Extended abstract for the invited presentation at the 1Qmulus Workshop on Processing Large Geospatial
Data, 8 July 2014, Cardiff, Wales, UK (version 23 May 2014)

Point cloud data management
Peter van Oosterom, Sva Ravada, Mike Horhammer, Oscar Marinez Rubi, Milena Ivanova, Martin Kodde
and Theo Tijssen

Abstract

Point cloud data are important sources for 3D géorination. The point cloud data sets are growimg i
popularity and in size. ModerBig Data acquisition and processing technologies, suchaserIscanning
from airborne, mobile, or static platforms, densage matching from photos, multi-beam echo-sounding
or from autotracking seismic data, have the paaemdi generate point clouds with millions or bitie (or
even trillions) of 3D points (with in many caseseoor more attributes attached). This is especiallg
with the available and expected repeated scanamé srea (the temporal dimension). These pointdslou
are too massive to be handled efficiently by commeo-ICT infrastructures. At the database levéliain
implementations are available in both commercial apen source database products, illustrating siee u
need for point cloud support; e.g. Oracle spati@8¥0_PC data type and PostgreSQL/PostGIS PCPATCH
data type. This new data type should be availabladdition to the existing vector and raster dgpes.
Further, a new and specific web-services protoasl goint cloud data is investigated, supporting
progressive transfer based on multi-resolution. @8eience project investigates solutions in ordévetter
exploit the rich potential of point cloud data. Theject partners are: Rijkswaterstaat (RWS), Fugro
Oracle, Netherlands eScience Centre and TU Deiftinkentory of the user requirements has been made
using structured interviews with users from diffardoackground: government, industry and academia.
Based on these requirements a benchmark has bestogied to compare various point cloud data
management solutions w.r.t. functionality and perfance. The main test data set is the second aétion
height map of the Netherlands, AHN2, with 6 to athples for every square meter of the country, tiegul

in more than 600 billion points with 3 cm accuracy.

1. Introduction: DBM S approach

Why try to manage the large volumes of point clalada in a DBMS environment? Why not continue
further along today’s common practice to use aéctibn of) file(s) and specific tools (programibréaries)

to select, analyze, manipulate and visualize thietpdoud data? Point cloud data shares the sagplin
nature which is also behind raster data and theesamestion was raised in this context (and similar
answers can be given). Both types of data (bottereend point cloud) are often quite massive, but
relatively static. As there is limited requireméntt update (or delete, insert) of individual poiirisa multi-
user context, there is so not so much need for DBfsliSsaction support. It is indeed true, that fiassible

to develop specific file based solutions (RapiddassLAZ, ESRI's ZLAS,..) for point cloud ‘data
management’. However, when data sets will only gwd grow, more and more data management
challenges can be expected (and in the end weeateveloping large parts of a DBMS). For examplg, o
test data (AHNZ2) is stored and distributed in 60.08.Z files, which is not really efficient for sinig point
cloud data selection purposes even with the g@tsanable LAZ tools (as from Rapidlasso). Here a
DBMS could provide an easier to use and more skakternative.

Further, a specific (ad hoc) file-based solutionyrba good at one aspect (handling point clouds),irbu
reality users have a range of different data setstgpes: administrative data, vector data, radtea,
temporal data, etc. Therefore a standardized andrgeDBMS solution would be preferable as useratwa
to combine, vector and point cloud data in theerigs; e.g. select points from a point cloud datawhich
overlap with a set of 3-meter buffered polygonsuacb buildings owned by certain person. There is an
interesting list of spatial functionality for thagport of point clouds (at DBMS level); see Annex A

Given the huge volumes of point cloud data, perforoe is critical, both with respect to data stofage
transfer size and to speed (for loading and qug}yimherefore, it will be a real challenge to make
efficient implementation. However, several techeigjutheories are available and there is no fundehen
reason why this can not be done is a DBMS confiExé. initial implementations such as Oracle spatial’
SDO_PC data type and PostgreSQL/PostGIS PCPATCH wyae are steps in right direction. It is
important to assess the current implementation$aimsas possible via testing, or benchmarking and
comparing various solutions (Postgres, Oracle, NMoBeand sometime even file based approaches).

2. User expectations/requirements

The input of point cloud data users was obtainedavi user questionnaire. A wide range of usergingr
from scientists at the TU Delft (and Utrecht Unsigr) and government users at RWS to users from
Fugro’s network (partners and customers), with ougi research and production tasks/ applications,
participated. This approach was applied to obtajo@d overview of relevant functionality. In additi in

a group session on 31 may 2013 with staff from @ratU Delft, and NL eScience centre (the author
team), the importance of the various requested ptdnd query (analysis) functionalities was assdss

3. Conceptual benchmark

A ‘conceptual’ benchmark was developed based onuttezs requirement at a relative high abstraction
level (not platform specific) to assess varioususohs for point cloud data management. This cobeth

the functionality richness and the performancerégfe space, loading times, and query times). The
conceptual benchmark has to be translated intatéopin specific benchmark, which can then be exatut
The benchmark includes specification of test dathqueries (including the type of query geometwbgn
relevant). The structure or specification of cortuapbenchmark, covers the following aspects:

X. Storage (platforms: Oracle, MonetDB, PostgreSiattable/PC_type, parameters)

A. Datasets (range of different data sizes, ant/without additional attributes)

B. Query return method (count, create table ...eéecs local frontend, webservices)

C. Query accuracy level (storage blocks, 2D/3D yuectangle, 2D/3D exact geometry)

D. Number of parallel users (1 to 10.000, mainlyesions)

E. Query types (functionality based on user requinets, also see Annex A)

F. Manipulations (adding new data, compute attabubut individual point updates rare)

4. Executable benchmark
Before running a full benchmark, it is good to ffiexecute a smaller functional test (limited datts and
limited queries), called theini-benchmark (with 20.000.000 points, 20 million). The number of tests in the
benchmarks becomes very large as many of the tescaspects are ‘orthogonal’, resulting in vergdar
number different tests, even without any repeatofgtests (to be more sure about the results/
measurements). Therefore initial mini-benchmarkstase executed to gain experience. The queriéseof
mini-benchmark include the following 7 types: 1. @hrectangle, axis aligned (2.703%m2. Large
rectangle, axis aligned, (49.508)m3. Small circle radius 20 m, 4. Large circleadius 115 m, 5. Simple
polygon specified by 9 points, 6. Complex polygpedfied by 792 points (including one 1 hole), ahd
Long narrow diagonal rectangle. Below the firseguof the mini-benchmark in Oracle:

CREATE TABLE query_res_1 AS

SELECT * FROM t abl e (sdo_pc_pkg. cli p_pc(SDO_PC obj ect,

(SELECT geom FROM query_pol ygons WHERE id = 1), NULL, NULL, NULL, NULL));
After these initial tests and gradually up-scaliidias been decided which tests options (most @om
configurations) are part of thenedium-benchmark (with 20.000.000.000 points, 20 bhillion). While
benchmarking, the used databases (and parameiagsgtre analyzed, and when needed improved; e.g.
in Oracle a faster blocking approach as been pezpasd implemented. The medium-benchmark will also
contain more functionality: 1. polyline with buffguery, 2. height query in area (find all pointsole-1
meter in rectangle), and 3. nearest neighbor qudso the query geometries of the medium-benchmark
are in a different part of the domain. The mediuemdhmark is a half-way sanity check before loading
querying the complete AHN2 point cloud data. Byessing various systems (different databases/
configurations, and even different hardware platfar besides a ‘normal’ server also an Oracle
EXADATA machine), strong and weak points of variapmproaches will be identified. This will support
the work towards an ‘optimal’ solution. The testitgglf is automated up to a large extend, botltetien
and processing of results, given the huge numbgstfoptions. If medium-benchmark works well, tliten
is time to scale up and run mdrél-benchmark: complete AHN2 data set and more queries/ funation
In the future also further scalability is tested teplication the AHN2 dataupscaled-benchmark; e.g.
20.000.000.000.000 points, 20 trillion, about 30es the current AHN2 data sets).

5. Data or ganization, blocking, clustering, compression

Given the size of point cloud data, techniques havee applied to work efficiently with these lardata
sets. Besides using the new PC data types, forerefe (and other) purposes also the flat table imede
assessed (one point per row). First of all, this ba used as comparison to measure the improved
efficiency of a PC data type extended database atnaf storage needed, and query performance). The
flat table storage can also be considered as #leintermediate stage, where it is relativelyye&s

| organize, sort points for various purposes; e.gomling to their Hilbert-code or Mtm-code value
(exploiting spatial coherence). After preparing meiin this flat table, it is easier to create there
efficient, more compact PC data type representatioa sequence of rows, will form the content blioak.
The PC data type representation has several benéfitspatially coherent, may be used for simple
compression (first bits/digits of all coordinate® &qual and may be stored at block level), hastigsle
overhead, may be used for caching, etc. Howevenjght also be possible to use the flat model diyec
(e.g. in case no PC data type is available or g& ¢he database hardware/software can handle \aty w
compression and fast selections on flat table, ssdBracle’s EXADATA machine). Part of the desidgmo
good point cloud data management system is spegifyie parameters for several options (before actua
data loading, and which might impact significardlydata use/query):
1. 2D/3D clustering/indexing (or 4D with attributéme, intensity)
2. block sizes (100, 1.000, 5.000, 10.000 pointsbfmek)
3. compression options (none, medium, high)
4. pyramid options (with/ without duplication betvelevels, how to select points for higher levid,)e

6. Vario LoD/data pyramid
Given the amount of data, it is not always needsdl efficient to send all points overlapping the yue
selection region form server to client (too muckadevhich is not visible anyhow, but which willke data
communication and processing time). Therefore, gatamid solutions have been implemented. For
example, a selection of the points is moved toghdr level block combined with selected points form
neighbor blocks resulting in a higher level blodkhaarger extend. Typically, at each level the edige of
a block rectangle is doubled and in case of 2DKatay; the 4 lower level blocks are covered by oppar
level block (and 1 of the bottom level points are repeated at higeeel block, or in case of no
duplication 1/8 of the data of bottom level block is moved to ligtevel block). As a result all blocks
contain same amount of data. The data pyramid earséd to realize a perspective view query:

Perspective view

I_T_T'_I_W_T_T'_I__I

N I R T S R I
| 1 1 1 | IMOI’e
r-- ~u il
. Medum A ofy | 1 |
e I -r
|pI I !
/]
.
C
— TF9
Less__:_:__:__4
_.L_L_l__l

The further away from viewer the lesser pointsceld (i.e. the higher level blocks/points). Theverack

of this approach is that there are a discrete nuwidevels and viewer may notice the differencel@msity
between neighboring blocks of a different level. Wik therefore investigate the possibility of vasscale
LoD (and storage techniques). This is work in pesgr but we intend to apply lessons from varioescal
research: add one dimension to the geometry (2B \daio-scale represented by 3D geometry) and apply
this to point cloud data. This starts by computimg importance value of a point (comparable to Llegl,
but now not limited to discrete levels) and use 6 the additional imp-height dimension. So, tbiatp
cloud data sets either becomes: x,y,imp (z andrethee treated as attributes) or x,y,z,imp (anérstlas
attributes). Next compute clustering/indexing of 8D (or 4D) points using Hilbert or Morton coderts
points, and create blocks and index the blocks @&Rhor 4D) R-tree. This is more or less identiwathe
normal non-LoD point cloud blocking, but now withemore dimension (imp).

During the use of the vario-scale cloud data, windeperspective the view selections: the view tiios
object gets one more dimension (importance): furttoen the viewer, gradually only the higher impmte
are selected. This view frustum, a 3D polyhedrgkect) can be selected quickly from the blocked and
indexed vario-scale point cloud data (either atkltevel or at exact overlap-level). Visualizatiomsing
these selected points do not have the density shbek discrete LoD based data pyramids have.da o&

a moving the view position, the delta point sets) be selected efficiently (and transferred fromveseto
client): new points are selected based on 1. overlap with new vatesdew frustum and 2. non-overlap
with the previous vario-scale frustum (as visudl@aclient already has these points). Anddtat points to

be dropped in visualization: 1. overlap with prexdovario-scale view frustum and 2. non-overlap waighiv
vario-scale view frustum.

The data pyramid is not only relevant for the deltaage (and query), but also relevant in the ctraé
web-services. A specific web-services protocoldont cloud data is investigated, supporting pregie
transfer based on multi-scale resolution (or vadale resolutions) as point clouds data sets candssive
and users might first want to have a good ‘overvienusers what good perspective views.

7. Possible standar dization needed/ useful ?
As described, we have been testing various solsitfon managing point clouds, all having a different
interface (and different possibilities). This istmmly inconvenient for benchmarking, but also fiarmal
application development (esp. when combining saftweomponents from different origin). More and
more actors are involved and provide (partial) sohs for point cloud data processing: data actjaiss,
storage/ management, visualization, analysis,Tétere are both commercial sector and open sousmdba
solutions at the various levels: Oracle, Esri, BantLAStools, Postgres, MonetDB, and the list igcim
longer. The end-users, from industry, governmemtresearch, want interoperability and be able to
combine point cloud data from various sources Wiitictionality in tools form other vendors/ develope
or even own developed specific purpose applicatisvisen agreed by the community that standardizing
point clouds is important, the next questions afated to what functionality need to be standadiemed at
what level. At least two closely related levelsstdndardization are to be considered: 1. Databgde S
(Structure Query Language) extension for point diguand 2. Web Point Cloud Services (WPCS) for
progressive transfer of point clouds.
As the focus is on geographic applications, thesetloud standards should fit and be complimgntar
existing standards from the Open Geospatial CoinsorfOGC) and/or the International Organisation for
Standardisation/Technical Committee 211 (ISO TC2PBrhaps to the outside world, the web-services
level is most important, but it is not useful tesjfy web-services functionality which can not lo@sorted
by lower data management and selection functigndbibint cloud data resemble both vector (objeat) a
raster (field) data. One could argue that a pdimtict could be stored as a standard vector datajrea
Simple Feature Specification (SFS) multipoint insiagle row or many rows with a single point.
Theoretically true, but the size of the point clsudake them unsuitable to store them. A work-around
could offer a pragmatic solution; e.g. store pailttud in several/ many (spatially coherent) muliippo
objects (but this is non-trivial to realize andIvpilit a serious work load on the user to realize ghouped
multipoint storage). One could also argue that fpolaud data is similar to raster data as it isebasn
sampling. True, but the result in case of poinudlaata is not a regular grid, so the availabléeragata
storage solutions are also unsuitable. Therefoie,droposed to addthird type of spatial representation
to our geographic information processing systems @andards): a point cloud data type. Find below
initial list, which is describing the characteristif a possible point cloud data type:
1. xyz (alot, specify basic storage of coordinate iBRS using various base data types: int, floathldo

number, or perhaps even varchar..)
2. attributes per point (0 or more; e.g. intensitgojor RGB or classification, or observation point i
addition to resulting target point...; this might ceptually correspond to a higher dimensional ppint)
fast access (based on spatial cohereffegpme blocking scheme (in 2D, 3D, ...)
space efficient storag® compression techniques (exploiting spatial colgsio
data pyramid (LoD, multi-scale/vario-scale, persipe support
temporal aspect, options for time per point (c@glyblock (less refined)
query accuracies (report storage blocks, refinésets of blocks with/without tolerance value of on
2D, 3D or nD query ranges or geometries)
8. operators, functionality in the following initialigroposed categories, see Annex A
loading, specify
selections
analysis | (not assuming 2D surface in 3D space)
conversions (some assuming 2D surface in 3D space)
towards reconstruction
analysis Il (some assuming a 2D surface in 3D gpace
LoD use/access

h. updates

9. options to indicate the use of parallel procesfimgperations as listed in 8

Nookw

@mpoooTy

Annex A. Details on functionality in the various categories

a. loading, specify:
* input format
e storage blocks based on which dimensions (2, 3)4,...
» data pyramid, block dimensions (level: discreteamtinuous)
e compression option (none, lossless, lossy)
» spatial clustering (morton, hilbert,...) within anettyeen blocks
» spatial indexing (rtree, quadtree) within and bemblocks
« validation (more format, e.g. no attributes omiftékdan any geometry or topological
validation; perhaps outlier detection)?

b. selections:
» simple 2D range/rectangle filters (of various sjzes
» selections based on points along a 2D polylineh(Witffer)
» selections of points overlapping a 2D polygon
» spatial joint with other table; e.g. overlap poiith polygons
» select on address, postal code or on other tega@jraphic names (gazetteer)
» selections based on the attributes such as igdn&IGB, class)
» spatiotemporal selections (space and time range),
» combine multiple point clouds (Laser + MBES, cléissi + unclassified)

c. simple analysis | (not assuming 2D surface in 38cs
* (local) density of points
* k-nearest neighbors
» temporal differences computations
» compute min/max/avg/median height (z or attribgkig)
e compute cross profiles (intersect with verticalngaproject ‘nearby’ points)

d. conversions (some assuming 2D surface in 3D space):
e uncompressed to compression (lossless, lossy) acid b
» change blocksize (incl. optional data pyramid, matio-scale support)
e coordinate transformation (e.g. NL RD-NAP ETRS89)
» PC to contours,
» PCtoTIN,
» PC to (height) raster/grid,
+ PCtoimage (e.g. oblique view on point cloud)
» also opposite direction, generate point clouds foomtours, TIN, raster
» also higher dimensional objects/spaces

e. towards reconstruction:
e compute normal vectors of points,
» slope orientation or steepness computation
« flat plane detection (and segmentation of poind, identifier attribute)
» curved surface (cylinder, sphere patches, NURB&ctien
« compute building (given) polygon height using paitdud (difference inside-outside)

f. advanced analysis (some assume a 2D surface ip&i2)s
e compute area of implied surface (by point cloud)
» compute volume below surface
» volume difference between design (3D polyhedratjese and point could surface
» detect break line in point cloud surface
» hill shading relief (generate image)
» view shed analysis

g.

h.

LoD use/access

updates

multi-resolution/LoD selection (select top 1%, opt0.01% of points, or key points) or
aggregate new points,

sort points on relevance/importance (support stiegm

selection based on perspective view point clougitherat view position M points per m"3
and (linear) reducing to 0 points per m"3 at distad

delta selection of query E after moving to nextwigosition (give additional points were
densification is needed due to closer view range)

update point geometry, some small changes of maimys
update point geometry, larger changes of few ppints
update attribute (e.g. classify point)

insert new data of same type (0.1%, 1%, 5%, 10%4,25
delete points (0.1%, 1%, 5%, 10%, 25%,...)

