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Abstract

System Safety and Arti�cial Intelligence 
Roel I. J. Dobbe

This chapter formulates seven lessons for preventing harm in arti�cial intelligence (AI) systems based

on insights from the �eld of system safety for software-based automation in safety-critical domains.

New applications of AI across societal domains and public organizations and infrastructures come with

new hazards, which lead to new forms of harm, both grave and pernicious. The chapter addresses the

lack of consensus for diagnosing and eliminating new AI system hazards. For decades, the �eld of

system safety has dealt with accidents and harm in safety-critical systems governed by varying degrees

of software-based automation and decision-making. This �eld embraces the core assumption of

systems and control that AI systems cannot be safeguarded by technical design choices on the model or

algorithm alone, instead requiring an end-to-end hazard analysis and design frame that includes the

context of use, impacted stakeholders, and the formal and informal institutional environment in which

the system operates. Safety and other values are then inherently socio-technical and emergent system

properties that require design and control measures to instantiate these across the technical, social,

and institutional components of a system. This chapter honors system safety pioneer Nancy Leveson,

by situating her core lessons for today’s AI system safety challenges. For every lesson, concrete tools

are o�ered for rethinking and reorganizing the safety management of AI systems, both in design and

governance. This history tells us that e�ective AI safety management requires transdisciplinary

approaches and a shared language that allows involvement of all levels of society.

Introduction

The emergence of AI systems in public services, as well as in public spaces and infrastructures, has led to a

plethora of new hazards, leading to accidents with fatal consequences (Raji & Dobbe, 2020) and increasing

concerns over the risks posed to democratic institutions (Crawford et al., 2019). The criteria for identifying

and diagnosing safety risks in complex social contexts remain unclear and contested. While various

proposals have emerged specifying what it is we need to strive for in terms of dealing with ethical, legal, and

societal implications of AI systems, there still is a long way to go to understand how to translate such

higher-level principles and requirements to the development as well as the operation and governance of

these systems in practice (Mittelstadt, 2019; Dobbe et al., 2021). A system perspective is needed (Zuiderwijk

et al., 2021) that facilitates the identi�cation of (new) complex safety hazards in ways that do justice to

those bearing the brunt of AI systems (Benjamin, 2020), and can contribute to strengthening the rule of law.

While there is still considerable disagreement on what entails an appropriate de�nition of AI, recent policy

e�orts led by the OECD have converged on a seeing AI as a sociotechnical system with a complex lifecycle

(OECD, 2021). Here we de�ne sociotechnical AI systems as consisting of technical AI artefacts, human

agents, and institutions, in which the AI artefact in�uences its real or virtual environment by automating,

supporting, or augmenting decision making. The technical AI components in such a system may vary from

logic or knowledge-based models to machine learning models to statistical or Bayesian to search or
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Shi� focus from component reliability to system hazard elimination

Relevant system safety strategy: Identify hazards at the systems rather than component
level

optimization methods. In systems engineering, safety is understood as an emergent property, which can

only be instantiated and controlled for across the above-mentioned system elements (Leveson, 2012).

Core to the establishment of a system perspective are lessons from decades of knowledge built up about

what constitutes safety in systems subject to software-based automation. These lessons have become

central to the organization of many domains and markets, such as in aviation and healthcare. However,

scanning both AI systems literature as well as policy proposals, it is evident that these lessons have yet to be

absorbed. In this chapter, I provide an on-ramp into the system safety canon for di�erent disciplines and

people involved or invested in the safeguarding of AI systems. I center the seminal work of Nancy Leveson, a

pioneer of system safety in engineering systems. In her magnum opus Engineering a Safer World: Systems

Thinking Applied to Safety, Leveson draws seven lessons based on recurring issues that hinder the

safeguarding of complex systems subject to forms of software based automation (Leveson, 2012). I coin

these the Leveson Lessons and interpret them for a variety of concrete challenges that are emerging for

safeguarding AI systems in di�erent domains.

Levesonʼs Lessons for AI System Safety

In this section, the seven Leveson lessons each inform a core implication for the emerging �eld of research

and practice in AI system development and governance, and some concrete examples of approaches and

tools from system safety that can form on-ramps and inspiration for how to put principles for safe AI

systems into practice. Table 67.1 provides an overview of all lessons, implications and example system

safety strategies. These tools should not be taken as a comprehensive �x for AI system safety challenges,

but as a starting point to overcome gaps in mindset across policy makers, system designers, and managers,

and to ensure stakeholders implicated by potential hazards have a voice in e�orts to safeguard AI systems.

Leveson Lesson 1: High reliability is  neither necessary nor su�cient for safety.

Recent work in the area of “AI safety” has largely focused its e�orts on the internal technical components

and assumptions of the AI subsystem (Amodei et al., 2016). This formulation of AI systems puts most of its

emphasis on the mathematical formulation, including the objective or reward function, the model class

with its input variables and data, its parameters, and the task it is trying to model. As a result, it does not

comprehensively address how a system is used in practice and interacts with other (human) agents,

systems, and its broader environment. In a recent paper, Raji and Dobbe show that a focus on technical

components alone cannot explain AI system accidents (Raji & Dobbe, 2020). They consider the use of

machine learning models to predicts potential criminal activity. To ensure the resulting predictive policing

system is “fairness,” various technical e�orts propose metrics and tools to prevent some form of bias in the

model’s outputs. However, when the model is used by inherently biased police practices (Richardson et al.,

2019), the discretion of police forces will still lead to more arrests in certain over-policed neighbourhoods

(Lum & Isaac, 2016). Data collected from such practices can then be used to retrain the model or test new

systems, leading to forms of emergent bias and discrimination that can’t be prevented by the logical

components of the AI subsystem (Dobbe et al., 2018).

Rather than being able to be decomposed into components and then examined and designed for safety, AI

systems are situated in complex contexts and interact with other components, both in terms of human

agents, social organizations, and other technical systems. System theorists call the behavior that such

systems exhibit organized complexity (Leveson, 2012). Typically, these systems are too complex for the sole

use of “divide and conquer” analysis and design common in the traditional (engineering) sciences. In

addition, such systems are not regular and random enough in their behavior to be studied purely

statistically (which we return to later).

In Leveson’s system safety perspective, a hazard is carefully de�ned as “[a] system state or set of conditions

that, together with a particular set of worst-case environmental conditions, will lead to an accident (loss)”
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Shi� from event-based to constraint-based accident models

(Leveson, 2012, p. 184). This de�nition limits the focus to states the system should never be in and gives

designers greater freedom and ability to design hazards out of the system.

These fundamentals provide two important insights. First, it makes most sense to draw system boundaries

in ways that include conditions related to accidents over which system designers have some control. This

enables the system designer to translate identi�ed hazards into concrete requirements, typically formulated

as a constraint on design or operation of the system.

Second, system developers typically will not have control over all conditions related to accidents. Therefore,

for the identi�cation and elimination of hazards to be complete and properly assigned in terms of

responsibilities, one needs to also address the institutional context. In system safety, institutional design is

referred to as the safety control structure, which will be further discussed in this chapter. The need to

integrate hazard analysis in both system design as well as operation and the broader institutional safety

control structure is depicted in Figure 67.1.

Figure 67.1

Hazard analysis as integrally informing the design of AI systems (in black), as well as the design of the institutional safety control
structure (in blue).

Credit: Adapted by the author from Leveson (2012, chapter 9).

Let’s return to the predictive policing system example. To properly identify the discriminatory nature of a

predictive policing system, the system designer may draw the system boundary to include the contexts from

which the data originates and in which the AI tool is used. This would naturally include the issue of

institutional discrimination related to the use of these tools in the system-theoretic safety analysis and

prevent naive application of these tools in practice.

Leveson Lesson 2: Accidents are complex processes involving the entire sociotechnical  system. Traditional event

chain models cannot describe this process adequately.

Accidents are often studied and attempted to be explained in terms of “root causes.” In doing so, many

accident models rely on identifying chains of causal events. Leveson argues that a focus on causal event

chains tends to narrowly isolate technical factors, engineering activities, and operator errors, thereby

overlooking systemic factors that could inform prevention of future accidents.

A similar critique has surfaced recently for causal and counterfactual methods that aim to capture the “data

generating process” of machine learning models, in an e�ort to align model-based decisions with causal

structures. Hu and Kohler-Hausmann (2020) show how such approaches tend to mistake constitutive

relationships for causal relationships in an e�ort to answer why questions. Constitutive relationships

comprise variables that together constitute a category, but that do not have a clear temporal relationship,

and therefore cannot be modeled as causal event-chains. Barocas et al. (2020) provide a more

comprehensive account of the limitations of counterfactual methods proposed for improving the quality

and fairness of decisions supported or automated by machine learning models, showing that counterfactual

insights do not necessarily map to viable actions in the real-world and overlook other dimensions of the

decision subject or process.

D
ow

nloaded from
 https://academ

ic.oup.com
/edited-volum

e/41989/chapter/377785597 by O
U

P-R
eference G

ratis Access user on 01 January 2023



Relevant system safety strategy: Ensure safety through socio-technical constraints

Shi� from a probabilistic to a system-theoretic safety perspective

Rather than trying to capture and explain safety concerns with causality, a systems-theoretic view uses

constraints on a socio-technical system’s components and their interactions, and studies and designs how

and to what extent these can be e�ectively controlled for. Here, control should be interpreted to not only the

role of operators or automation, but can also be attained by integrating constraints in the (physical) design

of the system or through social forms of control, which may include organizational, governmental, and

regulatory structures (such as rules for how a system can or cannot be used), but they may also be cultural

(such as building a safe culture to report issues that could lead to safety hazards) (Leveson, 2012).

Here, we look at an autonomous vehicle example to see how system-level constraints can be identi�ed, and

how responsibility for enforcing these must be divided up and allocated to appropriate stakeholders. On May

7, 2016, a Tesla Model S was using its “Autopilot” feature and crashed near Williston, Florida, leading to the

death of the driver, Joshua Brown. The car did not brake when a tractor trailer drove across the highway

perpendicularly. In its initial news release, Tesla stated that “[n]either autopilot nor the driver noticed the

white side of the tractor-trailer against a brightly lit sky, so the brake was not applied,” also putting heavy

emphasis on the need for drivers to remain engaged with hands on the wheel while using the “Autopilot”

feature (The Tesla Team, 2016).

While it acknowledged the role of human errors (both the truck driver and the Tesla driver), the National

Transportation Safety Board (NTSB) determined that “the operational design of the Tesla’s vehicle

automation permitted the car driver’s overreliance on the automation, noting its design allowed prolonged

disengagement from the driving task and enabled the driver to use it in ways inconsistent with

manufacturer guidance and warnings” (The National Transportation Safety Board, 2017, p. 42). In addition,

it found that “[t]he Tesla’s automated vehicle control system was not designed to, and could not, identify

the truck crossing the Tesla’s path or recognize the impending crash” (p. 30).

While this verdict does not directly specify what safety constraints were missing or unsuccessfully enforced,

it does provide suggestions. Clearly, if the autonomous driving feature continues, there will need to be put in

place better conditions to prevent prolonged disengagement and unsafe use. The faulty vision system needs

a structural reconceptualization to either ensure that predictable scenarios, like a truck crossing, are

detectable or to constrain the use of the vision system only to situations where its errors cannot lead to

hazardous conditions.

Leveson Lesson 3: Risk and safety may be best understood  and communicated in ways other than probabilistic risk

analysis.

Most AI systems parameters are optimized according to some objective or reward function. These tend to

either minimize or maximize a probability that the AI model output matches a desirable outcome. It is no

secret that such approaches will never guarantee that an AI system’s output enters unsafe territory—they

may only reduce the probability. Just as probabilistic risk assessments, the reward or objective function

tends to absorb a plethora of risky dynamic safety scenarios into one function without explicitly

formulating these scenarios, let alone how to safeguard against these.

Internalizing constraints in the design and training of ML-driven AI systems is notoriously hard and, while

some relevant e�orts have been made in theory (Achiam et al., 2017), a workable and scalable solutions is

not yet available.

Solely relying on an AI system’s internal model to incorporate all safety constraints is dangerous. Raji and

Dobbe (2020) note that you can expect AI system models to fail and hence, of true scrutiny should be the

e�ectiveness of the safety measures employed, such as fail-safe features to kick in when an anticipated

engineering failure occurs. Instead of capturing safety in terms of low probabilities, alternative methods are

needed to secure a system in practice, by combining learning-methods with control-theoretic guarantees

(Fisac et al., 2019) and installing other (socio-technical) fail-safe mechanisms (Dobbe et al., 2021). To

design those e�ectively, we �rst must reevaluate where we draw the boundary of our system design and

accompanying safety analysis.
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Relevant system safety strategy: Capture the safety conditions and assumptions in a
process model

The boundary of analysis for safety should extend beyond the AI model (with its inputs, features, outputs,

and reward/objective function), and include dynamics of the AI model interacting with other system

components, including human operators, users, or subjects, and the process and environment the system is

intervening in. In system safety, this is done with a process model, which interprets an AI system as a control

entity, possibly complemented by forms of human control and decision-making, as indicated in Figure 67.2.

The process model formulates four conditions:

1.  The goal: the objectives and safety constraints that must be met and enforced by the controller;

2.  The action condition: the controller must be able to a�ect the state of the system;

3.  The observability condition: the controller must be able to ascertain the state of the system, through

feedback, observations, and measurements; and

4.  The model condition: the controller must be or contain a model of the process. A human controller

should also have a model of the behavior of the AI techniques used for control and decision-making.

Based on the process model, it is easier to specify what feedback and fail-safe mechanisms are needed to

enforce safety constraints, and, as a consequence, to understand how accidents occur.

Leveson argues that often, accidents occur “when the process model used by the controller (automated or

human) does not match the process” (Leveson, 2012, p. 88). This can lead to four types of control errors:

incorrect or unsafe control actions, missing control actions for guaranteeing safety, wrong timing of control

actions, or control actions applied too long or stopped too soon.

Figure 67.2

A specific depiction of the process model in the context of several government organizations making AI-informed decisions
about households that are dynamically linked through various data registers.

Credit: Author.

Here we end with an example from the public sector in The Netherlands. The Dutch government developed

the System Risk Indication (SyRI); a legal instrument to detect various forms of fraud, including social

bene�ts, allowances, and taxes fraud, by developing risk pro�les using statistical learning techniques.

These risk pro�les determined the deployment of resources to combat fraud. In 2020, The Hague District

Court ruled the SyRI system and its accompanying legislation unlawful as it violated the European

Convention on Human Rights (ECHR): “The court �nds that the SyRI legislation in no way provides

information on the factual data that can demonstrate the presence of a certain circumstance, in other words

which objective factual data can justi�ably lead to the conclusion that there is an increased risk” (Rechtbank

Den Haag, 2020, article 6.87). Later that year, the Dutch Data Protection Agency concluded that the risk

classi�cation system had been used in the childcare bene�ts scandal, in which more than 26,000 families

were wrongfully accused of fraud (Autoriteit Persoonsgegevens, 2020). Many families collected steep
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Shi� from siloed design and operation to aligning mental models

Relevant system safety strategy: Align mental models across design, operation and
a�ected stakeholders

amounts of debt and were forced to foreclose and sell their homes or vehicles, also leading to massive

emotional harms, including forced divorces and even cases of suicide (Levie, 2021).

While the scandal is still under investigation, it is clear that AI systems played a central role in causing these

harms, with algorithms discriminating based on ethnicity and income level. This case exempli�es the sheer

lack of a process model. The system informed decisions (action condition) based on illegitimate inputs

(observation condition) and had no idea of the detrimental consequences for citizens (model condition), nor

did it have any safeguards in place (goal condition). The AI system used was part of a broader policy and

governance structure that dehumanized thousands of families. Arguably, the model of the controlled

process should have included the impact of possible control errors (in this case the incorrect classi�cation

of families as “fraudulent”) on the �nancial and general health of the subject families. That would have

enabled the formulation of safety constraints that would rule out the unjusti�ed condemnation. In the

Dutch legal system, this would have included proper avenues for legal protection and due process in the case

of disagreement on the verdict of the system and its operators. Such safety hazards would have been

naturally identi�ed if human dimensions were part of the model of the controlled process, which is now a

top priority for many policy domains. The Dutch case shows that their public administration, while being

leading in terms of digitalization, does not have a long history of dealing with safety hazards and centering

(possible) victims of control errors in improving automated decision-making. As such, it will be able to

learn signi�cantly from the lessons learned in system safety.

Leveson Lesson 4: Operator error is a product of the environment in which it occurs.  To reduce operator “error” we

must change the environment in which the operator works.

While investigations into accidents tend to structurally �nd other factors, there is a recurring tendency to

put the blame on inadequate response to the failure by an operator (Leveson, 2012). This phenomenon has

been attributed to the e�ect of hindsight bias in which the focus is on what an operator did wrong rather than

on what was the logical thing to do given the circumstances (Dekker, 2016). In the context of AI systems

research, the dominant focus on technical solutions often contributes to an under-appreciation for the role

of human operators and other users of a system (Dobbe et al., 2021).

Meanwhile, new regulatory proposals are putting more emphasis on the need for human oversight, as a

response to emerging evidence on the dangers of AI systems. The European Commission (2021) highlights

the role of meaningful human oversight in their recent proposal for regulating AI systems. Kak and Green

(2021) point out that this may not address societal concerns, showing how earlier calls have provided

shallow protection in the past and may instead serve as a means of “rubber stamping” intrusive and

harmful applications, thereby blurring responsibility, where frontline human operators of AI systems are

blamed for broader system failures over which they have little or no control (Elish, 2019).

While issues around the operator and human–machine interactions occurring with new AI systems seem

new, these have been studied extensively for safety-critical systems such as airplane autopilots. Here I focus

on the importance of mental models, which are maintained by designers and operators and “used to

determine what control actions are needed, and it is updated through various forms of feedback” (Leveson,

2012, p. 87). Mental models are a concept that �nds its roots in cognitive science, engineering, and the study

of work performance (Rasmussen, 1987).

Across the mental models formed by designers and operators natural changes emerge over time. Operators

or users typically �nd rational grounds to deviate from the normative procedures described by designers,

leading to e�ective procedures (Rasmussen et al., 1994). This adaptation is common across all systems and

may happen due to various reasons, such as time constraints, economic or political incentives, or an

operator understanding how to better safeguard or optimize a system through �rst-hand experience, which

a designer typically lacks. It is therefore no surprise that operator error is found to be a dominant focus for

accident causes, as any deviation from normative procedure could be labeled as erroneous. In turn, this

e�ect is often used as an invalid argument to automate the operator away (Dekker, 2017).
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Instead, the system safety discipline would describe e�orts to align and periodically update the di�erent

mental models that di�erent actors hold and use when designing, operating, or otherwise interacting with

the system. In Figure 67.3, I show an adaptation of Leveson’s depiction of the relationships between mental

models (straight arrows). In addition to designers and operators, the increasing dominance of automation

in societal infrastructures also leads to other stakeholders forming mental models of a system’s behavior

and how to depend on and interact with it. The updating of mental models through feedback mechanisms

will be further addressed later in this chapter.

Here we discuss the importance of mental models for a recent case in autonomous driving. The fatal

accident in which an autonomous vehicle, developed and tested by Uber, killed a road-crossing pedestrian

in Tempe, Arizona, on March 18, 2018, forms a painful example. When evidence emerged that the test

driver, responsible for taking over control of the car in the event of unforeseen and risky conditions, had

been visually distracted due to looking at her cellphone, most public journalism focused on her role in

causing the accident. But while the NTSB did identify the operator’s role as the probable cause of the

accident, it also put major emphasis on the role Uber had played in enabling such unsafe behavior:

“Contributing to the crash were the Uber Advanced Technologies Group’s (1) inadequate safety risk

assessment procedures, (2) ine�ective oversight of vehicle operators, and (3) lack of adequate mechanisms

for addressing operators’ automation complacency—all a consequence of its inadequate safety culture”

(The National Transportation Safety Board, 2019, p. v). The damning NTSB verdict makes clear the essence

of aligning the mental models across design and operation.

Figure 67.3

Relationships between mental models.

Credit: Adapted by the author from Leveson (2012).

While it is evident that the behavior the test driver exhibited was unsafe, there were various environmental

factors Uber could have addressed to prevent this from happening. A typical re�ex to this is to install human

factor checklists for designers and put in place stricter procedures for operators to follow. These, however,

have been shown not to be su�cient in establishing high levels of safety, and can even have the opposite

e�ect (Dekker, 2017). Instead, engineers and designers need to design the system and the environment to

prevent human errors. A general approach to designing adequate shared control of humans and AI systems

is unrealistic because there are a plethora of contextual considerations (Leveson, 2012). Nevertheless,

Leveson has outlined three principles:

1.  Design for redundant paths: to provide multiple paths to ensure that a single error cannot prevent the

operator from taking action to maintain a safe system state and avoid hazards;

2.  Design for incremental control: to give the operator enough time and feedback to perform control

actions and, if possible, to do so in incremental steps rather than in one control action; and

3.  Design for error tolerance: to make sure that reversible errors are observable to the human operator
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Curb the curse of flexibility in AI so�ware development

Relevant system safety strategy: Include so�ware and related organizational and
infrastructural dependencies in system-theoretic hazard analysis

before unacceptable consequences occur, to allow them to monitor their own performance and to

recover from erroneous actions.

Leveson Lesson 5: Highly reliable software is not necessarily safe. Increasing  software reliability or reducing

implementation errors will have little impact on safety.

Perhaps the most pertinent and under-appreciated lesson from Leveson’s system-safety canon relates to

the role of software in algorithmic harms. The curse of �exibility refers to the dominant assumption that, in

contrast to physical machines, software is not subject to physical constraints, leading to ever more �exible

and complex designs aiming to address existing and emerging requirements. However, Leveson argues that

the limiting factors of software-based automation change from the structural integrity of materials to

limits on people’s intellectual capabilities (Leveson, 1995, 2012).

The source of most serious problems with software relate to outsourcing software development. This

creates extra communication steps between those understanding the physical realization of the system

(domain experts, users, a�ected stakeholders, hardware operators) and those programming the software.

And this step often leads to requirements not being complete. Leveson argues that “[n]early all the serious

accidents in which software has been involved in the past twenty years can be traced to requirements �aws,

not coding errors…. The most serious problems arise, however, when nobody understands what the

software should do or even what it should not do” (Leveson, 2012, p. 49). Unfortunately, there is mounting

evidence that the development of high-stakes AI systems and software often goes without principled ways

to determine safety requirements and translate these to software implementations (Dobbe et al., 2021).

The resulting lack of proper requirements and validation is best re�ected in the development of large

language models (LLMs) within the �eld of natural language processing (NLP). LLMs are notorious for their

complexity and �exibility. This combined with the struggle to impose reasonable safety requirements make

these systems unsafe by design, with large environmental consequences (Dobbe & Whittaker, 2019),

damage to cultural heritage and harm to groups and individuals subject to an LLM’s errors (Bender et al.,

2021).

The System-Theoretic Process Analysis (STPA) that Leveson developed formalized hazard analysis to

provide information and documentation necessary to ensure the enforcement of safety constraints in

system design, development, manufacturing, and operations (Leveson, 2012). The output of such analysis

can be used to develop or update the requirements of a software-based automation system in the process

model, as well as the institutional arrangements in the safety control structure.

STPA considers software as a primary source for possible hazards, as it modulates decisions and control

actions, provides feedback (e.g., through sensor readings) and executes computational models. A more

nascent application of STPA is to use it to identify safety risks related to how the software is organized. Over

the last decade, we have seen a major shift to cloud computing platforms, in which a broad variety of services

for software development and maintenance are integrated, including tools for integrating data and building

AI applications. Concurrently, AI applications have been championed to solve complex problems in

marketing e�orts by vendors, both those developing cloud platforms and third parties working with it. The

AI Now Institute showed how the AI hype has contributed to “widening gaps between marketing promises

and actual product performance. With these gaps come increasing risks to both individuals and commercial

customers, often with grave consequences” (Whittaker et al., 2018, p. 5).

Gurses and van Hoboken (2017) show how cloud computing platforms and their central bundling of services

have challenged principled software development, rendering designing for crucial values like safety or

privacy in AI system software an elusive goal. More alarmingly, the control of big tech companies over

infrastructures central to development of high-risk and high-impact AI systems threatens our ability to

understand and regulate these technologies (Whittaker, 2021).
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Translate safety constraints to the design and operation of the system

Relevant system safety strategy: Organize feedback mechanisms for operational safety

As a result, there is a set of open problems related to safeguarding the organizational and infrastructural

risks of software used to build AI systems in critical public domains, in ways that overcome and rebalance

power relations (Balayn & Gu¨rses, 2021). Here, a system safety can help us to expand the boundary of safety

analyses to include organizational and infrastructural dependencies, to directly address the hazards that

emerge through contracts that lean on central bundling of software services, and to characterize the risks

that emerge from not being able to program safety requirements in an end-to-end fashion.

Leveson Lesson 6: Systems will tend to migrate toward states of higher risk. Such migration is predictable  and can

be prevented by appropriate system design or detected during operations using leading indicators of increasing

risk.

Through a safety-guided design, many hazards may be anticipated and eliminated. However, there are

various reasons why hazards may arise during operations. After decades of research, system safety pioneer

Jens Rasmussen concluded that systems tend to migrate toward states of higher risk, and that such

adaptation is not random but predictable and, therefore, manageable (Rasmussen, 1997). An important

recurring observation in his research shows that safety defenses are likely to degenerate, especially “when

pressure toward cost-e�ectiveness is dominating,” and that often accident investigations conclude that the

particular accident was “waiting for its release” (p. 189). The safety control structure should hence assign

responsibilities for monitoring and overseeing that the system operates safely subject to inherent

adaptation.

An operational safety control structure establishes controls and feedback loops to “(1) identify and handle

�aws in the original hazard analysis and system design and (2) to detect unsafe changes in the system

during operations before the changes lead to losses” (Leveson, 2012, p. 394). Here I focus on the value of

three concrete feedback mechanisms for maintaining and improving operational safety, namely audits,

accident investigations, and reporting systems. Note that these mechanisms are di�erent from the feedback

that the controller (a combination of the AI system and/or a human operator) receives in real-time to

control a process (as depicted in Figure 67.2). Instead, this feedback forms input to reevaluate the system

design, to update safety constraints (based on hazard analysis), and to update the process model and roles

and responsibilities in the safety control structure.

Audits and performance assessments are done to determine whether safety constraints are enforced in the

operation of the system, and whether the rationale of the system design holds up in practice. The need for

auditing AI systems is still in its infancy, but there have been some e�orts to audit for the presence of bias

(Raji & Buolamwini, 2019). E�ectuating functional audits may be a struggle because behaviors may change

in anticipation of an audit or a lack of independence may in�uence its objectivity. Overcoming such issues

requires building a conducive organizational culture. A participatory audit aims to impact the cultural

challenges (Leveson, 2012, chapters 12 and 14), partly by not making audits punitive and ensuring all levels

of the safety control structure are audited, including a�ected stakeholders. This aspect is corroborated by

Rasmussen’s �ndings, who stresses the need “to represent the control structure involving all levels of

society for each particular hazard category” (Rasmussen, 1997, p. 183).

Accident, incident, and anomaly investigations are meant to draw lessons and potential conclusions for

improving the system design, process model, and safety control structure. These investigations have

historically su�ered from root cause seduction, meaning a too narrow focus on �nding root causes to explain

complex accidents (Carroll, 1995). Instead, as previously discussed, investigations should use a systems

perspective for understanding accidents. A crucial component is to develop such a perspective in the

organizations so that investigations can be done holistically and lead to follow-up and training of all

involved professionals.

Finally, reporting systems can help to detect issues before they turn into hazards. Reporting systems are

common in safety-critical domains, such as healthcare or aviation. As discussed for the other feedback

mechanisms, there are hurdles to ensuring a reporting system is used. It is therefore important to

understand why people won’t use them and �x those. Common factors have to do with an ine�ective or
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Build an organization and culture that is open to understanding and learning

Relevant system safety strategy: Balancing safety and accountability through a just culture

unclear interface of the system, a lack of follow-up, or fear that reported information may be used against

the person or someone else.

Leveson Lesson 7: Blame is the enemy of safety. Focus should be on understanding how the system  behavior as a

whole contributed to the loss and not on who or what to blame for it.

As described earlier, many major accidents in complex systems are met with subjectivity. Safety is a deeply

normative concept that is understood, formalized, and experienced in di�erent ways across di�erent

cultures, communities, and organizations. This subjectivity is a major source of challenges in the emerging

research and practices for safeguarding AI systems (Dobbe et al., 2021). For example, the attribution of

accident causes can be subject to the characteristics of the victim and the analyst, such as hierarchical level,

job satisfaction, and level involvement in the accident (Leplat, 1984).

The emerging harms related to AI systems have motivated a plethora of ethical principles, guidelines, and

policy instruments (Schi� et al., 2021). While safety is a core tenet of recent regulatory e�orts (European

Commission, 2021), the accountability gaps existing for many AI-driven innovations (Whittaker et al., 2018)

may be a source of blame games and �nger pointing that can take away attention from understanding how

accidents may happen or have happened as a way to do better at building and operating AI systems. While

sometimes misinterpreted as a means to divert accountability from humans to the system, the

establishment of system safety has contributed greatly to new more e�ective ways to promote and structure

individual responsibility and accountability (Dekker & Leveson, 2015), especially when combined with

cultural change programs that promote sharing of information to improve safety, as evidenced in the

healthcare and aviation industry (Dekker, 2016).

Leveson’s last lesson is the most crucial. In the �nal chapters of her book Engineering a Safer World: Systems

Thinking Applied to Safety, Leveson underlines the importance of adequate management and safety culture to

accomplish any of the goals previously described (Leveson, 2012). The increasing scale and complexity of AI

systems makes that these challenges span broader institutional networks, often comprising public, private,

knowledge, and societal institutions (Janssen & Kuk, 2016).

Leveson outlines the core organizational requirements managers need to meet for improving safety: an

e�ective safety control structure, a safety information system, and a strong and sustainable safety culture.

Here we focus on the often underappreciated importance of the latter.

Bundled in his book Just Culture: Balancing Safety and Accountability, Sidney Dekker describes how to stray

away from detrimental blame cultures, instead arguing for the crucial need to provide a comfortable

environment in which people feel safe to share information about what should be improved to those who

can do something about it, and to allow for investments in improvements and learning that have a real

safety dividend rather than spending money on legal protection and limiting liability (Dekker, 2016).

Through his extensive �eld work and experience as a pilot, Dekker explains the struggles that organizations

go through to build an e�ective safety culture. Unfortunately, there is no simple formula, but Dekker has

gained important insights into how to establish such cultures and core agreements on system safety

procedures and responsibilities: “What matters for organizational justice is not so much whose version gets

to rule the roost—but to what extent this is made explicit and how it is decided upon” (Dekker, 2016, 75).

The key steps he outlines are:

1. Design the process to deal with adverse events or apparently risky acts, which does not interfere with

performance review and makes explicit how judgments are made and enables opportunities for

appeal.

2. Decide who is involved in this process, in a way that allows for impartial input from across the

organization and includes domain expertise to represent and acknowledge work �oor complexity.

3. Decide who is involved in deciding who is involved, to prevent top-down decision-making that lacks

buy-in and ownership.
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The aviation industry is historically known for its safety culture, as also studied by Dekker (Dekker, 2016). In

recent years, two crashes occurred with a Boeing 737-MAX, in which the plane took an uncontrollable

nosedive. It turned out that something had gone wrong with the aircraft calibration algorithm (Gelles,

2020). Driven by competitive forces to update the 737 models with new engine technology, the company

decided to bypass certain checks on how new engines would a�ect the autopilot behavior, ultimately

causing pilots to be confused and unable to steer the plane out of a nosedive. As such, despite the broader

industry’s emphasis on safety culture, Boeing’s own culture had been a breeding ground for irresponsible

decisions and unsafe design choices (Boeing, 2019). This example shows the detrimental e�ects that

organizational culture and decision-making can have on engineering choice, and in e�ect the safety of a

system in operation. Hence, organizations responsible for such systems should build a strong safety culture

and have the leadership and mechanisms in place to maintain it.

Conclusions

In this chapter, I covered central insights from the �eld of system safety, with particular focus on what it

takes to safeguard systems that are subject to software-based automation. The lessons and concrete system

safety strategies are summarized in Table 67.1. We have seen that most of these lessons have yet to be

absorbed in domains where AI systems are emerging to inform, mediate, or automate decision-making.

It would, however, be naive to conclude that the strategies presented here can be straightforwardly applied.

AI systems’ inherent �exibility and associated failure modes make designing for safety, as well as

formulating e�ective process models and safety control structures a complex task. If anything, the power of

evidence that system safety strategies have could help understand when using an AI system is a good idea to

begin with. Formulating constraints for valid safety problems can bring sanity to what is “responsible AI”

by making explicit when and how not to use it, to prevent unnecessary harm.

Lastly, it is crucial to note that any tool or strategy can be applied in irresponsible ways, system safety

approaches included. It should be evident from this chapter that applying these strategies requires various

forms of formalization and modeling. As such, system safety methods will always redraw, solidify, and

impose power relationships. This is not necessarily a bad thing, but it should be made explicit in an e�ort to

empower those that need safeguarding. Just as patient safety has become the central focus in successful

healthcare systems, vulnerable people and communities should have a seat at the table and see themselves

empowered in the crystallization of a system’s design and operational safety control structure.
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Table 67.1  Overview of Leveson lessons, implications for AI system development and governance and examples of relevant
system safety strategies.

Leveson Lesson AI System Safety Implication Example System Safety Strategy

Component reliability is
insu�icient for safety
 

Identify and eliminate hazards at
system level
 

System hazard-informed system design and safety
control structure
 

Causal event models
cannot capture system
complexity
 

Understand safety through
sociotechnical constraints
 

System-theoretic accident models: integrating safety
constraints, the process model, and the safety control
structure
 

Probabilistic methods do
not provide safety
guarantees
 

Capture safety conditions and
requirements in a system-theoretic
way
 

Process model: AI system goals, actions, observation, and
model of controlled process and automation
 

Operator error is a
product of the
environment
 

Align mental models across design,
operation, and a�ected
stakeholders
 

Levesonʼs design principles for shared human–AI
controller design: redundancy, incremental control, and
error tolerance
 

Reliable so�ware is not
necessarily safe
 

Include (AI) so�ware and its
organizational dependencies in
hazard analysis
 

System-theoretic process analysis
 

Systems migrate to states
of higher risk
 

Ensure operational safety
 

Feedback mechanisms (audits, investigations, and
reporting systems)
 

Blame is the enemy of
safety
 

Build an organization and culture
that is open to understanding and
learning
 

Just Culture
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