
Active Vision
for Humanoid Robots

Xin Wang

因为有你，我和这世界息息相关—— To my daughter, Emilie





Active Vision
for Humanoid Robots

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus Prof. ir. K.C.A.M. Luyben,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op vrijdag 25 september 2015 om 10:00
uur
door

Xin Wang

Master of Science in Signal and Information Processing Engineering
Northwestern Polytechnical University

geboren te Shaanxi, China



Dit proefschrift is goedgekeurd door de promotor:

Prof. dr. ir. P.P. Jonker

Samenstelling promotiecommissie:

Rector Magnificus
voorzitter
Prof. dr. ir. P.P. Jonker Technische Universiteit Delft, promotor

Onafhankelijke leden
Prof. dr. ir. M.J.T. Reinders Technische Universiteit Delft
Prof. dr. R.C. Veltkamp Universiteit Utrecht
Dr. Çağatay Soyer NATO Communications and Information

Agency, The Hague
Prof. dr. ir. Peter Veelaert Universiteit Gent
Prof. dr. F.C.T van der Helm Technische Universiteit Delft

Overige leden
Dr. B.A.J. Lenseigne Technische Universiteit Delft
Prof. dr. ir. TR. Babuška Technische Universiteit Delft

Copyright © 2015 by Xin Wang

All rights reserved. No part of the material protected by this copyright notice
may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying, recording or by any information
storage and retrieval system, without the prior permission of the author.

Cover drawing by Stephan Timmers, 2014

ISBN 978-94-6203-877-6

Author email: wangxin0913@gmail.com



Acknowledgements

The road was more difficult than I expected, however, reaching the end brings
much more than what I expected. It is a great opportunity to express my
sincere thanks to those who were so generous to spend their time to offer
me professional and personal help and were always there to encourage me to
continue one step further, until I reached this terminal point.

I am especially indebted to my supervisor Prof. Pieter Jonker, who intro-
duced me from China to here, and allowed me to grow as an independent
researcher. Your visionary thoughts in the field of robotics always spark my
interests and propel me to seek innovative ideas. Besides, you gave me enor-
mous help in my life, especially during my pregnancy. You were also very pa-
tient to teach me how to express myself and discuss problems using a Nether-
lands way instead of a Chinese way. These 5 years, I learned a lot by working
with you.

I would like to give my special thanks to all the members of the Delft
Biorobotics Lab. This Ph.D thesis could not be finished without your valuable
support. Martijn, thanks for letting me be a coach of Minor robotics projects.
I learned a lot by supervising students and I was so glad to see that robots can
do so many things. Boris thank you for leading me to get to the right track of
my research and sharing interesting ideas during the lunch time. Maja thanks
for helping me from every perspectives, especially writing together with me
my first paper. I still remembered we were always the last two persons that
came out of the office. Eelko, you were so willing to give valuable advice to
me not only for the technical part but also for personal life. Jan and Guus,
you helped me so much for building up my lovely robot head, from which I
gained a lot of mechanical and electronic knowledge. Tim and Wouter, when
I worked downstairs, you were so generous to spend your effort to teach me
how to solve the control problems of my setup. I learned from you how to
become a good researcher. Toby, thanks for all the discussion on vision related
algorithms. You were such an easy going person. My old colleagues Erik and
Oytun, you were like my big brothers, offering me help whenever there was



ii ACKNOWLEDGEMENTS

a need. Kimberly, your positive attitude towards research influences me a
lot and you also helped me to translate the summary of my thesis. I also
own thanks to Aswin, Berk, Daniel, Floris, Lei Qujiang, Jeff, Machiel, Michiel,
Mukunda, Rob, Shiqian, Susana, Tomas, Wietse, Zhan jun (in alphabetical
order).

I have spent a great time in Delft with my good friends Liangyue, Hu yu,
Qi gao, Zeng yuan, Zhengzhong, Yangyang, Cui hao, Alberto, Zhu tian, Tiago,
Qiaole, Chunman, Steven, Xiong liang, Cong zhe, Chunyan, Cuiting, Zhang
lu, Huajie, Huaizhou, He yuan, Qu chao, Ling yun, Kang ni, Junchao, Wang
chang, Changyun, Tao ke, Ke qian, Congli, Claire, Xuexue, Li ying, Kim-
berley, Rolf, Peter, Melanie, Claudia, Layla, Marta, Andres, Milene, Huijun,
Mini, Jiaojiao, Panpan. Here I specially want to thank Linlin and Lingyan,
you helped me so much during my pregnancy.

Nobody has been more important to me in the pursuit of this Ph.D project
than my parents. Although we were so apart from each other, you gave me in-
finitive love, support, trust, understanding throughout the years in whatever
I pursed and encountered.

No words is heavy enough for expressing my thanks to my dear husband
Éric. I was such a lucky woman to meet you and marry you. You support
me and provide unending inspiration to my life and work. Most important of
all, even during struggling days, you are always holding my hands no matter
what happened. I wish we will continue our life journey together and explore
this unknown world the same as my robot head.

My dearest daughter Émilie, you are my endless power and energy. You
angel smile can always bring me happiness after a day of work. You taught me
how to love and being loved. I am so glad to have you and being dependant
on you. This thesis is my gift to you.



Contents

Acknowledgements i

1 Introduction 1
1.1 Active vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Active vision in humans . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Active vision and robotics . . . . . . . . . . . . . . . . . . . . . 4
1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Design and control of our active vision system 11
2.1 Related work on control of active vision system . . . . . . . . . 13
2.2 Requirements for controllers . . . . . . . . . . . . . . . . . . . . 15
2.3 Controller design . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Experiments and results . . . . . . . . . . . . . . . . . . . . . . 26
2.5 Conclusion and discussion . . . . . . . . . . . . . . . . . . . . . 37

3 Visual primitives representation 39
3.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Visual primitives in active vision . . . . . . . . . . . . . . . . . 41
3.3 Optimal feature selection algorithm . . . . . . . . . . . . . . . 45
3.4 Experiments and results . . . . . . . . . . . . . . . . . . . . . . 47
3.5 Conclusion and discussion . . . . . . . . . . . . . . . . . . . . . 54

4 Object tracking and segmentation 55
4.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2 Major issues in object tracking and segmentation . . . . . . . . 58
4.3 System scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.4 Online tracking and segmentation . . . . . . . . . . . . . . . . . 60
4.5 Online segmentation . . . . . . . . . . . . . . . . . . . . . . . . 68
4.6 Experiments and results . . . . . . . . . . . . . . . . . . . . . . 70
4.7 Conclusion and discussion . . . . . . . . . . . . . . . . . . . . . 77



iv CONTENTS

5 Multimodal visual odometry perception for humanoid robot 79
5.1 Multimodal depth perception . . . . . . . . . . . . . . . . . . . 80
5.2 Kinematics of an active head-eye system . . . . . . . . . . . . . 83
5.3 Camera calibration . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.4 Multiple cues for depth perception . . . . . . . . . . . . . . . . 97
5.5 Experiments and results . . . . . . . . . . . . . . . . . . . . . . 101
5.6 Conclusion and discussion . . . . . . . . . . . . . . . . . . . . . 117

6 Conclusion 119
6.1 Research goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.2 Summary and applications . . . . . . . . . . . . . . . . . . . . . 120
6.3 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Bibliography 129

Appendix 151
Geometric model of image formation . . . . . . . . . . . . . . . . . . 151
Camera calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Two view geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Least squares minimization methods . . . . . . . . . . . . . . . . . . 159
Random forests for object detection . . . . . . . . . . . . . . . . . . . 163

Summary 167

Samenvatting 169

Curriculum Vitae 171



1Introduction

Computer vision seeks to develop algorithms that replicate one of the most
amazing capabilities of the human brain - inferring properties of the external
world purely by means of the light reflected from various objects into the eyes.
From a technical point of view, computer vision is a set of methods that covers
acquiring, processing, analyzing and understanding images. Computer vision
offers solutions that are cheap, practical, non-invasive and most important of
all - it mimics a natural way of sensing the world similar to human vision.
Based on these advantages, it is widely applied to numerous fields, such as
robotics, video surveillance, automatic driving, automatic inspection, medical
imaging, object modeling, human-computer interaction, augmented reality
and so on.

As humans, it seems that we are able to perceive the 3D world around
us and make decisions inside it without too much difficulties. In order to
do that, our vision systems combine low level algorithms together with high
level cognitive reasonings to be able to anticipate what we are going to see and
select attention based on learning patterns. Nowadays, this high level part is
still out of the reach for machines and artificial intelligence. However, we are
not going to deal with the high level part in this thesis; we are more interested
in building up a system that integrates mechanism, control of eye movements
(Chapter 2) and low level functions such as visual primitives representation
(Chapter 3), object tracking and segmentation (Chapter 4) and 3D perception
(Chapter 5). So that, the high level functions can be built upon the low level
functions, making such a cognitive reasoning humanoid robot possible.

1.1 Active vision

Most past and present research in machine perception has involved analy-
sis of passively sampled data (images). Human perception, however, is not
passive. It is active [1]. The basic of perceptual activity includes exploration
and searching. “An active vision system is one that is able to interact with
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its environment by altering its viewpoint rather than passively observing it,
and by operating on sequences of images rather than on a single frame” [2].
Moreover, since a human’s fovea 1 can scan over the scene, the range of the
visual scene is not restricted to that of the static view. The ability to physi-
cally follow a target to maintain it in fovea increases the target resolution for
higher level tasks such as classification. Besides, different eye movements are
combined together to ensure a more effective way to perceive the 3D world.
For instance, vergent eye movements can help to perceive objects and perform
tasks within short distances.

For a mobile robot application, it is accustomed and crucial to have active
vision. Active vision ensures the robot to cover a wide range of views, coor-
dinating with other components such as arm and gripper, moving wheels to
accomplish object manipulating tasks, for instance, to allow for exploration
of scenes and interesting objects from a higher perceptional point of view.
Most existing active vision systems either use one camera or a fixed stereo
pair. Nowadays, with the advent of the Microsoft Kinect [3] that can provide
real-time 3D map and gesture recognition, a great many researchers favor
and use the Kinect to develop vision algorithms. However, human perception
is a combination of eyes and neck movement which includes two eyes that
move in a way different from the fixed stereo set-up or/and Kinect. Thus, a
more complicated device design together with advanced vision algorithms is
required. Our research focuses on developing a human-like vision system for
mobile robots. It investigates the perception ability of humans and provides
insight into mobile robot applications.

1.2 Active vision in humans

The brain is an immensely complicated structure, in which the cerebral cortex
is a 3-4mm thick surface layer on top of the cerebral hemispheres. It plays a
key role in memory, attention, perceptual awareness, thought, language, and
consciousness. The brain contains about 100 billion neurons and it has been
estimated that about 40 percent of the primate brain is involved in seeing [4].
From this we could conclude that vision plays a crucial part in information
processing in the human brain. How is vision connected with the brain and
how does the brain process visual information input?

1The fovea centralis is a small, central pit composed of closely packed cones in the eye. It
is located in the center of the macula lutea of the retina. The fovea is responsible for sharp
central vision (also called foveal vision), which is necessary in humans for activities where visual
detail is of primary importance, such as reading and driving. Source: Wikipedia, https://en.
wikipedia.org/wiki/Fovea_centralis
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The Human visual system is shown in Figure 1.1. Vision is generated by
photoreceptors in the retina, a layer of light-sensitive cells at the back of the
eye. The images are transferred using the optic nerve, through the crossing
at the optic chiasm, where there are partially crossed axons and partially un-
crossed axons. It means that some fibers within each optic nerve cross over at
this point and therefore send their information to the cerebral hemisphere on
the other side of the brain and others stay on the same side of the brain. This
is to ensure that the visual information from both retinas can be integrated
for 3D perception. Then, through left and right optic radiation, the visual
information is carried to the visual cortex (also called striate cortex), which
is highly specialized for processing information about static and moving ob-
jects and is excellent in pattern recognition. In the meantime, optical nerves
also provide visual information to the left and right halves of the superior
colliculus, which is in concern of visual attention. For example, if an object
of interest appears in the field of view, a mechanism within the superior col-
liculus detects its presence and guides eye movements so that the novel object
can be observed directly with the full visual processing power of the central
vision. Humans make on average 3 to 5 eye movements every second, which
sums up to something in the order of 4.5 billion eye movements in a lifetime
[5]. Therefore the perception is an active process to explore and perceive the
visual environment.

What visual needs must the eye movements satisfy? Clear vision of an ob-
ject requires that its image is held fairly steadily on the central, foveal region
of the retina [6]. If we had no eye movements, images of the visual world
would “slip” on the retina with every head movement. This would cause our
vision to become blurred and our ability to recognize and localize objects to
be impaired whenever we move through the environment. And when a new
object of interest appears in the visual periphery, we need to point the cen-
tral portion of the retina so that the object can be seen best. This requires eye
movements to change the angle of gaze. Thus, eye movements are of two main
types: those that stabilize gaze and keep images steady on the retina, and those that
shift gaze and redirect the line of sight to a new object of interest. Just tracking
an object to maintain it in the center of view improves stability. However,
heavy vision computation will cause a significant delay. To compensate for this
effect, the human body (including the neck) uses the vestibular organ to compen-
sate its eye movements. It has a faster processing time, therefore is able to handle
disturbances at a higher frequency.

With continuous eye movements, the human brain is able to actively ex-
plore unknown environments and learn from it. By performing a “sense-
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think-act” learning pattern, perception leads to action, and in another way,
through the interaction with the environment, action leads to new percep-
tions and learning samples as well. This basic dynamic cycle of learning can
also be applied to the robotics field to gain more insight into the human visual
system.

Figure 1.1: Wiley Human Visual System (Source: Wikimedia)

1.3 Active vision and robotics

This section gives an overview of active vision systems. We make a distinction
between general vision systems and human-like vision systems.

1.3.1 Active vision systems

As stated in [7], there are about 2000 research papers published during 1986−
2010 that are closely related to the topic of active vision perception in robotics.
All the literature covers a large range of active vision research fields in robotics:
humanoid vision systems, interactive robots, surveillance, attentive vision
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Table 1.1: Advances in active vision systems

Humanoid attentive vision
system

Harvard Binocular Head [8], MIT Binocular, Foveated Ac-
tive Vision [9], MAVERic Humanoid Robot Head [10],
MERTZ [11], ISAC Humanoid Robot [12], The Robot-Cub
(iCub) [13], Two cameras per eye foveated vision system
[14], KTH two cameras per eye active vision system [15],
The Karlsruhe Humanoid Head [16], ASIMO

Vision surveillance Pan-tilt-zoom (PTZ) cameras for video surveillance [17],
Attentive vision [18]

Localization and mapping Kalman Filtering and Extended Kalman Filtering [19],
Particle Filtering [20], Sequential Monte-Carlo [21], Paral-
lel Tracking And Mapping [22], Feature based [23], Patch
based [24]

Manipulation Model-based grasping [25] and unknown object grasping
[26]

Tracking Intensity-based [27], Motion-based [28], Template match-
ing [29], Active contour [30] Feature-based [31], Tracking
by detection [32]

Intelligent vehicle system
[33]

Knowledge based methods, Stereo vision based methods,
Motion based methods, Template based methods, Ap-
pearance based methods, Integrating tracking with detec-
tion (Google driverless car)

Facial interactive robots Feelix [34], Nao robot [35], Minerva [36], Infanoid [37],
Philips iCat Robot [38], Albert Einstein Hubo [39], Ac-
troid Robot, Flobi [40]

Others Industrial inspection, Augmented Reality, Online object
modeling (SLAM based methods), Online object recogni-
tion, Various robotics platform and service robots

mechanism, object and site modeling, robot localization and mapping, nav-
igation, path planning, exploration, tracking, search, recognition, inspection,
robotic manipulation, automatic car driving, assembly and disassembly, and
other purposes. We will first give an overview of the advances in each of the
topics, shown in Table 1.1.

Various Simultaneous Localization and Mapping (SLAM) algorithms and
systems [41] were brought up not only for mobile robotics applications but
also for Augmented Reality (AR) applications, on-site object modeling, etc.
In such applications, active vision is applied to map scenes and reconstruct
objects from different viewpoints, in which the camera pose needs to be esti-
mated and a 3D map needs to be reconstructed. [42, 43] gives a review about
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object tracking in mobile robotics applications, and the new trend focuses on
using active vision to track objects of interest inside dynamic scenes. Thus
robust real-time trackers that are able to cope with dynamic environments,
illumination change, and motion blur, while still keep tracking from different
viewpoints, are highly required. [44] offers a survey on socially interactive
Robots, in which active vision works in a way to show vivid facial expression
and convey emotion. [33] is a review paper about intelligent vehicles on the
road and the best known is the Google driverless car. Normally, multiple sen-
sors together with active vision are deployed to detect obstacles and vehicles
to ensure driving safety. Beside autonomous driving cars, this technique is
also widely used in driver assistance.

From all above, we can conclude that there is a vast field in which active vi-
sion can be applied and it is becoming more and more popular in the robotics
domain. And why?

• Mobile robots need active vision to perceive the world in a natural ex-
plorative way. By using active vision, a robot will interact with the
world and perform tasks actively. For instance, in robocup@home ser-
vice robot applications, active vision is used to complete tasks such as
follow me, fetching an object, etc.

• Active vision can provide an effective approach for extracting useful in-
formation from a complex scene. Inspired by human vision, an active
vision system usually consists of two or more cameras that can adjust its
attention to the most important areas of the scene. Such a system can
be useful in many applications such as active learning in an unknown
environment with gaze shifting strategy, extending the field of view for
autonomous vehicles or smoothly following objects.

• 3D sensors have a limited field of view and can only see a portion of a
scene from a single viewpoint. A global description of objects can be
obtained using active vision.

• Many active vision algorithms benefit from an ever increasing computa-
tional power, making it possible to be applied in more and more appli-
cation areas.

• Active vision encompasses many computer vision techniques from low-
level tasks such as feature detection, feature matching, to high-level
tasks such as object detection, and 3D geometry estimation.
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1.3.2 Human-like active vision systems

There are many active vision research topics and it is nearly impossible to
cover all of them. Just talking about the sensor inputs, there are intensity cam-
eras (one moving camera, two moving cameras with fixed stereo, two cameras
moving separately), range sensors - among which the most popular one is
Kinect - and the combinations. In this thesis we mainly focus on studying an
active vision system that works in a similar way as humans, while in the mean
time still having a practical use in mobile robots. Now we will first look into
recent literature on humanoid vision systems.

Humanoid robots have a very long history and the first complete robot
was built in 1984, called Wabot-1. However, the humanoid vision system was
developed years later. In 1988, [45] proposed an “Agile camera system ” with
11 degrees of freedom, which was among the first prototypes of a humanoid
vision system. It presented two test cases: one is to obtain depth maps using
range from focus and vergence/stereo; the other is 2-D image segmentation.
However, it did not give implementation details and the test cases were rather
simple. In 1992, the Harvard Binocular Head [8] with 7 degrees of freedom
was presented. Three degrees of freedom were for positioning and the other
degrees of freedom were for controlling of focus and the aperture of the lens.
They provided examples on blob-based tracking to show saccade and smooth
pursuit tracking performance. For retinal position greater than a threshold,
a saccade was triggered. Saccades used position control to direct the eye to
move to an absolute position, while smooth pursuit used velocity control to
move to a certain displacement in a given direction. They also provided a
very simple attentive model to fixate the attention using a saliency map. It
also showed a depth map which was only a calculation on a static scene with-
out any relation to eye movements. In 1994, Theimer [46] proposed a uni-
fied theory for binocular vergence control and depth recovery using phase-
based techniques on their active vision setup. This disparity-evoked vergence,
which was different from target-evoked vergence, was quite innovative. The
MIT Cog project designed a 6 degrees of freedom, binocular, foveated active
vision system. In their paper, they gave design specifications and example
tests on saccades, using a saccade map generated by a simple image correla-
tion algorithm as well as smooth pursuit, but how the control system worked
was not detailed. Klarquist and Bovik [47] actively directed a pair of vergent
stereo cameras to fixate on surfaces in a scene, performing multi-resolution
surface depth recovery at each fixation point. However, the computation load
was quite high, and depth was computed approximately in 3− 5 min at each



8 1. INTRODUCTION

fixation. Aryananda and Weber [11] created a social robot that learns to recog-
nize a set of individuals during human-robot interaction. It had a humanoid
face with a pair of eyes. However, there were no eye movements and no 3D
perception was involved. The KTH active perception lab did much research
on humanoid vision systems. Mȧrten Björkman [48] presented a real-time so-
lution on epipolar geometry estimation for active stereo heads. The camera
system in [49] consisted of two sets of cameras, a wide field pair and a foveal
one for visual attention, foveating and recognizing. The former was employed
to search objects of interest in a larger field of view and the latter is to attend
and foveat on details. Mȧrten Björkman [50] presented an integrated real-
time vision system that performed tasks such as object recognition, tracking
and pose estimation. Rasolzadeh [51] extended previous work to perception
and action. Its disparity map provided cues for figure-ground segmentation
and object grasping. However, the gripper and the vision system were not in-
tegrated. Dingrui Wan [52] used a dual Pan-Tilt-Zoom camera, and proposed
a novel stereo rectification method. Asfour [16] proposed an advanced hu-
manoid vision system for studying various visual perception tasks. It had two
cameras per eye and was able to do tracking and saccadic motions towards
salient regions. iCub is one of the most advanced humanoid robots with a
humanoid vision system [13]. It provids an open platform for cognitive and
neuroscience research. Its head design had 5 degrees of freedom. The con-
trol for object tracking only used image positions of the object as feedback
for visual servoing. The balancing used an inertial sensor to keep the head
always in an upright position. There was also a separate sound localization
function. The Karlsruhe Humanoid Head [16] was also a two cameras per eye
vision system. It had a similar size as human eyes and a mechanical design
as iCub, two degrees of freedom for each eye and three degrees of freedom
for the neck. Open-loop and closed-loop controllers were implemented for
saccade and foveation, in which the accuracy of the open-loop controller was
improved by solving the inverse kinematics problem.

More and more advanced humanoid robot heads research springs up. To
summarize, most state of the art humanoid robot vision systems developed so
far have various research purposes. There are following the categories.

1. Control schemes of eye movements with multiple degrees of freedom

2. Attentive vision with high resolution fovea either using two cameras per
eye or spatial-variant sampling

3. 3D reconstruction based on stereo and vergence control
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4. High level computer vision tasks such as face recognition and object
recognition

5. Saliency detection and saliency based gaze shifting strategies

6. Calibration of such an active vision system including calibration of two
cameras per eye and extrinsic calibration of two moving eyes

As stated, active vision involves moving cameras that work in interaction
with surrounding environments. The human vision system is one of the most
advanced active vision systems because it has the feature to explore the sur-
rounding world and “gaze” at interesting objects. By using this active observ-
ing nature, instead of just passively receiving input from the surrounding,
we are able to direct our vision towards “the potentially need-to-be-learned”
objects and environment and perceive useful and important information. Mo-
bile robots that autonomously perform tasks in unknown dynamic environ-
ments also need to use active vision to search useful information. Based on
an intentive vision strategy to self-explore unknown environments, mobile
robots are able to develop intelligent cognitive learning skills. For example,
one of the typical tasks for service robots at the robocup@home competition
involves fetch-and-carry operations, in which a robot needs to find interesting
objects by exploring an unknown environment, and track objects from differ-
ent perspectives while approaching, fetching, and carrying them towards a
user. During the whole processes, the mobile robot explores the unstructured
environment and navigates around the interesting objects in which active vi-
sion plays an important role. Thereupon, we proposed an advanced active
vision system that has the mechanism and controllers to achieve eye move-
ments in a similar way to humans’. Besides, low level functions such as visual
primitives representation, object tracking and segmentation as well as 3D per-
ception were researched and implemented. The extensive experimental re-
sults prove that the proposed active vision system provides the possibility for
future high level cognitive research.

1.4 Thesis outline

To fully illustrate our active vision system and its related algorithms, we di-
vided this thesis into the following chapters. This chapter presents an overview
of research on active vision systems. It covers the reasons why this research is
important as well as recent developments and progress in this field.



10 1. INTRODUCTION

• Chapter 2 presents the set-up and overview architecture of our active
system including hardware and software design. The control mecha-
nism of different eye movements is also shown in this chapter. Exper-
imental results prove that our vision system is able to mimic different
kinds of eye movements in a similar way as humans.

• Chapter 3 starts from a low level visual primitives representation of
objects and world, and proposes a novel adaptive tracking selection
mechanism based on the properties of objects. It treats different objects
with different tracking algorithms in order to avoid a universal solution,
which is impossible under real world constraints.

• Chapter 4 describes our robust online segmentation algorithm, by which
not only the position of the object is known, but also the precise contour
and shape information is provided. Besides, it can cope with viewpoint
changing, occlusion, clutterd background, illumination variance, and so
on.

• Chapter 5 provides a kinematic model of the whole setup and explains
the process of extrinsic calibration of such a low-cost system. It also
introduces a multimodal depth perception method which is inspired by
the human visual system for depth estimation.

• Chapter 6 concludes and describes the future work. It also lists many
applications to which active vision can be applied.

• Appendices summarize the mathematical background of the thesis, which
ranges from 2D image formation, camera model, to 3D visual odometry.
It provides detailed explanations of the algorithms used in the imple-
mentation of our active vision system.



2Design and control of our active vision
system

1For design of an advanced humanoid active vision system, eye movements
similar to human eyes should be taken into consideration. More degrees of
freedom will bring advanced features for active perception. However, it will
also bring more difficulties to control as well as computer vision related tasks.
Due to this concern, we opt for a simplified mechanical design which works
for most perception tasks, while simplifying all the tasks involved. We also
put emphasis on mechanical designs for different eye movements and the vi-
sion tasks that drive these movements. Many state of the art algorithms did
not explore enough the importance of multiple cues that contribute to depth
perception, for instance motion parallax, optical flow, and so on. Especially,
the two eyes are working together to obtain 3D perception, for instance con-
vergence and stereopsis. There is also other vision related computing in-
volved, such as object tracking and segmentation during smooth tracking.
Therefore we propose our vision system (see Figure 2.1), which is composed
of the following parts.

1. The mechanical design

The goal of our humanoid active vision system is to gain insight into bi-
ological inspired vision systems. It is desirable to have an independent
vergence angle control for two cameras. In human vision there is a lim-
ited ability to perform independent tilt of the eyes. In general the use of
separate tilt for each eye will complicate the stereo reconstruction, thus
this will not be treated further.

2. Control scheme and eye movements

a) The lower level control uses PID controller to drive motors. It out-
puts the actuator state including position and velocity information.

1Chapter modified from article: Xin Wang; Joris van de Weem; Pieter Jonker, "An advanced
active vision system imitating human eye movements, "2013 16th International Conference on
Advanced Robotics (ICAR), pp.1-6, November, 2013
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Figure 2.1: Architecture of proposed active vision system

b) The higher level control of saccades are the movements of the eyes
when they jump from one fixation point in space to another.

c) The higher level control of smooth-pursuit maintains a fixation
point of a target moving at moderate speed on the center of the
view.

d) The higher level control of convergence adjusts the both eyes so
that the optical axes keep intersecting on the same target while
depth varies. It ensures that both eyes fixate on the same point
on the target.

e) The higher level control of the vestibulo-ocular reflex (VOR) is the
mechanisms to stabilize the image of the target during head move-
ments. An Inertia Measurement Unit (IMU) is used to input the
neck pose for stabilization.

3. Lower level image processing

As soon as an image is acquired, feature extraction and matching, op-
timal feature selection, optical flow, epipolar geometry, and 2D-3D fea-
ture alignment are conducted and prepared for higher level processing.
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4. Higher level vision computing

a) Owing to vergent eyes moving at different angles, intrinsic calibra-
tion as well as extrinsic calibration is needed to ensure the accuracy
of 3D perception. The camera pose needs to be updated frame by
frame.

b) In order to smoothly pursue an object and learn to recognize the
object from different perspectives, three different trackers are used:
a color based tracker, an AR marker based tracker for testing, and
our proposed robust online tracker.

c) Dense reconstruction based on stereo matching is used for 3D per-
ception.

d) Saliency detection is used as input for active vision to fixate on
objects of interest.

5. Lower cognitive level vision computing (To be developed)

a) Location and mapping are required to enable a mobile robot to nav-
igate around different places, still “remembering” where it is.

b) During navigation, explorative vision is helping the robot to learn
from the unknown environment and gain better understanding of
its senses, thus building up its long term memory for more compli-
cated tasks.

c) The attentive active system is for a robot to shift its gaze to the
most interesting objects, or most interesting parts on objects. By
this pattern, the robot is able to combine bottom-up and top-down
information for learning.

d) Humans utilize multiple cues for depth perception. Depth percep-
tion is strongly related to eye movements. Multi-mode depth per-
ception is required to perceive environments and objects in 3D for
further vision tasks such as object recognition and object grasping.

2.1 Related work on control of active vision system

As discussed in the previous chapter, active vision is a broad concept and
covers a wide application area. In our case, we explicitly specify an “active
vision” system as the ability to move an image acquisition system in a con-
trolled manner. Active vision systems usually consist of one or more cameras
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mounted in such a way that their orientation and imaging parameters (focus,
zoom, aperture) can be controlled and adjusted.

The development of active vision platforms has rapidly evolved over the
last decades [53, 54, 55, 45]. We divide existing active vision systems into
two main categories: one is focusing on the design of a system that explores
the cognitive aspect of the human vision system and imitates a human’s eye
movement; the other is more task orientated and designed for a specific ap-
plication.

With respect to the first category, advances in hardware for active vision
have given rise to high performance systems, in some respects comparable
with the human oculomotor system. A Pan-Tilt-Zoom (PTZ) camera is a typi-
cal and the simplest active camera, whose foveation can be achieved by zoom-
ing [56]. [52] extended previous work to a stereo set-up. However, the chang-
ing of focal length will bring difficulties for precise calibration. Many re-
searches used a log-polar map to achieve the similar effect of foveation. [57]
gave a review of log-polar imaging for visual perception in robotics, which
is not our main concern, since log-polar imaging is very related to foveation
while from a hardware point of view, the active perspective involving eye
movements does not fully appear. There are also several systems using two
cameras per eye [9, 58, 59], i.e. a narrow-angle foveal camera for foveal vision
and a wide-angle camera for peripheral vision to mimic the foveated struc-
ture of biological vision systems. However, they paid more attention to the
vision part and the algorithm design while ignoring the importance of the eye
movement together with the head movement. In the late eighties, [8] stud-
ied the control of the Harvard Binocular Head. Its control is based on the
model of the oculomotor control described by Robinson, with separate sub-
systems for smooth pursuit and saccadic motion. [60] focused on control of
an active vision system which combined foveal vision, smooth tracking and
saccades and was also concerned about non-uniform resolution. [61] devel-
oped an oculomotor model based on the human eye’s anatomical structure
and physiological mechanism. However, the experimental results are based
on simulation and on a single eye. [62] extended the work of [61] to a binoc-
ular control model that integrates smooth pursuit, saccade, vestibulo-ocular
reflex (VOR) and optokinetic response (OKR). However, all these methods did
not take vergence eye movements into consideration, therefore the binocular
aspect is not fully explored. [63] gave a comprehensive comparison study on
stereo, vergence, and focus as depth cues for active vision, which was limited
to the mathematical models.
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Besides the research on humanoid vision systems, other active vision based
applications are booming. Many popular applications for active vision are
mobile robot applications for various tasks such as object tracking, object
recognition, grasping as well as localization. [64] combined foveal and pe-
ripheral vision for object recognition and pose estimation. [15] utilized top-
down and bottom-up attention to facilitate manipulation, however, its eye-
head system is separated from its grasping system. Active vision is also widely
used in video surveillance for tracking, especially on PTZ camera systems
[65, 56].

The design of active vision systems brings along many difficulties. First
of all, for the design of such an active system with a lot of factors need to be
taken into consideration e.g. blur and vibration caused by fast motion, illu-
mination changing as well as hardware instability. Besides, the control imple-
mentation of a comprehensive humanoid robot eye movement is very difficult
to achieve. The more complex a system, the more complicated its control
mechanism. Most existing systems do not have real-time performance, which
is very crucial to robotics applications. Furthermore, until now, a large part
of the human visual system is yet unknown, therefore existing active vision
systems are not able to perform as well as a humans’ active vision system.

2.2 Requirements for controllers

An active vision system that mimics a human being’s visual system while still
brings in robustness for mobile robot applications is mandatory for our de-
sign. For the design of a human-like eye-head setup that detects and directs
visual attention, the understanding of the eye movements of human beings is
very important.

The human eye has three degrees of freedom, which are the rotations
around the x-axis, y-axis and z-axis and we call them roll, tilt and pan rota-
tions in analogy of PTZ cameras (Figure 2.2). An oculomotor system consists
mainly of the following eye movements [66].

1. Saccade eye movements
Saccades are accurate, high-velocity eye movements used to foveate objects
of interest in the field of the fovea, which is the spot of the retina that is re-
sponsible for sharp central vision, occupying only 2◦ of the visual field. The
visual stimulus for a saccade is the displacement of the target object. Typi-
cally saccades occur with a latency of 200 to 250 msec after an instantaneous
displacement of the target [69]. Although most naturally occurring saccades
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(a) Degrees of freedom of the eye [67] (b) Oculomotor muscles [68]

Figure 2.2: Mechanism of the human eye

(∼85%) are less then 15◦ in amplitude, they show a remarkably dynamic be-
havior [70].

2. Pursuit eye movements
The smooth pursuit is evoked by the slow movement of a fixated target and
has a latency of about 125 ms, which enables us to smoothly track discrete
objects of interest moving in our surrounds. The sustained periods of foveal
pursuit allow maximal resolution, information gathering, and processing of
fine details of a moving object. One of of most typical functions of pursuit
eye movements is object tracking.

3. Vestibulo-ocular reflex (VOR) eye movements
Activities such as jogging, walking, playing basketball,. . . produce perturba-
tions of the head that will lead to blurred retinal images or oscillopsias2, or
both. In order to prevent such disturbances in visual perception and maintain
a steady sight, the vestibular-occular eye movement, occurs as a compensatory
response to a head movement, and is elicited by the vestibular system. The
latency can be up to 100 msec and the peak eye velocity can be as fast as
300◦/sec. In general, the eyes counter rotate with respect to the head move-
ment and take place as a smooth movement under continuous feedback con-
trol, interrupted by intermittent saccades that recenter the eyes [71, 72].

4. Vergence eye movements
Vergence ensures that both the left and right eyes fixate on the same target;

2Oscillopsia is a visual disturbance in which objects in the visual field appear to oscillate.
The severity of the effect may range from a mild blurring to rapid and periodic jumping. Source:
Wikipedia, http://en.wikipedia.org/wiki/Oscillopsia
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in other words, it is to coordinate the images of a target to fall on the fovea of
both eyes. To look at an object closer by, the eyes rotate towards each other
(convergence), while for an object farther away they rotate away from each
other (divergence). The latency is approximately 160 ms and the maximum
velocity is about 20◦/sec [69] as opposed to the 500◦/sec velocity of saccade
movements.

Convergence is the simultaneous inward movement of both eyes toward each
other, usually in an effort to maintain single binocular vision when viewing
an object [73]. Convergence is the process that an eye does to properly focus
on an image on the retina.

For humans, active vision is the combination of eye and head movements.
Figure 2.3 typically represents the evolution of eye, head and gaze rotation:
the gaze is directed towards the visual target as fast as possible by a saccadic
eye movement. Subsequently, the head follows the eye direction and the gaze
is kept stable by counter rotation of the eye. The counter rotation of the eye
is vestibular driven and is such that the gaze does not affected much by the
head movement [74, 68].

As a result, our robot vision system design is driven by the following three
main parts:

Firstly, visual attention plays an important role when we interact with the
environment, allowing us to deal with the complexity of everyday scenes.
Similarly, a design of a robot vision system that mimics the human vision
system and has the ability to autonomously acquire new knowledge through
interaction with the environment is one of our main concerns.

Secondly, the requirements on artificial “seeing" systems are highly de-
pendent on the task and have historically been developed with this in mind
[15]. For robocup@home and other service robot applications, tasks such as
“follow me”, “fetch me an object” in an unstructured environment are chal-
lenging for robots. All these tasks require the robot vision system to explore
unknown environments. Attentive vision is very essential to search objects
of interest and perception-actions needs to be taken into consideration when
manipulating objects.

Thirdly, the goal is to understand how humans sense objects and environ-
ments. The paradox we face searching for this understanding is that although
we still do not understand perception, perceiving is something that occurs
almost effortlessly [76]. By designing a humanoid robot vision system we ex-
pect to push forward our knowledge in understanding our own visual system.
However, for requirements of designing a mobile robot vision system, just fo-
cusing on behaviors of the human visual system is impractical. A robot vision
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Figure 2.3: Fixing - by both head and eye rotation - the fovea on a virtual target
that shifts instantaneously 20◦ from the optical axis of the eye. (derived from
[75])

system is closely connected with other components and is not an isolate one.
The performance as well as the design is also restricted by the tasks the robot
has to perform and the environment in which the robot resides. One of the
most important attributes is robustness, which means that the more compli-
cated a system is, the more complex mechanism needs to be controlled, and
the more unreliable performance will result. For mobile robot requirements,
we will opt for a simplified design that still preserves backbone functions. Be-
sides, computational speed might sometimes be preferable over accuracy or
vice versa, based on different factors.

2.3 Controller design

A system that suits for every kind of tasks and performs well in every kind
of conditions is infeasible in reality. As discussed in the previous section, a
system that can maximally simulate the humans’ eye movements including
saccade eye movements, pursuit eye movements, VOR eye movements as well
as vergence eye movements is preferred. Besides, taking the mobile robot re-
quirements into consideration, the system should be designed based on tasks
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and real world constraints which has properties such as robustness, real-time,
and so on. Finally, most existing research employ very precise mechanisms as
well as electronics with very high cost, which is unaffordable for daily use
or industrial mass production. We prefer household webcams and affordable
motors instead, which will lead to more challenges for algorithms and soft-
ware.

2.3.1 Hardware design

Our hardware system is a combination of actuators and sensors that mimic the
human head, eyes and vestibular system and it is composed of the following
parts:

• The head can move separately on their pan and tilt axes, each degree
of freedom is actuated by a Maxon DC motor Amax-22, in combination
with actuator Maxon MR-M, which is controlled by a home made con-
troller board (3Mxl), jointly referred to as “3Mxl Amax-22”.

• Each eye can move separately on their pan axes using a Maxon DC motor
RE-16 which is controlled by a home made controller board (3Mxl) and
jointly referred to as “3Mxl RE-16”(Table 2.2).

• Logitech C905 webcams are used to serve as robot eyes. They have an
image resolution of 640 × 480. Another advantage of this selection is
their small size making integration very easy.

• The Xsens MTi inertia measurement unit (IMU) helps to measure the
angular velocity of the head to achieve the Vestibulo-ocular reflex (VOR)
stabilization.

• A PC with an Intel(R) Core(TM) 2 Duo CPU running on Linux Ubuntu
is used to connect the hardware (cameras, IMU and actuators) via USB
connections to support the control algorithms.

The mechanical design of our system had three different versions. Fig-
ure 2.4(a) is the first version, using only Dynamixel RX-28 with specifications
in Table 2.1. Later on we improved this design by changing the Dynamixel
to the “3Mxl" design shown in Figure 2.4(b). Eventually, all the motor com-
ponents were replaced with the “3Mxl" design as shown in Figure 2.5. So,
as one can see from Figure 2.5, the eyes are driven by in-house developed
motor controllers with higher resolution than the old design using the com-
mercially available Dynamixel. Therefore we can achieve a more precise 3D
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Table 2.1: Specifications of the Dynamixel RX-28

Property Value
Dimension (mm) 35.6x50.6x35.5
Weight (g) 72
Resolution (deg) 0.29
Max Speed (RPM) 59.9 (at 12v)

Table 2.2: Speicifications of the 3Mxl RE-16

Property Value
Dimension (mm) length:≤ 40.5 diameter:16
Weight (g) 38
Resolution (deg) 0.009
Max Speed (RPM) 264.2 (at 12v)

depth perception. Besides, the maximum speed of the new design is higher,
which means it can control movements very fast to locate the cameras to a
specific position. It also generates a more smooth trajectory than Dynamixels.
Furthermore, it weights less and has a smaller size, which is very flexible for
eye control. The advantage of the Dynamixel lies in its interface design of
connection to other Dynamixel components. It is possible to daisy chain them
on a serial line, address them, and provide them with specific commands for
its internal motion control processor. This connection protocol was taken over
by our own “3Mxl" board. Finally, we added springs to reduce backlash.

2.3.2 Control loop

For humans, a fast eye movement is performed when a salient object appears
in the field of view (FOV), followed by a slower head movement to track the
salient object until new salient objects appear. Another task is to smoothly
pursue an object until tasks such as grasping, object recognition are com-
pleted. During these process, if the object is very close to the head, the eyes
will converge to achieve a better perception of the object. In Figure 2.6, a gaze
control model that describes the combination of eye and head movements
due to visual stimuli is illustrated. We have implemented this on a human-
like eye-head setup with 1 degree of freedom for the head and 3 degrees of
freedom for the eyes (pan for each, tilt for both) and an inertia measurement
unit (IMU) that imitates the human vestibular system. In Figure 2.6, the x-y-z
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(a) The first version (b) The second version

Figure 2.4: The previous designs of our active vision system

axes of the world coordinate is depicted. It will be used as convention in our
system description.

Most state-of-the-art humanoid robots have 4 or 5 degrees of freedom,
which adds one more degree of freedom on pan of the neck. It is worth noting
here that we made some simplifications in our design. Based on the common
sense that left eye and right eye of humans move up and down together, we
choose the design that the tilt rotation for both eyes are coupled with head
tilt movement. We do not need any raw rotation of the neck because such
rotations will not change the visual data, only its orientation. The anticipa-
tory roll head movements during turning are likely to be utilized to overcome
inertial forces that would destabilize balance during turning [77].

Eye servo control

As soon as the image coordinates (x,y) of a target are given to the visual servo
control, the eye will be actuated according to the target position information
such that the target is kept in the center of the field of view. Saccades have
an open loop, or “ballistic”, mechanism: the gaze is shifted towards the visual
target with high speed and can not be changed during this movement (i.e. no
feedback). Smooth pursuit movements are slower and use a feedback loop to
constantly adjust the eye velocity and direction to the movements of the ob-
ject. Since we have no direct knowledge about the 3D postion of the object
and as it is an accumulated process, it can be described as a velocity con-
trolled movement with the property that the further the object appears from
the center of the FOV, the faster the eyes move in the target direction. The eye
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Figure 2.5: The latest design of our active vision system

slows down when the target image gets closer to the center of the FOV. Since
there exists differences between the control of saccades and smooth pursuit,
we combined position controller for saccades together with velocity controller
for smooth pursuit with the maximum angular velocity adjusted to be well
above the limit of smooth pursuit (50 deg/s).

Here we use the pinhole camera model to achieve saccade eye movements.
Assuming the camera is calibrated, then we have

x/fx = X/Z

y/fy = Y /Z

Thus we obtain the pan and tilt rotation angles as

ωX = arctan(X/Z) = arctan(x/fx) (2.1)



Active Vision for Humanoid Robots 23

Control Board

Right Camera Left Camera

IMU

Left Eye Pan Right Eye Pan

Neck Pan

Neck Tilt

C
o
n
tro

l B
o
a
rd

zx

y

Figure 2.6: Eye-head mechanical model

ωY = arctan(Y /Z) = arctan(y/fy) (2.2)

where fx and fy are the focal length in pixel unit in x and y direction, re-
spectively. (X,Y ,Z) are the 3D coordinates of the object of interest. It is worth
noting that we have no direct knowledge about the 3D position of the object,
and only knowing the focal length and image information can not guaran-
tee precise foveation of the object to be tracked since the rotation center and
optical center are not aligned. Besides, velocity control is more smooth than
position control, which is more suitable for smooth pursuit. Thus we will use
a velocity controller instead of position controller to pursue the object, which
is a feedback-loop to constantly adjust the eye velocity and direction to the
movement of the object.
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For smooth pursuit, image-based visual servoing is adopted. A visual
servo controller is needed to actuate the actuators such that the target is cen-
tered in the left and right images and the error is defined as the off-center
pixel displacement (xe, ye), which is(

xe
ye

)
=

x − FOVwidth2

y − FOVheight2


We use a proportional-integral-derivative (PID) controller which is very

robust and flexible for deducing the two rotational velocities ωX and ωY in
our pan-tilt setup. As such the motors will drive the cameras to move towards
the direction that minimizes (xe, ye). The further the target is away from the
image center, the faster the speed will drive the cameras, and vice versa.

ωX,eye = KP xe(t) +KI

∫ t

0
xe(τ)dτ +KD

d
dt
xe(t) (2.3)

ωY ,eye = KP ye(t) +KI

∫ t

0
ye(τ)dτ +KD

d
dt
ye(t) (2.4)

Head servo control

Walking, jogging, playing tennis. . . all these activities produce perturbations
of the head that will lead to blurred retinal images and oscillopsias. In order
to prevent disturbances in visual perception and maintain a steady view, the
vestibular-occular eye movements, occurs as a compensatory response to a
head movement, and is provoked by the vestibular system. The latency can
be up to 100 msec and the peak eye velocity can be as fast as 300◦/sec. In
general, the eyes counter rotate with respect to the head movement and take
place as a smooth movement under continuous feedback control, interrupted
by intermittent saccades that recenter the eyes [71, 72].

When the eyes move towards a visual target, the head follows the eye
movements to ensure the same angles of left and right eyes. The head velocity
ωX,head is determined by the angles of both eyes, and is defined as

ωX,head = KPϕe(t) +KI

∫ t

0
ϕe(τ)dτ +KD

d
dt
ϕe(t) (2.5)

ϕe = ϕlef t−ϕright is the difference between the current left and right angles
for the pan direction.

The vestibulo-ocular reflex (VOR) stabilizes vision in many vertebrates.
It integrates inertial and visual information to drive the eyes in the opposite
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direction of the head movement and thereby stabilizes the image on the retina
[78]. Inertia trackers, such as the Xsens inertial measurement unit (IMU) can
measure linear accelerations, the magnetic field and angular velocities. This
last property can imitate the vestibulo ocular reflex if the IMU is placed at the
rotational axis of the head. These measurements can be combined with the
visual servo controller asω∗X,eyeω∗Y ,eye

 =
(
ωX,eye
ωY ,eye

)
−K

(
ωX,VOR
ωY ,VOR

)
(2.6)

Vestibulo ocular reflex control

Convergence is the simultaneous inward movement of both eyes toward each
other, usually in an effort to maintain single binocular vision when viewing
an object [73]. We ensure convergence based on visual information and the
information of the current angles

ωX,eye =

P ID(xe(t)) if |xe | > thd
0 if |xe | < thd

(2.7)

ωY ,eye =

P ID(ye(t)) if |ye | > thd
0 if |ye | < thd

(2.8)

ωX,head =

P ID(ϕe(t)) if ϕlef t , ϕright
0 if ϕlef t = ϕright

(2.9)

P ID(ue(t)) and P ID(ve(t)) refer to Equation 2.3, Equation 2.4 and Equation
2.6. P ID(ϕe) refers to Equation 2.5.

The convergence can be realized by adjusting the motion of the neck to
make sure the left and right eye have the same angle, and both eyes are foveat-
ing the object of interest in the center of both fields of views. The whole pro-
cess is a simultaneous process with eyes and neck working together. thd is a
threshold to stop the movements, which is achieve by setting the speed to 0
under velocity control.

As discussed above, the whole control mechanism is depicted in Figure
2.3.2. The eye movements of the system are realized by the teamwork of eyes
and neck, which ensures that the robot explores and exploits the unknown
environment in a similar way humans do. Besides higher level controllers,
there are lower level controllers to drive the motors to reach specified posi-
tion. The reason why we have two levels of PID controllers is because they run
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Figure 2.7: Eye-head kinematics model

at different frequency: the PID controllers inside motors run at 1K hz and the
PID controllers described in Figure run at 25 hz. Running at 1K hz is to read
and set the speed and position of the motors at a fast rate; running at 25 hz is
the longer computational time that is required to process an image.

2.4 Experiments and results

With respect to real time requirements, the software is written in C++ and in-
tegrated into the Robotics Operation System (ROS), making the design easily
integrable into other robotics developments.

The attended direction depends on the task or purpose of the system. For
example, a saliency algorithm can be used to attend object of interest. In other
cases, a pre-defined object model can be memorized or manually selected to
direct the attention. Most saliency detection algorithms are computational
heavy and still experimental. In order to generally suit other tasks, we used
top-down visual attention to search for a particular object. Provisionally we
use a marker since it can also provide us with precise 3D position and rotation
information as well as 2D central image coordinates. This is easy and precise
for testing purpose. The marker we used is shown in Figure 2.8.
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Figure 2.8: Marker used for testing proposed controllers

Table 2.3: PID parameters setting

left eye right eye eye tilt neck pan
P 0.0024 0.00165 0.007 0.78
I 0.0001 0.0001 0.000 0.000
D 0.0001 0.0001 0.008 0.002

The optimal adjustment of proportional gain (P), integral gain (I) and
derivative gain (D) is very crucial for achieving optimal performance of the
whole system. After carrying out a number of experiments with different PID
parameters to track the marker in a predefined position. Comparing the posi-
tion curves, we set the PID parameters as in Table 2.3 with no overshoot, less
vibration and fast response time. It is worth noting that for different motors,
the PID setting is different. It should be tuned carefully based on experiments.

2.4.1 Saccade eye movements with open-loop controller

Figure 2.9 shows the saccade eye movements of the left eye. As shown in
this figure, compared with a closed-loop controller that constantly needs im-
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age coordinates information as input, it can immediately direct the view to-
wards the object of interest without any feedback. This property ensures a
fast saccade eye movement with a very sharp curve reaching the target posi-
tion within 200msec rather than the 1100msec in feedback mode. As stated,
typically saccades occur with a latency of 200msec to 250msec after an instan-
taneous displacement of the target. Our system shows a performance that is
comparable with the human vision system for saccade eye movements.
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Figure 2.9: Saccade eye movements with open-loop controller
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2.4.2 Smooth pursuit eye movements with closed-loop

Figure 2.10 shows the right eye smoothly tracking an object of interest using
a velocity based closed-loop controller that uses image information. The ba-
sic function is to adjust the velocity according to the image coordinates with
respect to the image center. When it is far away from the image center, it will
change its velocity to a higher value; when it is close by the image center, it
will change its velocity to a lower value. Figure 2.10 shows the behavior that
the image coordinate influence the velocity to make sure that the object can
be maintained in the center of the view. All movements are very smooth and
the eye can constantly track objects of interest without loosing them.
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Figure 2.10: Smooth pursuit eye movements

2.4.3 Vergence eye movements

Figure 2.11 shows that during vergent eye movements, the eyes keep on mov-
ing until the object of interest is in the center of both views. The two curves
in the figure, which represent the object in the left image coordinates and the
right image coordinates, converged to 0 position; (xe, ye) = 0. In other words,
after convergence, the object of interest is foveated in the center of both im-
ages. As seen in Figures 2.12 and 2.13, with the movement of the neck, the
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left and right eye position angles finally adjust to the same angle. This ensures
that the perspective distortion for both eyes will be minimal.

0 1 2 3 4 5 6

−20

0

20

40

60

80

100

120

Time (s)

x
 p

o
s
it
io

n
 i
n

 i
m

a
g

e
 c

o
o

rd
in

a
te

s
 (

p
ix

e
l)

 

 

Left eye

Right eye

Figure 2.11: Vergence eye movements from image perspective
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2.4.4 VOR eye movements

We first move the target to a predefined location, then the eyes direct to the
target together with the neck movements. We tested the performance both
with VOR and without VOR eye movements. Without VOR eye movements,
the eyes first direct to the object of interest and then the neck moves towards
this object. In this case, the two eyes will move together with the neck and
shift away from the object. VOR eye movements will shift the eyes back dur-
ing the movement of the neck. As seen in Figures 2.14 and 2.15, the period
of reaching the target without VOR eye movements takes about 5s, while for
VOR eye movements this is 2.75s. The reason for this is that the eyes are
counter rotating in the direction of the neck movement, which makes the total
movement towards the object. From image perspective, the VOR eye move-
ment has the ability to stabilize the image, as shown in 2.16 and 2.17. With
VOR eye movements, the maximum and minimum x position in image coor-
dinates will decrease, which means that the counter rotation of the eyes will
eventually foveate the object in a faster and more stable way.
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Figure 2.16: x position in image coordinates of the left eye without VOR
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Figure 2.17: x position in image coordinates of the left eye with VOR
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2.5 Conclusion and discussion

In this chapter, we showed our design of an advanced vision system which
is inspired by the human visual system. It implements different types of eye
movements such as saccade eye movements, pursuit eye movements, vestibulo-
ocular reflex (VOR) movements, as well as vergent eye movements. By com-
bining each of those movements, it is possible for a humanoid robot to imitate
vision-based exploration.

As investigating the entire cognitive learning visual system of humans is
our long-term goal, there is still a long way to go with many issues remaining.
As opposed to the human visual system, most cameras commercially available
provide a uniform resolution, raising the question of whether it is beneficial to
implement a fovea in an active vision system [60]. From a biological point of
view, foveation can bring the most important information under focus, which
is a very interesting subject. Most industrial cameras for industrial inspection
have a programmable region of interest (ROI), which can be considered as a
special fovea. Usually, the ROI can be read out considerable faster than the
entire image, which might have a larger field of view. Finally, the benefits of
the collaborative aspect of two eyes should be investigated more in future.





3Visual primitives representation

1Visual perception aims at gathering information about an agent’s surround-
ing, allowing the agent to plan, navigate, and interact with its environment
[79]. In real world constraints, we do not have any prior information about
the input images and videos. Merely based on pixel value information, vi-
sual primitives such as color, shape, features, textures are formed to perceive
the surrounding world and objects within it. They provide a bottom-up so-
lution for various applications such as visual tracking [42, 80], simultaneous
localization and mapping(SLAM) [81], image stitching [82, 83], stereo corre-
spondences [84], 3D reconstruction [85, 86], object recognition [87], image
retrieval [88], etc.

3.1 Related work

A feature is an image pattern which differs from its immediate neighborhood.
Within the scope of visual primitives, feature detection and matching are an
essential component in many computer vision applications [89]. It is not just
a method to select interesting locations in an image, but it is also a power-
ful image representation tool, allowing for description of objects without the
need for image segmentation.

One significant group of visual primitives is the point feature, which re-
ceives great attention owing to its distinctiveness. [90] is one of the first
publications that emphasizes on the importance of corners and junctions in
visual recognition. A wide variety of interest point and corner detectors ex-
ists in the literature such as [91, 92, 93]. The majority of point feature de-
tection algorithms works in a way by computing a corner response function

1Chapter modified from articles: Xin Wang; Maja Rudinac; Pieter Jonker, "A robust real-
time tracking system based on an adaptive selection mechanism for mobile robots, "2012 12th
International Conference on Control Automation Robotics & Vision (ICARCV), pp.1065-1070,
5-7 December, 2012
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across images which is explained in 3.2. Moravec [94] computed the sum-
of-squared-differences (SSD) between a patch around a corner in a template
image and patches shifted a small distance in a candidate image. The classic
Harris detector [95] was built on this by computing an approximation to the
second derivative of the SSD with respect to the shift. Shi and Tomasi [96]
proposed a new feature selection criterion called “dissimilarity” and adopted
the smallest eigenvalue of a corner response function to select good features.
[97] listed various matrix forms of the corner response function. The corner
detectors used in these approaches have a major failing, which is that they
examine an image at only a single scale. [98] proposed a local Scale Invariant
Feature Transform (SIFT), which is formed by computing the gradient at each
pixel in a 16× 16 window around a detected keypoint. The success of SIFT in
object recognition lead to further research such as PCA-SIFT [99], which sim-
plified the SIFT descriptor by utilizing principal component analysis(PCA)
to normalize Gradient patches to achieve fast matching and invariant to im-
age deformations. Gradient Location-Orientation Histogram (GLOH) [93] ex-
tended SIFT by changing the location grid and using PCA to reduce the size.
It outperformed SIFT by a small margin. [100] introduced an affine invariant
shape descriptor for Maximally Stable Extremal Regions (MSER). It outper-
formed SIFT in non-planar scenes inspite of illumination changes. However,
above approaches all suffered from a high computation load. From the per-
spective of real-time requirement, Speeded Up Robust Features (SURF) [101],
which was inspired by SIFT, exploited integral images for fast speed. Another
high speed corner feature detector, Accelerated Segment Test Feature (FAST)
detector [102] adopted a machine learning approach, therefore can achieve
real-time performance, with the AGAST detector [103] extending this work
for improved performance in both indoor and outdoor environments. Studies
have been continuing on feature detection and more and more feature detec-
tors sprung up, such as [104, 105]. Besides, a great amount of research was
carried on to improve local point feature detection and matching. Adaptive
Non-Maximal Suppression (ANMS) [106] was used to ensure a more uniform
spatial distribution among point features. [107] can achieve sub-pixel resolu-
tion for detected feature points.

Point features have been widely used for finding correspondences across
images, and edge features can provide plentiful semantic information, which
is useful for detecting boundary and shape [108]. Several authors [109, 110]
reviewed edge detection techniques and compared their performance, in which
the Canny detector [111] is the most well known edge detector, which ful-
fills three performance criteria: good detection, good localization as well as
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response to a single edge. Edges and contours are used to describe natural
objects, while straight lines are a strong symbol of human influence such as
buildings, corridors, etc. Line detection is an indispensable compensation for
the representation of the semantic world, in which the Hough Transform [112]
is the most used technique for having edges to ’vote’ for plausible line param-
eters. Line detection is also used to estimate vanishing points to reconstruct
the geometry of the 3D world [113]. In order to deal with insufficient local
information and occlusion, another group of visual primitives, the image seg-
ment, is used to segment the image based on color and texture and applied
to uniform objects and objects with texture pattern, respectively. [114] pre-
sented a comparative study of texture features, with particular emphasis on
the applicability to unsupervised image segmentation. The uprising texture
feature: local binary pattern (LBP) feature [115, 116], with its discriminative
power and computational simplicity, becomes very popular in solving classi-
fication problems.

Given a large number of visual primitives approaches, the need for inde-
pendent performance evaluations also increases. [117] stated out 6 properties
to evaluate good features: repeatability, distinctiveness, locality, quantity, ac-
curacy and efficiency. Feature matching is also an important step to evaluate
the performance of different approaches by measuring the similarity or dis-
similarity among features across images. [92] gave a comprehensive evalua-
tion and compared different approaches. It is worth noting that it is unfair to
drive the conclusion that one specific visual primitive is better than the other
ones to describe a given object. The importance is the awareness of advan-
tages and disadvantages of different visual primitives. Therefore the suitable
visual primitive according to applications can be carefully chosen as well as
properties of objects.

3.2 Visual primitives in active vision

The main task of our active vision system is to represent objects, 3D geometry
as well as visual odometry. Feature detection and matching is the main tech-
nique employed all over the system. One of the most important requirements
for a feature point is that it can be differentiated from its neighboring image
points. Therefore, by computing how an image patch around a point is differ-
ent from its neighborhood patches using auto-correlation, a feature point can
be detected.
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F(∆u) =
∑
i

w(xi)[I(xi +∆u)− I(xi)]2

≈
∑
i

w(xi)[I(xi) +5I(xi)∆u − I(xi)]2

= ∆uTA∆u (3.1)

where

A = w ∗
[
I2
x IxIy

IxIy I2
y

]
is called the Harris matrix.

The corner response function that encodes the eigenvalue information has
the form

R(λ0,λ1) = det(A)−αtrace(A) = λ0λ1 −α(λ0 +λ1)2 (3.2)

The two ’large’ eigenvalues of the corner response function indicate a fea-
ture point [95]. Various other ways are also used to find a feature point based
on eigenvalues [96, 118].

There are two main approaches to find feature points and their correspon-
dences. The first is to detect features in one image and track them in another
image using a local search technique. The other is to independently detect
features in both images then match features based on their local appearances.
The former is more suitable when images are taken by nearby viewpoints.
And the latter is often used in case of large motion and appearance change.
For implementation of object detection and tracking in our active vision sys-
tem, we will apply a motion based tracker for short term tracking and a model
based tracker for long term tracking to ensure a robust, precise, yet fast per-
formance. With respect to motion based tracking, we will adopt the first ap-
proach and use Shi’s corner criteria [96] to detect feature points. Here, if the
smallest singular eigenvalue λmin is bigger than the prefixed threshold τ , then
the pixel is marked as a feature point.

For long term model based tracking, the texture feature LBP which has
the property of being invariant to any monotonic gray level change and is
computationally simple is widely used [119]. Given a feature point p, and q
its neighborhood point, the LBP is calculated as

LBPp,q =
Q−1∑
q=0

f (Iq − Ip)2q (3.3)
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An example of LBP calculation is shown in Figure 3.1, and its LBP feature
value is

LBP = 0 + 0 + 0 + 0 + 16 + 32 + 0 + 128 = 176

Here we use a simplified LBP version called 2bit Binary Patterns (2bitBP),
which differs from standard LBP that encodes 3 × 3 pixel surrounding and
represents a certain area by a distribution of the codes. It encodes the area
by a single code and is similar to Haar-like features [120]. The 2bitBP is il-
lustrated in Figure 3.2 and outputs 4 codes in contrast to 256 for standard
LBP, which increases resistance to overfitting [121]. The other widely used
feature is Haar-like feature, which has become almost standard in tracking by
detection research.

Considering the properties of objects to be detected, for objects with tex-
ture patterns, the above representations work very well. However, for uniform
objects it is a difficult task. Numerous uniform object tracking algorithms
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Figure 3.3: FAST and AGAST corner detection criterion

were proposed [122, 123, 124], among which color information is a strong
cue. [125] gave a thorough survey about color descriptors in object and scene
recognition. Color based visual primitives is preferred in our thesis mainly
because of its fast computation time. We opt for using the HSV color space
instead of the RGB color space because Hue and Saturation components are
able to better cope with illumination variance.

With respect to 3D geometry, the camera pose needs to be estimated. The
angles read from encoders can only provide a rough position estimation. For
precise estimation we have to consult image information, which feature match-
ing is frequently used to estimate epipolar geometry. We use the low computa-
tion cost FAST feature, which outperforms many feature detectors (20 times
faster than the Harris detector). Moreover, it has high levels of repeatabil-
ity under various transformations and different environments. Although it is
sensitive to high noise compared to features such as SIFT, its high levels of
repeatability and speed makes it a good selection for our purpose. A 12 point
segment test corner detection in an image patch as used by Rosten and Drum-
mond [126] is shown in Figure 3.3. The pixels on a discretized circle of 16
pixels surrounding the center pixel are compared to the nucleus p. All points
much brighter than p+τ or much darker than p−τ is considered to be a corner
point.

In order for stereo vision to generate a dense disparity map to fully rep-
resent the 3D world and objects within it, each point in the left image needs
to find its matching point in the right image. Since after rectification, a 2D
searching problem reduces to a 1D searching problem, and the correspondent
points in the right image are lined on scan line with respect to points on the
left image. A straight forward way is to employ block matching to achieve a
fast performance.
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3.3 Optimal feature selection algorithm

Extensive research has been conducted in the domain of object tracking. Most
of the existing tracking methods focus on using a variation of cues such as
color, texture, contour, features, motion as well as depth information to achieve
a robust tracking performance. The tracking methods themselves are highly
emphasized while the properties of the objects to be tracked are usually not
exploited enough. However, there is no universal method that can manage
diverse objects. Some trackers work effectively for textured objects because
they use texture and feature information, while others based on color infor-
mation to track uniform objects, often fail textured objects. Therefore, a new
trend sprung up in visual primitives by combining several different features
to fully describe objects. The state of the art trackers [127, 128, 129] use dis-
tinctive features to cope with illumination changes, occlusions as well as clut-
tered background and do not specifically target uniform objects. [130] uti-
lized multiple cues to overcome disadvantage of using a single feature. How-
ever, the advantages of each feature were averaged. [131] combined texture
and color information while the complexity of the algorithm made the com-
putation load too high for realtime robotics applications. [132] used an on-
line appearance learning and adaptive algorithm to attain a robust tracking
result. However, prior knowledge about the properties of the objects is ig-
nored. Instead of finding a universal tracking algorithm that works for every
single object, we employed an adaptive tracking selection mechanism which
is driven by the properties of the objects. In order to improve the robustness
of the system, we make use of the most distinctive attributes: textureness for
textured objects and color for uniform objects, respectively. Thereupon, we
propose a novel tracking system that treats different objects with different
tracking methods. In this thesis, we first propose a novel adaptive tracking
selection mechanism dependent on the properties of the objects. The system
will automatically choose the optimal tracking algorithm after examining the
textureness of the object. In addition, we propose a robust tracking algorithm
for uniform objects based on color information which can cope with real world
constraints. In the mean time, we deployed a textured object tracking algo-
rithm which combines the Lucas-Kanade tracker and a model based tracker
using the Random Forests classifier. The details for tracking will be explained
in Chapter 4.

The initial input is a bounding box x0 around the object, which encodes
the location information. In order to precisely investigate the property of
the object, we need to segment the object from the bounding box. Thus we
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(a) (b) (c) (d)

Figure 3.4: Textureness information extraction for a uniform object

opt for the interactive segmentation algorithm GrabCut [133]. The pixels
inside the bounding box are treated to be object and the other pixels to be
background, therefore foreground and background Gaussian Mixture Models
(GMMs) [134] are constructed. The GMMs is a linear combination of Gaus-
sians providing good performance even when the object has complex texture
and color. According to the GMMs models, we can label each pixel in the im-
age. The final segmentation can be obtained as a global minimization using
graph cuts.

Therefore we segment the object from the bounding box. Both textured
objects and uniform objects have a contour, hence the contour is not an es-
sential factor for measuring textureness. For better criteria to determine the
properties of the objects, we first exclude the contour information.

Histogram of Oriented Gradients (HOG) features [135] are widely used for
pedestrian detection and achieve high detection precision. The HOG features
are competent to represent the amount of texture, ’textureness’. We generate
HOG features within the object using a cell size of 8x8, after which the prop-
erties of objects are deduced by the amount of HOG features. For textureness
estimation and computation efficiency, we do not need normalization. Two ex-
amples of texture information extraction for a uniform object and a textured
object are shown in Figure 3.4 and Figure 3.5, respectively.

By selecting an initial bounding box, we can calculate (a) the segmented
object, (b) the encoded texture information, (c) the contour of the object and
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(a) (b) (c) (d)

Figure 3.5: Textureness information extraction for a textured object

(d) the texture information without contour inference. As seen in Figure 3.4
and Figure 3.5, we can deduce that uniform objects have a fairly uniform dis-
tribution of textureness compared to textured objects.

Textureness in our algorithm is expressed by the amount of HOG features.
Within a cell image, the HOG features distribution of textured objects and
uniform objects is different. We first calculate the number of HOG features
with magnitudes above an experience based threshold. Then we divide this
number by the total number of HOG features. Based on this we can decide
if the object is textured or uniform. Afterwards, we switch to either textured
object tracking or uniform object tracking.

3.4 Experiments and results

We used 25 objects in 1500 frames for determining the optimal threshold.
Two examples of system performing on a textured object and a uniform ob-
ject are shown in Figure 3.6 and Figure 3.7, respectively. (a) is the original
image with object of interest selected by a bounding box, (b) and (c) are the
segmented object, (d) encodes texture information, (e) is the extracted contour
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and (f) is the texture of the object without contour inference. The two (f) im-
ages show that the uniform object has a low textureness (textureness: 0.1256)
compared to the textured object (textureness: 0.4269). The two graphs com-
pare the performance of 4 trackers: uniform tracker, textured tracker [128]
(TLD), an improved realtime L1 tracker [129] (L1), and compressive tracker
[136] (CT). For the textured object, the uniform tracker performs the worst
since it mainly relies on color information, thus can not cope with very tex-
tured objects with complex color distribution. The textured tracker achieves
very promising results with respect to textured objects. CT fails when the
scale changes. For the uniform object, the uniform tracker outperforms all
the other trackers with a center distance error always below 15 pixels and a
very high stable score. L1 has a growing distance error as more frames are
processed. A textured tracker experiences a performance decrease for uni-
form objects. Consequently, we can deduce that combining a uniform tracker
and a textured tracker dependent on the properties of the objects is an effec-
tive method to achieve a robust performance.
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Figure 3.6: System performance on a textured object
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Figure 3.7: System performance on a uniform object
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For optimal textureness threshold determination, we used a selection error
equation as

L(t) =
∑N
i=1 e(xi ≤ t) +

∑N
i=1 e(xi > t)

N
(3.4)

where

e(xi ≤ t) =

1 if xi ≤ t ∧ Su(i) < St(i)

0 otherwise
(3.5)

e(xi > t) =

1 if xi > t ∧ Su(i) > St(i)

0 otherwise
(3.6)

For each object with its estimated textureness xi , Su(i) and St(i) are the
average scores obtained respectively by the uniform and textured tracker. N
is the total number of tested objects. For a given textureness threshold t, an
object with textureness below t leads to uniform object tracking, while above
t textured object tracking is activated. By comparing the ground truth of the
training dataset with the tracking algorithms performance, the selection error
can be calculated. The textureness threshold with the lowest selection error
value is the optimal threshold. As we can see from Figure 3.8, the optimal
textureness threshold is chosen to be 0.2.
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Figure 3.8: Selection error plot
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Uniform Samples Textured Samples

Figure 3.9: Samples for testing tracking selection mechanism

Table 3.1: Performance of the tracking selection mechanism

object vs
performance

maximum
textureness

minimum
textureness

average
textureness

precision%

textured 0.5790 0.2291 0.3702 100
uniform 0.1981 0.0307 0.1022 90
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For testing the performance of the tracking selection mechanism, we ran-
domly pick up 40 objects with different properties. 20 of them are textured
and 20 of them are uniform. Some samples are shown in Figure 3.9. The
performance results are shown in Table 3.1. It shows that the textureness
measurement results are very adaptive to different objects carrying different
properties. The overall selection precision is 95%, which shows the promising
performance of the proposed tracking selection mechanism. The maximum
textureness and minimum textureness examples are shown in Figure 3.10.
The description of (a)(b)(c)(d) is the same as in Figure 3.4.

We noticed that the quality of the results depends on some properties of
the objects we choose. Reflective objects normally give a bad performance
because of the reflection of the their surrounding. Therefore often a reflective
uniform object is mistakenly considered to be a textured object. A failure case
is shown in Figure 3.11.

(a) (b) (c) (d)

Figure 3.10: Maximum (top) and minimum (bottom) textureness

(a) (b) (c) (d)

Figure 3.11: Failure case
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3.5 Conclusion and discussion

We proposed a novel adaptive tracking selection mechanism which automat-
ically selects the tracking method dependent on the visual properties of the
object. To automatically select the optimal tracking method, we first deploy
a GrabCut based algorithm to segment the object and eliminate the effect of
background and contour on object property estimation. Then we measure the
amount of textureness within the object. Dependent on the measurement re-
sult, either the textured object tracking or uniform object tracking method is
deployed.

In our future work, we will further exploit this method in service robot
applications such as autonomous grasping and object class learning. We plan
to add more cues for object property measurement to improve the automatic
feature selection method. If computation load allows, the online feature selec-
tion method can be applied to achieve robust performance in case of changing
of appearance. We will also explore an online color learning method to im-
prove the tracking performance in variable lighting conditions.



4Object tracking and segmentation

1Object tracking is an important task within the field of computer vision [137]
and is pertinent in tasks such as motion-based recognition, automated surveil-
lance, video indexing, human-computer interaction, traffic monitoring, ve-
hicle navigation, etc. For any active vision system, object tracking plays an
essential role to ensure a robust and high performance system as well. In
an unknown environment, a natural ability of humans is to use “active vi-
sion” to explore this environment and gain knowledge about this. To effi-
ciently explore an unknown environment a mobile robot needs to be able to
track objects of interest and observe them from different perspectives. An-
other learning ability is to perceive spatial relations among objects and their
environment, in which active vision, especially stereo vision, is employed to
estimate the geometry. In order to make sure that a stable and robust perfor-
mance is achieved, long-term video tracking is of great importance for many
applications in real world scenarios. A key component for achieving this is
the tracker’s capability of updating its internal representation of targets (the
appearance model) to changing environmental conditions [138]. This is also
one of the main concerns for designing a tracking algorithm. In this chap-
ter, we present our work on building up a task-driven humanoid robot that
mimics a human’s vision system.

Tracker will indicate the location of objects, detailed information such as
contour, silhouette, shape will provide us with more comprehensive informa-
tion about the objects, which will be further used in object recognition, object
grasping and so on.

1Chapter modified from article: Xin Wang; Maja Rudinac; Pieter Jonker, "Robust Online Seg-
mentation of Unknown Objects for Mobile Robots," VISAPP 2012 - Proceedings of the Interna-
tional Conference on Computer Vision Theory and Applications, Volume 1, page 365-374, Rome,
Italy, 24-26 February, 2012

Xin Wang; Pieter Jonker, "An Object-driven Online Segmentation System for Mobile Robots",
"MVA2013 IAPR International Conference on Machine Vision Applications", pp.379-382, May,
2013
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Still so far, even advanced tracking and segmentation algorithms can not
cope with all kind of real-world constraints because of the inherent difficulties
of the tasks and its prerequisites.

4.1 Related work

Visual tracking essentially deals with non-stationary data, both the target ob-
ject and the background, that change over time [139]. In this process, the
object or the camera is moving, or both are moving separately.

There is a broad range of applications of object tracking that motivate the
interests of researchers worldwide, in which template tracking is the most
straightforward approach for tracking. The object is described by a target
template (an image patch, a color histogram) and the motion is defined as
a transformation that minimizes the mismatch between the target template
and the candidate patch. There are two main categories in template based
tracking, including feature-based approaches using local features like points,
line segments, edges, or regions, and global approaches taking the template
as a whole and using the Sum of Squared Differences (SSD) to minimize the
difference between a reference template and a region of the image [140]. [141]
employed SIFT for object tracking, but this suffers from a high computational
load and sensitivity to noise. [142] adopted SURF points for tracking, which
provided a better performance than SIFT and allowed faster calculation. The
Lucas-Kanade (LK) algorithm [143] was widely used in object tracking by first
sampling a grid of pixels on an image patch, and then tracking the motion
of pixels in the next frame, thus tracking the image patch as well as object.
However, if there are multiple moving objects appearing in the scene, or the
object to be tracked disappeared, the motion based tracker will lose its target.
[27] extended the meanshift method to the video tracking domain using a
template of histogram. It is very efficient for objects with uniform color, while
for textured objects, its performance will degenerate. An efficient second-
order minimization tracker which is also known the Efficient Second-order
Minimization (ESM) tracker, based on minimizing the SSD between a given
template and the current image. Trying to avoid Hessian computation in the
Newton method, this tracker is able to achieve real-time performance [144].

However, these algorithms usually fail to observe the object motion or have
significant drift after some period of time, due to a drastic change in the ob-
ject’s appearance or large lighting variation in its surroundings. Adaptive
appearance modeling tracking is a modern tracking method which can model
as objects’ appearance online, in which adaptive tracking-by-detection ap-
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proaches have become particularly popular. This kind of methods maintain
a classifier trained online to distinguish the target object from its surround-
ing background and treats the tracking problem as a detection task applied
over time. [145] integrated the Support Vector Machine (SVM) classifier into
an optical flow based tracker. [146] used an online boosting method to clas-
sify pixels belonging to foreground and background. [147] adopted multiple
instance learning (MIL) to handle ambiguously labeled positive and nega-
tive data obtained online to reduce visual drift caused by classifier update.
[148] proposed a novel learning method (P-N learning) to estimate and cor-
rect the errors and achieve real-time performance, known for the tracking-
learning-detection (TLD) tracker. [149] used a kernelized structured output
SVM (STRUCK) for adaptive tracking and a budgeting mechanism to pre-
vent unbounded growth in the number of support vectors. There are also
many other tracking algorithms appearing and showing superior results such
as sparse coding based tracking methods [150], real-time compressive sensing
tracking (RTCST) [151], etc.

Most tracking by detection algorithm can be seen as semi-supervised al-
gorithms, since the prior knowledge needs to be provided either by offline
models in the dataset, or by an initial model that is manually selected. For the
localization of unknown objects in a scene, no top-down knowledge can be
used. Object detection methods based on point clouds calculated from stereo
images [152] provide good results in case of textured objects. However, they
fail in the case of objects with uniform color which are also widely present in
environments. As a solution to this challenging problem, we therefore con-
sider bottom-up visual-attention methods. The saliency method presented in
[153] was used, for instance, in [51] to guide the attention of a robot. An atten-
tion method based on local symmetry in the image was proposed in [154] to
fixate on objects in the scene. Finally, the method [155] provided fast segmen-
tation of objects based on their saliency. Since it assumes no prior information
about the scene and only requires input from a single camera, we will further
exploit it in the initial step. Once the initial position of an object is calculated,
the robots should be able to navigate around the objects to inspect them from
multiple viewpoints. Therefore, very fast and robust object detection and ob-
ject tracking methods must be applied. We are interested in a mobile robot
system that can autonomously explore unknown environments. Therefore,
an online detection method that allows automatic segmentation of unknown
objects is indispensable. Most of the state of the art methods require user de-
fined object model, which is unusable in our case. The robot has the task to
navigate around unknown objects to inspect them from different viewpoints.
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For this online segmentation task, existing background subtraction methods
[134] fail due to a constant change of the background. Motion based online
segmentation [156] is not an option since the objects in the environment are
static without any motion information. Thus a model based tracker that can
update online is needed. However, histogram based online segmentation such
as Camshift [157] can not handle textured objects. Therefore we require an
object-driven segmentation method which is able to work in case of complex
scenes and objects.

4.2 Major issues in object tracking and segmentation

There are various challenges that object tracking methods need to cope with
in real-world constraints.

1. Loss of information caused by the projection of a 3D world onto a 2D
image. Most of the visual tracking algorithms are based on 2D knowl-
edge while 3D knowledge can provide more rich information of objects
as well as their spatial relations.

2. Noise in images will pose difficulties for object detection using intensity
values and features as elements.

3. Complex or multiple object motion will lead to the failure of motion
based trackers. Besides, the relative motion between objects and the
camera will make the estimation of ego-motion of camera and motion
of objects very difficult.

4. Nonrigid or articulated nature of objects do not obey the rigid transfor-
mation rule, which gives rise to more challenges for trackers to adapt to
their rapid appearance change.

5. A robust tracker needs to cope with partial and full object occlusions
and needs to resumes the tracker afterwards.

6. Scene illumination changes will make that most of the color based track-
ers lose objects, since the color components will change their values very
drastically.

7. Cluttered backgrounds will pose challenges for most trackers since the
distinctivity between objects and their surrounding is weakened.

8. For objects with complex shapes, the segmentation will be a problem. It
is very difficult to segment complete objects from their surroundings.
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9. Most applications acquire real-time processing, especially mobile robots,
and in constrast, most of the tracking algorithms are very time consum-
ing.

[138] gave a comprehensive survey and performance evaluation of adap-
tive appearance modeling for video tracking. Four trackers exhibit good per-
formance overall: the discriminative tracker Structured Output Tracking with
Kernels (STRUCK) tracker outperformed other approaches, followed by the
Tracking-Learning-Detection (TLD) tracker, the Incremental Visual Tracking
(IVT) tracker and the Multiple Instance Learning (MIL) tracker. However,
TLD achieves 18 frames per second, much faster than 8 frames per second
for STRUCK. Since TLD is an adaptive appearance tracking method and has a
very high performance, we use it as the baseline for textured object tracking in
our system. However, its performance will decrease in case of uniform objects.
Therefore we proposed a switch mechanism as described in Chapter 3 to select
the proper trackers based on the properties of objects. Moreover, we imple-
mented a vision system that can autonomously perceive objects in unknown
environments without any prior knowledge. Furthermore, we proposed a ro-
bust online segmentation method which provides refined information about
the objects such as shapes and contours instead of only locations. It should
be highlighted, that in our setup the camera moves around the static objects,
which is in contrast with to other tracking applications where static cameras
track or segment moving objects. Therefore our method not only works in
general cases such as object tracking with input from a bounding box, but
also provides a cognitive approach for robots to develop a self-learning abil-
ity.

4.3 System scheme

Figure 4.1 shows a schematic overview of the proposed system. In our pre-
vious work [158], a mobile robot maneuvered around the object to track and
learn it from different perspectives. Our system was used in the Robocup@home
application.

We assume that no initial knowledge on a scene or object is given. In the
initial step it is necessary to detect the approximate positions of unknown ob-
jects. For initial segmentation, we propose a bottom-up segmentation based
on the salient information in the static scene. After the saliency map of the
scene is calculated, saliency points in the map are detected and clustered into
salient regions, where every region represents a potential unknown object. A
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cluster with the most salient points is assumed to be the most dominant object
in the scene and its initial model is extracted. Details can be found in Section
4.4.1. In order to examine the property of the object, the system segments the
salient object and discards the contour. Then HOG features are generated to
estimate the textureness of the object. The amount of HOG features will deter-
mine if the object is textured or uniform. If the textureness of the object is be-
low a threshold, the system will switch to a uniform object tracking algorithm.
Firstly, a Hue-Saturation joint histogram is used to label the foreground object
(background), then a smooth constraint is added to enforce similarity between
neighborhood regions. Finally, blob tracking is employed to locate the objects
in the frame. In textured object tracking, the dominant object is tracked by
a motion based tracker, and the model of the object is rebuilt and constantly
updated using Random Forests based classification. By combining the detec-
tion results of the motion tracking and the model tracking the location of the
object in the new frame is derived. More detailed information is given in Sec-
tion 4.4.2. In the final step, for every viewpoint and updated object model
we do refined object segmentation. The Gaussian Mixture Models (GMMs)
are used to create the object model and the background model. Finally, graph
cuts is used to obtain the optimal segmentation as is described in Section 4.5.
As a result, detailed contour information of the dominant object is extracted.

4.4 Online tracking and segmentation

4.4.1 Saliency detection

In order to be able to learn novel objects in unstructured environments, an ini-
tial step is to correctly segment the objects without any prior knowledge about
the objects or their background. In our previous research [155], we proposed
a method for fast object segmentation based on the salient information in the
scene. In the original method [159], saliency was detected using a spectral
residual approach on three different color channels, red-green, yellow-blue,
and the illumination channel. The saliency map was further calculated as the
inverse Fourier transform of each spectral residual, and the results were com-
bined to obtain a more robust saliency map. The bright spots in the saliency
map represent points of interest. In order to detect those peaks, we applied
the MSER blob detector [160] directly on the saliency map. Once the interest-
ing points were detected, close points were clustered together using a Parzen
window estimation, leading to the segmentation of objects in the scene.

The described method was designed for still images and here we propose
an extension to process video. Given that the spectral residual process rep-
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Figure 4.1: Schematic overview of the system

resents the difference between the original scene in Figure 4.2(a) and the
scene average, acquiring information about the scene average from succes-
sive frames will improve the saliency map. The saliency map is displayed
in Figure 4.2(b). Therefore, for each frame we detect MSER points on the
saliency map in the standard way and merge the result with those from pre-
vious frames to obtain more stable salient points. In our setup we used 5
successive frames. The number of merging frames must be carefully chosen,
since too many frames could lead to segmentation larger than the object. To
solve this problem, we use an active segmentation method in addition to the
initial segmentation.

Once we obtained stable salient points from successive frames, for each de-
tected point the contour describing the MSER region is calculated [160]. The
resulting contours can be seen as yellow points in Figure 4.2(c). These con-
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(a) original image (b) the saliency map

(c) salient points (d) the dominant object

Figure 4.2: Initial localization of objects using saliency

tours are then clustered leading to the segmentation of objects in the scene.
For clustering, we use an adapted Parzen window estimation [161], which
automatically fits a probability density function to the contour centers. For
each point we calculate the probability P (x) defined by Equation 4.1 where xi
and σ represent the Gaussian kernel center and the kernel size, while S is the
number of contour centers and m = 2, since every contour center has a two-
dimensional coordinate. Subsequently, outlier points that have low probabil-
ity values and belong to isolated clusters are removed, as defined in Equation
4.2. Finally, the positions of the contour centers and their probability values
are clustered using the Mean-shift method [122]. As a result, we find the re-
gions of interest around each object in the scene, see Figure 4.2(d). The cluster
with the most salient points represents the dominant region in the scene, the
red bounded object in Figure 4.2(d) which will further be segmented.

P (x) =
1
S

S∑
i=1

1
√

2πmσm
exp−‖x − xi‖

2

2σ2 (4.1)

log(P (x)) < log( 1
S

∑S
i=1 P (xi))− 3var(log( 1

S

∑S
i=1 P (xi)) (4.2)
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Table 4.1: Saliency detection algorithm

(1) Generate a saliency map using spectral residuals: minimize the re-
dundant visual information, calculate residual on three color chan-
nels and perform the inverse Fourier transform on every residual,
sum up the results from different channels.

(2) Detecting MSER regions in the saliency map: use Maximally Stable
Extremal Regions to find high saliency and represent every region
with a calculated contour around all pixels belonging to that region.

(3) Clustering detected points: calculate the probability using Parzen
window esitimation and reject outliers, cluster keypoints and esti-
mated Parzen probabilities using mean shift clustering.

(4) Recognizing objects in interesting regions: locate the salient objects
and select the most salient object as dominant object.

4.4.2 Online tracking

In the Sec. 4.4.1, we proposed a method which segments the unknown objects
in the scenes and selects the most dominant one that will further be inspected
by a robot from multiple viewpoints. Based on the location of the initial
model, the robot should develop a self-learning system by observing objects
from different perspectives and perceive its environment without any prior
knowledge. One of the necessary steps towards such a system is an object-
driven and on-line learning segmentation method. In our application, objects
are static while the robot navigates around objects to explore them from dif-
ferent viewpoints. Pure motion based and background modeling based online
segmentation methods will fail in this situation. A robust online object seg-
mentation method is proposed to cope with this situation. From the initial
position located by saliency, we build up the object model using texture fea-
tures for textured object and color information for uniform object and update
the model frame by frame to efficiently track the object. Then we segment the
interested object inferred from the model using GMMs and graph cuts. We
will now explain the two steps for tracking and segmentation.

It is worth mentioning that the input can be the model detected by our
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saliency method or can be more general, ie. is manually selected. Similarly,
our tracking method can be also used in more general applications which is
not only limited to cognitive vision research.

Tracking for uniform objects

For uniform object tracking, color is a strong cue. Standard Camshift and
blob tracking algorithms are commonly used. For real-time robotics applica-
tions, the other benefit of using color information lies in its low computational
cost. However, these methods have two strong weaknesses. First, the methods
do not work well in different lighting conditions. Second, they just consider
the probability distribution of color while ignoring the smoothness between
neighborhoods. Therefore, we propose an algorithm to overcome these weak-
nesses, which is described in Figure 4.3.

Require: Initial frame I0, Select x0
for t = 1 to∞ do
It→ Ihsv %convert RGB to HSV
calcHist(Ihsv) %calculate the histogram of Hue-Saturation
for ∀p ∈ Ihsv do

[lt(p), ct(p)] = label(p) %label the pixel
end for
for ∀p ∈ Ihsv do
lt+1 = lt
ct+1 = ct
for ∀q ∈N (p) do

if calcSimilarity(p,q) · ct(q) > ct(p) then
lt+1(p) = lt(q)
ct+1(p) = calcSimilarity(p,q) · ct(q) %calculate similarity between
center pixel and neighborhood

end if
end for

end for
xt = blobtracking(Iseg ) %blob tracking
t = t + 1

end for

Figure 4.3: Uniform objects tracking framework
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The HSV color space corresponds closely to the human perception of color
[162] and the hue component in HSV color space is insensitive to illumination
changing, thus we first convert RGB images to HSV images.

H =


cos−1{ 0.5[(R−G)+(R−B)]√

(R−G)2+(R−B)+(G−B)
} B ≤ G

360◦ − cos−1{ 0.5[(R−G)+(R−B)]√
(R−G)2+(R−B)+(G−B)

} B > G
(4.3)

S =
max(R,G,B)−min(R,G,B)

max(R,G,B)
(4.4)

V =max(R,G,B)/255 (4.5)

Instead of using the RGB color space, we compare the back projection
based on the hue histogram with the hue-saturation joint histogram, which
is shown in Figure 4.5. As one can see, the hue-saturation histogram achieves
better segmentation result than only using the hue histogram. After obtain-
ing the probability distribution of the color, we can label the pixel to be either
object, background, or undefined. According to this probability value, we can
also assign a label confidence to each pixel. The labeled image can only tell the
region property, thus we used smoothness constraint to enforce the similarity
and refine the segmentation. We are inspired by the interactive segmentation
method [163]. For each pixel p, we calculate the similarity between p with
its neighborhood pixel q. If they are very similar to each other and the label
confidence of q is very high, the neighborhood pixel q will affect the pixel p
and p will have the same label as q. The label confidence of q will also change
accordingly which is shown in Figure 4.4.

Figure 4.4: Smooth constraint

After iterations until no change occurs, we obtain the segmented image of
the object and background. According to Figure 4.5 we conclude that the
segmentation performance after smooth constraint is better than both the
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Hue Hue-Saturation Smooth Constraint

Figure 4.5: Segmented image comparison

hue histogram based segmented image and the hue-saturation joint histogram
based segmentation image, with less noise in the background and the object
information enforced. It proves that by using a smooth constraint, the inter
connections between pixels from the object are refined while the exterior con-
nections between object pixels and background pixels are weakened. Since we
have the refined segmented image, we use blob tracking to obtain the bound-
ing box in the new frame.

Tracking for textured objects

With respect to the task of observing objects from different viewpoints, we
need to online build up a training data set to model the object from initial
object information and update the model so that it can adapt to the constant
change in object appearance. Both methods [128] and [164] for adaptive on-
line tracking use Local Binary Pattern (LBP) variants to represent the tex-
ture of the object. The LBP features are randomly distributed on an image
patch, thus the spatial information among the features is kept. Then the im-
age patches are used to train a Random Forests classifier. Therefore the object
tracking problem turns into a foreground and background classification prob-
lem. The drawback of [164] lies in that it needs to offline generate an affine
transformation training data set from the original image to build up the track-
ing model. [128] goes a step further and just requires a user defined bounding
box around the object and further updates the model online. However, they
do not provide any detail on the object shape. In our system we propose a fully
automatic system that utilizes a uniform tracking method (4.4.2), a baseline
method [128] for textured object and a refined online segmentation method
which also provides shape information.

Assuming that we have an object modelM that contains a variety of model
elements (m1,m2, . . . ,mN ), each mi uses a group of features (fi1, fi2, . . . , fiK ) to
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encode the different appearances of the object. The combination of model ele-
ments can provide a more comprehensive and robust description of the object
than a single model element. Using probability theory we deduce the prob-
ability of features based on a given object model element P (fi1, . . . , fik |oi), i =
0,1, . . . ,N .

Given a potential candidate C, we use

P (C) =
N∏
i

P (ci |fi1, . . . , fiK ) (4.6)

to denote the classification of C based on features.
According to the Bayes’ Theorem

P (ci |fi1, . . . , fiK ) = P (fi1,...,fiK |ci )P (ci )
P (fi1,...,fiK ) (4.7)

We assume the uniform prior P (ci) and the denominator to be the normal-
ization constant to ensure that the sum of probabilities is one.

Then Equation 4.6 transforms into

P (C) ∝
N∏
i

P (fi1, . . . , fiK |ci) (4.8)

Since we have the criterion to denote the object

P (O) =
N∏
i

P (fi1, . . . , fiK |oi) (4.9)

We can assign C to the class of object or background. Random Forests have
the structure of fast and generalized classification, thus we use it to build and
update the model. Here, the model elements are represented by trees and the
features are nodes of the trees.

First we cover the input salient region with an image patch x0 ∈ X, where
X = {xt , t = 0,1, . . . ,T } depicts the trajectory of the object, in which t is the
frame number increased by time. We use LBP as local texture feature descrip-
tor and randomly generate the features on the image patch to maintain the
spatial information, therefore we have the first object model and features dis-
tribution P (fi1, . . . , fik |oi), i = 0,1, . . . ,N . We can initialize the construction of
the Random Forests which has N trees. Here it is worth noting that the more
trees, the more distinctive a group of features can appear. The side effect is
that it will lead to an overfitting problem, as well as a heavy computation
load.
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Second, a grid is generated on the image patch. For each pixel on this grid,
its motion in the consequent frame is tracked using the Lucas-Kanade tracker.
Thus, the whole displacement (median(dx),median(dy)) is calculated and the
new location of the image patch and the scale of the object in the new frame
are known.

Every new frame is scanned from left to right, from up to down using an
image patch with different scales. Within every image patch we use the gen-
erated features to compare it with the model. From the viewpoint of Random
Forests, the search is carried out for each tree and if the search reaches the leaf
the image patch is considered to be a potential object according to the given
model element. Finally, we use majority votes from all the trees to decide
if it is a confident object. Among all confident objects in the frame, we se-
lect the most confident ones and cluster them by distance measurement using
normalized cross-correlation.

f (x,y) =

∑
(i,j)∈W I1(i, j)I2(x+ i,y + j)√∑

(i,j)∈W I
2
1 (i, j)

∑
(i,j)∈W I

2
2 (x+ i,y + j)

Then by combining the image patch location and scale obtained by Lucas-
Kanade tracking and the image patch location obtained by detector we derive
the image patch of object xt in the new frame.

Updating the model is an online learning procedure to cope with view-
point changes. If the image patches detected by the detector are close to the
object, they are considered to be a positive data set and add to the branch
of the trees, otherwise they will be treated as a negative data set and pruned
from the trees. In this way, a robust and “memorized” model is updated.

4.5 Online segmentation

Although the position of the object is known, the information about its con-
tour, edge or shape is still unknown. In our application, the object segmen-
tation will be a cue for further tasks such as the object recognition, scene
understanding, object grasping as well as convergent vision, and therefore a
detailed contour of the object is necessary. For these reasons we need to fur-
ther refine the object model and perform detailed segmentation. Most existing
segmentation methods need interaction from users [133] and [163]. In order
to automatize this process we use the object model from the previous part and
in order to decrease the computation time the segmentation is not carried out
frame by frame. Object segmentation is performed only in key frames while
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for other frames, we use the confident segmentation from the previous frame.
The key frame is determined by comparison of the current image patch xt
with the previous image patch xt−1. If the displacement and the scale differ-
ence are larger than a specified threshold, the frame t is considered to be a
key frame.

In the object modeling part, we combine both texture information of an
intensity image and color information. We first apply the hard constraints to
label the image and then use soft constraints to optimize the segmentation.

The task of the hard segmentation is to split the scene into an object and a
background and we adopt the GMMs for a construction of the object and back-
ground models. The GMMs is a linear combination of Gaussians that gives
complex densities and better characterization than histogram based methods,
thus it provides good performance even when the object has complicated tex-
ture and color. For a known image patch xt calculated by previous steps, we
assume that within the image patch the properties of the object are preserved,
while all pixels outside the patch have the attributes of background. Based on
this, we derive the object GMMs and background GMMs in a following way.

With regards to a pixel xp,p = 1,2, . . . , P , the GMMs are defined as

P (xp) =
K∑
k=1

πkN (xp |µk ,Σk) (4.10)

where the Gaussian densityN (x|µk ,Σk) is called one component with mean
vector uk and covariance matrix Σk . πk is the weight. Here the mean vector uk
is composed of three values R, G and B while K is the number of components.
K needs to be adapted to the scene, and more textured scenes require higher
values of K . Typically K = 5.

Since we have the initial model, we can assign each pixel to each compo-
nent in object GMMs and background GMMs. Therefore we have the label for
all the pixels in the image.

After hard segmentation, we use energy minimization to optimize the seg-
mentation. The energy minimization equation is

E(L) = λR(L) +B(L)

= λ
∑
p∈P

Rp(lp) +
∑

(p,q)∈N
B(p,q) · δ(lp, lq) (4.11)

where L = (l1, . . . , lp, . . . , lP ) is the label set for each pixel. lp = 1 represents
that p is assigned to object and lp = 0 represents that p is assigned to the
background. q is one of neighboring elements of p and δ(lp, lq) is defined as
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δ(lp, lq) =
{

1 if lp , lq
0 otherwise

(4.12)

where

Rp(lp) = − logP (xp) (4.13)

describes the region property based on GMMs models.

B(p,q) = exp(−β||Ip − Iq ||2) (4.14)

describes the coherence of similarity within a region according to a dis-
tance between two pixel. Where Ip is the RGB value for a given pixel. λ is a
parameter that relatively balance the region property based on GMMs versus
the region property based on similarity.

Segmentation can now be estimated as a global minimization using graph
cuts [165]

c = argmin
L
E(L) (4.15)

Then we have the foreground object and background. It is worth noting
that the computation cost of segmentation using graph cuts will be a challenge
for online applications. In our case, we confine background to be a region
surrounding the image patch instead of using the region of the whole image.
By doing this, we lower the computation cost. We also use the output of the
segmentation result as a refined input of the online model for more precise
tracking.

4.6 Experiments and results

4.6.1 Experimental Setup

In order to test the whole system, we made ground truth data from 50 ob-
jects in 88 different scenes with 4400 image frames in 4 different test scenar-
ios. They are the following: a single object placed in the scene with uniform
background, multiple objects placed in the scene with uniform background, a
single object placed in the scene with textured background and multiple ob-
jects placed in the scene with texture background. We used different objects
which varied in shape (simple vs complex) and in appearance (uniform color
vs textured). It is also worth noticing that all of the experiments were carried
out in different illumination conditions with natural light as well as artificial
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light. Moreover, we tested our system in difficult cases such as the objects
with occlusion, as well as similar objects appearing in the same scene.

Here we also need to emphasize that in most state of the art online seg-
mentation methods, the cameras are fixed to capture the motion of the objects
in the scene. In contrast, in our experiments the objects are static and the
camera moves around the object, which is a more challenging case. There are
two types of such active vision setups, one where the camera moves around
the objects to “see” them from different viewpoints, and the other where the
camera moves to keep the objects in the center of the view, so called foveated
vision system. We performed experiments using both setups.

The input from saliency detection will influence how the object model is
built up and updated and on the other hand, the input from the object model
will affect the GMMs and the graph-cut based segmentation performance.
The three parts are strongly interrelated, and for that reason we present total
segmentation results.

4.6.2 Saliency Detection and Online Segmentation Results

Our saliency detection selected 30 dominant objects from different scenes. In
order to clearly demonstrate the performed tests, with regard to the types
of objects and scenes, and to show the saliency detection and segmentation
results, we show a number of figures with both single and multiple objects in
the scenes. In each figure, we show the original image, the image after saliency
detection, the image after object segmentation and one more example of the
object segmentation from a different viewpoint. Figure 4.6 shows a single
object with uniform color and simple shape in textureless scene, while Figure
4.7 depicts a single object with uniform color and complex shape in textured
scene.

For the same reason, we also show a number of figures of the multiple
objects scenes. Figure 4.8 shows the textureless scene with multiple objects
and the dominant object with texture and complex shape, while Figure 4.9
shows the textured scene with multiple objects and the dominant object with
uniform color and complex shape.

Table 4.2 presents the segmentation performance of a single object placed
in an textureless or textured background. The rows represent the different
types of objects and the columns the types of scenes. Table 4.3 shows the
segmentation performance of multiple objects placed in textureless and tex-
ture environment. Rows and columns are defined in the same manner as in
Table 4.2. Both tables give the overall performance from all test frames. As
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(original scene) (saliency)

(segmentation1) (segmentation2)

Figure 4.6: A single object with uniform color and simple shape in textureless
scene

can be seen from the very high precision rates, above 90%, the proposed algo-
rithm gives a very robust segmentation of various types of objects in different
scenes. We also come to the conclusion that in most cases, it is easier to seg-
ment the objects from textureless than from textured scenes and it is easier
to segment the dominant object within single object background than mul-
tiple objects background. We can also notice that the multiple object cases
show only a slight drop in precision rates. From the perspective of differ-
ent types of objects, the uniform and simple shape objects make the task of
saliency detection nontrivial. On the other hand, the objects with uniform
color and complex shape increase the segmentation difficulty. Regarding very
textured objects, saliency detection provides good results, but in modeling an
over-segmentation can occur, since the number of GMMs components might
be low. The case of multiple objects with textured and complex shape is the
most difficult one. However, our method gives a very good performance in all
aforementioned situations, even in case of large viewpoint changes.

Besides testing the active vision of moving the camera around the objects,
we also tested the foveated vision setup. We carried out experiments in 8
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(original scene) (saliency)

(segmentation1) (segmentation2)

Figure 4.7: A single object with uniform color and complex shape in textured
scene

Table 4.2: Segmentation results of a single object placed in a textureless and
textured scene

objects vs scene textureless % textured %
uniform color and simple shape 98.7 96.4
uniform color and complex shape 98.5 94.8
texture and simple shape 98.4 96.4
texture and complex shape 98 92.8
total 98.4 95.1
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(original scene) (saliency)

(segmentation1) (segmentation2)

Figure 4.8: Textureless scene with multiple objects and a dominant object
with texture and complex shape

Table 4.3: Segmentation results of multiple objects placed in the textureless
and textured scene

object vs scene textureless % textured %
uniform color and simple shape 94.4 97.3
uniform color and complex shape 98.6 93.4
texture and simple shape 95.6 90.4
texture and complex shape 90.8 86.4
total 94.85 91.875

different scenes with various objects and in total 400 images. The test results
show an overall precision rate of 95.5%, which proves the effectiveness of the
method on foveated active vision setups as well. One example is shown in
Figure 4.10.

To test the robustness of segmentation in more challenging conditions,
we performed tests on similar objects appearing in the same scene, occluded
objects as well as the motion of objects themselves. The testing result of per-
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(original scene) (saliency)

(segmentation1) (segmentation2)

Figure 4.9: Textured scene with multiple objects and a dominant object with
uniform color and complex shape

ceiving objects from different viewpoints is shown in Figure 4.11. As we can
see from this figure, the algorithm has a good segmentation performance de-
spite the viewpoint changes. In Figure 4.12, regardless of occlusion, the al-
gorithm can correctly extract the dominant object. Even with a similar object
occluded in front of the dominant object which is shown in Figure 4.13, the
segmentation result is still good. And Figure 4.14 proves that the motion of
the dominant object does not affect the performance.

4.6.3 Failed cases

During testing, we observed different situations that were difficult to cope
with and those reduced the overall performance rate. We noticed that the
segmentation results depend on the property of the object we choose. Trans-
parent and reflective objects normally give a bad performance, as shown in
Figure 4.15(a) and 4.15(b). The saliency detection will also affect the online
segmentation results if the selected salient region only detects a part of the ob-
ject, which can happen in the case of multiple object scenarios containing both
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(origin) (saliency)

(segmentation) (foveation)

Figure 4.10: Online segmentation results on foveated vision setup

Figure 4.11: Online segmentation results with viewpoint changes

uniform color and textured objects or if the objects are too close to each other.
Another problem that rises, is in the case of very textured objects, the selected
number of GMMs components might not be sufficient to efficiently segment
the object. The failed case is shown in Figure 4.15(c). One way to solve this
problem is to adaptively select the number of GMMs components according
to this measure. We will investigate this solution in our future work. Finally,
if the color or texture of the object is very similar to the background, it is dif-
ficult for the algorithm to extract it. Such example is shown in Figure 4.15(d).
Also, sometimes the shadow might become a part of the object.



Active Vision for Humanoid Robots 77

Figure 4.12: Online segmentation results under occlusion

Figure 4.13: Online segmentation results with similar objects appearing in
the same scene and occlusion

Figure 4.14: Online segmentation results with motion of the dominant object

4.7 Conclusion and discussion

We introduced a novel method for robust online segmentation of unknown
objects. Our method automatically detects unknown objects in the scene
based on saliency information, selects the most salient object, tracks the salient
object with a movable camera, and finally refines the object model using
GMMs and graph cuts. The obtained outputs are the contours of the dominant
object in different viewpoints. We tested our system in challenging conditions
and the test results with a total segmentation precision above 90% in both
textureless and textured scenes. It can efficiently segment both simple and
complex shapes as well as objects with uniform color or texture. Our method
performs well in spite of large viewpoint changes, illumination changes, oc-
clusion as well as the case of similar object appearing in the same scene. The
promising results inspire us to apply our system on mobile robot heads to
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(a) (b)

(c) (d)

Figure 4.15: Failed cases

autonomously explore, track and segment unknown objects in unknown en-
vironments. The output of our system also provides a strong cue for further
tasks such as object recognition, manipulation and learning.



5Multimodal visual odometry perception
for humanoid robot

1Perceiving and acting are intertwined to explore and search information while
manipulating, listening to, and looking at objects. This multimodal activity
involved in exploration is considered as contributing both to the specification
of the properties of objects and the perceivers themselves [166]. Young in-
fants display behaviors that are "exploratory" in nature because they appear
to be primarily oriented toward bringing sense organs into various relations
with objects in the environment. New borns show elements of reaching with
arms and hands toward an object moving close to them [167]. By tracking
objects moving in their field of view with both eyes and head [168], they are
developing a self-learning ability about the environment and objects within it,
in which 3D perception is essential to describe spacial relationships and sup-
port precise actions. Similarly, while exploring and navigating in 3D space, a
mobile robot should be able to locate interesting objects and control the ver-
gence angles of its eyes to observe nearby objects in an object-centered man-
ner. Thus, the objects to be observed are fixated at fovea in the left and right
images and depth is estimated for further actions such as object grasping, ob-
ject manipulation, object recognition, etc. Besides, depth perception also pro-
vides information for obstacle avoidance and path planning. This integration
of position control, image acquisition and depth perception inaugurate the
performance of such a humanoid vision system in real world environments.

1Chapter modified from article: Xin Wang; Boris Lenseigne; Pieter Jonker, "Depth from Ver-
gence and Active Calibration for Humanoid Robots, Advanced Concepts for Intelligent Vision
Systems Lecture Notes in Computer Science, Springer, Volume 7517, pp.24-35, 2012

"An Advanced Active Vision System with Multimodal Visual Odometry Perception for Hu-
manoid Robots" by Xin Wang and Pieter Jonker submitted to International Journal of Humanoid
Robotics (IJHR)
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5.1 Multimodal depth perception

5.1.1 Basic concept

Figure 5.1 lists all the sources that animals and humans use to estimate the
distances of objects or a distance traveled. As one can see in the figure, there
is a variety of sources using visual information as well as without using visual
information. Depending on how many eyes are used, the visual information
can be divided into two main categories: from monocular and from binocular
sources. Figure 5.2 focuses on different depth information used, related to the
average depth for humans. Here D1 and D2 are the distances of two objects;
2(D1−D2)/(D1 +D2) is the ratio of the just-determinable difference in distance
between them over their mean distance. (D1 +D2)/2 is the mean distance from
the observer. As we can see, the personal space and action space are the main
functional spaces for robots to navigate and explore as well as conduct pre-
cise actions, in which convergence and binocular stereopsis play an important
role.

Visual information

Monocular Binocular

Vergence Disparity

Static Dynamic

Perspective Interposition Lighting Aerial Focussing

Linear
Texture

Occlusion
Transparency

Non-visual information

Shading
Shadow

Optical haze
Mist

Image blur
Accommodation

Optical flow
Motion parallex
Accretion/deletion

Static 
Changing

Occlusion disparity
Position disparity

Self movement Audition Electric fields Heat Geomagnetism Olfaction

Active Passive

Kinesthesis
Motor efference

Touch
Otolith organs

Monaural
Binaural
Echo location
Lateral line

Passive electrolocation
Active electrolocation

Figure 5.1: Depth perception [169]

With regard to development of a humanoid vision system, we mainly focus
on visual information based depth perception methods. Considering action
space and personal space, and depth perception for a robot to perform tasks
in indoor environments, we concentrate on visual information based binocu-
lar cues for depth perception. Thus we employ multimodal depth perception:
stereopsis and convergence. The stereopsis mainly works in long distance
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Figure 5.2: Just-discriminable depth thresholds as a function of the log of
distance from the observer, from 0.5 to 5000 meters, for nine different sources
of information about layout. Such plots were originated by Najata (1981) and
are extensively modified and elaborated here; they are plotted with analogy to
contrast sensitivity function. Our assumption is that more potent sources of
information reflect supra-threshold utility. These functions, in turn, delimit
three types of space around the moving observer - personal space, action space
and vista space - each served by different sources and with different weights.
This array of functions, however, is idealized [170].

conditions and can explore a whole scene and objects inside the scene; In con-
trast, the convergence functions mainly at nearby object tasks such as object
tracking, object grasping as well as object recognition in case that the objects
do not appear in the pair of views, because of the fixed baseline in most stan-
dard vision systems. Convergent vision has generally been clear for objects up
to 10 centimeters from the nose, though this has recently been changing, with
vergence accurate to even closer objects [171]. Another concern for choosing
these cues is that depth perception is strongly connected with eye movements,
where during object moving, camera tracking, depth information can be ex-
tracted using stereopsis and convergence. When both eyes are looking straight
forward, stereopsis based depth perception is the dominant function; on the
contrary, while both eyes are converging while objects are moving close, con-
vergence based depth perception is gradually taking in charge.
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5.1.2 Related work

Spatial perception is one of the cognitive skills to evaluate how things are ar-
ranged in space and how are their relations in the environment. For humans,
spatial perception is mainly based on visual input. Similarly, vision is also
one of the primary inputs for spatial perception of humanoid robots. How-
ever, the comparison can not go further as the performance of robot vision
systems is far below the one of humans. The latter is more capable of adapt-
ing itself to a specific task and processing information according to a specific
goal based on depth information. Depth estimation plays a crucial role in
spatial perception and it has various ways of calculation regarding ranges of
distance (personal space, action space, vista space, etc) [170]. Stereopsis is one
of the most developed techniques to estimate depth and perceive 3D world.

Stereopsis using binocular disparity to calculate distance has been widely
investigated for decades [172]. The regular procedure is stereo calibration,
image rectification, stereo matching and depth calculation [173]. However,
when it comes to a close distance, the object could drop off the view because
of a fixed baseline. Convergence, in the way that it compensates for fixed
baseline, directs two eyes towards the object to keep it in the center of both
views, which can be seen as a "must-have" feature for bio-inspired vision sys-
tems. The first motivation of building a vision system with both cameras can
simultaneously look at the same object by panning around, is to mimic the
scene exploration mechanism that has been observed in primate or human vi-
sion systems. From this cognitive point of view, recent works such as [174]
represents the state-of-the-art. This robot head performed scene exploration
as well as object recognition and used convergence to build a 2.5D represen-
tation of the scene. In some other works [175, 176, 177], the design of space
variant sensors and models to make a vision system with a higher resolution
concentrated at foveation was presented; [178] generated a log-polar map to
obtain foveated images; in [179], convergence was used as a part of a foveated
system; [14] designed a system where a low resolution/wide field of view of
images was combined with high resolution/narrow field of view of scene de-
tails. This kind of foveated systems combined two cameras per eye in order
to simulate peripheral and foveated visions. [180] used PTZ camera to mimic
the way of foveated vision system; More technical aspects of depth from con-
vergence concerned positioning and reconstruction errors. Pioneer work on
this topic can be found in [181]. Several studies [182, 183] investigated the
system control with accuracy and smoothness constraints but are far from
requirements of an accurate reconstruction system. [184] employed the eye-
hand calibration method to calibrate an active stereo system which requires
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high precision motors. However, most existing robot vision systems merely
rely on a single depth estimation method for most of the situations the robots
encounter. Considering that a robot uses steropsis to navigate around the en-
vironment and convergence to manipulate nearby objects, the use of a specific
depth estimation method is not sufficient. Therefore, a framework using 2D
image properties, integrating with 3D depth perception based on real world
constraints should be made.

We developed a complete system that performs both stereopsis based depth
perception as well as convergence based depth perception. A novel multi-
modal depth mechanism based on encoder position information is proposed
to allow for various tasks with different eye movements. Moreover, our system
integrates a platform comprising an attention selection mechanism, tracking,
motor control, stereopsis and convergence based depth estimation. As a mat-
ter of fact, not only it a mimics a humans’ visual system, but it is also a valu-
able alternative to stereopsis when objects are too close to be seen, which is
often the case in object manipulation.

5.2 Kinematics of an active head-eye system

In this section, we describe a kinematic model of a standard head-eye system,
having 6-DOFs as well as a kinematic model of our head-eye system with 4-
DOFs. This can be easily constructed and incorporated into a standard camera
model of a stereo vision system. Moreover, the mathematical model based
kinematics is also given for further explanation of calibration problems.

Figure 5.3 (a) shows a standard geometric configuration of such a head-
eye system. The system has 6-DOFs: both eyes can pan and tilt around the
eye axes and the neck can pan and tilt around the neck axis. The assumption
here is that the pan and tilt axes intersect with and are orthogonal to each
other. Comparably, our head-eye system is shown in Figure 5.3 (b). There are
two main differences between this standard head-eye system and our head-
eye system. First, as discussed in Chapter 2, based on the common sense
that the left and the right eye of humans move up and down together, we
choose to design that the tilt rotation for both eyes are coupled with a head tilt
movement. In this case, each eye is driven separately by each motor with only
pan rotation. Together the eyes are driven by neck motors. Second, the neck
motors are composed of a motor for pan rotation and a motor for tilt rotation.
For a standard head-eye system setup, the pan and tilt axes intersect with and
are orthogonal to each other. However, this is very difficult to realize with
regard to mechanics, thus we opt for the design that a pan motor is connected
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(a) A standard head-eye system (b) Our head-eye system

Figure 5.3: Head eye kinematics

with a tilt motor through a transformation. It will bring difficulties for the
offline calibration algorithms, which will be explained later. Now we derive
the mathematical model of our head eye system.

First we introduce some mathematical notations:
XW =

[
xw yw zw

]T
is a point in our 3D world (reference) frame.

XN =
[
xn yn zn

]T
are the 3D coordinates of a neck.

XE =
[
xe ye ze

]T
are the 3D coordinates of an eye, in which we use el

and er to indicate the rotation centers for left and right eye.

XC =
[
xc yc zc

]T
are the 3D coordinates of a camera, in which we use

cl and cr to indicate the optic centers for left and right camera.

XI =
[
u v

]T
are the 2D coordinates of an image. We use the homoge-

neous transformation H to describe the relationship between two 3D coordi-
nate systems. H has the form

H4×4 =
(
R3×3 T3×1
01×3 11×1

)
(5.1)

where R is the rotation matrix and T is the translation vector. It is worth
noting that here we use the homogeneous coordinates of a 3D point.

In contrast with a fixed stereo-vision set-up, each camera is mounted on
each eye motor and the eye system together is mounted on a joint on a neck
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motor in the head-eye system. Hence there is projection relationships between
world frame and neck frame

X̃N =HN
W X̃W (5.2)

between neck frame and eye frame

X̃E =HE
N X̃N (5.3)

and between eye frame and camera frame

X̃C =HC
E X̃E (5.4)

Here the homogeneous coordinates are denoted by X̃, H j
i meaning the ho-

mogeneous transformation from coordinates i to coordinates j.
Define the initial neck coordinates at a start-up position as XN(0). Let

Hnp(t) being the pan rotation transformation of the neck at time t relatively
to this start-up position, which is X̃NP(t) = Hnp(t)X̃N(0), containing only a
rotation around the y-axis.

Hnp(t) =
(
Rnp(t) 0

0 1

)
(5.5)

The tilt rotation transformation of neck at time t is defined as

Hnt(t) =
(
Rnt(t) 0

0 1

)
(5.6)

Accordingly, the pan rotation transformation of left eye and right eye are

Hel(t) =
(
Rel(t) 0

0 1

)
(5.7)

Her (t) =
(
Rer (t) 0

0 1

)
(5.8)

respectively.
Here, the rotation matrices around the x-axis and y-axis have the form

Rx(ϕ) =


1 0 0
0 cos(ϕ) −sin(ϕ)
0 sin(ϕ) cos(ϕ)

 (5.9)

Ry(θ) =


cos(θ) 0 sin(θ)

0 1 0
−sin(θ) 0 cos(θ)

 (5.10)
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We can derive the corresponding kinematic model of our head-eye vision
system as follows. Equation 5.11 is the extrinsic transformation from world
coordinates to left camera coordinates and Equation 5.12 is the extrinsic trans-
formation from world coordinates to right camera coordinates.

X̃Cl(t) =HCl
El Hel(t)H

El
NtHnt(t)H

Nt
NpHnp(t)HN

W X̃w (5.11)

X̃Cr(t) =HCr
Er Her (t)H

Er
NtHnt(t)H

Nt
NpHnp(t)HN

W X̃w (5.12)

Above two equations form the kinematic model of our head-eye vision
system and describe the extrinsic transformation from world coordinates to
camera coordinates known at any time t. While from camera coordinates to
image coordinates the intrinsic parameters are needed.

Assuming that intrinsic parameters are measured using standard camera
calibration tools, we have Kl and Kr for left and right intrinsic parameters.
Therefore we obtain the projection matrices that map the 3D world coordi-
nates to image points on the left and right image, respectively.

λlX̃Il(t) = Kl[I |0]HCl
El Hel(t)H

El
NtHnt(t)H

Nt
NpHnp(t)HN

W X̃w (5.13)

λrX̃Ir(t) = Kr [I |0]HCr
Er Her (t)H

Er
NtHnt(t)H

Nt
NpHnp(t)HN

W X̃w (5.14)

5.3 Camera calibration

Intrinsic calibration can be done on each of the cameras using the standard
MATLAB calibration toolbox or the openCV calibration functions. However,
with two moving cameras, the extrinsic parameter can not be obtained di-
rectly. To control the camera motion for data acquisition, it is convenient to
mount the camera on a positioning device such as a pan-tilt table or a robot.
In computer vision, such a head-eye setup greatly facilitates motion stereo,
continuous object tracking, and active perception [185].

A principal trade-off is the choice between a parallel baseline system, which
provides a simple matching geometry but little overlap between views, and a
vergent geometry, which better exploits a common field of view between the
cameras at the cost of a more complex correspondence problem [47]. No mat-
ter for which configuration, calibration is very critical to ensure a precise pose
and 3D estimation.
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Traditionally, camera calibration is determined off-line by observing spe-
cial, well-known reference patterns. This marker-based camera pose estima-
tion has been studied over decades. However, it is restricted to pre-defined
set-up, which is not able to work in unknown or unstructed environments.
As natural feature based camera pose tracking becomes the new trend, pure
image based solutions have achieved great progress. Moreover, with a hu-
manoid concept, any odometry measurement sensor should not be adopted
in our design. Thus, image information together with motor information by
online processing will provide us with the extrinsic parameters estimation,
therefore more accurate visual odometry can be achieved.

It is worthy noting that low-cost sensors are deployed in our system, whose
use is unavoidable in most mass-market robotic domains, because of eco-
nomic constraints: “extensive market analyses show that a complex sensing
system for a mobile robot cannot cost more that 10,000 US$, for a consumer-
level robot"[186]. As a result, this cheaper solution is going to bring more
challenges for camera calibration.

5.3.1 The formulation of the offline calibration problem

Calibrations involves eye calibration and neck calibration. Eye calibration is
to estimate the transformation from eye coordinates to camera coordinates
and neck calibration is to estimate the transformation from neck coordinates
to camera coordinates.

Eye calibration

Assume from time t to time t + 1, we keep the neck still and only move one
eye to drive the camera. Using camera calibration we can establish the relation
between camera coordinates and world coordinates at given time t

X̃C(t) =HC
E He(t)X̃E(0) (5.15)

and at given time t + 1

X̃C(t + 1) =HC
E He(t + 1)X̃E(0) (5.16)

Then we get the transformation of camera coordinates, which is

X̃C(t + 1) =HC
E H

t+1
t (e)[HC

E ]−1X̃C(t) (5.17)

whereH t+1
t (e) =He(t+1)[He(t)]−1 is transformation of eye coordinates from

t to t + 1 that can be directly obtained from reading the encoder.
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With the moving of the camera, we can have camera coordinates with re-
spect to world coordinates from time t to t + 1 using a standard extrinsic cali-
bration method with a calibration pattern

X̃C(t) =HC
W (t)X̃W

X̃C(t + 1) =HC
W (t + 1)X̃W

(5.18)

Therefore we have

X̃C(t + 1) =H t+1
t (c)X̃C(t) (5.19)

where H t+1
t (c) =HC

W (t + 1)[HC
W (t)]−1.

Combining Equation 5.17 and Equation 5.19, we can get

H t+1
t (C)HE

C =HE
CH

t+1
t (e) (5.20)

Since the camera is rigidly attached to the eye motor, the relation between
eye coordinates and the camera coordinatesHC

E remains unchanged from time
t to t + 1 and this is what we want to estimate. H t+1

t (C) can be estimated by
camera calibration and H t+1

t (e) can be obtained from reading motor encoders.
Therefore the problem is defined as solving

AX = XB (5.21)

Neck calibration

For our head-eye system, since the pan and tilt axes of the neck motors do not
intersect with and are orthogonal to each other as in a standard setup, there
exists a transformation from the pan neck motor to the tilt neck motor. Thus
we keep the eye motor static and move the neck pan and neck tilt separately.

We have the following equations

X̃Nt(t) =HNt
NpHnp(t)X̃W

X̃Nt(t + 1) =HNt
NpHnp(t + 1)X̃W

X̃Nt(t) =HNt
W (t)X̃W

X̃Nt(t + 1) =HNt
W (t + 1)X̃W

(5.22)

Therefore we obtain the same AX = XB equation as
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H t+1
t (Nt)HNt

Np =HNt
NpH

t+1
t (np) (5.23)

Similarly, we only move the tilt motor and keep the others static and we
have

X̃E(t) =HE
NtHnt(t)X̃Np(t)

X̃E(t + 1) =HE
NtHnt(t + 1)X̃Np(t)

X̃E(t) =HE
W (t)X̃W

X̃E(t + 1) =HE
W (t + 1)X̃W

(5.24)

So we have another AX = XB equation as

H t+1
t (E)HE

Nt =HE
NtH

t+1
t (nt) (5.25)

H t+1
t (Nt) and H t+1

t (E) being transformations of neck tilt and eye coordi-
nates from t to t+1 with respect to world coordinates which can be calculated
using extrinsic calibration. H t+1

t (np) and H t+1
t (nt) are the neck pan and neck

tilt motion that can be obtained from reading the encoders. HNt
Np and HE

Nt are

what we need to know. It is worth noting that HE
Nt is the general term used

for left and right eyes calibration of HEl
Nt and HEr

Nt . In this case, the extrinsic
calibration will be conducted separately on each eye through left image and
right image information.

Is AX =XB solvable with our kinematics setup

The head-eye problem is similar to the hand-eye problem in the way that
they both have the form of AX = XB, where the latter has been researched
for decades. There are various ways to solve the problem. Early solutions
decoupled the rotational part from the translational one, yielding uncom-
plex, fast linear solutions for estimating both rotational and translational part,
among which the most classic one is TSAI and LENZ [187] using a closed-
form solution. Chou and Kamel [188] simplified the formulation introducing
quaternions for the estimation of the rotational part using singular value de-
composition (SVD). Wang [189] presented an early comparison work which
showed that TSAI and LENZ achieves best performance with smallest stan-
dard derivation. [185] described the hand-eye geometry in a screw repre-
sentations. Meanwhile, nonlinear methods were also proposed to increase
the estimation accuracy. Since estimating translation based on rotation leads
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to rotation estimation errors propagate to the translational part, a lot of ap-
proaches that simultaneously estimating rotational and translation part have
been proposed [190, 191, 192].

As stated in [187, 185, 193], especially [185] did a thorough research on
uniqueness requirements of such a hand-eye solution. All of them derived the
same conclusion that for hand-eye problem specifically two movements with
nonparallel rotation axes are required to have a unique solution.

[184] extended the hand-eye calibration solution to solve the head-eye
problem using a non-linear optimization approach. Here it is worth noting
that its kinematic model is very similar to the standard one shown in Figure
5.3 (a), which has tilt and pan movements for both eye axis and neck axis.
However, in our kinematic model, this does not hold. For instance, with re-
spect to HC

E , the transformation from eye coordinates to camera coordinates,
there are only pan movements. The underlying reason for this is that in the
standard hand-eye calibration setup, Hgij [187] is known and Hcij can be ob-
tained using extrinsic calibration. In our case Hg ij is not known precisely
because of off-the-shelf properties.

According to [187] Lemma VII: skew(Pgij + Pcij ) is singular and has rank
2. We did tests on simulation and real data to prove the skew(Pgij + Pcij ) is
a nonsingular matrix and there exists no unique solution to our calibration
problem.

5.3.2 Online calibration

[48] proposed a continuous external calibration by estimating epipolar geom-
etry. In the first place, it proves the plausibility of our design of such an active
system: we do not need any rotations around the optical axes, because such
rotations will not change the visual data, only the rotations [48]. In the sec-
ond place, a joint tilt of both cameras around the baseline, will not change the
nature of the problem and can be ignored. As a result, the pan movements of
both eyes will contribute to the 3D perception. In other words, neck pan and
tilt movement can be ignored under the condition that we only want to know
the 3D position of the object with respect to the robot eye (Here we use the
left eye as origin for measuring the depth). However, the method did not take
the advantage of known encoder information into consideration. Besides, it
assumed that the optical centers are the rotation centers, which is not the case
in our setup.

[194] and [195] used motor information. The former used motor informa-
tion to update the length from rotation center to optical center while the latter
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used homography based techniques to derive the relation between motor an-
gle and real angle. However, both models assumed that the optical centers
are aligned with the rotation centers and therefore do not work for our setup.
With insufficient encoder resolution and backlash, it is necessary to consult
image information for more accurate camera position estimation instead of
only reading from the encoders. Here we propose an online calibration ap-
proach which mainly uses the motor encoder information, together with im-
age processing to improve the calibration accuracy. Using motor encoder in-
formation increases the robustness of the fundamental matrix calculation and
avoids choosing the wrong rotation matrix and translation vector after extrac-
tion of the essential matrix.

Compared with all existing methods that only did test on epipolar dis-
tance error and vergence angle, we also performed tests on accuracy of the
estimated depth.

Building up stereo correspondences

Natural features are used in our system instead of markers. With regard to
feature detection, abundant research has been done so far. The FAST feature
is among the most efficient ones. For our real-time application, we adopt the
FAST feature to speed up the process. For feature descriptors, we use FREAK
features which is a novel keypoint descriptor inspired by the human visual
system, more precisely the retina. They are in general faster to compute with
lower memory load and also more robust than SIFT, SURF or BRISK.

We do not use a standard brute-force matcher and the FLANN matcher, in-
stead we use a constraint feature matcher. Since the left eye and the right eye
only move around the x-axis, the y image coordinates should be restricted to
a search range. The comparison results are shown in Figure 5.4 and 5.5. From
this we can see that the constraint matcher removes lots of false matching.

Figure 5.4: Matching result using the Brute-Force matcher
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Figure 5.5: Matching result using the constraint matcher

Estimation of fundamental matrix

The equation of estimating the fundamental matrix is described in Section
6.3 and is an AX = 0 problem. There are normally more than 8 matching
points, therefore the problem turns into a linear least-square problem. Since
the error in localization for most points of interest is small (within one or two
pixels), we can assume that the image points distribution follows a Gaussian
behavior. However, the incorrectly localized few points (with more than three
pixels) are very likely to severely degrade the accuracy of the estimation and
we have to seek robust solutions. An M-Estimator in which a robust penalty
function ρ(r) is applied to residuals, can be used for such a case. Torr [196]
gave a review about all the robust methods that can be used for solving a
fundamental matrix problem.

First we revisit the fundamental matrix estimation problem as a residuals
minimization problem.

Let F =


f1 f2 f3
f4 f5 f6
f7 f8 f9

 be the fundamental matrix; (xi , yi ,1) and (x′i , y
′
i ,1)

be the homogeneous correspondences, thus the residuals are

ri = f1x
′
ixi + f2x

′
iyi + f3x

′
i + f4y

′
ixi + f5y

′
iyi + f6y

′
i + f7xi + f8yi + f9 (5.26)

and

f = min
f

n∑
i=1

(ri)
2 (5.27)

In the least-square method, the residuals for any measurement can be ar-
bitrarily large. However, with Equation 5.29 small error values correspond to
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Gaussian noise and are included in the minimization process while the influ-
ence of large outliers errors are either bounded or totally eliminated. The cost
function is defined as

f = min
f

n∑
i=1

ρ(ri) (5.28)

A typical weighting scheme in the statistics literature is the one that is
proposed by Huber [197]:

ρ(ri) =


1 di < σ
σ/ |di | σ < di < 3σ
0 di > 3σ

(5.29)

The standard deviation of the error σ is either known a priori or is found as a
maximum likelihood estimate using the median

σ =
median(di)

0.6475
(5.30)

Equation 5.26 describes algebraic distance. Minimization of the algebraic
distance was found to be sub-optimal. Sampson [198] proposed using a first
order approximation to the distance. Therefore the optimal weighting is used
in residuals minimization.

f = min
f

n∑
i=1

ρ(wif
TZi) (5.31)

Where Zi = (xi , yi ,x′i , y
′
i ) describes the image correspondences. The optimal

weighting is

w =
1
5r

(5.32)

where gradient 5r = (r2
x + r2

y + r ′2x + r ′2y )
1
2 , and the partial derivatives

rx = f1x
′ + f4y

′ + f7 (5.33)

ry = f2x
′ + f5y

′ + f8 (5.34)

r ′x = f1x+ f2y + f3 (5.35)

r ′y = f4x+ f5yi + f6 (5.36)



94
5. MULTIMODAL VISUAL ODOMETRY PERCEPTION FOR HUMANOID

ROBOT

Besides, due to noise F will have full rank with non zero singular values.
In order to force F to have rank 2, let Λ+ = diag(λ1,λ2,0), and the constraint
F = VΛ+UT .

There are also other robust algorithms to estimate the fundamental ma-
trix such as RANSAC [199], LMedS [200], MLESAC (Maximum LikElihood
SAmple Consensus) [201] and MAPSAC (Maximum A Posteriori SAmple Con-
sensus) [202]. We compared MestTorr [196] with before the metioned robust
estimators and other estimators. The experimental results in Section 5.5.1
showed that MestTorr achieves a better performance with a lower computa-
tional cost.

It is said that in [203], the performance of the M-estimator will degenerate
when there is a significant amount of outliers. In order to improve robustness
of the M-estimator, we can utilize the motor encoders information to prepro-
cess and remove outliers before estimation. The initial fundamental matrix
F0 derived from encoder information is

R0 = Rm(φr )RsRm(φl)
−1 (5.37)

T0 = Rm(φr )Ts (5.38)

E0 = R0S0 (5.39)

F0 = K−Tr E0K
−1
l (5.40)

Where S0 is the screw matrix of T0, which is

S0 =


0 −T0(3) T0(2)

T0(3) 0 −T0(1)
−T0(2) T0(1) 0

.
Rm(φl) and Rm(φr ) are the left and right rotation matrix calculated by the

motor positions. And Rs and Ts are the offline calibrated rotation matrix and
the translation vector when two eyes look straight forward.

If ri = f0Zi is above a threshold, then the image pairs are considered to be
outliers. The rest are used to compute the fundamental matrix.

Figure 5.6 shows epipolar lines in which the fundamental matrix is calcu-
lated by MestMotor. And in order to clarify the results, we only took several
matched points. As we can see, even with outliers, the calculated fundamen-
tal matrix still works well. Most of the matched right correspondences are
very well located on epipolar lines.
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left image right image

Figure 5.6: Epipolar lines calculated using images

Extraction of the rotation matrix and the translation vector

The Essential matrix E has the form [t]XRwith 5 degrees of freedom. Like the
fundamental matrix, the essential matrix is a homogeneous matrix having a
scale ambiguity (Here we use [t]X to denote S).

We use SVD to decompose E and we will use two matrices W and Z

W =


0 −1 0
1 0 0
0 0 1

 (5.41)

Z =


0 1 0
−1 0 0
0 0 0

 (5.42)

Note that W is orthogonal and Z is screw-symmetric.
S maybe written as S = kUZUT where U is orthogonal. Noting that, up to

sign, Z = diag(1,1,0)W , then up to scale, S =Udiag(1,1,0)WUT , and

E = SR =Udiag(1,1,0)(WUTR) (5.43)

Equation 5.43 reveals two things: first it proves one property of an essen-
tial matrix: E3X3 is an essential matrix if and only if two of its singular values
are equal, and the third is 0. Second it points out a way to decompose an
essential matrix E into a rotation matrix R and a translation vector T since
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E has the form of E = Udiag(1,1,0)V T . If we define the first camera projec-
tive matrix as P = [I |0], there are four possible choices for the second camera
projective matrix P ′ , namely

P ′ = [UWV T |+u3] (5.44)

or
P ′ = [UWV T | −u3] (5.45)

or
P ′ = [UW TV T |+u3] (5.46)

or
P ′ = [UW TV T | −u3] (5.47)

The four solutions are illustrated in Figure 5.7.
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Figure 5.7: The four possible solutions for calibrated reconstruction from E
([204])

It is wise to pick up the solution that best describes the geometry of our
setup. One way is to compute the 3D position of the image correspondence of
the left eye Pl and the right eye P r to see if the depth Zl and Zr are positive.
However, false matching will corrupt this estimation. In a standard stereo
correspondence problem, we can make use of the fact that Xl is always bigger
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than Xr . However, for convergent vision, this does not hold. It is very difficult
to pick up the right camera projective matrix out of four plausible solutions.

In this sense, we can use the encoder positions to find the right projective
matrix by checking if the signs of the rotation matrices and translation vectors
of the estimated 4 solutions and the one computed from the encoders are the
same or not.

One way to ensure the robustness of the algorithm for the estimation of
depth is to check the rotation angles and translation calculated from images.
If it is very close comparing with the motor encoder information and at the
meantime, if the reconstruction errors using images are less, we use image
based depth calculation. Otherwise we will still use motor information to
perceive depth.

5.4 Multiple cues for depth perception

5.4.1 Depth calculation of steropsis

Stereo calibration is performed offline when two cameras look straight for-
ward. Assuming the camera pairs are calibrated [205], and the intrinsic pa-
rameters as well as extrinsic parameters are known, the 3D information about
the object can be extracted using image rectification and stereo matching.

(xl , yl) and (xr , yr ) are image correspondences in left and right images.

xl = xr − d,andyl = yr (5.48)

here d is the disparity we need to calculate the 3D position of a world point
using Equation 6.18.

Two broad classes of stereo matching algorithms are local-based algorithms
and global-based algorithms. In local window-based algorithms, the disparity
is calculated using only the intensity values within the support window. Al-
though they are computationally cheap, it treates the stereo matching prob-
lem per pixel and does not take into account the regional smoothness con-
straints on the disparities. The global approach solves an optimization prob-
lem by minimizing an energy function that combines a data fitting term and
a smoothness term.

E(d) = Edata(d) +λEsmooth(d) (5.49)

where the data term Edata(d) measures how well the assigned disparities
values minimize the global aggregated matching cost, similar to the minimal
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aggregated value in local algorithms but for all pixels. The smoothness term
Esmooth(d) enforces a disparity smoothness assumption between the neighbor
pixels.

For stereo matching we use 2 different algorithms: a traditional block-
matching (BM) algorithm [173], and a modified Semi Global Matching (SGBM)
algorithms [206].

The depth map generated provides the depth information of the whole
scene, which does not specifically concern the object. Therefore we need to
match the 3D information to the tracked object. By assigning a depth value to
each point on the object we obtain the 3D object model.

5.4.2 Depth calculation from vergence

The human visual system obeys Listing’s law, which means that the cycloro-
tation of the eyes can be predicted from the direction of a fixed point, which
is also called vergence. The first to employ the principle of foveated vision
is in [207]. Listing’s law can be expressed in terms of suitable rotation matri-
ces, which provides the foundation for the model construction of a convergent
eyes system [208].

Why converge?

For humans, convergence is competent for nearby object manipulation com-
pared to stereopsis. It can converge both eyes to focus on the object in order
to maintain the object in the center of both views.

With a conventional stereo vision system, the object does not always ap-
pear in both views because of a fixed baseline, which limits the handling of
the object within a short distance.

Foveas with vergence attend objects of interest with a higher resolution
while for peripheral vision a lower resolution using less computational power.
This non-uniform resolution property of the human visual system will lead to
more advanced humanoid vision system research.

Besides providing a flexible working range and attentive mechanism, ver-
gence has other advantages even for systems without foveas. By using ver-
gence angles to estimate the depth, it brings mathematical simplification.

When the fixation point has zero, and points nearby have small disparities,
it is possible to use stereo algorithms within only a limited range of dispari-
ties, providing fast computation capacity.

Disparity may be used to filter objects and scenes that are not currently of
interest, in this case, disparity-based segmentation is achieved [209]. There-
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fore it changes a world centered coordinate system into an object-centered
coordinate system.

Two approaches of depth calculation

For a convergent stereo system, as soon as the external calibration is obtained,
either a sparse stereo matching method or a dense stereo matching method
is deployed to obtain depth perception. After which the convergent depth
calculation method modifies the traditional stereo matching methods around
the zero disparity, leading to a dense map around the fovea.

Vergence geometry is a special case of stereo geometry in the sense that
it can provide 3D information about one particular point in the visual field
for a given camera configuration; the point at which the optic axes of the
two cameras intersect, which we will call it the fixation point. The depth
calculation for such a fixation point differs from the computed stereopsis as it
uses angles while computed stereopsis uses disparities.

It is worth noting that the baseline for the depth calculation should be
chosen with care. In a stereopsis system the baseline is the line from the left
to the right camera. In a convergent vision system there are two choices of a
baseline; one is from the left to the right motor while the other is from the
left to the right camera. The latter choice of baseline is not constant, resulting
in a more complicated computational model for the reason that the lengths
between rotation centers and optical centers are less easy to estimate.

We used a simplified model for the depth calculation of a fixation point as
shown in Figure 5.8

P

l
e

r
el

r

l
b r

b

baseline

Z

Z

Figure 5.8: Depth calculation model

Assuming that the left and right sight line from the rotation center to the
object is a straight line, i.e. eye, camera and object are aligned without rotation
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and translation, we can easily derive the following equations:

tan(θl) = Z ′

bl
(5.50)

tan(θr ) = Z ′

br
(5.51)

b = bl + br (5.52)

From (5.50), (5.51) and (5.52), we have:

Z ′ =
b

1
/
tan(θl) + 1

/
tan(θr )

(5.53)

where b = er − el is the baseline, θl and θr are the left angle of the left
eye axis and the right angle of the right eye axis, respectively. Then based on
which coordinates are used to estimate depth, we have

Z = Z ′cos(ϕ) (5.54)

and

Zl =
Z ′

sin(θl)
(5.55)

According to Figure 5.8, Z is the depth from object to the robot and is
affected by the tilt rotation angle ϕ. For now, the tilt rotation angle ϕl of the
left eye equals the tilt rotation angle ϕr of the right eye. That is, ϕ = ϕl = ϕr .

However, we generally use the distance from the object to the left eye co-
ordinates which is shown in Equation 5.55. We also used this visual odometry
definition in the experimental tests.

5.4.3 Combination of depth cues based on eye movements

The human being’s visual system is task orientated and range dependant. For
scene exploration, it uses nearly parallel stereo vision while for nearby object
manipulation, the convergence is a strong cue. For instance, reading is a vi-
sion task that requires both eyes to converge on characters. Here, we mainly
use eye movements to switch between different types of vision. Initially, the
two eyes will search for interesting objects with the position looking straight
forward from left to right (This is also offline calibrated).

mode =
{
stereopsis if φel −φer > 0.01
convergence if φel > φer

(5.56)
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where φel is left motor encoder angle and φer is the right motor encoder
angle. Looking straightforward is angle 0 and left is minus and right is plus.
When two eyes are looking straight forward, which means φel−φer > 0.01, the
stereopsis based pre-calibrated extrinsic parameters are used for estimating
depth. While the two eyes are converging to track the object, the convergence
based depth perception is working.

In [210], the sparse depth is generated on features instead of on one point,
and in [211], two narrow angle cameras are used to implement foveation and
two wide angle camera are used to generate the dense disparity map. We ar-
gue that, for real-time constraints, the depth on a fixation point is sufficiently
enough for tasks such as 3D object tracking and object grasping.

5.5 Experiments and results

5.5.1 Simulation experiments

To evaluate the different methods, a number of simulations were performed.
Series of 500 randomly generated points are spread over in front of the cam-
eras. Each point is projected to the left and right image with a resolution of
640×480. For each image pairs, noise with a standard deviation of about one
pixel is added, reflecting Gaussian noise. For testing the performance with
outliers, we add different amounts of outliers, ranging from 20% up to 50%.

Several approaches were tested for comparison. They are: 1. Seven-point,
2. Least square using eigen analysis, 3. Newton-Raphson iterative method
[212], 4. Gradient-based iterative method [204], 5. M-estimator using eigen
analysis, 6. MestTorr [196], 8. LMedS [200], 9. RANSAC [199], 10. MLESAC
[201], 11. MAPSAC [202].

Here it is worthy noting that in previous experiments [184, 48], they did
not take the transformation from camera to motor into consideration, while in
our mathematical simulation model, we took this into account. We use a total
of 100 data elements for each test and we use the median value to show the
performance results. Figure 5.9 compares the above mentioned algorithms
when the outliers are 20% and Figure 5.10 when the outliers are 50%. We
have three criteria to compare: the mean and variance of points to the epipolar
lines distances, the angle error and the computation time. Since the main
contribution of the rotation motion comes from the y-axis, the angle error is
defined as the difference of the estimated rotation around the y-axis and the
ground truth rotation around the y-axis.

It is very clear to see that in general the robust method performs better
than least square or iterative methods in coping with outliers and Gaussian
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noise. Among the robust methods, the M-estimators outperform the other
methods, especially the M-estimator by Torr. It shows 0.9403 pix for the mean
value of distance from points to epipolar lines and 0.6328 pix for the vari-
ance, 0.0024 rad for the angle error and 0.0835 s for the computation time
when there are 20% outliers. When there are up to 50% percent outliers, the
performance gets a bit worse, with 7.0821 pix the mean value of the distance
from points to epipolar lines, 7.9502 pix for the variance, 0.0667 rad for the
angle error and 0.0847 s for the computation time. The M-estimator using
eigen analysis is the one having a comparable performance, however its com-
putational cost is a bit higher. LMeds has a fairly higher computational load.
MAPSAC is claimed to have the best performance in some papers, however in
our setup, the M-estimator by Torr seems to be more robust and accurate. An-
other advantage is its low computational cost. In conclusion, the M-estimator
by Torr outperforms other fundamental matrix estimators, and it can cope
with pixel inaccurate locations as well as missed matching pairs. It is used as
a benchmark method to develop our own method for estimating the epipolar
geometry between two views.

Finally, we will run a different experimental test with all the algorithms
mentioned above plus the improved M-estimator using motor information
that we denote as “MestMotor”. We will show the test performance with 50%
outliers shown in Figure 5.11.

As we can see from the figure, MestMotor significantly improves the over-
all performance. It achieves 1.0577 pix for the mean value of the distance
from points to epipolar lines and 0.7496 pix for the variance, 0.0031 rad for
the angle error and 0.0590 s for the computation time when there are up to
50% outliers. Comparably, MestTorr has performance of 4.6413 pix for the
mean value of the distance from points to epipolar lines and 5.2656 pix for
the variance, 0.0617 rad for the angle error and 0.0918 s for the computation
time. The underlying reason for this improvement is that by using motor po-
sition information, potential outliers are kicked out from the final computa-
tion. More inliers are kept and therefore the final accuracy of the M-estimator
is improved. And it also taks less time to compute, which is very crucial for
real-time applications.

In order to prove the robustness of the improved M-estimator, we carried
out a series of experiments with motor vergence angles change. That means
that an object is moved from far away to close by and the two eyes are con-
verging during this process.
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Figure 5.9: Performance comparsion with 20% outliers
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Figure 5.10: Performance comparsion with 50% outliers
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Figure 5.11: Performance comparsion with 50% outliers including MestMotor
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Figure 5.12: Performance with different vergence angles with 40% outliers
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The results are shown in Figure 5.12. (φl ,φr ) are the left and right eye
angles. We can see that it moves from nearly parallel (0◦,0◦) when two cam-
eras are looking straight forward to near by (30◦,−30◦). MestMotor performs
in general very well especially when the vergence angle are small. However,
when the vergence angle becomes bigger, its performance is slightly worse
than MestEig and MestTorr. The reason is that when the vergence angle be-
comes bigger, the transformation between camera and motor is affected more
by the larger rotation angle. In this case, the initial guess using motor infor-
mation is less accurate. Still, the M-estimator outperforms the other robust
methods. With a baseline 14.8 cm and with ((30◦,−30◦)) vergence, the object
is approximately 25.63 cm in front. When the object is too close to the view,
the large view points will cause matching problem while in the mean time,
the focus will get blurred. We will not consider the situation when objects are
too close. Therefore, we still opt for MestMotor to estimate the fundamental
matrix together with motor information.

Real system setup

We use our head-eye system with the eye and neck moving together when
tracking an object. With regard to the visual odometry performance estima-
tion, we placed a marker in the scene as an interesting object to be tracked
with its 3D position already known. This is used as a ground truth of depth
to compare with the algorithm we used. Another advantage of using a marker
for testing is that the fixation point in the left image and right image is very
well defined. We tested in different scenes with more than 2643 frames in
6 different scenes. We moved the marker randomly with changing in x-axis,
y-axis and z-axis. We also moved the object towards the robot head and move
it away from it.

We showed the experimental results in one of the 6 scenes, which is in Fig-
ures 5.13, 5.14, 5.15, and 5.16, with performance with regard to estimation in
x-y-z axes and reprojection error, respectively. The estimation error is defined
as

Xe = X̄i −Xi Ye = Ȳi −Yi Ze = Z̄i −Zi (5.57)

and the reprojection error is defined as

d(xi , x̂i)
2 + d(x′i , x̂

′
i)

2 (5.58)

Where x̄ represents the ground truth data, x being the estimated data and
x̂ are the projected image data points. As noticed from the figures, there are
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some abrupt estimation errors and the cause of these errors may come from
multiple sources: the error in the trackers, the noise that comes from the im-
ages induced by motion blur, false matches, the lack of rich image features,
encoder position errors, etc. Figure 5.17 shows frame 617 where there is a
tracker error which causes inaccurate depth estimation. However, after anal-
ysis, we still found out that the 80% of error in the x-axis is below 0.2872
cm and for 90% this is below 0.6136; 80% of the error in the y-axis is below
0.2739 cm and for 90% this is below 0.5275; 80% of the error in the z-axis
is below 3.4535 cm and for 90% this is below 5.4436 ; 80% of the reprojec-
tion error is below 0.9327 cm and for 90% this is below 1.5906; As stated in
[48], in many applications the depths are in fact approximately known and
the question is whether this knowledge can be used to simplify the problem.
In our case, the accuracy of the depth calculated should be sufficient enough
for many real world applications such as autonomous navigation, obstacles
avoidance, object grasping, etc. We argue that with accuracy in x-y axes less
than 1 cm and if we e.g. add proximity sensors on the gripper, it is enough for
object manipulation tasks and it could also perform well in navigation and ex-
ploration in 3D space. Table 5.1 and Table 5.2 show average estimation error,
and reprojection error and the median estimation error and reprojection error
in 6 scenes. It further proves that the algorithm is able to work in practice.
Here it is worth noting that median estimation error is lower than the average
estimation error in general. This is due to the inrobustness in some estima-
tions which is caused by an abrupt estimation error. This can be reduced by
using a filter. For instance, when the depth calculated changs abruptly, it will
be discarded.
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Figure 5.13: Estimation error in x-axis
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Figure 5.14: Estimation error in y-axis
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Figure 5.15: Estimation error in z-axis
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Figure 5.16: Reprojection error
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left image right image

Figure 5.17: The effect of tracker performance on depth perception

Table 5.1: Average estimation error and reprojection error

scene 1 2 3 4 5 6
average x-axis error 0.8025 0.8401 0.3140 0.4252 0.5643 0.8142
average y-axis error 0.3066 0.2353 0.2138 0.2418 0.2006 0.5808
average z-axis error 4.3401 4.5882 3.0856 4.5453 5.0387 4.6247
average reprojection error 22.5189 31.0368 5.8402 35.4874 4.4402 6.5329

Table 5.2: Median estimation error and reprojection error

scene 1 2 3 4 5 6
median x-axis error 0.3511 0.2077 0.7010 0.1655 0.2595 0.2714
median y-axis error 0.1369 0.1116 0.0676 0.1353 0.1086 0.4051
median z-axis error 2.3210 1.7787 2.0393 1.9903 2.5240 2.3584
median reprojection error 0.5929 1.0010 0.3741 0.4461 1.0557 0.5365

Figure 5.18 gives several results when stereo matching is performed at
various vergence angles. The left group of figures displays the original im-
ages and rectified images, and the right group of figures shows the disparity
map. The disparity maps reflect the overall depth distribution in the scenes.
Even with moving objects inside the scenes, the stereo matching method still
works well. One advantage of our stereo vision is that moving objects in
dynamic scenes will not affect the pose estimation between corresponding
images. However, in a classic SLAM system with one camera, this is a big
problem. We can also see that at frame 144, where the left angle moves at
-9.5684 degree and right angle moves at 1.4897 degree, the disparity map
stills gives good depth perception results. It also holds at frame 166 with a
left angle 2.2345 degree and a right angle 6.7609 degree and frame 227 with
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left angle at -12.6624 and right angle at -2.5210. When the vergence angle
increases, which is shown in frame 333 in figure 5.19, the fundamental ma-
trix still works and the rectified images shows that the correspondences are
located at the scan line in the right images. However, the disparity map does
not give a good result and the reason is very clearly illustrated in the figure.
With big vergence angles, the overlap of close by objects increases and the
overlap of far away objects decreases. However, the big vergence angles also
bring a problem for stereo matching, since correspondences suffer from severe
viewpoint changing and projective distortion. We can see how the hands in
the two images are different from each other. This will cause the failure of the
stereo matching methods and advanced stereo matching methods targeted to
this situation should be developed.
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(a) rectified image at frame1 (b) disparity map at frame 1

(c) rectified image at frame 20 (d) disparity map at frame 20

(e) rectified image at frame 75 (f) disparity map at frame 75

Figure 5.18: Stereo matching results
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(g) rectified image at 144 (h) diaparity map at frame 144

(i) rectified image at frame 166 (j) diaprity map at frame 166

(k) rectified image at frame 227 (l) disparity map at frame 227

Figure 5.18: Stereo matching results
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(a) rectified image at frame 333 (b) disparity map at frame 333

Figure 5.19: The effect of large vergence angles on stereo matching results

The stereo matching and point clouds generated are shown in Figure 5.20.
Compare with inter-frame matching, one advantage of stereo matching is that
it can cope with dynamic scenes. As one can see, with a person moving from
left to right in the background it can still reconstruct the 3D scene without
any problem. Dense stereo matching costs much more computation time than
depth perception of a fixation point and feature based sparse matching. De-
pendent on different situations, different depth perception methods can be
chosen. For object grasping as well as obstacles avoidance, fixation based
depth estimation should be enough. Sparse feature based stereo matching
can be used for 3D perception of the environment or even 3D object model-
ing. Dense stereo matching works better in case of low feature presence or the
case that high 3D detail is needed. With the increase of computation power
or using a GPU, the computation time can be reduced.
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Figure 5.20: The stereo matching and point cloud generated
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5.6 Conclusion and discussion

The experimental results proves the effectiveness of the multimodal depth
perception concept, which is inspired by the human visual system. To realize
such a system for a robot head, we first have built up a mathematical model,
investigated several robust methods and then proposed our online calibration
method, which takes advantage of known motor information. We also pro-
posed to use various cues such as stereopsis, and convergence to calculate the
depth. Then a multimodal depth selection mechanism based on eye move-
ments was devised to ensure the robot to perceive the 3D depth in personal
space as well as in action space. According to our knowledge, stereopsis is
used to provide general 3D spatial relations for humans. In this case, the ab-
solute depth value is not known precisely. In the case of personal space with
an arm distance from hand to eye, humans use jointly vision information and
action feedback to gain precise 3D information of the objects that being op-
erated. Convergence can be used in this case to either assign 3D information
to a fixation point or generate a high resolution 3D map around foveas. As a
conclusion, in the future, the action should combined with vision to explore
unknown environments.

Our objective is to push forward the understanding of the human visual
system by carrying on research in the domain of humanoid robots, with mul-
timodal depth perception for humanoid robots as an initial step. There are
various ways of depth perception besides stereopsis and convergence, and we
aim to proceed in this topic.

Besides, when converging, a more advanced stereo matching method that
takes advantage of zero disparity should be developed. Meanwhile, it can
cope with large view point change across stereo views. From this point of
view, foveation should also be developed to generate a high-resolution depth
map in the center of view.





6Conclusion

6.1 Research goal

As already stated, most research in machine perception is involved in the
analysis of passively sampled data (images). Human perception, however, is
not passive. It is active [1]. Gradually, active vision research area gains more
and more popularity. There are about 2000 research papers published during
1986 − 2010 that are closely related to the topic of active vision perception
in robotics [7]. Among these, the study on humanoid vision systems is one
of the branches that is inspired by the human visual system, which covers a
wide range of research fields such as visual attention, control of eye move-
ments, action and perception, 3D perception, SLAM, etc. Based on its active
nature, researchers have to deal with several degrees of freedom, dynamic
scenes, as well as ego-motion, making it a very challenging research field.

In this thesis, we design and build a robotic active vision system that can
perceive unknown environments in a similar way as humans. We have to
meet some requirements. First of all, our active vision system should have eye
movements as well as neck movements. Secondly, two cameras are used as the
main source to acquire visual information, while no other advanced sensors
are employed. Thirdly, the proposed vision system is able to deal with tasks
such as saliency detection, object detection and tracking, and 3D perception
to prove that it can be used to carry out more complex tasks, such as object
recognition and grasping. Fourthly, a real-time constraint is added to make
the system to operate in real world constraints. Fifthly, most of the robotic
systems are fairly expensive. We would like to have an affordable solution.
With a low cost off-the-shelf product, robust algorithms should be applied to
deal with hardware inaccuracy and instability. The eventual goal is to have
a complete working setup that is able to mimic the eye movements of hu-
mans, and still have the robust functionalities of most mobile robot systems.
Moreover, it can provide insight into human vision systems and a platform
for other researchers to work on more advanced features for humanoid robot
active vision systems.
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6.2 Summary and applications

The mechanical part of the system is composed of 4 motors and has 4 degrees
of freedom: the robot head can move separately on its pan and tilt axes and
the left eye and right eye can move separately on their pan axes.

6.2.1 Hardware

The system underwent 3 major different mechanical developments. At the
beginning, the 4 motors used Dynamixls, which are easy to be incorporated
due to their daisy chain property, however, the resolution of the encoders is
low and the movements have a lot of friction. In order to have higher resolu-
tion and reduce the friction, the eye motors were changed to two Maxon DC
motors RE-16 which are controlled by home made controller boards (3Mxl)
and jointly referred to as “3Mxl RE-16”. Then the neck motors were also
changed to two Maxon DC motors Amax-22, in combination with actuator
Maxon MR-M, which are controlled by a home made controller board (3Mxl),
jointly referred to as “3Mxl Amax-22”. A Xsens MTi IMU was attached later to
achieve VOR eye movements. Extra springs were added to both eyes to reduce
backlash. This improved the precision when reading positions from encoders.
After all these adaptions, a more precise 3D depth perception was attained.
Besides, the maximum speed of the motors is higher, which means they can
control all the movements faster to locate the cameras to specific positions.
Besides, the neck tilt axis center and neck pan axis center are different in our
design. In the future, it could be designed to be at the same location, making
the calculation easier. The difficulty in kinematic calibration of such a system
comes from the fact that optical center and rotation center are not aligned. If
there is a way to make them aligned, the calibration will be straightforward.
In our design, we prefer an affordable solution. The total cost of our system
is fairly low, which makes it interesting for many applications. Further im-
plement can be expected from cheaper and better electronics and mechanical
design.

6.2.2 Control

Based on our mechanical design, the controllers are built. There are two main
control components: a lower control component and a higher control compo-
nent. The lower controller controls the 3Mxls and the higher one is to send po-
sition and velocity information to a lower controller to jointly accomplish all
the eye and neck movements based on images input. The controllers achieve
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different types of eye movements such as saccade eye movements, pursuit
eye movements, vestibulo-ocular reflex (VOR) movements, as well as vergent
eye movements. Saccade eye movements are controlled by an open-loop con-
troller mainly using focal length and image information at a high speed. Pur-
suit eye movements are controlled by a closed-loop controller using off-center
pixel displacement error at a low speed. During the tracking process, both
eyes are moving to make target in the centers of both images and the neck is
moving towards the target to ensure the same vergence angles for both eyes.
Meanwhile, the eyes counter rotate with respect to the head movement to
achieve vestibular-occular eye movements. These eye movements all work as
a whole for a humanoid robot to imitate vision-based exploration. This is
proved by our experiments.

We mainly use PID controller, however, we also tried to implement Kalman
filters (KF). The KF helps to smooth the noise and to improve the accuracy.
However, it causes time delay compared to the ones without filtering. For the
KF with the driving function, it improves its prediction ability and decreases
the time delay. Still, it does not improve the performance much while it adds
computational load. In this case, the gain should be adjusted to be smaller in
order to prevent overshoot. Since speed is one of our main concerns and the
image noise is minor, we eventually did not adopt KF in our system.

With respect to saccade eye movements, it is achieved by using focal length
and image information. However, since the optical center and rotation center
are not aligned and the focal length has estimation error, the attention is not
perfectly shift to the centers of the images during saccade eye movements.
Newborns train the muscle to control the saccade eye movements, therefore
obtain better attention performance. In a similar way, machine learning could
be used here to train the saccade eye movements for humanoid robots.

There are also other eye movements, for instance Optokinetic reflex eye
movements, which are not yet implemented in our system. It is a reflex when
an object moves out of the field, the eye shifts back to the position when it first
saw the object. This can also be implemented in the future, once the system is
mounted on a mobile robot platform.

6.2.3 Visual primitives representation

Next, we proposed a novel adaptive tracking selection mechanism which au-
tomatically selects the tracking methods dependent on visual properties of
objects. The reason why we are interested in this selection mechanism is based
on our observations and experiments with many state of the art trackers. We
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found that the trackers which use corner features, local binary features are
good at tracking objects with lots of features. However, they perform not so
well on more uniform objects. On the other hand, color based trackers work
better on uniform objects and fail to perform well on textured objects. Is
there a way to combine two advantages and avoid the weakness and develop a
more robust tracker? If there is a way, how to choose in which case which one
should be used? Based on these questions, we developed a mechanism that
can automatically select the optimal tracking method. In order to do this,
we first deployed a GrabCut based algorithm to segment the object and elim-
inated the effect of background and contour on object property estimation.
Then we measured the amount of textureness within the object. Dependent
on the measurement result, either textured object tracking or uniform object
tracking method was used.

We tested our optimal feature selection mechanism and the test results
proved the effectiveness of our method. From this research, we can conclude
that a general purpose system should be able to select an optimal set of fea-
tures for a given object and then adjust tracking methods accordingly. In our
system we mainly used texture and color as cues, however, more cues for ob-
ject property measurement should be added to improve the automatic feature
selection method. If computation load allows, the online feature selection can
be applied to achieve more robust performance in case of changing of appear-
ance. How these cues are combined should be thoroughly studied as well.

6.2.4 Object tracking and segmentation

We developed in total three trackers. One is a marker-based tracker to test the
control and 3D perception performance. Because the marker-based tracker
encodes 2D image information together with 3D position information, it is a
also optimal measurement tool for testing purpose. The other one is a color-
based tracker mainly for demonstration purpose since it runs at real-time.
The other one is our proposed tracker which is based on object properties. We
tested the proposed tracker and it showed to have better performance than
most state-of-the-art algorithms, since it adopts different trackers for different
objects, depending on their properties.

Meanwhile, we proposed a novel tracker for uniformed objects. Compared
with standard color-based tracker e.g., Camshift, it improves using a smooth-
ness constraint, where the inter connections between pixels from the object
are refined while the exterior connections between object pixels and back-
ground pixels are weakened.
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Afterwards, online segmentation is applied to obtain more detailed infor-
mation rather than just the location of the tracked object. GMMs are used
to create the object and the background models. Then, graph cuts is used to
obtain the segmentated object. This segmentated object can then be used for
object recognition, object grasping, etc.

We tested on our proposed tracker and it achieved very promising results.
However, its online computation cost still need to be improved to further re-
alize real-time process speed. Based on this, we are able to integrate the whole
system together.

Besides, the uniform tracker has already improved compared with existing
color-based tracker. However, this tracker is still sensitive to varying condi-
tions, e.g., illumination change. Further research is needed to provide a more
robust object description.

When two eyes are converging, zero-disparity can be used to segment the
salient object. This can combined with our segmentation method to achieve a
better segmentation performance and also lead to less computation cost.

One last topic that needs to be investigated further is how tracking and
segmentation works in case of fovation. The resolution is not uniform every-
where. It can greatly save computation cost and make human vision focus on
dominant objects and information. However, in this case, how we are going
to take this advantage and make tracking and segmentation more robust and
less computation load.

6.2.5 Multimodal Visual Odometry Perception

Since in our set-up, the extrinsic parameters including rotation matrix and
translation vector from left eye rotation center and right eye rotation cen-
ter remain unknown, therefore before we attain 3D perception, calibration
should be carried out. The main problem is the rotation center is not the op-
tical center. In order to obtain 3D perception, we proposed an online calibra-
tion method which takes advantage of known encoder information to speed
up and improve the precision of the calibration process.

The depth perception of humans utilizes multiple cues. In this thesis,
we mainly focus on stereo-based depth perception which are mostly stere-
opsis and convergence based depth perception. For stereopsis, we adopt the
standard methods. For convergence, we have implemented two types visual
odometry perception methods. One works on the focus point only by bring-
ing the attention onto principal point of each camera; while the other one
will consider an area rather than a single point. The first one provides ac-
curate short range depth estimation for object manipulation tasks, while the
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latter is more suited for building up 3D maps of objects from a close distance
for further exploration including learning, recognition, etc. Besides, the one
that works on the focus point also simplifies the calculation mathematics and
works in a very efficient way.

Finally we presented a multi-mode depth perception method using multi-
ple cues to gain 3D spatial information. The stereopsis and convergence based
3D perception are combined using eye movements. When eyes are converg-
ing, the convergence based 3D perception takes effect and in other cases the
stereopsis based 3D perception functions. The experimental results proves
the effectiveness of the multimodal depth perception concept, which is in-
spired by the human visual system.

The better resolution of the encoders, the better calibration results. The
way we rely more on motor encoders information rather than image infor-
mation is because image information can be more precise sometimes, but is
not robust enough. In featureless and blur scenarios which often occurred in
indoor environments with moving eyes, the image based calibration perfor-
mance is fairly degenerated. If precise kinematics model is already known,
then calibration is a straightforward problem.

There are various cues to calculate depth (Chapter 5). Here we only ex-
plore two kinds of cues, and there are still lots of other cues left for us to
explore. Other monocular cues should be combined such as motion paral-
lax, accommodation, lighting and shading, perspective, etc. One of the most
difficult part is how to combine all these cues, especially when there exist
redundant even conflict and inconsistent information from all these various
cues. How human system make use of all these cues and get a fairly good 3D
perception performance? In human visual systems, high level knowledge of
the scene contributes to solving the conflicts. More research about this is still
needed.

Depth information is for a robot to know its relative distance with respect
to its 3D environment and objects inside. Structure from motion is for robot
to locate itself in the world and build up maps and memory. Stereo vision can
be used to generate a scene flow map, which can be used to solve traditional
structure from motion problems working in dynamic scenes.

Zero disparity around the fovea can be employed for object segmentation
in action space, which can be further used in object manipulation. Besides,
human visual systems are vision systems based on learning activities, which
means that we keep our focus on a salient object near fovea. We can use dis-
parity to segment the salient object and we can also use it to estimate the 3D
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information. In our set-up, we do not have fovea, which should be researched
in the future.

Moreover, there are also different types of depth: absolute depth, relative
depth and so on. Relative depth plays an important role in our spatial percep-
tion. In a 3D space, we use relative depth to know where are things organized
in 3D space and where do we locate in this space. With respect to a close
distance, we know the relative distance between our arms and objects. Based
on this, we are able to manipulate close-by objects. For humans, the precise
absolute visual odometry information is not always necessary. In the contrary,
a more relative depth information is more needed. The same holds true for
humanoid robot. How precise do we need to make a robot that is able to nav-
igate in a 3D space and learn from it? Using them to improve the capability
of robots still needs to be done.

6.2.6 Applications

We have built up a humanoid robot head. It can be installed on a mobile robot
platform. It has various usages.

For instance, it can be used on a service robot. The robot can take the order
from a user to get a bottle of beer. It has the ability to store the object represen-
tations in memory which contains both 2D and 3D descriptions. As soon as
the robot enters a room, the active vision system is used to search around and
try to find the matched one. Once the robot finds the bottle, it is able to track
and approach the object from a far distance to a close distance. Meanwhile,
the robot will converge both eyes to obtain a more precise distance estimation
until grasp the bottle and a refined 3D shape information to compare with
the 3D shape model in memory. Then, the robot will hand over the bottle to
its user. The robot vision system can also help the robot to explore and learn
unknown environments. It can enter an unknown environment and attend all
salient objects inside it. If there exists something new, the robot can navigate
around this unknown object, track and learn it from different perspectives,
and eventually store the object model in memory.

Our robot head can be used to implement more advanced bio-inspired hu-
man visual features. Fovea can be added to attend salient areas and objects.
More different eye movements can be added and various cues of depth per-
ception can be tested. We are able to propose a cognitive model based on
observations on human vision systems, however, we are not able to test the
proposed model since our vision systems are blind systems with past experi-
ences which are different for different persons. Therefore, advanced cognitive
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reasoning can also be tested and implemented on top of our system. Thus,
the knowledge about humans will push forward the knowledge on humanoid
robots and the knowledge gained from humanoid robots will also push for-
ward the knowledge about ourselves.

It can be used in machine vision applications as well. For instance, for a
robot to pick up tomatoes in a green house. Active vision is to look all around
for a potential tomato. The 3D information and obtained segmentation re-
sults of the tomato can be combined together for the robot arm to take and
grasp the tomato and put it into the container. Since our vision set-up uses
affordable devices and works in real-time constraints, it is very suitable for
mass productions.

During our research, we also have a close collaboration with Augmented
Reality (AR) group. Our robot head can also be applied to AR. The main
goal of AR is to add virtual figures to human vision field. However, most
AR nowadays focuses on tracking and mapping as well as visualization while
ignoring the nature of our eyes. To enhance the real experiences, we need to
take into consideration that our eyes are not just two stand-still cameras, they
are moving and converging. If we adopt moving cameras instead static ones,
we could make the AR experiences more real, especially when looking at an
object from a nearby position.

Another application field for our robot head is security surveillance. It can
actively instead passively search suspicious activities, shift the attention to
suspicious invaders. Then, the robot vision system zoom in to get higher reso-
lution images and detailed information to determine the next action whether
it should alarm or not. The advantage of active vision here is that it can cover a
wide range while still focus on the most important details. Therefore, a better
security surveillance performance is attained.

Our robot head can also just be a simple way to express emotions. It can
move the eyes, follow the face of a person in front of it, making the expression
more vivid.

There are various application areas that our robot head can be applied. We
believe this research should be carried on and the system should be improved.

6.3 Future research

Owing to limited research time, we could not research every aspect of active
vision for such a humanoid robot. From a horizontal level, applications such
as object modeling, object recognition can be implemented. From vertical
level, there is even higher cognitive vision computation possible. With the
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advent of more knowledge on the human visual system, more blocks can be
added to the humanoid robot vision scheme.

Furthermore, the computational load is still too high. GPU or hardware
based speed-up approaches can be used to improve the real-time performance.

There are other research areas which are interesting and need to be inves-
tigated such as:

1. Attentive vision vs explorative vision: with advanced saliency detection
algorithms, a robot is able to attend its view towards an object or region
of interest. By shifting its attention from one place to another place, a
robot has the ability to build up an attention map, for the exploration of
the unknown environment.

2. Top-down and bottom-up information are combined together to develop
cognitive perception of a humanoid robot. It is known that humans use
previous information while exploring the unknown environments. Dif-
ferent subjects have different saliency maps even in front of the same
scene.

3. Learning is a process of long term memory. How to gain a long term
memory and how to post-process such huge information and extract ab-
stract knowledge still remains an unknown challenging field.

4. Action and perception are strongly winded up with each other. Infants
show their ability to perceive the world by touching and interacting with
objects and surroundings. During this process, perception provides in-
put to effectively build up this connection.

5. Compensatory eye and neck movements reflexes are there to keep vi-
sion stability. We only researched VOR and there are still other reflexes
needed to be taken into consideration such as the optokinetic response
(OKR).

6. Object recognition is a very strong abstract tool for a robot to learn the
world and build up its own vocabulary. It provides top down infor-
mation and also input for more complicated tasks such as “bring me a
bottle of beer”.

7. Social emotion that is reflected by facial expression through active vi-
sion is a way to connect humans and robots. Making a humanoid robot
means it can be more easily incorporated into the human world.
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Appendix

Key to fully understand our active vision system is apprehension of the math-
ematics used in this thesis. It provides the foundation of all vision algorithm
implementations. The appendices are dedicated to the introduction of the
mathematical notations as well as the detailed mathematical models. They
also gives a number of hands-on tips on useful mathematical tools.

It is worth noting that all the mathematical notations follow the definitions
and representations of Lie Groups [213].

O f

Image plane

X
X

Z

Figure 1: Pinhole model

Geometric model of image formation

Image formation

The image formation process can be regarded as a projective transformation
from a 3-dimensional to a 2-dimensional projective space. This section will
illustrate how this process works.

The simplest approximation of a thin lens camera is a pinhole camera
model, which is shown in Figure 1. The pinhole aperture of the camera,
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through which all projection lines must pass, is assumed to be infinitively
small, a point. The image point (x,y) and 3D world point (X,Y ,Z) are related
through the ideal perspective projection

x = f
X
Z
,y = f

Y
Z

(6.1)

Here f is the focal length, the distance from optical center to the principal
point. Depending on the image plane position that is in front of the optical
center or behind the optical center, f is either positive or negative.

In homogenous coordinates, this relationship can be written as

Zx̃ = Z


x
y
1

 =


f 0 0 0
0 f 0 0
0 0 1 0



X
Y
Z
1

 = Kf X̃ (6.2)

Since Z is usually unknown, we may write it as an arbitrary positive scalar
λ ∈R+.

In practice, when capturing images with a digital camera, there exists a
relationship between the image coordinate frame and the camera coordinate
frame, which is

λ


x
y
1

 =


sx sθ x0
0 sy y0

0 0 1



f 0 0
0 f 0
0 0 1



1 0 0 0
0 1 0 0
0 0 1 0



XC
YC
ZC
1

 (6.3)

In which x0 and y0 are the x, y coordinates of the principal point in pix-
els. f sx is the unit length in horizontal pixels and f sy is the unit length in
vertical pixels. f sθ is the skew of the pixel, often close to 0. These are also
called intrinsic parameters, which describe the optical and internal geometry
of the camera and define the relationship between camera coordinate frame
and image coordinate frame.

The relationship of the 3D world coordinate and the camera coordinate
follows the rigid transformation

XC
YC
ZC
1

 =
(
R T
0 1

)
XW
YW
ZW
1

 (6.4)
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in which rotation matrix R and translation vector T are called extrinsic
parameters that define the relationship between the camera coordinate frame
and the world coordinate frame.

Combining Equation 6.3 and Equation 6.4, we derive the geometric model
of image formation as follows

λ


x
y
1

 =


sx sθ x0
0 sy y0

0 0 1



f 0 0
0 f 0
0 0 1



1 0 0 0
0 1 0 0
0 0 1 0
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(
R T
0 1

)
XW
YW
ZW
1

 (6.5)

λ
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x
y
1

 = K[I |0]
(
R T
0 1

)
XW
YW
ZW
1

 (6.6)

written in another way as

λx̃ = PX̃ (6.7)

Here P is called the projection matrix. Projective geometry is a funda-
mental mathematical model to transform a 3D space to a 2D projective space.
Thus the effect of the camera is characterized by two stages: the transforma-
tion of the 3D world coordinates to the Z = 1 camera plane (the normalized
coordinates) and the transformation of the normalized camera coordinates to
the image coordinates.

Radial distortion

The perspective projection preserves the property that the straightness of a
line is an invariant. However, in practice, the real cameras suffer from non-
linear distortions. The most important distortion is radial distortion. Radial
distortion is performed along the radial direction from the center of distor-
tion, causing an inward or outward displacement of a given image point from
its ideal location. The negative radial displacement of the image points is
referred to as the barrel distortion, while the positive radial displacement is
referred to as the pincushion distortion [214]. The simplest effective model
for such a distortion is:

x = xd(1 + a1r
2 + a2r

4 + a3r
6) (6.8)
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y = yd(1 + a1r
2 + a2r

4 + a3r
6) (6.9)

where (xd , yd) are coordinates of the distorted points, r2 = x2
d + y2

d and a1,
a2, a3 are camera parameters that model the amount of distortion.

Tangential distortion [215], resulting from the lens not being exactly par-
allel to the image plane, is another source of distortion. The tangential distor-
tion is characterized by two additional parameters, p1 and p2

x = xd(1 + a1r
2 + a2r

4 + a3r
6) + 2p1xdyd + p2(r2 + 2x2

d) (6.10)

y = yd(1 + a1r
2 + a2r

4 + a3r
6) + 2p1xdyd + p2(r2 + 2y2

d ) (6.11)

Camera calibration

Calibration establishes the relationship between a 3D scene point and its pro-
jected 2D image points, which is very essential when metric information is
required. It can be classified into 3 groups with regard to different calibration
methods used to estimate the parameters of a camera model.

• Linear techniques

These techniques use the least squares method to obtain a transforma-
tion matrix which relates 3D points with their 2D projections. The ad-
vantage here is the simplicity of the model which consists of a simple
and rapid calibration. The drawback is that linear techniques are use-
less for lens distortion modelling, entailing a rough accuracy of the sys-
tem. Moreover, it is sometimes difficult to extract the parameters from
the matrix due to the implicit calibration used.

• Non-linear optimization techniques

By non-linear optimization techniques, camera parameters are usually
obtained through iteration with the constraint of minimizing a deter-
mined function. The minimizing function is usually the distance be-
tween the imaged points and the modelled projections obtained by it-
erating. The advantage of these iterating techniques is that almost any
model can be calibrated and the accuracy usually increases by increas-
ing the number of iterations up to convergence. However, these tech-
niques require a good initial guess in order to guarantee convergence.
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• Two-step techniques

These techniques combine a linear optimization to compute some of the
parameters and, as a second step, the rest of the parameters are com-
puted iteratively. These techniques permit a rapid calibration consid-
erably reducing the number of iterations. Moreover, the convergence is
nearly guaranteed due to the good linear initial guess obtained in the
first step.

A widely used method was proposed by Tsai [216], which is based on a
two-step technique modelling only radial lens distortion.

[217] and [218] gave a thorough survey of camera calibration methods and
evaluated the performance. A good toolbox for calibration is the “Camera Cal-
ibration Toolbox for MATLAB”, and the document can be also used as tutorial
and reference on this topic.

Two view geometry

So far, we have described the image formation geometry with regard to a sin-
gle non-moving camera. Given a sequence of images with corresponding fea-
ture points xij , taken by several cameras, i.e.

λijxij = PiXj , i = 1,2, . . .m, j = 1,2, . . .n (6.12)

The camera matrices Pi determine the motion and the 3D points Xj the
structure, under different assumptions on the intrinsic and extrinsic param-
eters. This is called the structure and motion problem. However, with only
one camera, without knowing the actual size of the object, it is very difficult
to deduce the true geometry of the scene. Therefore, a second camera is nec-
essary.

Epipolar geometry

In our setup, we use two moving cameras. In this case, two view geometry
needs to be studied. The most important property of two view geometry is
the epipolar geometry, as shown in Figure 2.

As shown in the figure, the epipolar plane π intersects the image planes at
epipolar line l1 and l2, while l1 and l2 intersect the image planes at epipolar
poles e1 and e2. This shows that two projective lines can uniquely define the
3D position of a 3D point. In another way of saying, as soon as we have cor-
responding points x1 and x2 in left and right image, we can reconstruct a 3D
point.
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e1 e2

l1 l2

o1 o2

P

x2

(R,T)

πx1

Figure 2: Epipolar geometry

Assuming that the cameras are calibrated, we denote the matrices that
encompass the intrinsic parameters as K1 and K2. Therefore we have

x̃T2 Fx̃1 = 0 (6.13)

x̃T2 K
−T
2 EK−1

1 x̃1 = 0 (6.14)

in which x̃1 and x̃2 are the homogeneous coordinates of x1 and x2. The
3 × 3 matrix F is called the fundamental matrix, describing the relationship
between corresponding images of the same scene that constraints where the
projection of points from the scene can occur in both images. The 3×3 matrix
E is called the essential matrix, which describes this correspondence in terms
of normalized camera coordinates. It is worth noting that the epipolar geom-
etry can be reconstructed without information on the intrinsic and extrinsic
parameters.

In the last few years, several methods to estimate the fundamental matrix
have been proposed, which can be classified into linear, iterative and robust
methods [203]. All these methods are based on solving a homogeneous system
of equations which can be deduced from Equation 6.13 and rewritten in the
following way

Af = 0 (6.15)

where



Active Vision for Humanoid Robots 157

A =


u′1u1 u′1v1 u′1 v′1u1 v′1v1 v′1 u1 v1 1
...

...
...

...
...

...
...

...
...

u′nun u′nvn u′n v′nun v′nvn v′n un vn 1


f =

(
F11 F12 F13 F21 F22 F23 F31 F32 F33

)
x = (u,v) and x′ = (u′ ,v′) are corresponding points coordinates in left and

right image. Eight corresponding points are sufficient to solve Equation 6.15.
Linear methods are quite good if the points are well located in the im-

ages; iterative methods can cope with some Gaussian noise in the localization
of points, but they become really inefficient in the presence of outliers; ro-
bust methods use M-estimators [204], Least-Median-Squares (LMedS)[200],
Random Sampling Consensus (RANSAC)[196], Maximum Likelihood Sam-
ple Consensus (MLESAC)[201] and Maximum a Posteriori Sample Consensus
(MAPSAC) [202] in the presence of outliers and bad point localization. As a
result it is able to cope with both discrepancy in the localization of points and
false matching.

3D reconstruction

Triangulation

The problem of determining a point’s 3D position from a set of corresponding
image locations and known camera positions is known as triangulation. In
some respect, this problem is also called the 3D reconstruction problem.

We can solve this problem by making use of Equation 6.7. We have

xj =
Pj00X + Pj01Y + Pj02Z + Pj03W

Pj20X + Pj21Y + Pj22Z + Pj23W
(6.16)

yj =
Pj10X + Pj11Y + Pj12Z + Pj13W

Pj20X + Pj21Y + Pj22Z + Pj23W
(6.17)

where xj and yj are a measured 2D point or feature location and
(
P00 P01 · · · P33

)
are known entries of related projective matrices.

With two corresponding feature points we can obtain 4 equations and in
total we need to estimate 4 unknown parameters (X,Y ,Z,W ). More generally,
this set of non-linear equations can be converted into a linear least squares
problem by multiplying both sides of the denominator. The equation is best
solved using singular value decomposition (SVD, looking for the smallest sin-
gular vector or eigenvector).
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Stereo matching

Triangulation is the general form for solving 3D reconstruction. For stereo
vision, the problem of finding correspondences is very important for the tri-
angulation method to know which point in the left image corresponds to the
one in the right image.

For a fixed stereo setup, the epipolar geometry can be obtained by camera
calibration and stereo calibration. Both tools can be found in the MATLAB
calibration toolbox. Alternatively, OpenCV provides functions that can also
perform this task in a more automatic way.

As soon as the epipolar geometry is known, a more efficient algorithm can
be obtained by first rectifying (i.e, warping) the input images so that corre-
sponding horizontal scan lines are epipolar lines, which we call image recti-
fication [205]. In this case, calculating the depth and 3D position can also be
easier, which is shown in Figure 3.

Figure 3: Stereo depth calculation with rectified images

And the function to calculate the depth is

Z = f
b

xl − xr
(6.18)

Here we call xl−xr the stereo disparity and there are many methods to find
the correspondences. We categorize them into sparse matching methods and
dense matching methods. [173] gives a thorough review on dense matching
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methods and provides a benchmark for testing state-of-art dense matching
algorithms.

It is worth noting that, for unknown geometry, image rectification does not
work. In this case, feature based image matching is often applied to get good
matching results. For subsequent frame matching, optical flow is often used.

Least squares minimization methods

Least squares minimization methods play an important role in solving many
computer vision problems. For example, linear least squares methods are
frequently used in homography estimation, fundamental matrix calculation,
triangulation, camera calibration as well as image registration. Non-linear
least squares methods are widely used in pose estimation, camera calibration,
bundle adjustment, etc.

The general minimization problem is to minimize the cost function g(p)
over all the values of an unknown parameter p, which equals to find p∗ to
ensure a global minimization for g(p)

argmin
p∗
g(p) (6.19)

In the least squares minimization, the cost function is defined as the squared
distance objective function

g(p) =
1
2

∑
i

(εi(p))2 (6.20)

and in matrix form as

g(p) =
1
2
‖ε(p)‖2 =

1
2
ε(p)T ε(p) (6.21)

Commonly, εi(p) is defined as the residual difference between the mea-
surement vector b and the prediction f (a,p), εi(p) = f (ai ,p) − bi and the cost
function becomes

g(p) =
1
2

∑
i

(f (ai ,p)− bi)2 (6.22)

If f (ai ,p) is linear with respect to unknown parameter p, then the problem
is a linear least squares minimization problem, otherwise it is a non-linear
least squares minimization problem. Written into matrix form as
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g(p) =
1
2

(f (a,p)−b)T (f (a,p)−b) (6.23)

Now we will first go into details of the linear least squares method.

Linear least squares minimization methods

Linear least squares solution to Ax = 0

As we can see from the previous discussion for solving the fundamental ma-
trix problem; it is a typical Ax = 0 problem. With exact measurements and
an exact mathematical model we can obtain an exact solution to the system.
However, in the case of noise added to measurements, there exists no ex-
act solution. Besides, with more matching points, it will become an over-
determined set of equations. In this case, a least squares solution can be
found. The obvious solution x = 0 is not what we want since we seek a non-
zero solution. Thus, a constraint ‖x‖2 = 1 is added. The search for a solution
turns into

min
x
‖Ax‖2,subject to‖x‖2 = 1 (6.24)

where ‖ · ‖ represents the vector norm. ‖Ax‖2 = (Ax)TAx and ‖x‖2 = xT x.
Introducing the Lagrange multiplier λ this is equivalent to minimize the La-
grangian

∂
∂x

(xTATAx+λ(1− xT x)) = 0 (6.25)

and the solution x is the last column of V, where A = UDVT is the singular
value decomposition (SVD) of A.

Linear least squares solution to Ax = b

Assume a system of m linear equations,

Ax = b (6.26)

for the unknown n-dimensional vector x. The m×n matrix A contains the
coefficient of the equations, the m-dimensional vector b the data. Finding a
solution x that is closest to fit Ax = b equals to find x such that ‖Ax − b‖ is
minimized

min
x
‖Ax −b‖2 (6.27)
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If not all the components of b are null, the solution can be found by mul-
tiplying both sides of Equation 6.26 with AT . Then we have

ATAx = AT b (6.28)

If ATA is invertible, then the solution is x = (ATA)−1AT b.
If matrix A is rank deficient, then a unique solution does not exist, which

leads to an infinity solution minimizing Equation 6.26 with respect to x. In
this case, the pseudo-inverse solution is given

xLS = A+b (6.29)

where A+ is the pseudo-inverse of A, defined by A+ = VΣ+UT . The matrix
Σ+ is related to Σ in the following way. If

Σ = diag(σ1,σ2, . . . ,σr ,0, . . . ,0)

then

Σ+ = diag(σ−1
1 ,σ−1

2 , . . . ,σ−1
r ,0, . . . ,0)

Non-linear iterative solution

Newton iteration

Assume that we have a function b = f (a,p), where b is a measurement vector
and p is a parameter vector, we wish to find the vector p∗ that satisfy ε =
f (a,p∗) − b for which ‖ε‖ is minimized. To solve the case where f is not a
linear function, we may start with an initial estimated value p0, and refine
the estimate under assumption that the function f is locally linear.

Assume the function f (p) is locally linear around p0, using Taylor series
around p0

f (p0 +∆) = f (p0) + J∆ (6.30)

where the Jacobian matrix J = ∂f (p)/∂p is evaluated at the current es-
timate. We seek a point f (p1), p1 = p0 + ∆, which minimizes f (p1) − b =
f (p0) + J∆−b. Let ε0 = f (p0)−b. Then ‖ε0 + J∆‖ should be minimized over ∆,
and it becomes a linear minimization problem.

According to Equation 6.28, ∆ is obtained by solving the normal equation

JT J∆ = −JT ε0 (6.31)
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Then the solution p∗ is approached by starting from the initial estimate p0
with successive approximation

pi+1 = pi +∆i (6.32)

where ∆i is the solution to the linear least squares problem

J∆i = −εi
However, it is possible that the iteration procedure converges to a local

minimum value, or does not converge at all and the iteration algorithm de-
pends very strongly on the initial estimate p0.

Gauss-Newton iteration

According to Equation 6.21, g(p) = 1
2‖ε(p)‖2 = 1

2ε(p)T ε(p) and we expand g(p)
around p0 in a Taylor series

g(p0 +∆) = g + gp∆+
1
2
∆T gpp∆+ . . . (6.33)

where subscript p denotes differentiation.
We want to minimize the function with respect to ∆ and set the derivative

to 0 then we have

gpp∆ = −gp (6.34)

where gp = εTp ε and gpp = εTp εp + εTppε. Since g(p) is linear around p0,
εTppε = 0. Then we have

εTp εp∆ = −εTp ε (6.35)

and this is called the Gauss-Newton update equation. Generally this is
a good approximation, particularly close to a minimum, or when ε is nearly
linear around p.

Gradient descent

The negative (or down-hill) gradient vector −gp = −εTp εp defines the direction
of most rapid decrease of the cost function. One way of minimization of the
function g is to move iteratively in the gradient direction. To determine the
length of step in the negative gradient direction, we denote −gp = λ∆, in which
∆ is the parameter increment and λ controls the length of the step. In this
case, the update equation is
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λ∆ = −εTp εp (6.36)

Gradient descent by itself is not a very good minimization strategy, typ-
ically characterized by a slow convergence, but in conjunction with Gauss-
Newton it yields the commonly used Levenberg-Marquardt method.

Levenbert-Marquardt iteration

The non-linear least squares methods we described above have problems. (1)
The steepest descent method has no good way to determine the length of the
step. (2) Newton’s method is based on solving a linear system. The matrix
to be inverted can be singular. (3) Moreover, unless it is started close to the
minimum, Newton’s method sometimes leads to divergent oscillations that
move away from the answer. That is, it overshoots, and then overcompensates,
etc [219].

The Levenbert-Marquardt iteration method is a slight variation on the
Gauss-Newton iteration method by augmented λ to Equation 6.35

(εTp εp +λI)∆ = −εTp ε (6.37)

The main advantage of this technique is rapid convergence. However, the rate
of convergence is sensitive to the starting location.

Random forests for object detection

The random forests [220] is an ensemble approach that can be considered to
be a form of a nearest neighbor predictor. The main principle behind ensem-
ble methods is that a group of “weak learners” can come together to form a
“strong learner”. Random forests is a very fast and accurate tool for classifi-
cation, clustering and regression and widely used in computer vision appli-
cations such as keypoint recognition, digit recognition, gesture recognition,
object tracking, object recognition, augmented reality, etc.

Here we mainly focus on how to explain random forests for object classifi-
cation.

A classifier is a mapping from a feature vector f to a set of discrete class
labels C. The features are composed of appearance, shape, texture, etc.

f =
(
f1 f2 . . . fN

)
C =

(
C1 C2 . . . CK

)
f→ C

(6.38)
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A standard pattern recognition method is to learn the posterior distribu-
tion over class label conditioned by features

P (C = Ck |f1, f2, . . . , fN ) (6.39)

and classify the objects based on the mode of the posterior

argmax
k
P (C = Ck |f1, f2, . . . , fN ) (6.40)

As for object detection, we treat the problem as a two classes classification
problem, in which the two classes are foreground objects and background
scenes. In other words, C =

(
CO CB

)
, where C0 stands for foreground objects

and CB stands for background.
The random forests algorithm for object detection [221] is shown in Table

1 and illustrated in Figure 4.

Input feature vector f

Tree 1 Tree 2 Tree m

coco cBcBcB cB cBcoco co co co

Majority vote

ObjectBackground

Figure 4: Random forests
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Table 1: Random forests algorithm for object detection

Pre-processing: Collect a set of images and annotate a bounding box for each object.
Randomly sample a subset for training and normalize image patches
within bounding boxes.

Training: The split function evaluates one or more image features of the im-
age patch I and passes it to the left child pφ(I) = 0 or right child
pφ(I) = 1. Starting at the root node with the training set Tnode = T , a
tree grows recursively (parameters Φ can be depth, viewpoint, scale,
aspect ratio):
1. Generate a random set of parameters Φ = {φk};
2. Divide the set of patches Tnode into two subsets TL and TR for each
φ ∈ Φ :

TL(φ) = {I ∈ Tnode |pφ(I) = 0}

TR(φ) = {I ∈ Tnode |pφ(I) = 1}

3. Select the split parameters φ∗ that maximize a gain function g

φ∗ = argmax
φ∈Φ

g(φ,Tnode)

4. Continue growing with the training subsets TL and TR if some
predefined stopping criteria are not satisfied; otherwise, create a leaf
node and store the statistics of the training data Tnode.

Predict: For detecting an object, sampled image patches from a test image
and extracted feature vectors are passed through trees. In order to
locate an object in the image, the probability of an object is evaluated
by majority vote.





Summary

Human perception is an active process. By altering its viewpoint rather than
passively observing surroundings and by operating on sequences of images
rather than on a single frame, the human visual system has the ability to
explore the most relevant information based on knowledge, therefore when
growing up a human is able to develop cognitive perception. Comparably,
for humanoid robots to develop cognitive perception, active vision is indis-
pensable. Humanoid robot research has already nearly half a century history.
There are approximately 2000 research papers on active vision published dur-
ing 1986−2010 that covered a large range of research fields in robotics. Nowa-
days, the new trend is to use a stereo setup or a Kinect with neck movements
to realize active vision. However, human perception is a combination of eyes
and neck movement. In order to design such an advanced humanoid active
vision system, eye movements with biological inspiration similar to human
eyes should be taken into consideration. Depth perception based on pure im-
age information can then be obtained without utilizing any advanced sensors.

This thesis presents a complete active vision system with 4 degrees of free-
dom that works in a similar way as human vision. It is composed of the fol-
lowing parts:

1. The mechanical design has 4 motors with independent vergence angle
control, one tilt motor for both eyes and one pan motor for the neck.

2. The controllers simulate the eye movements as humans: saccade eye
movements, pursuit eye movements, vestibulo-ocular reflex (VOR) eye
movements and vergence eye movements, where motor positions and
velocities are controlled with input from an Inertia Measurement Unit
(IMU).

3. An optimal feature selection mechanism which is based on various prop-
erties of objects is applied before tracking.
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4. In order to smoothly pursue and learn an object from different perspec-
tives, three different trackers are used: a color based tracker, an AR
marker based tracker for testing, and a robust online tracker.

5. A saliency detector segments the most dominant objects from the scenes
and a robust online tracker provides refined segmentations. As a result,
the robots have a self-explorative ability for unknown environments.

6. Owing to vergent eyes moving at different angles, intrinsic calibration
as well as extrinsic calibration is required to ensure the accuracy of 3D
perception. Here the motor positions are utilized together with a robust
M-Estimator to recover the geometry between two eyes.

7. Humans utilize multiple cues for depth perception. Depth perception
is strongly related to eye movements. Multi-mode depth perception is
applied to perceive environment and objects in 3D for further vision
tasks such as object recognition, and object grasping.

The realized system works within real-time constraints and with low cost
cameras and motors. Therefore it provides an affordable solution for indus-
trial applications.

In conclusion, active vision can be applied to various applications and it is
a rapid-growing research domain. This thesis and its proposed vision system
provides an insight into the research field of active humanoid robot vision.

Xin Wang



Samenvatting

Menselijke diepteperceptie is een actief proces. Het veranderen van het gezicht
en het gebruik van een reeks van beelden, in plaats van het passief observeren
van een omgeving met een enkel beeld, geeft menselijk gezichtsvermogen
de mogelijkheid om de meest relevante informatie te observeren op basis
van kennis, waardoor een groeiende mens in staat is om cognitieve percep-
tie te ontwikkelen. Dit is vergelijkbaar met humanoïde robots, waar actief
gezichtsvermogen nodig is om cognitieve perceptie te ontwikkelen. Onder-
zoek in humanoïde robotica is bijna een halve eeuw aan de gang. Er zijn
ongeveer 2000 onderzoekspapers over actief gezichtsvermogen gepubliceerd
tussen 1986 en 2010, hetgeen een groot scala aan onderzoeksgebieden in robot-
ica beschrijft. Tegenwoordig is het een trend om een stereo camera of een
Kinect te gebruiken, in combinatie met nek bewegingen, om actief gezichtsver-
mogen te realiseren. Menselijke perceptie is echter een combinatie van oog-
en nekbewegingen. Om een geavanceerde humanoïde, actieve zichtsysteem
te ontwikkelen, moet er gekeken worden naar menselijke oogbewegingen om
inspiratie op te doen uit de biologie. Diepte perceptie gebaseerd op puur
beeldinformatie zal dan gerealiseerd worden zonder het gebruik van gea-
vanceerdere sensoren. Dit proefschrift presenteert een actief zichtsysteem
met 4 graden van vrijheid gebaseerd op menselijke gezichtsvermogen. Het
bestaat uit de volgende onderdelen:

1. Het mechanische ontwerp heeft 4 motoren met onafhankelijke conver-
gentie motorbesturing, een tiltmotor voor beide ogen en een panmotor
voor de nek.

2. De motor besturing is vergelijkbaar met menselijke oogbewegingen: Sac-
cade oogbewegingen, object-object-oogbewegingen, vestibulo-oculaire re-
flex (VOR) oogbewegingen en convergentie oogbewegingen, waar de posi-
tie en hoeksnelheid van de motoren bepaald worden door de input van
een Inertia Measurement Unit (IMU).
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3. Voor het objectvolgend mechanisme, worden optimale kenmerkenselec-
tietechnieken toegepast, die gebaseerd zijn op verschillende eigenschap-
pen van voorwerpen.

4. Om een voorwerp gelijkmatig te volgen en te leren herkennen vanuit
verschillende oogpunten zijn er drie verschillende volgsystemen gebruikt:
volgen op basis van kleur, volgen van een AR marker om te testen, en
een robuust online volgsystem.

5. Een saillant-kenmerkendetectie segmenteert de meest opvallende voor-
werpen in een scene en een robuust online volgsysteem verfijnt deze
segmentatie. Dit resulteert in de robots die in staat zijn om autonoom
onbekende omgevingen te kunnen verkennen.

6. Gezien de convergerende camera’s in verschillende richtingen kunnen
bewegen, is zowel intrinsieke als extrinsieke camerakalibratie nodig om
de nauwkeurigheid van 3D-perceptie te garanderen. De positie van de
motoren kunnen samen met een robuuste M-estimator gebruikt worden
om de geometrie tussen de twee ogen te achterhalen.

7. De mens gebruikt verschillende aanwijzingen voor diepteperceptie. Diepte-
perceptie is sterk gerelateerd aan oogbewegingen . Meervoudige diepte-
perceptie wordt gecombineerd om de omgeving en voorwerpen te kun-
nen waarnemen, wat gebruikt kan worden voor taken zoals het herken-
nen en grijpen van objecten.

Het gerealiseerde systeem werkt met real-time beperkingen en met relatief
goedkope camera’s en motoren. Het biedt daarom een betaalbare oplossing
voor industriële toepassingen. Concluderend, actief gezichtsvermogen kan
toegepast worden voor verscheidende applicaties en het is een snel groeiend
onderzoeksdomein. Dit proefschrift en het voorgestelde zichtsysteem ver-
schaft inzicht op het gebied van humanoïde actief gezichtsvermogen.

Xin Wang
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