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ABSTRACT

The United Nations (UN) Sustainable Development Goal (SDG) #6 reads that by 2030
universal and equitable access to safe and affordable drinking water is achieved for all
(United Nations General Assembly, 2015). In order to achieve this goal, proper and com-
plete monitoring, capturing all the facets of safe water access, is essential. In this thesis
it is argued that the current monitoring techniques come with limitations and subse-
quently solutions are presented to come to a more complete picture of water access.

Monitoring safe water access happens primarily through household health surveys.
These surveys are often incomplete, not covering entire nations, focus on only the pri-
mary water source and are often spatially aggregated for privacy reasons. Besides, health
surveys almost never include questions on consumed water volumes while that is an
important indicator for proper hygiene (WELL, 1998), and something that, at the same
time, should be in balance with the natural available water resources. Next to this survey
based monitoring, there is the Water Point Data Exchange (WPDx) that monitors safe ac-
cess by providing a platform at which the exact location and type of water access points
(such as boreholes, springs, etc.) are registered. This does give more insight into the
presence and usage of a variety of sources, but also the WPDx is often incomplete: not
covering entire nations.

In this thesis we present a dual methodology that gap-fills the incompleteness of the
WPDx database through modeling and in parallel, researches the complex local dynam-
ics of water access, the variety of water sources used by households and the relationships
between access and water consumption by means of a household survey.

By improving a machine learning biological species modeling technique (called Max-
Ent), successful predictions on the number of presences of eight different water access
types across Uganda were made, also into areas that have little presence in the WPDx
data. It was found that population density, precipitation, elevation, poverty and ground-
water storage are important indicators for the (non)presence of water access points.

Next to modeling, a survey campaign was executed in Bushenyi-Ishaka municipality,
a mid-sized town in the South West of Uganda comprising a mixture of both urban and
rural areas. This was done in collaboration with Makerere University (Kampala). The
survey results showed that water consumption increases with education and wealth, but
also with higher number of water point presences predicted by the model. It was also
found that households in Bushenyi make use of an average of two different water sources
on a regular basis and often express preference for sources off premises compared to on
premises (piped) for both cost and perceived quality reasons.

Lastly, modi operandi were suggested for the results to improve water access such
as prioritising areas with poor(est) water access and investing in rainwater harvesting,
infrastructure and education.
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1
INTRODUCTION

The United Nations (UN) Sustainable Development Goal (SDG) #6 reads that by 2030
universal and equitable access to safe and affordable drinking water is achieved for all
(United Nations General Assembly, 2015). The African Water Corridor (AWC) is a project
of Delft Global Initiative and has set a goal that contributes to SDG 6, namely to “develop
- with partners - one or more African Water Corridors, carriers for sustainable develop-
ment through co-creation of innovative, open-source technologies and sustainable imple-
mentation strategies. We want to ensure that water will no longer be a limiting factor for
development of human and natural resources in Sub-Saharan Africa" (Delft Global Initia-
tive, n.d.). This thesis falls under the umbrella of the AWC and researches the domestic
water access and - consumption, which is perhaps the most vital water use of all.

Safe drinking water contributes to day-to-day health directly through safe digestion
and hygiene. But, as populations in many areas of the world are growing rapidly and wa-
ter sources are limited, safe water access is at risk for many people. The Joint Monitoring
Program (JMP), which is a collaboration of Unicef and the World Health Organisation
(WHO), considers people with unimproved (and therefore possibly unsafe) water access
to be people that have to travel over 30 minutes to a safe water source, or people using
an unprotected source. The latter means that the source is not protected from possible
contamination from faecal or chemical substances (WHO, 2017).

Monitoring safe water access relies primarily on household (health) surveys and cen-
sus data (Bartram et al., 2014). There are two limitations with this: firstly, survey ques-
tions on water access typically focus on the primary drinking water source only. How-
ever, people often drink and make use of a multitude of water sources for many pur-
poses. This can cause an overestimation of the population share with permanent safe
access as some of the sources used might not be safe (Elliott et al., 2019). Secondly,
health survey data is, for privacy concerns, spatially limited. For instance, in Uganda’s
Demographic Health Survey (DHS), households are clustered by their spatial location
where households in the same cluster can have a spacing of up to 10 kilometres (Uganda

1
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2 1. INTRODUCTION

Bureau of Statistics, 2018). Besides, health survey data is almost never nationwide but
merely an attempt to an as good as possible representative sample of the population.

Instead of using household surveys, the Water Point Data Exchange (WPDx) tries to
monitor water access by creating a platform on which NGOs, governments and water
companies can share water point data. Water point data consists of the geographical
coordinates of a water access point and the water access type (borehole, spring, etc.)
(Unicef, 2015). Such data comes with the advantages that it is not spatially limited for
privacy concerns and that it better captures the multitude of different types of sources
used in an area (Yu et al., 2019). However, coverage of this database is again often not
nationwide and therefore in need of modeling methods that can predict the presence of
water access points into areas of which this unknown.

Monitoring water consumption is important as the usage or availability of (too) low
volumes can indicate poor hygienic circumstances (WELL, 1998), but also because wa-
ter consumption should be in reasonable balance with available water resources. With
respect to water consumption, it is difficult to gain information from WPDx directly and
also health surveys generally do not include questions on the water consumption in
terms of volume. The latter is mainly a result of water volumes being a difficult num-
ber to estimate for users or survey enumerators when it is not metered. The consensus
in literature is that water consumption is primarily a function of the travel time to and
from the water source (WELL, 1998), however there remains a lot of uncertainty around
this (Cassivi et al., 2019). Contradictory to water consumption, this travel time (albeit to
the primary drinking water source only) is often included in DHS data.

Earlier research applied a machine learning biological species modeling technique
(called MaxEnt) to parts of the WPDx data from Kenya and predicted the relative prob-
ability distribution of finding surface water access points and unimproved wells across
Kenya (Yu et al., 2019). For these predictions, MaxEnt uses a number of physical, geo-
graphical and socio-economical features (predictive data) of which it learned the combi-
nation of characteristics that indicate the presence of water access points (Merow, Smith,
& Silander, 2013). These features come in the form of nationwide maps such that the
output of MaxEnt is nationwide and aligned with the earlier defined need for modeling
methods that could predict water point presence in areas where this is not registered on
WPDx.

However, the methodology applied by Yu et al. (2019) comes with a number of lim-
itations. Firstly, it models only two access types (unimproved wells and surface water
access), which are both JMP considered unimproved sources (WHO, 2017). To get a
more complete overview of water access, other access types should be included. Sec-
ondly, the output of the model is a relative probability of presence, i.e. relative to the
total number of presences. To research the (co-)existence of multiple water access types,
their usage but also to evaluate the level of water access across the country, it would be
better to predict the absolute number of presences instead of the relative probability of
presence. Finally, the research by Yu et al. (2019) is limited in its validation within cities
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and presents the results from the larger (province size) perspective. Looking into cities
is relevant as urbanization is expected to continue and especially midsized and small
cities are often overlooked in research (Santos et al., 2017). Small cities are interesting
because of the large part of the population living ’in between’ environments combining
both urban and agricultural characteristics (Marks et al., 2020).

The methods presented in this thesis improve on Yu et al. (2019) by switching from
MaxEnt to a different machine learning technique that allows for more complex non
linear behaviour (neural networks), of which several setups are presented and their per-
formances compared. Next to this, we present a method that scales the relative output
to a prediction of the absolute number of water point presences. On top of the two by
Yu et al. (2019) modeled access types, six more are included, including improved sources
such as piped water access and boreholes.

Next to this data based modeling approach to water access, a survey campaign among
500 households was executed in Bushenyi, a small city in the South West of Uganda.
Contrary to more standard surveys on water access, this survey explicitly researches the
behaviour and reasoning of households using a multitude of water sources. It also asks
respondents to quantify their consumed water volumes, different water purposes and
access types used. The survey data is used in multiple ways. Firstly, it allows for validat-
ing parts of the modeling outputs in a small city. Secondly, factors that could potentially
predict water consumption are researched as it is suspected that water consumption is
from more dependant than travel time alone. These factors include the model outputs
(water access point presence), but also socio-economic information from the surveyed
households such as education level and income. Lastly, the survey serves as addition to
the models in the sense that it shows the complex dynamics and large variances in water
access and consumption that are easily lost when scaled to coarser modeling resolutions.

By combining the results and findings from both the models and the survey, the aim
is to get a good overview of water access and water consumption, their dynamics and
interdependence and to which predictive information they potentially relate. This infor-
mation, combined with the model’s nationwide predictions of water access point pres-
ences, can be used by governments and NGO’s to prioritise areas with poor water access
for water access improvement campaigns and for better water management in general.
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1.1. PROBLEM STATEMENT
In short, this study has the following objective:

To spatially model the type of domestic water access and the domestic water consump-
tion in areas where true measurements of this are unavailable, with a particular interest
in small and midsized cities.

For that the following sub questions will be addressed:

• What physical, hydrogeological and socio-economic information can indicate the
presence of certain water access types and household water consumption?

• To what extent can the expected presence of water access types be used to quantify
water consumption? And can a predictive relationship between certain water access
types and water volumes used in households be established?

• What areas in the study area are at risk (i.e. have unimproved water access or ac-
cess with large travel times) and how can governments and NGOs use the modelled
information to adapt?

1.2. THESIS OUTLINE
This thesis consists of a literature review (Chapter 2) showing the current status of aca-
demic research towards water consumption and water access predictors. This chapter
also introduces the study area, Uganda and more specifically Bushenyi, and its current
status of water access. The next two chapters introduce the two research methods in
this thesis: that of the models (Chapter 3) and the survey (Chapter 4) respectively. In
the Results, Chapter 5, the model performance is discussed after which both the model
and survey results are placed into context by relating them first to water access types,
secondly to the travel time to a water source and finally to the households water con-
sumption. The broader perspective and meaning of the results next to the limitations
of the methods and their impact on the results are presented in the Discussion (Chapter
6. Related to the limitations, this Chapter also presents some recommendations. Lastly,
the Conclusion (Chapter 7) shows the key findings and answers the research questions.
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LITERATURE REVIEW

The first part of the literature review presents the literature consensus on predicting wa-
ter access (types), the second on predicting water consumption. The final parts give
information about the study area: Uganda and Bushenyi.

2.1. MODELING WATER ACCESS
As mentioned in the Introduction (Chapter 1), the Joint Monitoring Program (JMP), which
is a collaboration of Unicef and the World Health Organisation (WHO), considers people
with unimproved (and therefore possibly unsafe) water access to be people that have to
travel over 30 minutes to a safe water source, or people using an unprotected source. The
latter means that the source is not protected from possible contamination from faecal or
chemical substances (WHO, 2017). In order to monitor the level of access in countries for
which SDG 6 has not yet been achieved (WPDx, 2021a), the Water Point Data Exchange
(WPDx) has created a platform on which several NGOs and governments share water
point data (Unicef, 2015). This data adheres to the WPDx water point standard, which
means that the minimum required data for each point is: location (lat., lon.), availability
of water during visit, date of recording and the type of water access. Often more informa-
tion is shared such as the (dys)functionality of a source and if the source is an improved
drinking water source or not (WPDx, 2021b). WPDx distinguishes 12 different water ac-
cess types (see Table 3.1) which include boreholes, (un)protected springs, piped water
and surface water access. At the moment of writing (Sept. 2021) there are 613 563 data
points in the WPDx database. A problem is that in many countries in Sub Saharan Africa
(SSA) this database is incomplete, not covering the entire country.

Yu et al. (2019) applied a machine learning modeling technique to the WPDx data
and were able to predict the relative probability of presence distribution of two access
types (surface water and unimproved wells) to a gridded 1 kilometer resolution in Kenya.
For this, the model learns how to use a number of physical, geographical and socio-
economical features (predictive data) to predict the (non)presence of water access points.

5
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Figure 2.1: Output from Yu et al. (2019): Predicted unprotected dug well occupancy across Kenya

Their results are promising judging by the predictive power of the models which score
0.9 at the Area Under the Receiver Operator Curve (AUC, a common evaluation param-
eter for such classifying models). More visually, the output of Yu et al. (2019) results in
gridded relative (to the total mumber of presences) probability maps such as the one
shown in Fig. 2.1. A red color indicates that the landscape characteristics of a grid cell
are close to the grid cells where the target water sources were observed. To obtain these
results, Yu et al. (2019) used a Maximum Entropy model (MaxEnt), which finds its origins
in the biological species modeling field (Phillips, Anderson, & Schapire, 2006).

2.1.1. PRESENCE ONLY DATA
In the biological species modeling field, the objective is usually to find which geographi-
cal areas correspond environmentally to areas where the species was observed and with
that, model a species (potential) habitat. Biological species modelers usually refer to
the mentioned observations of the species as point data. This is typically subdivided
in two categories: presence-only and presence-absence (Elith et al., 2006). If we take
the species modeling example of a daisy flower: for presence absence data, a (random)
selection of cells in the study area is researched and both the cells with daisy flowers
(presence) as well as the cells without daisy flowers (absence) are registered as such.
This allows for a strong comparison between the environmental features enabling (pres-
ence) or disabling the presence (absence) of daisy flowers. Presence only data is mostly
a result of less organised methods of data collection. For presence only data there is only
information on which cells do contain daisy flowers (presence), of the other cells (pink in
Figure 2.2b), it is unknown whether they contain daisy flowers or not. Still, if the sample
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is large enough, the presence only data can be compared to (randomly) selected back-
ground cells which then are often referred to as pseudo-absence cells. This technique is
under the assumption that the species (daisy flowers) is not prevalent in the entire study
area.

Figure 2.2: The difference between presence-absence data (left) and presence-only data (right) is that for pres-
ence absence we have full information on both presence and absence of surveyed cells while with presence
only data we have only full information on the cells containing presences while for the other cells presence is
unknown. Figure inspired by Golini (2012).

2.1.2. MODELING PRESENCE ONLY DATA

For species, the data is most of the time presence-only data as this is easiest to obtain.
The used data from WPDx in Yu et al. (2019) is presence only data as it does not give
information about the absence of water access types at a certain location. Elith et al.
(2006) compared a number of models that were designed to use presence only data to
predict the presence of (biological) species. They showed that the machine learning
models such as MaxEnt, outperform the more traditional models for such data. West,
Kumar, Brown, Stohlgren, and Bromberg (2016) even showed that MaxEnt performs al-
most just as well on presence only data as regressions on presence-absence data. How-
ever, Botella, Joly, Bonnet, Monestiez, and Munoz (2018) compared the performance of
MaxEnt to neural network models for the distribution of presence of 5 plant types in
France and showed that the neural network can outperform MaxEnt, mainly because it is
able to capture the non linear transformations of input features better. Neural networks
have been shown to be very capable of modeling non-linear problems also in other set-
tings such as forecasting energy prices (Heijden, Lago, Palensky, & Abraham, 2021) and
water prices (Qi & Chang, 2011).
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2.1.3. PREDICTORS FOR WATER ACCESS TYPES
In this thesis, a modeling technique inspired by MaxEnt is used to predict the presence
of water access points of different types (boreholes, springs and six more). Therefore, it
is relevant to know which information can be used to predict water access in general but
also which data can potentially be used as predictive features. Modeling the presence of
water access points has, aside from Yu et al. (2019), to our knowledge, little precedent.
Rahmati et al. (2018) found that the slope of the terrain was the most important factor
for unprotected spring presence in Iran. Yu et al. (2019) found that rainfall and elevation
were important predictors for both unprotected wells and surface water access. More
general, there are a number of water access types that rely logically on the availability
of groundwater. These are: (un)protected shallow well, (un)protected spring, borehole
and often piped water. Indicators for groundwater availability are: depth to groundwa-
ter, groundwater productivity, groundwater storage, drainage density, elevation, slope,
topographic wetness index (TWI), proximity to inland water, land use, lithology, and soil
texture (Rahmati et al., 2018) (Miraki et al., 2018) (Naghibi, Pourghasemi, & Dixon, 2015).
For the usage of rainwater harvesting, the rainfall frequency and intensity are obvious
necessities.

Besides the features that have a direct effect on the availability of various water sources,
there are also many socio-economic characteristics that could indicate particular water
access types. As the water access points are used by humans, it is only relevant to look at
places with humans. This is indicated by the population density, villages, cities or other
urban land uses. Furthermore, some access types are only possible in situations where
there are enough people. For instance, a piped water network is costly and the using
population and/or the government should be capable and willing to make such invest-
ments. Baguma and Loiskandl (2010) showed that subsidies, especially in the form of
hardware, can help in the adaptation of rain water harvesting techniques. Lastly, a lot of
literature suggests a linkage of (improved) water access to income or wealth, indicating a
positive impact of wealth to improved water sources (Mahama, Anaman, & Osei-Akoto,
2014) (Adams, Boateng, & Amoyaw, 2015) (Qi & Chang, 2011) (Liu, Savenije, & Xu, 2003).

2.2. PREDICTING DOMESTIC WATER CONSUMPTION
While socio-economic and environmental conditions are known to be good predictors
for water access types (see section 2.1), the water consumption is suggested to be a func-
tion of the travelled time to and from the water access point as depicted in Figure 2.3
(WELL, 1998) (WELL is affiliated to the WHO). Figure 2.3 shows that for return trip travel
times (including queuing) under 30 minutes, the volume of water used remains con-
stant at about 15 liter per capita per day (lpcd). Only when the water access is located on
premises the consumption rises quickly to 50 lpcd. When water is piped into the house
the water consumption increases even further which can be seen in Table 2.1. This is be-
cause it allows for water intensive machines (such as washing machines) and eliminates
effort (Howard et al., 2020). For trips over 30 minutes the water consumption decreases
to levels under hygienically healthy minimum requirements (WELL, 1998).

Twenty two years later, the graph from (WELL, 1998) was republished by the WHO
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in Howard et al. (2020) and discussed extensively: Rhoderick (2013) showed that in gen-
eral people using off plot sources consumed less water than people with on plot access.
This would comply with Figure 2.3, however Rhoderick (2013) remarks that the graphs
shape and specific break points differ per setting (Howard et al., 2020). Cassivi et al.
(2019) performed a literature study and hesitantly agree that there is a negative corre-
lation between travel time and water consumption but at the same time point out that
the methodology used to research this is often different, which makes it difficult to com-
pare studies and to justify the relationship from Figure 2.3 (Howard et al., 2020). Their
conclusion is that the volumetric in home water consumption is primarily sensitive to
improvements in access level and thus that increases in water consumption occur at dis-
tinct thresholds of access (Howard et al., 2020). Table 2.1 is from a study in Uganda and
is also an indication that water consumption could be related to access level by means
of access type. Similar values were reported in Kenya and Tanzania (Thompson, Purras,
& Tumwine, 2001).

Figure 2.3: Water consumption in liter per capita per day (lpcd) related to travel time to access point (WELL,
1998)

Ideally, meaning that the relationship from Figure 2.3 holds, water consumption pre-
dictions could be based on the travel time of a household to its (closest) water source.
However, Marks et al. (2020) described that the type of access and payment influence
the choice of people to travel further for their water access and thus should be included
in the estimation. Furthermore, other research indicates that water consumption relates
to a lot of socio-economic information of households and communities. For example: in
Florida water consumption was linked to employment rate and population growth (Qi
& Chang, 2011). Kennedy et al. (2015) suggest correlations between area per capita and
water demand per capita, but also between GDP per capita and water demand in megac-
ities. Liu et al. (2003) and Fielding, Russell, Spinks, and Mankad (2012) found positive re-
lationships between income and water consumption in China and Australia respectively.
A higher educational level also increased water demand (Fielding et al., 2012), although
this might be in correlation with income. Furthermore, both Fielding et al. (2012), Fan,
Liu, Wang, Geissen, and Ritsema (2013) and Thompson et al. (2001), found that larger
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Type of supply Distance from home Range of consumption (lpcd)
Communal water-point
(well or standpost) > 1000 m 5−15
Communal water-point
(well or standpost) 250 m−1000 m 10−30
Village well or
Communal standpost < 250 m 15−50
Yardtap in compound 20−80
House connection
- single tap in house 30−80
House connection
- multiple taps in house 70−250

Table 2.1: Average water consumption related to distance and supply type in Jinja, Uganda (WELL, 1998),
(Howard et al., 2020).

household sizes resulted in less water consumption per capita. This is probably a re-
sult of a more efficient usage of water for shared purposes such as cooking. Finally, in
Malaysian towns, households living in long houses (a traditional housing type) were less
likely to have improved water access which was probably an effect of the rapid urbaniza-
tion of these areas, allowing no time for creating good water infrastructure (Kong et al.,
2020). In summary: water consumption most likely is a function of travel time to source
combined with the type of water access and other socio-economic conditions. All of this
again shows that the access to water and water consumption can be very specific to the
circumstances.

2.3. STUDY AREA: UGANDA

The African Water Corridor (AWC) has selected three Sub-Saharan development corri-
dors: Uganda, Ghana and Mozambique. Of those three countries, Uganda has the largest
subsets of water point data, including a variety of both improved and unimproved water
sources. As more data allows for better modeling, the thesis will focus on Uganda.
Uganda is a country in Eastern Sub Saharan Africa with a population size of somewhat
over 44 million (World Bank, 2019). According to Uganda’s most recent Demographic
Health Survey (DHS) from 2016, 77.9 % of Ugandans have access to safely managed
drinking water (up from 70 % in 2011) and 20.8 % have access to safely managed san-
itation services (Uganda Bureau of Statistics, 2018). From Figure 2.5 it can be concluded
that urban residents are a lot more likely to have improved water access than rural res-
idents. In rural areas the tubed well or borehole is used the most but the number of
people using unimproved sources still is significant. In urban areas, water access is bet-
ter in general. The urbanization level in Uganda is 24.6 % (O’Neill, 2021). In terms of
travel time (relating to Fig. 2.3), 46.8 percent of the population has to make a return trip
of more than 30 minutes for their water in 2016 (Uganda Bureau of Statistics, 2018). Also
in Ugandan cities people travel several minutes for collecting water and often people do
not choose the closest source but a source that is cheaper or free or has a better (per-
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cieved) quality (Marks et al., 2020) (Howard, Teuton, Luyima, & Odongo, 2002).

Figure 2.4: Uganda lies in the mid-East of Africa (figure from Wikipedia)

Figure 2.5: Distribution of different water sources in Uganda in 2016 (latest available Demographic Health
Survey) (Uganda Bureau of Statistics, 2018).

With regards to the water availability, Nsubuga, Namutebi, and Nsubuga-Ssenfuma
(2014) refer to a water resource management sub-sector reform study of 2004 that showed
that especially the North East and South West are under water stress, i.e. have limited
(natural) water resources per capita. This is shown in Figure 2.6. The reform study also
predicted that this will increase towards the future. Nsubuga et al. (2014) continue by
pointing out that global warming induced climate change does and will cause variation
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in rainfall patterns upon which many of Uganda’s water resources rely (and farmers for
growing cycles). When rainfall will decrease, Nsubuga et al. (2014) warn for over exploita-
tion of the (other) water resources. However, Kilimani et al. (2013) showed that indeed
there have been changes in rainfall patterns, which is a problem to farmers, but show
that in fact the other available water resources in Uganda are under utilised and could be
used for improved irrigation systems to cope with the varying and unpredictable rainfall.

Figure 2.6: Water availability in 2001 and a 14 year ahead prediction at the time (Nsubuga et al., 2014).

Access type Average Travel Time: Urban [min.] Rural [min.]

Piped dwelling 0.0 0.0
Piped yard 0.0 0.0
Piped to neighbour 0.0 0.0
Public tap 8.7 27.4
Rainwat. harv. 1.0 3.9
Prot. well 26.7 31.9
Unp. well 33.9 39.0
Prot. spring 26.6 39.9
Unp. spring 38.1 40.1
Surface wat. 29.3 44.8
Borehole 36.4 45.4
Bicycle vend. 67.9 49.4
Truck 6.7 39.6
Bottled 4.2 12.3
Sachet 4.8 6.9
Other 8.3 26.4

Table 2.2: Average travel time per water access type considered in the DHS data for both urban and rural areas.
Table created from DHS data (Uganda Bureau of Statistics, 2018) by author.

In a first analysis of the DHS data, it was found that in Uganda different access types
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have different average travel times as well. This would support the more general (also
outside Uganda) findings of WELL (1998), Thompson et al. (2001) Rhoderick (2013) and
Cassivi et al. (2019), who stated that water consumption is a function of travel time to and
accessibility of the water source. By looking at Figures 8.1, 8.2 in appendix A and Table
2.2 it can be seen that based on average travel time and travel time distribution, three
groups can be distinguished in urban and two groups in rural settings. In both urban
and rural settings the sources that are in general off plot (e.g. springs, boreholes) have a
higher average travel time than on plot connections such as piped connections. In the
urban setting, boreholes and unprotected springs have a higher average travel time then
their other off-plot peers, which is why they are put in a separate group.

2.4. BUSHENYI-ISHAKA MUNICIPALITY
Bushenyi and Ishaka are two neighbouring towns that together form the Bushenyi-Ishaka
municipality. It is located in the South West of Uganda, close to Lake Edward. The
area has experienced and is undergoing rapid urbanisation shown by the steady pop-
ulation growth of 6 % for the past 5 years. Bushenyi town is the administrative centre of
the Bushenyi district (Silva-Novoa Sanchez, Kemerink-Seyoum, Waiswa Batega, & Paul,
2020) that is now housing 250 000 people (Bushenyi District, 2020). The area has wet-
lands in the valleys and from the more mountainous areas small creeks flow, especially
during the rainy seasons. There are a number of locations where groundwater reaches
the surface and form a natural spring (Silva-Novoa Sanchez et al., 2020). Many inhab-
itants rely on these springs for their daily water supply. The access facilities to these
springs were built by the government agency responsible for rural development and are
kept clean by neighborhood committees. As the town is growing and urbanizing more,
many households switch to a piped water system that is provided and maintained by the
National Water and Sewerage Corporation (NWSC). This brings questions as to who is
responsible for the water supply from the springs. Furthermore, Bushenyi is an interest-
ing research location because of the large part of the population living ‘in between’ en-
vironments combining both urban and agricultural characteristics (Marks et al., 2020).
Researching such locations is relevant as urbanization is expected to continue and espe-
cially midsized and small cities are often overlooked in research (Santos et al., 2017).

Surveys were conducted in 2018 as part of a research by Marks et al. (2020), research-
ing water access and sanitation in Uganda. However, despite earlier mentioned impor-
tance to hygiene, no questions were included with regards to the consumed volumes of
the household. In 2018, one in five households had water access on plot (Marks et al.,
2020). Especially during the rainy season, people use multiple sources for their drinking
water including rain water harvesting (Marks et al., 2020). The usage of multiple wa-
ter sources by one household is also reported in other settings but often not surveyed
properly: survey campaigns mainly take place in the dry season and do only focus on
the primary drinking water source (e.g. Uganda Bureau of Statistics (2018)). The use of
multiple water sources can result in a greater resilience to water insecurity (Elliott et al.,
2019), but can also cause an overestimation of the number of persons with safe drink-
ing water access as they might drink (every now and then) from unimproved sources too
(Daly, Lowe, Hornsby, & Harris, 2021). For that reason, there is a growing call to research
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Figure 2.7: Bushenyi is located in the South West of Uganda (map from Wikipedia).

the incentives as per why, where and how households do choose their water sources as
this can help improve safe water access campaigns (Elliott et al., 2019). In that fashion,
one of Marks et al. (2020)’s conclusions was that one-quarter of respondents said to travel
to a water source that was not the source closest to their home. This is also interesting
given the relationship between travel time and water consumption from Figure 2.3. The
most given reasons for traveling further were that the taste of the used source was better
or that the source closest was too costly or of bad (perceived) quality. Elliott et al. (2019)
report seasonality, costs and aesthetic reasons as the predominant causes of multiple
water source use. Peoples reasoning for choosing a water source over another is one
of the things that will be researched further in this thesis. Besides these (more or less)
quantifiable reasons for traveling further, there were also more cultural reasons. Natural
springs for instance seemed to be seen as closer to nature and thus more pure (Marks et
al., 2020). For instance, Silva-Novoa Sanchez et al. (2020) interviewed Bushenyi residents
and learned that people share spring water that is on their land, willingly with neigh-
bours. According to their field data, this is partially because of the belief that it would be
perceived as a great injustice to deny access or request money for water that flows natu-
rally out of the soil, but also due to the difficulty to exert control over the springs as most
do not have taps and water would otherwise be spilt. With the survey conducted in this
thesis, the aim is to further analyse the motivation for choosing not the closest source
and in parallel, the indicators of consumed water volumes.

In 2018, most people in Bushenyi made use of protected springs (48%), followed by
unprotected springs (20%) and NWSC taps at the home or yard (18%), other sources
include boreholes (5%), rainwater harvesting (3%) and surface water (2%). Further-
more, households in the urban parts of the area were more likely to use improved water
sources. This includes piped connections for which users have to pay on a regular basis
(Marks et al., 2020).
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MODELING METHODS

To answer the problem statement and its accompanying research questions, a dual method-
ology is applied. For the first method, the distribution of water access points accross
Uganda is modeled using an improved biological species machine learning modeling
technique. This is done per access type such that there is a model for piped water, one
for boreholes etc. The output is a gridded map with per cell the predicted number of wa-
ter access points per access type. Most of the models come in the form of Multi - Layer
Perceptron (MLP) Classifying Neural Networks (NN), which make predictions of water
access point presence, using several geohydrological and socio-economic feature data-
sets. As these models can be designed in different ways, multiple are created and in the
Results Chapter their performance is compared.
Besides models on access types, also models that predict the Demographic Health Sur-
vey (DHS) cluster average travel time to and from the water source. This is done because
the Literature Review suggested that travel time is negatively correlated with water con-
sumption and because travel time is an important indicator related to the level of water
access in general. For this, a regression is applied to nationwide cluster average house-
hold travel times reported in the Ugandan DHS. This time a MLP Regression NN is build,
that uses the same feature data-sets to make predictions of the average cluster travel
time. To research the relationship between water access and travel time, a similar regres-
sion is applied but this time it uses the access point distribution output from the classify-
ing NN instead of the feature layers to predict travel time. As a last step, the water access
point distribution output from the classifying models is compared to the in Bushenyi re-
ported household water consumption. Here the hypothesis is that households cells with
more predicted access points, consume more water. Please find a schematic of these
steps in Figure 3.1.

15



3

16 3. MODELING METHODS

Figure 3.1: For the model approach, neural network classifying models (M1-M4) are trained to predict the
presence of water points (of 8 different access types) using predictive socio-economic and geohydrological
feature data. The initial output of such models is the relative probability of each Ugandan cell containing
e.g. a borehole. By using an estimation of the total number of expected presences, this is scaled to the total
number of e.g. boreholes in a cell. This output is compared to nationwide household travel time data in
Uganda (from DHS) as well as locally obtained data of household level water consumption in Bushenyi. The
hypothesis here is that high access leads to both low travel times and high water consumption. Besides making
predictions regarding the number of presences, two regressions are performed separately on the DHS reported
travel times, first using the feature data and later using the model output. This is shown at the bottom of the
Figure.

The second method, zooms in on a specific city: Bushenyi, Uganda. As part of this
thesis a survey is conducted in Bushenyi, researching again indicators for water con-
sumption but also validating and extending the relationship between water consump-
tion and travel time presented in section 2.2. The methodology behind that survey is
presented in Chapter 4.

CELLS
As most of the input and all of the output of the model is described in terms of cells,
to avoid confusion, cells are defined here first. If we were to place a rectangle on the
map of Uganda and divide that rectangle in squares of 1 km2 each, each of these squares
represent a cell. In total this results in 686 x 652 cells. As Uganda does not have the
shape of a rectangle, some of these cells lie outside the country; these are automatically
excluded in all of the calculations described in this Chapter. Eventually, predictions will
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Figure 3.2: Water Point Distribution across Uganda (red circles indicate cities). Figure made with ArcGis Pro.

be made in terms of water access points per cell (e.g. 5 boreholes in this cell).

3.1. USED DATASETS
There are two types of data used in this research. One type is the training/validation
data, which contains that what will be predicted: water access (from WPDx) and travel
time ot the water source (from DHS). The second data type consists of all the different
feature layers that could potentially be predictors for water access points and travel time.

3.1.1. TRAINING AND VALIDATION DATA

WPDX DATA

Water point data is extracted from the Water Point Data exchange (WPDx1), which was
introduced in Section 2.1. The distribution of all the WPDx data across Uganda can be
seen in Figure 3.2. Note that this is the data from all the considered access types and that
for most individual access types, the nationwide coverage is not nearly as high. The dif-
ferent water access types and their counts in Uganda are shown in Table 3.1. Please note
that this is not the true distribution of water access types in Uganda, it only represents
which access types were registered for WPDx. In total there are 121 331 WPDx points in
Uganda. Which means 0.2 points per square km and 0.0043 per inhabitant, this is above
average when compared to the other WPDx countries. In Bushenyi district, there are
close to 600 WPDx points.

1https://www.waterpointdata.org/

https://www.waterpointdata.org/
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Access type WPDx points Improved Modeled

Borehole 36758 Yes Yes
Packaged water 1 Yes No
Piped Water 124 Yes Yes
Protected Shallow Well 1632 Yes Yes
Protected Spring 28161 Yes Yes
Rainwater Harvesting 18624 Yes Yes
Sand or Sub-surface Dam 1 Yes No
Surface Water 535 No Yes
Undefined Shallow Well 18260 Unknown No
Undefined Spring 18 Unknown No
Unprotected Shallow Well 323 No Yes
Unprotected Spring 239 No Yes

Table 3.1: The considered Ugandan water access types and their number of presences in the WPDx database,
whether or not these are considered improved/unimproved by WHO (2017), and whether these are modeled
in this thesis.

The research by Yu et al. (2019) extrapolated Kenyan water point data of Surface Wa-
ter and Unprotected Dug Wells in two separate models. In this research this is expanded
to all water sources displayed in Table 3.1, excluding the sand surface dam, packaged
water and the two unknown facility sources. The first two are excluded because the data
sets are too small and the latter two because it is important to predict whether access is
deemed protected or unprotected (improved/unimproved), as this gives information on
the hygienic safety of the source.

DHS DATA

Another data-set that is used, is the 2016 Ugandan Demographic Health Survey (DHS).
This contains information of 20 000 Ugandan households. It includes the households
travel time to the water source, primary drinking water access type, wealth index, house-
hold size and much more. For privacy concerns, this data was grouped into 600 clusters.
Every cluster has a GPS location and every data point (containing household informa-
tion) in the cluster, falls within a range of that location, i.e. 2 km in urban and 5 km
in rural settings. This is visualised in Figure 3.3. This results in difficulties when using
the clustered data as each cluster spans multiple cells and because within many clus-
ters, the standard deviation of travel time to water source is high (Mean SD = 29 min.).
However for validation purposes, it is possible to validate on the mean travel time of the
households in a cluster. Besides validating on the travel time, model predictions on the
number of presences of water access types can be compared to the DHS reported usage.
For this Spearman’s rank order correlation is used to find if and how strong the average
number of users per cluster cell is correlated with the number of predicted presences by
the model.
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Figure 3.3: Schematic of DHS cluster, in urban and rural areas the radius is 2 and 5 km. respectively. All of the
households (orange) receive the same coordinate but in fact are displaced multiple kilometers from the center
for privacy concerns. Note that these DHS cluster thus span multiple of our 1 km2 cells.

3.1.2. FEATURE DATA
We selected maps holding information on environmental, geo-hydrological, socio-economic
and technological features that potentially indicate a cells suitability for (one or more of
the different) water access types. All the used feature layers and their sources can be seen
in Appendix D and summarised in Table 3.2. As machine learning models are used, we
let the models select the most suitable feature layers from the lot instead of deciding this
upfront. Much of the motivation for choosing these feature layers is in Table 3.2, and to
more detail in the Literature Review (Chapter 2).

All maps are resampled to a 1 km2 (= 1 cell) resolution using ArcGis Pro. Most maps
have that or a higher resolution. During resampling, for numerical data bilinear inter-
polation is applied and for categroical data nearest neighbour resampling. All the used
feature datasets are freely available from the listed sources making this method accessi-
ble for all and reproducible.

CORRELATIONS

As suggested in Merow et al. (2013), to reduce colinearity, the feature layers are checked
for correlation. This is done using Pearson’s R for numerical to numerical data, Cramer’s
V for categorical to categorical data and η2 for numerical and categorical data. It was
found that groundwater productivity and groundwater storage were correlated (Cramer’s
V = 0.68) and secondly the euclidean distance to roads and to residential areas was cor-
related as well (R>0.7). The euclidean distance to roads as well as the groundwater pro-
ductivity layer were therefore removed from the set of feature layers.

3.1.3. EXPECTED TOTAL NUMBER OF WATER ACCESS POINTS
The DHS is representative for the entire nation (Uganda Bureau of Statistics, 2018) and
it holds information on the primary access type of each household. With this, Figure
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Feature layer Reason to include Data type
Euclidean distance to inland water The proximity of water relates to

water access.
Numerical

Euclidean distance to residential
areas

Where people are there is often wa-
ter.

Numerical

Euclidean distance to cities Cities are expected to have better
water access.

Numerical

Groundwater storage Presence of groundwater is needed
for some access types.

Categorical

Slope Can influence the suitability of ter-
rain for water access types.

Numerical

Soil texture Can influence the suitability of the
terrain for water access.

Categorical

Urbanisation Urbanised and less urbanised ar-
eas allow for different water access
types.

Categorical

Topographical Wetness Index Can influence water proximity. Numerical
Population density Dense and less densely populated

areas allow for different water ac-
cess types, besides people tend to
live where water is present.

Numerical

Land cover Different land cover types could al-
low for different water access types.

Categorical

Monthly average precipitation Essential for rainwater harvesting
but could also influence other
sources.

Numerical

Poverty Richer households tend to have
better water access.

Numerical

Depth to groundwater Presence of groundwater is needed
for some access types.

Categorical

Groundwater productivity Presence of groundwater is needed
for some access types.

Categorical

Population change 1990-2014 Areas that urbanized very quickly
have sometimes worse water ac-
cess.

Numerical

Increased nightlight 1992-2013 Same as above Numerical

Table 3.2: he feature layers used as water access point predictors in the models, the reason to include them and
their data type. For a more detailed overview including sources, see Appendix D.
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3.4 presents the distribution of the access types in the urban and rural setting. Gener-
ally, boreholes are used both in rural and urban settings while piped access is a lot more
common in the urban settings, as we would expect (see Figure 2.5 as well).

However, it would be too simple to conclude from Figure 3.4, that 50% of the rural
Ugandan access types are boreholes. Different access types can serve different amounts
of persons. For example, a piped connection will usually only serve the household while
a publicly accessible borehole will serve a lot more people. In order to get to the average
number of persons that each access type serves, the WPDx data is included. For clarity,
an example using boreholes is presented below.

Figure 3.4: Share of population using the various access types in Uganda. Figure made for this thesis from the
DHS data.

First, under the assumption that for each cell with WPDx data we have all access
points, we divide the cells population (Popi ) by the total number of presences in the cell
of all types (NW pd x,i ) (i.e. number of boreholes plus number of springs etc.):

Popi

NW pd x,i
=UW pd x,i (3.1)

In which i represents a cell. This gives us the number of people per WPDx point
in the cell (UW pd x,i ), i.e. the average number of users per water access point per cell.
Next we take, per access type (boreholes in our example), the average of all the cells
where presence of the target type is recorded. So let Ubh be the subset of UW pd x where
boreholes were recorded, then:

Sbh = Mean(Ubh) (3.2)

This gives us the average number of people a borehole serves (Sbh). This is done sep-
arately for the urban and rural setting such that we have Sbh,ur ban and Sbh,r ur al . Next, by
using the information from Figure 3.4 we get the total number of persons using a bore-
hole in the urban (Pbh,ur ban) and rural (Pbh,r ur al ) setting. This is divided by Sbh to get to
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the total expected number of presences of each access type:

Total expected borehole presencesx = Pbh,x

Sbh,x
with x in [ur ban, r ur al ] (3.3)

The results per access type can be seen in Table 3.3. It is difficult to validate these num-
bers but the fact that similar amounts of persons sharing the same access type in both
urban and rural settings are found, is encouraging. This shows that there is, as one would
expect, some limit on the number of persons that can access one source at the same
time.

Access type (AT) S AT,ur ban Total pres. (U) S AT,r ur al Total pres. (R)

Borehole 74 28857 73 303898
Packaged water NaN NaN 27 0
Piped Water 38 64296 46 31014
Prot. Shall. Well 76 8446 80 40523
Prot. Spring 167 5360 132 35101
Rainwater Harv. 67 1848 58 11068
Surface Water 39 5364 37 141120
Unp. Shall. Well 112 3974 159 31681
Unp. Spring 107 1451 134 15448

Table 3.3: Estimated average number of persons sharing one access point and total number of expected pres-
ences per access type in urban (U) and rural (R) setting

3.2. PREDICTING WATER ACCESS POINT DISTRIBUTION
As the WPDx data does not cover the entire nation, the aim is to fill this gap by build-
ing models that can predict the presence of water access points in areas that have not
been surveyed for WPDx. As this is done per access type, this also gives insight into the
variety of water sources that is used by households. Yu et al. (2019) showed that it is pos-
sible to use predictive feature data such as described in Section 3.1.2, and a biological
species modeling technique called MaxEnt to predict the relative probability of finding
water access points (WPDx data) in cells. MaxEnt is said to match or outperform other
species models (Elith et al., 2006) (Tognelli, Roig-Juñent, Marvaldi, Flores, & Lobo, 2009)
and software is freely available2. However, as Botella et al. (2018) proved that NNs can
outperform MaxEnt in species modeling settings and because NNs are known to find so-
lutions for very complex non-linear problems (Kingma & Ba, 2014), (Botella et al., 2018),
e.g. in Heijden et al. (2021), it was decided to build several NN models as well. These are
inspired on the MaxEnt technique but are expected to outperform MaxEnt as NN allows
for the modeling of more complex nonlinear behaviour. On top of that, two major im-
provements to the MaxEnt technique are made, namely the inclusion of the total number
of expected presences, allowing for predictions of the absolute number of water access
point presences in a cell instead of MaxEnts relative probability output and secondly,

2https://biodiversityinformatics.amnh.org/open_source/maxent/

https://biodiversityinformatics.amnh.org/open_source/maxent/
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the introduction of two evaluative parameters that capture the predictive power of the
models much better than the for MaxEnt (and similar) commonly used AUC operator.

3.2.1. CLASSIFYING CELLS WITH NEURAL NETWORK MODELS (M1-M4, M7)
The first model discussed is a classifier model. They are referred to as classifiers as they
were originally designed to learn how to assign a class label to examples from a problem
domain. An easy to understand example is classifying emails as “spam” or “not spam”
(Brownlee, 2020). The input of such a model would be characteristics of the email that
act as predictive features for either a "spam" or a "no spam" classification. The primary
output of such models is the probability of an email containing "spam" or "no spam"
and once this probability exceeds a certain threshold θ, the model classifies it as being
"spam" or "no spam". In our case, at first instance we want the probability of finding
a water access point (e.g. a borehole) and are therefore not interested in the actual bi-
nary classification (a borehole or no borehole), but in the predicted probabilities where
this classification is based upon. The models are build per access type such that there is
a model for boreholes, a model for piped water access, a model for protected springs, etc.

The models use the feature data, which all have nationwide coverage, to predict the
nationwide presence of water access points (which do not have nationwide coverage).
The models do so by finding the (feature) characteristics that belong to a presence lo-
cation (e.g. rainfall allows for rainwater harvesting). Mathematically, the objective is
to model the probability distribution of presence locations conditional on the features.
This is denoted by:

p(y = 1|X ) = p(X , y = 1)

p(X )
(3.4)

Using Bayes’ rule this becomes:

p(y = 1|X ) = p(y = 1) ·p(X |y = 1)

p(X )
(3.5)

In which p(X |y = 1) is the probability density function of features at presence lo-
cations, and p(X ) the probability density function of features across the whole study
area (Elith et al., 2010). Without reliable presence-absence data (see Section 2.1.1), the
probability of a randomly selected cell to contain a presence (p(y = 1)), is unknown (Li,
Guo, & Elkan, 2011). For lack of presence-absence data, species modelers often model
presence-background data. For such models, the features at presence locations are com-
pared to the features at randomly selected background locations. These background lo-
cations are treated as absence locations (y=0) but in fact this is uncertain as p(y = 1) is
unknown and thus some background locations are in fact unregistered presence loca-
tions. This method does however allow for modeling the ratio:

p(X |y = 1)

p(X )
= p∗ (3.6)

which is denoted from now as p∗ and to which will be referred to as the relative proba-
bility. The relative probability differs only from the probability distribution of presence
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locations conditional on the features (p(y = 1|X )) by the constant p(y = 1) (Li et al.,
2011).

To model this relative probability, the model used is a neural network in the form of
a Multi-Layer Perceptron (MLP) classifier. This is a so called machine learning model
and therefore needs training before it can be applied to predict water point presences.
During training, each model uses 70 % of the WPDx data (per access type meaning that
for the borehole model, only the borehole data is used). As the WPDx data is presence
only data (see Section 2.1.1), these presence locations are compared to a randomly se-
lected background sample which is four times the size of the WPDx data of that access
type; i.e. if there are 100 presence locations, 400 background points are selected from
all the cells in which no presence (of all access types) is recorded (also called pseudo-
absence points). It is acknowledged that this ratio of background and presence locations
is somewhat arbitrary which is why a small sensitivity analysis is presented in the Result
Chapter. The used ratio was found to perform satisfactory after a quick optimisation,
during which it was found that too many background points would result in overfitted
data as very few locations get assigned high scores by the model, too little background
points would overestimate the number of presences and allows for little distinguish-
ing power of the model. The ideal number of background points is a subject of debate
in the species modeling field and really depends of the rareness and circumstances of
the species (Sofaer, Hoeting, & Jarnevich, 2019) (VanDerWal, Shoo, Graham, & Williams,
2009). For now, this is considered out of scope and we will continue with the ratio of 1:4,
however, this could be optimised in later work.

In the explanation below, these background points are treated as if these locations do
not contain presences of the modeled access type but again, this is in fact unknown. Dur-
ing training, the model tries to find the values (or mathematical transformations of these
values) of the feature layers (from Table 3.2) that are positively associated with presence
locations and negatively with background locations. More technically, the model trains
by minimising the log loss function using the stochastic gradient-based optimizer as de-
scribed in Kingma and Ba (2014). The most common classifier loss functions are the Area
Under the Curve (AUC) function and the log loss function. The latter is chosen because
AUC is a relative measure of internal ordering, rather than an absolute measure of the
quality of a set of predictions (Danneman & Clauser, 2020). The log-loss reads as

logloss =− 1

N

N∑
i=1

[
yi ln pi +

(
1− yi

)
ln

(
1−pi

)]
(3.7)

in which y is the binary true value (1 for presence, 0 for background), p the predic-
tion probability (between 0 and 1, from Eq. 3.10) and N the total number of samples
(Dembla, 2020). Now this function minimises when low probabilities (p) are assigned to
cells containing no presence (y=0) and high probabilities to cells containing one or more
presence points (y=1). This method is conveniently available through the Scikit Learn
package in Python (Pedregosa et al., 2011).

To explain the model in more detail, the following example is largely taken from the



3.2. PREDICTING WATER ACCESS POINT DISTRIBUTION

3

25

Scikit-Learn-Documentation (n.d.). The MLP classifier is visualised in Figure 3.5. The
model is trained to predict the probabilities of presence using the aforementioned fea-
ture layers X = x1, x2, ..., xm in which m is the number of feature layers. In each hidden
layer of the model, each neuron applies a weighted linear summation to the values of
the previous layer: w1x1+w2x2+ ...+wm xm (W X ) and after that a non-linear activation
function:

g (·) : R −→ R (3.8)

Both these non-linear activation functions and the weighted linear summations are changed
in order to minimize the loss function using back-propagation. If we have a data set of
(X1, y1), (X2, y2), ..., (Xn , yn) in which X represent the feature layers, n the number of cells
and y a presence (y=1) or background location (y=0). Then, if we would have a model
with one hidden layer consisting of one neuron the model learns:

f (X ) =W2g
(
W T

1 X +b1
)+b2 (3.9)

to the data. In there, W1 ∈ Rm , corresponding with the number of feature layers (m) and
W2, b1, b2 ∈ R1. W1,2 represent the respective layer weights of the input and hidden layer
and b the bias added to the hidden and output layer. In reality we have a variation of
models with either one or two hidden layers with different amounts of neurons. Lastly,
in the output layer, f (X ) passes through a logistic activation function of the form:

g (z = f (X )) = 1

(1+e−z )
= p∗ (3.10)

giving the relative probability estimate of presence (Scikit-Learn-Documentation, n.d.)
(Lecun, Bottou, Orr, & Müller, 2000) used in the logloss function (Eq.3.7). Because of the
use of presence-only data, the output from Eq. 3.10 is relative to p(y = 1), see Eq. 3.5 &
Eq. 3.6 and accompanying explanation.

Lastly, the importance and predictive power of the several feature layers is analysed
using Sklearn’s per_mutation_importance function. This shows per feature layer, its
contribution to the score of the loss function (Eq. 3.7).

HYPERPARAMETER OPTIMISATION

Sklearns MLPclassifier has multiple hyperparamaters including the number of hidden
layers, an overfitting penalty and a number of options regarding activation functions, see
Table 3.4. These hyperparameters are optimised using the Hyperopt package (Bergstra,
Yamins, & Cox, 2013). In total, 200 parameter combinations are explored with 5-fold
cross-validation. For this, the model training set is split up in five equal sized parts
(hence 5-fold), trained on four of these and evaluated on one. This is repeated five times
such that in the end every separate part is used once as the evaluation set. This gives
information on how the model is expected to perform when used to make predictions
on data not used during the training of the model. The best performing model is used
to assess the results. The latter is done on a 30% evaluation data set that was kept apart
during training (also not included in 5-fold cross-validation).
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Figure 3.5: A multi-layer perceptron with one hidden layer, [X1, X2, ...Xn ] represent the feature layers from
Table 3.2. The hidden layer is formed by [a1, a2, ..., ak ] which individually represent a weighted linear summa-
tion to each of the values of the previous layer: w1 X1 +w2 X2 + ...+wm Xm (W X ) combined with a non-linear
activation function (Eq. 3.8) (Scikit-Learn-Documentation, n.d.).

Parameter Options

hidden_layer_sizes (5,), (10,), (20,), (30,), (40,), (50,), (60,), (70,), (80,),
(90,), (100,), (5,5), (10,10), (20,20), (30,30), (40,40),
(50,50), (60,60), (70,70), (80,80), (90,90), (100,100)

activation ’identity’, ’logistic’, ’tanh’, ’relu’
solver ’adam’
learning_rate ’constant’, ’invscaling’, ’adaptive’
l1_ratio 0.0, 1.0
max_iter 500, 1000, 2500

Table 3.4: Hyperparameters of Sklearns MLPClassifier and MLPRegression model. During training, 200 com-
binations of above parameters are tried and evaluated. The best performing combination was used to evaluate
the model. Hidden layer sizes of (50,50) should be read as two layers with each fifty nodes.

SCALING THE RELATIVE PROBABILITY TO PREDICT NUMBER OF PRESENCES

To predict the total number of expected presences, the relative probability is scaled using
the total number of expected presences (described and presented in Section 3.1.3), such
that:

Pi = Ptot al∑N
j=1 p∗

j

p∗
i (3.11)

For instance, to scale the relative probability output of the borehole model, then Pi is the
number of boreholes predicted in cell i , Ptot al the estimated total number of boreholes
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in the study area (Section 3.1.3) and p∗
i the relative probability of a borehole presence

per cell coming from Eq. 3.10. By using the information that some water access types
are more present than others, it is possible to describe the variety of water access types
in cells and their expected presences across the study area in approximate but absolute
terms (not relative). This is an improvement compared to Yu et al. (2019), who stop at the
relative probability. At the same time, this improvement suggests a method to deal with
one of the biggest limitations of presence-only species modeling (Merow et al., 2013). It
would unfortunately be difficult to apply this in biological species settings as estimation
of the total presences might not be possible and species occurrence is (at least for ani-
mals) a lot more dynamic than static water points.

3.2.2. BACKGROUND SELECTION USING WEIGHTED BACKGROUNDS (M2)
For a second configuration of the MLP classifier model, the presence locations are com-
pared to background locations which are expected to be less likely to contain presence
locations. In that way, the background locations do resemble true absence locations
more than if they are selected randomly. This is done by distributing the total number
of expected sources (see Section 3.1.3) across the study area based on the population
density and the share of the population using the different sources (for urban and rural
settings separately) as seen in Figure 3.4. Mathematically this means:

N Pi ,pr = Ptot al ·
Popi∑N

j=1 Pop j
(3.12)

If again take the example of boreholes is used, Ptot al is the total number of expected
borehole presences (Table 3.3), Popi is the population size of cell i , the denomina-
tor represents the total population of all cells (= the population of Uganda) and finally,
N Pi ,pr is the number of boreholes expected in cell i based on the population density and
the share of the population using these sources in urban and rural settings (Figure 3.4).
By applying this to all cells and all access types, we get the prior expectation of the distri-
bution of the different sources: areas with less people are expected to have fewer water
access points. This expectation of the distribution will be referred to as the background
files. Again, note that there is a background file for each access type. Two examples can
be seen in Figure 3.6.

In the initial case (M1), background locations were selected randomly from all the
cells that contain no WPDx points (again, which could be a result of an area not being
included in WPDx related surveys). Now, background locations are selected randomly
again but this time the cells are weighted such that cells with a higher weight have a
higher probability of being selected. The weights of each cell (Wi ) are constructed by di-
viding 1 by the background file, such that cells that are expected to contain no presences
get a higher weight than cells in which we do expect presences:

Wi = 1

N Pi ,pr
(3.13)

Cells that are expected to have zero access points (since people would not live there),



3

28 3. MODELING METHODS

are given the highest weight of the other present cells (instead of ∞). Also this time, the
weighted selection happens from the cells of which there is no presence recorded.
A risk with this method is that the model becomes too dependant of the population den-
sity. If only populated cells are compared to non-populated cells, the model might turn
out to be only a predictor of the presence/absence of people instead of distinguishing
cells with or without water access. Too dampen this effect, the population density fea-
ture layer is not included in this model. However, it is important to monitor the created
bias when assessing the results.

Figure 3.6: Piped water background file (left): the prior expectation of the distribution of piped water access
in Uganda. Right: Borehole background file: the prior expectation of the distribution of boreholes in Uganda.
Conveying with Figure 3.4, Boreholes are expected to be present in both rural and urban settings, where piped
water is solely present in urban areas.

3.2.3. SEPARATE MODELS FOR URBAN AND RURAL AREAS (M3)
For a third configuration of the MLP classifier, a division is made of rural and urban
areas. The reason for this is that the 2016 Uganda DHS showed that in general, people in
urban areas have better and safer water access than people living in rural areas (Uganda
Bureau of Statistics, 2018). This is something that is seen in many countries in the global
South (JMP & WHO, n.d.). For this configuration the WPDx - and background data is
split into urban and rural data. For each access type, a separate MLP classifier model is
trained and optimized on the urban and rural data separately, resulting in two models
for each access type. Their performance is assessed both separately, to see if urban or
rural models perform better separately, but also together to compare it to the output of
the other models.

3.2.4. TRAINING ON HALF THE COUNTRY (M4)
For a final MLP classifier setup, the model is trained on the Southern half of the country
and evaluated on the Northern half. This will give insight into the scalability to other
countries and the importance of geographical locations. To do so, the presence locations
from the North are excluded from the model training set. Naturally, also no background
locations are selected from the Northern cells.
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3.2.5. MAXIMUM ENTROPY MODEL (M7)
Mainly to validate results from Yu et al. (2019), their Maximum Entropy method is in-
cluded as well. For the exact method behind this we refer to their work. But for a quick
understanding, it is sufficient to know that it is very comparable with the MLP Classifier
method except that it minimizes a slightly different loss function and has less options
with regards to the possible mathematical transformations of its regression coefficients.
One important difference with Yu et al. (2019), is that this time, for fairness of compar-
ison, the number of background locations is set to four times the number of presences
(like in the other models) instead of the default 10.000 background locations in MaxEnt
(which is what Yu et al. (2019) used).

3.2.6. ACCESS DENSITY REGRESSION NEURAL NETWORK MODEL (M5)
Instead of solely assessing the presence or absence of water access points, it is also pos-
sible to model the expected density of water access points in a cell. With this the number
of access points that is expected in a cell is modeled directly. This is similar to the final
step of the classifying model described in Section 3.2.1, where the probability multiplied
was scaled with the total number of expected presences, but this time a regression is ap-
plied to the density WPDx data. For this density data, for every presence cell also the
number of presences is recorded. So if there are 4 boreholes recorded for WPDx in a cell,
the density data-point for that cell is 4. The model thus directly predicts the number of
presences expected in a cell without using the total number of expected presences (from
Section 3.1.3). Naturally, the latter can be used to evaluate the models performance by
controlling whether or not the two models come to similar amounts. To prevent the
model from assigning presence to each cell, also for this model background cells are
added in the same way as described in Section 3.2.1.

The model is again a MLP but this time the loss function is defined as the squared
error which can be expressed as

R2 = (1− u

v
) (3.14)

in which u is the residual sum of squares and v is the total sum of squares

u =∑
(ytr ue − ypr ed )2 (3.15)

v =∑
(ytr ue − ȳtr ue )2 (3.16)

in which ȳtr ue is the mean of the true values (Scikit-Learn-Documentation, n.d.). For
this model too, the Hyperopt package (Bergstra et al., 2013) is used to optimize hyperpa-
rameters that are the same as with the MLP classifier (Table 3.4).

3.3. PREDICTING TRAVEL TIME
The literature consensus is that water consumption is primarily related to travel time.
On top of that, people with a total travel time over 30 minutes to and from their water
source are considered to have unimproved water access (JMP & WHO, n.d.). To assess
water access levels in Uganda further and to potentially model water consumption, the
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aim now is to model the households travel time. As the Ugandan DHS of 2016 reports
on travel time, it is only logical to perform a regression on this directly with the feature
data. To do so, a similar MLP regression model as the one described in Section 3.2.6, is
used. It uses the mean travel time from each cluster as training/validation data (instead
of WPDx) and the same feature layers as all other models. One difference is that because
we are dealing with clustered GPS data, with clusters of radius 2 and 5 km. for urban and
rural areas respectively, instead of taking the value for one cell (1 sq. km.), we take the av-
erage value of the feature for all the cells that fall within the cluster. A second difference
is that no background points are included in this case as the DHS mean travel time al-
ready includes travel times of zero minutes and therefore, the DHS travel time data is no
presence-only categorical data but numerical. The output of the model is the expected
travel time to and from the water source of households across Uganda.

As seen in Table 2.2, logically, water sources that are typically on premises result in
lower travel times than sources that are off premises. To research the relationships be-
tween the different access types and travel time more in depth, a second configuration
of the travel time MLP regression model is made. This has the same setup as described
above with the sole difference that instead of using the feature data, it uses the output
of the water access prediction models (Section 3.2) to predict travel time. In short, the
travel time is then a function of the predicted number of presences of boreholes, pro-
tected springs, wells, etc. Mathematically this means that on top of the feature data,
which was used to make the water point predictions, the WPDx data is now included
as well. With this, the aim is to make (hopefully) a better prediction of the DHS cluster
average travel time.

Model Description
M1 (Std. Classifier) Classifying model predicting the relative probability of finding one or

more presences of the different access types
M2 (Weigh. Backg.) M1 with weighted background selection
M3 (Urb. Rur. Split) M1 but with a separate model for urban and rural data
M4 (Half Country) M1 but trained on half the country and evaluated on the other half
M5 (Density) Regression on density WPDx data, predicting the number of presences

for each access type directly.
M6 (DHS regr.) Regression on the mean travel time of the DHS clusters
M7 (MaxEnt) Maximum Entropy model as used in Yu et al. (2019)

Table 3.5: Overview of the several models

3.4. WATER CONSUMPTION
As mentioned before, the literature consensus is that water consumption is primarily a
function of travel time (WELL, 1998). However, we hypothesize that it is a function of
many things including socio-economic characteristics and water access types and lev-
els. Many of those are researched in the survey described in Chapter 4. From a mod-
eling perspective, the hypothesis is that cells for which the model predicts a high num-
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ber of access points, are likely to averagely consume more water than cells with a low
number water access points. The number of predicted access points is obtained by the
summation of the output for all access types from either M1, M2, M3 or M4. It is ac-
knowledged that a similar comparison could also be made with the number of predicted
access points and how many persons they can serve (using Table 3.3). However, this did
not have a large effect on the results.

3.5. EVALUATING MODEL PERFORMANCE
For the performance of the models and the evaluation of results, three types of mod-
els are distinguished. One predicts travel time using a regression on the mean average
travel time of the DHS clusters directly (M6). The classifier models predict, for each ac-
cess type, the distribution of water access points across Uganda and give as initial output
(which we will evaluate first) the relative probability of presence of e.g. finding a bore-
hole in a cell (M1-M4, M7). The third type is again a regression and directly predicts per
access type the number of presences in a cell. Note that when we are talking about mod-
els of the latter two types, each model consists of 8 separate models, one for each access
type listed in Table 3.1. Different models require different evaluative parameters. These
are explained below. All models are trained on 70% of available data but evaluated only
on the remaining 30% test data to prevent overfitting.

TRAVEL TIME PREDICTION FROM DHS (M6)
The regression model that predicts the mean travel time of clusters across Uganda is
primarily evaluated using the mean absolute error (MAE) of the travel time prediction.
Defined as,

MAE =
∑N

i=1

∣∣yi − ŷi
∣∣

N
(3.17)

in which y are the prediction values, ŷ the true values and N the sample size. Besides
that, the median absolute error (MDAE) will also be reported as it is less sensitive to
outliers. This is defined as

MDAE = Median(|yi − ŷi |) (3.18)

THE CLASSIFYING MODELS (M1-M4, M7)
For classifying models and especially in species modeling, the most common evalua-
tive parameter is the Area Under the ROC Curve (AUC) operator. In short, the AUC can
be seen as a comparison between the true positive rate (share of predictions exceeding
threshold θ correctly) and false positive rate (a presence prediction on an absence loca-
tion). It measures the ability of the model to distinguish between presence and back-
ground locations, but note that this is different from presence absence locations and
therefore has different implications with respect to the traditional interpretation of the
results (Li et al., 2011) (Phillips et al., 2006). Jiménez-Valverde (2011) argued that if the
objective is to predict and evaluate estimations of potential distributions, the AUC is
useless. The main reason that it is not used in this thesis is because the AUC places an
equal weight on the true positive and false positive rate and therefore different num-
ber of background locations can cause similar AUCs but different distributions: when
a high number of background points is created by the user (with binary value 0), and
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it is compared to a low number of presence points, the model will automatically assign
a low value to most cells. This will result in low true positive rates as of most presence
cells the prediction score will not exceed the threshold. For the same reason, this results
in a low false presence rate. This is vice versa for a low ratio of background locations
versus presence locations. As both the true positive rate and the false presence rate are
weighted equally, the AUC will not change for the number of background locations. One
can imagine however that the number of background locations does influence the dis-
tribution of presences, which is exactly the reason to assess the impact of the number
of background locations in a sensitivity analysis and to evaluate the models by means of
two other parameters.

Therefore, instead of using the AUC, the classifying models in this thesis are evalu-
ated using a presence - and false presence score, which are introduced here. Let l1 be the
number of relative probability predictions (p∗, Eq. 3.10) on presence cells larger than a
threshold θ and n the number of presence locations. Then the presence score (PS) is
defined as

PS = l1

n
(3.19)

Similar for the false presence score (FPS) we have: let l2 be the number of background
cells (no known presence) that get assigned a value larger than the same threshold θ, and
s be the number of background cells, then:

F PS = l2

s
(3.20)

The PS gives information on the ability of the model to predict presence locations given
the feature data evidence (which is what we want), the FPS tells us whether or not a high
PS score is only there because all cells are assigned large values and therefore gives infor-
mation on the distinguishing power of the model. As there are now two separate scores
(instead of the sole AUC), this allows for a better comparison of the performance of the
model where one can not make up for the other, contrary to AUC. Both scores are be-
tween 0 and 1. For the PS the highest score is 1 meaning that all presences were correctly
predicted. The best score for the FPS would be 0 in a presence absence scenario as this
would mean all absence locations received lower scores than the threshold. However in
the presence-only case, some presences are expected in the background locations mean-
ing that the perfect FPS in a presence only model is probably not zero.

It is acknowledged that the choice for the threshold might feel arbitrary, and that ac-
cess types that we know to occur less often should perhaps receive a higher threshold.
But, as all the models receive a similar ratio of presence and background locations, a
constant threshold allows for proper comparison between models. Furthermore, even-
tually the relative probability output will be scaled with the total number of presences
(Section 3.2.1), dealing with the relative probability output problem and not containing
any threshold.
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PRESENCE DENSITY PREDICTION (M5)
The third model makes a prediction for the number of presences of each access type in
each cell. For this modeling method again, the PS and FPS are reported but also the MAE
for both presence, background and the combination of presence and background.





4
SURVEY METHODS

The model approach as explained in the previous Chapter, primarily gives a nationwide
impression of water access (and potentially travel time and water consumption). How-
ever, the output is coarse or aggregated and will not give a lot of information on the often
complex dynamics of water access and consumption in communities. In order to gain
a more detailed understanding of these dynamics but also to generate more detailed
validation data for the model, a survey campaign was held in the Bushenyi-Ishaka mu-
nicipality in Uganda.

More specifically, the survey researches the relationship between travel time and wa-
ter consumption from Figure 2.3. Furthermore, the survey looks into the behavioural as-
pects of households not using the closest water source as their primary water source and
why that is. Besides that, a number of questions relate to the households socio-economic
status of which some could be linked to water consumption and/or travel time. One
great benefit of surveying in this area is that in most cases water is collected and paid for
per 20L jerrycan, this gives the respondents a much better understanding of their daily
water consumption then in other comparable settings.

This survey campaign is a fruit of the collaboration between TU Delft Water Man-
agement Department and the Department of Environmental Management of Makerere
University (Kampala). It has the ethics approval of both the Human Research Ethics
Committee (HREC) TU Delft and the Makerere University of Social Sciences Research
Ethics Committee (MAKSS REC). Please see Appendix E for the approval letters.

4.1. SURVEY DESIGN
The survey consists of five sections. The first gathers information on the households size,
location and economic status. The second section is on the daily total water use, the va-
riety of used sources and the total daily travel time to and from these sources. Next,
as many households in Bushenyi-Ishaka municipality make use of a variety of water
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sources on a daily basis, a distinction is made between the Primary Water Source (PWS),
the Closest Water Source (CWS) and the Drinking Water Source (DWS) (see Figure 4.1).
The PWS is the source the household takes the most water from for domestic use on a
daily basis. On this PWS, information is gathered such as the water volume taken per trip,
the travel time but also the perceived quality and purpose. Dependent on whether or not
the PWS is different from the CWS and/or DWS, similar questions are asked for the CWS
as well as the DWS. In that way the potentially three different sources can be compared
properly. In other words: the final three sections of the survey consist of sections for the
PWS and, if applicable, the CWS and DWS respectively. Perhaps superfluously, but this
means that for all households information is gathered on the PWS, however, as the PWS,
CWS and DWS are for many households the same, the latter two sections are sometimes
skipped. Most questions are either multiple choice, with the option to select multiple
options. Sometimes, respondents are asked to fill in an integer, e.g. the daily travel time
to collect water in minutes. The questions were written in English but if needed orally
translated into Runyakore, which is the most widely used language in Bushenyi district.
If available, the interview was conducted with the self identified household head but if
absent, another adult would suffice. Participants were compensated for their time with
the symbolic compensation of a bar of soap. Please see Appendix F for the full list of
survey questions and optional answers.

Figure 4.1: Visual of the Primary Water Source (PWS), Closest Water Source (CWS) and Drinking Water Source
(DWS).

Cells were selected based on two criteria: Firstly, in discussion with local experts,
cells were selected that would contain different water sources, are from both urban and
rural areas and would represent households with different socio-economic status and or
jobs. Secondly, the area was compared with model output such that both cells that the
model would assign higher access and cells with predicted lower access, were selected.
This can be seen in Figure 4.2.

4.1.1. SAMPLE SIZE
The population size of Bushenyi district is approximately 250 thousand people (Bushenyi
District, 2020). An average household in Bushenyi consists of five persons (Marks et al.,
2020), such that the population size of interest is 50 thousand households. In order to
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obtain a sample that is large enough to be representative of the Bushenyi district, the
often cited formula by Krejcie and Morgan (1970) is used:

s = χ2N P (1−P )

d 2(N −1)+X 2P (1−P )
(4.1)

With:

χ2 = value of chi-square for 1 degree of freedom at the desired confidence level (=3.841)
N = the population size (=50 thousand households)
P = the population proportion (=0.5, provides maximum sample size)
d = the degree of accuracy expressed as a proportion (=.05)
s = the required sample size (=380 households)

Such that the minimum representative sample size is 380 households. Based on
some test comparisons on mock data to find also significant results between groups and
based on earlier survey campaigns in the region (Marks et al., 2020), this was increased
to a total sample size of 500 households, which is above the minimum from Krejcie and
Morgan (1970) and therefore sufficient.

Figure 4.2: The selected cells in Bushenyi Ishaka Municipality on map (left) and model output (right). Each cell
is approximately 1 sq. km.

4.2. DATA COLLECTION
The survey was executed by a trained and experienced team of enumerators. All the enu-
merators also participated in the study by Marks et al. (2020) in 2018 and thus knew the
area and its dynamics well. Before interviewing the respondent, the purpose of the sur-
vey was explained and written consent was acquired. Respondents were given a unique
ID that they can use to have their data removed from the database if desired. This omits
the usage of names or other identifiable information. Per selected cell, approximately
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30 households were surveyed, such that the total amount of interviews is around 500.
Households were approached by going door to door in the selected cells. Data collection
took 10 days and took place early December 2021. It is important to note that this is dur-
ing one of the two Ugandan wet seasons.

The survey tool that was used is Survey1231 which is a product of ArcGis. The enu-
merators read out the questions and filled in the given answers to limit contact (Covid)
and to prevent accidently misuse of the tool by respondents. The data was uploaded in-
stantly upon completion of the interview.

4.3. DATA ANALYSIS
The acquired data is exported to an Excel format and primarily analysed using Python.
Some visualisations are made using ArcGis Pro. For comparing means and distributions
of travel time and water usage datasets for different groups and access types, the follow-
ing procedure is followed: First the data is tested to represent a t-distribution using a
Kolmogorov–Smirnov (KS) test. If the result indicates that one or both of the datasets
(p<0.1) do not follow a t-distribution, the datasets are compared by means of a Wilcoxon
rank-sum (denoted as w). If both the datasets do follow a t-distribution, the datasets
are compared by means of a student t-test. Potential correlations are researched using
Pearsons rank order correlation. For comparing proportions of populations, a z-test is
performed.

1https://survey123.arcgis.com/

https://survey123.arcgis.com/


5
RESULTS

In this Chapter, the results of both the model and the survey are presented. To do this
orderly, a subdivision is made between the results regarding (i) water access, (ii) travel
time to the water source and (iii) water consumption. Some results will be presented
individually but as the model and survey results are from two very different scales (mu-
nicipality - gridded country respectively), also comparisons are made between the two
methodologies with regards to what information does or does not scale.

Figure 5.1: Number of presences across Uganda of Boreholes (left) and Piped Water (right) as predicted by the
M2 model. Initial relative probability model output was scaled using Eq. 3.11 to represent predicted number
of presences.

Before all, it is important to understand the primary output of the classifying models
(M1-M4, M7). Examples of the scaled output of the M2 model can be seen in Figure 5.1.
In there we can see a higher presence of both access types in cities but, where boreholes
are also predicted to be present in rural areas, piped access is not. For each of the access
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types from Table 3.1 and for each of the classifying models from Table 3.5, this output is
generated. Before any comparison between model and survey results can be made, it is
necessary to know how well the model performed on our predefined evaluative param-
eters. This is presented at the beginning of this Chapter in Section 5.1.

Finally, the demographics of Bushenyi-Ishaka municipality and the survey respon-
dents are captured in Table 5.1. A field report by the head of the survey team can be
found in Appendix C.

Variables Categories Percentage
Gender respondent (n = 517) Female 67.2

Male 32.8
Household size (n = 517) 1-2 14.1

3-4 30.6
5-6 38.8
>6 16.5

Age respondent (n = 517) 13-17 3.4
18-30 36.6
30-50 37.6

>50 22.5
Marital status (n = 517) Married 1.6

Single 20.5
Widowed 10.9

Separated/Divorced 2.6
Living together 54.9

Education level (n = 517) No education 10.9
Primary 31.4

Secondary 39.6
Tertiary 18.1

Occupation respondent (n=517) Agriculture 43.3
Handicrafts 17.3

Formal employment 9.9
Casual employment 8.5

Unemployed 8.0
Retired 0.6

Income category (n = 517) 0-100k SHS/month (Cat. 1) 29.8
100k-200k SHS/month (Cat. 2) 32.7
200k-500k SHS/month (Cat. 3) 24.4

500k-1M SHS/month (Cat. 4) 8.9
>1M SHS/month (Cat. 5) 4.3

Table 5.1: Demographic characteristics of Bushenyi survey respondents.
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5.1. MODEL PERFORMANCE
Firstly, there are the classifying models (M1-M4, M7) that initially output the relative
probability of finding e.g. a borehole in a cell (Eq. 3.6). An example of the scaled output
can be seen in Figure 5.1, here the total expected number of presences are shown instead
of the relative probability. For evaluating these kind of models, the presence and false
presence scores are used (Equation 3.19 & 3.20) that make use of the relative probability.
In Table 5.2, it can be seen that the model with weighted background (M2) performs best
on the PS and also the FPS are relatively low. The latter has to be interpreted with some
caution as the FPS is computed from the background data which consists mainly of (al-
most) non populated areas in the case of the weighted background model. These areas
are better distinguishable using feature layers such as population growth and increased
nightlight. For presence locations there is not such a bias which means that M2 is capa-
ble of predicting presence better than all the other models. However, some areas might
be receiving higher probabilities then they should purely because they are populated.
When M1 is compared to M7, it becomes clear that although the PS of MaxEnt (M7) are
relatively high, the FPS show that the model has little distinguishing power, predicting a
false presence almost half of the time. This shows that, like Botella et al. (2018) also has
shown, NN might indeed be the better option for modeling presence only data and that
the sole AUC evaluation presented by Yu et al. (2019) is limited.

M1 M2 M3 M4 M5 M7
Access type PS FPS PS FPS PS FPS PS FPS PS FPS PS FPS

Borehole .74 .34 .84 .26 .68 .26 .21 .09 .49 .17 .89 .56
Piped Water .97 .24 1 .28 .86 .33 .18 .04 .67 .29 .85 .23

Prot. Well .93 .28 .94 .21 .88 .26 .01 .03 .71 .17 .86 .25
Prot. Spring .86 .3 .95 .22 .8 .27 .36 .15 .63 .16 .87 .37

Rainw. Harv. .71 .24 .88 .23 .68 .29 .11 .09 .47 .14 .74 .42
Surf. Water .67 .36 .75 .25 .47 .21 .12 .05 .31 .09 .86 .55

Unp. Well .92 .26 .95 .19 .88 .75 .00 .11 .59 .12 .86 .21
Unp. Spring .86 .26 .94 .22 .88 .18 .00 .15 .81 .16 .81 .18

Weight. Av. .78 .3 .89 .24 .72 .27 .23 .11 .67 .17 .85 .46
Average .83 .29 .91 .23 .77 .32 .12 .09 .59 .16 .84 .35

Table 5.2: Performance of the different models on Presence Score (PS) and False Presence Score (FPS). All
scores come from the 30 % test data set that was kept aside from the models training data. The colours can
be seen as horizontal colour-bars to compare the performance of the different models per access types. PS
and FPS both form separate colour-bars. Green represents a good score relative to the other models for that
access type and red represents a bad score. Threshold for presence (θ) was a relative probability of 0.3 or
larger, assigned by the model, with exception of the density case where it was 0.5. The weights for the weighted
averages come from the number of WPDx points of each access type (Table 3.1). M1 = Std. Classifier, M2 =
Weigh. Backg., M3 = Urb. Rur. Split, M4 = Half Country, M5 = Density, M7 = MaxEnt. M6 is not included as it
predicts travel time, not water access.

Table 5.2 further shows that splitting the model in an urban and a rural model (M3),
does on average not improve the results in most cases when compared to the standard
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and weighted background case. In Appendix B.1 Table 8.1 it can be seen that in some
cases the urban model is much better than the rural or (vice versa), especially for the
surface water and protected shallow well cases. For these access types, the feature con-
ditions for presence apparently are different in urban and rural settings (see also Figure
8.5)

The results for the model trained on half the country (M4) clearly show that if the
training and test data set are from completely geographically different locations, impor-
tant information is not scaled correctly. A possible explanation is that especially cate-
gorical data (like in this case groundwater storage) is very different in the North versus
the South of Uganda. Note that the PS and FPS scores reported for M4 are from the half
it was not trained on (the North).

SENSITIVITY TO THE NUMBER OF BACKGROUND LOCATIONS

In Table 5.3 & 5.4, the output from the M1 model of three access types is shown for dif-
ferent number of background points. As expected, (too) many background points result
in both low PS and FPS, showing little predictive power with regards to presence. At the
same time, a low number of background points result in many false positives, driving up
the FPS, while not significantly improving the PS. This can also be seen in Appendix B.2
(Figure 8.3) showing different distributions of water access in Uganda for different num-
ber of background points: there, too many background points result in overfitted data
(only presence locations receive high scores) and too little background points allow for
little distinguishing power resulting in very widespread presences.

No. background points N/2 2N 4N 8N 20N
Access type PS FPS PS FPS PS FPS PS FPS PS FPS

Borehole .96 .82 .82 .47 .74 .34 .42 .10 .15 .02
Piped water .95 .80 .94 .29 .89 .23 1.0 .13 .70 .05
Prot. Spring .96 .73 .90 .40 .82 .25 .46 .09 .37 .03

Table 5.3: Sensitivity analyses to show the impact of the number of background points on the PS and FPS of
M1 model output. Too little background locations result in high PS but also high FPS (unwanted) and too
many background locations result in low PS and low FPS. N represents the number of presence locations (e.g.
number of WPDx borehole points).

Access type AUC (N/2) AUC (2N) AUC (4N) AUC (8N) AUC (20N)

Borehole .84 .84 .84 .83 .84
Piped water .90 .99 .94 .99 .98
Prot.Spring .92 .93 .93 .94 .93

Table 5.4: Sensitivity analyses to show impact of the number of background locations on the AUC. Contradic-
tory to the PS and FPS, AUC is rather independent to the number of background locations. N represents the
number of presence locations (e.g. number of WPDx borehole points).
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In Table 5.4, it can be seen that despite changing PS and FPS, the AUC remains the
same. This is misleading, especially when looking at the example output in Appendix
B.2 (Figure 8.3), and corresponding PS and FPS. As explained in Section 3.5, this can be
contributed to the fact that AUC weighs PS and FPS equally and this allows the scores
to make up for each other resulting in constant (high) AUCs. Naturally, to increase PS,
changing the threshold for presence to lower values when the PS becomes too low would
be an option. However, as the relative probability is scaled eventually using the total
number of presences and the threshold does not influence the distribution this is not
done here. Besides, keeping the threshold constant for the different access types allows
for better comparison.

DHS EVALUATION

For a second, completely independent, nationwide, evaluation of the classifying models,
the output of the models is compared to the DHS data. In the DHS, respondents are
asked about their primary drinking water source. Using the population density of the
DHS clusters, this is scaled to the average number of users per access type in the DHS
cells (note that this is the primary drinking water source only, while people are expected
to use multiple sources). The average number of users per access type in the cluster is
compared to the average number of predicted access type presences for the DHS clusters
by the models M1-M3. This is done by means of Spearman’s Rank order correlation (rs ),
and is presented in Table 5.5. Positive correlations are expected as this indicates that
higher presence predictions correlate with more people (in absolute terms) reporting to
be using the access type in the cluster.

Access Type rs (683) M1 rs (683) M2 rs (683) M3

Borehole 0.60*** 0.36*** 0.59***
Piped Water -0.10** 0.56*** 0.06
Prot. Well 0.21*** 0.29*** 0.25***
Prot. Spring 0.53*** 0.48*** 0.53***
Rainw. Harv. 0.24*** 0.16*** 0.19***
Surface Water 0.0 -0.12*** -0.14***
Unp. Well 0.07* -0.01 -0.03
Unp. Spring -0.13*** -0.09 -0.12**

Table 5.5: Spearman’s Rank Order correlation between (i) the average number of presences predicted for DHS
cluster cells by M1-3 and, (ii) the average number of access type users per cell in cluster reported in DHS.
Positive correlations are expected when a larger number of predicted presences results in more people using
the particular access type in the DHS cluster cells. M1 = Std. Classifier, M2 = Weigh. Backg., M3 = Urb. Rur.
Split. *p<.1, **p<.05, ***p<.01

A few observations here: First, it is striking that for M2 and M3, the correlation of
unprotected sources (surface water, unprotected wells and unprotected springs (WHO,
2017)) and predicted presences is negative. This can be explained by the expectation that
areas with poor access (in which more unprotected source usage is (DHS) reported), will
receive low presence predictions for all access types. Secondly, M2 has a much higher
rs for piped water than the other two models, which can be explained by the stronger
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focus imposed by the weighted background selection on urban (high population) areas
in which more piped water access is expected (as seen in the DHS reported usage in
Uganda from Figure 3.4). For boreholes this is the other way around and M1 and M3
outperform M2. As boreholes are present in both urban and rural areas (again Figure
3.4), this could indicate that the M2 model is too focused on the urban areas. Lastly, cor-
relations are generally weak (rs = 1 indicates a perfect association of ranks). This can be
a result of various things such as (i) model predictions not directly corresponding with
actual usage (no correlation present), (ii) the fact that both the model output and the
DHS statistics are averaged over the entire clusters, spanning multiple cells (Figure 3.3)
and (iii) that people make use of a multitude of water sources and reporting only on the
primary drinking water source is limited (Elliott et al., 2019) and interferes potentially
with model results. Table 5.5 is recreated for the Bushenyi data in Appendix B.3 but this
is difficult to interpret as unlike with the DHS data, it remains uncertain if the surveyed
households are a representative sample for each individual cell.

Lastly, the MLP regression on the mean travel time from the DHS clusters (M6) is
presented. Of this regression the absolute errors are shown in Figure 5.2. The model is
capable to predict the mean cluster travel time with an error under 10.3 minutes in 50 %
of the cases. Given that the average travel time of all clusters is 34 minutes, this predic-
tion is not spectacular but definitely better than an arbitrary guess. Ultimately the aim is
to come to a similar or better prediction using the scaled output of one of the classifying
models (M1-M4, M7). This will be discussed in Section 5.3

Figure 5.2: Absolute error distribution of regression on DHS clusters mean travel time (M6)

5.2. WATER ACCESS
As seen in Figure 5.1, the models M1-M5, M7 predict, per access type, the number of
presences across Uganda. To get an indication of the areas in Uganda that have high
access (many presences) or low access (little presences), the results of the several access
types are summed (i.e. number of predicted boreholes + springs + ... etc.). For the M2
model this is depicted in Figure 5.3. It becomes clear that the urban areas are expected
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to have a lot more water access points per km2 than the rural areas, some of this ex-
tends to the areas around cities. Besides, the dryer (less rainfall, low GW storage) and
poorer North has worse access than the region around Lake Kyoga and Kampala, which
is generally wetter and richer (see also Section 5.2.1). This is very similar to the results
of Nsubuga et al. (2014), who found a similar distribution of water availability per capita
(Figure 2.6) as the distribution of water access points shown in Figure 5.3. In both cases,
the North East and parts of the South West are under stress. The very South West and
North East have a lot of similar characteristics, despite that, the South West is predicted
to have a lot more access points. The most distinguishing factor here is the population
density which is between 200-300 p/km2 in the South West and mostly below 100 p/km2

in the North. But as the population density is not used in the M2 model, this is probably
made up for by the ED to roads, which also differs significantly between the two regions.

Figure 5.3: Total number of predicted presences across Uganda. This is a summation of the predicted presences
of all access types, i.e. boreholes + unprotected shallow wells + protected springs etc. Scaled output from M2:
the weighted background model.

In Appendix G the output of the M1 and M2 model is presented per access type. Gen-
erally the M2 results show high presences in and around cities, which is as expected given
the use of weighted background files for background selection. For the M1 model, the
output seems to put too little weight on the cities as for many access types, it does not
predict high presences in e.g. Kampala (with the exception of protected springs and rain-
water harvesting). In Kampala many piped connections are expected (Haruna, Ejobi, &
Kabagambe, 2005), but the M1 model does not show this, the M2 does however. Ap-
parently, adding the background files does improve the prediction of piped and other
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access types, this would correspond with Table 5.2 where it was found to perform better
also on the PS and FPS. Looking more specifically into the M2 results, it can be seen that
where piped water, shallow wells and springs are primarily present in urban areas; bore-
holes, rainwater harvesting and surface water do expand more into the more rural areas
as well. This shows that the bias towards cities of the weighted background models (M2)
can be overcome. It also corresponds with Figure 2.5, in which Uganda Bureau of Statis-
tics (2018) reported a larger share of the rural population using boreholes and surface
water (also seen in Figure 3.4).

5.2.1. FEATURE IMPORTANCE PER MODEL
In order to properly assess which features can be used to predict the several access types,
access in general and potentially travel time and water consumption, the relative con-
tribution of the feature layers to the final result of the models loss functions executed
on the 30% test set will be presented. For the travel time DHS regression (M6) this is
depicted in Figure 5.4.

Figure 5.4: Relative contribution of each feature layer to the loss function (Eq. 3.14) of the MLP regression on
the mean travel time per cluster (M6). Bars sum to 1.

It becomes clear that for M6, the feature layers related to the presence of people are
especially important (population density, increased daylight). Comparing that to the
layer importance of the water access models, which for M1 and M2 are depicted in Fig-
ure 5.5, results in a much different image. Now, the physical and geographical conditions
seem to play a much larger role. Especially the importance of rainfall for predicting al-
most all access types is interesting and could indicate that wetter areas have better water
access. Furthermore, elevation height seems to play a relatively large role in predicting
water access as well. This was also seen in the results of Yu et al. (2019) in Kenya. Al-
though describing a direct link is difficult, this could be because higher altitude areas are
less inhabited or that the terrain and steepness of higher areas make it more difficult to
access water. The proximity of cities and roads also seems to relate with the presence of
most access types.

When comparing the feature importance for the urban versus the rural models (M3),
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which can be seen in Appendix B.4 (Figure 8.5), it is striking that for the rural models, the
population density seems to have a lot more predictive power than in the urban case.
This could be explained by the fact that in urban areas, population density will not be
the differentiating factor, i.e. the population density will be similar in all urban cells.
In rural areas this is not the case as the spatial heterogeneity of population density is
generally higher in rural areas.

Figure 5.5: Relative contribution of each layer to the loss function (Eq. 3.7) for the MLP classifier with (right,
M2) and without (left, M1) weighed background selection, per access type. Bars per access type sum to 1.
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5.2.2. ACCESS IN BUSHENYI

Table 5.6 & 5.7, show the shares of the Bushenyi respondents that said to have access
to the listed access types. Generally speaking, slightly over half of the surveyed house-
holds have access to a piped connection, a rainwater harvesting system or both. Springs
and shallow wells are also often used still. When comparing it across income categories
(Table 5.6), it becomes clear that the lower income category is significantly less likely to
have a piped connection, where the higher income categories have a piped connection
significantly more often. A similar pattern can be seen for less educated respondents
compared to respondents who finished tertiary education (Table 5.6). Comparing rain-
water harvesting of income Cat. 1 to Cat. 2, it can be seen that the lower income category
is significantly less likely to make use of this technology where Cat. 2 makes significantly
more use of it. This could mean that the lowest income category simply do not have the
means to invest in such a system which coincides with Baguma and Loiskandl (2010),
who argued for subsidies to increase rainwater harvesting adaptation. As a final obser-
vation we note that the group without education, makes more use of springs than all the
other groups. This can be a source with safe access but is (almost always) a source that
is off premises, making water collection more time consuming.

Access Type General access Cat. 1 Cat. 2 Cat. 3 Cat. 4 Cat. 5

Piped 0.56 0.49* 0.56 0.57 0.67* 0.68
Borehole 0.03 0.01 0.04 0.02 0.02 0.09*
Shallow Wells 0.28 0.3 0.23 0.3 0.28 0.32
Springs 0.43 0.38 0.52** 0.44 0.37 0.27*
Surface Water 0.09 0.05* 0.12* 0.1 0.07 0.05
Rainwater 0.51 0.43** 0.59** 0.52 0.43 0.59
Other 0.04 0.06 0.02* 0.03 0.11** 0.05

Table 5.6: Share of households that said to have access to and to regularly use the listed sources (second col-
umn). The right columns represent the same but subdivided into income categories. Significantly larger or
smaller shares as compared to the total group (left column) are indicated with *p<.1, **p<.05, ***p<0.01.

Access Type General access No ed. Prim. Sec. Tert. Listed as PWS.

Piped 0.56 0.45* 0.42*** 0.6 0.74*** 0.45
Borehole 0.03 0.02 0.03 0.03 0.03 0.02
Shallow Wells 0.28 0.29 0.31 0.26 0.24 0.14
Springs 0.43 0.6*** 0.44 0.4 0.4 0.26
Surface Water 0.09 0.05 0.1 0.09 0.06 0.04
Rainwater 0.51 0.55 0.44* 0.54 0.53 0.07
Other 0.04 0.05 0.06 0.03 0.02 0.03

Table 5.7: Similar as Table 5.6, but this time comparing the educational level to the general access. The most
right column displays the share of households that indicated the listed access type as Primary Water Source
(PWS).
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Of the surveyed households in Bushenyi, 75% says to make use of a protected or from
contamination monitored source for their daily drinking water supply. Of the group us-
ing a protected drinking water source, 95% treats the water nonetheless with boiling the
predominant method (95 %). In the unprotected source user group, 8% reported to not
treat the water. If we analyse this further, it turns out that the higher educated groups are
more likely to have safe water access. Comparing the group with no or a primary educa-
tion (n=218) of which 68% has protected access, to the group with secondary education
(n = 205, prot. access = 78%), results in z(421) = 2.4, (p<.01). Similarly, the tertiary group
(n=94, prot. access = 85%) has significantly more protected access than the secondary
group (z(197)=1.3, (p<.1)). This coincides with results of Armah et al. (2018), who also
showed that higher educated households have safe water access more often. Although
further research would be needed to confirm this, there are two possible explanations:
first that people that have had more education, have learned more about the dangers
of untreated water (see below). But secondly, other research has suggested that people
with bad access (and especially girls who are often responsible) have to travel further
and thus have less time for school and drop out sooner (WASH, 2014), sadly making it a
self-perpetuating process.

Similarly, the higher income groups in Bushenyi make significantly more use of pro-
tected drinking water sources than the lower income categories, increasing from 65% in
the lowest category to 91% of the upper two categories (>500k SHS/month). This coin-
cides with findings Armah et al. (2018) but also in Mahama et al. (2014), Adams et al.
(2015) and more. In Bushenyi it can be explained by the fact that the most predominant
available safe source: piped water access, is at the same time the only paid source, which
is often too expensive for lower income categories.

MODEL PERFORMANCE IN BUSHENYI VARIES PER ACCESS TYPE

Table 5.8 shows how capable the model is of distinguishing cells in which usage of the
listed access type was reported from cells in which this was not reported. Here it is
expected that the classifying models (such as M1) predict many borehole presences in
cells comprising households that report to use boreholes, and little borehole presences
for cells in which this was not reported. In total, 63 cells were surveyed, subsequently,
households located in the same cell, receive the same score. The latter could create a
bias towards the more surveyed cells, this effect is mitigated however by the fact that per
cell the variation in types of water sources is often high.

The models for piped water access, rainwater harvesting and shallow wells perform
rather well, assigning significantly higher predictions to cells where these access types
are used. This shows that in Bushenyi features are distinguishable enough for the model
to predict the (non)-presence of these access types. It is noticeable that these three
access types are used by a large share of the households too, probably providing large
enough samples to make a significant comparison. More visually, in Figure 5.6, the M1
piped water model scores and the reported usage of piped water is depicted, showing
visual proof that in general households having less or no access to piped water, indeed
lie in cells that get assigned low scores by the model. Similar figures for the other access
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types can be found in Appendix H.

For boreholes and surface water access, the model seems to underperform but it is
not possible to draw statistical conclusions. For springs however, the model seems off,
assigning significantly lower predictions to cells in which households report making use
of springs. This could mean the model is off or can be explained by the fact that peo-
ple might travel outside their cell to a spring. The latter would make sense as Marks et
al. (2020), the survey results and local team reported a preference for springs for cul-
tural traditional, taste and cost reasons. It is also striking to see the low number of pres-
ences predicted by the rainwater harvesting model, especially when compared to the
high number of households reporting using it. This can be explained by two factors,
firstly the total expected presence could be off (Section 3.1.3) but it is also very much
possible that this is a result of the fact that surveying happened during the wet season
in which an abundance of rain is available (and that the general critique on water access
surveys (such as DHS) is that they happen during dry seasons (Elliott et al., 2019)).

In Section 5.2.1 and Figure 5.5, it was shown that poverty, precipitation and elevation
are important drivers of water access on the nationwide scale. Likewise in Bushenyi, we
find that the North East region has a higher altitude and a larger share of households with
lower incomes and at the same time, worse water access i.e. less protected water sources
and less piped connections (see also Figure 5.6). The poverty aspect came back in Table
5.6 as well, where it was shown that the households with lower incomes have worse and
unsafe water access more often. This is an indication that such aspects properly scale.
The precipitation in and around Bushenyi-Ishaka has logically very little heterogeneity
and therefore no further analysis is performed.

Acc. Type HHs using Avg. mod. pr. HHs not using Avg. mod. pr. w p

Piped 288 2.53 229 1.65 4.72 0.00
Rainwater 263 0.15 254 0.14 2.61 0.01
Borehole 15 1.00 502 1.06 -0.89 0.37
Shallow Wells 143 1.40 374 1.18 3.42 0.00
Springs 224 1.08 293 1.15 -1.85 0.06
Surface Water 44 0.88 473 0.99 -1.25 0.21

Table 5.8: Comparison of average predicted presences by M1 between Bushenyi households reporting using
or not using the listed access type. Note that the model scores are from a gridded 1 sq. km. output meaning
that multiple households get assigned the same prediction. In total there are 63 different model cells surveyed,
resulting per access type in a total of 63 possible model scores of the households.

THE COMPLEXITY OF PIPED WATER ACCESS

A lot of households that listed a piped access connection as their PWS, have only recently
been connected to the network. As part of a National Water and Sewerage Corporation
(NWSC) campaign, over half of the households have only been connected for three years
or less. Besides, out of the group of 290 households, despite having access to piped water,
57 (20%) do not use it as their PWS. The main reason being that the piped connection is
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too expensive. Similarly, for drinking water, 85 (29%) households with piped access, said
not to use the closest water source as drinking water source; deeming it unsafe (47),
expensive (22) and having bad taste (20) as the most listed reasons. The enumerator
team also recalled many respondents saying they have a preference for other DWS as
the piped water is chlorinated (bad taste), but also because especially people that have
only recently been connected to the piped grid, still are traditionally very accustomed to
get their water at springs (also reported by Marks et al. (2020)). The enumerator team
had also noted that people in urbanised areas are more comfortable with drinking piped
water as they have had access for a longer time but also because it is often the only source
available. Subsequently, the survey results indeed showed that the urban areas have a
piped connection more often and that especially the hilly rural areas in the North-East
of Ishaka have no piped water access as these are hard to connect (see Figure 5.6).

Figure 5.6: The surveyed households with (blue) and without (black) piped water access and the number of
piped access points predicted by M1 for the cell corresponding to the household (red for low and green for
high predictions). Background map is from Google Maps.

THE RISK OF BAD ACCESS

Even though almost all respondents said to treat their water before drinking, 154 house-
holds admitted drinking untreated water at least once in the past 4 weeks. This number
should probably be higher as the team felt that some respondents gave what they felt
were the desired answers. Out of 517, 23 households (4%) reported having at least one
member suffering from diarrhea in the last 30 days. Similarly, 97 (19%) suffered from
respiratory illnesses. The results show that drinking from an unprotected source does
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not (significantly) increase the risk to contract these diseases (similar to Hubbard et al.
(2020)). However, drinking untreated water, doubles the risk of diarrhea: 8% of house-
holds drinking untreated water at least once had diarrhea (z=2.0, p=.02). It also increases
the chance for respiratory illnesses by 10% (z=2.7, p=.004). In a general research among
middle and low income countries the WHO (2014) also found that consistent and effec-
tive implementation of water treatment results in 28-45% less diarrhea cases and that
the impact of using an improved source is much lower (11-16% less diarrhea).

5.3. TRAVEL TIME

To research the relationships between water access and travel time to the water source,
the scaled output of the classifying models (number of presences) is compared to both
the DHS cluster average travel time (coarse but nationwide) and the reported travel
times in Bushenyi (detailed but local). This is done in two ways. First by applying a
regression of the output of the classifying models to the DHS cluster average travel time
(as was explained in Section 3.3). For a second, coarser comparison, it is researched if
people living in areas that are assigned a lot of access points by the model, have low travel
times. The first is only done for the DHS cluster average travel time but the latter is also
done for the high detailed Bushenyi survey data. By analysing the Bushenyi data further,
different purposes of different water sources and reasons for using a water source that is
further away than the one closest are highlighted as well.

5.3.1. PREDICTING CLUSTERED AVERAGE TRAVEL TIME FROM DHS DATA

After fitting the number of predicted presences of the different access types (such as Fig-
ure 5.1) to the DHS cluster average travel time using both a MLP-regression fit as well as
an ordinary Least Square (linear) fit, it was found that this does not improve predictions
using feature data only. The more detailed results of this can be seen in Appendix B.5.
Still, although a regression with the access type model output does not seem to improve
travel time prediction, there does seem to be some sort of relation between the number
of access points and travel time. This becomes clear in Figure 5.8. For this Figure, first
the total number of predicted presences is calculated, which is, per cell, a summation
of the output of the models of all access types, i.e. predicted boreholes + predicted un-
protected springs, etc. This is visualised in Figure 5.7 by the colours of the cells. Next,
per cluster the average of the total predicted number of presences of the cells that are
comprised by the cluster boundaries is taken (see Figure 5.7). This average is shown on
the y-axis of the graph in Figure 5.8. Next the DHS-clusters are grouped by their mean
travel times into three categories: 0-5 minutes, 5-30 minutes and >30 minutes, following
the graph from Figure 2.3 (the relationship between travel time and water consumption).

In general, clusters with lower average travel times get assigned higher number of
presences when compared to the higher average travel time clusters. The 69 clusters in
the first group (M = 6.53, SD = 1.57) compared to the 254 clusters in the middle group (M
= 4.08, SD = 2.00) demonstrated significantly higher number of presences, w(311) = 8.69,
p<<.0001. Similarly, comparing the middle group to the group with 361 clusters having
average travel times over 30 minutes (M = 2.96, SD = 1.65) gives also significant differ-
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Figure 5.7: To compare model output to DHS cluster average travel times, the average of the total number of
presences is taken of cells that fall (partly) within the cluster perimeter. The colours in the example above
represent the number of presences in which a redder colour indicates high and green low numbers of water
access points.

Figure 5.8: Distribution of the mean number of access points predicted for cells in the DHS clusters. Clusters
are grouped by their average travel time shown in the x-labels. Predictions come from M2: classifying with
weighted background selection.

ences, t(613) = 7.64, p<<.0001. This shows that the level of access points is likely related
to travel time. This may feel slightly contradictory to the regression results from previ-
ous section (which can be seen in Appendix B.5), but it merely shows that the regression
is not capturing the relationship properly yet. On top of that, even though the means
differ significantly, the variance of the three groups remain rather large, which makes a
regression all the more difficult if possible at all. What is all the more exciting is that with
Figure 5.8, it is possible to make a prediction for the travel time based on the expected
number of presences of water access points. E.g. a cluster with 10 predicted presences
probably falls in the 0-5 minute category while a cluster scoring 6, likely falls in the 5-30
minute category.

5.3.2. PREDICTING TRAVEL TIME IN BUSHENYI

As a second comparison of model output to travel time, the model output is compared to
the Bushenyi survey data. As this data is a lot more specific, there is no longer the need
to take averages of the travel time for each cluster, for this time we have that informa-
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tion for each individual household, including its location. For a first comparison, Figure
5.8 is recreated in Figure 5.9 for Bushenyi but this time showing the daily travel time
of each interviewed household on the x axis (instead of the DHS cluster average travel
time). Firstly, it can be seen that the model expects cells in the Bushenyi area to contain
relatively high numbers of water access points when compared to the DHS clusters, as
all households receive predictions between 4.7 and 11.7 presences. Secondly, although
again a downward trend for number of access vs. travel time seems visible again, the re-
sults show less significance and have a lower effect size this time: w(363) = 2.54, p=0.011
for 0-5 minutes compared to the middle group and t(373)=2.99, p=0.003 for the middle
compared to the >30 minutes group. Besides, although parts of the distributions overlap,
Figure 5.9 shows a generally larger distribution with a higher mean than Figure 5.8. This
is probably a result from two things: firstly the travel times in the DHS cluster are aver-
aged, filtering out the large variation of travel times within the cluster, this is present in
the survey data. Secondly, with the DHS data the model scores are averaged over the en-
tire cluster as well, creating again a dampening effect as extreme values will be averaged
with more normal results. As the survey results do allow for differences within specific
cells, this does not happen here.

Figure 5.9: Distribution of the number of access points predicted for cells in which Bushenyi interviewed
households lay. Households are grouped by their average travel time shown in the x-labels. Predictions come
from M2: classifying with weighted background selection.

BUSHENYI COMPARED TO THE NATION

To compare the travel time per access type in Bushenyi to the nationwide tendency cap-
tured by DHS, in Appendix B.6, Figure 8.1 is recreated for Bushenyi in Figure 8.8. It be-
comes clear that again distinction can be made between sources on and off premises,
which has a direct effect on travel time. Comparing the on and off plot distributions by
means of a t-test gives very significant results (p<0.0001). The distribution of the travel
times in Bushenyi per access type is very similar to the results from the DHS data.
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5.3.3. HOUSEHOLDS USE MORE THAN ONE WATER SOURCE

The households in Bushenyi reported to be using an average of 1.9 sources for their gen-
eral water supply. From the respondents, 66 out of 517 (13%) reported that their closest
water source is not their primary water source. This is a decline from 2018 when Marks
et al. (2020) reported that one in four households traveled further. This decline is proba-
bly a result of the recent increase in piped connections in the area, with 50% of the users
with PWS piped water, have only been connected for three years or less. The reason for
not using the closest source is mostly the price (43 times), this is a result of piped con-
nection being paid and other sources free. Eight users reported the CWS to be unsafe.
The travel time to the CWS is 4.6 minutes on average which is significantly less then the
20 min average travel time to and from the PWS (w(128)=7.44, p<<0.0001). This means
that people are willing to travel an average of 15 minutes longer for their daily water sup-
ply to avoid (mostly) costs. When asked to score the reliability of their CWS and PWS
between one and ten, respondents gave the PWS an average of 8.3 and the CWS a 7.5
(w(128)=2.07, p=0.04). With regards to both physical and health safety and cleanliness,
the PWS and CWS received very similar scores (all around 8).

DIFFERENT PURPOSES FOR DIFFERENT WATER SOURCES

Table 5.9 displays the variety of purposes of the PWS, the CWS and DWS. It be-
comes clear that the PWS is used for all listed purposes in most of the cases. For
drinking water however 10% uses another source. In 44% of the cases the CWS
is not used at all. If people have a DWS that is different from both the CWS and
PWS, it is really only used to drink in most of the cases.

Purpose PWS (N=517) CWS (N=66) DWS (N=28)

Drinking 0.90 0.42 1.00
Cooking 0.99 0.45 0.07
Washing Clothes 0.99 0.47 0.04
Cleaning 0.99 0.44 0.04
Washing Hands 0.99 0.42 0.04
Bathing 0.98 0.44 0.04
Not in use 0.00 0.44 0.00
Other 0.05 0.03 0.00

Table 5.9: Share and variety of purposes for the PWS, CWS and DWS (if DWS and/or CWS differ from
PWS).

From the respondents, 155 (30%) said to not drink from their CWS. This time, safety
(84), cost (38) and a bad taste (24) were the predominant reasons. The amount of reasons
for using a multitude of water sources on a regular basis was found to be larger than the
by Elliott et al. (2019) reported aesthetic, cost and seasonality ones. Seasonality clearly
plays a role as half of the PWS rainwater harvesting users reported to do so only in the
wet season. Cost clearly does too. But on top of those, reliability, taste and safety are
important incentives for using multiple sources as well. Finally, the number of different
sources that households use, does not effect the daily travel time to and from the water
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source, of which the median remains rather constant around 2.5 minutes per household
member.

5.4. WATER CONSUMPTION
As shown in the Literature Review (Chapter 2), the WHO suggested primary indicator
for water consumption is the travel time to and from the source (incl. queuing) (WELL,
1998). However, if the hypothesis holds, it should also be related to the number of water
access points. The DHS data only gave information about the travel time, additionally,
the survey gives information on the water usage. Therefore all results in this section are
evaluated using the Bushenyi data. We realise that this might not be representative for
the entire country but it is merely to give a feeling of the dynamics of water consumption
in mid-sized towns with a mix of urban-rural dynamics such as Bushenyi. The water
consumption of the participating households is shown on the map in Figure 5.10. Note
that there are often large differences in water consumption between neighbours. It is
also noticeable that at first sight, in both urban and in rural areas there are households
using relatively a lot or little water.

Figure 5.10: The water consumption in lpcd across Bushenyi. Note the often large differences between neigh-
bours. Background map is from Google Maps.

5.4.1. THE ROLE OF WATER ACCESS
In Figure 5.11 it can be seen that in Bushenyi, a variety of PWS-types can be found. Many
neighbouring households make use of a similar (the same) source, but this is definitely
not always the case, showing that people adhere to some sort of personal preference. As
shown earlier (Figure 5.6), the more rural areas are less likely to have access to a piped
water connection. In this section the influence on water consumption of (i) the various
access types and (ii) the modeled access level is presented.
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Figure 5.11: The as PWS listed sources for surveyed households. Also here we see variation between neighbours
but much less.

THE INFLUENCE OF ACCESS TYPES ON WATER CONSUMPTION

Figure 5.12 shows the distribution of water consumption from the PWS per access type.
Similar as with the travel time, there is a distinction between on and off plot sources.
People that have their PWS on plot (piped or rainwater) do in general use more water
than people with an off plot PWS. More specifically, the 231 households with a piped
connection as PWS (M = 40.7 lpcd, SD = 86) compared to the 283 households with an-
other type of PWS (M = 27.7 lpcd, SD = 52.8) demonstrated to be using significantly more
water from the PWS, w(512) = 2.55, p=.01). This does not necessarily mean that the total
water consumption of the households is higher too as people without a piped water con-
nection might complement the PWS with (multiple) other sources. However, comparing
the total average water consumption of the piped-PWS group to the rest, results in the
finding that the piped-PWS group uses an average 4 lpcd more than users that did not
list piped water as their primary source (w=4.21, p<.001).

BETTER PREDICTED ACCESS, HIGHER WATER CONSUMPTION

Similar as with the travel time, it is possible to look whether or not a high access predic-
tion leads to a higher water consumption. From Figure 5.13 the first impression is that
households that are located in cells that the model assigns a lower expected number of
presences, tend to use less water, and that there is a slightly upward trend for water con-
sumption vs. the number of predicted access points. However, especially for the least
water consuming household, the sample size is low. Furthermore, the variance in the
number of predicted access points remains substantial for each group. The latter can be
explained again by the large differences between households in each cell.
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Figure 5.12: Bushenyi: daily water consumption from PWS per household member. Grouped by PWS access
type.

Figure 5.13: Distribution of the number of access points predicted for cells in which interviewed Bushenyi
households lay. Households are grouped by their daily water consumption shown in the x-labels. Note that
towards the right the water consumption interval sizes become larger to assure large enough sample sizes.
Predictions come from M2: classifying with weighted background selection. Blue horizontal lines represent
minimum. median and maximum value.

5.4.2. THE ROLE OF TRAVEL TIME
As Figure 5.9 indicates a downward trend for travel time vs. number of predicted water
access points (and so did Fig. 5.8 more significantly), and Figure 5.13 an upward trend
for water consumption vs. number of predicted water access points, the relation be-
tween travel time and water consumption in Bushenyi is explored as well. As we saw
in Figure 2.3, it is expected that travel time correlates negatively with water consump-
tion. And combining the results from aforementioned Figures, the same is expected
here. However, looking at Figure 5.14, displaying the travel time vs. water consump-
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tion in Bushenyi, this is not the case as no trend is visual and very similar distributions
are present. This shows that the model output might in fact be a better predictor than
the travel time alone.

Figure 5.14: Daily water consumption of household compared to their daily travel time in Bushenyi.

Figure 5.15: Comparing the daily total travel time (left) and the return trip travel time of households in
Bushenyi to their related water consumption and the relationship from WELL (1998).

In Figure 5.15, the households travel time is compared more specifically to the WELL
graph (from Figure 2.3), that related water consumption to travel time. Median values of
the 5 minute interval seem to coincide with the WELL graph but variation remains high.
And, even though the households with the highest consumption do have lower travel
times, it can be seen that in most cases, the real water consumption from individual
households really differs from the WELL graph. Especially in the low travel time zone
(under 5 min.), the water consumption is lagging compared to the graph, with a lot of
points lying under the graph. Two suggested explanations are that firstly, many of the
users with a low travel time will have a piped and thus paid connection, the risk of a
high bill will prevent people from using a lot of water. This was also found in Weinan, a
Chinese city where most people have a piped connection and for which Liu et al. (2003)
found that increasing water prices decreased water consumption. Secondly, piped water
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users might have more trouble estimating their total water consumption as they do not
have to travel large distances with it but instead have it readily available. These users
might be using more than they think. More importantly, the large variation between the
WELL graph and the Bushenyi data showed that domestic water consumption is in fact
from a lot more dependant than travel time alone.

WATER RESPONSIBILITY

As mentioned before, in Uganda water is considered primarily a women’s task
(WASH, 2014). This came also forward in the survey results: in 54% of the house-
holds, a woman was listed specifically as the one responsible for the (availabil-
ity) of water (see Table 5.10).

Responsibility Count (N=517) Share
Woman 187 36%
Man 91 18%
Girl 91 18%
Boy 102 20%
House Girl/Shamba Boy 30 6%
Relatives 10 2%
Other 6 1%

Table 5.10: Primary responsibility for water in the household in Bushenyi.

The age of the persons responsible is depicted in Figure 5.16. This seems to fol-
low a normal distribution around the age of 20. What is striking however is the
large peak in the 14-16 age bar. The local team reported that in the Ugandan
culture middle-aged children are indeed often made responsible for water col-
lection, but this time the peak is particularly high as a result of the COVID crisis
that kept Ugandan schools closed for two years (Atuhaire, 2022).

Figure 5.16: Age of person responsible for water in the household (in Bushenyi).



5.4. WATER CONSUMPTION

5

61

5.4.3. RICHER AND WELL EDUCATED HOUSEHOLDS USE MORE WATER
Table 5.6 & 5.7 showed that richer and better educated households more often have
piped water access. Similarly, the richer and better educated households consume slightly
more water as well. Comparing the lower three income categories (n=449, M=18.7 lpcd,
SD=15.5) to the upper two (n=68, M=22.4 lpcd, SD = 11.0) gives w(515)=-4.08, p<0.001.
With regards to education, especially the highest educated (n=94, M=25.6 lpcd, SD=25.3)
group uses more water when compared to the rest (n=423, M=17.7 lpcd, SD=11.1): w(515)=-
4.2, p<.001. But also for comparisons between the different educational levels, mostly
significant differences were found (p<.1). Lastly, household size was also related with
water consumption and larger households used significantly less water per capita than
smaller households (which was not correlated with income).





6
DISCUSSION

This Chapter discusses the meaning of the results in the broader sense, it shows how
we improved on existing water access modeling techniques, it highlights the local com-
plex dynamics of water access and consumption and finally gives suggestions on how
all of this information can be used to improve water access. But first, it touches upon a
number of limitations of the chosen methodology.

6.1. LIMITATIONS AND RECOMMENDATIONS
Uncertainties, assumptions and limitations can be found both in the methodology of
the models and in the survey design. For the models this relates primarily to their setup
and the data used. For the survey, some of the questions and therefore our interpreta-
tion, rely heavily on the respondents capability of estimating their water consumption
and travel times. Next to presenting such limitations below, we also suggest some sub-
jects that could be researched further, some of these relate to, but are not limited by, the
limitations.

6.1.1. MODELS
A first limitation with respect to the objective of water access modeling, is that we did not
include models for packaged water and sand or sub-surface dams. Information on the
usage of packaged water (which for simplicity we will consider to be the same as bottled
water) in Uganda is hard to find. But, Cordoba and Grabinsky (2020) showed that bot-
tled water in low and middle income countries has increased with 174% between 2004
and 2016. Also for Uganda, we have anecdotal evidence that especially people in (large)
cities, often make use of packaged water. It would therefore be desirable to model pack-
aged water access as it could be an important source for many people. Besides, some
researchers question JMPs choice to include it as safe water (WHO, 2017) because water
quality is often unknown (Cordoba & Grabinsky, 2020). However as vendors are often
mobile it can be imagined that the locations of the actual water access point are difficult
to pinpoint for the WPDx database. In the Ugandan WPDx database there was only one
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packaged water datapoint, as long as this remains the same, modeling packaged water
access points with our methodology remains impossible.

A second limitation comes from the used datasets. For the WPDx data, we took the
most recent version in June 2021. The WPDx data contains more information than was
used, including whether a source was functioning or not at the time it was registered. In
the used WPDx data, 79% was functioning, 18% was not and for 2.5% it was unknown.
Modeling only the functioning sources would be an option but because some sources
might have been fixed (or broke down) since registering, it was decided to model all, al-
lowing for a larger data-set. This does add a limitation as one can not be fully certain
that modeled access points are functioning. Further researching the frequency of break-
downs of water access points, potentially using more WPDx information, is advised.

For the feature layers, we always took the most recent data available. These can
therefore be from different moments in time than the registration of some of the WPDx
data, of which the vast majority was registered in 2010 and 2011. Also the feature layers
themselves are not from the exact same moment in time: most are from the period be-
tween 2013 and 2021 and thus reasonably coincide with the WPDx recordings and each
other. Besides, many feature layers containing data such as elevation, distance to in-
land water, euclidean distance to city centers and soil texture are logically not expected
to have changed a lot over time. However, population density and urbanisation degree
probably have changed under continued urbanisation processes. An especially impor-
tant layer is the precipitation data, which is based on 1970-2000 recordings. Precipita-
tion was found to be an important predictor for water access in this thesis. At the same
time, precipitation patterns and quantities have changed since 2000 (Ssentongo et al.,
2018) and are expected to continue to change under global warming. This could impact
the results, when changed precipitation results in wrong predictions as the model was
trained on older datasets. If however, updated precipitation data would be included in
the model training process, there is no reason to suspect the model to perform less. As
a recommendation for future research we suggest to research the changes of the feature
layers over time (both past and future), the influence of seasonality (wet seasons), their
relationship with the WPDx data from different moments in time, and with that, the pos-
sibility of predicting the presence of water access points (and potentially consumption)
into the future.

Thirdly, the influence of the number of background points used for the classifying
models should be researched further. The sensitivity analysis showed that changing the
number of background points changes the distribution, where too many background
points lead to overfitted results with low predictive power, and too little background
points lead to distributions that can hardly distinguish areas with from without presence.
The correlations between the models predictions on water access and the independent
DHS data set reporting on usage were not found to be strong and even negative in some
cases. This could be an indication that the chosen number of background points is off.
It is suggested to further research the influence of the number of background points and
to see if changing this can increase performance. This also really depends on the ob-
jective, if the objective is to predict with high precision the cells with presence, many
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background points would help with this (but watch out for overfitting) and if a more
generic distribution is sought after, lesser background points would be the better option.

Lastly we suggest to research further the number of people that are served per access
type. Our approximation from Section 3.1.3 is under two important assumptions namely
that the access points are all serving at their limit and that the WPDx data from cells
that were surveyed for WPDx is complete, containing all water access points of the cell.
Already in the Bushenyi data analysis it was found that the models grossly underestimate
the usage of rainfall harvesting. This is a result of the low reported usage in the DHS
data. If the number of presences turns out to be very different than approximated in this
thesis, the predicted number of presences accross Uganda would be different. However,
the relative probability distribution of access types would remain the same, making it
mostly a scaling issue. It would be interesting to validate the number of users per source
for our research but also because there is very little information on this in literature.

6.1.2. SURVEY

Firstly, when creating a household survey, there is always the risk that it reflects mostly
the views and perceptions of the researchers on the topics that are being researched. In
that way, only the questions that the researcher deems relevant for water access and con-
sumption of households are included, but some (to the researcher unknown) important
questions are left out (Mukherjee, 1995). In our case this effect is mitigated because the
survey was created in collaboration with local experts from Makerere University (Kam-
pala) and because it built further on an earlier survey (Marks et al., 2020), that already
highlighted that e.g. the multitude of water sources should be researched further (which
we explicitly did).

Secondly, to be absolutely certain about all water behaviour, if possible at all, all
Bushenyi-Ishaka municipality households should have been surveyed. As this is pre-
vented by both time and cost constraints, this was limited to 517. Judging by the sta-
tistical significance of many of the results, this is a large enough sample to make com-
parisons between the surveyed households. On top of that, as shown in Chapter 4, the
sample is large enough to represent the whole of the Bushenyi-Ishaka municipality. The
modeling results showed that (levels of) water acces are different across the country and
therefore, it can not be expected that the Bushenyi sample is representative for the whole
of Uganda. It would be interesting though to perform similar survey campaigns in com-
parable settings but other regions (especially the water scarce North of Uganda), to com-
pare the dynamics and local preferences and see how they overlap or differ.

Thirdly, for some questions in the survey, the respondent needed to give a quantita-
tive response. This includes questions on number of jerrycans water consumed, travel
times to water sources and water quality perceptions. Naturally, this brings the risk that
the respondents answer is different from the real value. For the water consumption this
is mitigated as people in Bushenyi usually collect water with the available 20L jerrycans
and because paid water is paid for per jerrycan. This makes it easier for individuals to
assess their water consumption than when they use collection materials of an unknown
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volume that might differ a lot per household. However, to exactly determine the aver-
age daily water consumption, this should be registered on a much more detailed level by
asking the respondent to very precisely register their water usage over multiple days. It
would be interesting to compare the true versus the perceived value. The same is true
for travel time, which ideally would be registered with a stopwatch instead of estimated.
The perceived quality can be compared to the true quality which the researchers intend
on doing in a later stage.

Lastly, the survey campaign took place during one of the two Ugandan wet seasons.
To get a further understanding of the water consumption and peoples water behaviour,
we recommend to perform a similar survey in a dry season and to look how that influ-
ences water consumption, travel time and water access in general. For instance, almost
half of the households using rain water harvesting as primary water source reported that
this is only the case in the wet season.

6.2. MEANING OF RESULTS AND BROADER IMPLICATIONS
The sections below provide a critical assessment of the results by placing them in per-
spective to each other and to the state of the art from literature. By comparing the results
from the nationwide model scale and from the locally executed survey, it is possible to
say something about which information does or does not scale and how spatial hetero-
geneity might impact results. Finally, some suggestions are made on how the obtained
results could potentially be used to improve water access in Uganda.

6.2.1. MODELING THE NATIONWIDE LEVEL OF WATER ACCESS

We took an existing species modeling technique (MaxEnt) and improved and adapted
it to model the distribution of water access points across Uganda. As these models can
be build in several ways, we built five and compared their performance. The results of
the classifying models show that it is possible to model the water access point distribu-
tion over the country, also into areas that were not surveyed for WPDx. The model was
tested on 30% of the data that was kept apart during training. Most of the model setups
perform good on the predefined evaluative parameters assigning higher scores to water
point presence locations than background locations for all access types. The model with
weighted background selection (M2) performs particularly well and the North South
split (M4), performs worst. The more independent model evaluation on the DHS re-
ported usage of the various access types (Table 5.5) presents less optimistic results. Al-
though significant and mostly positive correlations were found between the number of
predicted presences and the number of users of access types in the clusters, the corre-
lations are not strong and sometimes negative. Furthermore, some results have to be
interpreted with some caution as the sensitivity analysis showed that the predicted dis-
tributions and performance on evaluative parameters are influenced by the number of
background points. It could be that a different (better) number of background points
would also increase performance on the DHS data.

This type of presence only data modeling has been widely applied in biological species
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modeling settings but has little precedent in the more static objective of water access
modeling (animals move, boreholes do not). Our study includes both Neural Network
models and the MaxEnt model used for a similar study by Yu et al. (2019). It was shown
that the neural network outperforms the MaxEnt model. The MaxEnt is able to get sat-
isfactory presence scores (PS) but does assign too high values to background locations,
allowing for little nuance in the distinguishing features and more importantly wrongly
assigning background locations as presence locations. This corresponds with Botella
et al. (2018) who found that the neural network model did outperform MaxEnt in the
species modeling (presence only) objective. This comes as no surprise as the neural net-
work model is able to capture more complex and non-linear transformations of features
and combinations of features than MaxEnt. Would the data suffice with the lesser com-
plexity of the MaxEnt model, the neural network model would likely have adapted to it
and obtained the same results. Therefore, the expectation is that more complex func-
tions than MaxEnt is capable of, are required to model water access.

The lesser performance of MaxEnt also confirms our critique on the Area Under the
ROC Curve (AUC) operator, that Yu et al. (2019) (and many reports in the species mod-
eling field) report as their primary evaluative parameter, substantiating the in their view
good results. Even though different numbers of background points resulted in differ-
ent distributions of presence and other (worse) Presence Scores (PS) and False Presence
Scores (FPS), the AUC remained unchanged (see Table 5.4). It therefore has no function
in assessing the goodness of fit of the distribution (see Section 3.5). By splitting this AUC
in two separate performance indicators namely the PS and FPS, like we did, more focus is
placed on the predictive power of the model with respect to presences. This is key when
modeling water access as this is really focused on predicting the type and level of access
and arguably also for species modeling, although this might be less focused on (water
access/species) presence enablers indicated by the feature layers with higher predictive
power.

Another modeling improvement is the inclusion of the total number of expected wa-
ter points per access type. Like us, Yu et al. (2019) built models per access type (2 in their
case, 8 in ours) but the output of their models is only a relative probability of presence
in cells. Our inclusion of the total expected presences, allows for a transformation of this
relative probability of finding e.g. a borehole in a cell, into the expected presences in ap-
proximate but absolute terms (albeit under a number of assumptions, see Section 3.1.3).
This gives more information on water access such as the co-existence of water access
types, their expected quantity per cell and therefore contributes further to the objective
of modeling water access across the study area.

Precipitation, elevation, population density, poverty and groundwater storage were
found to be important indicators for the (non)presence of water access points, suggest-
ing that water access is related to both socio-economic conditions as well as natural wa-
ter availability and (probably) terrain suitability. As water access type modeling to our
knowledge has little precedent, we have to take a closer look at these results to place
them in perspective. For instance, the relative contribution of the feature layers to the
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loss function showed that where the slope is not an important predictor for most access
types, it is for unprotected springs (Fig. 5.5). This coincides with the results of Rahmati et
al. (2018) who deemed slope the most important factor for unprotected spring presence
in Iran. Yu et al. (2019) found that rainfall and elevation were important predictors for
both unprotected wells and surface water access, which we see coming back in our re-
sults as well. This could potentially mean that certain features can scale beyond country
borders. Their results also place a high weight on urbanisation, which is less dominantly
present in our results. This can be explained by the fact that Yu et al. (2019) did not in-
clude the population density as a feature layer, which is assigned high weights in our
results.

For a more detailed evaluation of model performance, a survey campaign was exe-
cuted in Bushenyi (Uganda), enquiring 517 households about their water consumption
and behaviour. For Bushenyi it was shown that, also on this detailed survey scale, the
models are still able to pick up some water access characteristics such as elevation and
poverty level. The respective models assign significantly larger scores to cells compris-
ing households that report using piped water (p<0.005), rainwater harvesting (p=0.06)
and shallow wells (p<0.005) respectively when compared to cells that do not report us-
ing these access types. For springs the model is off, assigning lower scores to cells with
households using springs (p=0.05). This can be attributed to the local preference for
springs for taste, cost and traditional reasons, of which some were also found earlier in
Bushenyi (Marks et al., 2020). It is at the same time a good example of how the complex
local dynamics, e.g. neighbours using completely different access types and people not
(only) using their closest source but a multitude, are very hard to capture in a nation-
wide, one square kilometer gridded model.

6.2.2. HOUSEHOLDS MAKE USE OF MULTIPLE WATER SOURCES

In Bushenyi, households make use of an average of two water sources on a regular ba-
sis and over one hundred households (out of 517) reported using three or more. Out of
the households, 66 (13%) reported not using their closest water source as primary water
source. The main reason for this is that the closest water source is paid (as it is a piped
connection most of the times), while the primary water source is free. On top of that
85 households (16%) with piped access reported not using the closest source as their
drinking water source, in this case, safety was the primary reason. This exposes some
shortcomings of JMP’s safe water access definition that considers piped drinking water
safe by definition (WHO, 2017) and does not mention affordability in their drinking wa-
ter ladder that ranks the levels of water access. Our results indicate that many people
who do have piped access closeby but, because they can not afford it or deem it unsafe,
hardly make use of it.

Furthermore, similar to Hubbard et al. (2020), our result indicate that having no ac-
cess to water from protected sources does not cause an increased risk on catching diar-
rhea and respiratory illnesses. Only if the water is (sometimes) not treated before drink-
ing, we found that people have a significantly higher risk of catching these illnesses (up
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to double the risk). In Bushenyi, almost 1 in 3 households reported not treating their
water before drinking it at least once in the past 4 weeks. The WHO (2014) did find an in-
creased risk of diarrhea for unprotected source users, but likewise report that proper and
constant water treatment has a larger positive effect for prevention. All of this questions
the usefulness of making an absolute distinction between protected and unprotected
sources as our results show that this is not related to the mentioned diseases. This cri-
tique can be extended by Elliott et al. (2019), who argue that surveys on water access
and consumption focus too much on the primary (drinking) water source. In Bushenyi
we saw that many people make use of a variety of sources both protected and unpro-
tected. These people will, although not daily but every now and then, drink untreated
water or water from an unprotected source. The implications of this are such that a fo-
cus on the primary (drinking) water source in surveys combined with the focus on the
protected/unprotected distinction, can cause an overestimation of the population that
has permanent safe water access. On the flipside however, the usage of multiple sources
can bring resilience to droughts or other dysfunctioning of water sources (Elliott et al.,
2019).. Therefore we argue that a larger emphasis must be placed on always treating wa-
ter and not to let unprotected versus protected water access be leading when assessing
the level or safety of water access in developing countries. Furthermore, we suggest that
health survey should better map the variety of sources used by households as this can
have both positive and negative effects with regards to the safety and availability of wa-
ter access.

As the models make predictions per access type, this does allow for the co-existence
of access types in cells, which is similar to reality. In that way, the presence and the
(variety) of type(s) of water access points can be indicated. From the model alone, it is
however not possible to be certain that these access points are used as we saw with the
local preference for springs and households reporting not using the piped connections
in Bushenyi. In an optimal situation, especially locally obtained knowledge on water
price but also cultural preferences for particular sources would be included. This could
be obtained by expanding some of the DHS questions with questions on the variety of
and preference for water sources used. From the model trained on half the country (M5)
results, we know that differences in feature information are difficult to scale to areas
that were not included in the model training (especially categorical data such as GW
storage, might be completely different in areas not included in training, causing wrong
predictions), let alone scaling community level local and cultural information regarding
water access preferences. Despite all of this, we do see that when specific survey results
from both nationwide demographic health surveys (DHS) and the Bushenyi survey are
aggregated from the household level to a scale of one or multiple square km., which is
more comparable to the models output (1 sq. km.), good predictions can be made. This
is substantiated with (i) the predictions regarding average cluster travel times from the
DHS data, where clusters with many predicted water access points have a lower average
travel time, (ii) the evaluative parameters (PS>0.8, FPS<0.25), as well as (iii) the access
type predictions in Bushenyi.
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6.2.3. WATER CONSUMPTION IS DRIVEN BY MORE THAN TRAVEL TIME ALONE

With respect to water consumption, the WHO reports it is is primarily dependant on
travel time to and from the water source (incl. queuing) (WELL, 1998) (Howard et al.,
2020). A comparison between the model results and the reported travel times from the
Ugandan DHS, showed that households living in areas of which the model expects a
significantly higher number of water access points, report lower travel times on aver-
age. This indicates that more access points result in lower travel times. Contradictory to
WELL (1998), in the Bushenyi survey there was no direct relationship between a house-
hold’s travel time and water consumption to be found. Still, looking into access types
more specifically it was shown that households with sources on premises (piped, rain-
water harvesting) consume significantly more water and have lower travel times both
in the Bushenyi setting as well as in the nation representative DHS. Other indicators of
households using more water in Bushenyi are a higher education and a higher income
(also seen in Kennedy et al. (2015), Liu et al. (2003), Fielding et al. (2012)), these are at
the same time often the households that can afford a piped water connection (see Ta-
ble 5.6 & 5.7). Another indicator which was also found in Fan et al. (2013) and Fielding
et al. (2012), was the household size: larger households use significantly less water per
capita than smaller households (and household size was not correlated with income).
Also, households in the areas that the model assigned many access points, consume
averagely more water per capita, suggesting a positive link between water access and
consumption. At the same time, large differences are noticeable between neighbours
where the one household uses 50 liter per capita per day (lpcd) and the neighbour only
around 10 lpcd. This again shows that despite belonging to the same model output cell,
differences with respect to the individual household’s socio-economic characteristics,
preferences, traditions but also efficiency of water usage (which was not included in our
research), are inevitable to influence water consumption. When applying a water man-
agement plan to improve water access or to increase efficiency, it is therefore best to
thoroughly assess the local cultural preferences.

6.2.4. IMPROVING WATER ACCESS IN UGANDA

Some of our results can be interpreted and used to potentially help improve water access
in Uganda. Here we make a few suggestions for this. Firstly, the model can be used to
identify areas in which water access is poor, for this the output maps can be used but
one can also look into which features turned out to be good predictors. This could po-
tentially help policy makers and NGOs to identify areas with really bad access, analyse
why that is and possibly how it can be improved. The model results showed for instance
that water access is generally high in urban areas compared to rural areas as the model
expects larger number of water access points in urban areas. On top of that, the North
of Uganda gets less rain than the South and also has lower GW storage, this too results in
less water access points, mainly because the water resource availability is less (also seen
in Nsubuga et al. (2014)). The elevation height is also of importance, however and this
would need further research, it is suspected that not the elevation itself but more that
the mountainous area have difficult terrain, height differences and deeper groundwater,
making the terrain less suitable for most water access types. In that fashion, we found
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that especially the higher, hilly more rural areas of Bushenyi had worse access than the
urbanised lower areas, coinciding nicely with the model results.

The above mentioned predictive information of water access is mostly geo-hydrological.
As it is not possible to change the water resources availability manually nor make the
terrain more suitable to increase water access, it is worthwhile to take a look at socio-
economic indicators of water access. From the model we than find that the eucledian
distance (ED) to roads and cities are important indicators (both accounting for around
10%), showing that investing in mobility and infrastructure could increase water access,
however, this might be correlation rather than causality and requires further research.

Furthermore, the survey learned us that better educated and richer households are
not only expected to use more water but also more often use water from protected sources.
Like mentioned before, investing in education can improve knowledge on the impor-
tance of safe water access (Kitamura et al., 2014). On the other side, the proximity of
water access is reported to be also essential to good education as water collection time
competes for (often) a child’s time for education (WASH, 2014). Although drawing such
conclusions from this thesis would be too strong, but in that fashion, if we again look
at the North of Uganda, it is difficult to say whether this area is also poorer because of
the lesser availability of water, or that because it is poorer, access is worse too. The lat-
ter is suggested in Mahama et al. (2014) and Adams et al. (2015) who found that poorer
and less educated households had access to an improved source less often than richer
households. But in Schuster-Wallace, Grover, Adeel, Confalonieri, and Elliott (2008), it
is stated that a 1$ investment in clean and safe water access for drinking and sanitation
can gain 3-34$ in economic return, but lack of it can cost up to 5% of a country’s GDP
(UNESCO, 2019). Putting water at the center in overcoming poverty is the core message
of Unesco’s recent World Water Development Report (UNESCO, 2019) and is also one of
the core messages of the African Water Corridor (Delft Global Initiative, n.d.). Analysing
poverty and water access in Bushenyi, we saw the lowest income category was far less
likely to have access to drink from a protected source than the highest income category
(65 vs. 91%). Also for the model, poverty comes out as an important factor, influencing
water access prediction with around 10%. Although further research towards the adapta-
tion and suitability of houses would be needed, a possibly straightforward improvement
that could be made would be to assist low income households in acquiring a rainwa-
ter harvesting system as Baguma and Loiskandl (2010) showed that financial means are
often the limiting factor for rainwater harvesting access and our survey results showed
that the lowest income category had significantly less often access to rainwater harvest-
ing techniques. Lastly, as it is uncertain how Ugandas average income and educational
level is expected to develop (World Bank, 2021), if the population gets richer and better
educated, we can expect a higher demand for better (piped) water access and with that
an increase in consumption. According to the Bushenyi survey, this increase will not be
extreme (around 5 lpcd.) but it is important to monitor this and to be aware of the lim-
ited amount of natural water resources (Nsubuga et al., 2014), especially in combination
with the continuing rapid population growth (World Bank, 2019).





7
CONCLUSION

Monitoring safe water access happens primarily through household health surveys. These
surveys are often incomplete, not covering entire nations, focus on only the primary wa-
ter source and are often spatially aggregated for privacy reasons. Besides, health surveys
almost never include questions on consumed water volumes while that is an important
indicator for proper hygiene (WELL, 1998) and at the same time should be in balance
with the natural available water resources. Next to this survey based monitoring, there
is the Water Point Data Exchange (WPDx) that monitors safe access by providing a plat-
form at which the exact location and type of water access points (such as boreholes,
springs, etc.) are registered. This does give more insight into the presence and usage
of a variety of sources, but also the WPDx is often incomplete, not covering entire na-
tions. In this thesis, a dual methodology was presented that gap-fills the incompleteness
of such databases through nationwide modeling of water access points and in parallel,
researches the complex local dynamics of water access, the variety of water sources used
by households and the relationships between access and water consumption.

First, a machine learning biological species modeling technique was improved and
applied to the WPDx dataset. With this we were able to predict the presence of 8 differ-
ent water access types across Uganda with a resolution of one square kilometer. To do
so, a predefined set of nationwide gridded environmental, geohydrological and socio-
economic characteristics were used as predictive features. With the result it is possible
to assess the water access level in areas that are not surveyed for WPDx. Good modeling
results were obtained: out of a test sample that was kept apart and not used for training
the model, containing approximately 30 thousand presences and 120 thousand back-
ground locations, the model was capable to predict 90% of presence locations correctly
and only misjudged 24% of background locations wrongly as presence location. Some of
these results have to be interpreted with some caution in light of the executed sensitiv-
ity analysis and model validation on nationwide Demographic Health Survey data, that
obtained lesser results.
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Second, in collaboration with Makerere University (Kampala), a novel survey cam-
paign was executed in the Bushenyi-Ishaka municipality, a mid-sized town in the South
West of Uganda consisting of a mixture of both urban and rural areas. Unlike more stan-
dard water access or health surveys, this survey included questions on (volumtreic) wa-
ter consumption and the variety of water access points used. In total, 517 households
were interviewed. Special attention was paid to reasons for not using the closest water
source (often piped water) and it was found that piped sources were often not used as
primary (most used) source for cost reasons. For drinking water purposes, piped water
was often not used because of a bad perceived water quality. In both cases there was a
preference for other free sources and sources from which people have been accustomed
to drink from for a long time such as, in this case, springs. All of this shows that safe
water access is not only a matter of the presence of a source but also of the affordability
and the users perspective.

It was found that that water access is dependant both on natural water resource avail-
ability as well as socio-economic status. More specifically, the model results showed that
population density, precipitation, elevation and groundwater storage are important pre-
dictors for the presence of water access points. The survey results add wealth (which we
see coming back in the model results too) and education level as significant positive in-
dicators for safe water access. This comes with the notion that households in Bushenyi
make use of an average of two water sources on a regular basis. And although the model
predictions allow for co-existence of water access types as models are created per access
type, it can not model the actual usage of these access points which was found to be de-
pendent on local preferences, cost constraints and quality perception.

Also with regards to water consumption, it was found that wealth and education but
also household size (inversed) drive up a households water consumption significantly.
Moreover, households in areas of which the model predicts high water access point pres-
ences, tend to use more water on average than areas with low predicted presences. This
suggests a positive link between the number of water presences and water consump-
tion. Contrary to the consensus in literature, in Bushenyi, a strong link between water
consumption and travel time to the source was not found.

Finally, we suggested modi operandi of our results to improve water access such
as prioritising areas with poor(est) water access and investing in rainwater harvesting,
infrastructure and education. Moreover, our results show that when reporting on (im-
proved) water access, it is important to include the complex dynamics of water access
such as the variety of sources used by households and the sometimes slow adaptation
to improved (piped) water access when households deem it too costly or unsafe. With-
out adding this nuance, the share of people having safe and improved access is at risk of
being overestimated.
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Figure 8.1: Distribution of travel times reported by households in urban areas using the access types on the
y-axis (created from DHS data)
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Figure 8.2: Distribution of travel times reported by households in rural areas using the access types on the
y-axis (created from DHS data
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APPENDIX B: SUPPLEMENTARY RESULTS

B.1: PERFORMANCE OF M3 FOR URBAN AND RURAL MODEL SEPARATELY

PS FPS
Access Type Urban Rural Urban Rural

Borehole .72 .67 .22 .27
Piped Water .83 .87 .21 .23
Protected Shallow Well .65 .89 .23 .23
Protected Spring .77 .8 .22 .24
Rainwater Harvesting .72 .67 .25 .2
Surface Water 1 .44 .2 .2
Unprotected Shallow Well 1 .88 .75 .23
Unprotected Spring .75 .88 .14 .17

Weighted Average .74 .72 .23 .24
Average .81 .76 .28 .22

Table 8.1: Performance of the rural and urban models separately (M3)

B.2: SENSITIVITY ANALYSIS OF BOREHOLE RESULTS

Figure 8.3: M1 model output for 20*N number of background points in which N is the number of presences
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Figure 8.4: M1 model output for N/2 number of background points in which N is the number of presences

B.3: SPEARMAN IN BUSHENYI

access type rs p

NWSC_Piped 0.34 0.006
Rain_water -0.02 0.880
Borehole -0.21 0.094
Shallow_Wells 0.21 0.092
Springs -0.20 0.110
Surface_water -0.17 0.170

Table 8.2: Spearmans rank coefficient for the Bushenyi cells. Just like in Table 5.5, M1 model predictions are
compared to the share of the population reporting using these access types in the Bushenyi cells.
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B.4: LAYER IMPORTANCE OF M3 FOR RURAL AND URBAN SEPARATELY

Figure 8.5: Per access type, the relative contribution to loss function (Eq. 3.7) of each feature for the MLP
classifier trained on urban (left) and rural data (right) respectively
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B.5: PREDICTING DHS TRAVEL TIME USING ACCESS TYPE PREDICTIONS

After fitting the access type model output (such as Figure 5.1) to the DHS cluster average
travel time using both a MLP-regression fit as well as an ordinary Least Square (linear)
fit, it was found that the fit of the M1 model (Standard Classifier), was best, although the
model with weighted background data performed very comparable. The absolute error
distribution of both the M1 regressions can be seen in Figure 8.6 & 8.7. For the linear
regression and the MLP regression, the median errors are 13.2 and 10.8 minutes respec-
tively, showing that 50% of predictions are better than that. However, if we compare it to
the DHS regression (M6) using only the feature data, of which the absolute error distri-
bution is shown in Figure 5.2, we find that the travel time prediction does not improve
when the WPDx data is included in this way. This can mean that the amount or type of
predicted access points has no direct influence on the travel time, or that the regression
methods are not able to pick this up properly.

Figure 8.6: Absolute error distribution after applying linear regression to fit M1’s expected number of presences
of the several access types to the DHS cluster average travel time
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Figure 8.7: Absolute error distribution after applying a MLP Regression to fit M1’s expected number of pres-
ences of the several access types to the DHS cluster average travel time

B.6: TRAVEL TIME DISTRIBUTION PER ACCESS TYPE IN BUSHENYI

Figure 8.8: Bushenyi: distribution of the travel time to and from the PWS grouped per access type listed as
PWS.

APPENDIX C: FIELD REPORT BY JAMES TAYEBWA (HEAD OF SUR-
VEY TEAM)
Dear all,
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I was able to put together a brief field report which is representative of the views col-
lected from my team.
Key findings and observations

1. Most Households which have access to NWSC have continued to use other sources
such as shallow wells and springs as drinking water sources because;

2. It was observed that some of the respondents/households who said they use spring
water for drinking wouldn’t bother boiling it, they assumed that it was safe for drinking
with out boiling, and even those who boil the water, since it was the predominant way
of treating water, they indicated that they had no clears ways of controlling other HH
members from taking un-boiled water, while others indicated to us that whenever they
take boiled water, they would contract diseases like cough and flue.

3. In areas covered with NWSC.(1) There was consistency in reporting of muddy,
fatty layered and salty water especially when taps are turned on in the mornings or when
there has been a breakdown in the water supply for some days. (2)There is also a persis-
tent feedback on too much chlorine in the water. So, some households fear that they
are drinking chemicals, and some households prefer sourcing drinking water from other
sources, especially from springs... even when these households have a national water
connection. However, others are now getting used to using water from NWSC for all
household water needs including drinking.

4. In other cases, the reporting was emphasizing on little volume of NWSC, springs
and other water sources especially in the dry season. (4) On the aspect of the tool, there
was lack of specificity in some questions, in that we missed out on the narratives from
respondents, which would have been helpful in the analysis...

5. In some areas where NWSC is available, some households aren’t using it due to
cost related issues, there are quite few pubic stand pipes, which forces some households
to use far away water sources because of either restrictions or very hiked prices from
neighbors who are connected to NWSC. Some indicated that the water bill that keeps
shooting up even when they are in a wet season, and are using rain water, a factor that
will force some of them to shift back to their previous water sources.

6. Most households reported cases of Flue and Cough, we couldn’t establish the ac-
tual cause, the possibilities could be related to water for drinking, changes in the weather
patterns, or a possibility of it transferred through human interactions and contact...

Challenges

1. The tool wouldn’t allow one to retrieve, and edit after sending for-example if one
had made a mistake on the household ID instead of 11 one puts 1, retrieving it to correct
the error wouldn’t be possible.
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2. The location of the primary water source was purely dependent on where the re-
spondent told us it was located.....I personally felt that the locations we pointed out on
the GPS are not 100% accurate maybe it’s somewhere around that GPS location but not
the exact point

3. We also encountered a challenge of some respondents refusing to accept soap....and
I had to first convince them to take it....even the consent form copy ......but they would
sign willingly

4. Some of the respondents would give biased answers just to please the interviewer.
An example, I found some old man dipping his cup in the drum of water and started to
drink un-boiled water but while responding to the question of the method of treating
water, he said he has to boil it, though he later admitted that he has never drunk boiled
water.

5. While working in places with poor or no network connections, it would be hard to
locate the water source because the map could hardly show up. I don’t know how this
will be dealt with at the level of taking water samples, however, they were not many inci-
dences.

Areas for further research

1. Testing reasons why most households use boiling compared to other water treat-
ment methods

2. Testing the palatibility of the drinking water source in relation to people’s health.

3. Most areas in Ishaka-Bushenyi area are water constrained, the most available wa-
ter source is mainly for home use is NWSC and expensive, exploring the component of
water for production might be a good idea

I hope this feedback will be useful to Jan as he takes on with the analysis, and like
Edo requested, I am available to offer a hand in case of need.
Thank you all, and on behalf of my team.

kind regards
James

APPENDIX D: FEATURE LAYERS



Appendix D: Feature layers 

Source Link 
Digital Chart of the 
World (DCW) 
(2006) 

https://www.diva-
gis.org/gdata 

Source Link 
OpenStreetMap 
(2021) 

http://download.geofa
brik.de/africa/uganda.
html 



Source Link 
UNHCR 
(2020) 

https://data2.unhcr.or
g/en/documents/detai
ls/85323 

Source Link 
Digital groundwater 
maps of Africa 
(2012) 

https://www2.bgs.ac.u
k/groundwater/interna
tional/africanGroundw
ater/mapsDownload.h
tml 



Source Link 
ASTER GDEM Version 3 
(2019) 

https://earthexplorer.u
sgs.gov/ 

Source Link 

ISRIC 
(2015) 

https://data.isric.org/g
eonetwork/srv/eng/ca
talog.search#/metadat
a/2a7d2fb8-e0db-
4a4b-9661-
4809865aaccf 



Source Link 
Global Human 

Settlement Grid 

(2015) 

https://ghsl.jrc.ec.euro
pa.eu/ghs_smod.php 

Source Link 
ASTER GDEM Version 3 
(2019) 

https://earthexplorer.u
sgs.gov/ 



 

Source Link 
CEISIN 
(2015) 

https://sedac.ciesin.col
umbia.edu/data/collec
tion/gpw-
v4/documentation 

Source Link 
MODIS Land Cover 
Type (MCD12Ql) 
Version 5 (2014) 

https://modis.gsfc.nas
a.gov/data/dataprod/
mod12.php 



 

Source Link 
WorldClim Global 
Climate Data version 
1.4 (1970-2000) 

https://www.worldcli
m.org/data/worldclim
21.html 

Source Link 
Worldpop (2011) https://www.worldpop

.org/geodata/summar
y?id=1271 



 

Source Link 
Digital groundwater 
maps of Africa (2012) 

https://www2.bgs.ac.u
k/groundwater/interna
tional/africanGroundw
ater/mapsDownload.h
tml 

Source Link 
Digital groundwater 
maps of Africa (2012) 

https://www2.bgs.ac.u
k/groundwater/interna
tional/africanGroundw
ater/mapsDownload.h
tml 



 

Source Link 
ASTER GDEM Version 3 
(2019) 

https://earthexplorer.u
sgs.gov/ 

Source Link 
OpenStreetMap (2021) http://download.geofa

brik.de/africa/uganda.
html 



Source Link 
SEDAC (1992-2013) https://sedac.ciesin.col

umbia.edu/data/set/sd
ei-viirs-dmsp-
dlight/docs 

Source Link 
SEDAC (1990-2014) https://sedac.ciesin.col

umbia.edu/data/set/g
hsl-population-built-
up-estimates-degree-
urban-smod 
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APPENDIX E: ETHICS APPROVALS



 
Human Research Ethics Committee 
TU Delft
(http://hrec.tudelft.nl/)

Visiting address

Jaffalaan 5 (building 31)
2628 BX Delft

Postal address

P.O. Box 5015 2600 GA Delft
The Netherlands

Ethics Approval Application: Survey water usage in Bushenyi, Uganda
Applicant: Geleijnse, Jan 

Dear Jan Geleijnse,

It is a pleasure to inform you that your application mentioned above has been approved.

Thank you for your application and the additional document. Your submission has been approved on the condition 
that the Ugandan Ethics committee approves as well.

Good luck with your research!

Sincerely,

Dr. Ir. U. Pesch 
Chair HREC 
Faculty of Technology, Policy and Management

Date 13-09-2021
Contact person Ir. J.B.J. Groot Kormelink, secretary HREC

Telephone +31 152783260
E-mail j.b.j.grootkormelink@tudelft.nl
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APPENDIX F: SURVEY QUESTIONS
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Surveying water usage in Bushenyi – Ishaka municipality 
Annex V: Survey questions  
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Water Usage In Bushenyi Survey_ Questionnaire  

Question  Answer choices  

Introduction     

All the information you provide is confidential and your 
name will not be disclosed anywhere. The results will be 
treated anonymously. Participation in this study is 
voluntary. You don’t have to take part if you don’t want to. 
You don’t have to answer any question you don’t want to, 
and you can stop the interview at any time. If you decide 
not to participate there will not be any negative 
consequences.  
  
Do you have any questions? Do you agree to participate 
in this study? If you have any further questions you can 
contact Prof.  Kansiime Frank from Makerere University 
Department of Environment and Management at +256 
772 506520 or +256 752 506520.  

 

Administer informed consent. If subject agrees to 
participate, proceed to questionnaire  

yes, no  

 Location of Household (GPS)   Survey Collector can register this 

Personal Information     

Gender of survey respondent   Female,Male  

What is the gender of the household head?   a. Male – the respondent is head   

b. Male – not the respondent   
c. Female – the respondent is head   
d. Female – not the respondent  

How many people are in your household?  1,2,3,4,5,More than 5  

What is your highest level of education completed?  • Primary education Basic level  
• Secondary education – Ordinary level  

• Secondary education - Advanced level  
• Tertiary education – Vocational college  
• Tertiary education – University degree  

Are you able to read or write? Yes 
No 

Marital status (if age is >15)  1. Married  

2. Living together  
3. Unmarried/Single  
4. Divorced  

5. Separated  
6. Widowed   
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Main occupation (if age is >15)  1. Agriculture/Livestock/Herding  

2. Handicrafts(Weaving)/Carpenter/Mason/Blacksmith 
Trader/Merchant (retail/ wholesale)/Food vendor \ 

3. Formal Employment 
4. Casual Employment 
5. Unemployed  

6. Retired  
99. Other (specify) __________ 

 

How many people live and eat in your household on 
a regular basis? (Age 0 – 2, Age 3 – 5, Age 5 – 18, 
Age 18 or older)  

Three columns: Age/Male/Female  
Four additional rows for age breakdown:  (Age 0 – 2, Age 3 
– 5, Age 5 – 18, Age 18 or older)  

Socio-economic status     

How much land does your family own (in Acres)?     

How much land do you use to cultivate vegetables or staple 
crops?  

   

How many of each of these animals does your household 
currently own?  

1. Large stock (Cattle) 
2.  Small stock (Goats/sheeps) 
3. Pigs 
4. Poultry  

Does anyone in your household own the following items? (Select 
one or more) 

1. Radio 
2. Mobile phone 
3. Television 
4. Car or truck 
5. Hand cart 
6. Animal  
7. Cart 
8. Generator 
9. Tractor 
10. Bicycle 
11. Motorcycle 
12. Solar Panel  

Does the household have an electricity connection?  yes, no  

How does your household afford to put food on the table?   Food/Income from Agriculture 
Salary 
 Grants 
 Bartering 
 Allowances  

Approximately how much income do you receive from each of 
these sources per month during the dry season? (In Shs) 

   

How many women in your household earn some income?     

About what share of household income is earned by women?  Percentage 

Does your household receive any money from other family 
members living outside of this village (remittances)?  

yes, no  

About how much money do you receive from them?     

If you wanted to take out a loan of 10,000 Shs, from someone 
other than household members, could you do so?  

yes, no  
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And in the past year, about how much did your family spend on 
each of the following things?  

1. Weddings 
2. Funerals 
3. Baptisms 
4. Health Care (Household) 
5. School fees (household)  

  

 

Waterborne disease, disability and health 
awareness  

   

Has anyone in your household had diarrhea or 
respiratory illness in the last 30 days?  

   

(If yes) How many had:   
Diarrhea (enter number): Matrix for gender / age 
group: 0-5; 5-18; 18-60; 60+  
Respiratory illness (enter number): Matrix for gender 
/ age group: 0-5; 5-18; 18-60; 60+  

   

Which health facility is most often used by your 
family for health services?  

Kampala International Hospital (Ishaka), Bushenyi Health 
Center II, Other..  

Have you ever heard about water borne diseases in 
this area?  

   

If yes in the above, which disease was it?     

Have you yourself had diarrhea in the past 2 weeks?  None, Once, Twice, 3 times, >3 times  

For any of these occurrences of diarrhea, did you 
seek advice or treatment from any source?  

Yes, hospital or health centre  
 Yes, shop of pharmacy  
 Yes, traditional healer  
 No  

How much did you spend in total on treatment for 
recent diarrhea and/or respiratory illness(es) for your 
household, in each of these categories: Medical 
fees, medicines, transport to facility, Did nothing, 
Other  

Medical fees, medicines, transport to facility, Did nothing, 
Other  

Do any household members have disabilities?  Yes, no (skip)  

How would you describe the main disability of the 
most disabled HH member?  

01 – Hearing impairment  

02 – Deafness  
03 – Visual impairment  
04 – Blind  

05 – Mobility impairment  
06 – Housebound  

07 – Upper limb impairment  
08 – Speech impairment  
09 – Learning difficulties  

10 – Mental impairment  

 

Household water source/supply    

Can you list all household water sources for both drinking and 
nondrinking water?  

1. NWSC/Piped 
2. Borehole 
3. Shallow Wells 
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4. Springs 
5. Surface 

water/Rivers/stream/lake/pond/dam 
6. Rain water 
7. Others (Specify)------ 

What does your household use this water for? (answer for each 

of the listed sources from previous question) Choose one or 
multiple 

1. Drinking  
2. Animal use 
3. Watering crops 
4. Cooking 
5. Washing 
6. Others (Specify)……. 

How much water does your household use on average per day 
throughout the year? (specify in 20 Ltr Jerry cans) 

Number of 20 Ltr Jerrycans:…….. 

How much time does your household spend on water collection 
per day? (Sum of ALL round trip(s), incl. queuing, to ALL 

sources listed) 

(a) Hours ………. 
(b) Minutes …… 

How would you rate the cost of the water for your household?   1. Very cheap  
2. Inexpensive  
3. Cost-appropriate  
4. Expensive o Very expensive  
5. DK/ No comment  

Who usually fetches water in the household?  a) Man 
b) Woman 
c) Children 
d) House girl/Shamba boy 
e) Relatives 
f) Others (Specify)….. 

What is his/her age? Age  

Is that person a man or a woman Man / Woman 

Which of the sources listed is the source that you took the most 
water from during the last month? (= primary source) 

1. NWSC/Piped 
2. Borehole 
3. Shallow Wells 
4. Springs 
5. Surface 

water/Rivers/stream/lake/pond/dam 
6. Rain water 

Others (Specify)------ 

INSERT GENERAL WATER SOURCE QUESTIONS (SEE 
BELOW IN YELLOW) 

Questions about primary source 

  

Is the primary source also the source closest to your home? Yes / No, if yes skip the closest source 

section 

Closest source  

What is the reason that your closest source is not your most used 
source? 

(Allow multiple responses)  
1=The closest water source is unsafe for 
drinking  
2=The closest water source is not free or more 
expensive  
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3=Excluded by Water User Committee (WUC) 
for closest source 
4=Excluded by user group for closest source 
5=I don’t like the taste of the closest source 
6= Closest water source dysfunctionality   

99= Other (specify)________ 

Is the closest source your drinking water source? Yes/No/Sometimes 

INSERT GENERAL WATER SOURCE QUESTIONS (SEE 
BELOW IN YELLOW) 

 

Is your drinking water source the same as your primary source or 
closest source? 

a) Same as primary 
b) Same as closest 
c) Same as both 
d) No 

If no, continue to drinking water source 
section. Else: skip drinking water section. 

Drinking water source  

(If applicable) What is the reason that your drinking water source 
is not your closest source? 

(Allow multiple responses)  
1=The closest water source is unsafe for 
drinking  
2=The closest water source is not free or more 
expensive  
3=Excluded by Water User Committee (WUC) 
for closest source 
4=Excluded by user group for closest source 
5=I don’t like the taste of the closest source 
6= Closest water source dysfunctionality   

99= Other (specify)________ 

(if applicable) What is the reason that your drinking water source 
is not the same as your most used source? I.e. why do you drink 
from another source than the one that you use most? 

(Allow multiple responses)  
1=The most used water source is unsafe for 
drinking  
2=The most used water source is not free or 
more expensive 
3 = The drinking water source I use, is better 
tasting 
99 = Other (specify) _____ 

 

INSERT GENERAL WATER SOURCE QUESTIONS (SEE 
BELOW IN COLOR) 

Questions about drinking water source 

In the last four weeks, how often did it happen that you wanted to 
drink water, but you forgot to treat it in time?  

In the last four weeks, how often did it happen 
that you wanted to drink water, but you forgot 
to treat it in time?  

  

GENERAL WATER SOURCE QUESTIONS This section should be inserted at all places 
indicated (max 3 times) 

Select section: (for administration purposes, enumerator can fill 
this question in) 

Primary source / closest source / drinking 
water source 
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Geo-reference: water source  Enumerator to record GIS coordinates  

Is that source available during the entire year? (a) No only in the wet season 
(b) No, only in the dry season 
(c) No, it is often broken 
(d) Yes 

Is water from this source safe to drink? a) Safe to drink  
b. Safe to drink after treatment 
 c. Unsafe to drink 

How do treat you your water from this source before use or 
drinking?  

a) Boiling,  
b) Take directly from source 
c) Using water guard,  
d) I do not treat the water 
e) Others (Specify)….. 

Is this source protected from - or monitored for potential 
contamination? 

Yes/no 

On average, how many 20 ltr jerrycans do you take back home 
when using this source? 

Number of 20 ltr jerrycans 
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On average, how long does it take to collect water from this water 
source? (Round trip, incl. queuing)  

 (a) Hours ……. 
 (b) Minutes …..  

How do you travel to this water source?  a. By walking  
b. By Bicycle  
c. By Motor bike  
d. By Car 
 e. Other: _____________ 

Is this water source shared with other households?   a) Yes 
b) No  

Do you pay for water from this water source? If yes, how much 
do you pay ………. /20ltr jerrycan 

  a. Price: ____ (fill in total price)  
b. Nothing  
c. I don’t know 

Whom do you pay for water?  1=Local government  
 2=Utility company Standpipe manager  
3=Tanker truck manager  
4=Water vendor  
5=Neighbor  
 Others (Specify)………  

Who is responsible for managing and maintaining the main 
drinking water source?  

1=WUC   
2=Community members   
3=Person hired by the community   
4=NWSC   
77=Do not know   
99=Other (specify)_____  

What restrictions are there, if any, to use this water source?   1= YES, Resource contribution for scheme 
construction  
2=YES, Resource contribution for repair and 
maintenance       
3=YES, Membership in WUC  
4= YES, Payment for water use  
99= Other (specify)______    
 2=NONE  

What is your perception about quality of water from this water 
source?  

1=Very Bad    
2=Bad   
 3=Reasonable   
 4=Good    
5=Very Good   
77=Don’t know  

If very bad/bad, can you explain why you think this?   Select all that apply:  

1=Water is salty   
2=Smells bad   
3=Tastes bad    
4=Water is muddy    
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5=Contaminated by animals  
6=Iron taste   
99=Other (specify)  __________  

Has this water source experienced any service interruptions over 
the past 3 months (interruption = no water available for 12 hours 
or more)?  

a. Yes 
b. No 

(If yes) How long was the service interrupted (enter hours, days 
or months)?  

   

(If yes) What was the main cause of the interruption in service?     

Is this water source currently functional?    Yes/No 

If NOT, why is it not functional?      

Do you think this water source will be operating in 5 years?     

If main drinking water source needed repairs, how confident are 
you that the problem could be fixed within 1 week?  

   

In the last 6 months, were there any times when water from main 
drinking water source was not available for more than one week?  

   

On a scale of 1 to 10, how do you rate the following aspects of 
water services:  
(a) Regular or continuous supply;  
(b) Cleanliness; 
 (c) Safety (Public Health);  
(d) Safety (Physical)  

Likert scale  
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APPENDIX G: OUTPUT OF M1 AND M2 PER ACCESS TYPE



Appendix G.1: M1 output 
Legends are in terms of M1 predicted presences 





Appendix G.2: M2 output 
Legends are in terms of M2 predicted presences 
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APPENDIX H: HOUSEHOLDS HAVING OR NOT HAVING ACCESS TO ACCESS

TYPE AND MODEL OUTPUT



Appendix H. Reported access per household compared to model 
predictions 






	Abstract
	List of Figures
	List of Tables
	Preface
	Introduction
	Problem Statement
	Thesis Outline

	Literature Review
	Modeling Water Access
	Presence only data
	Modeling presence only data
	Predictors for water access types

	Predicting Domestic Water Consumption
	Study Area: Uganda
	Bushenyi-Ishaka Municipality

	Modeling Methods
	Used Datasets
	Training and validation data
	Feature data
	Expected total number of water access points

	Predicting Water Access Point Distribution
	Classifying cells with Neural Network models (M1-M4, M7)
	Background selection using weighted backgrounds (M2)
	Separate models for urban and rural areas (M3)
	Training on half the country (M4)
	Maximum Entropy model (M7)
	Access density regression neural network model (M5)

	Predicting Travel Time
	Water Consumption
	Evaluating Model Performance

	Survey Methods
	Survey Design
	Sample size

	Data Collection
	Data Analysis

	Results
	Model Performance
	Water Access
	Feature importance per model
	Access in Bushenyi

	Travel Time
	Predicting clustered average travel time from DHS data
	Predicting travel time in Bushenyi
	Households use more than one water source

	Water Consumption
	The role of water access
	The role of travel time
	Richer and well educated households use more water


	Discussion
	Limitations and Recommendations
	Models
	Survey

	Meaning of Results and Broader Implications
	Modeling the nationwide level of water access
	Households make use of multiple water sources
	Water consumption is driven by more than travel time alone
	Improving water access in Uganda


	Conclusion
	References

	Appendices
	Appendix A: Supplementary Material to the Literature Review
	Appendix B: Supplementary Results
	Appendix C: Field Report by James Tayebwa (head of survey team)
	Appendix D: Feature Layers
	Appendix E: Ethics Approvals
	Appendix F: Survey Questions
	Appendix G: Output of M1 and M2 Per Access Type
	Appendix H: Households having or not having access to access type and model output


