Computer Engineering 2018
Mekelweg 4,
2628 CD Delft
The Netherlands
http://ce.et.tudelft.nl/

MSc THESIS

Performance Estimation of a Processor Module in
the Real-Time Motion Control Platform of an
ASML Lithostepper

Joachim Adriaan Voskes

Abstract

At the core of state of the art microelectronic industry’s drive for
better technology, lies the continuing advancement in the develop-
ment of Integrated Circuits using highly complex lithography ma-
chines, known as lithosteppers, which embed complex mechanical
sub-systems performing intricate motions. These systems are con-
trolled by means of custom real-time computing platforms contain-
CE-MS-2018-12 ing off-the-shelf and specialized hardware components, and are opti-
mized to keep pace with the continuing growing trend in performance
requirements. At the ASML Twinscan lithostepper’s heart resides
the Control Architecture Reference Model (CARM) motion control
platform which manages, among others, the wafer-stage, a multiple
degree of freedom module, able to position a 15 kg heavy wafer-table
with nanometer accuracy at extremely high acceleration and veloc-
ity. As the industry requirements for feature-size, overlay accuracy,
and throughput keep increasing, the ASML lithosteppers, and the
CARM platform in particular, should anticipate these demands by
making early changes and upgrades with respect to computation-
al performance and accuracy. Given that the current lithostepper
configurations are not capable of sustaining the anticipated updates,
which requires the increase of the control loop execution frequency
from 20kHz to 40kHz, an early evaluation of potential CARM High Performance Process Controller (HPPC)
successors has been performed. This indicated that the NXP-Freescale T4240 processor can potentially ful-
fill the expected requirements, however, the evaluation lacks accuracy as it was performed on a benchmark
code not reflecting the actual CARM workload. To circumvent this problem, in this thesis, we introduce
a more accurate evaluation methodology, which relies on the actual motion control application running
on the HPPC and is able to capture aspects as scheduling, parallelism, and processor resource usage. To
this end we develop a set of custom performance benchmarks able to emulate the CARM environment and
evaluate the Freescale T4240 processor in this new context. Our results indicate that the T4240 is able
to deliver enough computation power to fulfill the control loop execution frequency upscaling requirement
from 20kHz to 40kHz. Additionally, we demonstrate that due to its clustered hardware architecture one
T4240 can sustain 20kHz loop execution frequency for the workload of three current HPPCs, which suggest
that its utilization in current lithosteppers can be beneficial.

5
TUDelft

Delft University of Technology Faculty of Electrical Engineering, Mathematics and Computer Science

Performance Estimation of a Processor Module in
the Real-Time Motion Control Platform of an
ASML Lithostepper

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in
EMBEDDED SYSTEMS

by

Joachim Adriaan Voskes
born in Amsterdam, The Netherlands

Computer Engineering

Department of Electrical Engineering

Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Performance Estimation of a Processor Module in
the Real-Time Motion Control Platform of an
ASML Lithostepper

by Joachim Adriaan Voskes

Abstract

At the core of state of the art microelectronic industry’s drive for better technology, lies the
continuing advancement in the development of Integrated Circuits using highly complex lithogra-
phy machines, known as lithosteppers, which embed complex mechanical sub-systems performing
intricate motions. These systems are controlled by means of custom real-time computing plat-
forms containing off-the-shelf and specialized hardware components, and are optimized to keep
pace with the continuing growing trend in performance requirements. At the ASML Twinscan
lithostepper’s heart resides the Control Architecture Reference Model (CARM) motion control
platform which manages, among others, the wafer-stage, a multiple degree of freedom module,
able to position a 15 kg heavy wafer-table with nanometer accuracy at extremely high accelera-
tion and velocity. As the industry requirements for feature-size, overlay accuracy, and throughput
keep increasing, the ASML lithosteppers, and the CARM platform in particular, should anticipate
these demands by making early changes and upgrades with respect to computational performance
and accuracy. Given that the current lithostepper configurations are not capable of sustaining
the anticipated updates, which requires the increase of the control loop execution frequency from
20kHz to 40kHz, an early evaluation of potential CARM High Performance Process Controller
(HPPC) successors has been performed. This indicated that the NXP-Freescale T4240 processor
can potentially fulfill the expected requirements, however, the evaluation lacks accuracy as it was
performed on a benchmark code not reflecting the actual CARM workload. To circumvent this
problem, in this thesis, we introduce a more accurate evaluation methodology, which relies on
the actual motion control application running on the HPPC and is able to capture aspects as
scheduling, parallelism, and processor resource usage. To this end we develop a set of custom per-
formance benchmarks able to emulate the CARM environment and evaluate the Freescale T4240
processor in this new context. Our results indicate that the T4240 is able to deliver enough
computation power to fulfill the control loop execution frequency upscaling requirement from
20kHz to 40kHz. Additionally, we demonstrate that due to its clustered hardware architecture
one T4240 can sustain 20kHz loop execution frequency for the workload of three current HPPCs,
which suggest that its utilization in current lithosteppers can be beneficial.

Laboratory : Computer Engineering
Codenumber : CE-MS-2018-12

Committee Members

Advisor: Dr.ir. S.D. Cotofana, CE, TU Delft

Chairperson: Prof. Koen Bertels, CE, TU Delft

Member: Dr. ir. T.G.R.M van Leuken, CAS, TU Delft

Member: Ing. J van de Ven , Motion Control and
Subsystem Facilities, ASML Netherlands

ii

Dedicated to my family and friends

iii

iv

Contents

[List of Figures| viii
[List_of Tables ix
[List of Acronyms| xii
[Acknowledgements| xiii
1__Introductionl 1
[1.1 Nano Lithographic Challenges|. 2
1.2 Problem Statementl. 2
(1.3 Thesis Contributions| o 4
1.4 Thesis Organization|, 5

2 Background and Preliminaries| 7
2.1 ASML Lithostepper]o 7
2.2 CARM Motion Control Platforml| 9
[2.2.1 Software Platform and Controller Modeling| 10

2.2.2 Hardware Platforml. 12

2.3 CARM Hardware Limitations and Upgrade| 12
2.4 T4240 Processor] 14
2.5 Conclusionl e 15

3 CARM Application Scheduling and Execution| 17
[3.1 Motion Control Application| L. 17
B.1.1 WorkerBlocks| oo 18

[3.1.2 Sequences and Schedule] o 0oL 19

[3.1.3 Synchronization and Communication|. 20

3.2 Previous Workl 21
8.2.1 Performance Estimationl 21

8.2.2 Experiments| Lo 22

B23 Resultsd o 23

B3 Conclusionl 25

4 CARM Custom Performance Estimationl 27
4.1 Multi-core Performance Estimation and Benchmark Creation| 27
4.2 Round Trip Latency| 28
4.2.1 Implementation|. o o 29

4.3 Parallel Sequences| 30
[4.3.1 Implementation|. 31

4.3.2 Experiments| Lo
4.4 Experimental Evaluation Plattorm|
441 Baseline Validationl L.

4.5.1 Round Trip Latency|
[4.5.2 Parallel Sequences| L.

b1 Summary|]
B2 Future Workl
b.3 Research Implications|
b3.1 CARM Team and ASMIJ
5.3.2 Industry|.

(Bibliography|

vi

43
43
44
45
45
45

48

49

53

List of Figures

(1.1 Schematic representation of the photolithography process| 1

2.1 An ASML Twinscan lithography machine 8

[2.2 Abstract representation of a Long-Stroke, Short-Stroke walfer- |
| positioning stage in H-configuration, where the actuators act on the |

| watfer-table in a lithostepper.| 9
2.3 Abstract representation of a control loop{. 9
2.4 Organization of the CARM layers| 11
[2.5 CARM ATCA computestack. 13
2.6 Abstract representation ot the 14240 processor architecture. Figure |

| taken from Freescale T4240 processor factsheet |1 14
2.7 Abstract block diagram of the 14240’s E6500-core pipeline architecture. |

| Figure taken from the Freescale T4240 Reference Manual 2] 15
[3.1 Blockdiagram representation of an example ot the control loop for the |

| SS-controller application [3]] 17
3.2 Abstract overview of the deployment of an application on the CARM |

| hardware (Host and HPPCs).| 18
13.3 Dchematic representation of the critical and non critical part of the sam- |

| ple. | . o o 20

[3.4 Visual representation of a schedule calculated for an application running |
on 7 cores of an HPPC. The red (left) and green (right) sections represent |

|

|

time critical and non-time critical parts respectively, while the arrows
represent a communication or synchronization between WorkerBlocks
running on separate cores. [4llo o o000 21

4.1 Schematic representation of the round trip latency experiment via the |

[different cache levels) oo 0oL 29
4.2 oDchematic representation ot the round trip latency performance tests.|. . 31
4.3 Abstract diagram of a block template used for the WorkerBlocks| 32
4.4 Block diagram for the stand alone sequence test.| 34
|4.5 Block diagram for the start-finish synchronized sequence test. | 34
|4.6 Block diagram for the fully synchronized sequence test.|. 35
4.7 Schematic representation of the execution ot the benchmark running |

| parallel sequences.|o 35
|4.8 Abstract block diagram of the hardware setup for T4240 performance |

| testing and validation.|o oo 36
4.9 Round Trip Latency test results for the 1 to 1 testsinns.| 37
[4.10 Round Trip Latency test result for the 1 to N testsinns.| 38

vii

A1

Abstract block diagram of the 14240 core-complex architecture. As can

be seen, the clusters of 4 E6500 cores are share the L2 cache, and are

connected to each-other via the CoreNet Coherency Fabric and I3 cache.

Figure taken from Freescale T4240 Reference Manual[2]|

Abstract block diagram of the 1'4240°s E6500-core pipeline architecture.

As can be seen, most of the pipeline has been duplicated to provide

a dedicated functional unit or buffer per hardware thread. However,

some of the critical (and more expenxive) resources are shared, like the

Complex Unit and FPU. Figure taken from Freescale 14240 Reference

Manual. 2]l

viii

List of Tables

N 0 - = ol] el Tois T the 240 E6500 l

pipeline.|

14

B

An overview of the different WorkerBlocks running in the time-critical

part in the SS-Controller scheduled on a P4080 HPPC. The critical part

of the schedule contains 333 WorkerBlocks, in 7 sequences running par-

allel on the separate HPPC cores.|.

19

B2

Overview of the computational block types used for the custom tunc-

tional test [D].|

23

A1

WorkerBlock details on memory and functional units utilization, and

data-types (Integer or Float).|

33

%)

Comparison of the 1 to 1 Round trip latency results in ns for single and

dual thread testing for both MBAR1 and SYNC operation.|

38

4.3

Test results for the Parallel Sequence benchmarks, ran on both the 14240

and P4080. Results correspond to the average execution time of a thread

running a single sequence workload. Both raw results in ns and normal-

1zed results are displayed, where the P4080 results have been set at 100.|

39

A

Pertormance comparison between P4080 and T'4240 SoC for the sequence

tests, using different synchronization intervals. Values represent the per-

formance increase of the 14240 over the P4080 when running the same

workload on the processor.|.

X

40

Definitions and Acronyms

ATCA Advanced Telecommunications Computing Architecture
AMC Advanced Mezzanine Card

BSP Board Support Package

CARM Control Architecture Reference Model
DUT Device Under Testing

FPGA Field Programmable Gate Array

HPPC High Performance Process Controller

IC Integrated Circuit

I/O Input/Output

IPMI Intelligent Platform Management Interface
Ln cache Level n cache

nm Nano Meter

OS Operating System

RTS Real Time System

RPC Remote Procedure Call

RDB Reference Design Board

SCH Scanner Control Host

SoC System on Chip

SS Short Stroke

SRIO Serial Rapid 10

CARM facillity Implementation of the motion control platform using the Control Ar-

chitecture Reference Model, mostly referred to as ”CARM”

CARM stack An instance of the complete CARM facillity for a specific motion-

controlled mechanical subsystem

Recipe Description of a procedure, containing the full set of relevant hardware, software
and mechanical parameters and boundaries, specifically tuned by the user of the

lithostepper.

X1

Worker Single thread or process within a HPPC that can run the code of a sample.
Multicore processors may contain a single worker per core or hardware-thread.

P4080 The Prodrive HPPC module containing the P4080 processor, used as HPPC
within the CARM motion control platform.

T4240 The NXP Freescale T4240 PowerPC processor, used in the Vadatech AMC 702
module used as Device Under Test for this project.

Testbench Hardware and software environment emulating the (part of) ASML
lithostepper and running the CARM motion control software for debug and bench-
mark purposes

xii

Acknowledgements

Being part of a team is something that helps me personally to achieve tasks thought
to be unachievable. Even though the project was my own, the team around me always
gave me the possibility to discuss ideas and issues which helped me in proceeding with
the project and achieving the goals set.

I would like to thank my colleagues of the CARM team at ASML for giving me the
opportunity to perform research and development as part of my Embedded-Systems
graduation project. I had a wonderful time working there, expanding my knowledge
of the hard- and software development done within ASML. Furthermore i am looking
forward to starting my career among these colleagues, giving me the opportunity
to further develop my personal skills in the field, and being part of the continuing
technological advancements made at ASML.

I would like to thank my supervisor Sorin Cotofana for the support during the long
period of writing this thesis.

I would like to thank my girlfriend Jojanne for keeping me sane during the hard
moments, and encouraging me to finish the project even when i did not feel i could.

Joachim Adriaan Voskes
DELFT, The Netherlands
May 14, 2018

xiii

Xiv

Introduction

The technological advancements of the last couple of decades have played a large role in
shaping the current socioeconomic environment we live in today. Most, if not all, of our
daily activities have been impacted by the fast emerging changes in technology, ranging
from transportation to communication techniques. The largest contribution to these
changes is the rapid evolution of the electronic industry, especially in the microelectronics
world.

At the core of each electronic device we utilize daily, lies at least a digital Integrated
Circuit (IC), which mostly consists of nanoscale transistors, arranged to form complex
computational structures and memory modules. FEver since the IC originated in the
1960s, size, speed, and capacity have increased significantly. In the last decades, the
number of transistors on an IC roughly doubled each 18 months. This pattern follows
Gordon Moore’s predictions in 1974, such that current day IC’s contain between just a
few and billions of circuits, which allowed for high speed and low power dissipation at a

reduced fabrication cost.
Lightsource /

1

Reticle l

Fabrication of these ICs is performed by means of pho-
tolithography, imprinting nanoscale circuitry patterns onto
a silicon wafer, much like a camera exposes an image on
film. This process is executed using a set of complex litho-
graphic stepper machines, the so called [lithosteppers. In
order for a lithostepper to print a circuit pattern onto a
silicone wafer, UV-light is directed from a powerful light
source, through a specific pattern (reticle) and a custom
set of lenses onto the silicone wafer, as has been schemat-
ically depicted in Figure To create the large amount I
of layers which make up the eventual chip, this process
requires a large number of iterations.

-—

Reticle stage
+

-—

Lenses

Wafer

| " |

Waferstage
Furthermore, as a wafer typically holds more than one

die (single IC), the patterning of the wafer is performed
a large number of times in an as small timespan as
possible to increase machine throughput. As moving the

Figure 1.1: Schematic rep-
resentation of the pho-
tolithography process

lithosteppers’ light source would be a difficult and costly

procedure, both the wafer and reticle are moved by their respective mechanical stages,
in a synchronized fashion instead. As each iteration of exposed layers on the wafer has
to be aligned with the underlying layer with as little overlay offset as possible, the 6
degree of freedom movable wafer-stage and reticle-stage are capable of moving with a
nanometer accuracy, high acceleration, and velocity.

ASML, based in Veldhoven, The Netherlands, is one of the largest suppliers of lithog-

2 CHAPTER 1. INTRODUCTION

raphy machine for the semiconductor industry, and strives to manufacture and service
these lithography machines for its customers while also continuously innovating the ex-
posure process.

1.1 Nano Lithographic Challenges

For all of the IC-manufacturers in the semiconductor industry, the continuing trend of
technological advancements in the lithographic process leads to an increased product
quality, manufacturing productivity and improved profitability on the world market.
As the semiconductor industry keeps pushing these requirements on the lithostepper
machinery used in the lithographic process, ASML as developer of these machines has to
evaluate the need and validity of software and hardware updates for current and future
machines to accommodate these requirements. This means that ASML has to perform
cutting edge research and development for these update and upgrades, ultimately driving
the industries’ technological advancements.

For a long time now, the most important parameter in the semiconductor industry
is the so called IC feature size, describing the smallest possible geometrical shape being
created by a lithostepper for an IC, and is measured in nanometer.

The shape and size of the features created on the silicone wafer, depend on the utilized
UV-light wavelength, in combination with the reticle shape and the precise movements
of the wafer- and reticle stage during exposure. As current average feature sizes lie at
7 nm diameter, and is expecting to shrink even more in the coming years, this means
that the different aspects weighting in on the exposure process should accommodate for
this change. This would mean that the wafer-stages and reticle-stages should increase
their nanometer-accurate precision capabilities, to keep the current low error rate and
high wafer yield. Furthermore for the semiconductor industry, the throughput (in wafers
per hour) is an essential part of cost optimization. Moving to a higher velocity for the
moving parts of the machine, would increase this much appreciated metric.

1.2 Problem Statement

A key element of the ASML lithosteppers is the Control Architecture Reference Mod-
el (CARM) motion control platform, which controls some of its most critical moving
parts like reticle-stage and wafer-stage. To accurately control these precise mechanical
sub-systems, it executes complex and highly time-critical control-loop applications, on
a hybrid computing platform. This hardware platform consists of a set of Field Pro-
grammable Gate Arrays (FPGAs) and High Performance Process Controllers (HPPCs),
integrated in a cabinet rack on the outside of the lithostepper machine. The HPPCs
are off-the-shelf, general purpose processor modules, tasked with executing the complex
real-time motion control calculations needed for moving the wafer-stage and reticle-stage
mechanics at the required precision and velocity.

As previously discussed, ASML lithosteppers are updated and upgraded continuous-
ly, to accommodate semiconductor industry demands and ASML-internal performance
goals. Some of the currently requested updates for the lithosteppers, impact the CARM

1.2. PROBLEM STATEMENT 3

motion control platform and have been discussed between the system architects for the
upcoming iteration of developments.

One of these requirements states the increase of sample execution frequency
of the control loop applications running on the CARM motion control platform, from 20
kHz to 40 kHz. Increasing the sample loop frequency of the applications running on the
HPPC modules, allows for an increase in calculation precision and sensor accuracy, thus
enabling an increased mechanical velocity and precision for the wafer- and reticle-stage
mechanical platforms. Furthermore, updating the motion control application in this
fashion would contribute to the overall lithostepper performance increase, reducing
errors and increasing production throughput.

The current HPPCs used in the CARM platform consist of NXP Freescale P4080
processors, containing an 8-core PowerPC processor, and running a custom Board
Support Package (BSP) as Operating System (OS). On top of this custom BSP, the
motion control applications are executed. Even though these processor modules have
been tested and intensely optimized, they were ultimately found unable to handle the
required increase in control-loop sample frequency to 40 kHz. Therefor the decision has
been made to upgrade the computing platforms’ hardware architecture, and replace the
current HPPC processors with a more powerful processor.

Preliminary investigations[5] in the search of a P4080 replacement candidate identi-
fied the dual-threaded 12-core NXP Freescale T4240 as a viable candidate. Simulation
results indicated that the processor cores of the T4240 module can sustain at least 3
times the execution rate reached by the P4080 processor cores. Furthermore, due to the
architectural configuration of the T4240 containing 3 separate core-clusters of 4 dual
threaded cores, the possibility to reduce the Cost of Goods of the CARM compute
platform by replacing up to 3 P4080 HPPCs by a single T4240, has been theorized.

Analysis of the used methodology in previous work has however shown that the per-

formance estimations for the T4240 are based on generic performance tests, not tailored
to the CARM motion control application behaviour and design. The experiments were
executed as single-core applications only, based on which the performance estimations
are extrapolated to represent the full processor.
Analysis of the actual motion control application run on the CARM platform, has
shown to contain a complex parallel execution schedule, with a large amount of
synchronization and communication between the parallel running workloads, indicating
that the performance estimations done in previous work are an unreliable basis for the
current upgrade plans, and further research is required.

Given this statement, this thesis addresses the following question:
What type of tests are needed to validate the performance of a new processor
against stated requirements, without the need to fully integrate a hardware-
software implementation of a processor candidate in an ASML lithostepper
prototype.

4 CHAPTER 1. INTRODUCTION

In order to qualify the NXP Freescale T4240 processor module as a certain alternative
solution to the stated problem, this thesis investigates the following:

e What type of performance estimation experiments have been used in previous work,
and what where their results and conclusions.

e What execution and scheduling profile is utilized by the CARM platform for run-
ning the motion control applications.

1.3 Thesis Contributions

In this thesis it is shown, by analyzing the actual embedded application run on the CAR-
M platform and extracting key parameters and behavioural concepts, that previous work
with respect to upgrading the CARM hardware has not been sufficient in determining
realistic performance estimation for the processor candidates to replace the current H-
PPC processor modules. It is shown that the applications used do not amply represent
the actual running application character with respect to its parallelism and synchro-
nization. This thesis has had the goal to further analyze the current software running
on the CARM hardware platform and develop a more accurate performance estimation
procedure for the NXP Freescale T4240 processor candidate. The following tasks have
been performed and contributions made during the thesis project:

e To be able to perform the necessary experiments and evaluations on the selected
NXP Freescale T4240 processor as candidate replacement for the P4080, a test-
environment was needed to observe and compare its behaviour. However, due
to the fact that the an actual ASML lithostepper prototype is a too costly and
difficult device to use as development environment, we built a custom testbench
environment during this project, that is capable of emulating the needed hard-
and software behaviour of an actual lithostepper motion control platform. The
T4240 and P4080 processor modules have been installed into this test rack, and
have been configured to represent the actual computing platform used in the CARM
platform.

e In order to run any application level software on the T4240 processor module, we
adapted and modified the custom Board Support Package for the current PowerPC
based HPPCs, so it can be deployed and run on the T4240 processor architecture
embedded in the CARM test environment.

e Furthermore, to avoid spending a majority of the limited project-time on reworking
and adapting the actual CARM motion control software layer to the T4240 test
environment, a detailed analysis of the complex Short-Stroke control-loop applica-
tion running within CARM, has been performed. Unique characteristics, execution
behaviour and bottlenecks that define the application are studied and isolated.

e Based on the isolated characteristics of the Short-Stroke control-loop application,
we developed a set of custom performance benchmarks, that capture the real appli-
cations behaviour, while not requiring the full integration of the candidate processor
into an actual CARM hardware platform of a lithostepper prototype.

1.4. THESIS ORGANIZATION)

e Experiments are conducted by us to evaluate the potential performance of the
T4240 with respect to the current P4080 processor, using the developed benchmark
applications running on the BSP.

e The results gathered from the experiments provided credible evidence that the
T4240 is capable of sustaining the control-loop frequency increase from 20 to 40
kHz. Moreover it has been proven that due to the T4240 architectural design, it
is cable of running up to three control-loop applications running at 20 kHz.
However, it is shown that a combination of these two is not possible without severe-
ly compromising the real-time behaviour or computational accuracy of the system.

1.4 Thesis Organization

This report is organized as follows: Chapter [2] provides background information of the
ASML lithostepper, and an in-dept analysis of the soft- and hardware components of
the CARM motion control platform. Chapter (3| discusses the analysis of the motion con-
trol application running on the HPPC modules within the CARM platform, and briefly
presents previous work performed with respect to upgrading the CARM hardware plat-
form and discusses the hardware architecture of the processor candidate. In chapter [4] the
experimental setup, implementation, and results are provided for the custom benchmark
applications developed and run for this project. The results are analyzed and compared
to previous work and expectations. Chapter [5| discusses the conclusions made based on
the research and experiments, and future work is presented. Furthermore a detailed
exposition of the possible implications based on the conclusions of this project is given.

CHAPTER 1. INTRODUCTION

Background and Preliminaries

In this chapter, a description of the ASML lithoscanners is given, and the implementa-
tion of the hardware- and software framework of the CARM motion control platform is
discussed in detail. This information is meant to serve as foundation for key concepts
and further research and development activities performed for this thesis.

2.1 ASML Lithostepper

As discussed in Chapter during the chip fabrication process, the silicone wafer is
patterned with nanometer sized structures using UV-light, in a process using various
exposure and layering steps in multiple iterations. The lithostepper used to perform
this process is build up of various components, which run in unison to perform the
lithographic process. All the different components are controlled by separate systems,
with their specifically tuned parameters provided in form of a recipe, created by
the end-user of the lithostepper, to adhere to the specific needs and desires for the
end-product.

Looking at the ASML TwinScan™ lithostepper as seen in Figure the machine can
roughly be divided into different key components as follows.

The Iluminator light guidance system is used to guide the UV-light generated by
the light source, via a set of mirrors and lenses, into the lithostepper where it is shaped
into the right beam format and pattern.

The pattern of the IC circuit to be printed onto the silicone wafer is represented as
various transparent and opaque areas of a quartz glass plate, called a reticle or photo-
mask. The UV-light is guided through the reticle by a set of mirrors and lenses, forming a
precise image in the shape of the reticle pattern. The reticle is housed in the reticle stage,
which embeds a set of multiple degree of freedom actuators able to perform nanometer
precise movements of the reticle.

The image created by passing the UV light through the reticle is focused and reduced
in size by a large column of lenses, again shaping and forming the image into its final
form, to be projected onto the surface of the wafer. The UV-light exposes the silicone
wafer, creating the features that make up the eventual ICs.

As the wafer contains a large set of single ICs (dies), the wafer is moved by the
wafer-stage containing 6-degree of freedom actuators, precisely positioning the wafer
under the lens column for repeated image exposure. Furthermore, to accurately measure
and position the wafer, a secondary wafer-stage is active in the machine, scanning and
mapping the next wafer before its image exposure. This way, the machine is pipelining
the lithograpic process by measuring the next wafer while exposing the current wafer.
This simultaneous step and scan process reduces throughput latency, while increasing

8 CHAPTER 2. BACKGROUND AND PRELIMINARIES

the process accuracy.

To move the wafers from and to the wafer-stages from outside of the machine, the
waferhandler is available, which is a robotic arm capable of carefully and precisely
moving the wafers.

Controlling these different mechanical parts is done by a large amount of time-critical
motion control platforms, within and outside of the lithosteppers. These motion control
platforms play a large role in the sensitive and nanometer accurate fabrication process,
and therefor are critical for the quality and throughput of the wafers going through the
lithographic process.

AsmL

ot TWINSCAN
it o

Figure 2.1: An ASML Twinscan lithography machine.

For the wafer and reticle to be moved at the desired velocity with nanometer precision
in a synchronous fashion, the wafer-stage and reticle-stage contain a multi-stroke posi-
tioning system, with accurate sensors and actuators for each axis. The multi-stroke stage
system enables the achievement of the needed fine resolution. A schematic representa-
tion of a multi-stroke positioning system and its actuators can be observed in Figure
The multi-stroke mechanism contains the so called Long-Stroke for the course movements
and positioning, while the Short-Stroke is used for the nanometer precise alignment and
corrections of the component.

For these stages to be controlled with the desired movement pattern, velocity and
precision, a large set of complex frameworks with motion control applications are running
on various computing platforms, processing the nanometer accurate sensor data and
controlling the actuators of the corresponding mechanical systems.

To move the wafer using the multi-stage actuators, the motion control platform runs a
set of calculations and measurement algorithms as controller, that determine the desired
accurate behaviour of the actuators based on the sensor input, feedback, and feedforward
data from various sources within the machine and the lithographic recipe used by the
machine. This type of controller is known as a servo control loop or servoloop, and can
be found in many of the motion controlled parts of the ASML lithosteppers.

2.2. CARM MOTION CONTROL PLATFORM 9

X-axis

A
\ 4

Y-axis

v Short-Stroke actuators
Long-Stroke actuators

Figure 2.2: Abstract representation of a Long-Stroke, Short-Stroke wafer-positioning
stage in H-configuration, where the actuators act on the wafer-table in a lithostepper.

An abstract and simplified schematic of a control loop algorithm is depicted in Figure
The desired signal that the actuator must react to is known as the reference. During
operation, the current output of the actuator is accurately measured by a set of sensors
and used as feedback, after which the difference between the feedback and the reference
is calculated as the so called error. The controller translates this error value into a
dedicated control signal for the actuator, with the goal to minimize the current error,
and thus accurately control the actuator following the given reference.

The single loop of measuring the sensors, calculating the error and its corresponding
control signal, and updating actuator control signals is called the sample. The control-
loops algorithms used for the ASML lithosteppers are implemented with real-time be-
haviour, meaning that a single sample of the control loop has to be finished within its
given time-budget.

To be able to abstract away from the large subset of complex servo control loops
in the various parts of the lithostepper, the CARM motion control platform has been
developed as framework platform to conceptualize and streamline the development for
the different specific hardware platforms and layers.

Reference Error i?g"lﬁ?l' S?;]S[:s{n
)/—\ > Controller > Actuator >
Measured
system input
Sensor <

Figure 2.3: Abstract representation of a control loop

2.2 CARM Motion Control Platform

A large part of the different servoloop controllers used for motion control within
the ASML lithosteppers, are modeled and developed using the Control Architecture

10 CHAPTER 2. BACKGROUND AND PRELIMINARIES

Reference Model (CARM) design. This design methodology has been developed to
support clear design analysis and construction using a set of coherent and consistent
concepts and domain layers. This methodology enables furthermore the multiple
parallel design processes to abstract away from the large number of specific and complex
configurations and motio control methods used in the different parts of the lithostepper.

2.2.1 Software Platform and Controller Modeling

The main motion control platform based on the CARM architectural concept is
"CARM Fucillities”, in short also called CARM. Within the CARM platform, a motion
control application is implemented as a network of servoloop controllers, the so called
ServoGroups. A single ServoGroup contains a closed control loop algorithm build out of
different control blocks (WorkerBlocks), and is responsible for the actuation of a specific
subsystem within the motion control platform, the movements of the wafer-stage or
reticle-stage for instance.

There are many ServoGroups present within the platform, working together to actuate
on the physical motion sub-systems. A ServoGroup contains a large set of different types
of interfaces linked together, where a typical representation contains control blocks, mea-
surement system interfaces and actuator interface blocks. Furthermore, all components
within the same ServoGroup run at the same sample- and execution-frequency, synced
by an external synchronization controller.

The WorkerBlocks, which are instantiated control blocks executing the algorithms
within the ServoGroup, model and implement the required functionality to perform
calculations based on specific and time-critical inputs and parameters. These input
parameters are either at runtime gathered from one or multiple other WorkBlocks in
the control loop chain, or external parameter files loaded at run- or design-time as fixed
properties. Examples of WorkerBlocks are for instance a Nth order filter, Mx N matrix
multiplication or gain functions, but also status updates and signal tracing.

WorkerBlocks are sequenced together following a static schedule, which is based
on critical timing requirements and known hardware specifications of the computing
platform, to make sure that the lithostepper execution deadlines are kept. Because the
WorkerBlock execution characteristics and specifications of the hardware architecture
and I/O is known, the schedule has a static character and does not change at run-time
of the control loop. This enables a deterministic real-time behaviour within the
execution of the control platform, adhering to the assigned real-time budget per sample.
Besides the order in which the WorkerBlock are executed, also the specific moment of
synchronizations and data to be synchronized is implemented in the schedule. These
scheduled sequences are then deployed on the different HPPC processor cores, and
executed in a highly parallel and synchronized fashion.

The CARM motion control platform running the servo controllers as described pre-
viously, consists of three domain specific layers, each with their own software-hardware
abstraction and implementation: The Application layer, Platform layer and Mapping

2.2. CARM MOTION CONTROL PLATFORM 11

layer, as seen in Figure with their containing architectural components.

Transducer_group o _T
Application ng(per ¢
Application Definitions - —r
ServoGroup Definitions 2 MTrans MTrans’
— g Block Block
WorkerBlock Definitions = - - - - IBIock [
Transducer Definitions & |[emans |[Evans | [emans' |[ewane
Block_ | [Block Block ||Block Block_grofip
Mapping _l - - Servo_gro|7
Deployment S~ \
Scheduling g2 N
5 23
a g5
© g—'ﬂ
Platform = 4= \\\
Logical Platform Logical & AW — N VI | —
Platform Mapping g abstragtion aqne P
Physical Platform ;t; ___"___ ___L__ _‘:___
I eaivalpaica
(a) Abstract overview of the
three layers within the CAR- (b) Example representation of application model, mapped
M software platform. onto logical and physical platform layer. Figure taken from

6]

Figure 2.4: Organization of the CARM layers

The Application Layer contains the control logic and its behavioural description.
This layer implements the actual motion control application (PGAPP), the ServoGroup
descriptions (PGSG), and their respective WorkerBlock (PGWB) components and
interfacing. It furthermore models the behaviour for the sensors and actuators (Trans-
ducers) of the systems, which are observed and controlled by the application.

The Platform Layer provides the logical representation of the hardware and the
actual interfaces to the hardware platform.
The Logical hardware representation contains all the necessary hardware configuration
data available for the system, like location, processor types and interface types, while
abstracting away from all the actual hardware configurations.
The Physical hardware contains the description of the actual hardware, and the physical
connections present in the lithostepper.
The Platform Layer furthermore provides mapping from logical hardware onto available
physical hardware by defining directed associations between the logical description and
corresponding hardware available in the system.

The Mapping Layer implements the bridge between the Application Layer and the
Physical Layer. This layer maps each element from the Application Layer onto a logical
hardware element in platform layer based on known software and hardware parameters
and requirements. An abstract representation of the mapping between the different
layers can be seen in Figure [2.45]

12 CHAPTER 2. BACKGROUND AND PRELIMINARIES

2.2.2 Hardware Platform

The hardware platform for the CARM motion control system is a hybrid control-
platform, containing a multi-module setup within an ATCA[7] rack. An schematic

overview, and photo are displayed in Figure and

The ATCA rack contains a set of blades which house and interconnect the
computation- or communication-modules, and uses a network of Ethernet and Serial
Rapid 10 (SRIO) [§] protocols. The slots within the blades are able to house different
types of Advanced Mezzanine Cards (AMC modules) containing one or more processors,
FPGAs, or I0-boards for a particular purpose. Within the CARM ATCA racks, there
are two main components relevant for this exposition, namely the Host and the High
Performance Process Controller (HPPC).

Hosts are single-core NXP Freescale MPC8548 [9] PowerPC processors, running
a version of Linux OS. Hosts act as the controlling body for the CARM subsystems,
and configure and manage the system-drivers, interconnect networks, HPPC workload
deployment, and the inter-module synchronization signals.

HPPCs are 8-core NXP Freescale P4080 [10] PowerPC processor modules, running
a custom bare-metal Board Support Package (BSP). The BSP configures the HPPC,
and initiates the strict real-time main application which is used to execute the scheduled
control-loop applications. As the HPPCs are multi-core processors, generally one of the
cores is reserved for background tasks, while the other cores run idle until a process is
triggered for execution by a remote function call.

The connection to the actuators and sensors present in the machine is done via a set of
so-called QHA interconnect modules, connecting the SRIO network of the system to the
various types of actuator and sensor networks in the lithostepper and its sub-systems.
The whole system is synchronized using the dedicated syncbus and Synchronization
Manager (SMA) module, which provides external clock signals and interrupts to the
other modules and the network.

Furthermore, the system contains the Scanner Control Host (SCH). This is the
main computer unit that governs the full software-hardware environment for the multiple
compute racks of a lithostepper. The SCH embeds an Intel Xeon x86-64 processor with
Linux OS, and is furthermore used to control the user-interface, managing software
packages and schedule creation for the various control systems, among other things.

2.3 CARM Hardware Limitations and Upgrade

In light of the semi conductor industries’ continuing trend to optimize ICs’ cost and quali-
ty, while pushing the device boundaries and limitations, the critical parts of lithosteppers
have to change accordingly. As the motion control platform is one of the most crucial
parts of the machine, it stays in a constant state of being re-assessed and evaluated for
software updates and upgrades to keep up with the continuing changes and refinements

2.3. CARM HARDWARE LIMITATIONS AND UPGRADE 13

ATCA Rack

T SCH

SMA ———
QHA

Sensors
and
QHA Actuators

l

| SRIO Interconnect |
I_I_I_I_l

HOST|HPPC|HPPC|HPPC

I_I_I_I_I /
— Ethernet | (b) Compute rack containing HPPC, QHA and
Host modules.

(a) Simplified block diagram with relevant com-
ponents and communication layers.

Figure 2.5: CARM ATCA compute stack.

in the lithographic process. In view of this, requirements for the CARM motion control
platform have been evaluated for the next generation of lithographic process optimiza-
tions with respect to speed and accuracy performance. The evaluations have led to the
decision to increase the control-loop application execution frequency for the most critical
controllers running on the HPPCs. Doubling the sample frequency from the current 20
kHz to 40 kHz would allow for higher order filter calculations and more accurate sensor
and actuator control.

As stated in the hardware platform description of the CARM motion control platform,
current HPPC processor modules contain the NXP Freescale P4080 octa-core processor.
Initial tests and discussions within the CARM development team have indicated that
the current P4080 HPPCs are not capable of fulfilling the 40 kHz requirement without
compromising computational accuracy. The decision has therefor been made to replace
the current HPPCs with a more powerful processor module, capable of delivering the
necessary computational power.

Furthermore, due to the limited amount of space in the computing racks, a secondary
requirement has been stated to reduce the amount of processor modules in the racks.
This means that besides upgrading to more powerful processors for a 40 kHz execution,
the new processor candidate should be able to handle a larger workload.

Previous work [5] has been performed to evaluate a set of possible processor
module from different manufacturers, based on generic requirements like I/O support,
multi-threading, raw processor performance, and possible long term support. Based on
the initial performance and component tests, discussed in detail in Chapter [3] it was
established that the NXP Freescale T4240 12-core PowerPC processor can be selected
as the most likely successor. Previous work has concluded that this processor module
is capable of sustaining a control-loop application execution at 40 KHz, and is due to

14 CHAPTER 2. BACKGROUND AND PRELIMINARIES

the clustered setup of the 12-cores and increased interconnect specifications capable of
replacing up to 3 current HPPC modules.

2.4 'T4240 Processor

NXP’s Freescale QorIQ T4240 is a high-performance communications processor, contain-
ing 12 dual-threaded e6500 PowerPC cores running at 1.8 GHz. The clustered architec-
ture of three times four cores allows for multiple configurations and utilization scenarios.
The processor architecture is detailed in Figure and in Appendix [A] Figure
The shared L1 cache between two hardware-threads of an E6500 core, and the L2 cache
between the four separate E6500 cores within the cluster, enable efficient data sharing
between parallel running processes, while keeping latency low. The CoreNet Coherency
Fabric and L3 cache connects the clusters, processor peripherals, and IO in a efficient
manner, optimized for the multiple hardware configurations possible.

/ T T2 ™ T2 T T2 T T2 512 KB CoreNet® 64-bit DDR3/3 L \

Power Platform Cache = Memory Controller

6500

Power

e6500

Power

e6500

Power

6500

512 KB CoreNet
Platform Cache

64-bit DDR3/3 L
Memory Controller
32KB
I-Cache

32 KB
D-Cache

32 KB
I-Cache

32 KB
D-Cache

32 KB
|-Cache

32 KB
D-Cache

32KB
I-Cache

32KB
D-Cache
512 KB CoreNet

Platform Cache

64-bit DDR3/3 L

2 MB Banked L2 Memory Controller

Security Fuse Processor

Security Monitor
2 x USB 2.0 w/PHY

IFC

PAMU PAMU

Frame Manager

CoreNet Coherency Fabric
PAMU

Frame Manager

Peripheral Access

PAMU yjanagement Unit

Real-Time Debug

Rapidl O .

Power Management DCE Security Queue Parse, Classify, Parse, Classify, Message DMA Watchpoint
1.0 5.0 Mgr. Distribute Distribute Unit \ Cross
SD/MMC = / Trigger
HiGig DCB HiGig DCB &l Sl 8 / >< \ %
4 X DUART 11 S)
= erf.
Pattern 1GE 1GE 1GE1GE § ¥ % \ Monitor Trace
4xFC RuAn Match Buffer 4 g | 3 . onito
R, Enzg:)ne Mg 106 106 'GE 1GE 4og 10g 1GE 1GE £ § § P o9
b : 1GE 1GE 1GE 1GE 1 ———
16-Lane 10 GHz SerDes 16-Lane 10 GHz SerDes
\Core Complex (CPU, L2, L3 Cache) Basic Peripherals and Interconnect Accelerators and Memory Control Networking ElementsJ

Figure 2.6: Abstract representation of the T4240 processor architecture. Figure taken
from Freescale T4240 processor factsheet [I]

Table 2.1: Overview of shared critical functional units in the T4240’s E6500 core pipeline.

Distribution
2 per thread
Shared by 2 threads
Shared by 2 threads
1 per thread
Shared by 2 threads

Resource Amount available
Simple Unit
Complex Unit
Floating Point Unit
Load Store Unit

L2 Memory Bus

=N = =

Looking at the E6500 processor core’s pipeline in Figure of which a larger figure
can be found in Appendix[A]Figure[A.2] and the summary of critical resource distribution

2.5. CONCLUSION 15

in Table it can be observed that a large part of the functional units in the E6500
processors pipeline are double or quadruple implemented in the core, an thus available
for a single hardware-thread’s use. However, some of the critical units are shared between
the two threads of the core.

Unit Memory Unit
= e =
(12instructions) 32-Kbyte | Cache
256-bit
Branch Prediction Unit (8 Instructions) per thread Tags T
BTE ey f
512Entry = . L1 Instruction MMU

ﬁ X = B-entry || B4-entry
FL1VSP| (L1 TLB4K|

|m

Tvio Instruction Decode per Thread (1 2Fl0. 2ViD)
L2MMU
Branch ke 1 o Lie, 1 [v) L 1
Branch lssue Generallssue Ld/Stissue FPU Issue Vector lssue %
Queue(BIQ) Queue (GIQ] Queue (LIQ] Queue(FIOQ) Queue (VIQ) B4-antry || 1K-entry
TLBamay|[TLB array
r (TLB1) || (TLBD)
1 l'u_l
%L s::u“ e = wer I L1 Data MMU
ion ” B 64
o e I omten o] [[S5arEr]
(18) (18) ¢ i
[| =l] E E — -
t f]]
FPR Bus
VR Bus '
L—
Completion Bus
elink elink]
| Kibo SharedL2 Cache |
Completion ! [_]Thread 0
(1%“5.:;” CoreNetInterface C—JThread 1
Two Instiuctions
Retire per Cycle

Figure 2.7: Abstract block diagram of the T4240’s E6500-core pipeline architecture.
Figure taken from the Freescale T4240 Reference Manual [2]

2.5 Conclusion

In this chapter we discussed the organization of the hardware-software environment
of the CARM motion control platform of an ASML litostepper. The current industry
driven requirements for the next iteration of updates are evaluated in light of this
system, and it is discussd that the current platform is unable to handle the performance
requirements without compromise. To sustain the requirements of upscaling the
control-loop execution frequency from the current 20 kHz to 40 kHz, the NXP Freescale
T4240 has been identified as candidate processor to replace the NXP Freescale P4080
HPPC. Furthermore, the possibilities to reduce hardware cost for the system was
discussed based on the unique hardware architecture of the T4240. Potentially the
T4240 is able to replace up to 3 current HPPC processors.

In the next chapter the study of the CARM platform is extended further by analyzing
a complex control-loop application running on the HPPCs with respect to its scheduling
and execution.

16

CHAPTER 2. BACKGROUND AND PRELIMINARIES

CARM Application Scheduling

and Execution

In the previous chapter it is argued that the hardware of the CARM motion control
platform has to be upgraded to be able to handle the required increase in performance.
This chapter analyses the motion control application, running on the hardware platform
in more detail. Based on this analysis, the results and conclusions stated by previous
work[5] are revisited and adjusted accordingly, as basis for further action on the hardware
upgrade.

This analysis focuses on the execution, scheduling, and communication of a servo loop
application running on a single HPPC. As previously mentioned, one of the most com-
plex, resource demanding and time critical controllers within CARM is the Short-Stroke
(SS) controller, providing the nanometer accuracy of the wafer positioning platform, at
a very high acceleration and velocity. Based on this we make use of the SS-controller
as discussion vehicle with respect to computational and communication complexity, to
gain a deeper insight into the execution of the applications running on the HPPCs.
Looking at the schematic example of the SS-controller presented in Figure the com-
plexity of the control-loop can be seen with respect to the different feedback and feed-
forward loops from both within its own context and from the Long-Stroke Controller as
influence.

2
FROM LONG STROKE ————{ AS_SS_EMDC

uuuuuuuuuuuuuu

$5_220

wm —————————T—— | roacuwoms FROM SENSORS

; I- | |

u 3
signal tniection 13 +
u_m ny ‘ g u | | 2 2
$5_220 ¢ ss220 |1 u u =t '
u a0 (- (Foy_ [SATURATION + > ASS5.GS MAT_13x11 PLANT MAT_12X12
—_—
s
Tl g | |
CO_VAR_GAIN Traciog | |
u 2

s5_220
()

Figure 3.1: Blockdiagram representation of an example of the control loop for the SS-
controller application [3].

3.1 Motion Control Application

The application layer of the CARM motion control platform has as goal to schedule and
run the multiple parallel ServoGroups as optimized as possible, by deploying them on the
different available hardware parts of the system. Each of the ServoGroups is deployed
by the Host on a single HPPC module, and managed based on parameters and settings
received from the applications recipe. Each HPPC runs a Block Factory and Sequencer

17

18 CHAPTER 3. CARM APPLICATION SCHEDULING AND EXECUTION

application initiated by the Host, instantiating the different WorkerBlocks with the cor-
rect parameters and interfacing, and schedules the blocks in separate sequences over the
processor-cores according to a predefined schedule for optimal execution. An abstract
representation of the deployment can be seen in Figure The predefined schedule of
parallel sequences is created to ensure that the servoloop application executes its samples
of reading, computing and writing crucial data, according to the assigned time-budget,
adhering to the strict real-time characteristics needed for the lithostepper to optimally
function.

Application

Host

Deployment ServoGroup
manager manager
! |
| Blocks | | Parameters |
HPPC |y]

Figure 3.2: Abstract overview of the deployment of an application on the CARM hard-
ware (Host and HPPCs).

3.1.1 WorkerBlocks

The WorkerBlock used by the servoloops are implemented based on a default interface
structure, containing a set of functions and arguments to be used during execution. The
FullCalc function calculates the full algorithm or operation of the WorkerBlock which
in most cases consists of reading input arguments and performing a single algorithm or
action before updating output arguments. To limit the amount of I/O-delay between
the HPPC and the sensors or actuators in a servoloop, the FullCalc function is divided
into two parts to distinguish between time critical and non time critical parts.

The PreCalc function is called in the non time-critical part of the sample, while the
PostCale function is called in the time-critical part of the sample.

Analyzing the time-critical part of the WorkerBlocks that make up the SS-controller,
see Table it is apparent that a large part of these WorkerBlocks are generic
arithmetic functions or control and filter type functions. The remaining WorkerBlocks
are mostly status and communication functions like remote procedure calls to sensors,
actuators, and other HPPCs.

3.1. MOTION CONTROL APPLICATION 19

Table 3.1: An overview of the different WorkerBlocks running in the time-critical part in
the SS-Controller scheduled on a P4080 HPPC. The critical part of the schedule contains
333 WorkerBlocks, in 7 sequences running parallel on the separate HPPC cores.

. Percentage
Block type Functions Amount of Total
SUMM 99
. . . MULT 39
Generic arithmetic GAIN 5 45%
MATRIX 3
FILTER 39
Control and Filters CONTROL 19 19%
SWITCH 6
BLOCKGROUP ON_OFF | 12
DIAGNOSTICS CHECKS | 21
. . .. DELAY 20
Diagnostics and Communication NMEASUREMENTS 11 26%
PRODUCER CONSUMER | 17
ACTUATOR 6
Remaining 32 10%

3.1.2 Sequences and Schedule

As previously discussed, due to the multi-module setup of the CARM hardware platform,
multiple alternatives exist for the motion controller ServoGroup deployment. To be able
to run these ServoGroups most optimally with regard to time- and hardware resources,
a static schedule is generated and analyzed at design-time at logical-platform level [I1].
The schedule creates a set of specific sequences of WorkerBlocks for the active hardware
configurations in the system. These sequences contain the function-calls to the PreCalc,
PostCalc or FullCalc function of the WorkerBlocks, and the order in which they are
called. The type of function call is based on the specific moment the WorkerBlock is
being scheduled, either the time critical, or the non time critical part of the sample. Due
to the strict real-time requirement for the servoloop, each schedule is generated with
known hardware- and software-parameters like I/O- and function execution latency, to
make sure that the sample is scheduled and executed within its given real-time budget.
The SS-Controller, currently runs at a 20 kHz sample frequency, meaning a budget of
50 microseconds (us) is available per sample.

Looking at Table[3.1]detailing a summary of the WorkerBlocks present in the schedule
for the SS-controller, it can be seen that the time-critical part of the application has 333
WorkerBlocks. Scheduled over 7 parallel sequences an average of 47.5 WorkerBlocks have
to be handled during the available time for the critical section of a sequence.

20 CHAPTER 3. CARM APPLICATION SCHEDULING AND EXECUTION

3.1.3 Synchronization and Communication

As the currently used HPPC contains a Freescale P4080 octa-core processor, a set of
7 WorkerBlock sequences is generated for the SS-controller, leaving a single core to be
solely used for scheduling-, background- and BSP monitoring tasks.

Analyzing the set of 7 generated sequences for the SS-controller running on the
HPPC, it is seen that each sequence of WorkerBlocks is split into two sections;
pre_CMD_sequence and post_CMD_sequence. The pre_CMD _sequence is executed in the
time-critical part of the sample, containing the PostCalc or FullCalc function of the
WorkerBlock, while the post_CMD _sequence contains the non time-critical part of the
sample.

The CMD is the Command, communicating the Critical-Data-Ready signals that
synchronizes critical application data used by sensors and actuators. A schematic rep-
resentation of the different parts of a sample can be seen in Figure |3.3

Interrupt Critical

+ Data End of
Data Ready Sample
A A
PostCalc /
v FullCalc PreCalc %
PreCMD CMD PostCMD -
L J L J
Y Y
Time Critical Non Time Ciritical
RS
Sample N

Figure 3.3: Schematic representation of the critical and non critical part of the sample.

Each of the sequences is scheduled to run on a different core of a single HPPC pro-
cessor. To be able to correctly preserve WorkerBlock execution order, and to transfer
data between the WorkerBlocks in the sequences, synchronization is performed between
WorkerBlocks in parallel sequences.

The synchronization and communication between WorkerBlocks is implemented using
guards, keeping track of update and wait statements in the generated schedule. The
update statements ensures that the WorkerBlocks update an internal Integer value rep-
resenting the state of the Block, which is publicly readable for other WorkerBlocks.
The wait statement triggers a WorkerBlock to wait and make sure that one or more
WorkerBlocks in other sequences have completed their tasks up to a certain update
state, before proceeding with their execution or reading and writing parameters in mem-
ory. This guarantees that critical data are available at the right inputs and outputs when
needed by other WorkerBlocks, and no race-condition or unexpected data dependency is
created.

An example of a generated schedule of sequences can be seen in Figure [3.4] and as can
be seen, a large amount of synchronization moments exist in the schedule. Furthermore,
analyzing the SS-Controllers schedule, it can be deduced that the sequences are sched-
uled to synchronize between 23 and 33 times during a single execution, with an average

3.2. PREVIOUS WORK 21

of 27 synchronizations over a sequence of 47.5 WorkerBlocks. Furthermore it is observed
that the amount of threads involved in a single synchronization event ranges between 1
and all running sequences.

la ‘rf.—r"'“

11 W -L. ~|;|7--. |I.- v: Wi "
\ il '
...Ii ﬂ‘llulnil i ih-c.qi It |.|TT:II|
l....n by gl J._‘...un i i A

_L--rll_lu.u \Jil-l] -L.'l-'aul..‘i-ll,

Figure 3.4: Visual representation of a schedule calculated for an application running on
7 cores of an HPPC. The red (left) and green (right) sections represent time critical
and non-time critical parts respectively, while the arrows represent a communication or
synchronization between WorkerBlocks running on separate cores. [4]

3.2 Previous Work

As discussed in Chapter [2] the current HPPCs of the CARM motion control platform
are scheduled to be upgraded due to increased performance demands. In the preliminary
research performed [5], a set of specific SoC modules have been taken under consideration
to replace the currently utilized NXP Freescale P4080 processors in the CARM platform.
The processors under consideration had been chosen based on the basic constraints of
performance specifications, instruction set architecture, I/O compatibility, release date,
and processor family. The processors under considerations are as follows:

e Intel Broadwell D hexa-core x86-64 processor [12].
e NXP Freescale T4240 12-core dual-threaded PowerPC processor|[2].
e Texas Instruments TI66AK quad-core ARM Cortex A15 processor [13].

As can be seen, the processors candidates for replacing the current Freescale P4080
processor are from different manufacturers and have different architectures, thus, to be
able to estimate performance and compare them, certain tests should be performed.

3.2.1 Performance Estimation

Chip manufacturers publish detail of processor parameters and expected performance
estimations in their product reference manuals, for developers to quickly estimate and
make comparisons. However, these published details are mostly theoretical expectations
based on the architectural features of the device and generic workloads. Performance
evaluation of the device can be performed by the broadly used method of benchmarking,
enabling the precise estimation of processor performance. This enables software and
hardware-architects to compare and make trade-offs in the design-space exploration of a
system.

22 CHAPTER 3. CARM APPLICATION SCHEDULING AND EXECUTION

For the different processor types available on the market, various benchmark suites
are accepted by the community to accurately enable processor performance estimation
by identifying characteristics and bottlenecks using standardized applications. For the
General Purpose Processors (GPPs), used in daily household devices like desktop com-
puters and multi-purpose server racks, there is the SPEC benchmark suite [14]. Looking
at the Embedded Systems industry, a set of different benchmarks is accepted as a reli-
able source of performance estimation, including the LMBench and NBench benchmark
suites.

However, as has been stated previously, the processor modules used in the CARM
platform are General Purpose Processors used in a highly complex embedded environ-
ment. The community accepted benchmarks used in both cases stated, are not tailored
to the custom usage of the HPPC modules within CARM, and thus are unable to provide
the necessary required information to accurately estimate the performance. Therefor,
the claim is made that specific custom benchmarks are needed, which are tailored to the
processor usage within te system.

3.2.2 Experiments

In previous work, the experiments performed to determine the most suited processor to
replace the current HPPCs can be categorized into three different classes with respect
to performance estimation techniques used; Component Tests, Generic Functional Tests,
and Custom Functional Tests. These tests have been performed on stand-alone develop-
ment modules distributed by their manufacturer, and running a generic Linux Operating
System. The main goal for these experiments have been to determine which of the pro-
cessor candidates is best suited for the short-term hardware upgrade, scheduled for the
current HPPC modules in the CARM platform.

Component Testing

The component tests performed in previous work, so called micro benchmarks, are exe-
cuted using the LMbench [15] test suite. Using the suits various benchmark applications,
memory latency and bandwidth have been tested for read, write and copy operations on
a large spectrum of data types and stride sizes. Furthermore, testing is performed using
both sequential- and random- read and write operations for testing cache line perfor-
mance. The tests are executed in a single-core single thread-fashion, using a variable
sized linked list, running an arbitrary large test size of 1.000.000 loads to reduce jitter.
Memory bandwidth and latency is measured for the different processors under consider-
ation, and compared with the current P4080 processor.

Generic Functional Testing

A set of generic functional tests, so called macro benchmarks, is performed using the N-
Bench [16] test suite, and can be divided into two classes; Integer intensive and Floating-
Point intensive. These tests have been run in single-core single-thread fashion for both
32- and 64-bit data types.

3.2. PREVIOUS WORK 23

The Integer-intensive tests executed consisted of the Floating-Point Emulation, Huff-
man Compression and IDEA Cryptography, while the Floating-Point intensive tests ex-
ecuted consisted of the Fourier transform, Neural network simulation and LU decom-
position algorithms. Furthermore, limited tests have been performed in comparing the
single and dual threaded capabilities of the processors, and their impact on execution
duration.

Custom Functional Testing

A Custom performance test has furthermore been executed, focused on a more CARM
application like execution of functional tests. A set of representative WorkerBlocks are
synthesized and sequenced together in manner that is reminiscent of a single sequence
running on a HPPC core during sample execution. The WorkerBlocks used are the
following: Mult, Div, Mult-Max and 4x4 Matrix, containing the operations seen in Table
The performance test is performed in a single-thread single-core fashion, and is run
a large number of iterations to reduce jitter and cold-start influences.

Table 3.2: Overview of the computational block types used for the custom functional
test [5].

Block Function Computation Memory
T C e . 12 Loads
Mul Multiplication 4 Multiplications A Stores
Div Division 4 Division 12 Loads
4 Stores
24 L
Matrix | Matrix Multiplication | 16 Multiplications oads
4 Stores
Mul-Max Multiplication and i gdglrglp;l;icsitrllcs)ns 12 Loads
Max-operation P 4 Stores

4 Branches

3.2.3 Results

The micro benchmarks used for testing memory behaviour of the processors, show
that for all processors the 32kB L1 cache behaves more or less similar. However, when
looking at L2 and L3 cache results, large differences are observed between the different
architectures. As both the T4240 and ARM Cortex A15 have shared L2 cache between
4 cores, their latency is slightly higher than expected, and appears to be slower than the
P4080’s L2 for small datatypes. However, as the L2 cache sizes for the T4240 and the
ARM are much larger than that on the P4080, the overall performance of the processor
cache is expected to be higher when working with large data types as no L3 has to
be used in these cases. It can furthermore be seen that the bandwidth reached for all
processors is approximately the same as reported in their respective documentation.

24 CHAPTER 3. CARM APPLICATION SCHEDULING AND EXECUTION

The macro benchmarks, testing functional performance of the processor cores
show that for both Integer and Floating-Point tests, the Intel processor architecture is
clearly much more powerful than the other processors. However, running the same tests
on different cores have shown that the Intel processor has fluctuating performances
depending on core choice. This fluctuating behaviour is not seen for the Cortex A15 and
T4240, which show no performance difference between their cores. Furthermore, due
to the architectural design of the Intel processor, it exhibits unexpected performance
degradation and fluctuations when multithreading. These performance drops create
nondeterministic behaviour at runtime, making performance predictions in time-critical
applications problematic. When looking furthermore at the processor core performance
of the T4240’s E6500 core, it is seen that the performance of its hardware threads
slightly decrease when multithreading with respect to single-threading, due to the
shared resources in the pipeline. Furthermore, the cores don’t differ from each other in
performance, ensuring the needed deterministic behaviour regardless of chosen processor
core.

The experiments with the custom benchmarking applications, running the
single chain of WorkerBlocks, show that the processor cores of the Intel device
perform up to 8x faster than the P4080’s E500mc cores, while the T4240’s E6500
PowerPC cores perform up to 3x faster. Performance of the Cortex A15 has however
shown to be only marginally better than the P4080 and in some cases even worse,
concluding that the Cortex A15 is not suited as replacement based on these experiments.

Based on the results of the performance analysis in [5] on the set of processors under
consideration, the Freescale T4240 processor has been chosen as the device that is the
most suited candidate to replace the current HPPC modules in the CARM platform.
The experiments suggest that the E6500 PowerPC cores are capable of delivering up to
3x the performance of the currently used P4080 e500mc cores, thus having the potential
to enable the performance increase to a control-loop sample frequency of 40 kHz.

Even though the Intel processor is clearly much faster, it adds a large uncertainty
with respect to reliable deterministic performance when multi-threading, making it less
suited for the time-critical application scheduling of the CARM platform.

Furthermore, the T4240 processor has the unique hardware architecture containing
3 independent core clusters, capable of running fully independent from each other. This
feature creates the possibility to run multiple applications on the same processor in
parallel, without interference from each other. This enables te ability to reduce the
amount of processors in the motion control platform, without compromising in processor
power.

Besides, as the T4240 is based on a next iteration of the PowerPC platform used
in the P4080, adapting the current motion control applications would be less time and
effort consuming with respect to the other architectures, given the already available
infrastructure.

3.3. CONCLUSION 25

3.3 Conclusion

By analyzing the SS-controller, it can be observed that the SS-application provides
a high level of task parallelism, while requiring a substantial amount of inter-core
communication and synchronization. However, looking at the preliminary performance
tests that have been performed, it is seen to focus mostly on single-core processing,
while furthermore only exploring the multi-threading capabilities in generic terms. The
parallelism and the communication that is extensively present in the motion control
applications running on the different cores of the HPPC, is not at all used in the
performance tests used in previous work.

It can be concluded that the method of testing in previous work has been adequate in
determining the best suited processor to replace the current generation of HPPCs, and
based on the results it is seen that the Freescale T4240 clearly seems to be the best option
given the considered processors. However, it is clear that the performance estimation of
the T4240 in previous work has not been based on techniques that emulating the actual
contextual use of the processor within the CARM platform.

This means that the estimations given in previous work are not a reliable basis to perform
the hardware upgrades scheduled. This indicates that further testing is needed, using
more custom performance benchmarks that emulate CARM specific characteristics.

26 CHAPTER 3. CARM APPLICATION SCHEDULING AND EXECUTION

CARM Custom Performance

Estimation

Reflecting on the software analysis performed on the CARM platform and the perfor-
mance analysis experiments executed in previous work [5], the conclusion is made that
the benchmarking application used to estimate the performance of the NXP Freescale
T4240 processor does not adequately represent the motion control application running
on the CARM hardware platform. As experiments performed in previous work have
had the primary goal to distinguish between the different candidates as replacement
for the current HPPC modules, it did not implement a context-realistic behavioural
representation of the CARM motion control application. Although previous work did
provide preliminary estimations with respect to the performance increase and cost of
goods requirements discussed in Chapter [the test results and method of testing have
not provided enough information for definitive judgment on the matter.

This chapter discusses the development of a custom performance analysis benchmark,
based on the conclusions made from the previous work and the analysis of the motion
control application running the SS-controller on the HPPCs. Using the custom bench-
marking software, the requested performance increase of 40 kHz control loop frequency,
and the cost of goods replacement possibilities are tested. The gathered results form
a more accurate basis for estimation and validation of the performance expectations of
the T4240 module, as it is based on key behavioural characteristics of a CARM motion
control application execution.

4.1 Multi-core Performance Estimation and Benchmark
Creation

Based on the analysis of the CARM SS-controller, a custom multi-core benchmarking
program is sought for the Freescale T4240 Device Under Testing (DUT) performance
estimation and validation, in a manner that reflects actual behaviour of the CARM
platform in context of the motion control application.

As discussed in the analysis in Chapter [3] the control loops running on the HPPCs
are scheduled and executed in a complex parallel fashion, with a large amount of
inter-core synchronization and communication between instruction sequences (threads)
running on different processor cores. A key performance metric for such a multi-threaded
workload relates to the way the execution time scales when the amount of parallel
threads composing the workload is increasing. Ideally, to fully utilize the available
application and platform parallelism, performance improvements should scale linearly
with the amount of threads. However, as the software analysis of the SS-controller
has shown, there are certain characteristics that limit the performance increase when

27

28 CHAPTER 4. CARM CUSTOM PERFORMANCE ESTIMATION

parallelizing the application.

The two most apparent bottlenecks identified from the analysis, which are deter-
mining the performance of the processor running the parallel control loop sequences,
are the synchronization between the processor cores, and the contention on shared
resources when executing parallelized applications. To be able to measure the impact of
these phenomena, a set of two distinct performance benchmarks is created and executed
to compare T4240 performance to the current P4080 HPPC within a CARM test
environment (testbench). These two tests are the Round Trip Latency and Parallel
Sequence Execution.

These custom developed benchmarks are implemented on top of the adapted P4080
BSP for the T4240, and based and previously performed experiments by [5]. The
software package containing both the T4240 BSP and the benchmarking application is
compiled into a PowerPC E6500 compatible image, and flashed onto the T4240 using
the Vadatech provided UBoot bootloader. After booting and initialization sequences are
complete, a single master thread initiates the main function of the custom benchmark
suite, while the other hardware threads (cores) wait for activation by remote function call.

4.2 Round Trip Latency

The analysis in Chapter [3]shows that the synchronization between the running sequences
on the processor cores is a very important, and takes quite an extensive part of the
parallel execution of the control loop algorithm. Due to the large amount of data
dependencies within the algorithm, and timing requirements of the control-loop, the
synchronization latency is a large potential bottleneck on performance. The fact that
hardware memory latency does not scale with the same pace as processor speed and
functional unit latency when moving to a processor with increased processor frequency,
makes this performance aspect hard to be estimated without proper testing.
Furthermore, when looking at the processor core architecture [2], it can be seen that the
critical path of communication between processor cores has changed significantly with
respect to the currently used HPPCs. On the P4080, there exists only a single layer of
L2 cache between the separate cores, while the T4240 has multiple levels of processor
cache ranging from L1 to L3, depending on which cores are scheduled to communicate.
These architectural differences between the current HPPC and the one based on the
T4240 processor, change the deterministic behaviour of the generated sequence schedule
for the application, and thus further research is needed to estimate what impact it has
on the potential processor performance.

The communication between the sequenced WorkerBlocks running on different pro-
cessor cores, is performed by read- and write operations on shared memory and synchro-
nization using Integer flag wait and updates.

Performance testing for this type of communication is performed by emulating the com-
munication and synchronization methodology used in the CARM application, and mea-

4.2. ROUND TRIP LATENCY 29

suring the round trip latency through the various levels of processor cache between two
or more running threads. Round trip latency is defined in this benchmark scenario as
the time (in nanoseconds) it takes for a certain processor core to set a value in shared
memory, and read the value to be reset by an other core.

By measuring the latency for the different levels of cache during different types of
producer-consumer model execution, a clear set of estimations can be made with re-

spect to the performance impact of workload spreading and multi-workload usage of a
HPPC.

4.2.1 Implementation

Due to the utilization of the extended PowerPC instruction-set and the T4240 hardware
architecture, the different levels of cache connecting the processor cores induce varying
latencies for different inter-core communication scenarios. To test the synchronization
latency differences between the various levels of cache, three different testing scenarios
are contemplated, based on which results can be extrapolated and conclusions made:

e Intra-core (thread to thread) communication via L1, within a single E6500 proces-
sor core.

e Inter-core communication via L2, between two E6500 processor cores within the
same core-cluster.

e Inter-core communication via L2 and L3 (CoreNet Fabric), between two E6500
processor cores placed in different core-clusters.

A schematic representation of the three different inter-core communication scenarios is
seen in Figures 4.1a} [4.1b] and |4.1c|

L1 L2 L1 L2 L3 L2112

Master Slave Master Slave Master Slave
Core Core Core Core Core Core
(a) L1 intra-core. (b) L2 inter-core. (c) L3 inter-core.

Figure 4.1: Schematic representation of the round trip latency experiment via the dif-
ferent cache levels.

As synchronization activity rate between parallel running sequences varies for the
different applications running on the HPPC. Multiple scenarios regarding the amount
of inter-core synchronizations need to be evaluated. This enables detailed insight in the
impact on synchronization latency for the different levels of cache and varying amounts
of synchronized parallelism. Because the T4240 processor’ PowerPC E6500 cores are
dual-threaded, some critical functional pipeline resources are shared. To capture the
effect of this sharing on core performance, the difference between single threaded and
dual threaded execution is examined as well in this test, as one of the shared resources is
the memory bus connected to the Load-Store units. Contention on this bus is expected
to increase the memory latency for dual threading with respect to single threading

30 CHAPTER 4. CARM CUSTOM PERFORMANCE ESTIMATION

execution.

Furthermore, the PowerPC instruction-set has a range of varying synchronization
operations[I7], each with different behaviour with respect to operation execution. These
include the MBARO, MBAR1, SYNC, and MISO operations. The two most viable
synchronization operations SYNC and MBAR1 are tested for each of the execution
models, as these operations best represent the desired synchronization behaviour to be
used in the CARM application with respect to pipeline behaviour and operation order
determinism.

The SYNC' operation provides a heavyweight memory barrier that ensure the order
of memory accesses. The operation stalls all other operations and makes sure that the
data memory access becomes visible to the entire memory hierarchy by publishing it to
the CoreNet L3 cache before any other operations are executed.

The MBAR1 provides a more lightweight memory barrier that flows through the
pipeline and queues, preventing reordering with respect to the operations on memory
hierarchy.

Two basic algorithms are developed for testing the round trip latency between
multiple cores, as depicted in Figure[f.2] The first test is a single 1-to-1 synchronization,
in which a single master core synchronizes with a single slave core. The second test
is a 1-to-N synchronization, in which a single master core synchronizes with a varying
amount of slave cores.

The basic algorithm of the round Trip Latency test is executed in 4 steps as follows.

1. A master-thread allocates addresses in memory, for master- and slave-flag integers,
and makes them known to the involved cores.

2. The master-thread assigns a value to an integer flag in memory.

3. A slave-thread reads the master assigned flag from memory, and assigns that value
to another integer flag in memory.

4. The master-thread reads the slave assigned flag and calculates the time passed.

To reduce jitter in the measurements, the tests are run an arbitrary large number of
iterations, after which the results are averaged. Furthermore, after rebooting or resetting
the device, the results from the first iteration of the benchmark are evicted to reduce
the cold-start memory overhead influences on the results.

The Code examples and [B.2] in Appendix [B] present the pseudo-code for the
implementations of the main functions of both master and slave threads for the Round-
Trip-Latency benchmark application.

4.3 Parallel Sequences

The software analysis in Chapter (3] indicates that the software running on the HPPC
is highly parallel and heavily synchronized at specific moments during the execution

4.3. PARALLEL SEQUENCES 31

Reset Start Stop
Reset S‘t‘art S_top Master flags ~ Timer T':;In o
flags ~ Timer Timer Core etflagM| Wait flag Sy S, T fianf:'e Return
Master Set fla M| Wait flag S TMeas“'e Return 4
Core | 9 4 time RN ; :
Slave
“a Core 1 | Wait flag M -.,'I Set flag Retu;nl
Slave | Waitflag M |Setflag S | Ret
Core ait flag et flag eturn ‘ '
t
> Slave | Wait flag M Set flag Return
Core n Sp
(a) 1to 1
(b) 1ton

Figure 4.2: Schematic representation of the round trip latency performance tests.

of the pre-calculated scheduled application. To accurately test the parallel functional
performance of the processor cores, the developed performance benchmark, emulate the
behaviour of the parallel running sequences found in the motion control applications.
This benchmark uses predefined WorkerBlocks with a function workload reminiscent of
the execution complexity found in the sequences of the motion control application.

The CARM sequence generator that is part of the CARM motion control application,
is emulated in a simplified manner and produces a set of predefined function blocks and
sequences them in the same way the sequence generator of the CARM servo loop does.
The sequences are synchronized on specific moments through different levels of shared
memory, emulating the inter-core synchronization methods utilized in the application
running on the HPPCs.

To asses the performance of the processor and compare it with one of the currently
used P4080 HPPCs, a workload containing a set of fixed size sequences is executed
on both the T4240 and P4080 modules, and timed in ns. Furthermore, the available
processor performance counters, accessible via the PowerPC Instructionset, are used to
measure other effects like functional unit contention and cache misses.

4.3.1 Implementation

The workload for the test is based on a set of parallel sample sequences running on
the different cores of the the processor. These sequences are all identical to ensure
the maximum level of resource contention possible, ultimately emulating the worst case
behaviour of the processor.

The utilized base sample sequence is created by repeating a small array of 5 gener-
ated functional WorkerBlocks. These short WorkerBlock arrays are padded with differ-
ent update- and wait-blocks, according to the desired inter-core synchronization. The
WorkerBlocks in the short array are linked to each-other using the same linked-list tech-
nique found in the CARM sequencer. This means that, at design-time, a static schedule
is created describing the WorkerBlock in- and outputs and the connection between them
using pointers to their memory address.

The total base sample sequence is then created by repeating the short WorkerBlock
array a fixed number of times. It has been chosen to repeat them a total number
of 16 times, creating a large sample sequence of 80 compute blocks regardless of the
synchronization blocks in between. The length of this sequence has been choses based

32 CHAPTER 4. CARM CUSTOM PERFORMANCE ESTIMATION

on the need for an arbitrary large sequence, which at least represented the average length
of a CARM application sequence, and made synchronization impact clearly visible when
comparing different scenarios.

The generated set of WorkerBlocks utilized for the workload, mirror the computa-
tional complexity of the different WorkerBlocks found in the SS-controller application,
and are furthermore based on the WorkerBlocks used in previous work and approved by
the CARM system architects. These WorkerBlocks contain a fixed number of inputs and
outputs, dummy input parameter values, Status value and a single FullCalc function. A
schematic representation can be seen in Figure 4.3

Based on these criteria, the following WorkerBlock-

s have been selected: IN, MUL, DIV, MATRIX, MUL- Parameters]]
MAX, PID, UPDATE, WAIT, OUT, with the functional
and memory operations described in Table

The IN and OUT blocks function as source and sink of the
sample sequence, providing dummy input data at the start
of the sequence, and collecting output data at the end of
the sequence. As the data used in the calculations are not
actual functional data, the results are irrelevant and thus
not kept. The WAIT and UPDATE blocks are used as
synchronization points in the sequence. The WAIT block
stalls the WorkerBlock function and waits for a specific Figure 4.3: Abstract dia-
UPDATE WorkerBlock, on the same or a different core, gram of a block template
to increments its state to a certain value before continuing used for the WorkerBlocks
execution. These WAIT and UPDATE functions are con-

trolled using a set of GUARDS created at design time and incorporated into the static
schedule, keeping track of core-id and status value for synchronization actions between
sequences.

Due to the unique multi-threaded and clustered nature of the processor-cores, and
the utilized memory architecture [2] in the T4240 processor, it is essential to vary a set
of different application characteristics during workload execution. This way their impact
on eventual performance behaviour of the processor can be compared with performance
delivered by the P4080 processor under the same conditions. These key characteristics
are as follows:

1

FullCalc()

LIl
T

&
g 4x Double Out

K

e Workload spreading over cores and clusters.
e Multi-threading.

e Synchronization intensity.

Workload Spreading

The possibility to aggregate the processor cores of the T4240 in separate clusters, is one
of the most attractive hardware architectural features of the device, and theoretically
allows for three almost complete separate clusters of cores with a low amount of impact
on each others behaviour and performance.

4.3. PARALLEL SEQUENCES 33

Table 4.1: WorkerBlock details on memory and functional units utilization, and data-
types (Integer or Float).

Block Type | Function Computations Memory Usage
IN Data source 1 Add I 3 Load
5 Store
T 4 Multiplication F 13 Load
MUL Multiplication 1 Addition I 5 Store
o 4 Division F 13 Load
bty Division 1 Addition 1 5 Store
. C e 1 Multlply F . 25 Load
MATRIX Matrix multiplication 12 Multiply-Addition F 5 Store

1 Addition I

4 Multiply F

C 4 Compare F
Multiplication and 41 OR 13 Load

Max operation 4 Branch Equal 5 Store

1 Addition I

MUL-MAX

12 Multiply-Addition F

PID PID controller function | 4 Subtract F f? Isfad
4 Addition T ore
1 Load
UPDATE Sync 1 Addition I 1 Store
1 Sync
1 Compare I ? izzg in loop
WAIT Wait for update 1 Branch Greater/Equal
.. 1 Store
1 Addition I
1 Sync
OUT Data sink 1 Addition T 9 Load
5 Store

Varying the workload spread over different cores, and the total number of workloads
running side by side on different clusters, is used to determine the impact of the core
clustering on processor performance. Furthermore, executing up to 3 benchmark work-
loads simultaneously on different core-clusters, can provide evidence for the viability of
running multiple motion control applications on a single T4240 processor.

Threading

Looking at the pipeline architecture of the E6500 processor core, one can observe that
certain functional units and memory buses are shared between the two hardware threads
of the E6500 cores of the T4240. Just as has been done with the synchronization tests,
measuring the performance difference between single and dual threaded execution of
the parallel sequences, will determine the impact of dual threading on T4240 processor
performance.

34 CHAPTER 4. CARM CUSTOM PERFORMANCE ESTIMATION

Synchronization Intensity

As the communication intensity between different running threads on a HPPC is not
uniform, different levels of synchronization scenarios are considered in the experiments
in order to measure the impact of synchronization overhead and resource contention on
the overall performance. This is done by having three different synchronization intensities
induced in the workload of the test: stand alone, start-finish, and full synchronization.

The stand alone scenario executes all running sequences in parallel without inter-
core synchronization. This means that the processor cores are free to execute their
workload without having the constraints of waiting or updating other cores, as can be
seen in Figure £.4]

The start-finish test with 2 synchronization points, has a wait and update block
at start and finish of the sequence as can be seen in Figure This means that all
sequences wait on each-other after the initial executed block. The same concept holds
for the last block, where again all blocks wait for each other before the last block is
executed and the sequence ends. This induces the situation where all sequences start
and stop executing at the same point in time, but the processor pipelines have some
form of freedom of scheduling the use of their functional units.

The full synchronized test with 5 synchronization points, see Figure 4.6} includes
a wait and update block after each of the blocks. This implies that after each executed
function block, a synchronization is performed to guarantee functionality is executed
before continuing. Furthermore this scenario induces the maximum amount of overhead
and contention on shared resources, resulting in the worst case scenario for the execution.

By testing with these three experimental scenarios, an adequate overview can be cre-
ated and estimations can be extrapolated with respect to other cases of synchronization
and communication in a workload.

ax ax ax ax MUL | 2% ax
IN MULT DIV MATRIX MAX PID ouT

Figure 4.4: Block diagram for the stand alone sequence test.

[Guard] [Guard]
X ax ax ax MuL [4x ax
IN v MULT DIV MATRIX PID v ouT
] -]
Update Update
& &
Wait Wait

Figure 4.5: Block diagram for the start-finish synchronized sequence test.

4.3.2 Experiments

To execute the performance tests, a single master-core starts a number of threads on
specific other cores according to the test scenario, and waits for all threads to finish

4.4. EXPERIMENTAL EVALUATION PLATFORM 35

Guard Guard Guard Guard Guard
: i i E i

4x 4x 4x 1 ax MuL |4 T 4x 1
IN MULT U Div y |MATRIX v v PID v ouT
ML Iml Jm™ ol 0]
Update Update Update Update Update
& & & & &
Wait Wait Wait Wait Wait

Figure 4.6: Block diagram for the fully synchronized sequence test.

initializing their sequence. When all threads have signaled finishing their initialization to
the master thread, all threads are given the signal to start running their workload. After
all threads have finished executing their workloads and signaled this to the master, the
timer and performance counters are read to obtain the performance data. A schematic
representation of this execution pattern can be seen in Figure [1.7] To reduce memory
associated jitter and cold-start, the tests is run an arbitrary total number of times ranging
from 1000 to 1000.000 times, after which results are averaged.

A pseudo-code example of the implementation of master and slave functions are presented

in Appendix [B] Code example and B4

Start Stop
Timer Timer
Master Measure
Core Start_Threads| Init_Workload| Wait 1..n Run_Workload Wait| Time and |Return
Counters
Slave) .
Core 1 init_Thread | Init_Workload| Run_Workload
Slave
Coren if Init_Thread | Init_Workload | Wait Run_Workload

Figure 4.7: Schematic representation of the execution of the benchmark running parallel
sequences.

4.4 Experimental Evaluation Platform

In the previous work, the tested NXP Freescale T4240 SoC module was a stand alone
development board, augmented with a generic off-the-shelf Linux operating system. In
this project, to accurately determine the performance of the processor module within the
context of the CARM platform, a VadaTech T4240 AMC module [I8] has been integrated
into a working CARM testbench hardware environment.

The current NXP Freescale P4080 HPPCs are running a custom (BSP) Operating
System, optimized for managing te multi-core hard-real time CARM motion control
applications. To be able to execute the CARM software on the T4240 within the CARM
hardware platform, the BSP software package has been adapted to run on the T4240
processor. As the T4240 is a natural successor of the P4080, both running on an extended
PowerPC RISC instruction set, the P4080 BSP has been used as the basis for the new
BSP. The BSP adaptation required the changing of critical functions and instructions to

36 CHAPTER 4. CARM CUSTOM PERFORMANCE ESTIMATION

account for the difference in hardware configuration and instruction-set variation.

However, due to the nature and time frame of this project, the full range of specific
optimizations and accelerators featured by the T4240 processor have not been utilized,
as only the default core components and memory functionality were necessary.

For testing and comparing performance of the T4240 and

P4080, a hardware environment is assembled and installed in a Linux
CARM testbench ATCA rack, emulating an ASML stages rack R
used in the Twinscan lithosteppers. This testbench provides [

the needed interfacing and software components for configura- ATICAW Eth-e’mt
tion and running the benchmark application on the HPPCs.
The test setup is build up out of the following components, sert
where external communication with the T4240 processor mod- Serial | Serial
ule is done by a remote serial connection over Ethernet to the [r‘;};ﬁ/*g;a?ggagggggj \
SCH.
HPPC Host HPPC
e SCH with Intel Xeon x86 processor running Linux. vaoeo | lupcesssl | 7ans0

o ATCA rack
Figure 4.8: Abstract

o ATCA Blades block diagram of the

e AMC modules hardware setup for
T4240 performance
— HOST Freescale MPC8548 (Prodrive). testing and validation.

— HPPC Freescale P4080 (Prodrive).
HPPC Freescale T4240 (Vadatech AMC702).
PGEA I/O module.

4.4.1 Baseline Validation

Due to the fact that the T4240 processor used in previous work was build into a
stand-alone Reference Design Board (RDB), this device is unsuited to be directly
integrated into the dedicated testbench. To be able to integrate a T4240 processor into
the testbench environment and the actual CARM hardware platform, it demands to be
an AMC module compatible with the ATCA rack infrastructure. For this project, the
used Vadatech 702 AMC module with T4240 processor has this compatibility. Because
the NXP Freescale T4240 RDB and the AMC-module are manufactured by different
vendors, hardware- and configuration differences do exist between them. To be able to
use the results gathered from previous work as baseline, the tests performed in previous
work have to be validated by recreating them on the AMC module.

The Linux based performance benchmarks used in previous work, are executed in a
simplified manner on the Vadatech T4240 module integrated into the CARM testbench.
It is observed that the results from both the component test and the function tests, are
comparable to the results gotten in previous work, and don’t differ much besides the
expected jitter due to iteration and cold-start influences.

4.5. RESULTS 37

4.5 Results

The performance results gathered from the custom performance benchmarks can be mea-
sured in both processor cycles and nanosecond duration. In this project it is chosen to
measure the experiment results in nanometers, as this creates the easier comparability
with tests from previous work and known results from CARM design documents, and fur-
thermore is processor clock-frequency independent, enabling quick comparison between
the two processor platforms. These execution times in ns are measured by recording
the start and finish time of the benchmark iterations, by calling the HPtime() function
provided by the custom BSP.

FPU contention and cache misses are furthermore recorded using the available perfor-
mance counters, by making use of the extended T4240 PowerPC instruction set However,
it has been seen that the the performance counters don’t shown much relevant results
besides the quantification of expected FPU contention when using dual-threading.

4.5.1 Round Trip Latency

The round trip latency tests are executed for both the SYNC and the MBARI
synchronization operation from the T4240 PowerPC instruction set, for both the dual
and single threaded operation mode. Furthermore, to evaluate the impact of forced
synchronization on performance, a execution scenario is tested with no synchronization
instruction used to trigger synchronization at the fixed communication moments in the
test scenario. This however creates the non-realistic scenario where the synchronization
is left to be performed by the processor pipeline, impacting the deterministic behaviour
of the processor from an application point of view, and is thus only used as context
knowledge.

1200

1 to 1 synchronization ns 1 to 1 synchronization ns

1000 - 1000

800 1 70 — &

Latency (ns)

600 SYNCns § a00 [

3 300 — B—— —
— — NOSYNCns

400 7

~~~~~~ MBAR Dual Thread 100
----- SYNC Dual Thread © [ meart SYNC NOSYNC
mLL 108 281 | 125
=2 123 163 680
mL2DT 143 270
3 389 406 950
L30T 580 685

200 7—/7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Slave thread ID

Figure 4.9: Round Trip Latency test results for the 1 to 1 tests in ns.

As can be seen in the I to I test results depicted in Figure the different levels
of cache are clearly distinguishable by the amount of latency. Looking at the single
threaded execution of the test, it can be seen that the MBARI operation is respectively
2.6x, 1.32x, and 1.05x faster than the SYNC operation for L1, L2, and L3 cache.

When dual-threading is activated, it can be observed that the difference between
MBAR and SYNC is 1.88x and 1.18x for 1.2 and L3 respectively.

It can furthermore be observed that the communication via L3 is up to 3.6x
slower than communication via L1, and 3.14x slower than via L2, which indicates



38 CHAPTER 4. CARM CUSTOM PERFORMANCE ESTIMATION

1 to many synchronization ns ltomany
synchronization ns

>
g 1000 = ——— MBAR ns
S 800 - SYNC ns

600 z — — NOSYNCns

1
7 LA = Average 2
200 overhead per
o thread

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 = Average L3

Number of slave threads overhead per
thread

Latency overhead (ns)
w
g

Figure 4.10: Round Trip Latency test result for the 1 to N tests in ns.

that synchronizing across different clusters via L3 cache has a substantial detrimental
performance impact.

Looking at the results from the 7 to N synchronization tests in Figure it can
be concluded that there exists a linear relation between the experienced latency with
respect to the amount of slave cores that the master core is waiting for to synchronize.
The results suggest that for both MBAR1 and SYNC, for every extra core within the
same cluster (synchronized via L2) an average of 21 ns overhead is added. For every core
outside of the cluster (synchronized L3), an extra 60 ns is added. Both overheads add
on top of the respective initial L1 latency. Running the same benchmark application on
the P4080 processor, the results can be compared to the previously gathered results of
the T4240, as seen in in Table

Table 4.2: Comparison of the 1 to 1 Round trip latency results in ns for single and dual
thread testing for both MBAR1 and SYNC operation.

T4240 P4080
Operation | Threading L1 | L2 |L3 || L2
Single Thread | 281 | 163 | 406
SYNC Dual Thread | NA | 270 | 685
Single Thread | 108 | 123 | 389
Dual Thread | NA | 143 | 580

227

MBARI1

227

Using the MBARI1 synchronization operation, communication between cores on
the T4240 via the L1 or L2 cache is much faster than on the P4080 (52% to 37%
respectively) for both single as dual threaded execution. However, it is seen that
when communicating between cores within another cluster, via the L3-CoreNet, the
latency increases quite rapidly with up to 71% and 156% for single- and dual-threaded
respectively, compared to the L2 communication on the P4080 processor. This means
that the synchronization performance outside of the core-clusters induces a heavy
penalty on performance during the synchronization parts of the sample.

When looking at the results from experimenting with the SYNC operation, the
results are in line with what has been seen previously. Communication within L1 has a



4.5. RESULTS 39

latency of 281 ns, which compared to the 227 ns of the P4080 is a performance decrease
of 23%. Single core L2 communication is slightly better with 162 ns latency, but when
dual threaded, the latency increases to 270 ns which is a performance decrease of 19%
with respect to the P4080.

Communication with cores outside of the same cluster via L3, further increases latency
compared to the P4080 L2 communication, to a 406 and 685 ns single and dual threaded
respectively.

4.5.2 Parallel Sequences

As revealed by the round trip latency test, the MBARI1 synchronization operation
provides a significant better performance than the SYNC operation with respect to
communication latency through the different levels of processor cache. Furthermore
the heavyweight nature of the SYNC operation is unnecessary in most of the CARM
motion controller applications. Therefor the performance test results discussed in the
next sections assume only the MBAR1 synchronization operation. The measurements
corresponding the Parallel Sequence benchmark execution for the 3 scenarios of
synchronization, are presented in Table

Table 4.3: Test results for the Parallel Sequence benchmarks, ran on both the T4240 and
P4080. Results correspond to the average execution time of a thread running a single

sequence workload. Both raw results in ns and normalized results are displayed, where
the P4080 results have been set at 100.

‘ actual ns ‘ normalized

Standalone
P/080 | 8 cores 13155 100
T4240 | 12 cores single thread | 6439 49
8 threads 1 cluster 8831 67
16 threads 2 clusters | 8861 67
24 threads 3 clusters | 8870 67
2 Flag Synchronized
P/080 | 8 cores 14769 100
T4240 | 12 cores single thread | 7808 53
8 threads 1 cluster 11029 75
16 threads 2 cluster 10968 74
24 threads 3 cluster 11706 79
5 Flag Synchronized
P/080 | 8 cores 20796 100
T4240 | 12 cores single thread | 12896 62
8 threads 1 cluster 13307 64
16 threads 2 cluster 15553 74
24 threads 3 cluster 21798 105




40 CHAPTER 4. CARM CUSTOM PERFORMANCE ESTIMATION

Looking at the results for the stand alone testing scenario, it is clear that the
T4240 shows no performance difference between running a single workload on a cluster,
or running multiple workloads in the same time at different clusters. It proves that the
core functional pipelines have no effect on performance outside of their core-cluster.
Furthermore, the experiments indicate that when dual-threading, the parallel sequences
running both on a processor-core experience an approximate 37% performance degra-
dation with respect to the single threading execution time.

The results for the experiments with both synchronization scenarios on the T4240,
show that the added synchronization induces a clear strain on processor core perfor-
mance. When comparing the execution times of the 2-flag synchronized test scenario,
the execution duration of the application increases with 30%. Increasing the amount of
synchronization even more using the 5-flag test scenario, it is clear that the amount of
synchronization heavily adds to the execution duration, increasing the execution time
with up to 146% when using all 24 cores simultaneously.

It can be observed that the extreme results for the 5-flag synchronized test scenario
using all 24 cores simultaneously, lie outside of the line of expectancy looking at the
other results. However, as this phenomenon has been present in all the experiments
using this scenario it cannot be igored and it is assumed to be a side-effect of the
processor architecture design. The performance counters recording the amount of FPU
contention show furthermore no differences with the other scenarios, which makes us to
assume that this phenomena is related to the large amount of contention on memory
buses.

Table 4.4: Performance comparison between P4080 and T4240 SoC for the sequence tests,
using different synchronization intervals. Values represent the performance increase of
the T4240 over the P4080 when running the same workload on the processor.

1 Workload 3 Workloads
(Non Clustered) | (Clustered)
Standalone
Single Thread | 12 cores 3x 1.02x
Dual Thread 2/ threads | 4.5x 1.5x
2 Flag Synchronized
Single Thread | 12 cores 2.83 0.94x
8 threads | 1.33x 1.33x
Dual Thread 16 threads | 2.7x 1.35%
24 threads | 3.8x 1.27x
5 Flag Synchronized
Single Thread | 12 cores 2.42x 0.81x
8 threads | 1.56x 1.56x
Dual Thread 16 threads | 2.7x 1.35x
24 threads | 2.86x 0.95x




4.6. CONCLUSION 41

Table presents the relative T4240 performance results with respect to the P4080
ones. Comparing these results with the estimations made in previous work, it can be
concluded that a T4240 is indeed capable of performing at least 3x as fast as the P4080,
however this estimation is observed to only be correct for a small subset of the executed
scenarios. Our results confirm that the estimations from previous work are accurate
for the non-synchronized scenario, running a single workload spread over the processor
cores of the T4280. The results indicate a performance increase of 3x and 4.5x that of
the P4080 for the single- and dual-threaded execution respectively. Furthermore, when
executing a workload on each of the 3 core-clusters of the T4280, each cluster can be
seen to perform up to 1.5x faster than a single P4080 HPPC. However, when taking into
account that the CARM software runs according a heavily parallel and synchronized
execution scenario on multiple processor cores, the results we obtained from the custom
performance estimation show a different story.

The results for a single workload execution in Table [£.4] show that the performance
gain of the T4240 over the P4080 degrades significantly when increasing the amount of
synchronization between the cores. This is most clearly seen in the T4240 single-threaded
scenario results, where increasing synchronization reduces the performance gain with up
to 20%. Observing the synchronized execution scenarios while dual-threading is active,
it can be seen that the T4240 performance scales quite consistently with the amount of
active clusters sharing the workload, running up to 3.8x the performance of a P4080.
However the performance drop when executing on all 24 cores in parallel shows a decrease
in estimated performance up to 35%, with respect to the non-synchronized scenario.
Furthermore, our measurements on the clustered workload execution suggest that regard-
less of the utilized synchronization scenarios, with exception of the discussed performance
outlier, the T4240 is capable of running up to 3x the workload of a P4080 in the same
time at an approximate 1.3x the processor performance of a P4080.

4.6 Conclusion

Based on the results gathered via the proposed performance benchmarking approach, we
can conclude without doubts that the considered synchronization methods and memory
barriers have significant impact on the T4240 core-to-core communication and memory
behaviour. In particular, when the MBARI lightweight synchronization is utilized the
thread to thread communication via shared L1 has a 50% smaller latency than the P4080
corresponding counterpart. For the L2 based communication between T4240 cores in the
same cluster the latency adds ups to 65% of the P4080 corresponding counterpart. When
the more heavyweight SYNC operation is utilized however, the performance improvement
is diminishing, and even performance loss is observed in comparison with the P4080
execution.

Furthermore, it is seen that synchronization outside of a single core-cluster, induces
a large performance penalty. This brings us to the conclusion that executing a heavily
synchronized workload spread over multiple cores in different clusters should be dis-
couraged in the real CARM motion control applications, as it would reduce the T4240
performance increase over the P4080 quite significantly.



42 CHAPTER 4. CARM CUSTOM PERFORMANCE ESTIMATION

Looking at the performance of the parallel sequences, it can be seen that the single
threaded performance of the T4240’s E6500 processor cores lie at approximately 2x
that of the P4080’s E500MC processor. However when dual-threading, the performance
increase of the K6500 cores’ hardware threads diminish to approximately 1.5x that of
the P4080 due to critical component contention in the pipeline. These results are in
disagreement with the ones produced by previous investigations which has indicated
that the T4240 cores are always 3x faster than the P4080.

However, previous estimations do hold true when the performance of the processor
modules as a whole is compared, ie a T4240 running the same workload as a P4080. In
that case, a T4240 is capable of executing the application between 2.4x and 4.5x faster
than a P4080, depending on synchronization intensity. This allows us to draw the conclu-
sion that the T4240 is definitely capable to deliver the performance increase required to
sustain the 20 kHz to 40 kHz upsampling necessary for the ASML lithosteppers upgrade.

Furthermore, the experiments demonstrate that it is possible to execute up to 3 work-
loads simultaneously on the separate core-clusters of the T4240, while running at the
current application frequency. However, the amount of synchronization does induce per-
formance variations, indicating that the hardware architecture might not be as powerfull
and versatile as it has been suggested in previous work and processor documentation.



Conclusions and Future Work

Based on the results from the analyses and experiments performed in previous Chapters,
conclusions are drawn for the discussed requirements on the CARM hardware platform.
The future work ahead is discussed and the implication the results might have on the
current status of affairs within ASML and the semiconductor industry.

5.1 Summary

In this thesis we theorized that the off-the-shelf benchmarks, used for initial performance
estimating the processor candidates for the CARM platform, have not been sufficient
in representing the motion control application running on the hardware platform, thus
providing inaccurate estimation data.

In this work, we performed an analysis into the scheduling and execution of the appli-
cation performing the controller-function of the Short-Stroke mechanical platform. This
analysis indicated that the application executes as a highly synchronized set of parallel
sequences of functions, deployed on different cores of the HPPC processor module. We
established that the performance bottlenecks, characteristic to this execution method,
mainly exist in the synchronization between the cores via shared processor cache and
the contention of shared resources due to the parallel functional unit scheduling in
the processor. By thorough analysis of the benchmarks executed in previous work, we
concluded that they do not expose the previously mentioned CARM specific bottlenecks,
as they mainly focused on the raw single-core performance of the processor modules
under consideration. Therefor we can conclude that the off-the-shelf performance
benchmarks available, are not effective enough in estimating the performance for the
custom use of the multi-core processor in the CARM platform, and custom and specific
performance benchmarks are needed that focus on the known hardware bottlenecks of
the motion control applications executed on an ASML lithostepper.

Using the analysis of the CARM Short-Stroke application, we developed a set
of custom performance benchmarks emulating the synchronization and parallelism
behaviour found in the application executed on the HPPC processors. This enables us
to make performance estimations of the new processor in a more realistic manner, while
not needing to implement a full CARM software and hardware setup.

In order to execute these benchmark applications, we installed and configured a custom
testbench hardware environment emulating the CARM platform found in the ASML
lithosteppers, in which the Freescale T4240 processor module is integrated and con-
trolled by means of the adapted Board Support Package operating system we developed
specifically for this project. By executing the custom performance benchmarks on the
testbench, and analyzing the gathered results, we can conclude that the industry driven

43



44 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

performance requirement of upgrading from a 20 kHz to 40 kHz sample execution
budget is definitely possible when using the NXP Freescale T4240 processor module.
The experiments indicated that the T4240 performs between 2.86x and 4.5x as fast as
the currently used NXP Freescale P4080 module, in the scenario where the singular
24-core T4240 module is used to replace a singular 8-core P4080 module.

Evaluating the results with respect to the desired cost-of-goods hardware upgrade,
where three P4080 modules are replaced with a single T4240 module, the performance
gain of the T4240’s E6500 cores is seen to diminish significantly. Although the measure-
ments have indicated that the T4240 is indeed capable of executing 3x a workload of
a P4080 in the same time-period using the separate core-cluster architecture, contrary
to the theorized situation in previous work [5], this is only viable when the application
workload is ran at the current 20 kHz execution frequency. The results show that each of
the 3 core-clusters of the T'4240 is capable of reaching up to 1.5x the performance of the
P4080. It is furthermore shown that fluctuations in the performance may occur when
varying between the different synchronization scenarios. It is seen that a performance
decrease of up to 19% with respect to the P4080 can occur in the worst case, signaling
the need to thoroughly research the available architecture optimizations available for
the device to predict and prevent this non-deterministic behaviour.

5.2 Future Work

Based on the work performed and experiments executed, the following recommendations
are made for future work on the system;

Scheduling. For the currently used hardware- software platform, the motion control
applications have been scheduled to run in 7 sequences for the P4080’s processor archi-
tecture. The implications of distributing the same application over 12 to 24 cores on the
T4240 will have to be researched.. Due to the fact that the latency between the different
cores changes based on core location in the processor, the impact on the determinism of
the created schedule should be investigated.

Rebuilding the BSP. For this project, the Board Support Package of the currently
used P4080 processor has been adapted to run on the T4240 processor. However, as the
T4240 has a quit different architecture as the P4080 with respect to use of accelerators
and core-distribution, it is advised to revisit the BSP and make an effort to rebuild it
with the new hardware architecture in mind, making optimally use of the available re-
sources.

Full TestBench Integration. For this project, the Vadatech T4240 processor module
has been built-in into a CARM testbench. However, although physically integrated into
the system, it is not fully functional and usable as actual HPPC due to configuration
settings not implemented. To test and use the processor fully, it should be configured
using the correct system settings for full integration into the CARM software and hard-
ware.

Investigation into long term solutions. During this project, it has become known
that the current line of PowerPC processors from NXP Freescale is coming to an end,



5.3. RESEARCH IMPLICATIONS 45

due to the fact that the demand for this processor type is diminishing fast. Therefor
it is advised to investigate a different processor architecture besides the PowerPC line,
that would be more future proof. This way, it is possible to move more easily to a new
processor platform in case a new round of fundamental hardware upgrades is needed.

5.3 Research Implications

Based on the results and conclusions gathered from the executed tests as discussed in
this report, the implications can be deduced for different involved parties.

5.3.1 CARM Team and ASML

The performance benchmark results have indicated that replacing up to three currently
used P4080 HPPCs in the CARM motion control platforms, by a single T4080 processor
module is possible for the current application execution frequency of 20 kHz. When this
replacement step is implemented, it would reduce the total amount of HPPCs in the
system with up to 2/3th, and free up space in the ATCA racks making it possible to
integrate other modules into the system, or combine racks into one.

Furthermore, this replacement action would reduce the amount of I/O latency
between the different workers running the control loops, due to the fact that a large
part of the communication between the different HPPCs would then be performed over
the CoreNet fabric on the processor module itself, instead of over external I/O (SRIO
or Ethernet). This would improve the real-time properties of the system, and therefor
improve scheduling properties of the applications. Reducing the amount of hardware
modules in the platform will furthermore reduce the total cost of the CARM motion
control hardware platform, thus making it possible to invest these funds in other parts
of the CARM platform.

By replacing the current P4080 HPPCs with T4240 processor modules, the control
loop applications can be executed at a higher execution frequency, and thus be scheduled
with a decreased execution budget at the highly demanded 40 kHz. This would mean
the possibility of increasing the accuracy of the control-loop by up-scaling the number of
measurement samples, and increasing the control-accuracy for the mechanical systems
being driven by the control-loops. Furthermore, using the faster processor module will
increase the execution budged for background tasks like monitoring. This enables the
possibility to improve development and issue prevention, increasing the efficiency of the
CARM development, team during the development stage of new system features, and
decreases time when solving client specific issues.

5.3.2 Industry

Replacing up to three HPPCs with a single HPPC in the CARM system, reduces hard-
ware platform real-estate per motion control platform. This creates the possibility to
pack multiple CARM platforms into a single machine cabinet, reducing the footprint of
the hardware platforms at the customer sites.



46 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

Furthermore, when upgrading the current applications to a 40 kHz execution fre-
quency, the CARM motion control platform would also increase the sensor-actuator
read frequency and thus enable the possibility to compute with higher order algorithms,
resulting in more accuracy in the servoloop calculations. This accuracy improvement
would as result enable the possibility to increase velocity of the mechanical movements
at increasing physical precision for alignment and placement of wafer and reticle. In the
semiconductor industry, these improvements would lead to a higher wafer-throughput,
smaller feature size accuracy, and lead to higher die-yield per wafer, thus resulting in a
stronger marker position within the semi-conductor industry.



Bibliography

1]

QorlQ T4240, T4160 and T4080 Multicore Processors, Freescale Semiconductors,
2016, rev. 7.

14240 Product Brief, Freescale Semiconductors, 10 2014, rev. 1.

D. Hernandez, A Design-Space exploration for high-performance motion control,
ASML, Eindhoven, The Netherlands, 2012.

T. Engels, SIA CARM support for 20KHz NXT2000ci, ASML, Eindhoven, The
Netherlands, 2017.

M. Pieters, Qualification Results Document of CPU Benchmark 2015/2016, Pro-
drive Technologies, Eindhoven, The Netherlands, 2016, internal documentation
ASML.

R. R. H. Schiffelers, W. Alberts, and J. P. M. Voeten, “Model-based specification,
analysis and synthesis of servo controllers for lithoscanners,” in Proceedings
of the 6th International Workshop on Multi-Paradigm Modeling, ser. MPM
'12. New York, NY, USA: ACM, 2012, pp. 55-60. [Online]. Available:
http://doi.acm.org/10.1145/2508443.2508453

PICMG. (2017, 02) Advancedtca overview. [Online]. Available: |https://www.
picmg.org/openstandards/advancedtca/

RapidIO.org. (2017, 02) About us. [Online|. Available: http://www.rapidio.org/
about-us/

MPC8548E PowerQUICC III Integrated Processor Hardware Specifications,
Freescale Semiconductors, 06 2014, rev. 10.

QorlQ™ P4080 Communications Processor Product Brief, Freescale Semiconduc-
tors, 09 2008, rev. 1.

S. Adyanthaya, M. Geilen, T. Basten, J. Voeten, and R. Schiffelers, “Communica-
tion aware multiprocessor binding for shared memory systems,” in 2016 11th IEEE
Symposium on Industrial Embedded Systems (SIES), May 2016, pp. 1-10.

Intel. (2014, 06) Intel xeon processor €5-2620 (15m cache, 2.00 ghz, 7.20 gt/s intel
qpi) specifications. Rev. 10. [Online]. Available: https://ark.intel.com/products/
64594 /Intel- Xeon- Processor- E5-2620-15M-Cache-2_00- GHz-7_20- G Ts-Intel- QPI

Multicore DSP+ARM KeyStone II System-on-Chip (SoC), 66AK2H14/12/06 Fea-
tures and Description, Texas Instruments, 11 2012, revised November 2013.

(2018, 02) Spec c¢pu2017. SPEC - Standard Performance Evaluation Corporation.
[Online|. Available: https://www.spec.org/benchmarks.html#cpu

47


http://doi.acm.org/10.1145/2508443.2508453
https://www.picmg.org/openstandards/advancedtca/
https://www.picmg.org/openstandards/advancedtca/
http://www.rapidio.org/about-us/
http://www.rapidio.org/about-us/
https://ark.intel.com/products/64594/Intel-Xeon-Processor-E5-2620-15M-Cache-2_00-GHz-7_20-GTs-Intel-QPI
https://ark.intel.com/products/64594/Intel-Xeon-Processor-E5-2620-15M-Cache-2_00-GHz-7_20-GTs-Intel-QPI
https://www.spec.org/benchmarks.html#cpu

48 BIBLIOGRAPHY

[15] U. F. Mayer. (1998, 06) Lmbench. Bitmover. [Online|. Available: http:

/ /www.bitmover.com/lmbench/

[16] (1996) Nbench. BYTE magazine. [Online]. Available: https://www.tux.org/
~mayer /linux/bmark.html

[17] EREF: A Programmers Reference Manual for Freescale Power Architecture Proces-
sors, Freescale, 06 2015, rev. 1 (EIS 2.1).

[18] VadaTech AMC702 Hardware Reference manual, VadaTech, 10 2016, version 1.0.0.


http://www.bitmover.com/lmbench/
http://www.bitmover.com/lmbench/
https://www.tux.org/~mayer/linux/bmark.html
https://www.tux.org/~mayer/linux/bmark.html

Appendix

49



50 APPENDIX A. APPENDIX

16 lanes up to 10 GHz SerDes

AR A

-_'-

e e

16 lanes up to 10 GHz SerDes

3]

Figure A.1: Abstract block diagram of the T4240 core-complex architecture. As can
be seen, the clusters of 4 E6500 cores are share the L2 cache, and are connected to
each-other via the CoreNet Coherency Fabric and L3 cache. Figure taken from Freescale
T4240 Reference Manual[2]



51

83fy ledaigey
SUOHINLSU| OM] WINWIXEJY
(Anuz ai)
LpE3I4L D alejiejul jaNew) snang
opeasyL[ ] H uoys|duio
#4287 77 peIRyS oqy _
ue une
sng uogedwion
sng ¥A
$ng Hdd
eyae) Q afqy-Z¢

= m
NEI AN IS, N
uogels|  uogms

NN =IRA 17 Juu.*F duom

=

lganL (gLt ._
feuegiL|(feue gy u_
[ Aaue-31 || Anue-o (DIA) 8nenp (o13yenengd oI eheng DID) 8neng {orgleneng
[ WIJFH anssj 10}8/\ anss| (1d4 onss| ISP 3nss) [RISURD snssj youeig
I il ol T — T TS . | skl aiia ) =
NNNEZT
1 OIAT OIdZDISTE OIS PIE | L
Mra 1L [asan|| -
fgus-rg || fuue-g i 3 o
NN voRangsyl 17 | ——— fauzazig £l
l e.m“ﬂé 218 £T6) m
sbe) peailied (sUohonys | g) yu uogoipeld youerg | |
¥9-957 H
aysed | apfgy-zE SuoganasuIZ|) m
_ aneng uoRINUSUY
puny Mowepy BUM) WORI NS LY
| P UORINGSY]

can be seen, most of the pipeline has been duplicated to provide a dedicated functional

unit or buffer per hardware thread. However, some of the critical (and more expenxive)
resources are shared, like the Complex Unit and FPU. Figure taken from Freescale T4240

Figure A.2: Abstract block diagram of the T4240’s E6500-core pipeline architecture. As
Reference Manual. [2]



52

APPENDIX A. APPENDIX




Appendix

Code example B.1: Pseudo code implemen- Code example B.2: Pseudo code implemen-
tation of the master thread running round tation for slave thread running round trip

trip latency application. latency benchmark application.
void c2c_master (){ void hppc_c2c_slave (xflags){
init_flags (); for (NRITER){
while (x flags .m = xflags.s);
flags .m = malloc(sizeof(int)); xflags.s ++;
flags.s = malloc(sizeof (int)); SYNC;
}

//iterate over cores
for (NR.SLAVES){
x(flags.m) = 0;
x(flags.s) = 0;

//start slave thread
start_thread (
c2c_slave , &flags);

start_perf_ctrs ();
start_timer ();

//execute iterations
for (NRITER){
x(flags .m)++;
SYNC;
while (
x(flags .m)!=x(flags.s));
}

stop_timer ();
stop_perf_ctrs ();

13

93



54

APPENDIX B. APPENDIX

Code example B.3: Pseudo code of the Code example B.4: Pseudo code for the
implementation of the Parallel Sequence functions called by the slave main thread
Benchmark for both the master- and slave- when running the Parallel Sequence bench-

main functions.

mark.

void hppc_master (void xarg){
testdata =malloc(
sizeof (
testdata_struct));
SYNC;
for (CORES_ACTIVE) {
thread_start (
slave_main ,
&testdata );
}
while (! cores_init(&testdata ));
SYNC;
synchronized_start(&testdata );
SYNC;
while (! cores_done(&testdata ));
SYNC;
measure_duration(&testdata );
SYNC;
return;

}

void slave_main (void xarg){

testdata_struct xtestdata
= arg;

init_blocks ();

SYNC;

set_init_done(&testdata)

SYNC;

while (! synchronized_start (
&testdata );

SYNC;

hppc_samples(&testdata );

set_core_done(&testdata );

SYNC;

return;

void hppc_samples(void *xarg){

testdata_struct xtestdata
= arg;

while(< NRITER){
start_timer ();
start_perf_ctrs ();
calc_blocks ();
stop_timer ();
stop_perf_ctrs ();
SYNC;
reinit_blockstates ();

}

SYNC;

return ;

}

void calc_blocks (){
for (MAX SAMPLE SIZE) {
for (MAX SEQUENCESIZE) {
execute (BLOCK,FUNCTION ) ;

138;




	List of Figures
	List of Tables
	List of Acronyms
	Acknowledgements
	Introduction
	Nano Lithographic Challenges
	Problem Statement
	Thesis Contributions
	Thesis Organization

	Background and Preliminaries
	ASML Lithostepper
	CARM Motion Control Platform
	Software Platform and Controller Modeling
	Hardware Platform

	CARM Hardware Limitations and Upgrade
	T4240 Processor
	Conclusion

	CARM Application Scheduling and Execution
	Motion Control Application
	WorkerBlocks
	Sequences and Schedule
	Synchronization and Communication

	Previous Work
	Performance Estimation
	Experiments
	Results

	Conclusion

	CARM Custom Performance Estimation
	Multi-core Performance Estimation and Benchmark Creation
	Round Trip Latency
	Implementation

	Parallel Sequences
	Implementation
	Experiments

	Experimental Evaluation Platform
	Baseline Validation

	Results
	Round Trip Latency
	Parallel Sequences

	Conclusion

	Conclusions and Future Work
	Summary
	Future Work
	Research Implications
	CARM Team and ASML
	Industry


	Bibliography
	Appendix
	Appendix

