.R. Huijsman Master of Science Thesis

5-1 Thermophysics Module 53

Rewriting equation 5-14, gives the following usable form to calculate the melting pres-
sure:

pm = C1

[(
T

Tr

)C2

− 1
]

+ pr (5-15)

General Simon-Glatzel Formulation

Often, a more general form of the Simon-Glatzel formulation is used to describe the melt-
ing line to accommodate more terms. The general form can be seen in equation 5-16.

pm
ptp

= 1 +
n∑
i=1

C1,i

[(
T

Ttp

)C2,i

− 1
]

(5-16)

Where pm is the melting pressure C1,i and C2,i are fitting constants and ptp and Ttp are the
triple point pressure and temperature respectively.

Polylogarithmic Formulation

A polylogarithmic formulation of the melting line is proposed by Watson [64] and is used
for the calculation of the melting line for oxygen. This polylogarithmic function has the
following form:

ln
(
pm
ptp

)
=

n∑
i=1

C1,i

(
T

Ttp
− 1
)C2,i

(5-17)

Where pm is the melting pressure, C1,i and C2,i are fitting constants and ptp and Ttp are
the triple point pressure and temperature respectively.

Kechin Formulation

Kechin proposed an improved version of the original Simon-Glatzel formulation [68] which
allows for the existence of maxima in the melting curve. The formulation is given in the
following form:

Tm = Tr

(
1 + pm

C1

)C2

exp(C3pm) (5-18)

Where Tr is a reference temperature (melting temperature at p = 0) and C1, C2 and
C3 are fitting constants. Note that C1 and C2 have dimensions which are Pa and Pa−1

respectively. It can be seen that the formulation is gives Tm as function of pm. In order to
obtain pm as function of T the following function needs to be minimized:

Tr

(
1 + pm

C1

)C2

exp(C3pm)− T = 0 (5-19)

Master of Science Thesis V.R. Huijsman

54 Modules

5-1-4 Saturated Liquid Density

The saturated liquid density is the density of the fluid on the liquid side of the saturation
line. The value of the saturated liquid density can aid in the the search for an initial guess
for the fluid density in case that density is not an independent variable. The density of
the saturated liquid, at a given temperature, is an output of the thermophysics module.
The default unit of the saturated liquid density is kg·m−3.

Polylogarithmic formulation

An often used formulation for the saturated liquid density is a bank of polylogarithmic
fitting terms optimized using the method developed by Setzmann and Wagner [65]. A
generalized form of the result of the optimization process is shown in equation 5-20.

ln
(
ρl,sat
ρc

)
=

n∑
i=1

C1,i

(
1− 1

τ

)C2,i

τ = Tc/T (5-20)

Where C1,i and C2,i are fitting constants. The designer also has the option to switch terms
on or off by setting C2,i to zero.

Polynomial formulation

In some cases the saturated liquid density is given in a polynomial form. This form is shown
in equation 5-21.

ρl,sat
ρc

=
n∑
i=1

C1,i

(
1− 1

τ

)C2,i

τ = Tc/T (5-21)

Where C1,i and C2,i are fitting constants.

5-1-5 Saturated Vapour Density

The saturated vapour density is the density of the fluid on the vapour side of the saturation
line. The value of the saturated vapour density can aid in the search for an initial guess
for the fluid density in case the density is not an independent variable. The density of the
saturated vapour, at a given temperature, is an output of the thermophysics module.
The default unit of the saturated vapour density is kg·m−3.

Polylogarithmic formulation

Similar to the saturated liquid density, the saturated vapour density formulation is often
constructed by an optimized bank of terms using the method of Setzmann and Wag-
ner [65]. A general form of the polylogarithmic formulation is shown in equation 5-22.

ln
(
ρv,sat
ρc

)
=

n∑
i=1

C1,iτ
C2,i (1− τ)C3,i

(
1− 1

τ

)C4,i

τ = Tc/T (5-22)

Where C1,i and C2,i are fitting constants. The designer also has the option to switch the
temperature dependent term on or off by setting C2,i, C3,i and C4,i to zero.

V.R. Huijsman Master of Science Thesis

5-1 Thermophysics Module 55

Polynomial formulation

In some cases the saturated liquid density is given in a polynomial form. This form is shown
in equation 5-23.

ρv,sat
ρc

=
n∑
i=1

C1,i

(
1− 1

τ

)C2,i

(5-23)

Where C1,i and C2,i are fitting constants.

5-1-6 Surface Tension

The surface tension is a thermophysical property which is used in the characterization of
droplet formation. It is also used as an indirect parameter in the instability analysis for the
analysis of droplet and acoustic coupling. The value of surface tension is currently used
in both the atomization model and the instability model. The default unit of the surface
tension is N·m−1.

REFPROP Formulation

In a study done by Mulero [49], the coefficients for the determination of the surface
tension of 81 fluids were redetermined using the REFPROP correlation. This study improved
the results, which were given by REFPROP, for a set of 37 fluids. More importantly, this
study openly published the fitting coefficients. The formulation used by REFPROP is shown
in equation 5-24

σ(T) =
n∑
i=1

C1,i

(
1− 1

τ

)C2,i

τ = Tc/T (5-24)

WhereC1,i andC2,i are fitting coefficients. It has to be noted that this formulation assumes
a correlation only in temperature, thus the effect of pressure is ignored. This assumption
might result in values that become significantly erroneous at extreme conditions. This lim-
itation should be taken into account when doing an analysis which is heavily dependent
on the surface tension values. Needless to say, the surface tension relation is only valid in
the liquid region of the state diagram. For all other states of the fluid, the surface tension
is set to zero. The study done by Mulero also provides the temperature range for which
the formulation is valid. This temperature range should be taken into account when the
value of the surface tension is used when solving a problem.

5-1-7 Viscosity

Viscosity is a thermophysical property describing the resistance of the fluid against de-
formation caused by shear stress. The viscosity which is mentioned in this report is always
assumed to be the dynamic viscosity. In IPSAT this thermophysical property is used in the
determination of the Reynolds number and the calculation of the fluid friction factor. The
default unit of viscosity is Pa·s.

Master of Science Thesis V.R. Huijsman

56 Modules

Lemmon Formulation

Lemmon and Jacobsen developed a formulation for viscosity of Nitrogen, Oxygen, Ar-
gon and Air [47]. This formulation is constructed similarly to how the Helmholtz multipa-
rameter equation of state is constructed and is based on the generalized formulation
proposed by Vesovic and Wakeham [69]. The viscosity has two separate components,
the dilute gas viscosity (zero density), η0, which is only dependent on temperature and
the residual viscosity, ηr, which is dependent on density and temperature:

η(δ, τ) = η0(τ) + ηr(δ, τ) δ = ρ/ρc, τ = Tc/T (5-25)

The dilute viscosity is obtained from kinetic theory and is given by equation 5-26. For more
information regarding the derivation of this equation the reader is referred to [70].

η0(τ) = 5
16

√
kMTc/τ

πNA

1
σ2
LJΩ(τ∗) , τ∗ = Tc/(τε/k) (5-26)

Where k is the Boltzmann constant, M is the molar mass, NA is Avogadro’s constant, σLJ is
the Lennard-Jones size parameter, Ω is the collision integral and ε/k is the Lennard-Jones
energy parameter. The collision integral is given by equation 5-27.

Ω(T ∗) = exp
(

n∑
i=0

Ci ln(T ∗)i
)

(5-27)

Where Ci are fitting coefficients.

The residual viscosity component is constructed by optimizing a bank of terms similarly to
how the relation of residual Helmholtz energy is constructed in equation 5-4. The residual
viscosity relation according to Lemmon is constructed according to the following bank
of terms:

ηr(δ, τ) =
n∑
i=1

C1,iτ
C2,iδC3,i exp(−C4,iδ

C5,i) δ = ρ/ρc, τ = Tc/T (5-28)

Where δ and τ are the reduced density and temperature respectively, C1,i, C2,i, C3,i and
C5,i are fitting coefficients and C4,i is equal to 1 if the term is used, or equal to 0, if the
term is not used.

5-1-8 Thermal Conductivity

Thermal conductivity is a measure of how well a fluid/material conducts heat. It is used
when evaluating transient heat conduction using Fourier’s law of heat conduction. The
default unit for the thermal conductivity is W·m−1·K−1.

Lemmon Formulation

Lemmon and Jacobsen developed a new formulation for the thermal conductivity of Ni-
trogen, Oxygen, Argon and Air [47]. The thermal conductivity has three components: the
dilute-gas (zero density) thermal conductivity, λ0, the residual fluid thermal conductivity,
λr and the critical enhancement thermal conductivity, λc. Similarly to the formulation of

V.R. Huijsman Master of Science Thesis

5-1 Thermophysics Module 57

the fluid viscosity, the formulation of the thermal conductivity is based on the generalized
formulation proposed by Vesovic and Wakeham [69].

λ = λ0(τ) + λr(δ, τ) + λc(δ, τ) δ = ρ/ρc, τ = Tc/T (5-29)

In the formulation proposed by Lemmon, the dilute-gas thermal conductivity is given by
the following fitting function:

λ0(τ) = C1η
0(T) + C2τ

C3 + C4τ
C5 τ = Tc/T (5-30)

Where η0 is the dilute viscosity and C1 to C5 are fitting constants.

The residual thermal conductivity relation is constructed according to the following bank
of terms:

λr(δ, τ) =
n∑
i=1

C1,iτ
C2,iδC3,i exp(−C4,iδ

C5,i) δ = ρ/ρc, τ = Tc/T (5-31)

Where δ and τ are the reduced density and temperature respectively, C1,i, C2,i, C3,i and
C5,i are fitting coefficients and C4,i is equal to 1 if the term is used, or equal to 0, if the
term is not used.

The critical enhancement term is relevant when the fluid is close to the critical region. For
this term the following formulation from Olchowy and Sengers is used [71]:

λc(τ, δ) = ρcp
kR0T

6πξη(δ, τ) (Ω̃− Ω̃0) (5-32)

Where ρ and T is the density and temperature respectively, cp is the heat capacity at
constant pressure, k is the Boltzmann constant, R0 is the amplitude and ξ is the correlation
length given by equation 5-35. The terms Ω̃ and Ω̃0 are given by equations 5-33 and 5-34.

Ω̃ = 2
π

[(
cp − cv
cp

)
tan−1

(
ξ

qD

)
+ cv
cp

(
ξ

qD

)]
(5-33)

Ω̃0 = 2
π

1− exp

 −1(
ξ
qD

)−1
+ 1

3

(
ξ
qD

)2 (
ρc

ρ

)2


 (5-34)

ξ = ξ0

(
pcρ

Γρ2
c

)ν [
∂ρ(T, ρ)
∂p

∣∣∣∣
T

− Tref
T

∂ρ(Tref , ρ)
∂p

∣∣∣∣
T

]ν
(5-35)

Where qD is the maximum cutoff wave number, Γ and ξ0 are amplitudes, ν is the criti-
cal exponent and pc and ρc are the critical pressure and density respectively. Tref is a
reference temperature which is usually set equal to twice the critical temperature [71].

As can be seen in equation 5-35, the correlation length is a function of the partial deriva-
tive of density with respect to pressure. This means that the function for density needs to
be differentiable with respect to pressure for all valid ranges of density and temperature.

Master of Science Thesis V.R. Huijsman

58 Modules

Assael Formulation

Assael proposed a new formulation for the thermal conductivity for normal hydrogen and
parahydrogen [58]. The formulation of Assael is similar to that of Lemmon. The thermal
conductivity is composed of three different terms as described in equation 5-29. How-
ever, the definition of the dilute-gas and residual thermal conductivity is different from
the Lemmon formulation. The dilute-gas thermal conductivity, given by Assael, is:

λ0(τ) =
∑n
i=0 C1,iτ

−i∑m
i=0 C2,iτ−i

τ = Tc/T (5-36)

Where C1,i and C2,i are fitting constants. The residual thermal conductivity as given by
Assael is:

λr(δ, τ) =
n∑
i=1

(C1,i + C2,1τ
−1)δi δ = ρ/ρc, τ = Tc/T (5-37)

Where C1,i and C2,i are fitting constants. The enhancement term for close to the criti-
cal region, is the formulation proposed by Olchowy and Sengers [71], similar to what is
used in the formulation posed by Lemmon. The critical enhancement term is given by
equation 5-32.

5-1-9 Thermophysics Module Architecture

Figure 5-2 shows the program architecture of the thermophysics module. The thermo-
physics module gets called each iteration by the solver module in order to update the
thermophyisical variables in each fluid node. The function thermophysics_module() is
the main function that gets called and oversees the correct execution of the thermo-
physics module. The function evaluate_thermophysics() submits the thermophysical
variables for an individual fluid node in the struct Properties.

The function evaluate_thermophysics() uses two different function libraries: the vari-
able transform function library and the thermophysics function library. The variable trans-
form library contains all the functions which are needed to be able to calculate the
reduced pressure and temperature (δ and τ) from a set of state variables which are
stored in the Properties data structure. More information about this process can be
found in appendix A.

The thermophysics function library contains all the available functions to calculate ther-
mophysical properties for a given density and temperature. These functions encompass
the methods which were presented in sections 5-1-1 to 5-1-8. The designer determines
the functions which are executed. These preferences are stored in the Settings data
structure.

V.R. Huijsman Master of Science Thesis

5-1 Thermophysics Module 59

Solver module

Thermophysics module

thermophysics_module()

evaluate_thermophysics()

variable transform
function library

thermophysics
function library

pressure_temperature_trans()

enthalpy_temperature_trans()

enthalpy_density_trans()

. . .

eos_(method)()

vapor_pressure_(method)()

melting_pressure_(method)()

. . .

Nodes Branches Settings

Thermophysics Properties Settings

Properties Thermophysics
delta,tau (property)

Figure 5-2: Thermophysics module architecture as implemented in IPSAT.

Master of Science Thesis V.R. Huijsman

60 Modules

5-2 Fluid Friction Module

The fluid friction module calculates the fluid friction factor, which has the unit of kg−1·m−1,
in each fluid branch. The method which is used to evaluate the feed system friction factor
is similar to the approach used by GFSSP [10]. The friction factor is used in the evaluation
of the conservation of momentum, equation 5-79, and the conservation of fluid energy,
equation 5-95, when viscous force terms are taken into account.

The fluid friction module requires the following properties to be defined for each upstream
fluid node and each fluid branch:

• Nodes.(ID).properties, contains the thermophysical properties. In particular the
property density is used in the fluid friction module.

• Branches.(ID).properties, contains the flow properties of the branch. In partic-
ular the property reynolds_number is used in the fluid friction module.

• Branches.(ID).geometry, contains the geometric properties of the branch. The
required geometrical parameters depends on the specific friction model.

The value for the fluid friction coefficient is defined according to equation 5-38. The
value of Kf is determined by using empirically models which dependend on the type
of branch and the choice of the designer. The following types of models are currently
available for the determination of the fluid friction factor:

• pipe flow(circular duct) friction, see section 5-2-1.

• non-circular ducts friction, see section 5-2-2.

• flow through a restriction

The fluid friction factor that is used by IPSAT is defined as follows:

Kf = ∆p
ṁ2 (5-38)

5-2-1 Pipe flow friction

The original Darcy-Weisbach relation writes the loss in pressure due to friction in a pipe as
follows:

∆p = f
L

D

ρv2

2 (5-39)

Where f is the dimensionless Darcy friction factor, also known as the flow coefficient, L
and D are the length and diameter of the pipe in m, ρ is the density of the fluid in kg·m−3,
and v is the mean flow velocity in m·s−1. The mean flow velocity can also be written in
the following form (from the continuity equation):

v = ṁ

ρA
= 4ṁ
ρπD2 (5-40)

Combining equations 5-38, 5-39 and 5-40 gives the following relation for the friction factor
in a pipe:

V.R. Huijsman Master of Science Thesis

5-2 Fluid Friction Module 61

Kf = 8fL
ρπ2D5 (5-41)

Assuming that the flow in the pipe is fully developed, the Darcy friction factor can be
obtained from the Colebrook relation:

1√
f

= −2 log10

(
ε

3.7D + 2.51
Re
√
f

)
(5-42)

Where ε is the pipe roughness in m, and Re is the Reynolds number, which is defined as:

Re = ṁD

µA
(5-43)

Where µ is the fluid viscosity in Pa·s. Note that equation 5-42 is an implicit equation. This
means that the value of the Darcy friction factor needs to be obtained iteratively using a
root finding method. IPSAT uses a modified brent’s method with a one value input guess,
see section 5-3-1.This initial guess for the Darcy friction factor can be obtained using an
explicit formulation by Haaland [72]:

1√
fguess

= −1.8 log10

[(ε

3.7D

)1.11
+ 6.9
Re

]
(5-44)

In general, the results from equation 5-44 will be very close to the results which are given
by the Colebrook formulation. It is therefore possible for the designer to select the results
from the Haaland relation as the final result for the Darcy friction factor in order to reduce
computational effort.

5-2-2 Non-circular ducts friction

The procedure for getting the fluid friction factor for non-circular ducts with constant
cross section is similar to the procedure described by White [73]. The method proposed
by White links the friction factor of a non-circular duct to the friction factor through a
pipe as described in the previous section. The method introduces the geometric specific
Poiseuille number and the effective diameter.

The Poiseuille number is a dimensionless number which relates the specific cross sectional
geometry to the friction factor. It is derived from the Poiseuille law of viscous fluid flow [73].
In literature, data can be obtained for the relation between geometry of a cross section
and the Poiseuille number. The following fitting equation is often used to relate the ge-
ometry of the cross section to the Poiseuille number:

Po =
n∑
i=1

Ci

(a
b

)i−1
(5-45)

Where a and b are the dimensional parameters of the cross section andC1 toCn are fitting
constants. Figure 5-3 shows various different shapes for which a relation is available. The
figure also shows the dimensional parameters for each shape.

Master of Science Thesis V.R. Huijsman

62 Modules

(rectangle)

a
b

(centered annulus)

a
b

(ellipse)

a
b

(isosceles triangle)

a

b

(circular section)

a

b

Figure 5-3: Definition of the short side (a) and long side (b) for different cross sectional
shapes for the calculation of the Poiseuille number.

In IPSAT the poiseuille number is modeled using equation 5-45 with a polynomial of de-
gree 4. Figure 5-4 shows the data points from a study done by Shah and London [74] that
show the variation of the poiseuille number for different geometries. The trend of these
points have been approximated by a best fit curve of degree 4 that satisfies equation 5-
45. The constants that are used for these trends are shown in table 5-6.

Once the Poiseuille number has been determined, the friction factor can be calculated
using a simple procedure [73, 10]:

1. Determine the hydraulic diameter, or equivalent circle diameter, according to the
following formula:

Dh = 4A
c

(5-46)

Where A is the area of the cross section and c is the circumference of the cross
section.

2. Determine the corresponding Reynolds number:

Reh = ṁDh

µA
(5-47)

Depending on the value of Reh the flow is considered laminar or turbulent:

• In case Reh < 2300 (laminar flow):

f = 4Po
Reh

(5-48)

• In case Reh ≥ 2300 (turbulent flow): Determine the effective diameter:

Deff = 16Dh

Po
(5-49)

V.R. Huijsman Master of Science Thesis

5-2 Fluid Friction Module 63

Determine the effective Reynolds number:

Reeff = ṁDeff

µA
(5-50)

Determine the Darcy friction factor using equation 5-42 with D = Deff and
Re = Reeff :

1√
f

= −2 log10

(
ε

3.7Deff
+ 2.51
Reeff

√
f

)
(5-51)

3. Determine the friction factor using equation 5-41:

Kf = 8fL
ρπ2D5

h

(5-52)

Figure 5-4: The variation of the Poiseuille number with respect to the ratio of the short
dimension (a) over the long dimension (b) (see figure 5-3), for a rectangular cross section
(1), a centered annular cross section (2), an elliptical cross section (3), a triangular cross
section (4) and a circular section cross section (5). The marked points are the data points
from Shah and London [74] and the lines are polynomial fitting curves of degree 4 (see
equation 5-45 and table 5-6).

Table 5-6: Constants for equation 5-45 to calculate the Poiseuille number with a polyno-
mial of degree 4.

Rectangle Centered
annulus

Ellipse Isosceles
triangle

Circular
section

C1 2.398·101 2.022·101 1.962·101 1.200·101 1.201·101

C2 -3.198·101 2.657·101 2.132·100 3.115·100 3.033·100

C3 4.222·101 -7.377·101 -2.528·101 -2.449·101 -1.176·100

C4 -2.798·101 8.749·101 5.720·101 6.421·10−1 2.758·10−1

C5 7.985·100 -3.660·101 -3.698·101 1.320·10−2 -2.790·10−2

Master of Science Thesis V.R. Huijsman

64 Modules

5-2-3 Fluid Friction Module Architecture

Figure 5-5 shows the program architecture of the fluid friction module. The fluid friction
module is called during each iteration, in case friction is taken into account, in order to
update the fluid friction factor in each fluid branch. The function fluid_friction_
module() is the main function that is called and it loops through all fluid branches in
order to calculate the fluid friction factor for the given branch and node properties. The
function will calculate the fluid friction factor using the methods described in sections 5-
2-1 to 5-2-2.

Solver module

Fluid friction module

fluid_friction_module()

fluid friction function library

pipe_friction()

non_circular_duct_friction()

. . .

Nodes Branches Settings

upstream_node branch

friction_factor

Figure 5-5: Fluid friction module architecture as implemented in IPSAT.

V.R. Huijsman Master of Science Thesis

5-3 Solver Module 65

5-3 Solver Module

Due to the large number of unknown variables and coupled equations, the problem
has to iterated in order to arrive at a solution. This procedure is inextricably linked with
programs using a Finite Element Method (FEM) scheme or a Finite Volume Method (FVM)
scheme. The core of this iteration procedure is the implementation of a solving method.
Several different solving methods are employed by IPSAT and these methods are dis-
cussed in this chapter.

The solver module requires the following fields to be present:

• Settings.solver, contains the settings for the solver. This field contains the follow-
ing two subfields:

– Settings.solver.mode, contains the mode of the solver
(steady_state or transient).

– Settings.solver.iteration, contains the maximum number of iterations
(max) and the minimum number of iterations (min) to be executed by the solver
module.

– Settings.solver.system, contains the summary of all the variables, equa-
tions and methods used by the solver module.

– Settings.solver.equations, contains the information about all the conser-
vation equations that are used by the solver module, including the function
calls and the equation terms that are active.

– Settings.solver.variables, contains the information about all the variables
that are solved by the solver module.

– Settings.solver.methods, contains the information about the methods that
are implemented by the solver module.

• All other fields required by the modules which are called by the solver module.

Solving a set of equations can always be brought back to the classical equivalent prob-
lem of finding the root of a (set of) function(s). There are a number of well known and
proven methods for finding the root of a function. These methods will be further elabo-
rated upon in section 5-3-1.

The problem is considered solved if the residuals of the conservation equations are within
the given convergence criteria. The definition of these criteria, and how they are applied
in the program, is shown in section 5-3-4.

5-3-1 Root Finding Methods

There are many different approaches to finding a root of a function, where each one
has its specific advantages. This section presents the different root finding methods used
by IPSAT. A full study of all the different root finding approaches is beyond the scope of
this thesis project. The focus of this section will mainly be on explaining the methods used,
why they are selected and how they are implemented.

Master of Science Thesis V.R. Huijsman

66 Modules

Newton-Raphson Method

The Newton-Raphson method (also known as Newton’s method) solves a system of non
linear functions by transforming the problem into a system of linear equations based on
the local values of the partial derivatives of the function. The premise of this method is
that the function can be (numerically) differentiated for the complete range of applica-
ble values.

In IPSAT, the Newton-Raphson solver is a method used in solving the system of coupled
conservation equations which describes the fluid system. In the case of a single function
with a single variable, the Newton-Raphson method can be written in the following form:

xi+1 = xi −
f(xi)
f ′(xi)

(5-53)

Where xn is the current variable value, xn+1 is the new value of the variable, and f(xi)/f ′(xi)
is the correction factor; where the value of the function, f(xi), is divided by the deriva-
tive of the function, f ′(xn). When solving a system of coupled equations, the Newton-
Raphson method can be rewritten to the form presented in equation 5-54. This equation
is rewritten to a form where the corrections can be obtained by solving a set of linear
equations in order to avoid dividing by f ′(xn).

J(f(xi))xc = f(xi) (5-54)

Where xi is the vector of current values for all relevant variables, J(f(xn)) is the Jacobian
of the system of equations, xc is the correction vector and f(xn) is the vector of function
evaluations at the current conditions, which are the residuals of the functions. The new
values of the variables can be found by applying equation 5-55.

xi+1 = xi − xc (5-55)

In order for a unique solution to exist the system of n variables {x1, . . . , xn} needs to be
complemented by a system of n independent equations {f1, . . . , fn}. This means that
equation 5-54 can be rewritten in matrix form as:


∂f1(xi)
∂x1

. . . ∂f1(xi)
∂xn

...
. . .

...
∂fn(xi)
∂x1

. . . ∂fn(xi)
∂xn


xc,1...
xc,n

 =

f1(xi)
...

fn(xi)

 (5-56)

The correction vector can be obtained by multiplying the inverse of the Jacobian matrix
with the current set of function evaluations f(xn):

xc = J(f(xn))−1 · f(xn) =


∂f1(xi)
∂x1

. . . ∂f1(xi)
∂xn

...
. . .

...
∂fn(xi)
∂x1

. . . ∂fn(xi)
∂xn


−1

·

f1(xi)
...

fn(xi)

 (5-57)

When solving a large number of equations, it is important to structure the grouping of
the partial derivatives in the Jacobian matrix. In IPSAT the Jacobian matrix is constructed
by sorting the equations, in groups of equation type, in the designated rows. The vari-
ables are sorted, in groups of variable type, in the designated columns. This allows for
an ordered construction of the matrix where the designer can easily add and remove

V.R. Huijsman Master of Science Thesis

5-3 Solver Module 67

equations to be solved using the Newton-Raphson method. The general structure used
by IPSAT is shown in equation 5-58. In this structure an equation, and its accompanying
variable, can be added or removed by adding or removing the designated row and
column respectively.

∂fma,1
∂ρ1

. . . ∂fma,1
∂ρn

∂fma,1
∂ṁ1

. . . ∂fma,1
∂ṁm

∂fma,1
∂h1

. . . ∂fma,1
∂hn

...
. . .

...
...

. . .
...

...
. . .

...
∂fma,n
∂ρ1

. . . ∂fma,n
∂ρn

∂fma,n
∂ṁ1

. . . ∂fma,n
∂ṁm

∂fma,n
∂h1

. . . ∂fma,n
∂hn

∂fmo,1
∂ρ1

. . . ∂fmo,1
∂ρn

∂fmo,1
∂ṁ1

. . . ∂fmo,1
∂ṁm

∂fmo,1
∂h1

. . . ∂fmo,1
∂hn

...
. . .

...
...

. . .
...

...
. . .

...
∂fmo,m
∂ρ1

. . . ∂fmo,m
∂ρn

∂fmo,m
∂ṁ1

. . . ∂fmo,m
∂ṁm

∂fmo,n
∂h1

. . . ∂fmo,m
∂hn

∂fen,1
∂ρ1

. . . ∂fen,1
∂ρn

∂fen,1
∂ṁ1

. . . ∂fen,1
∂ṁm

∂fen,1
∂h1

. . . ∂fen,1
∂hn

...
. . .

...
...

. . .
...

...
. . .

...
∂fen,n
∂ρ1

. . . ∂fen,n
∂ρn

∂fen,n
∂ṁ1

. . . ∂fen,n
∂ṁm

∂fen,n
∂h1

. . . ∂fen,n
∂hn





density mass flow enthalpy

m
a

ss
m

o
m

e
n

tu
m

flu
id

e
n

e
rg

y

e
q

ua
tio

n
s

variables

(5-58)

In equation 5-58, n is the number of internal nodes and m is the number of branches.

The partial derivatives, which appear in the Jacobian, are approximated using a two
point symmetric derivative:

∂f

∂x
≈ f(x+ ∆x)− f(x−∆x)

2∆x (5-59)

Where f is the residual of the conservation equation, x is the value of the variable at the
point where the partial derivative is taken, and ∆x is the finite difference term which is
taken to be sufficiently small.

In general, the Newton-Raphson method provides the following advantages:

• The Newton-Raphson method converges quadratically, resulting in a significantly
lower number of function calls compared to methods which have linear conver-
gence.

• The Newton-Raphson method can be used to simultaneously solve a set of non-
linear equations.

• The Newton-Raphson method only needs one initial starting point.

Whereas the method has the following disadvantages:

• The Newton-Raphson method requires the calculation of the Jacobian matrix at
every iteration, this means that at every iteration 2n2 function calls will be required
where n is the number of equations to be solved.

Master of Science Thesis V.R. Huijsman

68 Modules

• The Newton-Raphson method required the inverse of the Jacobian matrix to be cal-
culated at every iteration. This becomes more tedious when the number of solved
equations becomes large.

• The Newton-Raphson method requires an initial guess which is sufficiently close to
the root.

• Local minima and maxima of the function need to be avoided in the area close to
the root.

• The function needs to be differentiable.

• If a derivative function is not available, the Newton-Raphson function requires a
minimum of 2 function evaluations per derivative.

Broyden’s Method

Broyden’s method is part of a subsection of methods called quasi-Newton methods.
Quasi-Newton methods have the goal of using the strength of the Newton-Raphson
method whilst eliminating the downside of computing the Jacobian and/or its inverse
at every iteration.

Broyden’s method eliminates the need to calculate the Jacobian at every iteration by
making an approximation of the new Jacobian based on the new function value using
the secant equation [75]:

J(xi − xi−1) ' f(xi)− f(xi−1) (5-60)

The Jacobian matrix at the first iteration is constructed similarly to the Newton-Raphson
method, see equation 5-58. The Jacobian matrix at each succesive iteration step is
defined as a correction to the previous Jacobian [75]:

Ji = Ji−1 + ∆fi − Ji−1∆xi

||∆xi||22
∆xᵀ

i (5-61)

Where ∆xi and ∆fi are defined as:

∆xi = xi − xi−1 (5-62)
∆fi = f(xi)− f(xi−1) (5-63)

The general procedure of Broyden’s method is defined in the following steps:

1. Calculate the first Jacobian matrix, J0, similarly to the Newton-Raphson method for
the starting values of the variables x0.

2. Calculate the residuals, f0 using the starting values of the variables, x0.

3. Calculate the new values of the variables, xi using equation 5-55.

4. Caluclate the new values of the residuals, fi using the updated variables, xi.

5. Caluclate the values for ∆xi and ∆fi using equations 5-62 and 5-63 respectively.

6. Calculate the updated Jacobian matrix, ji using equation 5-61.

V.R. Huijsman Master of Science Thesis

5-3 Solver Module 69

7. Repeat steps 3-6 untill fi < ε.

Broyden’s method has most of the same advantages and disadvantages when com-
pared to the Newton-Raphson method. The main difference is that the Jacobian matrix
is obtained without requiring extra function evaluations. The downside is that Broyden’s
method only converges linearly at best. This means that, in general, more iterations are
required in order to arrive at a solution. However, in cases where a large number of
equations need to be solved, the time gained by avoiding the evaluation of the Jaco-
bian matrix outweighs the extra iterations that need to be performed. Furthermore, if the
starting values of the variables, x0 is sufficiently far removed from the root, the Jacobian
matrix, as calculated by Broyden’s method, will differ greatly with respect to the true
Jacobian and the solution will diverge.

Modified Broyden’s Method

The modified Broyden’s method uses a Sherman Morrison formula such that the inverse
of the Jacobian is updated instead of the Jacobian itself [75]. The advantage of this
method is that the matrix inverse operation at each iteration step is avoided. This can
potentially save time when dealing with a large number of equations.

The formula of the inverse of the Jacobian at the new iteration step is defined using the
Sherman Morrison formula [75]:

J−1
i = J−1

i−1 +
∆xi − J−1

i−1∆fi

∆xᵀ
i J−1

i−1∆fi
∆fᵀi (5-64)

Where ∆xi and ∆fi defined by equations 5-62 and 5-63.

Similarly to Broyden’s method, the modified Broyden’s method requires more iterations to
arrive at a solution when comparing it to the Newton-Raphson method. The advantage
of the modified Broyden’s method is that it avoids the calculation of the inverse of the
Jacobian at every iteration.

Regula Falsi Method

The regula falsi method (also known as the false position method) can find the root of any
single non-linear continuous function given a bracketed interval. The method assumes
that a line connects the two bracketed points. The point where this line equals zero will
create a new point and, by doing so, divide the bracketed interval into two. The last
step of the regula falsi method is to select which of the two intervals is the next, smaller,
bracketed interval.

Given two points [a, b] where a and b bracket the function f(x), the regula falsi iteration
scheme defines a new point in between the bracketed region as follows:

c = af(b)− bf(a)
f(b)− f(a) (5-65)

This gives two new intervals [a, c] and [c, b]. The new interval needs to be bracketed to con-
tain a root, therefore the interval which is selected is the interval where either f(a)f(c) < 1
or where f(c)f(b) < 1. This method is repeated until f(c) = 0 or f(c) < ε.

Master of Science Thesis V.R. Huijsman

70 Modules

The regula falsi method generally has the following advantages:

• Given that the function is continuous and the function can be bracketed, the reg-
ula falsi method will always converge to a root.

• Each additional step in the regual falsi method only requires a single function call.

Whereas the method has the following disadvantages:

• The regula falsi method can only solve a single equation at a time.

• The regula falsi method has a slow, linear, rate of convergence.

• The regula falsi method requires the input of two points which need to bracket a
root.

It can be concluded that the regula falsi method trades speed for stability when compar-
ing it to the Newton-Raphson method. The method also converges quicker compared
to similarly stable methods like the bisection method.

In IPSAT the Regula Falsi method is used in some parts of the thermophysics model where
stability is required for a large range of possible functions. More information on this can
be found in appendix A. The regula falsi method can be used by the solver module.
However, it is not advised since all equations will be solved individually and convergence
is not guaranteed.

Brent’s Method

Brent’s method is a hybrid root finding method, combining different traditional methods
into one. The idea behind this combined method is that each (conventional) root finding
method is used in their most effective regime. This combines the advantages of each
method whilst also negating most disadvantages at the same time. The three different
methods which are combined in Brent’s method are the bisection method, the secant
method and the inverse quadratic interpolation method [76].

Brent’s method requires the designer to supply two values [a, b] which brackets the root
of the function and the function itself. The first step of Brent’s method is to calculate
a new value for d. This is done by either using the quadratic interpolation method or
the secant method. The quadratic interpolation method used in Brent’s method is a
Lagrange interpolation function of degree 2:

d = af(b)f(c)
(f(a)− f(b))(f(a)− f(c)) + bf(a)f(c)

(f(b)− f(a))(f(b)− f(c)) + cf(a)f(b)
(f(c)− f(a))(f(c)− f(b)) (5-66)

The secant method used in Brent’s method is defined as:

d = b− f(b) b− a
f(b)− f(a) (5-67)

The quadratic interpolation method, as defined in equation 5-66, will only be used if c
is defined and f(a) 6= f(b 6= f(c). In all other cases the secant method will be used to
calculate d, as defined by equation 5-67.

V.R. Huijsman Master of Science Thesis

5-3 Solver Module 71

The next step is to evaluate if the value of d will be used as is, or if it has to be replaced
by the value that is provided by the bisection method which is defined by:

d = a+ b

2 (5-68)

To determine which value of d to keep, Brent’s method has a specialized heuristic. This
heuristic is defined by the following set of decisions:

• If the value of d, given by either the quadratic interpolation method (5-66), or the
secant method (5-67), is not between (3a+ b)/4 and b, then use the value of d given
by the bisection method (5-68), otherwise keep the value of d.

• If |d − b| ≥ |c − e|/2 then use the value of d, given by the bisection method (5-68),
otherwise keep the value of d.

• If |b−c| < |δ| then use the value of d, given by the bisection method (5-68), otherwise
keep the value of d.

• If |c−e| < |δ| then use the value of d, given by the bisection method (5-68), otherwise
keep the value of d.

Brent’s method is very popular due to its favorable stability and convergence. The phi-
losophy behind Brent’s method usually forms the basis for custom methods implemented
by different programs. MATLAB has incorporated Brent’s method in its preprogrammed
fzero() function. Brent’s method is used in several parts of the IPSAT program to find
the root of functions with a single independent variable. Brent’s method can also be
selected as a method in the solver module, however this is not advised for similar reasons
as the regula falsi method.

5-3-2 Conservation Equations

The goal of the solver is to solve a set of equations. The equations that are solved by the
solver module are the set of fundamental conservation equations. Each conservation
equation determines the remainder of that equation, given that the equation should
equal zero, called the residual. These residuals are used by the solver module, which is
tasked to minimize these residuals. The conservation equations and the components of
each equation can be selected by the designer.

The goal of the minimization of the residuals of the conservation equations is to determine
the value of a certain node or branch property. These properties cannot be determined
directly by one method/equation and need to be found using an iterative procedure.
An overview of these properties and equations is shown in table 5-7.

Table 5-7: The variables solved by the solver module along with the accompanying equa-
tions.

Variable Equation Solved in
massflow conservation of fluid mass internal fluid node
pressure conservation of fluid momentum fluid branch
fluid enthalpy conservation of fluid energy internal fluid node

The next sections introduce the set of conservations equations and shows how they are
implemented in IPSAT.

Master of Science Thesis V.R. Huijsman

72 Modules

Conservation of Fluid Mass

The first conservation equation is the conservation of fluid mass. This equation will be
solved for every internal fluid node. The conservation of fluid mass of a control volume
with a discrete number of input and output flows is given by equation 5-69.

∂mc.v.

∂t︸ ︷︷ ︸
transient term

=
∑

branches

ṁ︸ ︷︷ ︸
massflow term

+
∑

source

ṁ︸ ︷︷ ︸
other terms

(5-69)

Where mc.v. is the total mass of the control volume, and ṁ is the massflow. In the current
version of IPSAT only the transient and the massflow terms are used. Other terms, like a
custom source and/or sink term, can be added by creating term function files.

Transient term

The transient term in the conservation of fluid mass equation describes the increase or
decrease of fluid mass in the control volume. The increase in mass can be caused by var-
ious changes in the fluid and geometric properties of the fluid node. In order to quantify
this change, the transient term needs to be rewritten. The total fluid mass in the control
volume can be rewritten as a volume integral of the density in the control node:

∂mc.v.

∂t
= ∂

∂t

(∮
Vc.v.

ρdV

)
(5-70)

Where V is the total volume of the control volume. It is assumed that the density distribu-
tion inside the control volume is uniform. This means that the density can be taken out of
the integral form and can directly be written in differential form:

∂

∂t

(∮
Vc.v.

ρdV

)
= ∂ρ

∂t
Vc.v. (5-71)

The equation can be left in this form where density is currently the independent variable
which would make the solver a density based solver. In that case the pressure can be
obtained by the real equation of state described in section 5-1-1. In a pressure based
solver the continuity equation solves for pressure. This can be achieved by substituting
the equation of state for a real gas into equation 5-70.

∂ρ

∂t
Vc.v. = ∂

∂t
(pzT)c.v.RVc.v. (5-72)

In equation 5-72, z is the compressibility factor, p is the pressure, T is the fluid tempera-
ture and R is the specific gas constant. The compressibility factor is obtained from the
thermophysics module.

Massflow term

The massflow term determines the mass that is retained by the control volume per unit
time due to the mass coming into the control volume and the mass leaving the control
volume. The mechanism for mass coming into and leaving the control volume in IPSAT
are the fluid branches. The total sum of these masses can therefore be written as:

∑
branches

ṁ =
∑

in

ṁ−
∑
out

ṁ (5-73)

V.R. Huijsman Master of Science Thesis

5-3 Solver Module 73

Residual form

Rewriting and combining equations 5-72 and 5-73 for discrete time steps and into residual
form with density as an independent variable gives:

ρt+∆t − ρt
∆t V −

(∑
in

ṁ−
∑
out

ṁ

)
= rmass (5-74)

The conservation of fluid mass in pressure based form can be written as:

pt+∆tzt+∆tTt+∆t − ptztTt
∆t RV −

(∑
in

ṁ−
∑
out

ṁ

)
= rmass (5-75)

Where the subscript t indicates the value of the property at the current time and ∆t is the
selected time increment. The value of rmass is equal to the residual of the conservation
of mass given the values of the current set of variables. Successive iterations will be
necessary to minimize the residual.

Conservation of Fluid Momentum

The second conservation equation is the conservation of fluid momentum. This equation
will be solved for every fluid branch in order to determine the massflow in each fluid
branch. The conservation of fluid momentum for a control volume is given by equation 5-
76.

∂

∂t
(mv) =

∑
F (5-76)

Where m is the fluid mass, v is the flow velocity and F is a force acting on the control
volume. Depending on the preference of the designer, the effect of different kinds of
forces on the fluid system can be analyzed. The most common type of force terms in
fluid systems, and the ones currently available in IPSAT, are shown in equation 5-77.

∂

∂t
(mv)︸ ︷︷ ︸

transient term

= Fpressure + Fgravity + Ffriction +
∑
other

F (5-77)

This equation can be adjusted depending on the context, similarly to the continuity
equation. For example, in case of a horizontal test setup, the force of gravity might
play a negligible role compared to other forces. However, in a vertically stacked rocket
this might not be the case. In the current version of IPSAT it is assumed that all other forces
are zero. However, the developer is free to add more terms which will automatically be
included in the solving process.

Transient term

The transient term determines the change in massflow due to a residual force. Note
that in a steady state simulation there are no residual forces. The transient term can be
rewritten by substituting:

v = ṁ

ρA
, m = ρV (5-78)

Master of Science Thesis V.R. Huijsman

74 Modules

It is assumed that the velocity in the branch is uniform, the density in the branch is uniform
and there are no changes in area (the relation V = AL holds) in a branch. Substituting
these variables for m and v gives:

∂

∂t
(mv) = ∂

∂t

(
ρV

ṁ

ρA

)
= ∂ṁ

∂t
L (5-79)

In equation 5-79, L is the length of the branch, which is assumed to be constant over
time.

Pressure term

The pressure force term calculates the pressure force in the fluid branch due to a differ-
ence in pressure between the upstream and the downstream node. The pressure force
term is written in the following form:

Fpressure = (pUS − pDS)A (5-80)

Where, pUS and pDS are the pressure of the upstream and downstream node respectively
and A is the cross sectional area of the branch.

Gravity term

The gravity force term calculates the force of gravity in the fluid branch due to a change
in elevation between the upstream and the downstream node. The gravity force term is
written in the following form:

Fgravity = ρgV cos(θ) (5-81)

Where ρ is the density (taken from the upstream node), g is the gravitational acceleration
and θ is the angle of the flow from horizontal (w.r.t. the gravity field).

Friction term

The friction term calculates the friction force in the fluid branch due to the shape and
the surface properties of the fluid branch. The fluid friction force is written in the following
form.

Ffriction = Kfṁ
2A (5-82)

Where Kf is the friction factor of the branch (see section 5-2), A is the cross sectional
area of the branch and ṁ is the massflow through the branch. It must be noted that
the friction force always acts opposite to the direction of the fluid velocity. It is therefore
necessary to determine the direction of flow in order to determine the sign of the friction
force term.

Residual form

Rewriting equation 5-79 for discrete time steps into residual form, and adding the terms
described in equations 5-80 till 5-82, gives:

ṁt+∆t − ṁt

∆t L− (pUS − pDS)A− ρgV cos(θ) +Kfṁ
2A = rmomentum (5-83)

Where the subscript t indicates the value of the property at the current time and ∆t
is the selected time increment. The value of rmomentum is equal to the residual of the
conservation of momentum given the values of the current set of variables. Successive
iterations will be necessary to minimize the residual.

V.R. Huijsman Master of Science Thesis

5-3 Solver Module 75

Conservation of Fluid Energy

The third conservation equation is the conservation of fluid energy. This equation will be
solved for every fluid node in order to calculate the enthalpy in each node. The en-
thalpy and the density, which is calculated by the continuity equation, will determine
all the remaining thermophysical properties of the fluid. This equation is therefore com-
plementary to the determination of the state variables. The conservation of energy in a
control volume is given by the first law of thermodynamics:

∂E

∂t c.v.︸ ︷︷ ︸
transient term

=
∑

branches

Ė︸ ︷︷ ︸
fluid energy term

+
∑

sources

Q̇c.v.︸ ︷︷ ︸
heat flow term

+ Ẇc.v.︸ ︷︷ ︸
work energy term

(5-84)

Transient term

The total energy of the control volume is defined as:

Ec.v. = (H − pV)c.v. = mc.v.

(
hc.v. −

pc.v.

ρc.v.

)
(5-85)

In equation 5-85, Ec.v. is the total energy of the control volume, Hc.v. is the total enthalpy
of the control volume, pc.v. is the pressure inside the control volume, Vc.v. is the total volume
of the control volume, mc.v. is the mass of the control volume, hc.v. is the enthalpy per unit
mass of the control volume and ρc.v. is the density of the control volume. It is assumed that
the volume of the control volume does not change (i.e. no work is done by the control
volume), that the mass is uniformly distributed (i.e. density is uniform) and that the fluid
energy is uniformly distributed in the control volume. Rewriting the transient energy term
using equation 5-85 gives:

∂E

∂t c.v
= ∂

∂t

(
m

[
h− p

ρ

])
(5-86)

Fluid energy term

The fluid energy term describes the energy added to the control volume due to fluid
mass added to and subtracted from the control volume. The fluid energy term can be
written as a combination of two separate terms:

∑
branches

Ėfluid energy =
∑

branches

Ėflow +
∑

branches

Ẇflow (5-87)

The flow energy is defined as:

∑
branches

Ėflow =
∑

in

ṁe−
∑
out

ṁe (5-88)

Where ṁ is the massflow entering or exiting the control volume through the branches
which are connected to the control volume and e is the internal fluid energy per unit
mass. The flow work is defined as:

∑
branches

Ẇflow =
∑

in

ṁ
p

ρ
−
∑
out

ṁ
p

ρ
(5-89)

Master of Science Thesis V.R. Huijsman

76 Modules

Where p is the pressure in the control volume and ρ is the density of the control volume. It
must be noted that both properties p and ρ for the work done on the control volume are
determined from the upstream node.

Combining equations 5-88 and 5-89 into equation 5-87 gives:

∑
branches

Ėfluid energy =
∑

in

ṁ

(
e+ p

ρ

)
−
∑
out

ṁ

(
e+ p

ρ

)
(5-90)

Using equation 5-86, the fluid energy term can be rewritten as:

∑
branches

Ėfluid energy =
∑

in

ṁh−
∑
out

ṁh (5-91)

Friction term

The friction work term determines the energy loss in the downstream node due to friction
work done by the upstream branch. The friction work term can be written as:

∑
branches

Ẇfriction =
∑

in

Ffrictionv (5-92)

Where Ffriction is defined as Kfṁ
2A. Substituting gives the final form of the friction work

term:

∑
branches

Ẇfriction =
∑

in

Kfṁ
2Av (5-93)

Where Kf is the friction factor (equal to ∆pṁ−2), v is the velocity of the fluid and A is the
area of the branch.

Residual form

Combining all the available terms gives the final form of the conservation of energy
relation for unsteady flow in a discretized fluid system currently used in IPSAT:

∂

∂t

(
m

[
h− p

ρ

])
c.v.

=
∑

in

ṁh−
∑
out

ṁh+
∑
in

Kfṁ
2Av (5-94)

Rewriting equation 5-95 for discrete time steps and into residual form gives:

m

(
h− p

ρ

)
t+∆t

−m
(
h− p

ρ

)
t

∆t −
∑

in

ṁh+
∑
out

ṁh−
∑
in

Kfṁ
2Av = renergy (5-95)

Where the subscript t indicates the value of the property at the current time and ∆t is the
selected time increment. The value of renergy is equal to the residual of the conservation
of fluid energy equation given the values of the current set of variables. Successive
iterations will be necessary to minimize the residual.

V.R. Huijsman Master of Science Thesis

5-3 Solver Module 77

5-3-3 Relaxation Factor

A relaxation factor is often used in iterative solving methods in order to control the con-
vergence behavior. This method can be set by the designer in order to change the
behavior of the solver. For methods where a variable correction is given as output for
each iteration (e.g. Newton-Raphson method) the relaxation factor is defined directly
as a factor multiplied by the correction:

f∗n+1 = fn + k ·∆f (5-96)

Where f∗n+1 is the relaxed variable, fn is the value of the variable at the current iteration
step, ∆f is the value of the variable correction step and k is the relaxation factor.

For methods where a variable value is given as output for each iteration (e.g. Brent’s
method), the relaxation factor is defined as a factor multiplied by the difference between
the new value and the previous value:

f∗n+1 = fn + k (fn+1 − fn) (5-97)

Where f∗n+1 is the relaxed variable, fn+1 is the new value of the variable, fn is the value of
the variable at the current iteration step and k is the relaxation factor. The term fn+1− fn
can be seen as the correction step similar to ∆f in equation 5-96.

A value of k between 0 and 1 is called under relaxation. This is often required in order
to stabilize the solution of a set of non-linear equation between iterations. A relaxation
factor between 0 and 1 will prevent the problem to diverge and/or prevent excessive
values, of the calculated variables, which cannot be handled by other functions (e.g.
the methods used by the thermophysical module).

A value of k larger than 1 is called over relaxation. This used to speed up the conver-
gence and can be used when the problem is shown to have a stable convergence
behavior. Note that using a relaxation factor larger than 1 will have the opposite effect
on the behavior of the solver compared to using a relaxation factor which is smaller than
1.

5-3-4 Convergence Criteria

The numerical root finding algorithms will, in most cases, only approximate a root. A fixed
criteria on convergence provides a clear cutoff value for the root finding methods which
avoids unnecessary loop cycles. The convergence criteria defines a non-zero interval in
which the root finding problem is assumed to be solved. IPSAT solves multiple equations
where each equation needs to meet the convergence criteria. Local convergence is
reached when a single variable meets the convergence criteria. This can be simply
evaluated given the variable and the convergence criteria of the given variable:

|f | < ε (5-98)

IPSAT allows the designer to specify the convergence criteria for each of the different
equations. The designer can then specify to run the solver until global convergence has
been reached, or limit the simulation to keep running for a predetermined number of
iterations.

In order to evaluate global convergence for a variable over the entire fluid system, IPSAT
evaluates the sum of convergence checks for each node and branch. The convergence

Master of Science Thesis V.R. Huijsman

78 Modules

for each node specific conservation equation (e.g. conservation of mass, momentum
and fluid energy), global convergence is reached if the following condition is met:

Sj =
n∑
i=1
|fi,j | < εj (5-99)

Where εj is the convergence criteria for the given conservation equation, n is the number
of fluid nodes/branches and fi,j is the residual of equation j in node/branch i. Global
convergence over all conservation equations is defined when the following is true:

neq∑
j=1

Sj =
neq∑
j=1

nj (5-100)

Where nj is the number of fluid nodes or fluid branches and neq is the total number of
equations which are solved. For a steady state problem neq is equal to 3. For a transient
problem there is an extra transient mass equation added to each node which makes neq
equal to 4.

The default settings for convergence for each variable are listed in table 5-8.

Table 5-8: Standard convergence criteria used in IPSAT.

Equation ε Unit
Mass 10−3 kg·s−1

Momentum 10−3 N
Fluid Energy 10−3 J·s−1

5-3-5 Solver Module Architecture

Figure 5-9 shows the program architecture of the solver module. This module is designed
to give full control in the hands of the designer and the developer. The designer can fully
customize the solving process by selecting and linking items from each function library.
The developer can add new functions to each library without much effort due to the
standardized communication of variables.

The solver_module() function is the main function that controls the solving process.
This function runs through the active root finding methods and the in_solver modules
for each iteration. This function also calls convergence_check() in order he check if
convergence has been reached in accordance to the convergence criteria explained
in section 5-3-4.

The solver method library contain the root finding methods which can be found in sec-
tion 5-3-1. These methods get executed each iteration and provide a correction which
is applied to the variables.

Each solver method can access the conservation equation library. The conservation
equation library contains the three conservation equations (i.e. fluid mass, fluid momen-
tum and fluid energy) which were explained in section 5-3-2. The designer has to specify
which solving method gets coupled to which conservation equation.

Each conservation equation is constructed using a set of terms, see section 5-3-2. These
terms are collected in the equation terms library. The designer is free to specify which
terms to use in which conservation equation.

V.R. Huijsman Master of Science Thesis

5-3 Solver Module 79

IPSAT

Solver module

solver_module() convergence_check()

module librarySolver method library

Conservation equation library

Equation terms library

newton_raphson_method()

brents_method()

. . .

fluid_mass_equation()

fluid_momentum_equation()

. . .

pressure_term()

friction_term()

massflow_term()

. . .

Nodes Branches Settings

Nodes

Nodes

Branches

Branches

Settings

Settings

Nodes Branches Settings (ID)

(term)

(properties)

Figure 5-6: Solver module architecture as implemented in IPSAT.

Master of Science Thesis V.R. Huijsman

80 Modules

5-4 Fluid System Initialization Module

Solving the system of equations, using the methods presented in section 5-3-1, requires
an initial guess to start the procedure in case a steady state solution is required, or an
initial value in case a transient solution is required. The fluid system initialization module
contains methods which the designer can utilize to provide initial values for the solving
process. The initialization process is performed for the two different components of the
fluid system, the Nodes and Branches data structs.

The fluid system initialization mode requires the following field in the Settings date struc-
ture to be filed:

• Settings.fluid_system_initialization contains the settings of the fluid sys-
tem initialization module. This field contains the following two subfields:

– Settings.fluid_system_initialization.methods. This field contains the
fluid system initialization methods for the Nodes and Branches data struct.

– Settings.fluid_system_initialization.functions. This field contains the
fluid system initialization function calls.

Next to the required settings, there are also other variables that must be specified in order
to initialize the fluid system. The following properties might be required depending on the
specified initialization method:

• The properties of the boundary fluid nodes have to be submitted in case any of the
nodes interpolation methods are used.

• Every fluid node needs to be initialized before the fluid branches can be initialized
since the fluid branches initialization method requires the properties of neighboring
nodes.

5-4-1 Fluid Nodes Initialization Methods

The function of the fluid nodes initialization methods is to set initial values for the two ther-
mophysical properties in each of the internal fluid nodes. These properties are required
to start the solving procedure, as described in section 5-3, and are obtained from the
boundary nodes. This section will present the fluid nodes initialization methods which are
currently available in IPSAT.

Linear Interpolation Nodes Initialization Method

The linear interpolation nodes initialization method searches for the extremities in pres-
sure and temperature in the boundary fluid nodes and interpolates between those two
values to set the values for the internal nodes. The increment in pressure and temper-
ature is calculated using a linear interpolation function given by equation 5-101. From
the calculated pressure and temperature, the other thermophysical properties can be
determined using the themophysics module. These values in each node are then used
as the initial values for the program.

∆f = fhigh − flow
Nno − 1 (5-101)

The linear interpolation method will interpolate each of the two initial thermophysical
variables separately. All other thermophysical variables will be calculated using the ther-
mophysics module.

V.R. Huijsman Master of Science Thesis

5-4 Fluid System Initialization Module 81

Uniform Distribution Nodes Initialization Method

The uniform distribution nodes initialization method allows the designer to set a uniform
set of thermophysical variables over a set of internal fluid nodes. The thermophysical
values used for this method are taken from an existing boundary node. The designer
must specify if the group of nodes are in the same distribution group.

This method is particularly useful for the initialization of transient problems, where the initial
state of the system is usually uniform.

Custom Nodes Initialization Method

The designer is also allowed to set the initial values for each of the internal nodes sepa-
rately. In this case the fluid system initialization method will not determine or adjust any
of the values in the nodes. This is initialization method is useful if the designer wants full
control of the initial solution. Note that when this method is selected the two thermophys-
ical properties in each internal node needs to be set when adding that node to the fluid
system.

5-4-2 Fluid Branches Initialization Methods

The fluid branches initialization methods will set an initial value of the fluid massflow through
each of the fluid branches. This section will present the fluid branches initialization meth-
ods which are currently available in IPSAT. The fluid massflow is estimated using values of
the surrounding nodes. This means that this subroutine needs to be executed after the
internal fluid nodes have been initialized.

Bernoulli Branches Initialization Method

The Bernoulli branches initialization method determines the massflow through each branch
using the Bernoulli principle for flow through a restriction. The general form of the Bernoulli
equation for laminar flow for two points in a straight pipe is given as:

p1 + 1
2ρ1v

2
1 = p2 + 1

2ρ2v
2
2 (5-102)

It is assumed that point 1 is the control volume upstream of the branch, and point 2 is
taken at the end of the branch next to the downstream node. In this case v1 = 0 and
ρ2 = ρ1 due to the definition of the nodes and branches. The flow velocity in the branch,
v2, can be written as:

v = ṁ

ρA
(5-103)

Where it is assumed that A is uniform over the branch, which is equal to the provided
value in the branch geometry variable, and ρ is equal to the density of the upstream
node. Substituting equation 5-103 into equation 5-102 gives the following relation for the
massflow through the branch:

ṁ = A
√

2ρ1(p1 − p2) (5-104)

Where 1 is the upstream node and is defined as the node with the highest pressure and
2 is the downstream node.

Master of Science Thesis V.R. Huijsman

82 Modules

Custom Branches Initialization Method

Similarly to the custom nodes initialization method, the custom branches initialization
method allows the designer to specify the massflow in each fluid branch separately, the
fluid system initialization module will not modify or add any values in the fluid branch. In
the case that this initialization method is selected, the designer needs to specify the initial
value of the massflow in a fluid branch when the fluid branch is added to the fluid system.

5-4-3 Fluid System Initialization Module Architecture

Figure 5-7 shows the program architecture of the fluid system initialization module. The
function fluid_system_initialization_module() is the main function that is called
and runs through the fluid system initialization procedure.

There are two function libraries for each type of fluid system element. The fluid nodes
initialization function library contains the initialization methods for the fluid nodes. The
fluid branches function library contains all the initialization methods for the fluid branches

IPSAT

Fluid system initialization module

fluid_sys..._module()

nodes_initialization() branches_initialization()

fluid nodes initialization library fluid branches initialization library

linear_nodes_init...()

. . .

bernoulli_branch_init...()

. . .

Nodes Branches Settings

Nodes Branches Settings

Nodes Branches Settings Nodes Branches Settings

Figure 5-7: Fluid system initialization module architecture as implemented in IPSAT.

V.R. Huijsman Master of Science Thesis

5-5 System Initialization Module 83

5-5 System Initialization Module

The system initialization module is a compulsory module which is executed before all
other modules. This module initializes the Settings data struct and organizes the fluid
system described by both the Nodes and Branches data structs. The system initialization
procedure entails the following list of objectives:

• Loading, interpretation and verification of the provided settings and fluid system
architecture.

• Specification of internal folder paths for the specified modules and functions.

• Specification of the order of operations for each of the modules, i.e. the location of
execution within the program.

• Specification of the function files in accordance to the methods and models spec-
ified by the designer.

• Creation of required data fields used by the selected modules.

• Preloading of the module data files.

The system initialization module also contains the data files which specify the model con-
stants. These files are preloaded and the data content is submitted into a dedicated
data field in order to speed up the lookup process. Next to these module specific data
files, the system initialization module also contains the data files containing the default
settings to be used in case the required settings are not specified by the designer. Lastly,
the system initialization module also contains the data file which specifies the program
settings defined by the designer.

5-5-1 Load Settings

The settings input file specifies the values to be submitted in the respective data fields of
the Settings data struct. With this file the designer can customize the program to fit the
analysis which is being performed. For example, the designer can specify which mod-
ules are used in the solver, which solving methods are used by the solver and select the
thermophysical models. Initialization of the settings is a procedure that is executed first,
because every other procedure in the program depends on the settings. An example of
a setting input file is shown in figure 5-8.

The settings initialization file is structured in such a way that it can accommodate a large
array of different inputs. The designer can specify the data fields in the Settings data
struct on the left side of the ‘=’ symbol. The values are entered on the right side of
the ‘=’ symbol between square brackets ‘[‘ and ‘]’. Multiple entries are entered with a
comma ‘,’ as a delimiter. Numbers are automatically registered as numbers whilst text is
interpreted as strings. Comments can be added with the ‘%’ symbol put in front of the
text. These inputs will not be read by the interpreter.

Master of Science Thesis V.R. Huijsman

84 Modules

Settings initialization file

%% system initialization module settings

system_initialization-modules-fluid_system_initialization_module-type = [presolver]
system_initialization-modules-solver_module-type = [solver]
system_initialization-modules-fluid_friction_module-type = [in_solver]
system_initialization-modules-thermophysics_module-type = [in_solver]

system_initialization-initialization-system = [modules_system, fluid_system]
system_initialization-initialization-modules = [solver_module, thermophysics_module,
fluid_friction_module]

%% solver module settings

solver-mode = [steady_state]

solver-iteration-min = [0]
solver-iteration-max = [0]

solver-system-equations = [fluid_mass, fluid_momentum, fluid_energy]
solver-system-variables = [pressure, massflow, enthalpy]

% fluid mass settings
solver-equations-fluid_mass-method = [newton_raphson]
solver-equations-fluid_mass-terms = [massflow]
solver-equations-fluid_mass-location = [internal_fluid_node]
solver-equations-fluid_mass-convergence = [1e-3]
solver-equations-fluid_mass-divergence = [1e6]

% fluid momentum settings
solver-equations-fluid_momentum-method = [newton_raphson]
solver-equations-fluid_momentum-terms = [pressure, friction]
solver-equations-fluid_momentum-location = [fluid_branch]
solver-equations-fluid_momentum-convergence = [1e-3]
solver-equations-fluid_momentum-divergence = [1e6]

% fluid energy settings
solver-equations-fluid_energy-method = [brents]
solver-equations-fluid_energy-terms = [massflow, friction]
solver-equations-fluid_energy-location = [internal_fluid_node]
solver-equations-fluid_energy-convergence = [1e-3]
solver-equations-fluid_energy-divergence = [1e6]

Figure 5-8: Example of a settings initialization input file.

5-5-2 System Initialization

The system initialization module will run through all the indicated system initialization func-
tions. These functions are essential to the formatting of the data structs and functioning
of the program.

Fluid System verification

The fluid system verification procedure verifies the data fields of the Nodes and Branches
data structs. In case parts of data in the structs are missing the designer is informed

V.R. Huijsman Master of Science Thesis

5-5 System Initialization Module 85

and the values are calculated from the existing values where possible, or predetermined
default settings are substituted.

The fluid system verification procedure also creates the system subfield in the Nodes and
Branches data structs. This field stores the information of the entire fluid system and is
required for the program to effectively interact with the fluid system.

module system verification

The module system verification procedure submits the module settings in the modules
subfield in the Settings data structure. The module settings inputs are verified and
adjusted where needed. The module system verification function also adds the function
name and folder structure to the Settings.modules data structure.

5-5-3 Module initialization

The module initialization function library contains all the module specific initialization
functions. These functions will check whether the input by the designer is correctly identi-
fied and will specify the module specific fields. The module specific initialization functions
will also be able to load any required data files. For example, the thermophysics module
initialization procedure will load the model constants of the thermophysical models in the
thermophysics module initialization function.

In the case that the developer is designing a new module, a module initialization function
needs to be added to this library in case the module requires module specific inputs/-
data. The developer is allowed to create data folders which are structured according
to the developer’s preferences.

Each module is allowed to create its own subfield in the Settings data structure which
is identified by Settings.(module). The contents of this subfield are independent of the
other module settings and can be customized by the developer.

5-5-4 System Initialization Module Architecture

The system initialization module program architecture is presented in figure 5-9.
system_initialization_module() is the first function that is called in the system ini-
tialization module. This function runs through all the other functions and function libraries.
The first function that is called is the load_settings() function. This function loads the
program settings from a designer defined settings input file, as was presented in section 5-
5-1.

The first function library which is called is the system initialization library. This library con-
tains the system initialization functions as presented in section 5-5-2. The second function
library which is called is the module initialization library. This includes the functions de-
scribed in section 5-5-3.

Master of Science Thesis V.R. Huijsman

86 Modules

IPSAT

System initialization module

system_init..._module() load_settings()

system initialization library module initialization library

settings_initialization()

modules_initialization()

. . .

solver_module_init...()

thermophysics_module_init...()

. . .

Nodes Branches Settings

Nodes Branches Settings

Nodes
Branches
Settings

Figure 5-9: System initialization module architecture as implemented in IPSAT.

V.R. Huijsman Master of Science Thesis

Chapter 6

Computer Program Verification

The functionality requirement, as presented in section 2-3, states that the program shall
be verified. The verification process is divided into two steps corresponding to the verifi-
cation requirements listed in table 2-5. The first step is to verify each module individually.
The second step is to verify the IPSAT program as a whole. This chapter will present the
verification process which is performed for the different modules in the program.

6-1 Module Verification

Requirement 5.1.1, presented in section 2-4, dictates that each module shall be veri-
fied individually for functionality. This section presents the verification procedure for the
following modules:

• Thermophysics module verification, presented in section 6-1-1.

• Fluid friction module verification, presented in section 6-1-2.

• Solver module verification, presented in section 6-1-3.

• Fluid system initialization module verification, presented in section 6-1-4

The process of verifying individual modules is a practice that should be continued when
the program is extended and new modules are added.

6-1-1 Thermophysics Module Verification

The goal of the thermophysics verification procedure is to verify that the implemented
models, described in section 5-1, are implemented correctly. In order to confirm this, the
output of the thermophysics module is compared to the published data for a number of
data points. The verification is divided into two parts, the verification of the equation of
state and the verification of the other thermophysical properties.

The equation of state part of the thermophysics module is verified on a first degree by
comparing the result to the published thermophysical property tables. These tables are

Master of Science Thesis V.R. Huijsman

88 Computer Program Verification

generally published in the same source paper as the Helmholtz constants for each fluid
and are created using the same process as described in section 5-1. To do this effec-
tively, a predetermined set of input parameters (values for p, and T) is created for each
fluid which should form a representable verification data set. The goal is to verify that
the program can reproduce the results of the equation of state to within the provided
accuracy of the source papers.

The verification of the other thermophysical properties like thermal conductivity and vis-
cosity are more dependent on the available data provided by the source of the model.
The verification process for these thermophysical properties are customized to the avail-
able, often limited, data set. Often, source papers report a small table with data to aid
in implementation of their model. The verification process will directly compare these
data and the goal is to verify that the program can reproduce these results to within the
provided accuracy of these source papers.

Equation of State Verification Data Set

The input data set for the verification of the equation of state contains data for each fluid
region. These regions are: the vapour region, the gas region, the liquid region and the
supercritical region. Additionally, the verification data set contains data for two areas
on the vapour pressure curve. These areas are: four points close to the critical point
and two points close to the triple point. Verifying the results from these points for each
implemented fluid will give a good indication if the methodology is correct. Table 6-1
shows the list of data points used to verify the program results compared to a reference
source.

Table 6-1: Definition of the data points used to verify the program results.

Point (#) Phase Definition
Data surrounding the critical point

1 Vapour p = 0.9pc, T = 0.9Tc
2 Liquid p = 1.1pc, T = 0.9Tc
3 Super critical p = 1.1pc, T = 1.1Tc
4 Gas p = 0.9pc, T = 1.1Tc

Data surrounding the triple point
5 Liquid p = 1.1ptp, T = 1.1Ttp
6 Vapour p = 0.9ptp, T = 1.1Ttp

Data in each fluid region
7 Vapour p = 0.5pc, T = Ttp + 0.5(Tc − Ttp)
8 Liquid p = 1.5pc, T = Ttp + 0.5(Tc − Ttp)
9 Super critical p = 1.5pc, T = 1.5Tc
10 Gas p = 0.5pc, T = 1.5Tc

Data in the far field
11 Super critical p = 10pc, T = 2Tc
12 Gas p = 0.5pc, T = 2Tc

Reference tables, which are provided at the back of reference fluid papers, have fixed
steps in pressure and temperature. The verification procedure will round the data points
from table 6-1 to the closest data point in the reference table. Verification of the program
with other reference software can be done as is and no rounding will be done.

If there are differences between the calculated data and the reference data which are
larger than the reported accuracy of the source paper, the variation of these differences

V.R. Huijsman Master of Science Thesis

6-1 Module Verification 89

across these data points may help to indicate the source of the discrepancy. This is useful
when it comes to adding new fluids and verifying the implementation. Several examples
of how the discrepancies in the results can be used to identify the source of these errors
are:

• The fluid density matches the reference density at all points, however the other fluid
properties show a mismatch. In this case the residual Helmholtz function and its
coefficients are implemented correctly. Either the ideal Helmholtz function and/or
its coefficients must contain errors.

• The properties vary significantly in one or more points close to the vapour pressure
curve (points 1 to 6), but match the reference data in all other points. In this case
the program predicts the wrong state of the fluid by submitting a wrong guess for
the density. The error can be found in either the implementation of the function for
the saturated liquid density, or in the coefficients which are used in this function.

• The fluid entropy shows a significant mismatch compared to the reference data,
but all the other fluid properties match the reference data. In this case both the
residual and ideal Helmholtz derivatives with respect to density and temperature
are correct. However, the actual value of the residual and/or ideal Helmholtz en-
ergy is causing the value of the fluid entropy to deviate. In this case the error can be
found in the coefficients in the residual and/or the ideal Helmholtz energy function
that are a function of neither pressure nor temperature.

• The fluid properties show a significant mismatch close to the critical point and in
the liquid and vapour region, and a small mismatch in the far field. This indicates
a good implementation of the ideal part of the Helmholtz energy function and its
coefficients. The source of the discrepancy can be found in the residual part of the
Helmholtz energy formulation and/or coefficients.

Verification Results

For each implemented fluid, the output data at each point listed in table 6-1 is com-
pared to the reference data tables if available. For fluids with no reference table, the
data points are compared to the outcome of programs which have implemented the
same method. The percentage difference between the calculated data and reference
data is tabulated and reported in a verification report for each fluid. An example of this
process for the density of nitrogen is given in table 6-2.

Master of Science Thesis V.R. Huijsman

90 Computer Program Verification

Table 6-2: Verification of the calculated density of nitrogen compared to the reference
data published by Span et al. [61].

p T ρcalc ρref (ρcalc − ρref)/ρref
(MPa) (K) (kg·m−3) (kg·m−3) (%)

1 3.0 115 5.9704·102 5.9705·102 -2.1·10−3

2 3.5 115 6.0401·102 6.0400·102 1.4·10−3

3 3.5 140 1.2099·102 1.2099·102 5.2·10−4

4 3.0 140 9.6409·101 9.6408·101 7.4·10−4

5 0.1 70 8.3864·102 8.3864·102 3.3·10−4

6 0.1 70 8.3864·102 8.3864·102 3.3·10−4

7 1.5 95 7.2294·102 7.2294·102 -1.0·10−4

8 5.0 95 7.3804·102 7.3804·102 -9.9·10−5

9 5.0 190 1.0098·102 1.0097·102 1.8·10−3

10 1.5 190 2.7668·101 2.7668·101 9.3·10−4

11 25 250 3.1942·102 3.1941·102 2.6·10−3

12 1.5 250 2.0444·101 2.0444·101 -6.0·10−5

Nitrogen

Table 6-3 shows the equation of state verification results for nitrogen. The results of all
properties over all the data points are within the accuracy of provided by the reference
paper.

Table 6-3: Percentage difference between the calculated data and reference data pub-
lished by Span et al. [61] for nitrogen at each data point specified by table 6-1.

ρer (%) uer (%) her (%) ser (%) cv,er (%) cp,er (%) wer (%)
1 -2.1·10−3 1.4·10−2 1.9·10−2 -5.9·10−3 -2.7·10−3 -5.7·10−3 4.2·10−3

2 1.4·10−3 1.8·10−2 1.9·10−2 -2.2·10−3 -1.4·10−2 -1.1·10−2 8.8·10−3

3 5.2·10−4 -1.5·10−2 -1.1·10−2 -1.2·10−4 -2.4·10−2 -3.8·10−2 -1.5·10−2

4 7.4·10−4 -1.4·10−2 -1.0·10−2 -5.1·10−3 -3.5·10−2 -1.7·10−2 -1.2·10−2

5 3.3·10−4 2.3·10−3 1.3·10−3 -1.3·10−3 -6.4·10−3 -4.5·10−3 -1.4·10−3

6 3.3·10−4 2.3·10−3 1.3·10−3 -1.3·10−3 -6.4·10−3 -4.5·10−3 -1.4·10−3

7 -1.0·10−4 5.0·10−3 4.2·10−3 -2.2·10−3 -1.6·10−2 -2.6·10−3 4.9·10−3

8 -9.9·10−4 5.2·10−3 6.3·10−3 -2.4·10−3 -6.1·10−3 -1.1·10−2 -3.1·10−3

9 1.8·10−3 -1.6·10−2 -1.3·10−2 -5.5·10−4 -1.5·10−2 -1.3·10−2 2.0·10−2

10 9.3·10−4 -1.6·10−2 -1.1·10−2 -5.0·10−3 -4.2·10−2 -1.4·10−2 -5.8·10−3

11 2.6·10−3 -2.9·10−2 -1.8·10−2 -4.3·10−3 -2.7·10−2 -1.9·10−2 1.9·10−2

12 -6.0·10−5 -2.0·10−2 -1.4·10−2 -1.2·10−3 -2.6·10−2 -3.0·10−2 -5.9·10−3

Table 6-4 show the verification of the viscosity and thermal conductivity of nitrogen for a
data set provided by Lemmon [47]. The value of the viscosity and thermal conductivity
is shown to be within the accuracy of the given data set.

V.R. Huijsman Master of Science Thesis

6-1 Module Verification 91

Table 6-4: Verification of the calculated viscosity (η) and the calculated thermal con-
ductivity (λ) of nitrogen. Both variables are compared to reference data published by
Lemmon et al. [47].

T ρ ηref ηer λref λer
(K) (mol·dm−3) (Pa·s) (%) (W·m−1·K−1) (%)

1 100.0 0.0 6.90349·10−6 2.2·10−3 9.27749·10−3 3.0·10−3

2 300.0 0.0 1.78771·10−5 3.8·10−4 2.59361·10−2 9.8·10−4

3 100.0 25.0 7.97418·10−5 -8.9·10−3 1.03834·10−1 -4.5·10−4

4 200.0 10.0 2.10810·10−5 -1.0·10−5 3.60099·10−2 -6.2·10−4

5 300.0 5.0 2.07430·10−5 9.5·10−5 3.27694·10−2 -2.3·10−4

6 126.2 11.2 1.82978·10−5 -3.6·10−4 6.75800·10−1 8.2·10−3

Oxygen

Table 6-5 shows the equation of state verification results for oxygen. It can be seen that
the differences between the reference data show slightly higher deviations when com-
paring it to other fluids, like nitrogen, over the entire data range. It is most likely related
to the calculation of the ideal-gas component of the reduced Helmholtz energy. The
reference data published by Steward [64] uses an integral form to calculate the value
for the idea-gas component of the reduced Helmholtz energy , see equation 5-2. IPSAT
evaluated the integral using a MATLAB in-built discrete integrator. The accuracy of this
method depends on the selected discretization interval and is not reported by Stew-
ard. Furthermore, the derivatives of the ideal-gas component of the reduced Helmholtz
energy cannot be calculated directly and are evaluated using a two point symmetric
derivative, see equation 5-59. This only aggravates the deviation problem which is cre-
ated by the integral form.

Table 6-5: Percentage difference between the calculated data and reference data pub-
lished by Steward et al. [64] for oxygen at each data point specified by table 6-1.

ρer (%) uer (%) her (%) ser (%) cv,er (%) cp,er (%) wer (%)
1 -7.0·10−4 2.7·10−2 2.9·10−2 -1.5·10−3 -1.3·10−2 -3.3·10−3 1.3·10−1

2 1.0·10−3 2.6·10−2 3.4·10−2 -5.4·10−3 -1.2·10−2 -3.2·10−3 1.8·10−1

3 -3.0·10−3 -1.4·10−2 -1.0·10−2 -4.1·10−3 8.0·10−3 6.8·10−3 3.6·10−1

4 -2.6·10−3 -1.2·10−2 -8.4·10−2 -3.4·10−3 5.3·10−3 9.7·10−3 4.2·10−1

5 -6.2·10−4 9.4·10−3 9.4·10−3 -9.7·10−3 4.7·10−2 1.5·10−2 3.5·10−2

6 -6.2·10−4 9.4·10−3 9.4·10−3 -9.7·10−3 4.7·10−2 1.5·10−2 3.5·10−2

7 -1.3·10−3 1.1·10−2 1.1·10−2 9.9·10−4 -2.3·10−2 3.6·10−3 5.8·10−2

8 3.0·10−4 1.0·10−2 1.0·10−2 -2.9·10−3 -3.0·10−3 7.3·10−3 4.0·10−2

9 -2.3·10−3 -2.8·10−3 -2.8·10−3 -3.1·10−3 2.1·10−2 1.3·10−2 3.0·10−1

10 1.1·10−3 -2.5·10−3 -2.5·10−3 2.0·10−3 2.7·10−2 1.5·10−2 8.4·10−2

11 -3.1·10−3 -2.1·10−3 -2.1·10−3 2.6·10−3 2.3·10−2 -1.8·10−3 8.1·10−2

12 -4.1·10−3 -6.6·10−4 -6.6·10−4 1.3·10−3 1.7·10−2 1.1·10−2 1.4·10−1

Table 6-6 show the verification of the viscosity and thermal conductivity of nitrogen for
a data set provided by Lemmon [47]. The value of the viscosity is shown to be within
the accuracy of the given data set. The value of the thermal conductivity is within the
accuracy of the given data set for data points 1-5 and show a deviation for data point
6. The source of this discrepancy is most likely linked to the sensitivity of the evaluation
of the partial derivative ∂p/∂ρ at the critical point. The value of this derivative is used to
determine the critical enhancement term of thermal conductivity, see section 5-1-8.

Master of Science Thesis V.R. Huijsman

92 Computer Program Verification

Table 6-6: Verification of the calculated viscosity (η) and the calculated thermal con-
ductivity (λ) of oxygen. Both variables are compared to reference data published by
Lemmon et al. [47].

T ρ ηref ηer λref λer
(K) (mol·dm−3) (Pa·s) (%) (W·m−1·K−1) (%)

1 100.0 0.0 7.70243·10−6 2.9·10−4 8.94334·10−3 3.9·10−3

2 300.0 0.0 2.06307·10−5 8.0·10−4 2.64403·10−2 1.3·10−3

3 100.0 25.0 1.72136·10−4 -1.2·10−2 1.46044·10−1 -6.8·10−3

4 200.0 10.0 2.24445·10−5 -1.5·10−3 3.46124·10−2 -1.3·10−3

5 300.0 5.0 2.37577·10−5 -4.7·10−4 3.25491·10−2 -6.1·10−4

6 154.6 13.6 2.47898·10−5 -2.4·10−3 3.77476·10−1 1.1·10−1

Argon

Table 6-7 shows the equation of state verification results for argon. The results of all proper-
ties over all the data points are within the accuracy of provided by the reference paper.

Table 6-7: Percentage difference between the calculated data and reference data pub-
lished by Tegeler et al. [48] for argon at each data point specified by table 6-1.

ρer (%) uer (%) her (%) ser (%) cv,er (%) cp,er (%) wer (%)
1 -2.0·10−4 -5.9·10−4 -2.0·10−3 -7.1·10−4 2.4·10−4 -2.4·10−3 -4.6·10−4

2 2.9·10−4 6.1·10−4 -2.8·10−3 6.2·10−4 -7.3·10−4 -1.6·10−3 -3.6·10−4

3 2.3·10−3 -4.2·10−3 3.5·10−3 1.7·10−3 -9.0·10−5 4.1·10−4 -1.3·10−3

4 -1.8·10−3 -3.2·10−3 -3.1·10−4 4.4·10−4 -1.3·10−3 -4.1·10−4 -2.6·10−3

5 1.2·10−3 1.3·10−3 -4.1·10−3 4.1·10−4 5.6·10−4 6.0·10−5 -7.4·10−4

6 1.2·10−3 1.3·10−3 -4.1·10−3 4.1·10−4 5.6·10−4 6.0·10−5 -7.4·10−4

7 -1.3·10−4 6.6·10−4 3.2·10−4 -5.9·10−4 -1.6·10−3 2.0·10−3 3.6·10−4

8 -2.8·10−4 -1.2·10−3 -1.5·10−3 1.5·10−3 -1.2·10−3 -4.3·10−3 -7.1·10−4

9 1.2·10−3 -3.3·10−3 4.7·10−4 1.5·10−3 -1.7·10−3 -1.1·10−4 -1.5·10−3

10 -4.0·10−5 -4.3·10−4 6.5·10−4 -8.8·10−4 1.5·10−4 -2.7·10−4 1.3·10−3

11 1.2·10−4 3.7·10−3 -8.4·10−4 -9.6·10−4 -1.5·10−3 -1.0·10−3 8.9·10−4

12 1.2·10−3 -7.0·10−5 7.8·10−4 -7.4·10−4 1.0·10−4 -3.2·10−4 -2.0·10−4

Table 6-8 show the verification of the viscosity and thermal conductivity of argon for
a data set provided by Lemmon [47]. The value of the viscosity is shown to be within
the accuracy of the given data set. The value of the thermal conductivity is within the
accuracy of the given data set for data points 1-5 and show a deviation for data points
6. The source of this discrepancy is most likely similar compared to the oxygen verification
case.

Table 6-8: Verification of the calculated viscosity (η) and the calculated thermal conduc-
tivity (λ) of argon. Both variables are compared to reference data published by Lemmon
et al. [47].

T ρ ηref ηer λref λer
(K) (mol·dm−3) (Pa·s) (%) (W·m−1·K−1) (%)

1 100.0 0.0 8.18940·10−6 9.8·10−4 6.36587·10−3 2.5·10−3

2 300.0 0.0 2.27241·10−5 4.1·10−4 1.78042·10−2 1.3·10−3

3 100.0 33.0 1.84232·10−4 6.9·10−5 1.11266·10−1 -2.6·10−4

4 200.0 10.0 2.55662·10−5 -9.3·10−5 2.61377·10−2 -1.1·10−4

5 300.0 5.0 2.63706·10−5 -9.8·10−5 2.32302·10−2 1.1·10−4

6 154.6 13.4 2.76101·10−5 1.9 ·10−5 8.56793·10−1 6.6·10−1

V.R. Huijsman Master of Science Thesis

6-1 Module Verification 93

Methane

Table 6-9 shows the equation of state verification results for methane. The results of all
properties over all the data points are within the accuracy of provided by the reference
paper.

Table 6-9: Percentage difference between the calculated data and reference data pub-
lished by Setzmann et al. [59] for methane at each data point specified by table 6-1.

ρer (%) uer (%) her (%) ser (%) cv,er (%) cp,er (%) wer (%)
1 -1.4·10−3 6.1·10−5 -1.2·10−3 -2.5·10−4 -2.3·10−3 -1.1·10−3 -7.5·10−4

2 -4.7·10−4 -4.6·10−4 4.8·10−5 -9.6·10−4 1.2·10−4 -2.5·10−4 -6.3·10−4

3 1.5·10−3 -6.0·10−4 -2.0·10−4 -1.5·10−3 -2.0·10−3 5.5·10−4 9.1·10−4

4 6.7·10−4 4.8·10−4 -1.5·10−3 7.9·10−4 -2.3·10−5 1.3·10−3 5.5·10−4

5 9.9·10−5 -1.4·10−3 5.4·10−4 2.6·10−3 1.9·10−3 1.6·10−3 1.5·10−3

6 9.9·10−5 -1.4·10−3 5.4·10−4 2.6·10−3 1.9·10−3 1.6·10−3 1.5·10−3

7 -7.8·10−4 -2.6·10−4 -1.1·10−3 -9.4·10−4 -2.0·10−3 -7.5·10−4 2.9·10−3

8 8.8·10−4 -6.4·10−4 -8.2·10−4 -7.9·10−4 -2.2·10−3 -8.4·10−4 -4.1·10−3

9 -2.8·10−5 4.6·10−4 -4.8·10−4 8.8·10−4 -2.7·10−3 1.3·10−3 -2.4·10−4

10 -1.9·10−4 1.2·10−3 5.6·10−5 -2.4·10−3 -2.2·10−4 -1.5·10−3 -3.6·10−4

11 -9.9·10−5 1.3·10−3 -2.2·10−3 5.3·10−4 1.1·10−3 -1.8·10−3 5.8·10−4

12 2.5·10−3 7.2·10−4 -1.5·10−3 5.4·10−4 -1.6·10−3 -1.5·10−3 -8.0·10−4

Ethane

Table 6-10 shows the equation of state verification results for ethane. The results of all
properties over all the data points are within the accuracy of provided by the reference
paper.

Table 6-10: Percentage difference between the calculated data and reference data
published by Bücker et al. [59] for ethane at each data point specified by table 6-1.

ρer (%) uer (%) her (%) ser (%) cv,er (%) cp,er (%) wer (%)
1 -1.1·10−3 3.4·10−5 -4.7·10−4 1.2·10−4 -2.8·10−3 -1.6·10−3 5.4·10−4

2 2.8·10−4 2.2·10−4 -9.7·10−4 -1.1·10−3 1.0·10−3 -1.2·10−3 -2.9·10−4

3 7.0·10−5 -3.6·10−4 7.5·10−4 4.5·10−3 -2.2·10−3 6.1·10−4 1.8·10−3

4 4.7·10−4 -5.2·10−4 -2.1·10−3 7.4·10−5 7.5·10−4 -1.1·10−3 -1.7·10−3

5 -3.2·10−4 -5.7·10−4 -1.1·10−4 -1.0·10−3 1.4·10−3 6.6·10−4 -1.7·10−5

6 -3.2·10−4 -5.7·10−4 -1.1·10−4 -1.0·10−3 1.4·10−3 6.6·10−4 -1.7·10−5

7 -9.2·10−4 -7.4·10−4 6.0·10−4 -1.0·10−3 -7.3·10−4 1.4·10−3 -2.8·10−4

8 -7.2·10−4 6.0·10−4 -3.0·10−4 1.1·10−4 -2.1·10−3 -1.9·10−3 6.5·10−5

9 5.0·10−4 -2.3·10−3 -9.9·10−4 1.1·10−3 -1.5·10−3 -6.4·10−4 1.1·10−3

10 -3.2·10−4 -1.3·10−3 4.8·10−4 2.9·10−2 -2.1·10−3 -9.1·10−5 5.4·10−4

11 6.0·10−4 -4.5·10−4 -5.0·10−4 1.1·10−3 3.7·10−4 1.1·10−3 2.8·10−4

12 2.0·10−3 1.7·10−5 -2.3·10−4 5.1·10−5 -1.6·10−3 1.3·10−3 -1.1·10−3

Nitrous Oxide

Table 6-11 shows the equation of state verification results for nitrous oxide. The results of
IPSAT were compared with that of Coolprop for all data points. Coolprop uses the same
model and source to compute the thermodynamic state properties of nitrous oxide. The
results of all properties over all the data points are all within 10−3 % which is comparable
to other species that are evaluated during this verification procedure.

Master of Science Thesis V.R. Huijsman

94 Computer Program Verification

Table 6-11: Percentage difference between the calculated data and reference data
calculated by coolprop [3] for nitrous oxide at each data point specified by table 6-1.

ρer (%) uer (%) her (%) ser (%) cv,er (%) cp,er (%) wer (%)
1 4.6·10−4 -5.8·10−4 -5.8·10−4 -5.8·10−4 -5.7·10−4 -5.9·10−4 -2.7·10−4

2 4.6·10−4 -5.8·10−4 -5.8·10−4 -5.8·10−4 -5.7·10−4 -5.9·10−4 -2.6·10−4

3 6.5·10−4 -6.0·10−4 -6.0·10−4 -6.1·10−4 -5.4·10−4 -4.0·10−4 -3.1·10−4

4 6.3·10−4 -5.9·10−4 -5.9·10−4 -6.0·10−4 -5.5·10−4 -4.7·10−4 -3.1·10−4

5 5,8·10−4 -5.7·10−4 -5.7·10−4 -5.8·10−4 -5.7·10−4 -5.7·10−4 -2.9·10−4

6 5.7·10−4 -5.7·10−4 -5.7·10−4 -5.8·10−4 -5.7·10−4 -5.7·10−4 -2.9·10−4

7 4.5·10−4 -5.8·10−4 -5.7·10−4 -5.8·10−4 -5.7·10−4 -5.8·10−4 -2.8·10−4

8 4.6·10−4 -5.8·10−4 -5.7·10−4 -5.8·10−4 -5.7·10−4 -5.8·10−4 -2.7·10−4

9 5.9·10−4 -5.8·10−4 -5.8·10−4 -5.9·10−4 -5.7·10−4 -5.5·10−4 -2.9·10−4

10 5.8·10−4 -5.8·10−4 -5.8·10−4 -5.8·10−4 -5.7·10−4 -5.6·10−4 -2.9·10−4

11 5.3·10−4 -5.9·10−4 -5.7·10−4 -5.9·10−4 -5.7·10−4 -5.7·10−4 -2.3·10−4

12 5.7·10−4 -5.7·10−4 -5.7·10−4 -5.8·10−4 -5.7·10−4 -5.7·10−4 -2.9·10−4

Conclusion

It is demonstrated that IPSAT is able to calculate the state variables for all implemented
fluids to within the significant digits of the source papers. Except for oxygen. However,
the difference for all the thermophysical state properties of oxygen is still well within 1% of
the reported value. It can be concluded that the evaluation of the Helmholtz multipa-
rameter equation of state is correctly implemented. However, when selecting a fluid the
designer needs to be aware of the limitations that are reported in this section for certain
models.

The verification of the transport properties of nitrogen oxygen and argon have demon-
strated that the formulations that are presented in sections 5-1-8 and 5-1-7 have been
correctly implemented for those fluids. However, the thermal conductivity at the critical
point for both oxygen and argon show deviations which are within 1% of the reference
value. The exact source of this deviation is not yet known.

It is recommended that the process as described in this section is repeated for each
implemented fluid as it is imperative that all the constants are registered correctly. Ex-
perience has shown that a small mistake in interpretation and/or implementation of the
constants can have large effects on the outcome of the models.

6-1-2 Fluid Friction Module Verification

This section describes the verification fluid friction module as presented in section 5-2.
The verification procedure is performed on the pipe flow friction model, specifically on
the implementation of the Colebrook relation. The goal is to verify that the fluid friction
module is able to correctly retrieve the Darcy friction factor for the given geometrical
inputs.

Colebrook Relation

The calculation of the dimensionless friction factor f , is the most important subroutine in
the determination of the fluid friction factor Kf in a pipe. The value of the dimensionless
Darcy friction factor f is obtained through the Colebrook relation, see equation 5-42 in
section 5-2. The Colebrook relation does not have a closed form, therefore an iterative
solver method was implemented to obtain the value of f .

V.R. Huijsman Master of Science Thesis

6-1 Module Verification 95

In order to verify this method along with the values of f across a wide range of values of
Re and ε/D, the Moody diagram is constructed using the implemented solver subroutine.
The moody diagram gives the values of f as a function of the Reynolds number Re for
a range of values of the relative roughness, ε/D. This diagram was used in the past to
determine the value of f without having to solve the implicit Colebrook relation. The
Moody diagram as constructed from IPSAT is shown in figure 6-1.

Figure 6-1: Moody diagram generated from the implemented Colebrook relation in IPSAT.

The Moody diagram as computed by IPSAT is identical in shape to the diagram origi-
nally published by Moody [77]. Moreover, the diagram shows that the value of f varies
smoothly even though each point is calculated independently and iteratively. This in-
dicates that the iterative function calculating the Colebrook friction factor is correctly
implemented and the behavior of turbulent flow through rough pipes are modeled ac-
cording to the observations of Moody.

In order to verify the obtained value of the Darcy friction factor, the results of IPSAT are
compared to published reference data by Brkic [78]. Table 6-12 shows the results of this
verification process.

Table 6-12: Verification of the calculated value of the Darcy friction factor f using the
Colebrook relation. The reference data is published by Brkic [78].

ε/D Re fref fcalc fer
(-) (-) (-) (-) (%)

1 1.0·10−6 1.0 ·104 3.088·10−2 3.088·10−2 1.4·10−5

2 3.0·10−3 5.8·106 2.617·10−2 2.619·10−2 7.6·10−2

3 4.3·10−4 3.0·107 1.616·10−2 1.617·10−2 5.9·10−2

4 2.0·10−4 6.0·104 2.084·10−2 2.084·10−2 9.6·10−3

5 3.0·10−2 4.0·105 5.719·10−2 5.725·10−2 1.1·10−1

It can be seen that for points 1-4 the data can be reproduced to within the accuracy of
the reference data. The deviation which can be seen in data point 5 is attributed to the
unknown accuracy limit which is set for the iterative procedure used by Brkic.

Master of Science Thesis V.R. Huijsman

96 Computer Program Verification

6-1-3 Solver Module Verification

This section describes the verification of the solver module as presented in section 5-
3. The verification procedure is performed on the Newton-Raphson method, Broyden’s
method, the modified Broyden’s method and Brent’s method. The goal is to verify that
the solver module is able to successfully reduce the residuals of a fluid system with a
large number of conservation equations. Next to that, the solver module should be able
to correctly apply the designer’s choice for the selection of the various solver module
parameters.

Verification Setup

The solver module is in charge of minimizing the residuals of a given set of conservation
equations. The verification procedure will run through the different solving methods and
check the convergence rate and the final converged solution. In order to check the
convergence rate, the residuals of each conservation equation are logged over the
solving process. The verification procedure is standardized by taking the mean value of
the residuals for each equation and by making the residuals non-dimensional.

The normalized mean residuals are defined as the mean absolute residuals divided by
the original value of the mean absolute residuals:

ri,norm = |ri|
|r0|

(6-1)

Where the mean absolute residual |ri| is defined as:

|ri| =
∑n
j=1 |ri,j |
n

(6-2)

Where n is the total number of node or branches where the specific conservation equa-
tion is solved.

The solver verification procedure is applied on a predefined simple problem. This is done
to focus solely on the behavior of the solver. The problem that is proposed is a 10 nodes
and 9 branches model aligned in a single direction, see figure 6-2. The fluid used is
nitrogen which is a simple, well understood fluid and is therefore often used in model
analysis. The problem is setup in such a way that the fluid is always in gaseous phase in
order to eliminate any peculiarities in the solver due to phase changes.

n1 n2 n3 n4 n5 n6

n7n8n9n10

b1 b2 b3 b4 b5

b6

b7b8b9

Figure 6-2: Nodes and branches architecture of the solver verification problem.

Each branch has the same geometric parameters, this is done to simplify the problem.
Table 6-13 shows the geometric properties of each branch.

V.R. Huijsman Master of Science Thesis

6-1 Module Verification 97

Table 6-13: Properties of each Branch in the solver verification problem.

Property Value Unit
Length 1· 10−1 m
Diameter 1· 10−2 m
Roughness 4.5 · 10−5 m
Branch type pipe -

The properties of the boundary nodes are listed in table 6-14.

Table 6-14: Boundary node properties of the solver verification problem.

Property Value Unit
Node 1

Species nitrogen -
Pressure 1· 106 Pa
Temperature 273.15 K

Node 10
Species nitrogen -
Pressure 101325 Pa
Temperature 273.15 K

The program settings that were used for the solver verification problem are listed in ta-
ble 6-15.

Master of Science Thesis V.R. Huijsman

98 Computer Program Verification

Table 6-15: Program settings of the solver verification problem.

Option Setting
Fluid system initialization module settings

Nodes initialization method linear interpolation
Branches initialization method Bernoulli

Solver module settings
Solver mode steady state
Iteration min 0
Iteration max (variable)
Equations fluid mass, fluid momentum, fluid energy
Variables pressure, massflow, enthalpy

Conservation of fluid energy
Solver method (Variable)
Relaxation factor (Variable)
Convergence limit N/A (no limit set)
Divergence limit N/A (no limit set)
Equation terms massflow

Conservation of fluid momentum
Solver method (Variable)
Relaxation factor (Variable)
Convergence limit N/A (no limit set)
Divergence limit N/A (no limit set)
Equation terms pressure, friction

Conservation of fluid mass
Solver method (Variable)
Relaxation factor (Variable)
Convergence limit N/A (no limit set)
Divergence limit N/A (no limit set)
Equation terms massflow

Thermophysics module settings
Variable transform model Helmholtz MEOS
Equation of state model Helmholts MEOS
Melting pressure model modified Simon formulation
Vapour pressure model polylogarithmic formulation
Saturated liquid density model polylogarithmic formulation
Saturated vapour density model polylogarithmic formulation
Surface tension model REFPROP formulation
Viscosity model Lemmon formulation
Thermal conductivity model Lemmon formulation

V.R. Huijsman Master of Science Thesis

6-1 Module Verification 99

Newton-Raphson Method

Figure 6-3 and 6-4 show the mean normalized residuals of the three conservation equa-
tions over the solving process for a relaxation factor of 1 and 0.1 respectively.

Figure 6-3: The change of the normalized residuals over the iterations using the Newton-
Raphson method with a relaxation factor of 1.

Figure 6-4: The change of the normalized residuals over the iterations using the Newton-
Raphson method with a relaxation factor of 0.1.

It can be seen that the conservation of fluid energy equation seems to be converging
linearly and the slowest when the relaxation factor is set to 1. The conservation of fluid
mass equation and the conservation of fluid momentum equation are both converging

Master of Science Thesis V.R. Huijsman

100 Computer Program Verification

quadratically, which is to be expected from the Newton-Raphson method. When the
relaxation factor is decreased to 0.1, all the conservation equations converge at an al-
most equal, linear, rate. This is to be expected, because the Newton-Raphson method
solves the system of equations simultaneously. Figure 6-4 also shows that reducing the
relaxation factor has a stabilizing effect on convergence. All conservation equations
converge much smoother compared to when the relaxation factor is set to 1.

In both cases the convergence stops when the residuals have reached a value smaller
than 10−13. This is expected, because the precision limit of 64-bit numbers lies in the order
of 10−15. For most problems a precision below 10−5 is more than sufficient. The residuals
of the conservation of fluid mass actually drops to 0. This is attributed to the simple form
of this equation and the lack of dependency with respect to other precision dependent
calculations, for example the calculation of the thermophysical properties.

Broyden’s Method

Figure 6-5 and 6-6 show the mean normalized residuals of the three conservation equa-
tions over the solving process using Broyden’s method with a relaxation factor of 0.5 and
0.1 respectively.

Figure 6-5: The change of the normalized residuals over the iterations using Broyden’s
method with a relaxation factor of 0.5.

Figure 6-5 shows that Broyden’s method has some difficulties converging at the start for
a high relaxation factor. Solving the problem using Broyden’s method with a relaxation
factor of 1 resulted in a diverged solution. Therefore, the highest relaxation factor was
taken to be 0.5. However, after a certain number of iterations, the convergence rate
seem to stabilize. It can be seen that Broyden’s method converges linearly, which is
expected.

Figure 6-6 shows that the convergence rate of Broyden’s method is similar to that of the
Newton-Raphson method for a low relaxation factor. For this problem Broyden’s method
reduced the time per iteration with a factor of 4.3 compared to the Newton-Raphson
method (with a relaxation factor of 0.1).

V.R. Huijsman Master of Science Thesis

6-1 Module Verification 101

Figure 6-6: The change of the normalized residuals over the iterations using Broyden’s
method with a relaxation factor of 0.1.

Modified Broyden’s Method

Figure 6-7 and 6-8 show the mean normalized residuals of the three conservation equa-
tions over the solving process using the modified Broyden’s method, using a Sherman
Morrison formula, with a relaxation factor of 0.5 and 0.1 respectively.

Figure 6-7: The change of the normalized residuals over the iterations using the modified
Broyden’s method with a relaxation factor of 0.5.

Figure 6-7 and 6-8 show that the modified Broyden’s method behaves almost identical,
when compared to the regular Broyden’s method, for this problem. This was expected

Master of Science Thesis V.R. Huijsman

102 Computer Program Verification

because the Jacobian matrix is almost completely symmetrical.

Both Broyden’s method and the modified Broyden’s method have similar execution times
when executing the reference problem with a relaxation factor of 0.1. It was expected
that the modified Broyden’s method would have a slightly shorter execution time. It is
hypothesized that the Jacobian matrix which is constructed in the reference problem is
too small to produce a noticeable difference in execution time.

Figure 6-8: The change of the normalized residuals over the iterations using the modified
Broyden’s method with a relaxation factor of 0.1.

Brent’s Method

Figure 6-9 and 6-10 show the mean normalized residuals of the three conservation equa-
tions over the solving process using Brent’s method with a relaxation factor of 0.1 and 0.01
respectively. Brent’s method solves each conservation equation separately during each
iteration. It is therefore not expected that it is effective at solving a system of equations.

It can be seen that the convergence of Brent’s equation is slow, sub-linear, when using
it to solve a system of equations. Similar convergence behavior can be expected from
other single equation solving methods (e.g. regula falsi). The convergence behavior also
seems very erratic. This is to be expected from a method which solves each equation
independent from the other equations.

The final value of the residuals remains relatively high and depends on the relaxation
factor. The final value of the residuals scales directly with the value of the relaxation
factor, i.e. reducing the relaxation factor with a factor of 10 reduces the final value of
the residuals with a factor of 10. It is not recommended to use the single equation solving
methods as a main solving method. Brent’s method and similar single equation root
finding methods can be used to supplement the more effective solving methods.

V.R. Huijsman Master of Science Thesis

6-1 Module Verification 103

Figure 6-9: The change of the normalized residuals over the iterations using Brent’s
method with a relaxation factor of 0.1.

Figure 6-10: The change of the normalized residuals over the iterations using Brent’s
method with a relaxation factor of 0.01.

Conclusion

The solver module is able to use a number of different methods to minimize the residuals
of the specified conservation equations. Each method behaves as is to be expected
when applied to the reference problem. The solver module is able to reduce the value
of the residuals to within numerical accuracy when using methods which solve equations
simultaneously.

Master of Science Thesis V.R. Huijsman

104 Computer Program Verification

The solver module is also able to successfully execute and interact with external modules
as part of its routine. These external modules can be successfully selected in the settings
file defined by the designer.

6-1-4 Fluid System Initialization Module Verification

This section describes the verification of the fluid system initialization module as presented
in section 5-4. The verification procedure is only performed on the linear nodes interpo-
lation method and the Bernoulli branches initialization because those methods require
an automated procedure. The goal is to check if the fluid system initialization module
provides the correct initial guess according to the methods described in section 5-4.

Verification Setup

This module is applied to two different fluid systems, the results of which are presented
in this section. This is done so that the flexibility of the fluid initialization module can be
demonstrated. The first fluid system is a simple linear fluid system which can be seen in
figure 6-11. The second fluid system in a more complex fluid system with multiple bound-
ary nodes and internal loops. This fluid system can be seen in figure 6-12. For both cases,
nitrogen is used as a fluid.

n1 n2 n3 n4 n5 n6

n7n8n9n10

b1 b2 b3 b4 b5

b6

b7b8b9

Figure 6-11: Nodes and branches architecture of the fluid system initialization module
case 1.

n1

n2

n3 n4 n5

n6

n7n8

n9 n10

n11

n12

b1

b2

b3 b4

b5

b6

b7

b8

b9

b10

b11

b12

Figure 6-12: Nodes and branches architecture of the fluid system initialization module
case 2.

V.R. Huijsman Master of Science Thesis

6-1 Module Verification 105

Linear Interpolation Nodes Initialization Method

The results of the linear interpolation nodes initialization method is shown in tables 6-16
and 6-17, where table 6-16 shows the results for case 1 and table 6-17 shows the results
for case 2.

For case 1, the linear interpolation method identifies 8 distinct node layers and 9 pressure
steps. Node, n1, is identified to have the highest pressure of 6.0 MPa and node, n10
to have the lowest pressure of 0.1 MPa. The decrement in pressure (from node 1), ∆p,
for each node using the linear interpolation method is equal to 0.656 MPa. Similarly, the
increment in temperature (from node 1), ∆T , for each node using the linear interpolation
method is equal to 3.33 K.

Table 6-16: Calculated values for the internal nodes using the linear interpolation nodes
initialization method for the fluid system given in figure 6-11.

node type p (MPa) T (K)
n1 boundary 6.000 270.0
n2 internal 5.344 273.3
n3 internal 4.689 276.7
n4 internal 4.033 280.0
n5 internal 3.378 283.3
n6 internal 2.722 286.7
n7 internal 2.068 290.0
n8 internal 1.411 293.3
n9 internal 0.756 296.7
n10 boundary 0.100 300

For case 2, the linear interpolation method identifies 6 distinct node layers and 8 pressure
steps. Nodes, n1 and n2 are identified to have the highest pressure (6.0 MPa), whilest
nodes n11 and n12 are identified to have the lowest pressure (0.1 MPa). The reverse is
true for the temperature. The decrement in pressure using the defined pressure steps is
calculated to be 0.7375 MPa. The increment in temperature is equal to 3.75 K.

Using the linear interpolation initialization method on case 2 shows that there exist a jump
in the value of the estimated thermophysical property if the amount of node layers is
smaller than the number of pressure steps - 1. See the difference in pressure from node
n10 and n11 for the pressure and node n2 and n3 for the temperature. In other words, in
case the fluid system has loops and/or branches the linear interpolation method might
return jumps in the value of the estimated thermophysical property which is larger than
expected.

Master of Science Thesis V.R. Huijsman

106 Computer Program Verification

Table 6-17: Calculated values for the internal nodes using the linear interpolation nodes
initialization method for the fluid system given in figure 6-12.

node type p (MPa) T (K)
n1 boundary 6.000 270.0
n2 boundary 6.000 270.0
n3 internal 5.263 277.5
n4 internal 4.525 281.3
n5 internal 3.788 285.0
n6 internal 3.050 288.8
n7 internal 3.050 288.8
n8 boundary 5.000 270.0
n9 internal 2.313 292.5
n10 internal 1.606 296.3
n11 boundary 0.100 300
n12 boundary 0.100 300

Bernoulli Branches Initialization Method

The results of the Bernoulli initialization method is shown in tables 6-18 and 6-19, where
table 6-18 shows the results for case 1 and table 6-19 shows the results for case 2.

It can be seen that in both cases, the massflow decreases gradually due to a decrease in
upstream node density. The massflow in all cases match the values that are calculated
using the Bernoulli massflow method, see equation 5-104. Note that the decrease in
massflow might make this method unsuitable for some steady state analyses.

Table 6-18: Calculated values for the massflow through the fluid branches using the
Bernoulli massflow method for the fluid system given in figure 6-11.

branch Area (m2) ρUS (kg·m−3) ṁ (kg·s−1)
b1 7.854·10−5 7.631·101 0.786
b2 7.854·10−5 6.694·101 0.736
b3 7.854·10−5 5.787·101 0.684
b4 7.854·10−5 4.906·101 0.630
b5 7.854·10−5 4.051·101 0.572
b6 7.854·10−5 3.220·101 0.510
b7 7.854·10−5 2.412·101 0.442
b8 7.854·10−5 1.626·101 0.363
b9 7.854·10−5 0.859·101 0.264

V.R. Huijsman Master of Science Thesis

6-1 Module Verification 107

Table 6-19: Calculated values for the massflow through the fluid branches using the
Bernoulli massflow method for the fluid system given in figure 6-12.

branch Area (m2) ρUS (kg·m−3) ṁ (kg·s−1)
b1 7.854·10−5 7.631·101 0.833
b2 7.854·10−5 7.631·101 0.833
b3 7.854·10−5 6.477·101 0.768
b4 7.854·10−5 5.480·101 0.706
b5 7.854·10−5 4.516·101 0.641
b6 7.854·10−5 4.516·101 0.641
b7 7.854·10−5 4.680·101 0.741
b8 7.854·10−5 3.582·101 0.571
b9 7.854·10−5 3.582·101 0.571
b10 7.854·10−5 2.676·101 0.493
b11 7.854·10−5 1.796·101 0.572
b12 7.854·10−5 1.796·101 0.572

Conclusion

It is demonstrated that the linear interpolation initialization method can correctly iden-
tify the extreme values of a complex fluid system and interpolate between them. The
Bernoulli initialization method is able to correctly estimate an initial massflow figure for a
given density, pressure and cross-section geometry according to the methods described
in section 5-4-1. It is still the task of the designer to evaluate if the calculated results are
able to be used as the initial value for the given design problem.

Master of Science Thesis V.R. Huijsman

108 Computer Program Verification

V.R. Huijsman Master of Science Thesis

Chapter 7

Test Setup and Results

The last part of this thesis project is to validate the program which is described in chap-
ters 4 till 6. According to the computer program requirements listed in section 2-4, the pro-
gram shall be validated using the DHX-200 Aurora engine data. This chapter will present
the DHX-200 Aurora engine and the data that was gathered during the conducted en-
gine test campaigns. This data is used to set up and conduct the validation procedure.

The details of the DHX-200 Aurora engine is presented in section 7-1. Section 7-2 presents
the part of the test setup of the DHX-200 Aurora engine which is important for the valida-
tion process. Lastly, section 7-3 presents the test results, relevant to the validation process,
of the DHX-200 Aurora engine which were gathered during the engine test campaigns.

7-1 DHX-200 Aurora Engine

The DHX-200 Aurora engine is a hybrid rocket engine developed by DARE. Some critical
design parameters of this engine can be seen in table 7-1 for reference. The engine was
designed to fly the Stratos II rocket to an altitude of 50 km. A failed launch campaign
in 2014 meant that the engine did not fly on the original Stratos II mission. The engine
eventually flew as part of the Stratos II+ mission to an altitude of 21.5 km in October 2015.
The reason for this offset in altitude is largely contributed to a misinterpretation of the
flight simulations done at the time. According to the data gathered during the flight, the
engine performed similarly to what was to be expected from the ground tests.

Table 7-1: Main performance parameters of the DHX-200 Aurora engine [79].

Parameter Value
Thrust (kN) 11.86
Specific impulse (s) 205
Combustion pressure (MPa) 2.08
Oxidizer mass flow (kg·s−1) 2.62
O/F mass ratio (-) 3.05

Between May 2013 and July 2015 a total number of 14 static engine firing tests were per-
formed during the development of the DHX-200 Aurora engine. Many of these tests did

Master of Science Thesis V.R. Huijsman

110 Test Setup and Results

not achieve the planned test objectives due to a premature failure of the engine. Even
though these tests did not meet their objectives, useful performance data was gathered
nonetheless for most of these tests. This data includes detailed feed system pressure data
over time and combustion pressure data over time and oxidizer tank mass data over time.
The feed system is not much affected by changes in the combustion chamber, due to
the flow choking at the injector. Therefore, the data gathered from these static firing tests
are useful for the validation of the IPSAT that models the feed system behavior.

A photo of the test setup before a test is shown in figure 7-1. The picture shows the
thrustbench with the DHX-200 Aurora hybrid engine mounted onto it, the two run tanks
behind the engine and the various feed system components.

Figure 7-1: DHX-200 Aurora test bench at TNO in Rijswijk. (Image by V.R. Huijsman)

7-2 DHX-200 Aurora Test setup

The test setup of the DHX-200 Aurora engine varied slightly over the 14 tests that were con-
ducted. Especially the internal engine configuration changed for almost every test [80,
81]. The feed system design and layout remained relatively constant apart from changes
made in the tank feed line applied in test 5 onwards.

The test configuration of the DHX-200 Aurora engine consists of: a filling system containing
the nitrous oxide gas cyllinders, 2 oxidizer run tanks which store the pressurized liquid
oxidizer shortly before a test and the hybrid rocket combustor. A schematic of the DHX-
200 test engine feed system layout can be seen in figure 7-2.

V.R. Huijsman Master of Science Thesis

7-2 DHX-200 Aurora Test setup 111

The feed system, connecting the three main components, contains several sensors and
actuators. The sensors and actuators are logged and actuated by a CompactRIO con-
troller from National Instruments. An overview of all the sensors that are used to log data
during each test is shown in table 7-2.

Table 7-2: An overview of the sensors allocated for every test of the DHX-200 Aurora en-
gine (between test 6 and test 14).

Parameter Sensor Accuracy Sampling rate
Thrust force AST Force Transducer 50 N [82] 1 kHz (test 1-10)

KAS 50 kN 2 kHz (test 11-14)
Tank mass Tedea-Huntleigh 1240 0.4 N [83] 1 kHz (test 1-10)

2 kN 2 kHz (test 11-14)
Combustion pressure Parker ASIC 0 - 100 bar 0.2 bar [84] 1 kHz (test 1-10)

2 kHz (test 11-14)
Tank pressure Parker ASIC 0 - 100 bar 0.2 bar [84] 1 kHz (test 1-10)

2 kHz (test 11-14)
Feed system pressure Parker ASIC 0 - 100 bar 0.2 bar [84] 1 kHz (test 1-10)

2 kHz (test 11-14)
Injector manifold Parker ASIC 0 - 100 bar 0.2 bar [84] 1 kHz (test 1-10)
pressure 2 kHz (test 11-14)
Combustion chamber K-type thermocouple 50 Hz
temperature

Master of Science Thesis V.R. Huijsman

112 Test Setup and Results

N2O
C-1

N2O
C-2

N2O
C-3

N2O
C-4

N2
C-1 N2

C-2

CV-1 CV-2 CV-3 CV-4

CV-5

CV-6

SV-1

SV-2

PRV-1 PRV-2

BV

IV-1

IV-2

XCV

XV

MV-2

MV-1

CGR-1 CGRV-1

CGR-2 CGRV-2

FV-1

APS DPS-1

DPS-3

DPS-4

N2O

N2

APS:
BV:
CV:
CGR:
CGRV:
DPS:
FV:

Analog Pressure Sensor

Bleed Valve
Check Valve
Compressed Gas Regulator
Compressed Gas Regulator Valve
Digital Pressure Sensor

Fill Valve

IV:
MV:
PRV:
SV:
XV:
XCV:

Iginition Valve

Main Valve
Pressure Relief Valve
Service Valve
Extinguish Valve
Extinguish Check Valve

Figure 7-2: The feed system schematic of the DHX-200 Aurora test engine (between test 6
and test 14). Image based on image published by Knop [80].

V.R. Huijsman Master of Science Thesis

7-3 DHX-200 Aurora Test Results 113

The validation of the IPSAT program is focused around the feed system between the
run tank and the engine. Since this is only a small part of the overall feed system, as
presented in figure 7-2, a more detailed technical drawing of this sub part of the feed
system is presented in figure 7-3.This figure shows the inner dimensions of all of the different
feed system components that are relevant for validation, except for the curved hoses
which are connected to the two oxidizer run tanks.

5 42 12 73 93 73 9

1 6 . 51 51 51 51 41 51 2 . 8

1 2 . 8

Figure 7-3: (top view) A view of the main feed system section of the DHX-200 Aurora
engine. (bottom view) The cross section of the main feed system including dimensions.
The sections with the blue arrow show the set of pipe sections which have a constant
diameter. All dimensions shown are in millimeters.

7-3 DHX-200 Aurora Test Results

In total, 14 tests were performed with the DHX-200 Aurora engine. Test data was gathered
for most of these test. The data set for each test includes:

• Engine mass at the start and end of the burn.

Master of Science Thesis V.R. Huijsman

114 Test Setup and Results

• Tank mass over time.

• Engine thrust force over time.

• Oxidizer run tank pressure over time.

• Pressure inside the feed system junction over time.

• Pressure of the injector manifold over time.

• Pressure of the pre-combustion chamber over time.

• Temperature at various points on the outside of the combustion chamber over time.

For validation of the IPSAT program, only the pressure of the oxidizer tanks, the feed sys-
tem and the injector manifold are utilized. An overview of all the DHX-200 Aurora tests
that were conducted is shown in table 7-3.

Table 7-3: DHX-200 Aurora engine test overview and selected test data.

Test # Burntime
(s)

Engine Failure Selected data
range (s)

1 5.2 No -
2 9.4 No -
3 6.1 Yes at 4.7 s -
4 5.5 Yes at 4.6 s -
5 N/A Yes at 0 s -
6 24.9 No 6.2 - 9.0
7 11.6 Yes at 4.2 s -
8 11.1 Yes at 4.4 s -
9 8.7 Yes at 7.6 s 2.8 - 8.0
10 24.5 Yes at 9.1 s 4.0 - 12.0
11 N/A Yes at 0 s -
12 10.6 Yes at 4.3 s -
13 7.9 Yes at 6.4 s 3.0 - 7.0
14 25.2 Yes at 24.1 s 4.0 - 12.0

The data which is considered for the validation of the program is selected according to
the following criteria:

• The interval should not contain any quick transients. This includes startup and shut-
down transients and any transients that are caused by engine events (e.g. engine
failures). The program will be validated in the steady state mode, it will therefore not
be able to provide adequate results when modeling quick time dependent events.
For the validation analysis performed in this report the data interval should not con-
tain any transient events which can be traced to a specific cause which last for <
0.25 seconds, which is the time interval over which the data is averaged.

• The interval should contain a stable liquid/two-phase flow. Gaseous flow from a
relatively small tank volume will have a rapid change of properties over time. This
will not be able to be modeled in a steady state mode.

• The interval should be long enough, in time, in order to get a large enough data
sample size. For the validation analysis performed in this report a minimum number
of 5 data points was defined as being sufficiently large.

V.R. Huijsman Master of Science Thesis

7-3 DHX-200 Aurora Test Results 115

Using these selection criteria, test 6, 9, 10, 13 and 14 are selected for the validation of
the IPSAT program. The time intervals which have been selected are shown in table 7-
3. Each time interval is subdivided into separate equally sized intervals containing 500
data points each. For each of these intervals the mean of all the raw data points within
this interval is calculated and that is taken as a data point used for the validation of the
program. This is done to reduce the computation time and compensate for instrument
noise. It also means that the fast transients that may be present in the pressure data are
filtered out.

Table 7-4 shows several parameters for each of the selected tests. ∆tdata is the total time
interval for the selected test data. ∆tinterval is the time interval between each mean data
point. The difference in the length of this time interval between test 10 and test 13 is the
increase in sampling rate of the pressure sensors from test 11 onwards (see table 7-2).
The data points tab shows the total number of data points with the given time interval for
each test. ṁmean is the mean massflow over the entire selected time interval for each test.
The massflow data was obtained by performing a least squares regression analysis on the
tank mass data. It was not possible to get accurate mass flow figures for each of the
data points within the selected time interval due to the noisy tank mass data. ∆pf.s., mean
is the mean pressure drop over feed system, defined as the difference between the tank
pressure and the manifold pressure, over the entire selected time interval.

Table 7-4: DHX-200 Aurora test data parameters for the selected tests.

Test ∆tdata ∆tinterval Data points ṁmean ∆pf.s., mean
- (s) (s) # (kg·s−1) (MPa)
6 2.8 0.5 5 3.0610 0.9960
9 5.2 0.5 10 3.2930 0.7095
10 8.0 0.5 16 3.2475 0.7339
13 4.0 0.25 16 2.7866 0.4469
14 8.0 0.25 32 2.8533 0.6131

Figures 7-4 till 7-8 shows the raw pressure sensor data over time for all the selected time
intervals. The black dots connected by the black lines show the mean of the surrounding
500 data points for the respective variable. The tank pressure and the injector manifold
pressure will serve as an input to the computer program. The feed system pressure will
serve as the validation data.

Figure 7-4: Test data from DHX-200 Aurora test 6 showing the data obtained by pressure
sensor located in the oxidizer tank, the feed system junction and the injector manifold.

Master of Science Thesis V.R. Huijsman

116 Test Setup and Results

Figure 7-5: Test data from DHX-200 Aurora test 9 showing the data obtained by pressure
sensor located in the oxidizer tank, the feed system junction and the injector manifold.

Figure 7-6: Test data from DHX-200 Aurora test 10 showing the data obtained by pressure
sensor located in the oxidizer tank, the feed system junction and the injector manifold.

Figure 7-7: Test data from DHX-200 Aurora test 13 showing the data obtained by pressure
sensor located in the oxidizer tank, the feed system junction and the injector manifold.

V.R. Huijsman Master of Science Thesis

7-3 DHX-200 Aurora Test Results 117

Figure 7-8: Test data from DHX-200 Aurora test 14 showing the data obtained by pressure
sensor located in the oxidizer tank, the feed system junction and the injector manifold.

Master of Science Thesis V.R. Huijsman

118 Test Setup and Results

V.R. Huijsman Master of Science Thesis

Chapter 8

Computer Program Validation

The final project goal as presented in section 2-3 is that the IPSAT computer program
shall be validated against test data. According to the requirement 6.1 in section 2-4
the computer program shall be validated against the DHX-200 Aurora engine test data.
This test data has already been presented in chapter 7. The next step is to initiate the
validation process. Guidelines for this process have been presented in table 2-6 these
steps are:

• 6.1.1 The computer program shall take a systematic diagram of the DHX-200 Aurora
static test engine as input.

• 6.1.2 The computer program shall take tank pressure data and combustion pressure
data from the DHX-200 Aurora test as input.

• 6.1.3 The computer program shall provide the fluid system response of the DHX-200
Aurora engine as output.

• 6.1.4 The computer program output shall be compared to the original test data.

The first step is to construct a systematic diagram of the part of the DHX-200 Aurora fluid
system which is of interest to the validation process. This process is presented in section 8-
1. The setup of the IPSAT computer program is presented in section 8-2. The results of
the computer program, given the inputs from section 8-2, are presented in section 8-3.
Lastly, the the analysis of these results and the comparison with respect to the test data
is presented in section 8-4.

8-1 Systematic Diagram of the DHX-200 Aurora Feed System

The DHX-200 Aurora feed system is modeled using a discrete nodes and branches model,
the system of nodes and branches is shown in figure 8-1. Each branch represents a pipe
with constant diameter in the feed system as shown in figure 7-3.

Master of Science Thesis V.R. Huijsman

120 Computer Program Validation

n5 n3 n1

n6 n4 n2

n7 n8 n9 n10 n11 n12 n13

b1b3

b5

b2b4

b6

b7 b8 b9 b10 b11 b12

Figure 8-1: DHX-200 Aurora feed system schematic represented by the nodes and
branches model. This feed system representation is derived from the cutout presented
in figure 7-3.

8-2 Computer Program Setup

This section describes the setup of the model within IPSAT in order to model the DHX-
200 Aurora feed system. The program setup includes the definition of the nodes and
branches, the settings of the program and the properties of the boundary nodes.

8-2-1 Nodes and Branches settings

The first step in the problem setup is to translate the systematic diagram into the program.
This is done by submitting each node and branch separately into the program. Table 8-1
lists all the nodes used in the validation model as shown in figure 8-1. The specie in the
boundary nodes is set to nitrous oxide. The pressure in the boundary nodes is set to the
measured pressure during the test. The temperature in the boundary nodes is set to the
corresponding saturation temperature ±1 depending on the case which is run.

Table 8-1: The list of nodes, used as an input to IPSAT, derived from the DHX-200 Aurora
engine design.

ID name type species pressure temperature
n1 Oxidiser_tank boundary nitrous_oxide ptank Ts − 1, Ts + 1
n2 Oxidiser_tank boundary nitrous_oxide ptank Ts − 1, Ts + 1
n3 hose-1-1 internal - - -
n4 hose-2-1 internal - - -
n5 hose-1-2 internal - - -
n6 hose-2-2 internal - - -
n7 Y-piece internal - - -
n8 MV-2-a internal - - -
n9 MV-2-b internal - - -
n10 MV-1-a internal - - -
n11 MV-1-b internal - - -
n12 MV-1-c internal - - -
n13 Manifold boundary nitrous_oxide pmanifold Ts − 1, Ts + 1

V.R. Huijsman Master of Science Thesis

8-2 Computer Program Setup 121

Table 8-2 lists the branches that are submitted into the program. Each branch was mod-
eled as a fluid pipe having a roughness value. The connection tab in table 8-2 shows
which nodes are connected by the respective branch, this is done according to the sys-
tematic diagram shown in figure 8-1. The length and diameter of each branch is speci-
fied according to the engineering drawing of the test setup, as shown in figure 7-3. The
surface roughness value was determined using reference roughness values reported by
Farshad [85]. For the metal parts of the feed system, the roughness value of commercial
steel pipes was assumed, which is 46 µm [85]. The flexible hoses, denoted by flex_hose_1
and flex_hose_2, are lined by PTFE on the inside. The roughness value for these branches
was assumed to be equal to tubes with an internal plastic coating, which is 5 µm [85].

Table 8-2: The list of branches, used as an input to IPSAT, derived from the DHX-200 Aurora
engine design.

ID name type connection length
(mm)

diameter
(mm)

roughness
(µm)

b1 flex_hose_1_fitting pipe n1 - n2 70 12.8 46
b2 flex_hose_2_fitting pipe n2 - n4 70 12.8 46
b3 flex_hose_1 pipe n3 - n5 600 15.8 5
b4 flex_hose_2 pipe n4 - n6 600 15.8 5
b5 flex_hose_1_fitting pipe n5 - n7 70 12.8 46
b6 flex_hose_2_fitting pipe n6 - n7 70 12.8 46
b7 fitting_1 pipe n7 - n8 39 15 46
b8 MV-2 pipe n8 - n9 37 14 46
b9 fitting_2- pipe n9 - n10 39 15 46
b10 MV-1 pipe n10 - n11 27 15 46
b11 fitting_2 pipe n11 - n12 21 15 46
b12 fitting_3 pipe n12 - n13 54 16.5 46

8-2-2 Program settings

For each validation data point, the program is setup using the same settings. The pro-
gram settings used in the validation of IPSAT using the DHX-200 Aurora data is shown in
table 8-3.

Master of Science Thesis V.R. Huijsman

122 Computer Program Validation

Table 8-3: Program settings for the validation of IPSAT using the DHX-200 Aurora engine
feed system.

Option Setting
Fluid system initialization module settings

Nodes initialization method linear interpolation
Branches initialization method Bernoulli

Solver module settings
Solver mode steady state
Iteration min 0
Iteration max 500
Equations fluid mass, fluid momentum, fluid energy
Variables pressure, massflow, enthalpy

Conservation of fluid energy
Solver method Broyden’s method
Relaxation factor 0.1
Convergence limit 10−3

Divergence limit 106

Equation terms massflow
Conservation of fluid momentum

Solver method Broyden’s method
Relaxation factor 0.1
Convergence limit 10−3

Divergence limit 106

Equation terms pressure, friction
Conservation of fluid mass

Solver method Broyden’s method
Relaxation factor 0.1
Convergence limit 10−3

Divergence limit 106

Equation terms massflow
Thermophysics module settings

Variable transform model Helmholtz MEOS
Equation of state model Helmholtz MEOS
Melting pressure model N/A
Vapour pressure model polylogarithmic formulation
Saturated liquid density model polylogarithmic formulation
Saturated vapour density model polylogarithmic formulation
Surface tension model REFPROP formulation
Viscosity model saturation polynomial
Thermal conductivity model N/A

8-2-3 Input Data

The input data for each simulation case are the pressure and temperature of each
boundary fluid node. In the DHX-200 Aurora fluid system, as seen in figure 8-1 and ta-
ble 8-1, these are nodes n1, n2 and n13.

The pressures in those nodes were obtained from the test data, as was presented in
figures 7-4 till 7-8 in section 7-3. As was discussed in section 7-3 these pressure values were
obtained by averaging the sensor output data over a time period of 1.25 seconds.

Because the temperature of the nitrous oxide was not directly measured in both the tank
and the manifold, some assumptions need to be made. The tank is pressurized using the

V.R. Huijsman Master of Science Thesis

8-2 Computer Program Setup 123

self pressurization properties of nitrous oxide. It is therefore assumed that the nitrous oxide
in the tank starts close to the saturation curve and follows that curve. The temperature
in the injector manifold is more difficult to determine, however its value has little impact
on the rest of the system, because it is located downstream. The temperature in the
injector manifold is also set to be close to the saturation temperature. The saturation
temperature, for a given pressure, is obtained by inversing equation 5-13 in section 5-1-2.

There is currently no available model which is able to model the viscosity of nitrous oxide
for the full range of δ and τ . The model which is used to model the nitrous oxide viscosity
are two polynomials which model the saturated vapour viscosity and saturated liquid
viscosity separately. Because of this duality, the validation procedure is split into two sep-
arate cases. The first case models the fluid as being fully vapour. This is done by moving
each data point to the right of the saturation curve by increasing the temperature by
1 degree Kelvin. The second case models the fluid as being fully liquid. This is done by
moving each data point to the left of the saturation curve by decreasing the tempera-
ture by 1 degree Kelvin. This is done for the properties in both the oxidizer tank and the
injector manifold.

Table 8-4 till 8-8 shows the boundary nodes input data for every time interval. The data
corresponds to the data points shown in figures 7-4 till 7-8.

Table 8-4: The boundary node input data used to simulate the feed system response of
test 6.

t ptank Ts,tank pmanifold Ts,manifold
- (s) (MPa) (K) (MPa) (K)
1-1 3.23 4.7751 290.61 3.7891 280.84
1-2 3.48 4.6711 289.66 3.6869 279.72
1-3 3.73 4.5657 288.67 3.5937 278.68
1-4 3.98 4.4593 287.66 3.4965 277.58
1-5 4.23 4.3507 286.61 3.3941 276.39

Table 8-5: The boundary node input data used to simulate the feed system response of
test 9.

t ptank Ts,tank pmanifold Ts,manifold
- (s) (MPa) (K) (MPa) (K)
2-1 1.52 5.0809 293.33 4.3659 280.84
2-2 1.77 5.0394 292.97 4.3136 279.72
2-3 2.02 5.0018 292.64 4.2710 278.68
2-4 2.27 4.9667 292.33 4.2319 277.58
2-5 2.52 4.9353 291.05 4.1968 276.39
2-6 2.77 4.8979 291.72 4.1522 276.39
2-7 3.02 4.8551 291.34 4.1259 276.39
2-8 3.27 4.8087 290.92 4.0971 276.39
2-9 3.52 4.7625 290.50 4.0678 276.39
2-10 3.77 4.7164 290.08 4.0163 276.39

Master of Science Thesis V.R. Huijsman

124 Computer Program Validation

Table 8-6: The boundary node input data used to simulate the feed system response of
test 10.

t ptank Ts,tank pmanifold Ts,manifold
- (s) (MPa) (K) (MPa) (K)
3-1 2.12 4.9255 291.97 4.1712 284.83
3-2 2.37 4.8901 291.65 4.1329 284.44
3-3 2.62 4.8604 291.38 4.0891 284.00
3-4 2.87 4.8245 291.06 4.0537 283.63
3-5 3.12 4.7848 290.70 4.0223 283.31
3-6 3.37 4.7431 290.32 3.9924 283.00
3-7 3.62 4.7031 289.95 3.9643 282.70
3-8 3.87 4.6605 289.56 3.9309 282.35
3-9 4.12 4.6180 289.16 3.8895 281.92
3-10 4.37 4.5744 288.75 3.8497 281.49
3-11 4.62 4.5304 288.34 3.8106 281.07
3-12 4.87 4.4873 287.93 3.7705 280.64
3-13 5.12 4.4444 287.52 3.7281 280.17
3-14 5.37 4.4025 287.11 3.6905 279.76
3-15 5.62 4.3622 286.72 3.6526 279.34
3-16 5.87 4.3215 286.32 3.6163 278.94

Table 8-7: The boundary node input data used to simulate the feed system response of
test 13.

t ps,tank Ts,tank pmanifold Ts,manifold
- (s) (MPa) (K) (MPa) (K)
4-1 3.12 5.2292 294.60 4.7669 290.54
4-2 3.37 5.2084 294.43 4.7242 290.15
4-3 3.62 5.1876 294.25 4.6850 289.79
4-4 3.87 5.1674 294.08 4.6638 289.59
4-5 4.12 5.1488 293.92 4.6497 289.46
4-6 4.37 5.1309 293.76 4.6379 289.35
4-7 4.62 5.1127 293.61 4.6223 289.20
4-8 4.87 5.0950 293.45 4.6080 289.07
4-9 5.12 5.0782 293.31 4.5917 288.92
4-10 5.37 5.0618 293.16 4.5777 288.79
4-11 5.62 5.0451 293.02 4.5687 288.70
4-12 5.87 5.0286 292.87 4.5541 288.56
4-13 6.12 5.0136 292.74 4.5408 288.44
4-14 6.37 4.9979 292.61 4.5289 288.33
4-15 6.62 4.9830 292.47 4.5020 288.07
4-16 6.87 4.9689 292.35 4.4701 287.77

V.R. Huijsman Master of Science Thesis

8-3 Computer Program Results 125

Table 8-8: The boundary node input data used to simulate the feed system response of
test 14.

t ptank Ts,tank pmanifold Ts,manifold
- (s) (MPa) (K) (MPa) (K)
5-1 4.12 5.2766 295.01 4.6652 289.60
5-2 4.37 5.2555 294.83 4.6460 289.42
5-3 4.62 5.2351 294.65 4.6246 289.23
5-4 4.87 5.2157 294.49 4.6057 289.05
5-5 5.12 5.1976 294.34 4.5883 288.89
5-6 5.37 5.1820 294.20 4.5677 288.69
5-7 5.62 5.1700 294.10 4.5599 288.62
5-8 5.87 5.1592 294.01 4.5528 288.55
5-9 6.12 5.1469 293.90 4.5388 288.42
5-10 6.37 5.1289 293.75 4.5288 288.32
5-11 6.62 5.1082 293.57 4.5232 288.27
5-12 6.87 5.0872 293.39 4.5093 288.14
5-13 7.12 5.0657 293.20 4.4938 287.99
5-14 7.37 5.0435 293.01 4.4769 287.83
5-15 7.62 5.0202 292.80 4.4638 287.70
5-16 7.87 4.9970 292.60 4.4435 287.51
5-17 8.12 4.9733 292.39 4.4263 287.34
5-18 8.37 4.9462 292.15 4.4066 287.15
5-19 8.62 4.9200 291.92 4.3875 286.97
5-20 8.87 4.8955 291.70 4.3675 286.77
5-21 9.12 4.8718 291.49 4.3486 286.59
5-22 9.37 4.8462 291.26 4.3317 286.42
5-23 9.62 4.8201 291.02 4.3140 286.25
5-24 9.87 4.7952 290.79 4.2920 286.03
5-25 10.12 4.7710 290.57 4.2740 285.86
5-26 10.37 4.7468 290.35 4.2538 285.66
5-27 10.62 4.7220 290.13 4.2321 285.44
5-28 10.87 4.6984 289.91 4.2119 285.24
5-29 11.12 4.6789 289.73 4.1908 285.03
5-30 11.37 4.6576 289.53 4.1732 284.85
5-31 11.62 4.6354 289.33 4.1552 284.67
5-32 11.87 4.6143 289.13 4.1369 284.48

8-3 Computer Program Results

The results of IPSAT when using the data as presented in the previous sections are shown
in tables 8-9 till 8-13. No issues were reported during the execution of each of simulations
covering all the data points. Each simulation case took around 185 iterations to converge

The measured pressure, denoted as pmeas is the pressure measured at the junction of the
feed system as can be seen in figure 7-3. This point is equivalent to node n7 in the sys-
tematic diagram as shown in figure 8-1. The error is defined as the percentage difference
between the program results and the measured pressure. The pressure values, pcase 1 and
pcase 2, are defined as the pressure in case of fully vapour flow and the pressure in case
of fully liquid flow respectively.

Master of Science Thesis V.R. Huijsman

126 Computer Program Validation

Table 8-9: Results of the IPSAT program for the pressure in n7 compared to the measured
pressure from test 6.

t pmeas pcase 1 error ṁcase 1 pcase 2 error ṁcase 2
- (s) (MPa) (MPa) (%) (kg·s−1) (MPa) (%) (kg·s−1)
1-1 3.23 4.4369 4.4010 -0.8085 3.5386 4.4263 -0.2384 8.1763
1-2 3.48 4.3367 4.2982 -0.8871 3.4790 4.3249 -0.2726 8.1745
1-3 3.73 4.2411 4.1976 -1.0249 3.4031 4.2251 -0.3773 8.1371
1-4 3.98 4.1437 4.0950 -1.1747 3.3320 4.1235 -0.4871 8.1371
1-5 4.23 4.0405 3.9892 -1.2691 3.2650 4.0190 -0.5324 8.0865

Table 8-10: Results of the IPSAT program for the pressure in n7 compared to the measured
pressure from test 9.

t pmeas pcase 1 error ṁcase 1 pcase 2 error ṁcase 2
- (s) (MPa) (MPa) (%) (kg·s−1) (MPa) (%) (kg·s−1)
2-1 1.52 4.8187 4.8016 -0.3545 3.1926 4.8148 -0.0802 7.0520
2-2 1.77 4.7755 4.7568 -0.3924 3.2070 4.7675 -0.1672 7.1814
2-3 2.02 4.7361 4.7174 -0.3941 3.1991 4.7286 -0.1574 7.2074
2-4 2.27 4.7000 4.6810 -0.4048 3.1903 4.6926 -0.1576 7.2286
2-5 2.52 4.6646 4.6483 -0.3491 3.1826 4.6603 -0.0919 7.2478
2-6 2.77 4.6204 4.6084 -0.2595 3.1788 4.6210 0.0126 7.2820
2-7 3.02 4.5875 4.5717 -0.3437 3.1260 4.5840 -0.0769 7.2181
2-8 3.27 4.5532 4.5319 -0.4684 3.0695 4.5438 -0.2074 7.1488
2-9 3.52 4.5187 4.4920 -0.5915 3.0145 4.5035 -0.3361 7.0812
2-10 3.77 4.4718 4.4440 -0.6210 3.0041 4.4561 -0.3503 7.1092

Table 8-11: Results of the IPSAT program for the pressure in n7 compared to the measured
pressure from test 10.

t pmeas pcase 1 error ṁcase 1 pcase 2 error ṁcase 2
- (s) (MPa) (MPa) (%) (kg·s−1) (MPa) (%) (kg·s−1)
3-1 2.12 4.5401 4.6328 2.0420 3.2089 4.6455 2.3217 7.3142
3-2 2.37 4.4993 4.5965 2.1596 3.1974 4.6096 2.4507 7.3300
3-3 2.62 4.4609 4.5618 2.2610 3.2100 4.5757 2.5734 7.3903
3-4 2.87 4.4248 4.5262 2.2907 3.1916 4.5404 2.6121 7.3920
3-5 3.12 4.3962 4.4896 2.2079 3.1567 4.5038 2.5313 7.3624
3-6 3.37 4.3368 4.4523 2.6628 3.1144 4.4663 2.9867 7.3185
3-7 3.62 4.2748 4.4167 3.3197 3.0729 4.4306 3.6441 7.2733
3-8 3.87 4.2241 4.3776 3.6333 3.0354 4.3914 3.9605 7.2391
3-9 4.12 4.1729 4.3356 3.8991 3.0135 4.3497 4.2378 7.2381
3-10 4.37 4.1429 4.2935 3.6357 2.9861 4.3079 3.9817 7.2258
3-11 4.62 4.1120 4.2514 3.3910 2.9566 4.2659 3.7435 7.2087
3-12 4.87 4.0817 4.2096 3.1327 2.9312 4.2243 3.4935 7.1992
3-13 5.12 4.0553 4.1670 2.7542 2.9106 4.1821 3.1262 7.1999
3-14 5.37 4.0223 4.1268 2.5977 2.8835 4.1420 2.9770 7.1845
3-15 5.62 3.9889 4.0875 2.4717 2.8607 4.1030 2.8604 7.1768
3-16 5.87 3.9510 4.0485 2.4683 2.8342 4.0642 2.8647 7.1605

V.R. Huijsman Master of Science Thesis

8-3 Computer Program Results 127

Table 8-12: Results of the IPSAT program for the pressure in n7 compared to the measured
pressure from test 13.

t pmeas pcase 1 error ṁcase 1 pcase 2 error ṁcase 2
- (s) (MPa) (MPa) (%) (kg·s−1) (MPa) (%) (kg·s−1)
4-1 3.12 5.0229 5.0450 0.4398 2.6686 5.0472 0.4842 5.8523
4-2 3.37 5.0012 5.0158 0.2923 2.7198 5.0187 0.3492 5.9815
4-3 3.62 4.9809 4.9880 0.1429 2.7600 4.9914 0.2107 6.0875
4-4 3.87 4.9636 4.9675 0.0778 2.7545 4.9709 0.1476 6.0963
4-5 4.12 4.9467 4.9506 0.0789 2.7353 4.9540 0.1480 6.0747
4-6 4.37 4.9304 4.9351 0.0943 2.7122 4.9384 0.1619 6.0439
4-7 4.62 4.9139 4.9179 0.0807 2.6982 4.9212 0.1484 6.0324
4-8 4.87 4.8970 4.9015 0.0916 2.6823 4.9048 0.1591 6.0163
4-9 5.12 4.8808 4.8849 0.0840 2.6743 4.8882 0.1525 6.0162
4-10 5.37 4.8646 4.8694 0.0994 2.6616 4.8728 0.1680 6.0053
4-11 5.62 4.8498 4.8557 0.1217 2.6349 4.8589 0.1874 5.9643
4-12 5.87 4.8346 4.8399 0.1106 2.6235 4.8431 0.1766 5.9561
4-13 6.12 4.8181 4.8256 0.1560 2.6133 4.8288 0.2223 5.9488
4-14 6.37 4.8016 4.8114 0.2038 2.5972 4.8145 0.2694 5.9294
4-15 6.62 4.7828 4.7919 0.1907 2.6228 4.7954 0.2640 6.0000
4-16 6.87 4.7599 4.7711 0.2343 2.6629 4.7751 0.3183 6.1010

Master of Science Thesis V.R. Huijsman

128 Computer Program Validation

Table 8-13: Results of the IPSAT program for the pressure in n7 compared to the measured
pressure from test 14.

t pmeas pcase 1 error ṁcase 1 pcase 2 error ṁcase 2
- (s) (MPa) (MPa) (%) (kg·s−1) (MPa) (%) (kg·s−1)
5-1 4.12 5.0427 5.0358 -0.1374 3.0672 5.0415 -0.0231 6.6298
5-2 4.37 5.0224 5.0154 -0.1390 3.0532 5.0212 -0.0234 6.6242
5-3 4.62 5.0043 4.9947 -0.1922 3.0464 5.0006 -0.0738 6.6324
5-4 4.87 4.9859 4.9755 -0.2085 3.0365 4.9815 -0.0881 6.6331
5-5 5.12 4.9674 4.9577 -0.1953 3.0268 4.9638 -0.0732 6.6327
5-6 5.37 4.9494 4.9403 -0.1847 3.0314 4.9465 -0.0578 6.6591
5-7 5.62 4.9349 4.9298 -0.1024 3.0163 4.9361 0.0236 6.6409
5-8 5.87 4.9243 4.9205 -0.0781 3.0030 4.9266 0.0470 6.6248
5-9 6.12 4.9067 4.9075 0.0171 3.0014 4.9138 0.1449 6.6349
5-10 6.37 4.8905 4.8926 0.0422 2.9749 4.8987 0.1674 6.5990
5-11 6.62 4.8762 4.8776 0.0280 2.9306 4.8833 0.1466 6.5283
5-12 6.87 4.8590 4.8593 0.0055 2.9048 4.8649 0.1223 6.4963
5-13 7.12 4.8408 4.8401 -0.0153 2.8814 4.8457 0.1003 6.4696
5-14 7.37 4.8210 4.8199 -0.0231 2.8594 4.8254 0.0919 6.4463
5-15 7.62 4.8028 4.8005 -0.0486 2.8254 4.8058 0.0629 6.3980
5-16 7.87 4.7822 4.7784 -0.0796 2.8087 4.7838 0.0328 6.3867
5-17 8.12 4.7625 4.7572 -0.1116 2.7834 4.7625 -0.0006 6.3567
5-18 8.37 4.7424 4.7329 -0.1999 2.7544 4.7381 -0.0905 6.3223
5-19 8.62 4.7216 4.7094 -0.2575 2.7267 4.7145 -0.1496 6.2889
5-20 8.87 4.7011 4.6867 -0.3067 2.7059 4.6917 -0.1990 6.2687
5-21 9.12 4.6806 4.6648 -0.3368 2.6847 4.6699 -0.2296 6.2466
5-22 9.37 4.6604 4.6426 -0.3826 2.6534 4.6474 -0.2781 6.2037
5-23 9.62 4.6339 4.6197 -0.3066 2.6226 4.6244 -0.2045 6.1620
5-24 9.87 4.5983 4.5959 -0.0516 2.6057 4.6007 0.0515 6.1496
5-25 10.12 4.5735 4.5741 0.0135 2.5811 4.5788 0.1153 6.1190
5-26 10.37 4.5489 4.5515 0.0565 2.5619 4.5561 0.1583 6.1002
5-27 10.62 4.5259 4.5279 0.0438 2.5448 4.5325 0.1462 6.0864
5-28 10.87 4.5005 4.5056 0.1135 2.5274 4.5102 0.2163 6.0706
5-29 11.12 4.4781 4.4855 0.1659 2.5239 4.4903 0.2719 6.0820
5-30 11.37 4.4543 4.4657 0.2551 2.5067 4.4704 0.3610 6.0641
5-31 11.62 4.4190 4.4451 0.5904 2.4880 4.4498 0.6963 6.0434
5-32 11.87 4.3941 4.4251 0.7052 2.4732 4.4298 0.8115 6.0303

8-4 Computer Program Results Discussion

The results show that both the fully vapour and fully liquid simulations report lower pres-
sures than was measured for tests 6 and 9 and report higher pressures for tests 10 and 13.
Both cases show general good agreement between the simulated fluid system pressure
and the test data for all tests except test 10. The average error between the simulated
pressure and the actual pressure is <1% for all tests except test 10. Which is within 3 times
of the accuracy of the pressure sensors. The program is even able to reproduce the
pressure data to < 0.3% for test 14, this is well within the accuracy range of the pressure
sensor.

Another observation is that the difference between the fully vapour analysis and the fully
liquid analysis is not very significant, in most cases the difference is in the order of 103

- 104 Pa whilst the pressure is in the order of 4·106 Pa. This suggest that the evaluated
fluid friction is quite similar in both cases. The model used in this analysis to determine

V.R. Huijsman Master of Science Thesis

8-4 Computer Program Results Discussion 129

the fluid viscosity of nitrous oxide [63] shows that the viscosity of the saturated liquid and
the saturated vapour differ by a factor of 3.5. The flow velocity between the liquid and
vapour cases differ by a factor of 3. This means that the Reynolds number of the flow in
both cases are almost similar, resulting in a similar friction factor.

The data from test 10 seem to be an out-lier amongst the other results. The difference is
about 4 times larger compared to all the other tests and lies well outside the accuracy
range of the pressure sensors. The cause of this difference is currently not well under-
stood. Because the difference is relatively consistent during the test and this much of a
difference is only seen in this test, it is suggested that the most likely cause of this differ-
ence is the sensor. It is likely that the calibration of the pressure sensor or the pressure
sensor itself was faulty for this test.

The massflow data between the two cases are very different. This is to be expected
because the density of the saturated liquid is about 7 times the density of the saturated
vapour around pressures that the engine operates at. Given that the flow velocity of
the saturated liquid is around 3 times smaller compared to the saturated vapour, the
massflow between the two cases differ by a factor of more than 2. This can be seen in
the simulation output data.

Comparing the calculated massflow data to the measured mean massflow, see table 7-
4, for each of the tests shows that for every test the case 1 simulation slightly underes-
timates the massflow and the case 2 heavily overestimates the massflow. This suggests
that the density of the fluid during the tests is close to the vapour density. Physically this
means that the fluid flowing through the pipes is two-phased. This is in agreement with
what is commonly observed in hybrid rocket engine feed systems that employ fluids that
are close to the saturation line [86]. However, the extend of the vapour fraction that is
suggested by these simulation results is doubtful and needs to be separately verified by
other tests. The simulated, equivalent, vapour fraction of this two-phase flow could be
calculated by combining the measured massflow and the simulated massflows for the
two different cases. Unfortunately, there is no information regarding the actual vapour
fraction of the fluid at the test, so these values cannot be compared.

The validation analysis shows that the program is capable of accurately modeling the
trend of changing pressure in a relatively simple setup. However, it also shows that the
dataset is lacking crucial information (e.g. fluid temperature and vapour fraction) in or-
der to confidently conclude that the program is giving the correct thermophsyical data
as output. Furthermore, the program is not yet able to make full use of the validation
data itself. The prediction of the transients and the combustion part of the data are not
yet able to be modeled by the program. It is therefore suggested that future work should
focus on improving the program itself, to include more functionality, and validate the
program using more and more accurate data sources.

Master of Science Thesis V.R. Huijsman

130 Computer Program Validation

V.R. Huijsman Master of Science Thesis

Chapter 9

Conclusions and
Recommendations

9-1 Conclusions

The research objective of this thesis report, as stated in chapter 2, is to develop a general
purpose fluid system analysis tool for the design of a propulsion system by integrating
various modules into one computer program. This section will evaluate to what extend
this research objective has been satisfied.

The first step in this thesis project was he definition of the project goals and a number
of requirements as presented in chapter 2. DARE was identified as the main customer
together with other academic endeavors. In order to gain a historic perspective of the
development of similar tools a small literature survey was performed, see chapter 3. The
results of this literature survey and the project goals are combined into a top level pro-
gram design which set the basis of the program, see chapter 4. The functionality of the
program is defined by the modules which it contains. Chapter 5 outlined the different
modules which currently makes up IPSAT and explained the mathematical foundations
of the procedures which are used. The correct implementation of each module was ver-
ified by implementing various verification techniques, see chapter 6. The last part of this
thesis project was the validation of the program. This was successfully done by compar-
ing the output of the program with the test results of the DHX-200 Aurora rocket engine
developed by DARE.

The ultimate goal is to create a modular, flexible and fully transparent propulsion system
analysis and design tool which is accessible to both the developer and the designer. In
order to verify whether the research objective has been met, a list of six project goals
have been defined as stated in chapter 2.

The first project goal states that the program shall be modular. This was achieved to a
large extend by the clear definition and implementation of program modules which are
explained in further detail in chapter 4. Modules can easily be interchanged using a
program settings input file. This was regularly done during the verification and validation
phase of the project. The implementation of function libraries in each module allows
for an structured and practical way to allow different models and methods to be imple-
mented in the program. Each module can be designed independently as long as the
basic module architecture as described in chapter 4 is maintained.

Master of Science Thesis V.R. Huijsman

132 Conclusions and Recommendations

The second project goal states that the program shall provide basic functionality. This
was fully achieved by the implementation of five different modules: A system initialization
module, a fluid system initialization module, a solver module, a thermophysics module
and a fluid friction module. The details of each module are described in chapter 5. Each
module is constructed according to the module definitions as stated by the first project
goal. Each module has a structured program architecture and contains several different
models. The existing modules can be extended by using a straightforward procedure.
Future modules can be added by adhering to the module definition as is presented in
chapter 4. Both modules and models can be called using the program settings file.

The third project goal states that the program shall be transparent. This was only partially
achieved in the current state of the program. The input settings are documented in a
structured program settings file. This functions as a basic overview of the models and
methods used in the program. However, a full output file summarizing the problem and
how it was solved has not yet been implemented. It is expected that this can be done
by implementing an output module that takes the program data and converts it into a
structured output file. The program architecture has been documented by presenting
the top level functionality in chapters 4 and 5. The program code has been organized
and largely documented in the individual function scripts. Another goal which was not
achieved in the current project is the presentation of the uncertainty and validity of the
results obtained by the program. It is expected that this functionality can be added to
the proposed output file module.

The fourth project goal states that the program shall be flexible. This was achieved by
the implementation of a nodes and branches FVM scheme to model a generic fluid sys-
tem. This method, presented in section 4, allows the designer to convert a fluid system,
as designed in an engineering schematic, into a systematic nodes and branches model
which can be analyzed by IPSAT. The designer is free to choose the modules and mod-
els/methods which are used to analyze the problem by selecting them in the program
settings file.

The fifth project goal states that the program shall be verified. This was achieved by
individually verifying the modules and checking whether the models/methods are im-
plemented correctly. The thermophsyics module was verified by checking the output
results against source papers and programs using the same models. The fluid friction
module was verified by checking the implementation of the models against predefined
output values. The solver module was verified by checking the convergence behavior of
different methods using a reference problem. The full details of the verification process is
presented in chapter 6.

The sixth project goal states that the program shall be validated. This was achieved
by comparing the results of the DHX-200 Aurora hybrid engine test against the program
output, see chapters 7 and 8. The program is able to model the feed system behavior of
the DHX-200 Aurora engine to within the accuracy of the sensors. It is also suggested that
this accuracy can be increased with a few additions to the fluid friction module and the
thermophysics module. However, the validation process was limited both by the current
capabilities of the program and the available validation data set.

It can be concluded that this thesis project has laid the foundation for the creation of a
general propulsion system analysis tool with the creation of a basic fluid system solving
tool. The most difficult part of creating a general propulsion system design tool have
been overcome in this project. The expansion of the functionality of the program is seen
as a logical next step in order to meet the ultimate goal of creating a modular, flexible
and fully transparent propulsion system analysis and design tool.

V.R. Huijsman Master of Science Thesis

9-2 Recommendations 133

9-2 Recommendations

This research project has set the foundation for an extensive fluid system simulation envi-
ronment. The current version of IPSAT is limited to simple fluid system simulations. It is the
intention that the next step in the design of the program is to greatly increase its capabil-
ities. This section will present the recommendations on how to increase the capabilities
of the program as envisioned

First the following recommendations can be made with respect to the extension of the
modules which are currently implemented in IPSAT, see chapter 5:

• Recommendations regarding the thermophysics module:

– Adding more species to the specie database will increase the functionality of
the program. The following list of species were initially considered for addition
but did not make it in the current version of the program:
∗ JP-2 / kerosene
∗ Hydrogen peroxide
∗ Water (for calibration/validation purposes)

– Currently, the variable transform functions are relatively unstable for data close
to the saturation line. Span [42] recommends a variety of procedures in order
to increase the stability and accuracy of the obtained solution. It is recom-
mended that these techniques are investigated and implemented.

– The current evaluation of the multi variable equation of state is relatively slow.
This becomes a problem when the analysis involves many fluid nodes and/or
many iteration to solve. It is recommended to investigate the optimization of
the calculation process in order to speed up the solving process.

– It is recommended to include simpler equations of state in order to improve the
preliminary design capabilities and speed up the design process. Examples in-
clude the cubic Soave-Redlich-Kwong [87] or the Peng-Robinson [88] equation
of state.

– In the current thermophysics module there is no two phase flow modeling ca-
pabilities. This can be implemented for pure fluids using the procedure de-
scribed by Span [42].

• Recommendations regarding the solver module:

– The current implementation of the Newton-Raphson scheme is relatively unsta-
ble. It is recommended to implement more sophisticated solving techniques in
order to guarentee solver stability over a wider range of problems.

– In order to increase the capabilities of the program it is recommended to in-
clude a solid node and solid branch capable of transferring heat from the fluid
by means of conduction and convection.

Next to the recommendations regarding the existing set of modules, there are also sev-
eral recommended module additions.

• A chemical reaction module: A chemical reaction module is a critical element in
the design of a propulsion system. This module should be able to calculate the
properties of a chemical reaction process similarly to what is done by programs
such as CEA [2] and RPA [1]. Such a module could be combined with a dedicated
combustor library which applies the properties calculated by the chemical reaction
subroutine to the properties of a combustor (e.g. liquid rocket engine).

Master of Science Thesis V.R. Huijsman

134 Conclusions and Recommendations

• A fluid tank module: A fluid tank module should be able to model the complex
dynamics inside a fluid storage tank. One type of tanks which are particularly of
interest are the self pressurized tanks that are often used by DARE. The transient
behavior of fluid tanks is a well studied phenomenon and a number of methods
could be summarized into one fluid tank module.

• A fluid injection module: The injector breaks up stream of fluid into small droplets. It
is an essential element in any liquid or hybrid rocket engine. There exists a number of
empirical methods which can predict the behavior of the injector (see [7] and [9]).
These could be implemented in the form of a fluid injection module.

These modules will greatly increase the efficacy of the computer program in future ver-
sions of the program. Building these modules can be done as part of future research
projects within, or outside of, DARE and the TU Delft.

There are also a number of general recommendations when it comes to the IPSAT com-
puter program. First of all, the current interface with the program is very crude. The
designer is currently forced to work with the raw scripting interface of Matlab. It is recom-
mended that a intuitive and effective user interface is developed which can translate
the complex inner workings of the program to the designer in a simple format.

Even though the Matlab interface is not particularly difficult to work with, the use of pro-
prietary third party software severely limits the distribution of the computer program. It is
recommended that future versions of the program will be written in open source script-
ing language like Python, or in a programming language like C# such that it can be
compiled and run as a standalone program.

Lastly, it is recommended to validate the current version of the program using more data
sets from different kinds of tests. The effectiveness of the program is directly linked to
the validity of the program results. Each new validation test will increase the knowledge
of the capabilities and the limitations of the program. This is essential in keeping the
program relevant in the future.

V.R. Huijsman Master of Science Thesis

Bibliography

[1] A. Ponomarenko, “RPA - Tool for Rocket Propulsion Analysis,” Space Propulsion Con-
ference, 2014.

[2] S. Gordon and B. McBride, “Computer Program for Calculation of Complex Chemi-
cal Equilibrium Compositions and Applications I. Analyis,” tech. rep., National Aero-
nautics and Space Administration, 1994.

[3] I. Bell, J. Wronski, S. Quoilin, and V. Lemort, “Pure and Pseudo-pure Fluid Thermo-
physical Property Evaluation and the Open-Source Thermophysical Property Library
CoolProp,” Industrial & Engineering Chemistry Research, vol. 53, no. 6, pp. 2498–
2508, 2014.

[4] E. Lemmon, M. Huber, and M. McLinden, “NIST Reference Fluid Thermodynamic and
Transport Properties REFPROP, Version 9.1, User’s Guide,” tech. rep., National Institute
of Standards and Technology, 2013.

[5] R. Sutton, M. Schuman, and W. Chadwick, “Operating Manual for Coaxial Injection
Combustion Model,” tech. rep., National Aeronautics and Space Administration,
1974.

[6] L. Combs, “Liquid Rocket Combustion Computer Model with Distributed Energy Re-
lease, DER Computer Program Documentation and User’s Guide Volume I,” tech.
rep., National Aeronautics and Space Administration, 1974.

[7] J. Muss, T. Nguyen, and C. Johnson, “User’s Manual for Rocket Combustor Interactive
Design (ROCCID) and Analysis Computer Program Volume I - User’s Manual,” tech.
rep., National Aeronautics and Space Administration, 1991.

[8] J. Portillo, J. Sisco, M. Corless, V. Sankaran, and W. Anderson, “Generalized Combus-
tion Instability Model,” 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and
Exhibit, 2006.

[9] D. Hague, R. Reichel, R. Jones, and C. Glatt, “Optimizing a Liquid Propellant Rocket
Engine with an Automated Combustor Design Code - AUTOCOM,” tech. rep., Na-
tional Aeronautics and Space Administration, 1971.

[10] A. Majumdar, A. LeClair, R. Moore, and P. Schallhorn, “Generalized Fluid System Sim-
ulation Program, Version 6.0,” tech. rep., National Aeronautics and Space Adminis-
tration, 2016.

Master of Science Thesis V.R. Huijsman

136 Bibliography

[11] F. D. Matteo, Modelling and Simulation of Liquid Rocket Engine Ignition Transients.
PhD thesis, Sapienza University of Rome, 2011.

[12] V. Huijsman, “Stratos II Financial Report,” tech. rep., Delft Aerospace Rocket Engi-
neering, 2015.

[13] Anon., “Documentation of Verification, and Accreditation (VV&A) for Models and
Simulations MIL-STD-3022,” tech. rep., Department of Defense, 2008.

[14] V. Huijsman, “DHX-200 Aurora Engine Configuration IX,” tech. rep., Delft Aerospace
Rocket Engineering, 2016.

[15] R. Reichel, D. Hague, R. Jones, and C. Glatt, “Program User’s Manual for Optimizing
the Design of a Liquid Rocket Engine with the Automated combustor Design Code
AUTOCOM,” tech. rep., National Aeronautics and Space Administration, 1973.

[16] A. Majumdar and K. van Hooser, “A General Fluid System Simulation Program to
Model Secondary Flows in Turbomachinery,” 31st AIAA/ASME/SAE/ASEE Joint Propul-
sion Conference and Exhibit, 1995.

[17] P. Schallhorn and A. Majumdar, “Numerical Prediction of Pressure Distribution along
the Front and Back Face of a Rotating Disc With and Without Blades,” 33rd AIAA/AS-
ME/SAE/ASEE Joint Propulsion Conference and Exhibit, 1997.

[18] P. Schallhorn, D. Elrod, D. Goggin, and A. Majumdar, “A Novel Approach for Mod-
eling Long Bearing Squezze Film Damper Performance,” 34th AIAA/ASME/SAE/ASEE
Joint Propulsion Conference and Exhibit, 1998.

[19] P. Schallhorn, A. Majumdar, K. van Hooser, and M. Marsh, “Flow Simulation in Sec-
ondary Flow Passages of a Rocket Engine Turbopump,” 34th AIAA/ASME/SAE/ASEE
Joint Propulsion Conference and Exhibit, 1998.

[20] R. Champion and R. Darrow, “X-34 Main Propulsion System Design and Operation,”
34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 1998.

[21] K. Holt, A. Majumdar, T. Steadman, and A. Hedayat, “Numerical Modeling and
Test Data Comparison of Propulsion Test Article Helium Pressurization System,” 36th
AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2000.

[22] A. Majumdar and T. Steadman, “Numerical Modeling of Pressurization of a Propel-
lant Tank,” 37th AIAA Aerospace Sciences Meeting Conference and Exhibit, 1999.

[23] K. van Hooser, J. Bailey, and A. Majumdar, “Numerical Prediction of Transient Axial
Thrust and Internal Flows in a Rocket Engine Turbopump,” 35th AIAA/ASME/SAE/ASEE
Joint Propulsion Conference and Exhibit, 1999.

[24] A. Hedayat, T. Steadman, T. Brown, K. Knight, C. White, and R. Champion, “Pressur-
ization, Pneumatic, and Vent Subsystems of the X-34 Main Propulsion System,” 34th
AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhbit, 1998.

[25] T. Brown, J. McDonald, A. Hedayat, K. Knight, and R. Champion, “Propellant Man-
agement and Conditioning WiWith the X-34 Main Propulsion System,” 34th AIAA/AS-
ME/SAE/ASEE Joint Propulsion Conference and Exhibit, 1998.

[26] N. Yamanishi, T. Kimura, M. Takahashi, K. Okita, H. Negishi, and M. Atsumi, “Tran-
sient Analysis of the LE-7A Rocket Engine Using the Rocket Engine Dynamic simulator
(REDS),” 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2004.

V.R. Huijsman Master of Science Thesis

137

[27] C. Koppel, J. Moral, R. Vara, M. De Rosa, J. Steelant, and P. Omaly, “A Platform
Satellite Modelling with EcosimPro: Simulation Results,” 45th AIAA/ASME/SAE/ASEE
Joint Propulsion Conference, 2009.

[28] A. Isselhorst, “HM7B Simulation with ESPSS Tool on Ariane 5 ESC-A Upper Stage,” 46th
AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2010.

[29] V. Huff, S. Gordon, and V. Morrell, “General Method and Thermodynamic Tables for
Computation of Equilibrium Composition and Temperature of Chemical Reactions,”
tech. rep., National Aeronautics and Space Administration, 1951.

[30] S. Gordon, F. Zeleznik, and V. Huff, “A General Method for Automatic Computation of
Equilibrium Compositions and Theoretical Rocket Performance of Propellants,” tech.
rep., National Aeronautics and Space Administration, 1959.

[31] F. Zeleznik and S. Gordon, “An Analytical Investigation of Three General Methods of
Calculating Chemical-Equilibrium Compositions,” tech. rep., National Aeronautics
and Space Administration, 1960.

[32] F. Zeleznik and S. Gordon, “A General IBM 704 or 7090 Computer Program for
Computation of Chemical Equilibrium Compositions, Rocket Performance, and
Chapman-Jouget Detonations,” tech. rep., National Aeronautics and Space Ad-
ministration, 1962.

[33] R. Svehla and B. McBride, “Fortran IV Computer Program for Calculation of Ther-
modynamic and Transport Properties of Complex Chemical Systems,” tech. rep.,
National Aeronautics and Space Administration, 1973.

[34] S. Gordon and B. McBride, “Computer Program for Calculation of Complex Chem-
ical Equilibrium Compositions and Applications II. Users Maunual and Program De-
scription,” tech. rep., National Aeronautics and Space Administration, 1996.

[35] B. McBride, S. Gordon, and A. Martin, “Thermodynamic Data for Fifity Reference
Elements,” tech. rep., National Aeronaustics and Space Administration, 1993.

[36] M. Chase, C. Davies, J. Downey, D. Frurip, R. McDonald, and A. Syverud, “JANAF
Thermochemical Tables Third Edition,” Analytical Chemistry, vol. 62, pp. 588A–588A,
May 1990.

[37] A. Ponomarenko, “RPA: Tool for Liquid Propellant Rocket Engine Analysis C++ Imple-
mentation,” tech. rep., RP Software+Engineering UG, 2010.

[38] A. Ponomarenko, “Thermal Analysis of Thrust Chambers,” tech. rep., RP Soft-
ware+Engineering UG, 2012.

[39] A. Ponomarenko, “Assessment of Delivered Performance of Thrust Chamber,” tech.
rep., RP Software+Engineering UG, 2013.

[40] A. Ponomarenko, “Rocket Propulsion Analysis Version 2.3 User Manual,” tech. rep.,
RP Software+Engineering UG, 2017.

[41] A. Ponomarenko, “Estimation of Engine Mass,” tech. rep., RP Software+Engineering
UG, 2015.

[42] R. Span, Multiparameter Equations of State, An Accurate Source of Thermodynamic
Property Data. Springer, 2000.

[43] M. Benedict, G. Webb, and L. Rubin, “An Emperical Equation for Thermodynamic
Properties of Light Hydrocarbons and Their Mixtures I. Methane, Ethane, Propane
and n Butane,” Journal of Chemical Physics, vol. 8, pp. 334–345, Apr. 1940.

Master of Science Thesis V.R. Huijsman

138 Bibliography

[44] R. Jacobsen and R. Steward, “Thermodynamic Properties of Nitrogen Including Liq-
uid and Vapor Phases from 63 K to 2000 K with Pressures to 10,000 Bar,” Journal of
Physical and Chemical Reference Data, vol. 2, pp. 757–922, Oct. 1973.

[45] S. Outcalt and M. McLinden, “A Modified Bennedict-Webb-Rubin Equation of State
for the Thermodynamic Properties of R152a (1,1-difluoroethane),” Journal of Physical
and Chemical Reference Data, vol. 25, pp. 605–636, Mar. 1996.

[46] E. Lemmon, R. Jacobsen, S. Penoncello, and D. Friend, “Thermodynamic Properties
of Air and Mixtures of Nitrogen, Argon, and Oxygen From 60 to 2000 K at Pressures to
2000 MPa,” Journal of Physical and Chemical Reference Data, vol. 29, pp. 331–385,
May 2000.

[47] E. Lemmon and R. Jacobsen, “Viscosity and Thermal Conductivity Equations for
Nitrogen, Oxygen, Argon and Air,” International Journal of Thermophysics, vol. 25,
pp. 21–69, Jan. 2004.

[48] C. Tegeler, R. Span, and W. Wagner, “A New Equation of State for Argon Covering
the Fluid Region for Temperature From the Melting Line to 700 K at Pressures up to
1000 MPa,” Journal of Physical and Chemical Reference Data, vol. 28, pp. 779–850,
May 1999.

[49] A. Mulero, I. Cachadina, and M. Parra, “Recommended Correlations for the sur-
face Tension of Common Fluids,” Journal of Physical and Chemical Reference Data.,
vol. 41, p. 043105, Dec. 2012.

[50] D. Bucker and W. Wagner, “A Reference Equation of State for the Thermodynamic
Properties of Ethane for Temperatures from the Melting Line to 675 K and Pressures up
to 900 MPa,” Journal of Physical and Chemical Reference Data, vol. 35, pp. 205–266,
Mar. 2006.

[51] D. Friend, H. Ingham, and J. Ely, “Thermophysical Properties of Ethane,” Journal of
Physical and Chemical Reference Data, vol. 20, pp. 275–347, Mar. 1991.

[52] J. Schroeder, S. Penoncello, and J. Schoeder, “A Fundamental Equation of State for
Ethanol,” Journal of Physical and Chemical Reference Data, vol. 43, p. 043102, Dec.
2014.

[53] T. Sun, J. Schouten, N. Trappeniers, and S. Biswas, “Accurate Measurement of the
Melting Line of Methanol and Ethanol at Pressures up to 270 MPa,” Berichte der
Bunsengesellschaft fÃijr physikalische Chemie, vol. 92, pp. 652–655, May 1988.

[54] M. Assael, E. Sykioti, M. Huber, and R. Perkins, “Reference Correlation of the Thermal
Conductivity of Ethanol from the Triple Point to 600 K and up to 245 MPa,” Journal of
Physical and Chemical Reference Data, vol. 42, p. 023102, June 2013.

[55] D. Vega, A New Wide Range Equation of State for Helium-4. PhD thesis, Texas A&M
University, 2013.

[56] F. Datchi, P. Loubeyre, and R. LeToullec, “Extended and Accurate Determination of
the Melting Curves of Argon, Helium, Ice (H2O), and Hydrogen (H2),” Journal of
Physics: Condensed Matter, vol. 61, pp. 6535 – 6546, Mar. 2000.

[57] J. Leachman, R. Jacobsen, S. Penoncello, and E. Lemmon, “Fundamental Equa-
tions of State for Parahydrogen, Normal Hydrogen and Othohydrogen,” Journal of
Physical and Chemical Reference Data, vol. 38, pp. 721–748, Sept. 2009.

V.R. Huijsman Master of Science Thesis

139

[58] M. Assael, J. Assael, M. Huber, R. Perkins, and Y. Takata, “Correlation of the Thermal
Conductivity of Normal and Parahydrogen from the Triple Point to 1000 K and up
to 100 MPa,” Journal of Physical and Chemical Reference Data, vol. 40, p. 033101,
Sept. 2011.

[59] U. Setzmann and W. Wagner, “A New Eqution of State and Tables of Thermodynamic
Properties for Methane Covering the Range from the Melting Line to 625 K at PPres-
sure up tp 1000 MPa,” Journal of Physical and Chemical Reference Data, vol. 20,
pp. 1061–1155, Nov. 1991.

[60] R. Kleinrahm and W. Wagner, “Measurement and Correlation of the Equilibrium Liq-
uid and Vapour Densities and the Vapour Pressure Along the Coexistence Curve
of Methane,” The Journal of Chemical Thermodynamics, vol. 18, pp. 739–760, Aug.
1986.

[61] R. Span, E. Lemmon, R. Jacobsen, W. Wagner, and A. Yokozeki, “A Reference Equa-
tion of State for the Thermodynamic Properties of Nitrogen for Temperatures from
63.151 to 1000 K and Pressures to 2200 MPa,” Journal of Physical and Chemical Ref-
erence Data, vol. 29, pp. 1361–1433, Nov. 2000.

[62] E. Lemmon, “Short Fundamental Equations of State for 20 Industrial Fluids,” Journal
of Chemical & Engineering Data, vol. 51, pp. 785–850, Apr. 2006.

[63] C. Beaton, J. Walton, and G. Walter, “Thermophysical Properties of Nitrous Oxide,”
tech. rep., IHS ESDU, 1991.

[64] R. Steward, R. Jacobsen, and W. Wagner, “Thermodynamic Properties of Oxygen
from the Triple Point to 300 K with Pressures to 80 MPa,” Journal of Physical and Chem-
ical Reference Data, vol. 20, pp. 917–1021, Sept. 1991.

[65] U. Setzmann and W. Wagner, “A New Method for Optimizing the Structures of Ther-
modynamic Correlation Equations,” International Journal of Thermophysics, vol. 10,
pp. 1103–1126, Apr. 1989.

[66] W. Wagner, “New Vapour Pressure Measurements for Argon and Nitrogen and a New
Method for Establishing Rational Vapour Pressure Equations,” Cryogenics, Volume 13,
Issue 8, vol. 13, pp. 470–482, Aug. 1973.

[67] F. Simon and G. Glatzel, “Bemerkungen zur Schmelzdruckkurve,” Zeitschrift fÃijr Anor-
ganische Chemie, vol. 178, pp. 309–316, Jan. 1928.

[68] V. Kechin, “Thermodynamically Based Melting-Curve Equation,” Journal of Physics:
Condensed Matter, vol. 7, pp. 531–535, Feb. 1995.

[69] V. Vesovic, W. Wakeham, G. Olchowy, J. Sengers, J. Watson, and J. Millat, “The Trans-
port Properties of Carbon Dioxide,” Journal of Physical and Chemical Reference
Data, vol. 19, pp. 763–808, May 1990.

[70] H. Hanley, R. McCarty, and H. Intemann, “The Viscosity and Thermal Conductivity of
Dilute Gaseous Hydrogen from 15 to 5000 K,” Journal of Research of the National
Bureau of Standards, vol. 74A, pp. 331–353, May 1970.

[71] G. Olchowy and J. Sengers, “A Simplified Representation for the Thermal Conduc-
tivity of Fluids in the Critical Region,” International Journal of Thermophysics, vol. 10,
pp. 417–426, Mar. 1989.

[72] S. Haaland, “Simple and Explicit Formulas for the Friction Factor in Turbulent Pipe
Flow,” Journal of Fluids Engineering, vol. 105, pp. 89–90, Mar. 1983.

Master of Science Thesis V.R. Huijsman

140 Bibliography

[73] F. White, Viscous Fluid Flow. McGraw-Hill, 1991.

[74] R. Shah and A. London, “Laminar Flow Forced Convection Heat Transfer and Flow
Friction in Straight and Curved Ducts - A Summary of Analytical Solutions,” tech. rep.,
Office of Naval Research, 1971.

[75] C. Broyden, “A Class of Methods for Solving Nonlinear Simultaneous Equations,”
Mathematics of Computation, vol. 19, no. 92, pp. 577–593, 1965.

[76] R. Brent, Algorithms for Minimization without Derivatives. Prentice-Hall, 1973.

[77] F. Farshad, H. Rieke, and J. Garber, “New Developments in Surface Roughness Mea-
surements, Characterization, and Modeling Fluid Flow in Pipe,” Journal of Pertoleum
Science and Engineering, vol. 29, pp. 139–150, Apr. 2001.

[78] D. Brkic, “Solution of the Implicit Colebrook Equation for Flow Friction Using Excel,”
Spreadsheets in Education (eJSiE), vol. 10, Aug. 2017.

[79] V. Huijsman, “DHX-200 Aurora Engine Configuration IX Engine Datasheet,” tech. rep.,
Delft Aerospace Rocket Engineering, 2016.

[80] T. Knop, J. Wink, R. Huijsman, S. Powell, R. Werner, J. Ehlen, K. Samarawickrama,
B. Zandbergen, and A. Cervone, “Failure Mode Investigation of a Sorbitol-based
Hybrid Rocket Flight Motor for the Stratos II Sounding Rocket,” 51st AIAA/SAE/ASEE
Joint Propulsion Conference, 2015.

[81] J. Wink, T. Knop, R. Huijsman, S. Powell, K. Samarawickrama, A. Fraters, R. Werner,
C. Becker, F. Lindemann, J. Ehlen, A. Cervone, and B. Zandbergen, “Test Cam-
paign on a 10 kN Class Sorbitol-Based Hybrid Rocket Motor for the Stratos II Sounding
Rocket,” Space Propulsion Conference, 2014.

[82] Anon, “KAS Force Tansducer,” tech. rep., Angewandte System Technik Gruppe,
2017.

[83] Anon, “Tedea Huntleigh Load Cell Catalog,” tech. rep., Tedea-Huntleigh, 2014.

[84] Anon, “Pressure Tranducers and Transmitters ASIC ’Performer’,” tech. rep., Parker,
2007.

[85] F. Farshad and H. Rieke, “Surface-Roughness Design Values for Modern Pipes,” SPE
Drilling & Completion, vol. 21, pp. 212–215, Sept. 2006.

[86] B. Waxman, J. Zimmerman, and B. Cantwell, “Mass Flow Rate and Isolation Char-
acteristics of Injectors for Use with Self-Pressurizing Oxidizers in Hybrid Rockets,” 49th
AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 2013.

[87] G. Soave, “Equilibrium Constants from a Modified Redlich-Kwong Equation of State,”
Chemical Engineering Science, vol. 27, pp. 1197–1203, June 1972.

[88] D. Peng and D. Robinson, “A New Two-Constant Equation of State,” Industrial & En-
gineering Chemistry Fundamentals, vol. 15, pp. 59–64, Feb. 1976.

[89] O. Redlich and J. Kwong, “On the Thermodynamics of Solutions,” Chemical Reviews,
vol. 44, pp. 233–244, Feb. 1949.

V.R. Huijsman Master of Science Thesis

Appendix A

Calculation of δ and τ for Two
Given Thermodynamic Variables

The Helmholtz multiparameter equation of state is designed to treat the thermodynamic
variables z, p, u, h, s, cp, cv and w as dependent variables and ρ and T as independent
variables. Often, the problem is to find the complete set of thermodynamic variables as
a function of 2 thermodynamic variables which are not temperature and/or density. In
this case one or two of the equations listed in table 5-5 need to be reversed in order to
determine the temperature or density corresponding to the value of the given thermo-
dynamic state property.

The general problem is thus to find the set of τ and δ which corresponds to the values
of the two given thermodynamic variables, which are not temperature or pressure or
both. This is not a straightforward problem and requires an iterative process, because
the equations in table 5-5 cannot be reversed to give δ and τ . The procedure, which is
followed by IPSAT, is to turn this problem into a root finding problem, where the problem
is to find the root of the following function:

F − f(δ, τ) = 0 (A-1)

Where F is equal to the value of the thermodynamic state which is given and f(δ, τ) is
the evaluation of the Helmholtz energy derivative corresponding to the given state F
(see table 5-5). In the case that either temperature or density is given, equation A-1
is sufficient to provide the other independent variable (density or temperature). In the
case that neither temperature nor density is given the problem is more complex and an
additional root finding equation, for the second thermodynamic variable, needs to be
solved simultaneously.

When trying to find the root of equation A-1, the search may find multiple roots depend-
ing on the initial guess of the missing thermodynamic variable. This is illustrated in figure A-
1, where for a given pressure and temperate up to 5 different roots of equation A-1 may
exist.

Master of Science Thesis V.R. Huijsman

142 Calculation of δ and τ for Two Given Thermodynamic Variables

Figure A-1: The function F − f(δ, τ) for different values of δ and τ where, F is pressure
and f(δ, τ) is equal to equation 5-6 in table 5-5. The pressure is set to 106 Pa and the
substance is nitrogen. The roots of this function represent combinations of δ and τ where
equation 5-6 gives 106 Pa.

This introduces another problem when trying to find the correct value of δ and τ . A good
initial guess of either δ or τ is essential to have the root finding function to converge to the
correct root. The remaining part of this appendix will explain the methods used by IPSAT
to find a good estimate for δ or τ .

Three different cases will be described in more detail. These three cases are all used by
IPSAT for the calculation of a thermodynamic state. The three cases include the transform
of pressure and temperature, described in section A-1. The transform of pressure and
density, described in section A-2. The transform of pressure and enthalpy, described in
section A-3.

A-1 Pressure and Temperature as the Independent Variables

When pressure and temperature are given as the independent variables the root finding
problem is specified by:

p− fp(δ, τ) = 0 → p− ρRT
[
1 + δ

(
∂αr

∂δ

)
τ

]
= 0 (A-2)

The task is to find a good initial guess of the density which covers the entire fluid range for
different fluids. Span [42] recommends to use the soave-redlich-kwong cubic equation
of state [87, 89] to get a an approximation of the fluid density for a given temperature.
This is also the method used by IPSAT. The soave-redlich-kwong cubic equation of state
is given by:

p(v, T) = RT

v − b
− a(τ)
v(v + b) (A-3)

Where v is the specific molar volume (which is the inverse of the molar density), R is the
universal gas constant, T is the fluid temperature and a and b are constants which are
given by:

V.R. Huijsman Master of Science Thesis

A-1 Pressure and Temperature as the Independent Variables 143

a(τ) = 0.42747R
2T 2
c

pc

(
1 +m

(
1−

(
1
τ

)0.5
))2

, and b = 0.08664RTc
pc

(A-4)

Where Tc is the temperature at the critical point, pc is the pressure at the critical point, τ
is the inverse reduced temperature and m is given by:

m = 0.480 + 1.574ω − 0.176ω2 (A-5)

Where ω is the acentric factor which is defined to be:

ω = − log10

(
pv(τ = 1/0.7)

pc

)
− 1 (A-6)

Where pv(τ) is the vapor pressure for a given τ . In order to get the density out of the
soave-redlich-kwong equation of state, we need to define the compressibility factor to
be:

Z = p

ρRT
→ v = 1

ρ
= ZRT

p
(A-7)

Substituting equation A-7 into equation A-3 will give the following cubic equation:

Z3 − Z2 + (A−B −B2)Z −AB = 0 (A-8)

Where A and B are defined as:

A = ap

R2T 2 , and B = bp

RT
(A-9)

In order to find the density, which is captured by Z through equation A-7, the roots of
equation A-8 needs to be found. Substituting Z = Y + 1/3 into equation A-8 gives the
following reduced cubic:

Y 3 + rY + q = 0 (A-10)

Where r and q are defined as:

r = (A−B −B2)− 1
3 , and q = − 2

27 + 1
3(A−B −B2)−AB (A-11)

The discriminant of this cubic equation is given by:

D =
(r

3

)3
+
(q

2

)2
(A-12)

The number of real roots depend on the value of this discriminant:

• D > 0 In this case there is one real root and 2 complex roots.

• D < 0 In this case there are three real roots where the largest value of Y corresponds
to the vapor phase and the smallest value of Y corresponds to the liquid phase.

Master of Science Thesis V.R. Huijsman

144 Calculation of δ and τ for Two Given Thermodynamic Variables

• D = 0 in this case there is a multiple root and all roots are real.

In the case that D > 0 the three roots of the cubic equation can be found by first calcu-
lating the value of C, Where C is given by:

C = 3

√
−q2 +

√
D (A-13)

The three roots can then be found with the following relation:

Yi = ζkC − r

ζkC
with i = 1, 2, 3 and k = 0, 1, 2 (A-14)

Where ζ is the complex cube root of unity:

ζ = −1
2 +
√

3
2 i (A-15)

Usually the real root corresponds to k = 0. However in some cases where D > 0 and
q >

√
D/2 the first root will be complex. This this case, the second root, where k = 1,

yields a real value. Due to rounding errors the imaginary part does not disappear when
multiplying C with ζ by computer. Therefore, one has to dismiss the imaginary part from
the resulting complex number to use this root.

In the case that D ≤ 0 there are three real roots. These roots can be found using the
trigonometric solution method, where:

θ = 3

√
− r

3

27 , φ = cos−1
(
− q

2θ

)
(A-16)

The three roots can be found by the following relation:

Yi = 2 3
√
θ cos

(
φ

3 + 2kπ
3

)
with i = 1, 2, 3 and k = 0, 1, 2 (A-17)

In case D ≈ 0 and r ≈ 0 equation A-17 becomes undefined. If both values are getting
significantly close to zero, it indicates that the root is close to the critical region and Span
advises to use the critical density as a guess in that case [42]. In all other cases the guess
for the density can be obtained by substituting the value of the root into:

ρguess = p

RT (Y + 1/3) (A-18)

A-2 Pressure and Density as the Independent Variables

Similarly to the previous case the root finding problem is specified by:

p− fp(δ, τ) = 0 → p− ρRT
[
1 + δ

(
∂αr

∂δ

)
τ

]
= 0 (A-19)

The task is to find a good initial guess of the temperature given the density and pressure
to initiate the root finding method. Span recommends to use the original van der Waals

V.R. Huijsman Master of Science Thesis

A-3 Pressure and Enthalpy as the Independent Variables 145

equation of state for its simplicity and sufficient accuracy [42]. The original van der Waals
equation can be written as:

(
p+ a

v

)
(v − b) = RT → p(v, T) = RT

v − b
− a

v2 (A-20)

Where v is the specific molar volume (which is the inverse of the molar density), R is the
universal gas constant, T is the fluid temperature and a and b are constants which are
given by:

a = 27
64
R2T 2

pc
, and b = 1

8
RTc
pc

(A-21)

Inverting equation A-20 gives the following relation for the temperature:

Tguess = (p+ aρ2)(1/ρ− b)
R

(A-22)

The value for Tguess can directly be substituted in a Newton-Raphson method, or modified
Brent’s method (described in section 5-3-1), to solve equation A-19. When using a Regula
Falsi, or Brent’s method in its original form, a bracketed interval is needed. In this case
the two values for T which bracket an interval is given by: T1,2 = Tguess ∗ (1± a), where an
appropriate value for a is equal to 0.05 according to Span [42].

A-3 Pressure and Enthalpy as the Independent Variables

In this case, both δ and τ have to be determined. This means that the root finding method
will consist of finding the root of two dependent equations. One option would be to use a
two equations Newton-Raphson scheme, as described in section 5-3-1 with the following
two equations:

p− fp(δ, τ) = 0 → p− ρRT
[
1 + δ

(
∂αr

∂δ

)
τ

]
= 0 (A-23)

h− fh(δ, τ) = 0 → h− τRT
[(

∂α0

∂τ

)
δ

+
(
∂αr

∂τ

)
δ

]
+ δ

(
∂αr

∂δ

)
τ

+ 1 = 0 (A-24)

This would find both roots relatively quickly since both equations are solved simultane-
ously. However, this method implies that a good initial guess for both δ and τ can be
found for the given pressure and enthalpy. A good initial guess can be made when the
fluid is far from both the critical point and the saturation line. However, this root finding
method can become unstable close to the critical point and the saturation line.

Span recommends to do a two stage root finding method for increased stability and to
obtain a better guess for δ and τ [42]. This method first acquires an initial guess for τ
using the information provided by the given pressure and enthalpy. This estimate of τ is
then iterated to a final value of τ which is then used to find the final value of δ using the
method described in section A-1. Span recommends the following method to determine
the value for τ for the given pressure and enthalpy:

• If p > pc then calculate τ0 using the method described in section A-2 where δ = δc.
Next calculate the enthalpy h0 that corresponds to τ = τ0 and δ = δc.

Master of Science Thesis V.R. Huijsman

146 Calculation of δ and τ for Two Given Thermodynamic Variables

– If h > h0 then τ must be smaller than τ0. A guess for τ , that is sufficiently close
to the root, can be found by steadily decreasing τguess by using the following
relation: τguess,i+1 = τi/(1 + a) where a = 0.2. Each value for τguess,i is then
substituted into the relation described in section A-1 to find for which τguess,i
the residual changes sign. When this is the case, a root is close and the value
of τguess,i can be used as a guess.

– If h < h0 then τ must be larger than τ0. A guess for τ , that is sufficiently close
to the root, can be found by steadily increasing τguess by using the following
relation: τguess,i+1 = τi/(1 + a) where a = −0.1. Each value for τguess,i is then
substituted into the relation described in section A-1 to find for which τguess,i
the residual changes sign. When this is the case, a root is close and the value
of τguess,i can be used as a guess.

– If h < h0 and the enthalpy and τguess > τm the given enthalpy and pressure lies
outside the valid equation of state region.

• If p > pc then calculate the saturation temperature and densities, τs, δs,liq and δs,vap
corresponding to the given pressure. Next calculate the corresponding saturation
enthalpies hs,liq(τs, δs,liq) and hs,vap(τs, δs,vap)

– If h > hs,vap then τ must be smaller than τs. A guess for τ , that is sufficiently close
to the root, can be found by steadily decreasing τguess by using the following
relation: τguess,i+1 = τi/(1 + a) where a = 0.2. Each value for τguess,i is then
substituted into the relation described in section A-1 to find for which τguess,i
the residual changes sign. When this is the case, a root is close and the value
of τguess,i can be used as a guess.

– If h < hs,liq then τ must be larger than τs. A guess for τ , that is sufficiently close
to the root, can be found by steadily increasing τguess by using the following
relation: τguess,i+1 = τi/(1 + a). Span recommends to use the following value of
a to avoid increasing the value of τ by too much: a = −(τs − τm)/(bτs) where
b = 5. Each value for τguess,i is then substituted into the relation described in
section A-1 to find for which τguess,i the residual changes sign. When this is the
case, a root is close and the value of τguess,i can be used as a guess.

– If hs,liq < h < hs,vap then the fluid is in the two phase region. In this case τ = τs
and the value of τs has to be determined from the equation of state. Then the
value of hs,liq and hs,vap has to be determines from the equation of state. With
the values of hs,liq and hs,vap the vapour fraction can be determined from the
following equation:

f(τ, x) = fs,liq(τ) + x(fs,vap(τ)− fs,liq(τ)) (A-25)

Equation A-25 can then be used to evaluate the two phase equilibrium values
for all the other thermo physical properties (S, cv, cp, etc) where fs,vap and fs,liq
can be determined by substituting τ = τs and δ = δs,vap or δ = δs,liq. Where the
value of δs,vap and δs,liq have to be obtained from the equation of state. The
density of the two phase mixture can be obtained using the following relation:

ρ(τ, x) = [1/ρs,liq(τ) + x (1/ρs,vap(τ)− 1/ρs,liq(τ))]−1 (A-26)

Care should be taken when the fluid is inside the two phase region, since the
properties are non-uniform. This means that the thermophysical properties in
this regime have a high level of uncertainty.

V.R. Huijsman Master of Science Thesis

Appendix B

IPSAT Data structure summary

Table B-1: Summary of all available variables in the struct [Nodes]. [Nodes] contains the
information of all the nodes in the system. All customizable field names are listed between
square brackets.

Variable name Type Unit
[Nodes].[ID].name string N/A
[Nodes].[ID].type string N/A
[Nodes].[ID].connectivity string N/A

[Nodes].[ID].properties
[Nodes].[ID].properties.species string N/A
[Nodes].[ID].properties.pressure double Pa
[Nodes].[ID].properties.temperature double K
[Nodes].[ID].properties.density double kg·m−3

[Nodes].[ID].properties.melting_pressure double Pa
[Nodes].[ID].properties.vapor_pressure double Pa
[Nodes].[ID].properties.rho_l_sat double kg·m−3

[Nodes].[ID].properties.rho_v_sat double kg·m−3

[Nodes].[ID].properties.compressibility double -
[Nodes].[ID].properties.internal_energy double J·kg−1

[Nodes].[ID].properties.enthalpy double J·kg−1

[Nodes].[ID].properties.entropy double J·kg−1·K−1

[Nodes].[ID].properties.cv double J·kg−1·K−1

[Nodes].[ID].properties.cp double J·kg−1·K−1

[Nodes].[ID].properties.gamma double -
[Nodes].[ID].properties.speed_of_sound double m·s−1

[Nodes].[ID].properties.state string N/A
[Nodes].[ID].properties.surface_tension double N·m−1

[Nodes].[ID].properties.viscosity double Pa·s
[Nodes].[ID].solver

[Nodes].[ID].solver.equations.fluid_mass.residual double kg·s−1

[Nodes].[ID].solver.equations.fluid_mass.massflow.value double kg·s−1

[Nodes].[ID].solver.equations.fluid_mass.transient.value double kg·s−1

[Nodes].[ID].solver.equations.fluid_energy.residual double J·s−1

[Nodes].[ID].solver.equations.fluid_energy.massflow.value double J·s−1

Master of Science Thesis V.R. Huijsman

148 IPSAT Data structure summary

Variable name Type Unit
[Nodes].[ID].solver.equations.fluid_energy.friction.value double J·s−1

[Nodes].[ID].solver.equations.fluid_energy.transient.value double J·s−1

[Nodes].system
[Nodes].system.names.total cell N/A
[Nodes].system.names.internal cell N/A
[Nodes].system.names.boundary cell N/A
[Nodes].system.names.ambient cell N/A
[Nodes].system.names.solid cell N/A
[Nodes].system.amount.total integer N/A
[Nodes].system.amount.internal integer N/A
[Nodes].system.amount.boundary integer N/A
[Nodes].system.amount.ambient integer N/A
[Nodes].system.amount.solid integer N/A

Table B-2: Summary of all available variables in the struct [Branches]. [Branches] contains
the information of all the branches in the system. All customizable field names are listed
between square brackets.

Variable name Type Unit
[Branches].[ID].name string N/A
[Branches].[ID].type string N/A
[Branches].[ID].connectivity cell N/A

[Branches].[ID].geometry
[Branches].[ID].geometry.type string N/A
[Branches].[ID].geometry.length double m
[Branches].[ID].geometry.diameter double m
[Branches].[ID].geometry.area double m2

[Branches].[ID].geometry.epsilon double m
[Branches].[ID].geometry.flow_coefficient double -
[Branches].[ID].geometry.a double m
[Branches].[ID].geometry.b double m
[Branches].[ID].geometry.D1 double m
[Branches].[ID].geometry.D2 double m
[Branches].[ID].geometry.d1 double m
[Branches].[ID].geometry.d2 double m
[Branches].[ID].geometry.Lor double m

[Branches].[ID].properties
[Branches].[ID].properties.massflow double kg·s−1

[Branches].[ID].properties.reynolds_number double -
[Branches].[ID].properties.velocity double m·s−1

[Branches].[ID].properties.delta_p double Pa
[Branches].[ID].properties.friction_factor double kg−1·m−1

[Branches].[ID].solver
[Branches].[ID].solver.equations.fluid_momentum.residual double N
[Branches].[ID].solver.equations
.fluid_momentum.pressure.value double N
[Branches].[ID].solver.equations
.fluid_momentum.friction.value double N

[Branches].system
[Branches].system.names.total cell N/A
[Branches].system.names.fluid_branch cell N/A

V.R. Huijsman Master of Science Thesis

149

Variable name Type Unit
[Branches].system.amount.total integer N/A
[Branches].system.amount.fluid_branch integer N/A

Table B-3: Summary of all available variables in the struct Settings. Settings contains the
information required to solve the fluid system.

Variable name Type Unit
Settings.system_initialization.settings

Settings.system_initialization.settings.file string N/A
Settings.system_initialization.modules

Settings.system_initialization.modules.(module).type string N/A
Settings.system_initialization.modules.(module).folder string N/A
Settings.system_initialization.modules.(module).function handle N/A
Settings.system_initialization.modules.system.total cell N/A
Settings.system_initialization.modules.system.root cell N/A
Settings.system_initialization.modules.system.presolver cell N/A
Settings.system_initialization.modules.system.solver cell N/A
Settings.system_initialization.modules.system.in_solver cell N/A
Settings.system_initialization.modules.system.postsolver cell N/A

Settings.system_initialization.initialization
Settings.system_initialization.initialization.system cell N/A
Settings.system_initialization.initialization.modules cell N/A

Settings.fluid_system_initialization
Settings.fluid_system_initialization.method.nodes cell N/A
Settings.fluid_system_initialization.method.branches cell N/A
Settings.fluid_system_initialization.function.nodes handle N/A
Settings.fluid_system_initialization.function.branches handle N/A

Settings.solver.mode
Settings.solver.mode string N/A

Settings.solver.iteration
Settings.solver.iteration.min double -
Settings.solver.iteration.max double -

Settings.solver.system
Settings.solver.system.equations cell N/A
Settings.solver.system.variables cell N/A
Settings.solver.system.neq array -
Settings.solver.system.internal_fluid_node cell N/A
Settings.solver.system.fluid_branch cell N/A

Settings.solver.equations
Settings.solver.equations.(equation).method string N/A
Settings.solver.equations.(equation).relaxation double N/A
Settings.solver.equations.(equation).terms cell N/A
Settings.solver.equations.(equation).location string N/A
Settings.solver.equations.(equation).convergence double -
Settings.solver.equations.(equation).divergence double -
Settings.solver.equations.(equation).function handle N/A
Settings.solver.equations.(equation).system_type string N/A
Settings.solver.equations.(equation).term_functions cell N/A

Settings.solver.variables
Settings.solver.variables.(variable).system_type string N/A
Settings.solver.variables.(variable).location string N/A

Master of Science Thesis V.R. Huijsman

150 IPSAT Data structure summary

Variable name Type Unit
Settings.solver.methods

Settings.solver.methods.(method).function handle N/A
Settings.solver.methods.(method).equations cell N/A
Settings.solver.methods.(method).neq array N/A
Settings.solver.methods.(method).system_type cell N/A
Settings.solver.methods.(method).variables cell N/A
Settings.solver.methods.(method).locations cell N/A

Settings.thermophysics.global_constants
Settings.thermophysics.global_constants.g0 double m·s−2

Settings.thermophysics.global_constants.R double J·mol−1·K−1

Settings.thermophysics.global_constants.k double J·K−1

Settings.thermophysics.global_constants.Na double mol−1

Settings.thermophysics.global_constants.M double kg·mol−1

Settings.thermophysics.global_constants.T_c double K
Settings.thermophysics.global_constants.Rho_c double mol·dm−3

Settings.thermophysics.global_constants.P_c double Pa
Settings.thermophysics.global_constants.T_tp double K
Settings.thermophysics.global_constants.P_tp double Pa
Settings.thermophysics.global_constants.H_0 double J·mol−1

Settings.thermophysics.global_constants.S_0 double J·mol−1·K−1

Settings.thermophysics.global_constants.T_0 double K
Settings.thermophysics.(specie).models

Settings.thermophysics.(specie).models
.melting_pressure.type string N/A
Settings.thermophysics.(specie).models
.melting_pressure.constants matrix N/A
Settings.thermophysics.(specie).models
.melting_pressure.function handle N/A
Settings.thermophysics.(specie).models
.vapor_pressure.type string N/A
Settings.thermophysics.(specie).models
.vapor_pressure.constants matrix N/A
Settings.thermophysics.(specie).models
.vapor_pressure.function handle N/A
Settings.thermophysics.(specie).models
.saturated_liquid_density.type string N/A
Settings.thermophysics.(specie).models
.saturated_liquid_density.constants array N/A
Settings.thermophysics.(specie).models
.saturated_liquid_density.function handle N/A
Settings.thermophysics.(specie).models
.equation_of_state.type string N/A
Settings.thermophysics.(specie).models
.equation_of_state.constants.ideal array N/A
Settings.thermophysics.(specie).models
.equation_of_state.constants.residual array N/A
Settings.thermophysics.(specie).models
.equation_of_state.function handle N/A
Settings.thermophysics.(specie).models
.surface_tension.type string N/A

V.R. Huijsman Master of Science Thesis

151

Variable name Type Unit
Settings.thermophysics.(specie).models
.surface_tension.constants matrix N/A
Settings.thermophysics.(specie).models
.surface_tension.function handle N/A
Settings.thermophysics.(specie).models
.viscosity.type string N/A
Settings.thermophysics.(specie).models
.viscosity.constants.dilute array N/A
Settings.thermophysics.(specie).models
.viscosity.constants.residual array N/A
Settings.thermophysics.(specie).models
.viscosity.function handle N/A
Settings.thermophysics.(specie).models
.thermal_conductivity.type string N/A
Settings.thermophysics.(specie).models
.thermal_conductivity.constants.dilute array N/A
Settings.thermophysics.(specie).models
.thermal_conductivity.constants.residual array N/A
Settings.thermophysics.(specie).models
.thermal_conductivity.constants.olchowy array N/A
Settings.thermophysics.(specie).models
.thermal_conductivity.function handle N/A

Settings.thermophysics.variables
Settings.thermophysics.variables cell N/A

Master of Science Thesis V.R. Huijsman

152 IPSAT Data structure summary

V.R. Huijsman Master of Science Thesis

Appendix C

Derivatives of the Helmholtz Energy
Function

The evaluation of the various thermodynamic state variables, as are shown in table 5-5,
requires the calculation of the derivatives of the Helmholtz energy function. Numeri-
cal differentiation of the Helmholtz energy function requires multiple function evaluations
which takes time. This problem is further increased when trying to iteratively find the in-
verse of the Helmholtz energy function using the methods described in appendix A. The
process can be sped up significantly if a function for the derivative of the Helmholtz en-
ergy is available. In this appendix the generalized Helmholtz energy derivatives and the
process how to find these derivatives will be described briefly.

C-1 Derivatives of the Residual Component of the Helmholtz
Energy Function

The residual part of the Helmholtz energy function is generally given in the following form:

αr =
n∑
i=1

C1,iδ
C2,iτC3,i exp(−C4,iδ

C5,i) exp(−C6,i(δ − C7,i)2 − C8,i(τ − C9,i)2) (C-1)

This can written in a general form as:

αr =
n∑
i=1

fi(δ, τ) (C-2)

Where fi(δ, τ) is equal to the bank of terms displayed in equation C-1. It can be seen
that i only changes the values for the various constants used in equation C-1 while the
functional form remains the same. What can also be observed is that the function fi(δ, τ)
consists of the product of functions which are specified solely in terms of δ or τ (the last
exponential function in equation C-1 can be split into a product of two exponential func-
tions). Therefore fi(δ, τ) can be written as:

Master of Science Thesis V.R. Huijsman

154 Derivatives of the Helmholtz Energy Function

fi(δ, τ) = f1,i(δ) · f2,i(τ) · f3,i(δ) · f4,i(δ) · f5,i(τ) (C-3)

Where:

f1,i(δ) = C1,iδ
C2,i (C-4)

f2,i(τ) = τC3,i (C-5)

f3,i(δ) = exp(−C4,iδ
C5,i) (C-6)

f4,i(δ) = exp(−C6,i(δ − C7,i)2) (C-7)

f5,i(τ) = exp(−C8,i(τ − C9,i)2) (C-8)

For each term in equation C-4 the derivative can be written as a product of a derivative
function and the function itself. For example the first term can be written as:

(
df1,i(δ)
dδ

)
τ

= C1,iC2,iδ
C2,i−1 = [C2,iδ

−1] · [C1,iδ
C2,i] = g1,i(δ) · f1,i(δ) (C-9)

Where g1,i is a derivative function which depends on the functional form of fj,i. This
means that when taking the partial derivative of the complete function fi with respect
to δ the following holds:

(
∂fi(δ, τ)
∂δ

)
τ

= gi(δ) · fi(δ, τ) (C-10)

Where g(δ) is a separate function which is a sum of the derivative functions of the indi-
vidual terms of fi(δ, τ) which follows from the product rule. The second partial derivative
with respect to δ follows from the product rule applied to equation C-10:

(
∂2fi(δ, τ)
∂δ2

)
τ

= ∂gi(δ)
∂δ

· fi(δ, τ) + gi(δ) ·
∂fi(δ, τ)
∂δ

(C-11)

Which can be simplified to the following form after substituting equation C-10:

(
∂2fi(δ, τ)
∂δ2

)
τ

=
[
∂gi(δ)
∂δ

+ gi(δ) · gi(δ)
]
· fi(δ, τ) (C-12)

In the same fashion the derivatives with respect to the inverse reduced temperature, τ
can be written as:

(
∂fi(δ, τ)
∂τ

)
δ

= hi(τ) · fi(δ, τ) (C-13)

and:

(
∂2fi(δ, τ)
∂τ2

)
δ

=
[
∂hi(τ)
∂τ

+ hi(τ) · hi(τ)
]
· fi(δ, τ) (C-14)

Finally, the partial derivative with respect to δ and τ can be written as:

V.R. Huijsman Master of Science Thesis

C-2 Derivatives of the Ideal Component of the Helmholtz Energy Function 155

(
∂2fi(δ, τ)
∂δ∂τ

)
= gi(δ) · hi(τ) · fi(δ, τ) (C-15)

Working out the derivatives of each derivative function gi, hi, g′i and h′i gives the follow-
ing general forms of the different partial derivatives of the residual part of the helmholtz
function:

(
∂αr

∂δ

)
τ

=
n∑
i=1

[
C2,iδ

−1 − C4,iC5,iδ
C5,i−1 − 2C6,i (δ − C7,i)

]
·

C1,iδ
C2,iτC3,i exp(−C4,iδ

C5,i) exp(−C6,i(δ − C7,i)2 − C8,i(τ − C9,i)2)
(C-16)

(
∂αr

∂τ

)
δ

=
n∑
i=1

[
C3,iτ

−1 − 2C8,i(τ − C9,i)
]
·

C1,iδ
C2,iτC3,i exp(−C4,iδ

C5,i) exp(−C6,i(δ − C7,i)2 − C8,i(τ − C9,i)2)
(C-17)

(
∂2αr

∂δ2

)
τ

=
n∑
i=1

[
−C2,iδ

−2 − C4,iC5,i(C5,i − 1)δC5,i−2 − 2C6,i
]

+

[
C2,iδ

−1 − C4,iC5,iδ
C5,i−1 − 2C6,i (δ − C7,i)

]2 ·
C1,iδ

C2,iτC3,i exp(−C4,iδ
C5,i) exp(−C6,i(δ − C7,i)2 − C8,i(τ − C9,i)2)

(C-18)

(
∂2αr

∂τ2

)
δ

=
n∑
i=1

[[
−C3,iτ

−2 − 2C8,i
]

+
[
C3,iτ

−1 − 2C8,i(τ − C9,i)
]2] ·

C1,iδ
C2,iτC3,i exp(−C4,iδ

C5,i) exp(−C6,i(δ − C7,i)2 − C8,i(τ − C9,i)2)
(C-19)

(
∂2αr

∂δ∂τ

)
=

n∑
i=1

[
C2,iδ

−1 − C4,iC5,iδ
C5,i−1 − 2C6,i (δ − C7,i)

]
·
[
C3,iτ

−1 − 2C8,i(τ − C9,i)
]
·

C1,iδ
C2,iτC3,i exp(−C4,iδ

C5,i) exp(−C6,i(δ − C7,i)2 − C8,i(τ − C9,i)2)
(C-20)

C-2 Derivatives of the Ideal Component of the Helmholtz En-
ergy Function

The ideal component of the Helmholtz energy function is generally given in the following
form:

α0 = ln(δ) +
n∑
i=1

C1,iτ
C2,i ln(τ)C3,i ln(1− exp(−C4,iτ))C5,i (C-21)

Similarly to the residual Helmholtz function, the Ideal Helmholtz function is constructed out
of a product of terms which can be written solely as function of either δ or τ . This means
that the same method could be implemented as was used in the previous section, where
the derivative can be written as a product of the derivative function and the function
itself. However, in this case some derivatives in the derivative function will contain terms
of the form ln(C), where C can equal zero, which makes the result invalid. It is therefore
difficult to create a generalized form of the derivatives of the ideal Helmholtz function.

Another procedure is therefore implemented. This procedure makes use of the assump-
tion that each function, i, in equation C-21 will only contain one term. That means that

Master of Science Thesis V.R. Huijsman

156 Derivatives of the Helmholtz Energy Function

if it is known which terms are switched on or off (where the constants, C2,i, C3,iandC5,i
equal 1 or zero), the derivatives can be grouped per term. Taking the partial derivatives
for each term gives the following set of partial derivatives:

• If C2,i = 1 and C3,i = 0 and C5,i = 0(
∂α0

∂τ

)k
δ

=
k∑
i=1

C1,i (C-22)

(
∂2α0

∂τ2

)k
δ

=
k∑
i=1

0 (C-23)

• If C2,i = 0 and C3,i = 1 and C5,i = 0(
∂α0

∂τ

)l
δ

=
l∑
i=1

C1,iτ
−1 (C-24)

(
∂2α0

∂τ2

)l
δ

=
l∑
i=1
−C1,iτ

−2 (C-25)

• If C2,i = 0 and C3,i = 0 and C5,i = 1(
∂α0

∂τ

)m
δ

=
m∑
i=1

C1,iC4,i

exp(C4,iτ)− 1 (C-26)

(
∂2α0

∂τ2

)m
δ

=
m∑
i=1
−
C1,iC

2
4,i exp(C4,iτ)

(exp(C4,iτ)− 1)2 (C-27)

The final derivatives can thus be written as:

(
∂α0

∂τ

)
δ

=
(
∂α0

∂τ

)k
δ

+
(
∂α0

∂τ

)l
δ

+
(
∂α0

∂τ

)m
δ

(C-28)(
∂2α0

∂τ2

)
δ

=
(
∂2α0

∂τ2

)k
δ

+
(
∂2α0

∂τ2

)l
δ

+
(
∂2α0

∂τ2

)m
δ

(C-29)

V.R. Huijsman Master of Science Thesis

	Front Matter
	Cover Page
	Title Page
	Table of Contents
	List of Figures
	List of Tables
	Preface
	Acknowledgements
	Glossary
	List of Acronyms
	List of Symbols

	Main Matter
	Introduction
	Project Setup
	Problem Statement
	Research Objective
	Project Goals
	Computer Program Requirements

	Literature Survey
	General Propulsion System Design Tools
	Automated Combustor Design Code
	Generalized Fluid System Simulation Program
	European Space Propulsion System Simulation

	Chemical Reaction Analysis Tools
	Chemical Equilibrium and Applications
	Rocket Propulsion Analysis

	Thermophysical Property Tools
	CoolProp
	Reference Fluid Properties

	Conclusion

	IPSAT Computer Program
	Program Requirement Implementation
	Program Modularity
	Program Transparency
	Program Flexibility

	Program architecture
	Nodes and branches model
	Module Definition
	Program data structure
	Nodes
	Branches
	Settings

	Modules
	Thermophysics Module
	Equation of State
	Vapour Pressure
	Melting Pressure
	Saturated Liquid Density
	Saturated Vapour Density
	Surface Tension
	Viscosity
	Thermal Conductivity
	Thermophysics Module Architecture

	Fluid Friction Module
	Pipe flow friction
	Non-circular ducts friction
	Fluid Friction Module Architecture

	Solver Module
	Root Finding Methods
	Conservation Equations
	Relaxation Factor
	Convergence Criteria
	Solver Module Architecture

	Fluid System Initialization Module
	Fluid Nodes Initialization Methods
	Fluid Branches Initialization Methods
	Fluid System Initialization Module Architecture

	System Initialization Module
	Load Settings
	System Initialization
	Module initialization
	System Initialization Module Architecture

	Computer Program Verification
	Module Verification
	Thermophysics Module Verification
	Fluid Friction Module Verification
	Solver Module Verification
	Fluid System Initialization Module Verification

	Test Setup and Results
	DHX-200 Aurora Engine
	DHX-200 Aurora Test setup
	DHX-200 Aurora Test Results

	Computer Program Validation
	Systematic Diagram of the DHX-200 Aurora Feed System
	Computer Program Setup
	Nodes and Branches settings
	Program settings
	Input Data

	Computer Program Results
	Computer Program Results Discussion

	Conclusions and Recommendations
	Conclusions
	Recommendations

	Bibliography

	Appendices
	Calculation of and for Two Given Thermodynamic Variables
	Pressure and Temperature as the Independent Variables
	Pressure and Density as the Independent Variables
	Pressure and Enthalpy as the Independent Variables

	IPSAT Data structure summary
	Derivatives of the Helmholtz Energy Function
	Derivatives of the Residual Component of the Helmholtz Energy Function
	Derivatives of the Ideal Component of the Helmholtz Energy Function

