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Abstract
In the field of quantum computing, variational quantum algorithms (VQAs) represent a pivotal category of quantum solutions
across a broad spectrum of applications. These algorithms demonstrate significant potential for realising quantum compu-
tational advantage. A fundamental aspect of VQAs involves formulating expressive and efficient quantum circuits (namely
ansatz), and automating the search of such ansatz is known as quantum architecture search (QAS). Recently reinforcement
learning (RL) techniques is utilized to automate the search for ansatzes, know as RL-QAS. This study investigates RL-QAS
for crafting ansatz tailored to the variational quantum state diagonalisation problem. Our investigation includes a compre-
hensive analysis of various dimensions, such as the entanglement thresholds of the resultant states, the impact of initial
conditions on the performance of RL-agent, the phase transition behaviour of correlation in concurrence bounds, and the
discrete contributions of qubits in deducing eigenvalues through conditional entropy metrics. We leverage these insights to
devise an entanglement-guided admissible ansatz in QAS to diagonalise random quantum states using optimal resources.
Furthermore, the methodologies presented herein offer a generalised framework for constructing reward functions within
RL-QAS applicable to variational quantum algorithms.

Keywords Quantum architecture search · Quantum information theory · Reinforcement learning ·
Quantum state diagonalization

1 Introduction

Quantum computing represents a paradigm-shifting approach
to computation, leveraging the principles of quantummechan-
ics to process information in ways fundamentally differ-
ent from classical computers. At its core, this technology
employs quantum bits, or qubits, which can exist in super-
position states, enabling parallel computation paths. The
information in qubits is transformed via quantum circuits
consisting of quantum logic gates that are capable of act-
ing on these computation paths in tandem. The quantum
circuits represent a corresponding quantum algorithm that
can effectuate a computational advantage for a target appli-
cation (Harrow 2017; Montanaro 2016; Sadhu et al. 2023).
These algorithms are either constructed manually, based on
conventional logical reasoning or automatically by compos-
ing the quantum gates to replicate a required input–output
behaviour via training. The latter approach is termed quan-
tum architecture search (QAS) (Zhang et al. 2022; Du et al.
2022; Kuo et al. 2021; Zhang et al. 2021.)

Extended author information available on the last page of the article

QAS typically consists of two parts. First, a template of
the circuits is built, called the ansatz. The ansatz can have
parametric quantum gates, e.g. rotation angles. Then, these
parameters are determined via the variational principle using
a classical optimiser in a feedback loop. Algorithms con-
structed via this technique are called variational quantum
algorithms (VQA) (McClean et al. 2016; Cerezo et al. 2021).
QAS can also be used to determine non-parametric circuits as
an approach for quantumprogram synthesis (Sarkar 2024). In
this research, however, we will focus on QAS in the context
of VQA.

The ansatz design is critical, as it directly influences the
expressivity and efficiency of the quantum solution. Given
the vast potential configuration space of quantum circuits,
the process of identifying a suitable ansatz is a challeng-
ing problem. In Ostaszewski et al. (2021); Kundu et al.
(2024); Patel et al. (2024); Du et al. (2022), the search for
the quantum circuits that solve various VQA has been auto-
mated using reinforcement learning (RL) techniques (Sutton
and Barto 2018). We particularly call ansatzes capable of
solving a VQA an admissible ansatz. The automated search
for such an admissible ansatz using the RL-agent is termed

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s42484-024-00181-0&domain=pdf


   49 Page 2 of 13 Quantum Machine Intelligence             (2024) 6:49 

reinforcement learning-assisted quantum architecture search
(RL-QAS). In this setting, after a certain number of episodes,
the RL-agent returns possible configurations of quantum
ansatz that solve the problem. For Etot episodes, the agent
returns Es successful episodes, and in Etot − Es episodes,
the agent fails to find a configuration within a specific prede-
fined accuracy and depth. It has been shown in Ostaszewski
et al. (2021); Wu et al. (2023); Kundu et al. (2024); Patel
et al. (2024); Kundu (2024) that classical machine learning-
driven QAS algorithms outperform the state-of-art structures
of ansatz and effectively optimise the number of parameters,
depth, and impact of noise in VQAs.

The use-cases of such admissible ansatzes cover appli-
cations in quantum information theory (LaRose et al. 2019;
Cerezo et al. 2021; Tan and Volkoff 2021; Cerezo et al. 2020;
Kundu and Miszczak 2022), chemistry (Kandala et al. 2017;
Mustafa et al. 2022; Delgado et al. 2021) and combinatorial
optimization (Khairy et al. 2020; Liu et al. 2022; Glos et al.
2022). Yet, a thorough investigationof such admissible ansatzes
is still missing in recent literature. It has been previously
shown (Patel et al. 2024) that in RL-QAS methods, it is cru-
cial to feed proper information about the problem to the agent
to enhance the agent’s performance. One of the ways of pro-
viding this information is by engineering a reward function.
InRL, the formulationof the rewardfunctionand its engineering
can be sparse or dense. The choice of optimal reward function
depends on trial and error by investigating the performance
of the agent under various reward configurations.

In this article, we numerically investigate the admissible
ansatzes proposed by the RL-agent from the perspective of
quantum information theory (Wilde 2013). For the investi-
gation, we specifically focus on the reinforcement learning
enhanced variational quantum state diagonalisation (RL-
VQSD) problem (Kundu et al. 2024). In the VQSD algo-
rithm (LaRose et al. 2019), the problem-inspired ansatz is
based on density matrix exponentiation (Lloyd et al. 2014),
but its depth and number of gates increase exponentially
with the number of qubits. Hence, searching for an opti-
mal ansatz (with a minimum number of gates and depth) that
diagonalises a quantum state is an open research problem.
In RL-VQSD, the search for the optimal configuration of
ansatz is done by using a double deep-Q network (DDQN).
See Sect. 3 for further details on the VQSD algorithm, the
agent and environment specifications. The RL-agent proposes
Es < Etot admissible ansatzes that solve theVQSDproblem.
The primary motivation of our work is to filter potential admis-
sible ansatzes based on concurrence, using the highest and
lowest entanglement bounds. This helps identify the range of
optimal ansatzes and determine if increasing entanglement
can improve the agent’s performance. Another goal is to see

if we can find an admissible ansatz that both diagonalizes
and enhances the entanglement of the vacuum state.

Our investigation shows that the concurrence of the Es

ansatz lies between an upper and lower bound, independent
of the different initialisation of the double deep-Q network
(DDQN), where each initialisation of DDQN corresponds to
a different random initialisation of the weights. Moreover,
through the numerical analysis, we show that the upper and
lower bounds are anti-correlated with respect to the incre-
ment in the initial state entanglement. The anti-correlation
turns into a mild, and later strong, correlation when the ini-
tial state entanglement goes beyond 0.322, indicating a phase
transition in correlation between the upper and lower bounds
of the concurrence. The phase transition provides us with
an in-depth insight into the relation between the input and
the output of the VQSD algorithm. Further, our investiga-
tion reveals that the RL-agent can generate high concurrence
admissible ansatzes with fewer 2-qubit gates and circuit
depth compared to ansatzes with very low concurrence. This
is used as a guiding principle to design a two-part ansatz,
where an entanglement enhancing initial block adjusts the
input state’s concurrence thereby enhancing the performance
of the RL-agent by a factor of 2. Furthermore, we quan-
tify the contribution of individual qubits of the RL-ansatz
using conditional quantum entropy. Using such a measure,
we observe a correlation between entanglement and quan-
tum entropy, revealing why RL-VQSD can efficiently find
the largest eigenvalues but fails to find the smallest ones.

The structure of the paper is as follows. We present an
overview of our main results in Sect. 2. In Sect. 3, we present
an overview of the reinforcement learning enhanced varia-
tional quantum state diagonalisation algorithm. We present
an analysis of the sampled 2-qubit Haar random quantum
states inSect. 4.Wepresent themain results in Sect. 5. Specif-
ically, in Sect. 5.1, we analyse the upper and lower bounds
on the concurrence of the admissible ansatzes that solve the
VQSDproblem. In Sect. 5.1.1, we present the variation of the
entanglement bounds for different weight initialisation of the
DDQN. We observe the correlation properties of the entan-
glement bounds dependent on the concurrence of the initial
state in Sect. 5.1.2. In Sect. 5.1.3, we present the dependence
of the entanglement boundson thenumber of gates and circuit
depth of the ansatz. The analysis of the contribution of indi-
vidual qubits to the admissible ansatz is provided in Sect. 5.2.
In particular, we present the contribution of each qubit for
change in the entanglement of the ansatz in Sect. 5.2.1. In
Sect. 5.2.2, we explain why RL-VQSD can efficiently find
the largest eigenvalues of the initial state but not the small-
est eigenvalues. We provide concluding remarks and discuss
possible future directions in Sect. 6.
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2 Contributions

Through the following points, we summarise the contribution
of the paper.

1. We numerically demonstrate that the entanglement of
the states generated by the RL-agent-proposed admis-
sible ansatzes lies within a lower and upper concurrence
bound. The upper and lower bounds of concurrence
remain consistent across various weight initialisation of
the DDQN. Furthermore, we show that these bounds are
anti-correlated with respect to increasing entanglement
until concurrence surpasses 0.322; after this point, the
anti-correlation turns into correlation. Hence, we intro-
duce the concurrence 0.322 as the phase transition point.

2. Investigation of ansatzes in upper and lower bounds
reveals that the optimal ansatz for VQSD generates
strongly entangled states. The RL-agent requires fewer
gates and circuit depth to generate such states to pro-
duce strongly entangled admissible ansatzes than weakly
entangled ansatzes. We then utilise this information to
minimise RL-agent and environment (which is the con-
figuration of ansatz) interaction, thereby optimising the
convergence time of the RL-VQSD. Specifically, we pro-
pose a two-part ansatz, where an entanglement enhancing
initial block adjusts the input state’s concurrence thereby
enhancing the performance of the RL-agent by a factor
of 2.

3. We numerically evaluate individual qubits’ contribution
in diagonalising 2-qubit quantum states using conditional
quantum entropy. Our investigation shows that the qubits
have equal contributions on average in diagonalising ran-
dom quantum states.

4. We further investigate the correlation in conditional
entropy between qubits for different inferred eigenval-
ues. It requires mild correlation for the first two largest
eigenvalues and mild anti-correlation for the smallest
eigenvalues. Most admissible ansatzes lie in a mild cor-
relation regime, explaining VQSD’s limitation in finding
the smallest eigenvalues.

3 The reinforcement learning enhanced
variational quantum state diagonalisation

The VQSD algorithm (LaRose et al. 2019) for a quantum
state ρ comprises three subroutines: (1) In the training sub-
routine, the parameters �θ of a quantum gate sequence U (�θ)

are optimised for a given state ρ. Ideally, after optimisation,
the sequence U (�θopt) satisfies

ρ′ = U (�θopt)ρU (�θopt)† = ρdiag,

where ρdiag is ρ diagonalised in its eigenbasis and �θopt are
the optimal angles. Classical gradient-based methods such
as SPSA and Gradient Descent or gradient-free optimisa-
tion (Powell 1994, 2006) can be utilised in the training
process. (2) In the eigenvalue readout subroutine, using the
optimised unitary U (�θopt) and one copy of state ρ, one can
extract all the eigenvalues for low-rank states or the largest
eigenvalues for full-rank states. This is achieved by measur-
ingρ′ in the computational basis,b = b1b2 . . . bn , as follows:

λ′ = 〈b|ρ′|b〉,

where λ′ are inferred eigenvalues. (3) In the final step, we
prepare the eigenvectors associated with the largest eigenval-
ues. If b′ is a bit string associated with λ′, then the inferred
eigenvectors |v′

b′ 〉 are obtained as follows:

|v′
b′ 〉 = U (θopt)

†|b′〉 = U (θopt)
†
(
Xb1 ⊗ . . . ⊗ Xbn

)
|0〉.

In the reinforcement learning enhanced variational quan-
tum state diagonalisation, an RL-agent is utilised to find the
optimal configuration of U (�θ). The agent contains a double
deep-Q network (DDQN) (Hasselt et al. 2016) with ε-greedy
policy. The DDQN optimises the stability of Q-learning by
using two networks to decouple the action selection a′ in
the subsequent state s′ from its current reward r evaluation,
leading to less overestimated Q-values and more stable and
reliable learning outcomes.

The key update equation is

Q(s, a; θ) ← Q(s, a; θ)

+α[r+γ Q(s′, argmax
a′ Q(s′, a′; θ); θ ′)−Q(s, a; θ)] (1)

where Q(s, a; θ) is the predicted Q-value for state s and
action a, parameterised byweights θ of the online network. α
is the learning rate, and γ is the discount factor. The settings
of the parameters are similar to the ref. (Kundu et al. 2024).

The optimal policy is obtained by optimising the weights
of theDDQNusing theADAMoptimiser. In theRL setup, the
RL-state encodes the ansatz and is defined by a tensor-based
encoding presented introduced in Patel et al. (2024). After
each environment and agent interaction, the reward function

R =
{+R for Ct (�θ) < ζ + 10−5

−log
(
Ct (�θ) − ζ

)
for Ct (�θ) > ζ

, (2)

is calculated. The goal of the RL-agent is to reach the
minimumerror for a predefined threshold ζ (which is a hyper-
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Fig. 1 The difference in
conditional entropy converges
towards the zero as the
entanglement of the sampled
input state increases.
Meanwhile, as the input state
gets closer to the maximally
entangled state (with
concurrence 1), the magnitude
of the largest eigenvalue
increases while the other
eigenvalue decreases

parameter of the model) by optimising the parameters of the
U (�θ) using the COBYLA optimiser. The cost function

Ct (�θ) = Tr(ρ2) − Tr(ρt (�θ)2). (3)

At each step, t is calculated for the ansatz which outputs a
state ρt (�θ).

4 Analysis of the Haar random input
quantum states

In this section, we analyse the 2-qubit Haar random quantum
states. The Haar random states can be efficiently simulated
using polynomial-time algorithms, as demonstrated in prior
research (Alagic et al. 2020). This holds even in scenarios
where adversaries have unbounded capabilities with black-

box oracle access (Chen et al. 2024). Here, we sample
100, 000 Haar random quantum states and observe how the
eigenvalues and the qubits’ conditional entropy change with
the state’s entanglement.

In Fig. 1, see that the difference in conditional entropy
in qubits of the input state varies evenly on either side of
SρAB
AB = 0 where A and B are subsystems containing one

qubit each and ρAB is the sampled Haar random state. Mean-
while, the area of the distribution of SρAB

AB on either side
of zero entropy converges towards zero as the input state
entanglement increases. Furthermore, the magnitude of the
input quantum state’s largest eigenvalue increases with the
increase in entanglement, and all the other eigenvalues con-
verge towards 0. It also shows that even for 100, 000 seeds,
the probability of sampling states with concurrence greater
than 0.6 is very low, justifying the low density of points after
0.6 in Fig. 2.

Fig. 2 Reciprocal behaviour in the upper and lower bounds of concur-
rence with respect to the increasing concurrence in the input random
state. For the first eleven points, the Pearson correlation coefficient
(PCC) is −0.982, denoting a strong anti-correlation between the upper
and lower bounds of concurrence. The strong anti-correlation turns into

a mild correlation after concurrence of the initial state surpasses 0.322.
The correlation after the first eleven points changes from −0.055 to
0.049. There is a phase transition from weak anti-correlation to weak
correlation
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5 Main results

In this section, we investigate the upper and lower bounds
of concurrence of the ansatzes produced by the RL-agent
in diagonalising 2-qubit random quantum states sampled
from IBM qiskit’s random_density_matrixmod-
ule. For the simulation, we consider multiple such quantum
states (specified in the caption of figures), and for each state,
we use 10, 000 episodes of RL-VQSD algorithm to diag-
onalise the state. The algorithm consists of DDQN with
ε-greedy policy where the ε decays in each step by a factor
of 0.99995 from its initial value 1, down to a minimal value
0.05. Furthermore, the network is trained by ADAM opti-
mizer (Kingma and Ba 2014) with a learning rate of 0.0001.
The neural network consists of 5 hidden layers with 1000
neurons and a buffer size of 15,000. The configuration of the
RL-VQSD is provided in detail in Sect. 3.

5.1 Entanglement

5.1.1 DDQNweight independent entanglement bound

To benchmark the performance of the RL-agent for a spe-
cific problem, it is ideal to take multiple initialisations of the
DDQN (see Sect. 3 for a brief description).

To efficiently investigate the upper and lower bounds of
concurrence (Hill and Wootters 1997; Wootters 1998) of the
admissible ansatz,we calculate the concurrence of the admis-
sible ansatz, which is defined by the entanglement induced by
the admissible ansatzwhen initialisedwith |00〉.Wefirst sam-
ple different random quantum states, then diagonalise them
using RL-VQSD (Kundu et al. 2024) for five different ini-
tialisations of DDQNweights. Thereafter, the agent suggests
different possible configurations for the RL-ansatz, which
diagonalises the sampled random quantum states. For a spe-
cific state, we collect such valid quantum circuits and find the
concurrence of the state obtained after evolving through the
RL-ansatz. It should be noted that finding the concurrence of
the evolved state indicates how much the RL-ansatz induces
entanglement to the input sampled state. See Sect. 4 for fur-
ther analysis of the sampled random quantum states, where
we show that in qiskit, random_density_matrix
even for 100, 000 seeds, the probability of sampling states
with concurrence greater than 0.6 is very low.

The results are presented in Table 1. We observe that the
optimal configuration of theRL-ansatz always gives us a state
with concurrence close to one. Hence, the deviation in the
maximum concurrence over different weights of the DDQN
is more significant than the deviation in the minima of the
concurrence. As seen in Table 1, the deviation in the max
concurrence is in the order of 10−3. The low standard devia-
tion implies that there is a negligible deviation in concurrence

Table 1 The average and standard deviation of the final state’s
maximum (max. concurrence) andminimumconcurrence (min. concur-
rence) after evolution through the circuit for five different initialisations
of the DDQN weights for different quantum seed states

State Max. concurrence Min. concurrence
no avg std. div avg std. div

1 0.874 0.002 0.183 0.004

2 0.849 0.002 0.108 0.028

3 0.975 0.001 0.084 0.006

4 0.936 0.002 0.118 0.009

5 0.880 0.001 0.188 0.013

6 0.911 0.003 0.156 0.024

7 0.933 0.001 0.235 0.013

8 0.928 0.005 0.208 0.013

9 0.831 0.011 0.302 0.010

To obtain the results, we run RL-VQSD to diagonalise 2-qubit random
quantum states for 10, 000 episodes. The agent then proposes Es <

10, 000 admissible ansatzes, which generate Es states after the random
quantum state evolves them. The max. (min.) concurrence is attributed
to the ansatz that generates a state with the highest (lowest) concurrence
following the evolution of the random quantum state

across different initialisation of theDDQNfor a specific state.
This indicates that the bounds on concurrence are invariant
for different configurations of the RL-ansatz. Hence, proving
that the entanglement bounds of the RL-ansatz are indepen-
dent of initialisation of DDQNs. Due to this observation, it
is sufficient to consider a single initialisation of DDQN to
benchmark the outcomes in the remaining simulations.

In the following subsection, we investigate how the upper
and lower bounds on the entanglement of the RL-ansatz
depend on the entanglement of the input quantum state.

5.1.2 Anti-correlation between entanglement bounds

Corresponding to a predefined threshold, the agent proposes
different architectures of quantum circuits that diagonalise
the quantum state. To observe the amount of entanglement
generated by the RL-ansatz, we calculate the concurrence
of the state after passing through the RL-ansatz, just before
the dephasing operation. By sorting out the quantum cir-
cuit with maximum andminimum entanglement, we observe
their variation with the entanglement of the input state. It has
been proved in the previous section that the upper and lower
bounds of entanglement are independent of different initial-
isation of DDQNs; hence, for further benchmarking, we can
constrain ourselves to just one initialisation of the DDQN
weights.

In Fig. 2, we illustrate the variation of the entanglement
bounds with the entanglement of the input quantum state. To
investigate the dependency, we use the Pearson correlation
coefficient (PCC) (Rodgers andNicewander 1988) as a quan-
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tifier of correlation. See Sect. 1 for a brief description.We see
that the upper and lower bounds of entanglement are initially
strongly anti-correlation when the input state entanglement
is below 0.322 and then strongly correlate afterwards, indi-
cating a phase transition in the upper and lower bounds of
entanglement.

Intuitively, when the entanglement of the starting state is
low, i.e. k ≤ 0.322, it becomes easier for the dephasing sub-
routine of the VQSD algorithm to eliminate the off-diagonal
terms. Hence, the agent proposes an admissible ansatz to
either convert the state into a separable state (eliminating the
need for a dephasing gate at the end) or increase its entan-
glement to the maximum level, thereby making full use of
the dephasing gate’s potential. This dynamic explains the
observed anti-correlation between the entanglement bounds.

As noted previously,when the entanglement of the starting
state is high (in the region k ≥ 0.322), it becomes easier
for the dephasing subroutine to eliminate the off-diagonal
terms. Thus, for states with high entanglement, the agent
proposes an admissible ansatz to maximise the entanglement
of the starting state. Hence, we observe the positive relation
between the entanglement bounds.

Next, we obtain the variation of PCC between the upper
and lower bounds on the concurrence of the initial state.
Specifically, we introduce a parameter k ∈ (i, j) to split
the range of initial state concurrence u := [i, j] into two
intervals: u1 := [i, k) and u2 := [k, j]. Also, let us denote
the set of lower and upper bounds on the concurrence of the
ansatz as u and l, respectively. For both the ranges u1 and
u2, we introduce the following correlation function:

ηkwik
= wikPCCik + (1 − wik)PCCk j , (4)

where wik ∈ {0, 1} and PCCik , PCCk j are the value of
PCC between the upper and lower bounds of concurrence
of the ansatz for the intervals u1 and u2, respectively. For
the sake of simplicity, we denote PCCik as PCCul

ik and also
PCCk j as PCCul

k j .

Notes 1 e observe that depending on the values of wik , ηkwik

can take values either PCCik or PCCk j . For ηkwik
= PCCik ,

we obtain the amount of (anti-)correlation between the lower
and upper bounds of concurrence of the ansatz for the interval
u1. While for ηkwik

= PCCk j , we obtain the amount of (anti-
)correlation for the interval u2. We leave proving ηkwik

is a
valid measure of correlation for arbitrary values of wik ∈
(0, 1) as an open problem.

We present in Fig. 3 the variation of ηk0 (in blue) and
ηk1 (in red) for different values of k. We observe that
ηk1 ≈ −1 ∀k ∈ (i, j). This indicates strong cumulative
anti-correlation between the upper and lower bounds of con-
currence. For ηk0, we observe a gradual change of PCCk j

Fig. 3 We present the phase transition of correlation between the upper
and lower bounds of concurrence for the admissible RL-VQSD ansatz.
To show this, we split the total range of the concurrence of the input
state in two intervals u1 := [i, k) and u2 := [k, j], where k is a free
parameter and plot the variation of the Pearson correlation coefficient
between the upper and lower bound on the concurrence of the ansatz
corresponding to these two intervals. We denote by PCCik and PCCk j
the correlation coefficients in the intervals u1 and u2, respectively. The
phase transition point is observed at k = 0.322 where the concurrence
bounds change from mild anti-correlation to mild correlation for the
interval u2 while remaining strongly anti-correlated in the interval u1

from −0.582 to 1. We note that ηk0 changes from −0.0451 to
0.279 for k ∈ [0.313, 0.379]with ηk0 = 0 at k = k∗ = 0.322.

Fig. 4 The RL-agent can generate an admissible ansatz with strong
entanglement with fewer 2-qubit gates (2-qubit gate) and circuit depth
(Depth) and total number of gates (Numb. gate) compared to the
ansatzes with weak entanglement. As the main aim of RL-VQSD is
to diagonalise unitary with a small number of gates and depth, our anal-
ysis shows that if we particularly focus on the admissible ansatzes near
the upper bound of concurrence, we can not only reduce the computa-
tional cost of RL-VQSD severely but also find the optimal admissible
ansatzes. The numbers in the bars correspond to the amount of entan-
glement generated by the RL-ansatz when initialised in the vacuum
state
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Fig. 5 The concurrence of input state with θ of CRX(θ) gate in Entan-
glement Enhancing increases the concurrence of the input random
state from 0.198 to 0.215 when θ = 0.5

We call this point the phase transition point of correlation
between upper and lower bounds of concurrence for the
VQSD ansatz. At values of k < k∗, there is anti-correlation
between the upper and lower bounds of concurrence of the
ansatz for both the intervals u1 and u2. While for values
of k > k∗, there is (anti-)correlation between the upper and
lower bounds of concurrence of the ansatz for both the inter-
vals (u2) u1.

The investigation in Figs. 2 and 3 suggests that the
structure of the quantum state in terms of its entanglement
properties can significantly influence the effectiveness of cer-
tain ansatz strategies. Specifically, when the entanglement
is low, i.e. below 0.322, the variability in the entanglement
bounds can be exploited. For wide entanglement bounds, the
flexibility of the ansatz allows for the generation of states
that are either highly entangled or nearly separable, starting
from |0〉⊗2.

5.1.3 Enhancing the performance of agent based on initial
state entanglement

Here, we provide a detailed investigation of the admissible
ansatzes produced by the RL-agent in terms of ansatz depth,

the total number of 2-qubit gates, and the total number of
gates in the upper and lower bounds of concurrence.

Our investigation reveals that the admissible ansatzes cor-
responding to the upper boundof concurrence have, on average,
a shorter depth of 13.23 and a smaller number of gates of 18.5
compared to the admissible ansatzes corresponding to the
lower bound of concurrencewhere the depth is 13.9 and num-
ber of gates is 19 over 25 random quantum states. Moreover,
Fig. 4 makes it more prominent that the minimum number of
gates and the depth of the admissible ansatzes are smaller
for the upper bound of concurrence than the lower. This
observation is crucial in reducing the subspace of all pos-
sible admissible ansatzes. The main motivation of RL-QAS
inVQAs is to find ansatzes that solve aVQAwith aminimum
number of gates and circuit depth; in the case of RL-VQSD,
this observation can help us to narrow down the search for
an optimal admissible ansatz in the two following ways.

Entanglement dependent initialisation of RL-state

In RL-VQSD (Kundu et al. 2024), the RL-state that encodes
the ansatz initiates from an empty circuit (i.e. in circuit
Eq. 5, the Entanglement Enhancing block is absent and
URL-agent = 1). We showed that the optimal admissible
ansatz, on average, lies in the upper bound of concurrence,
motivating us to initialise the quantum state (that is diag-
onalised using RL-VQSD) closest to the upper bound of
entanglement. To do this, the ansatz is divided into two parts

(5)

where the first, Entanglement Enhancing (EE) block,
helps the diagonalising state to achieve the highest entangle-
ment before it is fed to the second part, URL-agent, which the
RL-agent decides. For example, for seed 27 (see Sect. 4 for
details), we get a random quantum state with concurrence
0.198 (for seed 27, and see Appendix 4 for details on how

Table 2 Turning on the
Entanglement Enhancing
(EE) mode (denoted as
Enhanced (θ = 0.5)) enhances
the learning of the performance
of the RL-agent in the absence
of the EE mode (denoted as
Default (θ = 0))

EE mode Tot. succ Tot. rwd 1st 100 succ. ep. (avg.)
(θ) ep coll 1q gate 2q gate depth

Enhanced (θ = 0.5) 858 4.45 × 105 15.41 4.02 14.6

Default (θ = 0) 387 2.14 × 105 14.71 5.29 15.59

In the first 3500 episodes, the Enhanced (θ = 0.5) collects 2.08 times more reward (tot. rwd. coll.) and 2.22
timesmore successful episodes (Tot. succ. ep.) than Default (θ = 0). Moreover, the average number of 2-qubit
(2q gate) and depth over the first 100 successful episodes reduced in the case of Enhanced (θ = 0.5) settings
compared to Default (θ = 0), showing enhanced learning of the RL-agent for entanglement enhanced input
state
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to generate Haar random state), and using the EE, we can
increase the input state concurrence to 0.215 at θ = 0.5 as
shown in Fig. 5.

Our investigation reveals that turning on the EE block
with θ = 0.5 enhances the performance of the RL-agent by
2-times compared to the default setting at θ = 0. The results
are summarised in Table 2 where we see that the number
of successful episodes and the reward acquired (where the
reward function is in the form defined in Eq. 2 by the agent
in the RL-VQSD process) increase by 2-fold while the EE
block is activated for θ = 0.5 compared to default settings
at θ = 0.

Meanwhile, in Table 3, we show that the EE block also
helps to optimise the cost function and the minimum number
of 2-qubit gates in the optimal admissible ansatz compared
to the default settings.

It should be noted that due to the sake of the interpretability
of the EE block, we chose the block resembling a maximally
entangled circuit for a 2-qubit system, where the entangler
(i.e. the CX) gate is parameterised and can induce no entan-
glement (for θ = 0) andmaximal entanglement (for θ = 0.5)
to |00〉 state. The second Hadamard (H) gate on the first qubit
is introduced to cancel out the first H in the absence of the
entangler at θ = 0. We can automate the search for gate-
set in the EE block utilising an RL-agent and diagonalise
the input state simultaneously by decomposing the RL-QAS
into two subroutines. Suppose the total number of steps in an
episode is S, then in the first subroutine for sEE < S steps the
agent’s task would be to find a gateset (consists of maximum
sEE gates) that maximises the entanglement of the input state
by utilising a reward function REE. One can formulate REE

similar to ref. (Kuo et al. 2021). Wherein in the second sub-
routine, for the remaining steps S − sEE, the agent focuses
on finding possible structures ofURL-ansatz to diagonalise the
output state of the EE block using the reward defined in Eq. 2.

The aforementionedobservations lead us to the conclusion
that maximising the entanglement of the input state through
the initialisation strategy of Fig. 5 enhances the learning pro-
cess of theRL-agent and facilitates the further optimisation of
the admissible ansatzes compared to the start-of-art (Kundu
2024).

Table 3 Turning on the Entanglement Enhancing (EE) mode
(denoted as Enhanced (θ = 0.5)) optimises the number of minimum
number of 2-qubit gates (Min. 2q gate) in RL-ansatz better than in the
absence of the EE mode (denoted as Default (θ = 0))

EEmode (θ ) Cost function Min. 1q gate Min. 2q gate

Enhanced
(θ = 0.5)

5.12 × 10−7 14 2

Default
(θ = 0)

6.08 × 10−7 11 5

Moreover, the Enhanced (θ = 0.5) mode minimises the cost function
better than the Default (θ = 0) mode

5.2 Conditional quantum entropy

5.2.1 Contribution of individual qubits for change
in entanglement

We quantify the contribution of each qubit using the condi-

tional quantum entropy S
ρ′
q0q1

q0|q1 (Cerf and Adami 1997, 1999;
Wilde 2013). The conditional entropy of an individual qubit
for an N qubit quantumsystem indicates the amount of uncer-
tainty remaining about that qubit after measuring the whole
system. Hence, it is essential to know howmuch information
the state of qubits provides about the state of the N qubits.
For a detailed discussion and notation, see Sect. 1.

Let the change in the conditional entropy of the qubit
q0(q1) after evolving through the VQSD ansatz be given by


Sρ→ρ′
q0|q1 (
Sρ→ρ′

q1|q0 ). We quantify the relative contribution of
individual qubits via the quantity:



q1
q0 := 
Sρ→ρ′

q0|q1 − 
Sρ→ρ′
q1|q0 . (6)

We note that 

q1
q0 > 0 implies a greater change in condi-

tional entropy of q0 as compared to q1, and hence the ansatz
has a greater contribution from q0 as compared to q1. Fol-
lowing a similar reasoning, 
q1

q0 < 0 implies q1 has greater
contribution as compared to q0, while 


q1
q0 = 0 implies both

q0 and q1 contribute equally to the ansatz.
We present the variation of 


q1
q0 for the change in concur-

rence due to the ansatz given by 
c := Cρq0q1 − Cρ′
q0q1 in

Fig. 6. We observe that the distribution of 

q1
q0 is bounded

in the interval [−0.7, 0.7] and is uniform with respect to

Fig. 6 We analyse the relative change in the contribution of the first
and second qubits as a function of changes in entanglement. To quantify
the relative contribution of individual qubits to the RL-VQSD ansatz,
we use 


q1
q0 (see Eq. (6)). For the change in concurrence due to the

ansatz, the distribution of 

q1
q0 is uniform with respect to 


q1
q0 = 0. The

cumulative weight of all data points in the region 

q1
q0 < 0 is 4.854,

while that for data points in the region 

q1
q0 > 0 is 5.524. This indicates

an equal contribution from both qubits to the RL-VQSD ansatz across
the range of changes in entanglement
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q1
q0 = 0. The magnitude of the cumulative weight of all data

points in the region 

q1
q0 < 0 is 4.854, while that for data

points in the region 

q1
q0 > 0 is 5.524. This indicates equal

contribution from both the qubits to the RL-VQSD ansatz
for the range of change in entanglement. In the region of



q1
q0 > 0, the relative contribution of q0 first increases and

then decreases. However, no such pattern is observed for the
region of 


q1
q0 < 0. When 
c > 0.4, the value of 


q1
q0 mono-

tonically decreases with increase in 
c. Also, for 
c < 0.2,



q1
q0 increases monotonically with increase in 
c.

5.2.2 Problemwith variational quantum state
diagonalisation

In this section, we investigate the contribution of individ-
ual qubits to the performance of the RL-VQSD algorithm.
Through this investigation, we get a deeper insight into why
the variational quantum state diagonalisation algorithm can
not find the smallest eigenvalues.

We present the main observations in Fig. 7, where we plot
the four eigenvalues of 35, 2-qubit Haar randommixed quan-
tum states with the correlation in conditional entropy among
the qubits. For an individual quantum state, theRL-agent pro-
poses s different structures of the admissible ansatzes. Then,
we get ρ′

i states where i ∈ [0, s]. Afterwards, we calculate
the conditional entropy of individual qubits for each state
and take the median.1 Then, we calculate the correction in
conditional entropy among the qubits using PCC.

In Fig. 7, we observe that a mild anti-correlation between
the qubits is required to find the two largest eigenvalues. As
the magnitude of the largest eigenvalues decreases, the mild
anti-correlation turns into a strong correlation between the
qubits. This indicates that the qubits require mild to strong
correlation to achieve the two largest eigenvalues. Mean-
while, we require a mild to strong anti-correlation between
the qubits to find the smallest eigenvalues of the same states.
Then, as the magnitude of the smallest eigenvalue increases,
the strong anti-correlation turns into mild anti-correlation.

We recall that the correlation is calculated among the
qubits based on the conditional entropy of individual qubits.
As it is impossible to have two different kinds of correlation
(such as mild correlation and mild anti-correlation simul-
taneously) between the qubits in the same ansatz structure,
we can not find the largest and smallest eigenvalues utilis-
ing the same ansatz. For example, we mark the eigenvalues
of a state with �, where we observe that to find the largest
two eigenvalues, the RL-ansatz needs to induce a mild cor-
relation between the two qubits; meanwhile, to obtain the
smallest eigenvalues, we require mild anti-correlation.

1 Calculating the median over the mean is justified by the broad range
of conditional entropy distribution, which makes the median a more
appropriate measure of central tendency.

Fig. 7 On average over 35 random quantum states the correlation in
conditional entropy between the first and second qubits decreases as
the magnitude of the largest and second largest eigenvalues increases.
Meanwhile, the same correlation between the qubits increases with the
magnitude of the third largest and the smallest eigenvalues. The RL-
ansatz proposes specific structures of admissible ansatzes, and for each
such ansatz, it is not possible to have both types of correlations simul-
taneously. Hence, our investigation suggests that it is not feasible to
find the smallest eigenvalues using the same ansatz that provides a good
approximation of the largest eigenvalues. The correlation of conditional
entropy between qubits is calculated using the Pearson correlation coef-
ficient (PCC) and is the median over all configurations of RL-ansatz
proposed by the agent. The � signifies the eigenvalues corresponding
to the same state

The average correlation in conditional entropy among
qubits falls within the range of mild correlation for the first
two largest eigenvalues across 35 random quantum states.
Conversely, the conditional entropy among qubits exhibits a
mild anti-correlation for the smallest eigenvalues. This find-
ing, togetherwith the observation in Fig. 8, indicates thatwith
a specific configuration of an admissible ansatz, it is inter-
actable to simultaneously identify the largest and smallest
eigenvalues. It should be noted that for the 35 random quan-
tum states, the average correlation in conditional entropy lies
in the mild correlation zone, indicating that RL-VQSD can
efficiently find the largest few eigenvalues. However, it fails
to provide a good approximation for the smallest eigenvalues
simultaneously.

6 Discussion

In this article, we use tools from quantum information theory
to analyse the admissible ansatzes proposed by the RL-agent

123



   49 Page 10 of 13 Quantum Machine Intelligence             (2024) 6:49 

for solving reinforcement learning-based quantum architec-
ture search problems, and we particularly investigate the
RL-agent proposed ansatzes in solving recently proposed
RL-VQSD problem.

We observe that the concurrence of the admissible ansatz
ranges between an upper and lower bound, which are inde-
pendent of the initialisation of the weights of the deep-Q
network. The upper and lower bounds are initially anti-
correlated with respect to the initial state entanglement. The
anti-correlation turns into a mild and eventually strong cor-
relation as the entanglement of the initial state surpasses
beyond a phase transition point at concurrence 0.322.We also
see that the optimal configuration of the admissible ansatz lies
in the upper bound of concurrence, which has a smaller cir-
cuit depth and requires fewer gates than the lower bound.
These observations provide insight regarding the relation
between the entanglement of the initial state and the entan-
glement generated by the RL-VQSD admissible ansatzes.
We effectively utilise these observations to greatly reduce the
RL-agent and environment interaction, i.e. the computational
time needed to solve the RL-VQSD problem. Specifically,
we propose an entanglement enhancing block that adjusts
the input state’s concurrence, thereby enhancing the perfor-
mance of the RL-agent by a factor of 2. Additionally, the
admissible ansatzes not only diagonalise the random quan-
tum states with high accuracy but can be used to generate
close to maximum entangled states from the vacuum state.

Furthermore, we quantify the contribution of each qubit
in the admissible ansatz using conditional quantum entropy.
For the admissible RL-VQSD ansatz, we observe an equal
contribution from each qubit for the full range of change

Fig. 8 The average correlation in conditional entropy among qubits is
in the range ofmild correlation for 35 randomquantum states for the first
two largest eigenvalues, whereas the conditional entropy among qubits
requires a mild anti-correlation for the smallest eigenvalues. This obser-
vation, along with the observation in Fig. 7, certify that with a specific
configuration of an admissible ansatz, we cannot simultaneously find
the largest and the smallest eigenvalues

in the entanglement of the state due to the ansatz. Focus-
ing on the task of obtaining the eigenvalues of the starting
state, we observe that a mild correlation between the qubits
of the admissible ansatz is required to obtain the two largest
eigenvalues, while mild anti-correlation between the qubits
is needed to find the smallest eigenvalues of the same state.
Noting that it is impossible to have both mild correlation and
anti-correlation between the qubits of the same ansatz, we
cannot simultaneously obtain both the largest and smallest
eigenvalues from the RL-VQSD admissible ansatz. From the
observation, most of the admissible ansatz has mild correla-
tion among the qubits, which explains why it is easier for
the VQSD algorithm to find the largest eigenvalues than the
smallest ones.

For futurework, one could conduct a comprehensive study
of the implication of introducing correlations such as entan-
glement (Horodecki et al. 2009), nonlocality (Brunner et al.
2014; Sadhu and Das 2023), or steering (Uola et al. 2020;
Sadhu and Das 2024)-based reward functions of the RL-
agent in QAS. Specifically, given that most of the admissible
ansatzes have high values of concurrence, it is expected that
an entanglement or non-locality-based reward function may
further reduce the time required to find the optimal config-
urations. Also, we may expect this to provide an optimal
quantum circuit that provides both the eigenvalues of a ran-
dom quantum state with higher accuracy within a smaller
time.

In this work, we present an intuitive explanation of the
phase transition behaviour of the bounds on the entanglement
of the admissible ansatz.However,we point out that the phase
transition point is problem-specific. It would be interesting
to see if the phase transition behaviour still holds for other
classes of algorithms, a problemwe leave for future research.

Furthermore, using a similar approach, presented in our
paper, one can rigorously investigate the RL-ansatz in the
task of minimising the entanglement entropy of a quantum
many-body system to identify quantum phase transition (An
et al. 2021) and finding the ground state of chemical hamil-
tonian (Patel et al. 2024; Ostaszewski et al. 2021).

Appendix A: Preliminaries

We assume that every quantum system say S has an asso-
ciated Hilbert space HS of finite dimension dS . The state
of a quantum system S is represented by a density operator
ρS defined onHS and satisfies the conditions (a) Positivity:
ρS ≥ 0, (b) Hermitian: ρS = ρ

†
S , and (c) Trace Preserving:

Tr[ρS] = 1. We denote the set of density operators of S as
D(HS). A pure state is a rank-one density operator given
by ρS := |ψψ |A, where |ψ〉S ∈ HS is a unit-norm vector
in HS . We denote the density operator of a composite sys-
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tem S1S2 as ρS1S2 ∈ HS1S2 with TrS2ρS1S2 = ρS1 ∈ HS1
being the reduced state of S1. The state ρS1S2 ∈ HS1S2
is called separable if it cannot be expressed in the form
of ρS1S2 = ∑

x pxρx
S1

⊗ ρx
S2
, where {ρx

S1
}x and {ρx

S2
}x are

sets of pure states, px ∈ [0, 1] and ∑
x px = 1. The states

that cannot be expressed in the above form are said to be
entangled (Horodecki et al. 2009). Next, we briefly discuss
a relevant measure of entanglement for this work.

Concurrence

Wequantify the amount of entanglement present in a bipartite
quantum state ρAB ∈ D(HA⊗HB) using concurrence (Hill
and Wootters 1997; Wootters 1998) which is defined as

CρAB = max{0, λe1 − λe2 − λe3 − λe4} (7)

where λes are the square root of the eigenvalues of ρAB ρ̃AB

in descending order with ρ̃AB = (σy ⊗ σy)ρ
∗
AB(σy ⊗ σy)

being the spin-flipped state of ρAB and σy being a Pauli spin
matrix. For the state ρAB = |ψψ |AB , the concurrence is
defined as

C|ψ〉AB =
√
2[1 − Trρ2

A], (8)

whereρA = TrBρAB is a subsystemof the combined state.
It is easy to see that the concurrence of a pure bipartite qubit
maximally entangled state is one, while that of a bipartite
qubit separable state is zero. In the following subsection, we
discuss a measure to quantify the contribution of individual
qubits in a quantum circuit.

Conditional quantum entropy

We quantify the contribution of each qubit in a quantum cir-
cuit using the conditional quantum entropy (Cerf and Adami
1997; Wootters 1998), which is defined as follows:

Definition 1 [Conditional quantum entropy (Wilde 2013)]
For the state ρ′

AB ∈ D(HA ⊗HB), the conditional quantum

entropy S
ρ′
AB

A|B is equal to the difference of the joint quantum

entropy S
ρ′
AB

AB and the marginal entropy S
ρ′
AB

B :

S
ρ′
AB

A|B := S
ρ′
AB

AB − S
ρ′
AB

B . (9)

Operationally, the conditional entropy S
ρ′
AB

A|B of the state
for the state ρ′

AB signifies how mixed the marginal state ρ′
A

(ρ′
B) is as compared ρ′

AB . For more details of the following
theorems and observations, please refer (Wilde 2013).

Observation 1 For the stateρ′
AB ∈ D(HA⊗HB), considera

purification |ψ〉ABE ∈ HA ⊗HB ⊗HE . It then follows that

S
ρ′
AB

A|B = Sψ
E − Sψ

B . (10)

The conditional quantum information thus measures the dif-
ference in the entropy of the states ρE ∈ D(HE ) and
ρB ∈ D(HB).

In the following subsection, we discuss ameasure to quan-
tify the amount of correlation between two random variables.

Correlation coefficient

We quantify the amount of correlation between two random
variables r1 and r2 using the Pearson correlation coefficient
(PCC) (Rodgers and Nicewander 1988) defined as

PCCr1r2 = E[(r1 − μr1)(r2 − μr2)]
σr1σr2

, (11)

where μr j , σr j are the mean and standard deviation of the
distribution r j with j ∈ {1, 2} and E[.] is an operator that
returns the expectation value of a random variable. Note
that the Pearson correlation coefficient (PCC) is symmetric:
PCCr1r2 = PCCr2r1 . The value of PCC ranges in between−1
and +1. A correlation value of +1(−1) implies perfect cor-
relation (anti-correlation) between the two random variables
r1 and r2, while zero implies no linear dependence between
the variables.

Sampling a random quantum state

Ifn is the number of qubits and s is the randomseed to sample,
then we can sample a state from random_density_mat-
rix of IBM qiskit’s quantum_info module as fol-
lows:

random_density_matrix(2**n, seed=s). (12)

The state used in 5.1.3 is sampled using n = 2 and s = 27.
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