
Optimizing a
Solar Sailing Polar
Mission to the Sun

Development and Application
of a New Ant Colony Optimizer

Giacomo Acciarini

Optimizing a
Solar Sailing Polar
Mission to the Sun
Development and Application of a New

Ant Colony Optimizer
by

Giacomo Acciarini

to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Friday November 1, 2019 at 1:30 PM.

Student number: 4754883
Project duration: January 4, 2019 – November 1, 2019
Thesis committee: Prof. Dr. P. Visser, TU Delft, chair

Dr. ir. E. Mooij, TU Delft, supervisor
Dr. F. Oliviero, TU Delft
Dr. D. Izzo, European Space Agency

This thesis is confidential and cannot be made public until December 31, 2020.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Cover image credit: https://www.theguardian.com/science/2015/jun/11/
spacewatch-lightsail-deploys-solar-sail, date of access: August 2019.

http://repository.tudelft.nl/
https://www.theguardian.com/science/2015/jun/11/spacewatch-lightsail-deploys-solar-sail
https://www.theguardian.com/science/2015/jun/11/spacewatch-lightsail-deploys-solar-sail

ii

Preface
After months of hard work, I am proud to present to you my thesis to obtain the Master of
Science degree at the faculty of Aerospace Engineering, at the Delft University of Technology.
It has been an amazing experience that allowed me to come in contact with many researchers
from all over the world who share my same love and interest in space exploration. I have
always felt privileged and honored to be able to study such a marvelous and challenging
subject. First of all, I would thus like to thank my parents, Andrea and Manuela, and my
sister, Chiara, without your help and support I would have never been able to reach this
point. Your confidence in me has never wavered and I will always be grateful for that. My
gratitude is also directed to my daily supervisor, Erwin, without you, this would have never
been possible. Thank you for your support and precious suggestions. Moreover, I would
like to thank Dario Izzo, from the European Space Agency’s Advanced Concepts Team, for
his guidance in the development of the optimization software. His innovative and creative
ideas, as well as his commitment and long term experience in the field, have been a source
of inspiration for me. Also, thank you for offering me the SOCIS summer job: it has been
a crucial element for better understanding and diving into the software development world.
Finally, special thanks go to all my friends from Perugia (with special mention to Riccio, Mao,
Nikki and Greg), and to my girlfriend, Ursula. Crossing entire Europe by car for coming to
my thesis presentation is the umpteenth demonstration of our deep and strong bond.

Giacomo Acciarini
Delft, November 1, 2019

iii

iv

Abstract
The Sun is the main contributor to birth and thriving of life on Earth. Yet, a little is known
about many physical phenomena that happen on it and that influence the behavior and
well being of all the planets in the Solar System. Moreover, as we rely more in technology,
our dependency on the Sun increases, and we need to be prepared to limit the damages of
disruptive events in advance. Sunspots and other features of the Sun are strongly related to
these phenomena, and their study and observation might increase the predictability of these
events. However, to monitor and properly investigate these phenomena we need a mission
that can offer us a unique and advantaged point of view of the Sun. The aforesaid scientific
aspects can only be addressed with a very inclined solar mission, which is near enough to
the Sun. Furthermore, since the current technology does not make possible to reach polar
orbits in the proximity of the Sun, a solar-sail is pivotal to reach this objective. In particular,
the optimal orbit for achieving the objectives would be a circular orbit with 90∘inclination
with respect to the heliographic equator. These aspects are the cornerstone of our research
and have led to the formulation of the following research question:

Can the time and cost of a solar-sail mission to the Sun be optimized by using a global
optimization technique?

In literature, there have already been some studies for optimizing a solar sailing polar
mission towards the Sun. However, this has never been done using an ant colony optimizer
and considering multiple objectives (i.e., cost and duration). In this research, we would like
to implement a new global ant colony single and multi-objective optimizer with the aim to
reduce the duration and cost of such a mission. Although ant colony optimization has re-
cently demonstrated to be very powerful in solving trajectory optimization problems in space
missions, this algorithm is not available in an open-source fashion and it has never been
applied to such a mission. The main purpose of this research is thus to generate new op-
timal trajectories for a solar sailing polar mission around the Sun by implementing a novel
ant colony optimizer.

First of all, to achieve this, a simulation model to represent the solar-sail orbits around the
Earth and the Sun is set up. In this simulator, the solar radiation pressure force, the atmo-
spheric forces and other environmental aspects are included. Also, a guidance model for the
sail is set up, so that the attitude of the sail can be controlled during its journey to the Sun.
This entire framework is then formulated as both a single and multi-objective problem. Each
of these problems is optimized with the novel ant colony optimizer developed in this research.
The results are then also compared and traded-off with other state-of-art global optimizers.
In particular, for single-objective, six different optimizers have been benchmarked with our
ant colony technique: artificial bee colony (ABC), standard differential evolution (DE), a stan-
dard evolution variant (DE1220), self-adaptive differential evolution (SADE), particle swarm
optimization (PSO) and simple genetic algorithm (SGA). Whereas for the multi-objective case,
three different optimizers have been tested against the multi-objective ant colony extension:
multi-objective evolutionary algorithm with decomposition (MOEA/D), nondominated sorting
genetic algorithm (NSGA-II) and nondominated sorting particle swarm optimization (NSPSO).
The found results are very promising: for the single-objective problem, the ant colony opti-
mizer hasmanaged to find the best overall solution. On the other hand, for themulti-objective
case, NSGA-II seems to provide the best solutions, although the multi-objective ant colony
optimizer displays a set of solutions that is competitive with those of NSGA-II, especially for
lower function evaluations, and that outperforms both NSPSO and MOEA/D.

Once the mission was optimized, the best found mission profile was studied. It was found
that the best overall solution happens for the multi-objective case: indeed, in this case, we
managed to halve the mass of the single-objective mission, while still keeping a similar time

v

vi

of flight. Interestingly, we also discovered that a flyby to the Moon is crucial when the time
of flight has to be strongly reduced. We hence recommend considering such a gravity assist
in future studies.

List of Acronyms

ABC Artifical Bee Colony
ACO Ant Colony Optimization

ACOmi single-objective mixed integer Ant Colony Optimizer
ASA Adaptive Simulated Annealing
CD Crowding Distance

CEC2006 Congress on Evolutionary Computation 2006
CME Corona Mass Ejections
CPU Central Processing Unit

CSTRS selft-adaptive constraints handling meta-algorithm
DE Differential Evolution

DE1220 Differential Evolution variant
DLR german aerospace center
DTLZ Deb, Thiele, Laumanns and Zitzler
EA Evolutionary Algorithm

EACO Extended Ant Colony Optimization
EP External Population
ESA European Space Agency
GA Genetic Algorithm
GEO GEOcentric
GR Golomb Ruler
GTO Geostationary Transfer Orbit
GTOP Global Trajectory Optimization Problems
H Heliocentric
IHS Improved Harmony Search
IMF Interplanetary Magnetic Field
JAXA Japanese Aerospace Exploration Agency
JD Julian Day
LEO Low Earth Orbit
M2P2 Mini magnetospheric Plasma propulsion
MaxMin Maximum Minimum diversity strategy
MC Monte Carlo
MEE Modified Equinoctial Elements

MHACO Multi-objective Hypervolume-based Ant Colony Optimizer
MIDACO Mixed Integer Distributed Ant Colony Optimization
MINLP Mixed Integer Non Linear Programming

MOEA/D Multi-Objective Evolutionary Algorithm based on Decomposition
MOP Multi-Objective Problems
MPSO Modified Particle Swarm Optimization
MRP Modified Rodrigues Parameters
NASA National Aeronautics and Space Administration
NC Niche Count
NEP Nuclear Electric Propulsion
NSGA Nondominated Sorting Genetic Algoritm
NSPSO Nondominated Sorting Particle Swarm Optimizer

OKEANOS Outsized Kite-craft for Exploration and AstroNautics in the Outer Solar
system

PaGMO Parallel Global Multi-objective Optimizer

vii

viii

PyGMO Python parallel Global Multi-objective Optimizer
PF Pareto Front
pop population
PSO Particle Swarm Optimization
REP Radioisotope Electric Propulsion
SA Simulated Annealing

SADE Self-Adaptive Differential Evolution
SGA Simple Genetic Algorithm
SO Single-Objective
SBX Simulated Binary crossover
SEP Solar Electric Propulsion
SMRP Shadow Modified Rodrigues Parameters
SPICE Spacecraft Planet Instrument C-matrix Events
tof time of flight

Tudat TU Delft astrodynamics toolbox
USM Unified State Model
V&V Verification and Validation
WFG Walking Fish Group
ZDT Zitzler Deb and Thiele

List of Symbols

𝐴 sail area [m]
𝑎 semi-major axis [m]
âaa Euler axis [-]
𝑎 characteristic acceleration [m/s]
𝑎 solar gravitational acceleration [m/s]

aaa perturbing acceleration vector [m/s]
𝐵 non-Lambertian coefficient [-]
𝐶 mission cost [$]
𝐶 reflectivity [-]
CCC velocity component vector normal to the radial vector laying on the orbital plane

[m/s]
𝑐𝑑𝑓 cumulative distribution function [-]
𝐶 reflectivity coefficient of the front sail [-]
𝐶𝑅 Crossover probability [-]
𝑐 speed of light [m/s]
𝐷 distances between ants [-]
𝐷 weight generation method [-]
𝐷 drag [N]
𝐷𝐼 distribution index [-]
𝑑 individuals’ distance [-]
𝐸 relativistic mass of a particle [kg m /s]
𝑒 eccentricity [-]

𝑒𝑣𝑎𝑙𝑠𝑡𝑜𝑝 evaluation stopping criterion [-]
FFF absorption force vector [N]
FFF transmission force vector [N]
FFF reflection force vector [N]
FFF total force vector [N]
𝐹(𝑑) local crowding distance [-]
FFF specularly reflected force vector [N]
FFF diffusively reflected force vector [N]
𝐹 front fitness [-]
𝐹 weight coefficient [-]
𝐹 parameter for the differential evolution operator [-]
fff(xxx) objective functions [-]
𝑓 magnitude of the force resulting from the momentum transfer [N]

𝑓𝑜𝑐𝑢𝑠 focus parameter [-]
𝐹𝐼𝑇 fitness function [-]
𝐺 universal gravitational constant [m kg s]
GGG generation set [-]
ggg(xxx) inequality constraints [-]
#𝑔𝑒𝑛 number of generations [-]
hhh(xxx) equality constraints [-]
hhh specific angular momentum vector [m /s]
ℎ perigee height [km]
ℎ apogee height [km]
𝑖 non-domination rank [-]
𝑖 inclination [deg]

ix

x

𝐼 maximum radiant intensity [W/m]
𝐼(𝑘).𝑚 value of the m objective function of the k individual in 𝐼 [-]
𝑘𝑒𝑟 solution archive size [-]
𝐿 lift [N]
𝐿 length of deployable boom [m]
𝑙 path length [-]
𝐿 true longitude [-]
𝐿 maximum number of copies reinserted in the population [-]
𝐿 luminosity of the Sun [W]
𝑀 mean anomaly [rad]
𝑚 mutation probability [-]
𝑚 number of equality constraints [-]

𝑚 mass of the emitter [kg]
𝑚 mass of the coating [kg]
𝑚 mass of the substrate [kg]
𝑚 mass of the bus [kg]
𝑚 payload mass [kg]
𝑚 sail mass [kg]
𝑚 system mass [kg]
𝑚 support mass [kg]
𝑚 mechanisms mass [kg]
𝑚 bonding mass [kg]
𝑚 total mass [kg]
𝑚 mass of the Earth [kg]
𝑚 mass of the Sun [kg]
𝑀 mass of the Sun [kg]
𝑚 rest mass of the particle [kg]
m̂mm non-ideal sail force unit vector [-]
𝑁 number of weight factors [-]
𝑁 number of objective functions [-]
𝑁 neighbourhood parameter [-]
𝑁 size of weight’s neighbourhood [-]
𝑛 mean motion [rad/s]
𝑛 number of artificial ants [-]
𝑛 number of continuous probability density function [-]

𝑁𝐺𝑒𝑛𝑀𝑎𝑟𝑘 standard deviations convergence speed parameter [-]
𝑛 number of discrete probability density function [-]
𝑛 number of solutions which dominate solution 𝑖 [-]
𝑁𝑃 population size [-]
𝑃 continuous probability density function [-]
𝑃 probability of considering the neighbourhood [-]
𝑝 momentum of the particle [kg m/s]
𝑝 semi-latus rectum [m]

𝑝(XXX) penalty function [-]
𝑃 maximum solar radiation pressure [W/m s]
𝑃 infrared radiation pressure [Pa]
𝑃 albedo radiation pressure [Pa]
ppp environmental parameters [-]
𝑝 number of equality and inequality constraints [-]
𝑝 mutation strategy [-]
𝑝 selection strategy [-]
𝑝 crossover strategy [-]

𝑝𝑜𝑝𝑆𝑖𝑧𝑒 population size [-]

xi

𝑄 discrete probability density function [-]
𝑞 dynamic pressure [kg m s]
𝑞 convergence speed parameter [-]
RRR velocity component vector shifted 90° ahead w.r.t. the eccentricity vector [m/s]
𝑟 Sun-sailcraft distance [au]
𝑟 Sun-Earth distance [au]
𝑟 , final apocenter distance [m]
𝑟 , final pericenter distance [m]
𝑟 . ., sphere of influence of the Earth [m]
𝑟 Sun-Earth distance [km]
rrr position vector of the Earth [km]

𝑟𝑒𝑠(XXX) residual function [-]
𝑠 coefficient of specular reflection [-]
𝑠 independent variable [-]
𝑠 coefficient of specular reflection [-]
SSS solution archive [-]
𝑆 solar constant [Wm]
𝑆 set of solutions which 𝑖 dominates [-]
𝑆𝑇 Tournament size [-]
𝑇 temperature [K]
𝑡 thickness [m]
𝑇 equilibrium temperature [K]
𝑇 initial heliocentric ephemeris time [s]
𝑇 temperature limit [K]

𝑇 mission duration [years]
TTT tableau factors [-]
𝑇 number of weight vectors in the neighborhood of each weight vector [-]

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 threshold parameter [-]
uuu control parameters [-]
uuu trial vector [-]
𝑈(rrr) potential energy [J/kg]
𝑢 argument of latitude [rad]
𝑉 , final apocenter velocity [m/s]
𝑉 circular velocity [m/s]
𝑉 , circular apocenter velocity [m/s]
𝑉 , circular pericenter velocity [m/s]
𝑉 , final pericenter velocity [m/s]
𝑉 maximum allowed particle’s velocity [-]
𝑣 radial velocity magnitude [m/s]
𝑣 velocity magnitude perpendicular to the radial laying in the orbital plane [m/s]
vvv| velocity of the sailcraft in the geocentric inertial frame [m/s]
vvv| velocity of the sailcraft in the heliocentric inertial frame [m/s]
𝑊 radiative flux [W/m]
𝑊 weights associated to the penalty functions [-]
𝑊 solar flux at Earth’s position [W/m]
xxx optimization variables [-]

(𝑥, 𝑦, 𝑧) position vector [m]
(𝑥 , 𝑦 , 𝑧) initial heliocentric position vector [km]
(�̇�, �̇�, �̇�) velocity vector [m]
(�̇� , �̇� , �̇�) initial heliocentric velocity vector [km/s]

𝛼 absorption probability [-]
𝛼 cone angle [rad]
𝛼 sail cone angle limit [rad]
𝛼 sail cone angle [rad]
𝛽 lightness number [-]

xii

𝛽 clock angle [rad]
𝛿 clock angle [rad]

Δ𝑇 final time constraint [s]
Δ𝑉 final velocity constraint [m/s]
𝜖 obliquity [rad]
𝜖 front emissivity [-]
𝜖 back emissivity [-]
𝜁 attack angle between the sail and the velocity vector [rad]
𝜂 sail efficiency factor [-]
𝜂 distribution index for crossover [-]
𝜂 non-distribution index [-]
𝜂 distribution index for polynomial mutation [-]
𝜃 non-ideal cone angle [rad]
𝜆𝜆𝜆 weight factors [-]
𝜇 means of the probability density functions [-]
𝜇 gravitational parameter of the Sun [km /s]
𝜇 gravitational parameter of the Earth [km /s]
𝜈 true anomaly [rad]
𝜌 density [kg/m]
𝜌 evaporation parameter [-]
𝜌 reflection probability [-]
𝜌 air density [kg m]
𝜌 specularly reflected coefficient [-]
𝜌 diffusively reflected coefficient [-]
Σ solution space [-]
𝜎 sail loading [kg/m]
𝜎 standard deviations of the probability density functions [-]
𝜎𝜎𝜎 MRP vector [-]
𝜎𝜎𝜎 SMRP vector [-]
𝜎 Stefan-Boltzmann constant [Wm K]
𝜂 best force magnitude [-]
𝜂 neighbourhood force magnitude [-]
𝜏 pheromone value [-]
𝜏 transmission probability [-]
𝜏 time of pericenter passage [s]
Φ Euler angle [rad]
𝜙 offset angle [rad]
𝜙 ecliptic latitude [rad]
𝜓 ecliptic longitude [rad]
𝜓 angle between sailcraft velocity vector and Sun line [rad]
Ω decision variable space [-]
Ω oracle parameter [-]
Ω right ascension of the ascending node [rad]
𝜔 particles’ inertia weight [-]
𝜔 argument of perigee [rad]
𝜔 weight factors [-]

Contents

1 Introduction 1

2 Mission Characteristics and Heritage 5
2.1 Past Missions and State-of-Art Technology . 5
2.2 Mission Parameters Definition . 7

2.2.1 Thermal Conditions . 8
2.2.2 Initial and Final Time Conditions and Orbital Elements. 9

2.3 Mission Heritage and Requirements. 9
2.3.1 Reference Mission . 9
2.3.2 Reference Vehicle. 10
2.3.3 Solar Sailing Mission Optimization . 11
2.3.4 Mission and System Requirements . 12

3 Flight Dynamics 15
3.1 Reference Frames . 15
3.2 State Variables . 18
3.3 Equations of Motion . 21
3.4 Environment . 21

3.4.1 Solar Radiation Pressure . 22
3.4.2 Perturbations . 26

4 Guidance 29
4.1 Heliocentric Phase . 29
4.2 Geocentric Phase . 31
4.3 Flight Sections . 32

4.3.1 Heliocentric Flight Sections. 32
4.3.2 Geocentric Flight Sections . 33

5 Optimization 37
5.1 Global Optimization . 37

5.1.1 Single-Objective Optimization . 37
5.1.2 Multi Objective Optimization . 38

5.2 Performance Metrics . 43
5.2.1 Hypervolume Metric . 43
5.2.2 P-Distance Metric . 45

5.3 Ant Colony Optimization . 45
5.3.1 Mixed Integer Ant Colony Optimizer. 46
5.3.2 Single-Objective Mixed Integer ACO (ACOmi) 54
5.3.3 Multi-Objective Hypervolume-Based ACO (MHACO) 56

5.4 Problem Definition . 58
5.4.1 Problem Dimension . 58
5.4.2 Objectives and Constraints . 59
5.4.3 Optimization Approach . 61

6 Software 63
6.1 Software Architecture . 63

6.1.1 Trajectory Simulation . 63
6.1.2 Optimization Model . 66

6.2 External Software . 68
6.2.1 Simulation Model. 68
6.2.2 Optimization Procedure: PaGMO . 70

xiii

xiv Contents

6.3 Numerical Methods . 73
6.3.1 Propagator Selection . 73
6.3.2 Integrator Selection . 76

6.4 Verification and Validation . 77

7 Results 79
7.1 Algorithm Tuning. 79

7.1.1 ACOmi Tuning . 79
7.1.2 MHACO Tuning . 81
7.1.3 NSPSO Tuning . 84

7.2 Single-Objective. 86
7.2.1 Geocentric Phase . 86
7.2.2 Heliocentric Phase . 90
7.2.3 Geocentric and Heliocentric Phase . 95
7.2.4 Optimizations Comparison . 99

7.3 Multi-Objective .100
7.3.1 Local Refinement .104

7.4 Random Seed Influence .106
7.5 Optimal Trajectory .108

8 Conclusions and Recommendations 113
8.1 Research Questions Overview .113
8.2 Simulations and Optimizations Conclusions .114
8.3 Recommendations .115

Appendices 118

A Equations of Motions 119
A.1 Cowell Propagator .119
A.2 Modified Equinoctial Elements .119
A.3 Unified State Model .121

A.3.1 Quaternions .121
A.3.2 Modified Rodrigues Parameters .124
A.3.3 Exponential Mapping .124

B Verification and Validation 127
B.1 Simulation Model. .127
B.2 Integrated System Tests .128
B.3 Optimization Procedure .130

B.3.1 Single-Objective V&V .131
B.3.2 Multi-Objective V&V .142

C Global Optimization Methods 163
C.1 Single-Objective Methods .163

C.1.1 Standard Differential Evolution (DE) .163
C.1.2 Self-Adaptive Differential Evolution (SADE)164
C.1.3 Differential Evolution Variant (DE1220) .165
C.1.4 Simple Genetic Algorithm (SGA) .165
C.1.5 Particle Swarm Optimization (PSO) .166
C.1.6 Artificial Bee Colony (ABC) .166
C.1.7 Self-Adaptive Constraints Handling Meta-Algorithm167

C.2 Multi-Objective Methods .169
C.2.1 Nondominated Sorting Genetic Algorithm (NSGA-II)170
C.2.2 MO Evolutionary Algorithm with Decomposition (MOEA/D)171

Bibliography 175

Chapter 1

Introduction
Manymissions have been exploring the Sun either through heliocentric trajectories or through
the Lagrangian point (L1) between the Sun and the Earth (which allows a privileged contin-
uous observation point). These missions have contributed to unveil the mysteries of our
star and to start to understand phenomena such as solar wind and coronal mass ejections
(CME), which interact with Earth’s atmosphere and magnetic field. However, there are many
questions that are still unanswered and need to be addressed to enhance the predictabil-
ity of potentially disruptive phenomena that can originate from the Sun. Many small scale
dynamics events have been observed and have demonstrated to be strongly interconnected
with the evolution and structure of the solar magnetic field. Furthermore, there is a general
consensus that the study and understanding of these phenomena (such as bi-directional
jets, blinkers, network flares, bright points, etc.) might enhance our understanding of the
acceleration and heating of the solar plasma (Doyle and Madjarska, 2004). Indeed, the solar
coronal heating and the energy/mass flow of solar wind are still unsolved but fundamental
problems for solar physicists. Some of the more relevant scientific questions still unanswered
about the Sun and its environment are (Mueller and Gilbert, 2013):

1. How and where the solar wind plasma and magnetic field originate in the corona?

2. How does the Sun create and maintain the heliosphere?

3. What is the mechanism that drives the Solar dynamo? And how does it affect the inter-
action between the Sun and the heliosphere?

4. What is the mechanism that drives the coronal mass ejections?

It is important to notice that these phenomena are not only important from a scientific point
of view, but also for the welfare and survival of mankind. Indeed, events such as solar
flares and coronal mass ejections are equivalent to hurricanes of the space weather and their
appearance might cause several blackouts in our navigation systems, electrical systems and
communication systems. A solar polar mission to the Sun (inclined 90∘with respect to the
equator) would help scientists to map these phenomena accurately and possibly answer most
of the aforesaid questions (Goldstein et al., 1998). In particular, such a mission would help
to address the following scientific objectives:

1. Analyze the heating and acceleration process that affects the solar wind in the corona.

2. Determine magnetic structures and connection patterns in the polar region to model
and predict more accurately the occurrence of solar cycles.

3. Discover sources, longitudinal structure, rotational curvature and time variability of
corona features.

4. Follow the evolution of the Sun throughout various rotations.

5. Determine the source of the solar wind and its acceleration mechanism.

6. Analyze the fluctuations of sunspots to understand their locations and formations.

1

2 1. Introduction

Even though there have been missions to the Sun, most of the past missions have been
orbiting the Sun within the ecliptic, and even the ones that analyzed the Sun from an orbital
plane inclined with respect to the ecliptic (e.g. Ulysses mission 1), they did not do it neither
close enough to study these phenomena thoroughly, nor in circular orbits. The reason is that
it is not technologically possible to bend the trajectory at 90∘inclination in close proximity to
the Sun with the chemical or electric propulsion system, due to the huge amount of propellant
required (Macdonald et al., 2006). Hence, the objective of this research is to implement an
ant colony optimization algorithm to minimize the cost and duration of a mission to reach
a solar polar orbit, using the solar-sail technology. The solar-sail technology is a low-thrust
technology, which would allow performing the mission without any propellant consumption.
This technology is very powerful when the spacecraft is near the Sun (due to the squared
dependency between the thrust provided and the distance from the Sun), hence, it results to
be a very viable choice for the mission of interest. Furthermore, several studies have been
performed to investigate the feasibility of solar sailing for a solar polar mission and they all
seem to confirm that such technology represents a valid option to reach solar polar orbits
in a reasonable time (Coverstone and Prussing, 2003), (Goldstein et al., 1998). Nonetheless,
the debate is still open about which kind of solar sailing trajectory can optimize the cost
and duration of such a mission. Other studies have been performed to optimize a trajectory
with the objective to reach a final orbit of 0.40 au radius and 90∘inclination around the Sun,
starting from a GTO: this final orbit is appealing because it permits to fulfill the scientific
objective while also allowing an orbit in a 4:1 resonance with Earth, which would ease the
communication with ground and the downlink of data (Candy, 2002), (Garot, 2006), (Spaans,
2009). In this report, we will investigate a solar polar mission using solar sailing technology,
and we will focus on the use of an ant colony optimizer for optimizing the mission objectives.

In particular, the main research question of this thesis study can be formulated as follows:

Can the time and cost of a solar sailing polar mission to the Sun be optimized by using a
global optimization technique?

Moreover, several subquestions related to the main research question can be derived.
These are:

1. How well can an ant colony optimization algorithm perform compared to other already
implemented optimization strategies in the framework of a solar sailing polar mission?

a. Is the ant colony optimizer able to find trajectories that do not violate the equality
and inequality constraints?

b. How does the ant colony optimizer behave in terms of best found solutions when
compared to other optimization algorithms?

2. Is it possible to improve the current solutions for a solar sailing mission by optimizing the
trajectory with multiple objectives functions?

a. How does the physical trajectory vary when the cost and duration of the mission are
optimized separately?

b. Can we develop a new ant colony optimization algorithm for multiple objectives that
is competitive with multi-objective state-of-art algorithms?

3. What is the most suitable way for modeling the trajectory of a sailcraft in a solar sailing
mission?

a. What is the influence of the perturbing accelerations in the optimization technique?

b. Can the problem be represented in a simpler and more effective way, without com-
promising the quality of the solutions?

1http://sci.esa.int/ulysses/47369-fact-sheet/, August 2019

http://sci.esa.int/ulysses/47369-fact-sheet/

3

From these research question and subquestions, we can derive the main research objective
of this study:

The objective of this research is the implementation of an extended ant colony optimizer to
be applied on a solar sailing polar mission around the Sun for minimizing the duration and cost
of the mission.

This objective can be further divided into multiple sub-objectives:

1. Set-up the state variables, propagator model, integrator model and environment to rep-
resent the problem.

2. Develop a guidance scheme, which can model the solar-sail orientation with respect to
the Sun during its journey.

3. Develop an extended ant colony optimization algorithm with oracle penalty method
for single-objective, continuous/integer variables and constrained/unconstrained prob-
lems.

4. Develop a multi-objective extension of the ant colony optimization algorithm.

5. Validate the trajectory simulation using the previous mission concept and validate the
optimization algorithm using the several available optimization problems in literature.
In particular, all the different extensions of the algorithm will be tested in this phase
(integer and continuous variables, etc.). The purpose is to have a single and multi-
objective ant colony optimizer competitive with state-of-art global optimization methods.

6. Benchmark the results found with ant colony on the solar sailing polar mission with
other optimization algorithms (in particular differential evolution and evolutionary al-
gorithms) for both single and multi-objective.

A brief overview of each chapter of this thesis report can be presented as follows:

Chapter 2 introduces themission. All previous similar missions (either flown or studied)
are investigated and both a reference mission and vehicle are established. Finally, the
mission and system requirements are listed.

Chapter 3 discusses the dynamics of the solar sailing mission. Therefore, different
state variables, reference systems and equations of motions are defined. Moreover, the
physical principle behind the generation of the solar-sail force is also discussed for both
the ideal and non-ideal cases. Finally, the environment of such amission is investigated,
by discussing the mathematical model of each perturbation (e.g. atmospheric drag,
third body perturbations, etc.).

Chapter 4 investigates the interplanetary journey of the sail, in all its phases. In partic-
ular, the journey is divided into a heliocentric and a geocentric phase. In each of these
phases, a guidance strategy based on some physical conditions is deduced: this guid-
ance will constitute the baseline for the formulation of the global optimization problem.
In fact, this chapter serves to justify the logic behind the strategy used for optimizing
the trajectory.

Chapter 5 serves to introduce the global optimizers used in this study. Artificial bee
colony, simple genetic algorithm, differential evolution (both adaptive and non-adaptive)
and particle swarm optimization are discussed and investigated. Furthermore, several
multi-objective optimizers are also treated: these include evolutionary strategies, ge-
netic algorithms, and particle swarm optimizers. Moreover, the ant colony optimizer is
introduced by first discussing the single-objective extension and by then defining the
multi-objective counterpart. Finally, the optimization problem is formulated.

4 1. Introduction

Chapter 6 firstly introduces the software architecture implemented in this research.
Then, the external software used for both the trajectory simulation and the optimization
phase is discussed. Furthermore, the propagator and integrator selection strategies are
investigated. In particular, the former is carried out by trading-off different propagator
models for our mission scenario, whereas the latter is done based on results found in
the literature. Finally, the chapter concludes with a review of verification and validation
methods.

Chapter 7 presents all the results of the optimization process. In particular, a first tun-
ing phase for the newly implemented algorithms is performed, then, both the single and
multi-objective optimization process are discussed. In that phase, the best candidate
solutions are selected and investigated. Besides, several Monte Carlo simulations are
run for improving the best found solutions. Finally, the optimal trajectory is treated in
a separate section and the key features of its orbits are investigated.

Chapter 8 presents the conclusions of our thesis study. Moreover, the recommenda-
tions for future studies are discussed.

Chapter 2

Mission Characteristics and
Heritage
In this chapter, in Section 2.1, we will first introduce the solar sailing polar mission by talking
about previous missions and state-of-art technology. In Section 2.2, we will then follow-up
with a discussion about the mission parameters definition. Finally, in Section 2.3, we will
discuss the reference vehicle, the reference mission, previous global optimization strategies
applied for a solar sailing polar mission and the mission and system requirements for the
mission of our interest.

2.1. Past Missions and State-of-Art Technology
The first idea that the light can exert pressure, which can then be transformed into a force
to steer objects, was proposed by Maxwell in 1860. Later, Konstantin Tsiolkovsky, one of
the pioneers of rocket science, discussed the concept of solar sailing and Fridrickh Tsander
wrote in 1924: “For flight in interplanetary space I am working on the idea of flying, using
tremendous mirrors of very thin sheets, capable of achieving favorable results.”

However, the only proposal for a solar sailing mission only arrived in 1976, when NASA
planned to reach the Halley comet using this technique. The sail would have been a huge
square with a width of nearly 1 km, and the spacecraft would have spiraled inside the Solar
System near Mercury and the Sun to acquire the proper acceleration finally rendezvous with
the comet (Wie, 2007). Nevertheless, in the end, the solar electric propulsion (SEP) was
preferred to solar sailing (which was discarded during phase B of the project), due to launch
window and schedule problems of sailing technology (which would have not allowed to reach
the comet within the right time to observe the effects of its passage near the Sun) 1.

In 2005, Planetary Society and Cosmos Studios, planned a solar sailing mission called
Cosmos 1, whose purpose was to demonstrate this technology for the first time in history.
However, the mission failed due to rocket failure 2.

Finally, in 2010, the Japanese Aerospace Exploration Agency (JAXA) launched IKAROS:
the first experimental spacecraft that successfully demonstrated solar sailing technology in
a journey to Venus and beyond 3.

In the same year, NASA put the first sailcraft, NANO SAIL-D2, in low Earth orbit (LEO).
This mission mainly had two technical objectives:

1. to successfully stow and deploy the sail

2. to demonstrate deorbit functionality 4

After a few years, in 2015, the Planetary Society launched Light-Sail 1, which completed a
shakedown cruise around Earth. Whereas in June 2019, Light-Sail 2 was launched into

1http://www.planetary.org/blogs/jason-davis/2017/20170504-halleys-comet-sail-documents.html,
date of access: August 2019.

2http://www.planetary.org/explore/projects/lightsail-solar-sailing/story-of-lightsail-part-2.
html, date of access: August 2019.

3https://directory.eoportal.org/web/eoportal/satellite-missions/i/ikaros, date of access: August
2019.

4https://directory.eoportal.org/web/eoportal/satellite-missions/n/nanosail-d2, date of access: Au-
gust 2019.

5

http://www.planetary.org/blogs/jason-davis/2017/20170504-halleys-comet-sail-documents.html
http://www.planetary.org/explore/projects/lightsail-solar-sailing/story-of-lightsail-part-2.html
http://www.planetary.org/explore/projects/lightsail-solar-sailing/story-of-lightsail-part-2.html
https://directory.eoportal.org/web/eoportal/satellite-missions/i/ikaros
https://directory.eoportal.org/web/eoportal/satellite-missions/n/nanosail-d2

6 2. Mission Characteristics and Heritage

a much higher LEO than Light-Sail 1 (i.e., over 720 km high): this will perform the first
controlled solar-sail flight around Earth 5.

Besides these missions, there are also many proposals that highlight the interest of the
space community for this new kind of technology, which would potentially allow huge velocity
changes with reasonable launch and development costs. Some examples are:

1. Near-Earth Asteroid Scout mission: a reconnaissance mission proposed by NASA to
flyby and return data from an asteroid 6.

2. OKEANOS (Outsized Kite-craft for Exploration and Astronautics in the Outer Solar Sys-
tem): a mission proposed by JAXA to reach Jupiter’s Trojan asteroids and collect sam-
ples (Okada et al., 2018).

3. Breakthrough Starshot: a research and engineering project by the Breakthrough Initia-
tives to develop a fleet of light sailcrafts to reach Alpha Centauri in 20 years7.

All these missions and all the concept studies and research performed in the past 30 years
on solar sailing have permitted to develop advanced technologies, which can withstand very
harsh environments. For instance, hot thermal analysis performed by ESA for an interstellar
heliopause probe has demonstrated that the aluminized temperature-resistant material CP-
1 used as protective layer against the massive heating coming from the Sun, can withstand
temperatures up to 240∘ C, which is around 513 K: only 20 degrees below the glass transition
temperature of the material. This temperature, assuming a squared solar-sail configuration
of 160×160 m, corresponds to a minimum distance from the Sun of nearly 0.22 AU, which is
considered the current limit for solar-sail technology. Of course, with such temperatures, the
payload and bus of the spacecraft should be opportunely shadowed and protected to avoid
damages. Furthermore, whether the sail film can really withstand these temperatures as
well as the harsh environment of the Sun (radiation and particles emitted from the Sun can
seriously compromise and degrade the sail film) has still to be demonstrated with devoted
qualification tests (Lyngvi et al., 2007), (Dachwald et al., 2006a).

For the specific case of a solar polar mission, we thus assume that we cannot reach the
Sun at distances lower than nearly 0.22 au (in principle this distance could change depending
on the surface area of the sail, however, realistically the area will hardly be so large that a
sail can approach the Sun at distances lower than this).

Past Solar Sailing Polar Missions
As it was already pointed out in Chapter 1, there are no flown missions that have performed a
polar orbit with an inclination of 90∘ around the Sun. Even though there are other missions
that have performed heliocentric trajectories to study the Sun at a near distance (e.g., Helios-
B launched by NASA reached a perihelion distance of 0.29 au in a nearly equatorial orbit 8)
we do not have any real data or flown missions of a solar polar mission using solar sailing.
For this reason, we decided to base the entire study on available literature and past research
papers concerning such a mission.

Two papers have discussed the optimization of a solar sailing polar mission with a final
circular orbit of 75∘ inclination and 0.48 au of radius (Dachwald et al., 2006a), (Sauer, 1999).
These orbits were studied starting from a heliocentric trajectory at Earth’s distance, consid-
ering a first spiraling phase inwards to the Sun, and a successive phase of orbit cranking
in which the inclination is varied up to 75∘. Two different possibilities have been considered
for the cranking of the orbit: one case in which the sail spirals up to the nearest distance
that the solar film can withstand (i.e., nearly 0.22 au) and then cranks its orbit and finally
spirals outwards to the desired final orbit of 0.48 au. Whereas, in the second case, the sail
was directly steered to its final orbit of 0.48 au, where the cranking operation was executed.
It was found that the first option resulted to be better in terms of transfer time (Dachwald
et al., 2006a).
5http://www.planetary.org/explore/projects/lightsail-solar-sailing/, date of access: August 2019.
6https://www.nasa.gov/content/nea-scout/, date of access: August 2019.
7https://breakthroughinitiatives.org/initiative/3, date of access: August 2019.
8https://ntrs.nasa.gov/search.jsp?R=19760019166, date of access: August 2019.

http://www.planetary.org/explore/projects/lightsail-solar-sailing/
https://www.nasa.gov/content/nea-scout/
https://breakthroughinitiatives.org/initiative/3
https://ntrs.nasa.gov/search.jsp?R=19760019166

2.2. Mission Parameters Definition 7

Also, other studies have been performed where a trajectory optimization was performed for
a final orbit of 0.48 au and 90∘ of inclination, starting from a heliocentric trajectory at Earth’s
distance (Macdonald et al., 2006). Together with this, also technical feasibility studies have
been made to corroborate that the payload and the bus required for studying the Sun at
high altitudes can withstand the harsh conditions (in terms of temperatures and radiation)
(Goldstein et al., 1998).

Besides these mentioned research papers, there have been studies in which the solar-sail
mission was optimized starting from a Geostationary Transfer Orbit (GTO) around the Earth
(Coverstone and Prussing, 2003), and finally reaching its final orbit of 0.4 au and 90∘ of
inclination around the Sun (Garot, 2006), (Candy, 2002). In these studies, the trajectory of
the sailcraft, from the GTO orbit to its final orbit, is divided into two main parts. The first
one is a geocentric phase in which the spacecraft starts from a GTO orbit of zero degrees
of inclination and spirals outwards until it escapes the Earth’s gravitational pull (see Figure
2.1a for a graphical representation of this phase). The second phase is heliocentric, in which
the main attractor of the sailcraft is the Sun: in this phase the spacecraft first spiral inwards
the Sun, then is subject to a circularization of the orbit, and finally to an orbit cranking
(see Figures 2.1b and 2.1c, for a graphical representation of the spiral inwards and cranking
phases, respectively). In case that the orbit cranking happens to be at a nearer distance to the
Sun with respect to the final orbit, a final outward spiraling is also executed to reach the final
orbit. To find the best trajectory, an optimization procedure was performed for minimizing
the total cost of the mission (driven by the mass of the sailcraft and the duration of the
mission). Different optimization techniques have thus been implemented for this purpose.
Also, it was demonstrated that the so-called perfect sail model (i.e., perfect reflectivity and no
curvature of the sail) gives a 15% more optimistic value of the total travel time, and should
therefore not be used (Candy, 2002). In these studies, many optimization techniques have
been investigated for the solar sailing polar mission, with a particular focus on evolutionary
algorithms. Also, particle swarm optimization and differential evolutions have been studied
by Spaans (2009) for improving the trajectory optimization carried on a few years before by
Garot (2006): it emerged that it was possible to improve the optimization, and the best results
were found when a particle swarm optimization technique was used. However, all concluded
that an increase in the number of individuals in the population might improve the results
even further, and none of these studies have performed multi-objective optimization. Also,
ant colony optimization has never been tested on this problem. These aspects will hence be
studied in this research.

In previous research papers, some authors have also discussed different techniques for
controlling the attitude of the spacecraft during the flight (which is a crucial aspect for the
generation of the acceleration, and thus for the dynamics of the spacecraft) (Wie, 2004), (Wie,
2005), (Wie et al., 2005). In this thesis study, however, we will focus on neither any control
strategy to be implemented for maintaining the attitude angles of the sail during his journey
towards the Sun nor its actual feasibility. In fact, we will limit ourselves to discuss an ideal
guidance strategy to be employed starting from certain physical considerations during the
geocentric and heliocentric phases (e.g. Sun’s position w.r.t. the sail, etc.). Further details
on these aspects and on their limitations are given in Chapter 4.

2.2. Mission Parameters Definition
In this section, we will discuss how certain critical parameters are defined in the solar sailing
polar mission and how they affect the entire trajectory planning strategy. In particular, in
Section 2.2.1 we will tackle the thermal conditions to which the sail is subjected in its journey
to the Sun and we will analyze how the temperature constrains the minimum distance that
the sailcraft can reach w.r.t. the Sun. Moreover, in Section 2.2.2 we will investigate the initial
and final conditions of the sailcraft’s orbits. Also, we will talk about the initial and final time
conditions to be achieved by the sailcraft.

8 2. Mission Characteristics and Heritage

5.4 Solution space 41

and 135◦ are more sensitive to variations in pitch angles, since there are less individu-
als in this region, but it is not impossible to reach escape conditions with these GTO-
orientations.

Figure 5.2 Found flight time versus GTO-orientation for the feasible individuals from the Monte Carlo run.

The Monte Carlo run did also not give a limited range in which the pitch angles had to
be in order for individuals to reach escape velocity. Therefore, the bounds for the pitch
angles and GTO-orientation were left unchanged.

5.4.2 Simulation of the best solution from the Monte Carlo run

For illustrational purpose, the best solution found in the Monte Carlo run (table 5.1) is
simulated. Figure 5.3 shows the sailcraft trajectory in the Earth escape phase.

Figure 5.3 Sailcraft trajectory for the best solution from the Monte Carlo run.

It can clearly be seen how the argument of perigee rotates during the trajectory. The
arrows in the figure indicate the direction of the Sun line at Tlaunch and tf when the Earth

(a) Spiral outwards of the sailcraft from Earth
(Garot, 2006)

6.3 Solution space 59

between -30◦ and -40◦, but pitch angles outside this region also have high fitness. There-
fore, the range for αS(1) is further decreased to [-50◦, -20◦]. The range is not decreased
to [-40◦, -30◦], since this could limit the optimal pitch angle for different trajectory condi-
tions too much. αS(2) converges to the range [-50◦, -40◦], but again there are other angles
that have high fitness values. Because no clear trend can be seen for αS(2), its bounds are
not changed.

Finally, R1 converges to 0.45 AU and closer. Most best fitness values are found
when the circularisation distance R1 is close to the cranking distance R2, see table 6.2.
Therefore the upper bound of R1 is decreased from 0.7 AU to 0.5 AU, since cranking
does not start further away than 0.4 AU. The lower bound of R1 is also set to 0.26 AU to
be closer to the cranking distance if R2 is near its lower bound (0.26 AU).

For illustrational purpose the spiral trajectory of the sailcraft to 0.3 AU is shown in
figure 6.7. For clarity, the Sun is plotted 10 times larger than its actual size. This also
holds for the trajectory plots in the remaining part of this chapter.

Figure 6.7 Locally optimised inward spiral trajectory to 0.3 AU.

Orbit cranking

The orbit cranking phase is also locally optimised for cranking distances 0.4 AU and 0.3
AU. Again the flight time is minimised and a penalty is given if the final inclination
deviates from 90◦. Since there is only one optimisation parameter, αS(3), the random
search technique is used with 1000 individuals. Figure 6.8 shows that for orbit cranking
at 0.3 AU there is a range of pitch angles that optimises the orbit cranking in terms of
flight time. A similar trend was found for 0.4 AU.

Table 6.3 gives the optimal solutions for cranking at 0.4 AU and 0.3 AU. Again the
optimal pitch angle is almost equal for both cranking distances. Similar to the previous
discussion on αS(1), and looking at figure 6.8, the range of αS(3) is decreased to [20◦, 50◦].
Figure 6.9 shows the locally optimised trajectory of the sailcraft during the orbit cranking
at 0.3 AU. The number of revolutions needed to reach 90◦ inclination is the same for
both cases (16 revolutions), since the increase of inclination per orbit is not dependent on
cranking distance, but on the sail performance and the pitch angle. The time required
to reach 90◦ inclination is very different, because the orbit period at 0.3 AU is 2 months,
while the orbit period at 0.4 AU is 3 months. This explains the large difference in flight
time for both cranking cases.

(b) Spiral inwards of the sailcraft to the
Sun (Garot, 2006)

60 Optimisation of the solar polar sail mission

Figure 6.8 Found fitness value versus pitch angle αS(3) during the orbit cranking at 0.3 AU for the feasible
individuals from the Monte Carlo run.

FIT αS(3) if tf

At 0.4 AU -1620.5 36.8 90.0 1620.5

At 0.3 AU -1052.6 37.0 90.0 1052.6

Table 6.3 Solutions of the local optimisation of the orbit cranking at 0.4 AU and 0.3 AU. Angles are given in
degrees and flight times in days.

Figure 6.9 Locally optimised cranking trajectory at 0.3 AU.

Outward spiral

If the orbit cranking occurs closer than the final desired distance, a final outward spiral
is required to reach 0.4 AU. Here the case of an outward spiral from 0.3 AU to 0.4 AU is
locally optimised for αS(4). Again the flight time is minimised and penalties are given if

(c) Cranking of the orbit (Garot,
2006)

Figure 2.1: Escape from the Earth together with spiral inwards and orbit cranking phases around the Sun

2.2.1. Thermal Conditions
Going closer to the Sun, the sailcraft can generate a higher propulsive force thus increasing
its capabilities and speed in executing orbital maneuvers. However, even if solar-sail degra-
dation is not considered in this research, it must be noted that there is a temperature limit
that the sailcraft can withstand. Above this value, the sailcraft is not able to operate any-
more: thus, this temperature limit constrains the minimum solar distance achievable. The
equilibrium temperature of the sail film can be computed as (Dachwald et al., 2006a):

𝑇 = [𝑆𝜎
1 − 𝐶
𝜖 + 𝜖 (

𝑟
𝑟) cos𝛼]

/
(2.1)

where 𝜎 = 5.67 × 10 Wm K is the Sefan-Boltzmann constant, 𝐶 is the reflectivity, 𝑟 = 1
au is the Sun-Earth distance, 𝑟 is the Sun-sailcraft distance in au, 𝜖 and 𝜖 is the front and
back emissivity, 𝛼 is the sail cone angle and 𝑆 = 1368 W m is the solar constant.

It is thus clear that having fixed the sail characteristics, the equilibrium temperature not
only depends on the sailcraft distance from the Sun but also from its attitude (𝑇 = 𝑇(𝑟, 𝛼)).
Assuming a temperature limit of the sail of 𝑇 = 240∘C, there will be a minimum distance
from the Sun that cannot be exceeded by the sailcraft, regardless of the attitude angle values.
This distance depends on the characteristics of the sailcraft. As it was already mentioned
in Section 2.1, with the current technology for producing and making the sail films, this
distance corresponds to 0.22 au. In this thesis study, we will thus assume that the sailcraft
cannot go below this distance from the Sun. If this will happen in some mission scenarios,

2.3. Mission Heritage and Requirements 9

Figure 2.2: Last 3 solar cycles: cycles 22, 23, 24; credit: NASA

the related orbits will be considered unfeasible.

2.2.2. Initial and Final Time Conditions and Orbital Elements
We have already mentioned that we would like to observe the Sun during its period of strong
activity: a solar maximum. We know that the Sun is subjected to a periodic activity in which
solar maximums are repeated once every 11 years. Since the past solar maximum happened
in 2013 (see Figure 2.2) and the next one is scheduled for 2024, the second next one will
probably happen around 2035. As we would like to observe the solar cycle in its most active
period, we would like to reach the final orbit before 2033 and fly around the Sun for at least 4
years, up to 2037. This means that we have an upper limit constraint for the date of arrival,
which has to be a date preceding the 1st of January 2033.

Nevertheless, the launch date is not known, since it depends on the duration of the mis-
sion. Therefore, the launch date is inserted as a variable and will be determined as an
outcome of the optimization procedure.

Besides the launch and arrival time, also the initial and final conditions need to be dis-
cussed. We have already stated that the final orbit needs to be a circular polar orbit with 90∘
inclination and 0.4 au radius.

As far as concerns the initial conditions, it is established that the spacecraft is injected
into a GTO orbit with a perigee height of h =185 km, an apogee height of h =35885 km and an
initial inclination of i=0∘ w.r.t. the equatorial plane, similarly to Garot (2006). However, the
argument of perigee of such orbit is assumed to be an outcome of the optimization: indeed,
we would expect that the argument of perigee changes depending on the position of the Sun
w.r.t. the Earth, as well as the position of the Moon w.r.t. the Earth. Since the launch date is
not fixed and these positions are not known a priori, we cannot fix the argument of perigee,
which will thus also be an outcome of the optimization process.

2.3. Mission Heritage and Requirements
In this paragraph, we will first discuss the reference mission and vehicle, respectively, in
Sections 2.3.1 and 2.3.2. Then, in Section 2.3.3, we will talk about the optimization proce-
dure. Finally, in Section 2.3.4, we will introduce and discuss some of the system and mission
requirements that have to be fulfilled in the solar sailing polar mission of our interest.

2.3.1. Reference Mission
For having a baseline trajectory that can be used as a reference for both checking the per-
formances of the implemented methods and compare the results, we decided to select one of
the optimal trajectories found by Spaans (2009). The values of the variables found in that
study are shown in Table 2.1: these result to be an outcome of the optimization process. In

10 2. Mission Characteristics and Heritage

Table 2.1: Reference mission variables’ parameters, found by optimizing the geocentric and heliocentric phases
concurrently (Spaans, 2009).

Symbol Values Units
𝑇launch 2014-11-15 yyyy/mm/dd
𝜔0 9.98 [deg]
𝛼E1 44.5 [deg]
𝛼E2 17.6 [deg]
𝛼E3 5.6 [deg]
𝛼S1 -40.25 [deg]
𝛼S2 -17.25 [deg]
𝛼S3 37.14 [deg]
𝛼S4 54.42 [deg]
𝑅1 0.2970 [au]
𝑅2 0.2600 [au]

Table 2.2: Reference mission final orbital elements and flight duration values (Spaans, 2009). The time of arrival is
in yyyy/mm/dd.

𝑡𝑜𝑓tot 𝑇arrival 𝑖f 𝑒f 𝑎f
2064.5 JD 2020-07-10 90∘ 0.004 0.4 au

Table 2.2, we also show the resulting total time of flight (𝑡𝑜𝑓), the arrival date (𝑇) and
the final orbital elements (𝑒 , 𝑖 , 𝑎) when such optimal variables were used for simulating
the orbit. The exact meaning of the various variables presented in this table will be clarified
and explained in Chapters 3, 4 and 5.

This orbit will be used as a reference mission for our study: this will also help us to
verify our entire simulation model once it will be constructed. The verification and validation
phases of our entire simulator based on this reference mission are discussed in Appendix B.

2.3.2. Reference Vehicle
A reference vehicle is very useful for trading-off the same optimization strategy and dynamical
model with other similar. For this reason, we have decided to choose a solar-sail vehicle
such that it has the same sail parameters as previous studies. In this way, we can directly
compare and discuss our results with those of previous works. Also, these parameters are
considered to be realistic, as they are derived from the state-of-art sail technology. In Chapter
3, further details about the role of these coefficients in the generation of the sail force will be
investigated. Now, we will only focus on these coefficients and their definition for a reference
vehicle.

The objective of any solar-sail design is to furnish a wide area to generate enough thrust
for the mission while keeping the structural mass as low as possible. For this reason, several
solar-sail configurations have been studied throughout the years. Due to the high thrust-
to-mass ratio, the fact that it has been already demonstrated in space (e.g., with the JAXA’s
mission IKAROS) and that it has been already analyzed for solar polar mission concepts in
literature (Candy, 2002), (Garot, 2006), Spaans (2009), we decided to choose the square sail
configuration.

In a square sail, the sail area (𝐴) will be composed of four petals. These four petals are
attached to four deployable booms, each of length 𝐿 = 70 m, for the reference vehicle. Since
each boom represents half of the diagonal of the square sail, the sail area can be computed
as:

𝐴 = 𝐿
2 (2.2)

For the reference vehicle it thus results 𝐴 = 9800 m .
The four booms are made of carbon fiber reinforced plastic and will constitute the support

2.3. Mission Heritage and Requirements 11

 Total Mass (mtot)

Assembly Mass
(mass)

Bus Mass
(mbus)

Payload Mass
(mp=0.76 mbus)

System Mass
(msys=0.24 mbus)

Sail Mass
(ms)

 Support Mass
(mb)

 Mechanisms Mass
(mm)

Substrate Mass
(msub)

Emitter Mass
(memit)

Coating Mass
(mcoat)

Bonding Mass
(mbond=0.06 ms)

Figure 2.3: Mass components of the sailcraft.

structure, and their mass, together with the sail mass and the deployment and steering
mechanisms mass, will be part of the assembly mass. The total mass of the sailcraft is thus
composed of the assembly mass and the bus mass. This latter is further divided into the
system mass and payload mass. The mass division of the sailcraft is shown in Figure 2.3.

It is assumed, similarly to Garot (2006), that the payload mass will constitute 24% of
the bus mass, whereas the deployment and steering mechanisms will constitute 23% of the
assembly mass. The sail mass can be computed as a sum of the substrate, coating, emitter
and bonding mass. The bonding mass is estimated to be 6% of the sail mass, whereas the
mass of the coating (i.e., aluminum), the emitter (i.e., chromium) and the substrate (i.e.,
kapton) can directly be derived from the thickness, density, and area of these materials.

One important performance metric of the sail is the sail loading. This parameter, together
with the sail area, is typically used for retrieving the sail mass. Similarly to Garot (2006), we
assume that our sail has a sail loading of:

𝜎 = 𝑚
𝐴 = 20.8 × 10 kg/m (2.3)

It thus results that for the reference area of 9800 m2, the sail results to have a total mass
of around 204 kg. Within this total mass, the mass allotted for the payload is 5 kg.

We assume that that the attitude controller of the sailcraft together with its deployment
mechanism (called ’Mechanisms Mass’ in Figure 2.3) constitutes 23% of the assembly mass.
Also, we assume that the sail control is such that the sailcraft is three-axis stabilized and
the sail steering is assumed instantaneous.

Furthermore, it is assumed that the sail substrate is made of Kapton, with aluminum front
coating and chromium back coating. These three materials allow a low thermal expansion
and shrinkage: two fundamental characteristics for our mission, as we are flying the sailcraft
relatively near to the Sun. Moreover, the aluminum front coating is fundamental for having
an effective photon reflection.

The characteristics of the chosen substrates and back and front coating are shown in
Table 2.3. In the table, 𝑡 stands for the thickness of the layer, 𝜌 for the bulk density, 𝜖 for
the emissivity, 𝐶 for the reflectivity, 𝑠 for the coefficient of specular reflection and 𝐵 for the
non-Lambertian coefficient.

2.3.3. Solar Sailing Mission Optimization
Global optimization methods offer the possibility to optimize problems without having any
insights on the specific physics behind them. This means that the same global optimization
techniques can be applied to a very different range of problems (e.g., chemistry, finance,
space applications, etc.).

However, compared to local optimization techniques, they often require longer computa-
tion times and less problem understanding. Nonetheless, with the now increasing compu-

12 2. Mission Characteristics and Heritage

Table 2.3: Relevant physical characteristics of the front coating (aluminum), substrate (kapton) and back coating
(chromium) (McInnes, 1999).

Material 𝜌
[g/cm]

t [𝜇m] 𝜖 C B s

Aluminum 2.70 0.1 0.05 0.88 0.79 0.94
Kapton 1.42 2 - - - -
Chromium 7.14 0.015 0.64 - 0.55 -

tational power, computers are able to handle global optimization for complex problems in a
way shorter time than previously.

In particular, several studies carried out by the European Space Agency (ESA), have
demonstrated the potentiality of global optimization techniques for space applications: this
has even led to the construction of the global trajectory optimization (GTOP) database, which
is a collection of box-bounded global optimization problems on several space applications9.

Several studies have been carried out on global optimization techniques applied to so-
lar sailing polar missions (Dachwald et al., 2006b), (Macdonald et al., 2006), (Candy, 2002),
(Garot, 2006), (Spaans, 2009). However, in these studies, a thorough benchmark between
different popular global optimization techniques was not carried out. In particular, the ca-
pabilities of an ant colony optimizer in such a mission were never tested. Various research
has indicated that this type of optimizer is capable of giving very promising results for tra-
jectory optimization in space applications (Schlüter, 2014). In this study, the performance of
different global optimization techniques will be tested on solar sailing trajectory optimization
problems and a special focus will be devoted to a novel ant colony optimizer for both single
and multi-objective optimization. This global optimization technique will be set-up and for-
mulated for general problems and then applied to the solar sailing missions of our interest.
In Chapter 5 a more thorough discussion about these methods and their characteristics is
presented.

2.3.4. Mission and System Requirements
The solar sailing polar mission shall comply with several mission and system requirements.
In particular, the following mission requirements are active:

MR.1: the sailcraft shall be launched in an initial GTO orbit with a perigee height of
h =185 km, an apogee height of h =35885 km and an initial inclination of 𝑖 = 0∘ w.r.t.
the equatorial plane.

MR.2: the final orbit shall have a 90∘ inclination w.r.t. the ecliptic plane.

MR.3: the final orbit shall be such that the sailcraft is in a 2:5 resonance with the
Earth.

MR.4: the sailcraft shall reach the final orbit before 1 January 2033.

MR.5: the sailcraft shall reach the final orbit without neither impacting nor reaching
altitude less than 1500 km w.r.t. all the Solar System planets. The only exceptions
are the Moon, for which the sailcraft can reach a minimum altitude of 300 km, and the
Earth, for which the minimum altitude is set to 100 km.

MR.6: the trajectory shall comply with the constraints on the cone angle 𝛼 ∈ [−90∘, 90∘].

The system shall comply with the following requirements:

SR.1: the payload shall have a weight of 5 kg.

SR.2: the area of the sailcraft shall be comprised of 6000 m and 10000 m .

9https://www.esa.int/gsp/ACT/projects/gtop/gtop.html, date of access: August 2019.

https://www.esa.int/gsp/ACT/projects/gtop/gtop.html

2.3. Mission Heritage and Requirements 13

SR.3: the reflecting area of the sailcraft shall be made of an aluminum front coating, a
kapton substrate, and a chromium back coating.

SR.4: the sailcraft shall not exceed the temperature limit of 513 K. Therefore, the sail-
craft cannot approach the Sun at distances lower than 0.22 au.

14 2. Mission Characteristics and Heritage

Chapter 3

Flight Dynamics
In this chapter, we will discuss the dynamics involved in a solar sailing polar mission. For
doing this, it is first important to discuss how the motion of the sail is described (i.e., which
coordinate systems are involved) and what are the reference systems involved in the simula-
tion. Hence, we will first include the reference frames definitions in Section 3.1 and the state
variables discussion, in Section 3.2. Singularities, computational speed, and other factors
might make one set of state variables advantageous w.r.t. another. It is thus crucial to dis-
cuss the different possible sets of state variables and their drawbacks. Finally, in Sections
3.3 and 3.4, an investigation of the equations of motion and the environment properties will
be carried out.

3.1. Reference Frames
The purpose of this section is not only to introduce and describe the various reference systems
used in both the heliocentric and geocentric phases but also to explain their mathematical
relationships and how it is possible to pass from one reference system to another, taking
advantage of coordinate transformations. For doing this, we will introduce several angles
that are strictly related to the orientation of the solar-sail thrust vector. Indeed, depending
on how the sail is inclined w.r.t. the Sun, a different direction and magnitude of the solar
pressure force will result. Since the orientation of the solar-sail is often described through its
cone and clock angles, these will also be introduced in this section. Typically, due to the high
influence of these angles on the solar-sail trajectory, they are often optimized in the search
of optimal mission scenarios (Wie, 2008).

Since our simulation model consists of two different phases with two different central
bodies (i.e., the Earth first and then the Sun), it is crucial to define both the geocentric and
heliocentric pseudo-inertial1 reference systems, as well as their transformations.

The inertial geocentric reference system can be constructed as follows: the x-axis (unit
vector: ̂III) points towards the vernal equinox, the z-axis (unit vector: K̂KK) passes through
Earth’s pole, and the y-axis is perpendicular to both (unit vector: ĴJJ , where ĴJJ = K̂KK ×
̂III). We know that the Earth’s inertial reference system (̂III , ĴJJ , K̂KK), is inclined with
an angle 𝜖 (i.e., the obliquity: 𝜖=23.43689∘) with respect to the heliocentric inertial reference
system. The transformation matrix from the geocentric to the heliocentric frame can thus be
written as:

𝐶𝐶𝐶 ← = [
1 0 0
0 cos(−𝜖) sin(−𝜖)
0 − sin(−𝜖) cos(−𝜖)

] (3.1)

The rotation between the two reference frames is performed when the sailcraft exceeds the dis-
tance defined by the Earth’s sphere of influence. This distance can be computed as (Wakker,
2015):

𝑟 . ., = 𝑟 (𝑚𝑚) / (3.2)

1In practice we cannot use the word ’inertial reference frames’ for neither the geocentric nor the heliocentric reference
frames and we are always forced to work with so-called pseudo-inertial reference frames: however, since the Coriolis
and centrifugal forces caused by these bodies on the sailcraft’s dynamics are negligible, we will always refer to the
pseudo-inertial geocentric and heliocentric reference frames as inertial reference frames.

15

16 3. Flight Dynamics

where 𝑟 = 149.6 × 10 km is the Sun-Earth distance, 𝑚 = 5.97 × 10 kg is the mass of the
Earth, 𝑚 = 1, 988, 500 × 10 kg is the mass of the Sun2 3. The resulting Earth’s sphere of
influence has a value of 𝑟 . ., = 0.9245 × 10 km.

Besides the position vector, it is also fundamental to transform the velocity vector from the
geocentric to the heliocentric frame, when the sailcraft passes such a distance. By defining
as 𝜔𝜔𝜔 the angular rotation vector of the Earth w.r.t. the Sun, rrr the position vector of the
Earth w.r.t. the Sun and as vvv| , vvv| the velocity vector of the sailcraft w.r.t. the geocentric
and heliocentric, respectively, inertial frames, we can write:

vvv| = 𝐶𝐶𝐶 ← vvv| +𝜔𝜔𝜔 ×𝑟𝑟𝑟 (3.3)

Besides the inertial Earth reference system, it is also useful to introduce the orbit frame (êee ,
êee , êee), in which an axis is directed radially (i.e., êee), another one in the direction of the normal
to the orbital plane around the central body (i.e., êee), and the the third axis is perpendicular

to these two (i.e., êee). Hence this reference system can be found as: êee = rrr
|rrr| , êee = rrr × vvv

|rrr × vvv| ,
and êee = êee × êee . This reference system can be particularly useful because some forces and
steering angles for particular orbits are defined relative to the orbit orientation.

Concerning the heliocentric phase, we first of all define as (̂III, ĴJJ, K̂KK) the right-handed or-
thonormal vectors of the heliocentric ecliptic rectangular reference system: ̂III is directed to-
wards the vernal equinox; K̂KK is perpendicular to the ecliptic; and ĴJJ can then be found using
the cross product: ĴJJ = K̂KK× ̂III. Furthermore, we indicate with (r̂rr,�̂�𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓,�̂�𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙) the spherical coordinates
reference frame (see Figure 3.1 for a graphical interpretation).

We can thus write the position vector of the spacecraft with respect to the Sun (by calling
𝑟 the Sun-sailcraft distance) as:

rrr = 𝑟r̂rr = (𝑟 cos𝜙 cos𝜓) ̂III+ (𝑟 cos𝜙 sin𝜓)ĴJJ+ (𝑟 sin𝜙)K̂KK = 𝑋 ̂III+ 𝑌ĴJJ+ 𝑍K̂KK (3.4)

where 𝜓 ∈ [0∘,360∘] and 𝜙 ∈ [-90∘,90∘] are the ecliptic longitude and latitude, respectively, of
the sailcraft.

We can express the unit vector that indicates the normal direction to the sail plane as:

n̂nn = (cos𝛼)r̂rr+ (sin𝛼 sin𝛽)�̂�𝜓𝜓𝜓𝜓𝜓𝜓𝜓𝜓 + (sin𝛼 cos𝛽)�̂�𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙 (3.5)

where 𝛼 is the cone angle and 𝛽 is the clock angle (defined as shown in Figure 3.2).
The unit vector n̂nn is one of the three vectors that define the so-called sail frame: (n̂nn, t̂tt, p̂pp):

n̂nn points normal to the sail surface and away from it, from the back side; t̂tt lays in the plane
2https://nssdc.gsfc.nasa.gov/planetary/factsheet/ves.html, date of access: August 2019.
3https://nssdc.gsfc.nasa.gov/planetary/factsheet/sunfact.html, date of access: August 2019.

“chapter12” — 2008/7/31 — 18:04 — page 808 — #68
�

�

�

�

�

�

�

�

808 SPACE VEHICLE DYNAMICS AND CONTROL

12.13.2 Cone and Clock Angles

Let {Î , Ĵ , K̂} and {r̂, ψ̂ , φ̂} be respectively a set of right-handed, orthonormal
vectors of the heliocentric ecliptic rectangular and spherical coordinate reference
frames, as illustrated in Fig. 12.39. These two sets of basis vectors are related as

⎡
⎣ r̂

ψ̂

φ̂

⎤
⎦ =

[
cos φ 0 sin φ

0 1 0
− sin φ 0 cos φ

][
cos ψ sin ψ 0

− sin ψ cos ψ 0
0 0 1

]⎡⎣ Î
Ĵ
K̂

⎤
⎦ (12.127)

where ψ and φ are called the ecliptic longitude and latitude of the sailcraft position,
respectively; 0 ≤ ψ ≤ 360 deg and −90 deg ≤ φ ≤ +90 deg.

The sailcraft position vector is then expressed as

�r = rr̂

= (r cos φ cos ψ)Î + (r cos φ sin ψ)Ĵ + (r sin φ)K̂

= XÎ + YĴ + ZK̂ (12.128)

where r = |�r| is the distance from the sun to the sailcraft.
The orientation of a unit vector normal to the sail plane n̂ is described in terms

of the cone angle α and the clock angle β, illustrated in Fig. 12.40, as follows:

n̂ = (cos α)r̂ + (sin α sin β)ψ̂ + (sin α cos β)φ̂ (12.129)

Y

Z

K

X

Vernal Equinox

I

r

J

r
φ

φ

ψ

ψ
ψ

Fig. 12.39 Heliocentric ecliptic coordinates (X, Y , Z) and spherical coordinates
(r, ψ, φ).

D
ow

nl
oa

de
d

by
 U

ni
ve

rs
ity

 o
f

V
ir

gi
ni

a
on

 S
ep

te
m

be
r

29
, 2

01
2

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/4

.8
60

11
9

Figure 3.1: Heliocentric ecliptic coordinates (, ,) and spherical coordinates (, ,) (Wie, 2008)

https://nssdc.gsfc.nasa.gov/planetary/factsheet/ves.html
https://nssdc.gsfc.nasa.gov/planetary/factsheet/sunfact.html

3.1. Reference Frames 17

“chapter12” — 2008/7/31 — 18:04 — page 809 — #69
�

�

�

�

�

�

�

�

SOLAR-SAIL DYNAMICS AND CONTROL 809

n

ψ

φ

β

α

ψ

φ

r r

2

3

n1 =

Fig. 12.40 Cone angle α, clock angle β, and sailcraft orientation when α = β = 0.

where

cos α = r̂ · n̂

cos β = r̂ × (n̂ × r̂)

|r̂ × (n̂ × r̂)| · φ̂

0 ≤ α ≤ 90 deg

0 ≤ β ≤ 360 deg

As also illustrated in Fig. 12.40, the sailcraft body-fixed basis vectors {1̂, 2̂, 3̂}
are assumed to be aligned with {r̂, ψ̂ , φ̂} when α = β = 0, and the sailcraft roll
axis is defined to be perpendicular to the sail surface; that is, 1̂ ≡ n̂. The sailcraft
body-fixed basis vectors {1̂, 2̂, 3̂} are then related to {r̂, ψ̂ , φ̂} as follows:

⎡
⎣1̂

2̂
3̂

⎤
⎦ =

[
cos α 0 sin α

0 1 0
− sin α 0 cos α

] [
1 0 0
0 cos β − sin β
0 sin β cos β

]⎡⎣ r̂
ψ̂

φ̂

⎤
⎦ (12.130)

Let {r̂, θ̂ , k̂} be a set of basis vectors of an osculating orbital plane, as illus-
trated in Fig. 12.41. A different set of the cone and clock angles (α, δ) can then
be defined as shown in Fig. 12.41. A body-fixed rotational sequence to {1̂, 2̂, 3̂}
from {Î , Ĵ , K̂} is then described by successive coordinate transformations of
the form

C2(−α) ← C1(−δ) ← C3(θ) ← C3(ω) ← C1(i) ← C3()

D
ow

nl
oa

de
d

by
 U

ni
ve

rs
ity

 o
f

V
ir

gi
ni

a
on

 S
ep

te
m

be
r

29
, 2

01
2

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/4

.8
60

11
9

Figure 3.2: Cone () and clock () angles (Wie, 2008)

“chapter12” — 2008/7/31 — 18:04 — page 811 — #71
�

�

�

�

�

�

�

�

SOLAR-SAIL DYNAMICS AND CONTROL 811

n

θ

α

δ

r

k

Fig. 12.42 Cone angle α and clock angle δ.

12.13.3 Solar Radiation Pressure

An ideal model of the SRP is used here. The SRP force vector (per unit mass)
acting on the sailcraft is described in various coordinates as follows:

�F = F0(r̂ · n̂)2n̂

= Frr̂ + Fψψ̂ + Fφφ̂

= Rr̂ + T θ̂ + Nk̂

= FX Î + FY Ĵ + FZK̂ (12.134)

where

F0 =
(r⊕

r

)2
ac (12.135)

where r⊕ = 1 AU = 149, 597, 870.691 km is the distance from the sun to the Earth
and ac is the so-called characteristic acceleration of the sailcraft at 1 AU.

Furthermore, we have the following relationships:[
Fr
Fψ

Fφ

]
= F0 cos2 α

[
cos α

sin α sin β
sin α cos β

]
(12.136)

[
R
T
N

]
= F0 cos2 α

[
cos α

sin α sin δ
sin α cos δ

]
(12.137)

[
Fr
Fψ

Fφ

]
=

[
cos φ 0 sin φ

0 1 0
− sin φ 0 cos φ

][
cos ψ sin ψ 0

− sin ψ cos ψ 0
0 0 1

][
FX
FY
FZ

]
(12.138)

D
ow

nl
oa

de
d

by
 U

ni
ve

rs
ity

 o
f

V
ir

gi
ni

a
on

 S
ep

te
m

be
r

29
, 2

01
2

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/4

.8
60

11
9

Figure 3.3: Cone () and clock () angles (Wie, 2008)

identified by the normal to the surface n̂nn and the Sun-sail line, which corresponds to r̂rr in
the heliocentric frame, and is perpendicular to n̂nn; whereas p̂pp completes the reference system:
p̂pp = n̂nn × t̂tt.

We define the two angles 𝛼 and 𝛽 as:

cos𝛼 = r̂rr ⋅ n̂nn cos𝛽 = r̂rr × (n̂nn × r̂rr)
|r̂rr × (n̂nn × r̂rr)| ⋅ �̂�𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙

where 𝛼 ∈ [-90∘,90∘] and 𝛽 ∈ [0∘,360∘].
From these angles, it is easy to relate the sail reference system (n̂nn, t̂tt, p̂pp), with the spherical

coordinate system. Similarly, we can also relate the sail reference system to an osculating
reference system (i.e., (r̂rr, �̂�𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃, k̂kk)), which describes the orientation of the spacecraft w.r.t. a refer-
ence system that describes the osculating orbital plane of the sailcraft. The osculating orbital
elements, which represent the Keplerian elements (i.e., 𝑎: semi-major axis, 𝑒: eccentricity, 𝑖:
inclination, Ω: right ascension of ascending node, 𝜔: argument of perigee, 𝜈: true anomaly)
of the sailcraft in space at any given time, can then be used for describing the sailcraft state.

This reference system is composed by a radial unit vector r̂rr (which coincides to the one
of the spherical reference system), a unit vector always perpendicular to the local Keplerian
orbit of the sailcraft (i.e., k̂kk) and a third unit vector perpendicular to the aforementioned
two. In such a reference system, we can introduce a new set of cone and clock angles: (𝛼, 𝛿)
(defined as shown in Figure 3.3), where it is clear that 𝛼 is the same as before, but the clock
angle 𝛿 is now different than the previous one (𝛽).

We can thus relate the sailcraft reference frame with the osculating plane reference system
as follows:

(
n̂nn
t̂tt
p̂pp
) = [

cos𝛼 0 sin𝛼
0 1 0

− sin𝛼 0 cos𝛼
] [
1 0 0
0 cos 𝛿 − sin 𝛿
0 sin 𝛿 cos 𝛿

](
r̂rr
�̂�𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃
k̂kk
) (3.6)

18 3. Flight Dynamics

“chapter12” — 2008/7/31 — 18:04 — page 810 — #70
�

�

�

�

�

�

�

�

810 SPACE VEHICLE DYNAMICS AND CONTROL

Y

Z
h

r

X

Vernal Equinox
Line of Nodes

iJ

e

i

I

K

θ

ω

Ω

r
k

Ecliptic Plane

I '

Fig. 12.41 Orbital geometry (illustrated for a near-circular orbit).

which becomes⎡
⎣r̂

θ̂

k̂

⎤
⎦ =

[
cos(ω + θ) sin(ω + θ) 0

− sin(ω + θ) cos(ω + θ) 0
0 0 1

][
1 0 0
0 cos i sin i
0 − sin i cos i

]

×
[

cos 	 sin 	 0
− sin 	 cos 	 0

0 0 1

]⎡⎣ Î
Ĵ
K̂

⎤
⎦ (12.131)

⎡
⎣1̂

2̂
3̂

⎤
⎦ =

[
cos α 0 sin α

0 1 0
− sin α 0 cos α

][
1 0 0
0 cos δ − sin δ
0 sin δ cos δ

]⎡⎣r̂
θ̂

k̂

⎤
⎦ (12.132)

The orientation of a unit vector normal to the sail plane n̂ is then described in terms
of α and δ, as illustrated in Fig. 12.42, as follows:

n̂ = (cos α)r̂ + (sin α sin δ)θ̂ + (sin α cos δ)k̂ (12.133)

and

cos α = r̂ · n̂

cos δ = r̂ × (n̂ × r̂)

|r̂ × (n̂ × r̂)| · k̂

0 ≤ α ≤ 90 deg

0 ≤ δ ≤ 360 deg

D
ow

nl
oa

de
d

by
 U

ni
ve

rs
ity

 o
f

V
ir

gi
ni

a
on

 S
ep

te
m

be
r

29
, 2

01
2

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/4

.8
60

11
9

Figure 3.4: Orbital geometry (Wie, 2008)

Where the two angles 𝛼 ∈ [-90∘,90∘] and 𝛿 ∈ [0∘, 360∘] are used to describe the orientation of
the spacecraft w.r.t. the normal to the sail plane n̂nn as follows:

n̂nn = (cos𝛼)r̂rr+ (sin𝛼 sin 𝛿)�̂�𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃 + (sin𝛼 cos 𝛿)k̂kk (3.7)

where:

cos𝛼 = r̂rr ⋅ n̂nn cos 𝛿 = r̂rr × (n̂nn × r̂rr)
|r̂rr × (n̂nn × r̂rr)| ⋅ k̂kk

Finally, for expressing the sailcraft reference frame starting with the heliocentric inertial
reference system, we just need to link the osculating reference system with the heliocentric
inertial one. This can be done remembering the geometry of the Keplerian elements with
respect to the rectangular heliocentric ecliptic system (shown in Figure 3.4) and thus writing:

(
r̂rr
�̂�𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃
k̂kk
) = [

cos(𝜔 + 𝜈) sin(𝜔 + 𝜈) 0
− sin(𝜔 + 𝜈) cos(𝜔 + 𝜈) 0

0 0 1
] [
1 0 0
0 cos 𝑖 sin 𝑖
0 − sin 𝑖 cos 𝑖

] [
cosΩ sinΩ 0
− sinΩ cosΩ 0
0 0 1

](
̂III
ĴJJ
K̂KK
) (3.8)

Therefore, from the above discussion, we have not only managed to mathematically define
and relate all the reference systems involved in the solar-sail problem, but we have also
defined and introduced two pivotal angles: the cone angle (𝛼) and the clock angle (𝛿). These
two angles will be crucial for the entire mission, as they will be used for expressing the
orientation (i.e., attitude) of the sailcraft in its journey towards the Sun.

3.2. State Variables
For setting up the equations of motion of the sailcraft, it is first fundamental to specify the
state variables used to express the vehicle’s state. Since the choice of the state variables
influences both the performance of the simulation model, thus influencing the total com-
putational effort needed to optimize the mission, and also the accuracy of the results, it is
important to understand which set of state variables can be best suitable for our case. In this
framework, we investigate three types of state variables often used for space applications:
Cartesian components, modified equinoctial elements, and unified state model elements.
Moreover, Keplerian elements will also be discussed as they are useful to introduce the mod-
ified equinoctial elements. On the one hand, the Kepler elements, Cartesian elements, and
modified equinoctial elements represent the easiest to interpret physically and sometimes the
most robust formulation. On the other hand, the unified state model has demonstrated to
be particularly effective when used for low-thrust propulsion missions (such as the one that
we are investigating). Therefore, a thorough discussion and trade-off of these different state
variables are necessary and it is presented in Section 6.3.1. We will now limit ourselves to
describe their working principles and key features. In particular, we will start by describing
the Cartesian elements, for then moving to the modified equinoctial elements (introduced

3.2. State Variables 19

by an initial necessary description of the Keplerian elements) and finally to the three types
of unified state models: with quaternions, with exponential mapping, and with Rodrigues
parameters.

Cartesian Elements
Cartesian elements are used to express position and velocity w.r.t. an inertial or rotating
orthogonal reference frame. The position (i.e., rrr = (𝑥, 𝑦, 𝑧)) and velocity (i.e., vvv = (𝑣 , 𝑣 , 𝑣))
vectors are thus used to constitute the following state vector:

xxx = (rrr , vvv) (3.9)

Kepler Elements
Keplerian elements describe the state of the sailcraft through some parameters that define
the position of the sailcraft on a time-varying ellipse. These parameters that describe the
shape and orientation of such ellipse and the position of the sailcraft in the ellipse are: the
eccentricity (𝑒), the semi-major axis (𝑎), the inclination (𝑖), the longitude of the ascending
node (Ω), the argument of periapsis (𝜔) and the true anomaly (𝜈).

These six parameters can be seen in Figure 3.4 and they constitute the following state
vector:

xxx = (𝑒, 𝑎, 𝑖, Ω, 𝜔, 𝜈) (3.10)

Modified Equinoctial Elements
As we already pointed out, MEE is a modified version of the Kepler elements. This was made
to avoid mathematical singularities, which limited the use of the Kepler elements. Their
first appearance was in Walker (1986), and the relation between MEE and Kepler elements
(𝑎, 𝑒, 𝑖, Ω, 𝜔, 𝜈) can be expressed as follows:

𝑝 = 𝑎(1 − 𝑒)
𝑔 = 𝑒 sin(𝜔 + Ω)

𝑘 = tan
𝑖
2 sinΩ

𝑓 = 𝑒 cos(𝜔 + Ω)

ℎ = tan
𝑖
2 cosΩ

𝐿 = Ω + 𝜔 + 𝜈

(3.11)

Therefore, the state vector can be written as:

xxx = (𝑝, 𝑓, 𝑔, ℎ, 𝑘, 𝐿) (3.12)

Unified State Model Elements
In this paragraph, we will first describe the original unified state model using quaternions.
Then we will discuss two modifications done by replacing the quaternion with either the Ro-
drigues parameters or the exponential mapping. Unified state model elements have been
extensively used in the past years, especially for orbits with continuous low-thrust propul-
sion, thanks to their demonstrated good performances in terms of accuracy and CPU time.

We know that reference frames are typically used for expressing position and motion of
bodies. Usually, a reference system is chosen as a set of three right-handed mutually perpen-
dicular unit vectors (âaa , âaa , âaa). For converting a set of coordinates from a certain reference
frame to another, various possible ways exist. These include, among others, direction cosine
matrix, Euler axis (âaa) and angle (Φ), quaternions, modified Rodrigues parameters (MRP) and
exponential mapping. In particular, for introducing the USM state variables, we are mostly
interested in Euler axis and angle, quaternions, MRP and exponential mapping.

Quaternions of unit magnitude can be used for representing rotations. In particular, they
can be seen as a vector of four elements constituted by:

• one vector of three elements, 𝜖𝜖𝜖, which can be expressed as a function of Euler axis and
angle as:

𝜖𝜖𝜖 = (𝜖 , 𝜖 , 𝜖) = âaa sin(Φ/2) (3.13)

20 3. Flight Dynamics

• one scalar, 𝜂, which can also be expressed as a function of Euler angle as:

𝜂 = cos(Φ/2) (3.14)

A modified Rodrigues parameter (MRP) vector can be expressed w.r.t. Euler axis and angle
as follows:

𝜎𝜎𝜎 = âaa tan(Φ/4) (3.15)

Another type of representation exists besides MRP and quaternions for USM: exponential
mapping. This three parameters set is also defined as exponential mapping of quaternions
(Grassia, 1998). The exponential map (aaa) is defined as:

aaa = Φâaa (3.16)

These three representations are used for expressing the orientation of the orbit in the uni-
fied state model. In particular, four elements are used for the quaternions and three for the
Rodrigues and exponential mapping parameters, as we just saw. On the other hand, the
shape of the orbit is described by three parameters, in all these representations. For intro-
ducing these three parameters, it is first important to introduce the concept of hodograph: a
hodograph is a velocity diagram used for representing graphically the velocity of a body. For
an unperturbed orbit, the velocity can be described, at any point, as the sum of a velocity
vector normal to the radial vector and laying in the orbital plane (CCC) and a velocity vector
(RRR), which is shifted 90∘ ahead w.r.t. the eccentricity vector. The magnitudes of these two
velocity vectors (namely, CCC and RRR) can be written as:

𝐶 = 𝜇
ℎ 𝑅 = 𝜇𝑒

ℎ = 𝐶𝑒

where 𝑒 and ℎ are the eccentricity and the specific angular momentum of the orbit, respec-
tively, whereas 𝜇 is the gravitational parameter of the central body. We can link these compo-
nents of the velocity with the polar components (i.e., one component of the velocity along the
radial (𝑣), and the other perpendicular to it (𝑣) and laying in the orbital plane forming a right
hand orthogonal reference system together with the radial direction and the perpendicular
to the orbit) as:

𝑣 + (𝑣 − 𝐶) = 𝑅 (3.17)

Now, to introduce the three elements used for describing the shape of the orbits in the USM,
it is first important to introduce three different frames:

• ℱ =(ĝgg , ĝgg , ĝgg): an inertial reference frame fixed on the central body, where ĝgg and ĝgg lay
in the equatorial plane of the central body and the third unit vector is perpendicular to
that plane.

• ℱ =(̂fff , ̂fff , ̂fff): an intermediate rotating reference frame, where ̂fff and ̂fff lay in the orbital
plane and the unit vector ̂fff lays along the angular momentum vector.

• ℱ =(êee , êee , êee): a rotating reference frame, where êee lays in the radial direction, êee lays
along the angular momentum vector and êee is perpendicular to those two.

The angle that separates the unit vector ̂fff to êee is called 𝜆 and is computed as the sum of
the perigee anomaly (𝜔), longitude of the ascending node (Ω) and true anomaly (𝜈).

We now have all the elements to define the USM state vector. As far as concerns the
quaternion representation, the following state vector is derived:

xxx = (𝐶, 𝑅 , 𝑅 , 𝜖𝜖𝜖 , 𝜂) (3.18)

3.3. Equations of Motion 21

where 𝐶 is the magnitude of the vector CCC, 𝑅 and 𝑅 are the two components of the vector
RRR when written w.r.t. the ℱ frame and 𝜖𝜖𝜖 and 𝜂 are the components of a quaternion that
describes the orientation of ℱ w.r.t. ℱ .

On the other hand, using the MRP representation, the following state vector can be de-
rived:

xxx = (𝐶, 𝑅 , 𝑅 , 𝜎𝜎𝜎) (3.19)

Finally, using the exponential mapping representation, we obtain the following state vector:

xxx = (𝐶, 𝑅 , 𝑅 , aaa) (3.20)

3.3. Equations of Motion
In this section, we will describe the equations of motion relevant for our solar-sail problem:
these constitute the mathematical laws that drive the trajectory of the sailcraft instant by
instant. It is important to notice that each set of state variables will cause a different set
of equations of motions. As this is just a different mathematical formulation of the same
symbolic equations, the various different formulations of these equations of motion are ad-
dressed in Appendix A. All these different formulations have the same objectives to describe
the dynamics of the sailcraft both in the geocentric and heliocentric phase. In particular, in
both cases, the equation of motion can be written, in vectorial form, as:

r̈rr| / +FFF |
/
= (F

FF
𝑚 + GGG

𝑚)| /
(3.21)

where FFF is the gravitational force of the central body, FFF is the force generated from
the solar radiation pressure, and GGG| / are the perturbations present in the geocentric or
heliocentric phase, depending on where the sailcraft is located. The subscripts 𝐺 and 𝐻
thus refer to either the geocentric or heliocentric phase, depending on which is the central
gravitational body.

3.4. Environment
This section deals with the environment description, that is the general framework of all
the natural interacting forces with the sailcraft, during its journey to the Sun. The sailcraft
will be subjected to the gravitational pull of several celestial bodies: some will act as cen-
tral attractors, others will only result as third body perturbations. Furthermore, during the
geocentric phase, the sailcraft will also be subjected to the Earth’s atmosphere. Moreover,
one of the main forces acting on the sailcraft will be the solar pressure radiation force, which
results to be the only thrusting force.

To summarize, the main forces that constitute the environment in such a mission are:

• Main gravitational forces: these include only the celestial bodies that act as a main
central gravitational attractor. In this mission, the Earth and the Sun will act as main
attractors in the geocentric and heliocentric phases, respectively.

• Solar radiation pressure force: due to the transfer of momentum between the photons
emitted by the Sun and the sailcraft’s area a force arises. For this mission, this force
is used as propelling and thrusting force and thus plays a pivotal role in defining the
trajectory.

• Solar eclipse: due to the high influence of the solar radiation pressure on the sailcraft
motion, it is important to model solar eclipses. Indeed, the sailcraft might result to be
shadowed by the Earth, especially during the geocentric phase (as it revolves around the
Earth multiple times). This effect can be particularly relevant in shaping the trajectory
of the sail, and it should thus be included in the mission scenario.

22 3. Flight Dynamics

• Atmospheric forces: these are only active in the geocentric phase when the sailcraft is
near to the Earth’s surface and include both the lift and the drag. These forces should
be accounted for in our mission scenario, as the sailcraft has a very big area, which is
thus subjected to very strong aerodynamic accelerations if not properly controlled.

• Third bodies gravitational perturbations: several celestial bodies might exert on the
sailcraft small gravitational perturbations that can add up over time and cause signif-
icant changes in the orbit. For this reason, it is important to model and discuss these
perturbing forces and their mathematical descriptions.

All the gravitational forces caused by the central bodies are modeled considering central
bodies as point masses. In this mission, there will be two central bodies: the Earth in the
geocentric phase and the Sun in the heliocentric phase. The gravitational forces generated
by these two bodies can be written as:

FFF = 𝜇
𝑟 rrr (3.22)

where rrr is the vector that identifies the sailcraft’s position w.r.t. the center of mass of the
central body, whereas 𝜇 is the gravitational parameter of the central body. For the Sun, it
holds: 𝜇 =1.32712440018 × 10 km /s ; whereas for the Earth it holds: 𝜇 =3.986004418
× 10 km /s .

3.4.1. Solar Radiation Pressure
In this section, we will tackle the solar radiation pressure phenomenon. In particular, in
Section 3.4.1.1, we will first discuss the generation of this pressure. Then, in Section 3.4.1.2,
we will describe how this pressure translates into a vector force that can be used for steering
the sailcraft. The main references for this section are McInnes (1999), Wakker (2015) and Fu
et al. (2016).

3.4.1.1 Fundamentals of Solar Sailing
One of the most important aspects of this mission is how the solar-sail force is produced
from the solar radiation pressure acting on the sail.

When solar photons hit an object, the momentum is transferred and pressure is felt by
the object: called solar radiation pressure. This pressure can be expressed as:

𝑃 = 𝑊
𝑐 (3.23)

Where 𝑊 ([W/m]) is the radiative flux (i.e., power density), which is the power per meter
squared radiated and 𝑐 is the speed of light (c=299,792,458 m/s).

The effectiveness of solar-sail propulsion is strictly related to the distance of the sail from
the Sun: namely, the more the sail is distant the less propulsive force can be generated. This
can be mathematically seen from the Sun’s radiative power definition:

𝑊(𝑟) = 𝐿
4𝜋𝑟 (3.24)

Where 𝑟 is the distance of the object radiated from the Sun, and 𝐿 = 3.84 × 10 W is the
luminosity of the Sun.

In general, the maximum solar radiation pressure experienced by an object at a distance 𝑟
from the Sun is determined not only by the distance but also on how the photons are reflected:
namely, on the reflective properties and orientation of the object. Assuming a condition in
which the photons are all reflected back from the object to the Sun, we can compute the
maximum solar radiation pressure, 𝑃 (𝑟), as 𝑃 (𝑟) = 2𝑃(𝑟). Conversely, for a partially
reflective surface, the second term must be multiplied by a radiation pressure coefficient of
the body, that is smaller than two.

3.4. Environment 23

3.4.1.2 Solar Radiation Pressure Force Vector
In this section, we discuss two different models for treating the solar radiation pressure force
vector: the first one assuming an ideal model in which the solar-sail only reflects all the
incident radiation and the force vector generated from the reflection of photons is always
perpendicular to the sail surface. The second one is a more realistic model in which the
reflection is imperfect and the vector is not directed perpendicularly to the surface but is
shifted of a certain angle 𝜙 (called offset angle). In the following description we will base our
notation on the reference systems and state variables defined under Sections 3.1 and 3.2.

Developing an appropriate model can be very complex and challenging: in general, when a
solar photon hits the sail, we will assume that it will be either transmitted with a probability 𝜏
or absorbed with a probability 𝛼 or reflected with a probability 𝜌, where it holds: 𝜏+𝜌+𝛼 = 1.
The total radiation pressure force is found by summing the forces generated by these three
phenomena. We will consider a sail area 𝐴, and we will indicate with n̂nn the unit vector that
individuates the direction of the incident solar radiation, which forms an angle 𝛼 (i.e., the
cone angle defined in Section 3.1) with the unit vector normal to the surface n̂nn. Assuming
that we are operating in a Sun-centered frame, then the angle between the solar incident
radiation and the normal to the plane is 𝛼.

Therefore, the total force can be written as:

FFF = 𝜏 FFF + 𝛼 FFF + 𝜌 FFF (3.25)

Moreover, after considering that transmitted photons do not generate any force on the surface
(i.e., FFF = 000), we can express each of the other two force contributions as follows:

{
𝛼 FFF = 𝛼 𝑊𝐴 cos𝛼𝑐 (n̂nn −

𝜖 𝐵 − 𝜖 𝐵
𝜖 + 𝜖 n̂nn)

𝜌 FFF = 𝜌 2𝑊𝐴
𝑐 cos 𝛼 + n̂nn+ 𝜌 𝑊 cos𝛼

𝑐 (n̂nn + 𝐵 n̂nn)
(3.26)

where 𝜖 is the surface emissivity, 𝜎 is the Stefan-Boltzmann constant (𝜎=5.670367 × 10 J
m s K), 𝐵 is the Lambertian coefficient and the subscripts f and b indicate front and
back side of the surface, respectively. Furthermore, n̂nn is the unit vector that points away
from the sail surface from the bottom side (where we define the front side as the one that is
directly exposed to the Sun’s rays, whereas the back side is the opposite one). Besides, the
force associated with the reflected radiation is composed of two contributions: a specularly
reflected and diffusely reflected radiation component. Hence, 𝜌 is the probability associated
with the specularly reflected radiation, whereas 𝜌 is the one associated with the diffusely
reflected radiation.

In case that we consider that the sailcraft is subjected to specular reflection only (which
means that 𝜌 =1 and hence all the other coefficients are zero) the equations simplify and the
force becomes the ideal solar-sail force:

FFF , = 2𝑃𝐴 cos 𝛼n̂nn (3.27)

Instead, the so called non-ideal model considers all the photon-sail interactions, which we
have described above, and it assumes that the sail area 𝐴 is flat. By putting together all the
aforesaid equations, it is possible to derive an equation to express the total force as a result
of the interaction between the photons and the sail as:

FFF = 𝑊𝐴
𝑐 (𝛼 cos𝛼(n̂nn −

𝜖 𝐵 − 𝜖 𝐵
𝜖 + 𝜖 n̂nn) + 2𝜌 cos 𝛼n̂nn+ 𝜌 cos𝛼(n̂nn + 𝐵 n̂nn)) (3.28)

We notice that the force generated from the solar radiation pressure is not only perpendicular
directed along n̂nn (as it is the case for the ideal force model), but it also has a transverse
component (n̂nn) in the direction perpendicular to the normal of the surface and laying on the
sail surface. Since it holds that n̂nn ⋅ n̂nn ≥ 0, n̂nn ⋅ n̂nn = cos𝛼 and n̂nn ⋅ n̂nn = cos(𝜋/2−𝛼) = sin𝛼, we
can write the force over the sail area 𝐴 in terms of tangential and normal components as:

24 3. Flight Dynamics

f q

a
Sun-sailcraft line

sail

𝐧"𝐬

𝐧" 𝐦"

Figure 3.5: Direction of ideal (along n̂nn) and non-ideal (along m̂mm) forces (where n̂nn is the unit vector that relates the
Sun to the sailcraft)

FFF = 𝑃𝐴 cos𝛼((𝛼 + 𝜌)(n̂nn ⋅ n̂nn) ̂ntntnt + ((𝛼 + 𝜌 + 2𝜌) cos𝛼 − 𝛼
𝜖 𝐵 − 𝜖 𝐵
𝜖 + 𝜖 + 𝜌 𝐵)n̂nn) (3.29)

Alternatively, the force components along n̂nn and n̂nn can be written as (McInnes, 1999):

FFF , = 𝑃𝐴{(1 + 𝐶 𝑠) cos 𝛼 + 𝐵 (1 − 𝑠)𝐶 cos𝛼 + (1 − 𝐶)
𝜖 𝐵 − 𝜖 𝐵
𝜖 + 𝜖 cos𝛼}n̂nn (3.30)

FFF , = 𝑃𝐴(1 − 𝐶 𝑠) cos𝛼 sin𝛼 n̂nn (3.31)

This form of expressing the force is exactly equivalent as the one presented above, but it
makes use of different parameters: 𝐶 is the reflectivity coefficient of the front of the sail, 𝑠
is the coefficient of specular reflection, and the other parameters are the same as the ones
already explained above. In particular, the following relationships hold:

𝛼 = (1 − 𝐶) 𝜌 = 𝐶 (1 − 𝑠) 𝜌 = 𝐶 𝑠 (3.32)

where it thus also holds (𝛼 + 𝜌) = 1 − 𝐶 𝑠, (𝛼 + 𝜌 + 𝜌) = 1 and (𝛼 + 𝜌 + 2𝜌) = (1 + 𝐶 𝑠).
From Equations (3.27) and (3.29), we can observe that while the ideal force is directed in

the same direction as the normal to the surface (pointing away from the back surface of the
sail), the non-ideal one is not. In fact, the non-ideal force is inclined by the offset angle 𝜙
w.r.t. the normal direction, where 𝜙 can be defined as:

tan𝜙 = |FFF , |
|FFF , |

(3.33)

Furthermore, defining as 𝜃 the angle between the non-ideal force direction and the Sun-
sailcraft line, it is possible to relate the cone and offset angles as follows:

𝜙 + 𝜃 = 𝛼 (3.34)

These angles are graphically shown in Figure 3.5. The ideal force will, therefore, be parallel
to n̂nn, which is displaced of an angle 𝛼 with respect to n̂nn , whereas the non-ideal one will be
shifted of an angle 𝜃 w.r.t. n̂nn and of an angle 𝜙 w.r.t. n̂nn .

Moreover, we know that both the components of the force are dependent from the cone
angle 𝛼, and from Equation (3.33) and (3.34) we notice that both 𝜙 and 𝜃 are also dependent
from 𝛼. This can help us to define what are the maximum allowable 𝜃 angles achievable by
the non-ideal force. Indeed, we know that the sailcraft is designed to work with a certain front
surface, which has always to be directed to the Sun. Therefore, the angle from the normal to

3.4. Environment 25

-100 -80 -60 -40 -20 0 20 40 60 80 100

 [deg]

-100

-80

-60

-40

-20

0

20

40

60

80

100

 [
d
e
g
],

 [
d
e
g
]

Figure 3.6: and as a function of

the surface and the Sun-sailcraft line (i.e., 𝛼) can never exceed 90∘ or go below -90∘. Thus,
using Equations (3.30), (3.31) and (3.33), we can first express 𝜙 as a function of 𝛼 as:

𝜙 = tan ((1 − 𝐶 𝑠) cos𝛼 sin𝛼

(1 + 𝐶 𝑠) cos 𝛼 + 𝐵 (1 − 𝑠)𝐶 cos𝛼 + (1 − 𝐶)
𝜖 𝐵 − 𝜖 𝐵
𝜖 + 𝜖 cos𝛼

) (3.35)

Now, considering the boundary values of 𝛼, and substituting the values shown in Table 2.3
for the back and front coating of the vehicle, we can plot 𝜙 as a function of 𝛼. Also, by
solving Equation (3.34) for 𝜃 and substituting the value of 𝜙 found with Equation (3.35) we
can also discover what are the maximum and minimum allowable values for the cone angle 𝜃.
Therefore, both 𝜃 and 𝜙 as a function of 𝛼 are computed for 𝛼 ∈ [−90∘, +90∘] and the resulting
curves are shown in Figure 3.6.

From the graph it can be seen that for such a type of sailcraft, the maximum andminimum
allowable 𝜃 angles are: 𝜃 = +/- 55.433∘.

Now that both the ideal and non-ideal forces are introduced and analyzed, we have to
establish whether to use one or the other for optimizing the trajectory. Since it has already
been demonstrated that for a solar sailing polar mission of our kind, the ideal model gives
too optimistic results for the cost function, which are not representative of the real situation
(Candy, 2002), (Garot, 2006), we have thus decided to employ a non-ideal solar-sail force
model for our thesis study.

Furthermore, it is clear that we cannot point the force in any direction we want, but there
are two limiting factors: the fact that we cannot use the front surface of the sail for propelling
the sailcraft and the fact that the 𝜃 angle is limited within [-55.433∘,+55.433∘]. Therefore, by
plotting the normal to the surface and parallel to the surface components of the solar-sail
force, it is possible to observe that the allowable directions of the non ideal solar radiation
pressure force can be included in a bubble shape. In Figure 3.7, a graphical representation
of such bubble shape for 𝑃𝐴=1 is shown.

Also, it is important to notice that the direction of the ideal and non-ideal forces (n̂nn and
m̂mm, respectively) in the reference frame associated with the osculating plane around the Sun
can be written as:

n̂nn = cos𝛼 ̂rrrrrrrrr+ (sin𝛼 sin 𝛿) �̂�𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃 + (sin𝛼 cos 𝛿) k̂kkkkkkkk (3.36)

m̂mm = cos𝜃 ̂rrrrrrrrr+ (sin𝜃 sin 𝛿) �̂�𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃 + (sin𝜃 cos 𝛿) k̂kkkkkkkk (3.37)

If we want to express these unit vectors using an heliocentric inertial reference system for
solving the equations of motion, we first need to rotate them throughout a proper rotation

26 3. Flight Dynamics

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

F
t
 [N]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
n
 [
N

]

Force "bubble"

Sun-sailcraft unit vector

force vectors

Figure 3.7: Force bubble, where is the component of the force along n̂nn , is the component of the force perpen-
dicular to n̂nn , belonging to the (n̂nn, n̂nn) plane and the black arrow represents the Sun-sail unit vector n̂nn .

matrix. Therefore, we can generally define asΦΦΦ the transformation matrix and then write the
equations of motion written in the heliocentric inertial frame as:

r̈rr | +FFF | = 𝐹 ΦΦΦm̂mm | +GGG | (3.38)

Therefore, with all the reference transformations expressed in Section 3.1 we are capable of
writing the non ideal solar-sail force in the reference frames of our interests.

3.4.2. Perturbations
In the geocentric phase, the central body will be the Earth, whilst in the heliocentric phase
the Sun. However, due to the length of the flight and the various perturbations that will en-
counter the sailcraft along the way, it is necessary to model these perturbations depending
on the position of the spacecraft. A comparison of the perturbing forces as the sailcraft moves
away from the Earth was done in Garot (2006) and Candy (2002), where the relevance and
effect of the perturbations were studied. There, it was concluded that the main perturbations
that will shape the trajectory orbit during the journey to the Sun are: third body perturba-
tions (Moon, Venus, Mercury, Sun, Earth), Earth’s atmospheric drag and Earth shadowing.
Furthermore, the Sun will act as a third body perturbation when the sail is in the geocentric
phase, while the Earth will act as third body perturbation during the heliocentric phase.

In the following sections, we will treat and model the aforementioned perturbations by
first investigating the atmospheric drag in Section 3.4.2.1. Then, in Section 3.4.2.2, we will
discuss the influence of the shadowing by other celestial bodies on the sailcraft’s trajectory
during its journey to the Sun. Finally, in Section 3.4.2.3 we will investigate the third body
perturbations and their mathematical expressions.

3.4.2.1 Atmospheric Drag
The sailcraft, due to its huge area and relatively small perigee height might be subjected to
the atmospheric drag. As explained in Anderson (2010), we can write the resulting force
acting in the normal direction of a flat rigid sail as:

𝑁 = 2𝑞𝐴 sin 𝜁 (3.39)

where 𝜁 is the angle of attack between the sail and the velocity vector, 𝑞 = 1
2𝜌𝑉 is the dynamic

pressure, 𝜌 is the density (modeled as a function of the altitude and position relative to the
Earth), 𝑉 is the velocity, and 𝐴 is the sail area. Moreover, it must be noted that the angle of
attack can be computed as a subtraction between the angle between the velocity vector and
the Sun-line (𝜓), and the angle between the sail normal and the Sun-line (𝛼). Also, the lift

3.4. Environment 27

and the drag components of the aerodynamic force can be derived from Equation (3.39) and
written as:

𝐿 = 𝑁 cos (𝜓 − 𝛼) = 𝜌𝑉 𝐴 sin (𝜓 − 𝛼) cos (𝜓 − 𝛼)
𝐷 = 𝑁 sin (𝜓 − 𝛼) = 𝜌𝑉 𝐴 sin (𝜓 − 𝛼)

(3.40)

This means that the lift and drag coefficients can be expressed as 𝐶 = 2 sin 𝜁 cos 𝜁 and
𝐶 = 2 sin 𝜁, respectively.

For low heights (i.e., high densities) the atmospheric force can be prominent, hence, the
sail is positioned edgewise w.r.t. the velocity for low altitudes. In this way, for a perfectly
thin sailcraft, no aerodynamic force would be generated. However, this is not the case for a
real sailcraft, as there will always be a small thickness that prevents the aerodynamic force
to be exactly zero. We model this effect similarly to Garot (2006), by supposing that the
angle of attack is assumed to be 3∘ when the sailcraft flies at low altitudes w.r.t. the Earth.
This results in the following aerodynamic coefficients for the vehicle: 𝐶 = 0.0054706 and
𝐶 = 0.0002867.

3.4.2.2 Solar Eclipse
It has to be noted that the sailcraft cannot generate the solar-sail propelling force when the
Sun is eclipsed by the Earth or other celestial bodies. Hence, we must always check whether
the sailcraft is being shadowed or not. In the following description, we will only consider the
shadowing of the Earth, however, these same definitions hold for any other celestial body. To
figure out whether the sailcraft is being shadowed or not, we can first compute the distance
𝑟 between the sailcraft and the Earth-Sun line as:

𝑟 = |rrr| sin𝜓 (3.41)

where rrr is the Earth-sailcraft vector, and 𝜓 is the angle between the Earth-sailcraft vector
and the Sun-Earth vector. The angle can be computed as:

𝜓 = cos (sss ⋅ rrr
|sss| ⋅ |rrr|) (3.42)

If the distance between the sailcraft and the Sun is bigger than the distance between the
Earth and the Sun (i.e., sss), and if the perpendicular distance 𝑟 is smaller than the Earth’s
radius, then the sailcraft is considered to be located in the Earth’s shadowed zone and no
solar radiation pressure force is generated in that phase. This same reasoning also holds for
any other celestial body.

3.4.2.3 Third Body Perturbations
From Newton’s laws, we know that we can write the accelerations acting on a body 𝑖 (in our
case the sailcraft) w.r.t. an inertial system placed in 𝑂, which is the central body (with mass
𝑀), where the motion of body 𝑖 is dominated by the central body (i.e.,𝑀 ≫𝑚) and influenced
by the gravitational attraction of other N-2 bodies (i.e., 3𝑏, 𝑗, for 𝑗 = 1, .., N-2), as:

𝑑 rrr
𝑑𝑡 = −𝐺(𝑀 +𝑚)

|rrr | rrr + ∑
, ; ,

𝐺𝑚 , (
rrr , − rrr
|rrr , − rrr |

−
rrr ,
|rrr , |

) (3.43)

where 𝐺 is the gravitational constant (𝐺=6.67408 × 10 m kg s), rrr is the position vector
and 𝑡 the time. All the distances (i.e., rrr and rrr ,) are computed w.r.t. an inertial reference
frame centered in the center of mass of the main attractor (i.e., in the geocentric phase the
Earth, in the heliocentric phase the Sun).

The first part of the right hand side of Equation (3.43) describes the two body motion of
the sailcraft w.r.t. the main attractor, whereas the second part is the sum of the three body

28 3. Flight Dynamics

perturbing accelerations from other planets. Hence, we can generally write the 3 body
acceleration of a planet 𝑝 on the sailcraft (aaa), as:

aaa = 𝜇 (
rrr − rrr
|rrr − rrr | −

rrr
|rrr |) (3.44)

where 𝜇 = 𝐺𝑚 is the gravitational constant of the planet, and rrr is its position w.r.t. the
inertial reference system (centered either in the central body).

Equation (3.44) also holds for the acceleration of the Sun when the Earth is the main
attractor, and for the acceleration of the Earth, when the Sun is the main attractor.

Both in Candy (2002) and Garot (2006), it has been shown that the main three body
perturbations that act on the sailcraft are, for the geocentric phase: the Sun and the Moon,
whilst for the heliocentric phase: the Earth, Mercury, and Venus.

In this research, we will thus consider these bodies as third body perturbations during
the geocentric and heliocentric phases.

Chapter 4

Guidance
In Section 3.4.1.2, we have investigated the characteristics of the solar-sail force, its direction
and how to express it as a function of the clock and cone angles. Several orbital maneuvering
techniques exist to control the force in such a way that is desirable for achieving certain
objectives (e.g., spiraling inwards as fast as possible, cranking the orbit, reducing the amount
of drag, increasing the orbital velocity, etc.). Since we are typically interested in achieving
some objectives in specific phases of the flight (e.g. first spiral inwards and then cranking
the orbit, etc.) we would like to understand how to orient the solar-sail force (and thus steer
the clock and cone angles) to best accomplish these purposes. In general, we distinguish
two types of trajectories: locally optimal trajectories and global optimal trajectories. In this
section we will deal with local optimal trajectories and local steering laws based on several
physical considerations. In McInnes (1999), there is an extensive analysis of the possible local
optimal trajectories for a solar-sail during both the geocentric and heliocentric phases: we will
derive most of our analysis from that. It is important to notice that the attitude and trajectory
of the sailcraft are strictly related since the attitude influences the force generation, which in
turn influences the orbit shape. Therefore, we will investigate each of the maneuvers of our
interest (e.g. for cranking the orbit, for escaping the Earth, etc.) separately in this chapter.
Besides, we will study a possible modelling of the control angles of the sailcraft during both
phases.

These optimal control laws are hereby derived and discussed only for the purpose of giving
physical insights on our global optimization choices. Indeed, as we will discuss in Chapter 5,
in this study we have decided to implement global optimization techniques for designing the
trajectory, rather than local optimization techniques. Nevertheless, for doing this, we still
need to establish how to model the attitude of the sailcraft while it is in the geocentric and
heliocentric phase: for this purpose, we will make use of local optimal trajectories laws.

This chapter will thus be structured as follows: first, in Section 4.1, we discuss the local
optimal trajectories during the heliocentric phase. Then, in Section 4.2, we investigate those
of the geocentric phase. Finally, in Section 4.3, the flight sections of both phases will be
discussed. This division will help us in Chapter 5 to establish the control nodes (in terms of
attitude angles) to be optimized during the whole mission. As already stated, we will always
assume that the sailcraft is capable of varying its attitude angles instantaneously: we will
thus not deal with the design and modelling of an attitude control system.

4.1. Heliocentric Phase
For deriving the various local optimal trajectories to increase/decrease efficiently certain or-
bital elements in the heliocentric phase, it is first necessary to write the equations of motion
of the sailcraft and to solve them with any coordinate system considered suitable (e.g. spheri-
cal polar coordinates or else). One effective way to express the solar-sail dynamics is through
the Gauss’ form of the Lagrange’s planetary equations (Wakker, 2015). Lagrange’s planetary
equations are meant to express the equations of motion as derivative of the various Keplerian
orbital elements. We know that, in a generic case in which the sail is subjected to the so-
lar radiation pressure force and to other perturbing forces, these elements change over time.
However, at any instant in time, the orbit can be described using fictitious instantaneous Ke-
plerian elliptical orbits, which continuously touch (’osculate’) the true perturbed orbit of the
spacecraft. For this reason, we call these changing unperturbed orbits ’osculating Keplerian
orbits’. In the point of contact, the object’s position and velocity are pivotal for modifying the
equations of motion into Lagrange’s planetary equations. These latter equations only hold for

29

30 4. Guidance

conservative perturbing forces. However, Gauss, decided to generalize them by introducing
also non conservative forces. In McInnes (1999), these equations are further developed in
such a way that the rate of change of any arbitrary orbital element (𝑍) can be written, in a
general form, as:

𝑑𝑍
𝑑𝜈 = 𝜆𝜆𝜆(𝑍) ⋅ fff (4.1)

where fff = (𝑓 , 𝑓 , 𝑓) is the vector of the perturbing force(s) and 𝜆𝜆𝜆 = (𝜆 , 𝜆 , 𝜆) is a vector
of functions of only the solar-sail orbital elements. The force components are expressed in
terms of osculating reference system: meaning that the first component is directed radially
(𝑓), the second component (𝑓) is perpendicular to the radial and laying on the orbital plane
and the third component (𝑓) that is directed perpendicularly w.r.t. the orbital plane.

As we can see from Equation (4.1), the benefit of having expressed the equations of motion
in this form is clear: the equations directly relate the force components to the orbital elements’
rate, thus making possible to formulate a steering law to control the force in such a way that
the increase/decrease of variation of certain orbital elements is maximized.

Furthermore, we observe that the equations highly depend on the perturbing forces that
act on the sailcraft in the various phases of the flight. These perturbing forces were discussed
in Section 3.4.2, however, we will hereby consider only the solar radiation pressure force
as perturbing force, without introducing the other perturbations, which will be treated as
deviations from nominal conditions.

Therefore, we would like to find locally optimal sail-steering laws to maximize instanta-
neously the rate of change of a certain solar-sail orbital element: in this way we can model
the trajectory by orienting the spacecraft in the local optimum found at every instant time.
Clearly, the orientation of the spacecraft (i.e., clock and cone angle) has always to fulfill phys-
ical constraints. The advantage is that these local optimal trajectories are typically easy to
find and usually furnish simple manoeuvre strategies. These will serve as baseline study for
understanding how to set up the solar-sail problem in a global optimization framework.

If we assume, that the only perturbing force in the two body system of the Sun and the
sailcraft is the solar radiation pressure, then fff coincides with the solar radiation pressure
force (whose components are expressed in Equations (3.30) and (3.31), assuming a non-
perfect sail, and whose modulus is only a function of the angle 𝜃). This force is exerted along
the direction expressed in Equation (3.37). Now, from Equation (4.1) we hint that to maximize
the rate of change of a certain orbital element we have to maximize perturbing force along
the direction of 𝜆𝜆𝜆 . Therefore, assuming that the direction of 𝜆𝜆𝜆 can be identified through an
arbitrary unit vector qqq, and expressing this unit vector in terms of certain cone and clock
angles, we have:

qqq = cos𝜃 ̂rrrrrrrrr+ (sin𝜃 sin 𝛿) �̂�𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃 + (sin𝜃 cos 𝛿) k̂kkkkkkkk (4.2)

Then, by using some trigonometric manipulations, we can write the force magnitude along
the direction qqq as:

𝑓 = fff ⋅ qqq = 𝑓(𝛼)[cos𝜃 cos𝜃 + sin𝜃 sin𝜃 cos(𝛿 − 𝛿)] (4.3)

As seen in Section 3.4.1.2, 𝜃 can be expressed as a function of 𝛼 and 𝜙, and 𝜙 can also be
expressed as a function of 𝛼. Since we want to find the clock and cone angles (𝛼 and 𝛿) that
can maximize 𝑓 , it is trivial that the clock angle must be: 𝛿 = 𝛿, which means that the sail
clock angle is aligned with that of the unit vector qqq. On the other hand, we can find the
optimal 𝛼 by differentiating the force component along qqq w.r.t. the cone angle 𝛼:

𝜕𝑓
𝜕𝛼 = 0 (4.4)

In Garot (2006), it has been shown that Equation (4.4) cannot be solved analytically, but
numerical methods are required for finding the angle 𝛼 that maximizes 𝑓 . Once 𝛼 is found,
𝜃 can then also be found.

4.2. Geocentric Phase 31

During the heliocentric phase, we are only interested in maximizing the rate of change of
semi-major axis, eccentricity and inclination (as we would like to reduce the distance, crank
the orbit and circularize it). The three equations associated with the rate of change of these
orbital elements are:

𝑑𝑎
𝑑𝜈 = 2

𝑝𝑟
𝜇(1 − 𝑒) [𝑓 𝑒 sin 𝜈 + 𝑓

𝑝
𝑟]

𝑑𝑒
𝑑𝜈 =

𝑟
𝜇 [𝑓 sin 𝜈 + 𝑓 (1 + 𝑟

𝑝) cos 𝜈 + 𝑓
𝑟
𝑝𝑒]

𝑑𝑖
𝑑𝜈 = 𝑓

𝑟
𝜇𝑝 cos(𝜈 + 𝜔)

(4.5)

As we can see, when varying both the eccentricity and the semi-major axis, only in-plane
forces are required (i.e., 𝑓 = 0). This means that the optimal 𝜃 angle can be found as:
𝜃 = 𝑎𝑡𝑎𝑛(𝜆 /𝜆), while the optimal clock angle would be: 𝛿 = 𝜋

2 .
Assuming a solar-sail ideal model, the optimal cone angle would be easily found (knowing

that 𝜃 = 𝛼 in the perfect case). However, in the non-ideal case, this is not as trivial, and we
would need to solve Equation (4.4) for any instant in time (a numerical technique might be
necessary for this purpose). Interestingly, both in the ideal and non-ideal case it still holds:
𝛿 = 𝛿 = 𝜋/2. In this way, a steering law can be determined, deriving the required solar-sail
attitude (for maximizing the rate of change of a certain orbital element) as a function of the
osculating orbital elements of the solar-sail. For doing this, we just have to substitute 𝑍 with
the orbital element to be optimized, in Equation (4.1), and then solve Equation (4.4), after
the dot product expressed in Equation (4.3) is computed. In addition to this, we have also to
add the operational constraints, which limit the allowable cone angles 𝜃.

For changes of the orbit inclination, we observe from Equation (4.5) that only the out-of-
plane component of the solar-sail force is required. This means that the clock angle is equal
to: 𝛿 = 𝛿 = 0 (for a force directed above the instantaneous orbit plane) or 𝛿 = 𝛿 = 𝜋 (for a force
directed below the instantaneous orbit plane): this suggests that during the cranking phase
the sailcraft’s clock angle will need to be either 0∘ (when the force is directed above the orbit
plane) or 180∘ (when it is directed below the orbit plane).

4.2. Geocentric Phase
Now that the heliocentric phase has been modeled and discussed, we can investigate the
geocentric phase. Similarly to what has been done for the heliocentric case we would like
to divide the geocentric phase in different flight sections that can then be optimized with a
global optimization technique.

For the geocentric phase the local steering law are not as trivial as for the heliocentric
phase. In principle, we could apply the same reasoning, and try to maximize the increase in
the rate of change of the semi-major axis to spiral outwards from the Earth, however, this is
not convenient due to operational and physical limitations active in this phase. In particular,
two major aspects have to be considered: first of all, the perturbations acting during this
phase. For instance, when the sailcraft is below a certain altitude w.r.t. the Earth, the drag
acts on it causing a major reduction in the velocity, if the sail is not controlled properly
(due to its considerably big area). Therefore, in these cases, it is fundamental to orient the
sailcraft edgewise with respect to its velocity vector so that the drag is minimized. Secondly,
as we already discussed in Section 3.4.1.2, the solar-sail force cannot be oriented in any
direction, but it is constrained to a bubble behind the sailcraft, as shown in Figure 3.7. This
also means that the sailcraft will not always be able to orient its force in the direction of
the velocity, so that it is accelerated and its escape time is reduced, but it also happens
that the only allowable force directions would result to have components opposing to the
velocity direction, which would thus slow down the sailcraft causing an higher time of flight
for escaping the Earth’s gravitational pull. Therefore, in these cases, the sailcraft is oriented
edgewise with respect to the Sun-sail line, to avoid a reduction in its velocity.

32 4. Guidance

Therefore, apart from these two aforementioned configurations, we need to establish the
orientation of the sailcraft in the remaining parts of the orbit around the Earth to rapidly
escape from the Earth’s gravitational pull.

In an ideal scenario where only the solar radiation pressure is acting as perturbing force
we would like to maximize the energy rate by pointing the solar-sail force along the velocity
vector, so that the increase in the semi-major axis is maximized (Coverstone and Prussing,
2003). However, this is not always possible, as the force direction is limited within a bubble
and there are many perturbing forces that may play a pivotal role (e.g., the atmospheric drag
for low altitudes).

4.3. Flight Sections
In this section, we will describe the flight sections for both the geocentric and heliocentric
phases. In particular, the former phase will be investigated in Section 4.3.1, whereas the
latter in Section 4.3.2. For both cases, we will use the knowledge derived from Sections 4.1
and 4.2 to establish the division criteria of these flight sections.

4.3.1. Heliocentric Flight Sections
In the heliocentric phase, we distinguish 4 main phases: spiral inwards, circularization,
cranking of the orbit, and spiral outwards. Indeed, the sailcraft has to first approach the
Sun at near distances, and then, having circularised the elliptical orbit to make it circular,
it can start to increase the inclination of the orbit up to the 90∘ required by the final orbit.
Furthermore, it is necessary to increase/decrease the radius of the inclined orbit to the one
required by the final orbit (i.e., 0.4 au). These phases will be performed consequently.

Phase 1: Spiral Inwards
In the first phase of the heliocentric trajectory, the sailcraft has to drastically reduce its
distance from the Sun (i.e., 𝑑𝑎/𝑑𝜈 minimized). As already explained, this means that the
clock angle equals to 𝛿 = 90∘, whereas the cone angle 𝛼 has to be optimized. Furthermore,
for inward spiraling, the cone angle must always be negative (i.e., 𝛼 ∈ [−90∘, 0∘]).

Phase 2: Circularization
At a distance 𝑅 (to be optimized), the sailcraft will start the circularization of the orbit, which
will bring it to a circular orbit of radius 𝑅 (to be optimized). Therefore, in this phase our main
objective is to maximize the rate of change of the eccentricity (i.e., 𝑑𝑒/𝑑𝜈). We have already
mentioned that the clock angle must be 𝛿 = 90∘ and the cone angle 𝛼 is the only one to be
optimized in this phase. For circularizing the orbit, there are not any physical aspects that
constrain the cone angle to specific values, hence the optimization process will be performed
in the domain where the cone angle is defined (i.e., 𝛼 ∈ [−90∘, 90∘]).

Phase 3: Orbit Cranking
Having a circular orbit at a distance 𝑅 from the Sun, we can start the cranking phase. This
phase usually turns out to happen at a low distance (𝑅) of the sailcraft with respect to the Sun
during its cruise: indeed, this maximizes the force magnitude available for performing the
maneuver, allowing to speed up the process. The objective is to maximize the rate of change
of the inclination (i.e., 𝑑𝑖/𝑑𝜈). As it was already mentioned, the clock angle is fixed and
corresponds to 𝛿 = 0∘ for a perturbing force directed above the orbital plane, and 𝛿 = 180∘ for
a perturbing force directed below it. Conversely, the optimal cone angle of the orbit cranking
phase (i.e., 𝛼) will be an outcome of the optimization process. Nonetheless, the optimal
cone angle must always be positive (i.e., 𝛼 ∈ [0∘, 90∘]).

Phase 4: Spiral Outwards
This phase is analogous to the spiral inwards phase, with the difference that 𝑑𝑎/𝑑𝜈 has to be
maximized. Therefore, the clock angle results to be the same (𝛿 = 90∘). Similarly to the other
phases, the cone angle of the spiral outwards phase (i.e., 𝛼) will be maintained fixed during

4.3. Flight Sections 33

 �̂�#
�̂�$

𝑛&

�̂�

V

Earth

𝑛&(

Figure 4.1: Sailcraft orientation during the drag phase.

the mission and its value will be established throughout the global optimization process.
Besides, the optimal cone angle must always be positive (i.e., 𝛼 ∈ [0∘, 90∘]).

4.3.2. Geocentric Flight Sections
As it has been done in previous studies, we can divide the geocentric phase into 4 differ-
ent sub-phases: drag phase, towards the Sun phase and acceleration phase (Candy, 2002),
(Garot, 2006), (Spaans, 2009). In this case, contrary to what happened in the heliocentric
phase, the various flight sections happen several times along one single orbit, depending on
the position of the sailcraft with respect to the Sun and the Earth. These flight phases will
result in several different attitude angles of the sail, which will then be established according
to the results obtained in a global optimization framework, if their value cannot be trivially
established (as it happens for the drag phase). For all these phases, a clock angle of 𝛿 = 𝜋/2
will be maintained. Indeed, as we have seen in Section 4.1, unless the main objective is to
generate out-of-plane forces for changing either the inclination or the right ascension of the
ascending node, which is not the case for the geocentric phase, the optimal clock angle is
always set to 90∘.

Drag Phase
Due to the huge sail area, when the sailcraft is at an altitude of around 1500 km or lower, the
drag effect starts to perturb the orbit, and the sailcraft is thus oriented edgewise w.r.t. its
velocity to avoid this effect. The orientation of the sailcraft in this phase is shown in Figure
4.1. Since the sailcraft is placed edgewise w.r.t. the velocity vector, its orientation w.r.t. the
geocentric frame can be retrieved as:

t̂tt = V̂VV p̂pp = n̂nn × V̂VV n̂nn = t̂tt × p̂pp (4.6)

where V̂VV is the unit vector that defines the solar-sail velocity direction, whereas n̂nn is the unit
vector that describes the Sun-sail line. As a consequence, the cone angle 𝛼 can be computed
as:

𝛼 = cos (n̂nn ⋅ n̂nn) (4.7)

By using the retrieved cone angle value and by writing the three unit vectors: (n̂nn, t̂tt, p̂pp), w.r.t.
the geocentric frame (using n̂nn and VVV in the geocentric frame), we can express the components
of the force shown in Equations (3.30) and (3.31). It is thus clear that, in this phase, the
cone angle 𝛼 can be precisely determined and does not need to be optimized.

Towards the Sun Phase
When the unit vector that points from the Sun to the sail (n̂nn) and the velocity unit vector
(V̂VV) form an angle bigger than 90∘, then the sailcraft is inside the towards the Sun phase.

34 4. Guidance

�̂�# 𝑛%& �̂�'

𝑛%

�̂�

Earth

Figure 4.2: Sailcraft orientation during the towards the Sun phase.

Mathematically, this can be verified by checking if 𝜒 ≥ 𝜋/2, where:

𝜒 = cos (n̂nn ⋅ V̂VV) (4.8)

where 𝜒 ∈ [0, 𝜋].
If this condition is verified, then the spacecraft is oriented edgewise with respect to the

Sun-sail line (the tangential body axis is aligned with the Sun-sail unit vector). In this way,
no components of the force are generated in the opposite direction w.r.t. the velocity vector,
thus avoiding to slow down the sail. The orientation of the sailcraft in this phase is shown
in Figure 4.2.

Therefore, it results that the attitude of the sail, similarly to what happened in the drag
phase, can precisely be determined and that the generated solar radiation pressure force
is zero (i.e., FFF = 0), as the sail always points edgewise w.r.t. the Sun-sailcraft line (i.e.,
t̂tt = −n̂nn). In practice, this means that the cone angle is set to ninety degrees (i.e., 𝛼 = 90∘).

Acceleration Phase
The sail enters this phase whenever is not in the drag phase and 𝜒 ∈ [0, 𝜋/2). If these two
conditions apply, then we aim to steer the sailcraft to escape the Earth as fast as possible.
Since the solar radiation pressure is not the only perturbation but there are other perturba-
tions active in this phase (e.g., third body perturbation by the Moon), directing the sailcraft’s
solar radiation pressure force in the velocity direction does not necessary imply that the re-
sulting trajectory will be optimal. Therefore, the attitude of the sailcraft in this phase will be
split into different subsections, which will then be fed to a global optimizer. For doing this,
we have used the same strategy proposed in Garot (2006) and Spaans (2009): according to
both these studies, dividing this phase into six different subsections provides a good control
strategy for the cone angle. Furthermore, it was also found that when these six angles are
chosen such that they constitute a symmetric set, then they result to be equal in pairs, and
the set of angles can thus be reduced to only three.

As a result, this phase will be split in six phases in which the sail will change three
different cone angles (i.e., 𝛼 , 𝛼 and 𝛼), each of these angles will be active in a different
flight section of the orbit. In particular, the following conditions define these sections:

1. if 𝜒 ∈ [60∘, 90∘) then 𝛼 = 𝛼

2. if 𝜒 ∈ [30∘, 60∘) then 𝛼 = 𝛼

3. if 𝜒 ∈ [0, 30∘) then 𝛼 = 𝛼

These three cone angles will be determined as outcomes of the global optimization procedure,
which will be thoroughly discussed in Chapter 5. Also, their values must range between zero

4.3. Flight Sections 35

1à cÎ [60°, 90°)
2à cÎ [30°, 60°)
3à cÎ [0°, 30°)

𝑛"#

c Î [90°, 180°]

1 2

3

3

2
1

Earth

c = 90°

c = 60°

c = 30°

c = 0°

c = 30°

c = 60°
c = 90°

Figure 4.3: The acceleration phase is divided into three phases, according to the angle values.

and ninety degrees (i.e., 𝛼 ∈ [0∘, 90∘) for 𝑖 = 1, 2, 3). If this is not verified, it means that the
sailcraft is not in the acceleration phase as it cannot generate any component in the velocity
direction. A graphical representation of the acceleration phase is shown in Figure 4.3.

36 4. Guidance

Chapter 5

Optimization
In previous chapters, we have discussed all the models used for simulating the orbit of a
solar-sail, during its journey to the Sun. The purpose of this research is to compare the
performances of several different global optimization techniques in optimizing such orbit.
In this chapter, we will thus discuss the various optimization approaches and techniques
employed. Moreover, the constraints formulation and handling will be investigated. In par-
ticular, in Section 5.1, the theoretical framework of global optimization techniques as well as
several popular methods will be discussed. Whereas, in Section 5.2 some performance met-
rics for evaluating multi-objective algorithms will be presented. Then in Section 5.3, we will
separately discuss the newly implemented ant colony optimizer (for both SO and MO prob-
lems). Finally, the optimization problem of our interest and the implemented approaches will
be discussed in Section 5.4.

5.1. Global Optimization
Global optimization techniques are usually critical in terms of computation time, however,
thanks to the fast developments in computer power in recent years, the interest in global op-
timization methods have been constantly increasing. Generally, two different kinds of global
optimization algorithms are distinguished: deterministic and stochastic. Deterministic op-
timization provides theoretical proof that the found solution is indeed the global best one.
Hence, this term usually refers to a complete and rigorous optimization method which con-
verges to an optimum in a finite amount of time (e.g. linear programming). Deterministic
methods do not include any randomness, and they guarantee a finite amount of work for
reaching the solution. However, they also require physical insights into the problem which
can allow them to formulate them rigorously from the mathematical point of view.

On the other hand, the stochastic method use randomly generated variables, and they
basically provide optimization methods without the need for any particular insight into the
problem. This means that the optimization problem can be treated as a black box. Further-
more, most of the stochastic methods are heuristic (i.e., it cannot be proved that they can
find a global optimal solution within a certain amount of finite time). These heuristic meth-
ods seem very suitable for trajectory optimization problems. Some of the most important
stochastic algorithms are evolutionary algorithm (EA, among which we distinguish: genetic
algorithms (GA), differential evolution (DE), and many other forms), ant colony optimiza-
tion (ACO), particle swarm optimization (PSO). Also, many other variants of these algorithms
have been also derived (e.g. extended ant colony optimization (EACO), self-adaptive differen-
tial evolution (SADE), etc.). The European Space Agency, during the first years of the 20th
century, has extensively studied GA, PSO, MPSO, DE, and ASA, to find the best algorithms
for trajectory optimization using some benchmark problems. It has been demonstrated in
those years (see for instance Myatt et al. (2004) and Vinkó et al. (2007a)) that MPSO, DE,
ASA seem to be promising for trajectory optimization. However, recently it has also been
proved that ACO can even outperform these algorithms for certain problems (Schlüter et al.,
2012), (Schlüter et al., 2017), (Schlüter, 2014). Before discussing in detail all the methods, a
distinction has to be made between single and multi-objective optimization: this will be done
in the following sections.

5.1.1. Single-Objective Optimization
In this case, the general optimization method can be mathematically written as:

37

38 5. Optimization

𝑚𝑖𝑛
xxx∈

(𝑓(xxx)) (5.1)

where xxx = (𝑥 , ..., 𝑥) are the variables to be optimized, 𝑓(xxx) is the objective function, and Σ is
the search space of the variables. This search space is typically confined due to the presence
of 𝑚 equality (ℎ (xxx)) and 𝑝 −𝑚 inequality (𝑔 (xxx)) constraints of the kind:

ℎ (xxx) = 0 𝑖 = 1, ..., 𝑚 (5.2)
𝑔 (xxx) ≤ 0 𝑖 = 𝑚,𝑚 + 1, ..., 𝑝 (5.3)

All available optimization techniques try to minimize the objective function 𝑓(xxx) while satis-
fying the constraints. In the case of single-objective optimization, all the objectives need to
be written in one single function. This means that if multiple objectives have to be accounted
for, it is necessary to apply some sort of averaging technique to express them in one func-
tion (e.g. the simplest method just adds the various objectives). Furthermore, it is possible
to transform a constrained single-objective problem, into an unconstrained single-objective
optimization problem by writing a new fitness function that is the sum of the previous one
plus a certain penalty function that accounts for the constraints violation.

These penalty functions are really problem dependent (Parsopoulos and Vrahatis, 2002),
(Yang et al., 1997), and they penalize the cost function in case that some constraints are
violated or in case that the final state is not reached. In particular, this way of expressing
the constraints is useful for not discarding the individuals that have good performance in
terms of cost function, but they slightly violate the constraints: this might produce new
individuals that perform well and satisfy the constraints. However, the penalties have to be
chosen and tuned accurately: too weak penalties may allow the unfeasible solution to thrive,
whereas too strong penalties might prevent the algorithm from finding better individuals. A
meta-algorithm exists and has been used in this research for allowing researchers to apply
single-objective unconstrained algorithm for constrained problems.

In general, several single-objective optimization algorithms have been tested and stud-
ied for a solar sailing polar mission in the past (see, for instance, Spaans (2009) and Garot
(2006)). From this, it emerged that DEI (an outdated algorithm that used a differential evo-
lution technique) outperformed GA and PSO for the optimization of the entire trajectory (i.e.,
geocentric and heliocentric phase). These studies are however outdated and some of the
proposed methods have been refined and improved. Besides, some other algorithms have
been introduced and have demonstrated amazing performances for trajectory design prob-
lems (e.g., ant colony optimization). In this research study, several popular single-objective
optimization algorithms are used and benchmarked. These include the following single-
objective algorithms for unconstrained problems: standard differential evolution (DE) (Storn
and Price, 1997), self-adaptive differential evolution (SADE) (Brest et al., 2006), another dif-
ferential evolution variant (DE1220)1, a simple genetic algorithm (SGA) (Oliveto et al., 2007),
a particle swarm optimizer (PSO) (Eberhart and Kennedy, 1995) and an artificial bee colony
optimizer (Karaboga and Basturk, 2007). Furthermore, we have also used a self-adaptive
constraint handling meta-algorithm for permitting the usage of any single-objective uncon-
strained optimization algorithm (as all the aforesaid ones) to be applied on single-objective
constrained problems (Wright and Farmani, 2001), (Farmani and Wright, 2003). Most of
these algorithms are well known within the evolutionary computation community and they
are often used for space applications. Their thorough description is presented in Appendix
C. Their performances will be compared to the newly implemented single-objective ant colony
optimizer, which is discussed in detail in Section 5.3.1.

5.1.2. Multi Objective Optimization
Combining multiple objectives in one single function introduces ambiguity in the problem
since the search for the optima will rely on how the single-objective functions are defined
and how they are weighted. Therefore, it is often preferred to evaluate the various objectives
1https://esa.github.io/pagmo2/docs/cpp/algorithms/de1220.html

https://esa.github.io/pagmo2/docs/cpp/algorithms/de1220.html

5.1. Global Optimization 39

Figure 5.1: Pareto front example in a bi-objective optimization problem 2

separately, by means of different objective functions, which thus lead us to multi-objective
optimization techniques. Assuming that there are 𝑀 objective functions, the problem can be
mathematically formulated as follows:

min
xxx∈

(fff(xxx)) =min
xxx∈

[𝑓 (xxx), ..., 𝑓 (xxx)] (5.4)

The problem is generally subjected to the following equality and inequality constraints:

hhh(xxx) = [ℎ (xxx),, ℎ (xxx)] = 000 𝑖 = 1, ..., 𝑚 (5.5)
ggg(xxx) = [𝑔 (xxx),, 𝑔 (xxx)] ≤ 000 𝑖 = 𝑚,𝑚 + 1, ..., 𝑝 (5.6)

For multi-objective optimization, the problem is thus to simultaneously minimize the com-
ponents of a vector of functions (fff = (𝑓 , ..., 𝑓)). Each component of this vector is a function
of the design variables xxx = (𝑥 ,, 𝑥) . The problem is typically not uniquely solvable, but a
set of equally efficient alternative solutions is possible. These solutions, among all the found
ones, constitute the Pareto front, when they are plotted in the objective space. In Figure 5.1,
we show an example of a Pareto front for a bi-objective example. When comparing individuals
𝑖 and 𝑗, with objective vector functions fff and fff we affirm that 𝑖 dominates 𝑗 in the Pareto
sense if and only if:

∀𝑘 ∈ {1, ..., 𝐾} ∶ 𝑓 , ≤ 𝑓 , ∃𝑘 ∈ {1, ..., 𝐾} ∶ 𝑓 , ≠ 𝑓 , (5.7)

The local Pareto set is thus a set of individuals that has the best performance taking all the
objectives into account. In case that no further Pareto improvement is possible (i.e., there
are no individuals with one better single-objective without having the other objectives worse)
Pareto optimality is achieved. The set of Pareto optimal solutions is then called Pareto front.
It is clear that, among the population, it is possible to remove the Pareto front and identify
the second best Pareto front, and so on. In this way, one is able to rank the various fronts,
assuming that all the individuals belonging to the same front have the same fitness value,
and thus the individuals can only be evaluated depending on the front to which they belong.

For establishing the Pareto front rank number of each solution, the concept of dominance
(expressed in Equation (5.7)) is used. Indeed, the individuals that dominate all the others
are checked: in this way, the first front is established. Then these individuals are excluded
and the same operation is repeated. In this way, we will obtain 𝑁 Pareto fronts. As we will
see in this chapter, many multi-objective optimization techniques make use of this concept
for evolving the population throughout the generations.

Since very promising results of multi-objective optimization techniques have been stud-
ied and demonstrated for trajectory optimization problem in the last years (see for instance
2http://www.cenaero.be/Page.asp?docid=27103&langue=EN, last access: 15 May 2018

http://www.cenaero.be/Page.asp?docid=27103&langue=EN

40 5. Optimization

Castellini (2008), Zhang and Li (2007a)), and since the main focus of past solar sailing polar
missions (see, for instance, Spaans (2009), Garot (2006), Candy (2002)) has been putting
together multiple objectives in one single-objective function (due to the limited availability of
computational power for running these multi-objective algorithms), we will introduce and ap-
ply several multi-objective optimization algorithms for our solar sailing polar mission. This
will require another formulation of the optimization problem. It has to be noted that this
formulation of the problem, with respect to the one based on a single weighted objective
function in which multiple objectives are encapsulated, provides multiple possible optimal
solutions in one single simulation run, without the need of reformulating the single-objective
function and run the algorithm many times. Indeed, the presence of multiple objectives in a
problem often requires to find many optimal solutions (known as Pareto-optimal solutions).
The methodology and implementation of MO algorithms are thus completely different from
the single-objective ones. In this study, we have used four different multi-objective optimiz-
ers: a nondominated sorting genetic algorithm (NSGA-II) (Deb et al., 2002), a multi-objective
evolutionary algorithm with decomposition (MOEA/D) (Zhang and Li, 2007b), a nondomi-
nated sorting particle swarm optimizer (NSPSO) and a multi-objective ant colony optimizer
(MHACO). The first two are popular algorithms with a strong heritage in space applications.
Their description is presented in Appendix C. Whereas, the MO ant colony optimizer was en-
tirely conceived and developed in this study: its description is therefore treated extensively
in Section 5.3.3. Finally, NSPSO was derived from literature but entirely implemented and
slightly modified in this thesis study: its description is presented in Section 5.1.2.1.

5.1.2.1 Non-Dominated Sorting Particle Swarm Optimization (NSPSO)
This algorithm represents a multi-objective extension of particle swarm optimization and its
implementation and description have been discussed in several publications (Li, 2003), (Li,
2004), (Fonseca et al., 1993). In these papers, the performances of an implemented multi-
objective PSO have been compared to other standard MO algorithms (such as NSGA-II) in
several test problems. It seems that this algorithm is capable of being competitive and in some
cases superior to these standard MO algorithms. However, while several indications are given
in the papers on how to implement this algorithm, its thorough description is not available.
Hence, in this thesis study, when we implemented this nondominated sorting particle swarm
optimizer (NSPSO) we faced some difficulties in the definition of certain parameters, whose
implementation is not exactly presented in the original publications. This has also provoked
our implemented algorithm to be slightly different than the original one. For this reason, we
have decided to repeat the benchmark of this algorithm on several standard problems and
compared them to MOEA/D and NSGA-II. The results of this benchmark are presented in
Appendix B.

Having said this, we can move to the mathematical description of this optimizer. Similarly
to its single-objective counterpart, NSPSO is a bio-inspired algorithm that tends to guide a
certain population towards the most promising area of the search space. However, in PSO
a particle is modified only using its personal and global best to produce the offspring (as
shown in Equation (C.7)). This represents a serious limitation for extending the algorithm
to multi-objective, as in this case, it is not generally possible to define a global best. Also,
sharing information among individuals is much more pivotal in the multi-objective case. In
NSPSO, an attempt is made to allow such sharing and to modify PSO in such a way that it
can also work well for multiple objectives.

For multi-objective problems, it is crucial to have an algorithm that not only converges to-
wards the Pareto-optimal front, but that it also maintains diversity in the population. Hence,
similarly to what is done in NSGA-II, NSPSO adopts the nondominated sorting concept to
achieve this. This helps us to have a sorting strategy that can rank the various individuals.
Moreover, in NSGA-II, the crowding distance concept is used for maintaining diversity in the
population. In NSPSO, two different diversity mechanisms are encoded: crowding distance
comparison (same as the one adopted for NSGA-II), a widely-known niching method (rey Horn
et al., 1994).

First of all, the entire population of 𝑁𝑃 particles’ personal best and their 𝑁𝑃 offspring are
combined to form a 2𝑁𝑃 set of individuals. On this set, the nondomination sorting technique

5.1. Global Optimization 41

is applied to divide them into different nondomination levels. Based on these levels, we only
select 𝑁𝑃 individuals out of this set, to be propagated to the next generation. These particles
will result to be the new 𝑁𝑃 particles’ personal best in the future generation. While this
process will effectively guide the optimization process towards the Pareto-optimal front, it
will however not maintain diversity in the population. We thus need a strategy that can help
us to rank the individuals, which belong to the same nondomination rank. For allowing this,
two different techniques can be used (depending on the user preferences):

1. Crowding distance assignment: this is the same technique used for NSGA-II. Its thor-
ough description is presented in Appendix C.

2. Niche count: the niche count 𝑚 of a certain individual 𝑖 is calculated as the number
of other particles within a certain 𝜎 distance (computed as the Euclidean distance)
from 𝑖. This computation is executed dynamically, at every generation, and allows us to
count, for every particle 𝑖, what is the number of other particles within a 𝜎 distance
from it. Although this helps us to determine the more overcrowded particles, it, however,
has the drawback to having a user-defined 𝜎 parameter that substantially drives
the definition of crowdedness. For this reason, the 𝜎 definition and update is done
dynamically, using the method proposed by Fonseca et al. (1993). Thus, the user does
not have to worry about selecting or tweaking any 𝜎 parameter. In the case that a
bi-objective problem is being optimized, the parameter is selected as follows:

𝜎 = 𝑢 − 𝑙 + 𝑢 − 𝑙
𝑁𝑃 − 1 (5.8)

where 𝑁𝑃 is the population size and 𝑢 , 𝑙 are the upper and lower bounds, respectively,
for each of the two objective function values, computed over the entire population. Once
the niche count values are assigned to each individual belonging to each nondomination
rank, we can thus rank these individuals and only select the best ones to be preserved
for future generations.

The same authors that have proposed the nondomination strategy coupled with either the
niching count or crowding distance diversity mechanism, have also decided to introduce a
different strategy for ranking the 2𝑁𝑃 individuals and establish the set of best particles’ to be
propagated. This is called the maxmin fitness function method and is introduced in Li (2004).
For coherence, the multi-objective extension of PSO that makes use of this technique should
have had another name (e.g., maxminPSO, or MMPSO), however, we have decided to also
encode this strategy in the NSPSO algorithm, and to leave the user the possibility to choose
between nondomination ranking with either niche count or crowding distance comparison,
and maxmin function strategy.

The maxmin strategy was first introduced in game theory (Luce and Raiffa, 1989). Given
two decision vectors uuu and vvv, which belongs to the search space, we can define the min func-
tion as the function that obtains the minimal value from the following set: {𝑓 (uuu) − 𝑓(vvv)|∀𝑖 ∈
{1, ..., 𝑚}} (where 𝑚 is the number of objectives). Mathematically, the min function is thus
expressed as:

𝑚𝑖𝑛 ,..., {𝑓 (uuu) − 𝑓(vvv)} (5.9)

Moreover, we define the max function as the maximum over the set of minimal values of all
possible pairs of uuu and vvv (where these two individuals belonging to the search space must
be different). Keeping this in mind, we can define the maxmin fitness value for the decision
vector uuu as follows:

𝑓 = 𝑚𝑎𝑥 ,.., ; {𝑚𝑖𝑛 ,..., {𝑓 (uuu) − 𝑓(vvv)}} (5.10)

We hence have two different loops: first we extract theminimum of the difference in the fitness
values of two different decision vectors, over all the objectives. Afterwards, we loop over all
the individuals in the population (i.e., 𝑁𝑃) and we seek the maximum of these minima. One
obvious property of the maxmin function, defined in Equation (5.10), is that for any decision

42 5. Optimization

vector to be a nondominated solution of the current population, it is required that its maxmin
fitness value is less than zero. From its definition, it is also clear that the maxmin fitness
function can be used for rewarding diversity and penalizing clustering, besides using it for
determining the nondominant solutions. We can thus use this function without introducing
any other diversity mechanism such as crowding distance comparison or niche counting.
More details on the maxmin function and its properties can be found in Balling (2003).

Now that we have discussed both the maxmin strategy and the nondominated sorting
strategy, we can explain how future individuals will be generated. For doing this, the same
equations used for PSO (i.e., Equations (C.8) and (C.7)) will be used. The only difference is that
now there is the possibility to constrain the maximum value of the velocity to a certain user-
defined threshold called 𝑉 . Also, the user has the possibility to tweak a 𝜒 parameter that
will slightly modify the position update. In particular, in this case, Equation (C.8) becomes:

xxx = xxx + 𝜒vvv (5.11)

To summarize, the NSPSO pseudo-code can be expressed in the following steps:

1. A population of NP individuals is first initialized and stored in a list called PSOList.

2. Either the maxmin fitness or the nondominated sorting strategy coupled with either
niche count or crowding distance comparison is used for storing the individuals in a list
called nonDomPSOList.

3. Equations (C.7) and (5.11) are used for producing the offspring, which consists of other
𝑁𝑃 individuals.

4. Both the offspring and the parents are stored in a list of size 2𝑁𝑃 called nextPopList.

5. The maxmin strategy or the nondominated sorting applied with either crowding distance
or niche counting method is used for ranking the individuals within the nextPopList.

6. After having sorted the individuals, the first 𝑁𝑃 individuals are stored, to be used as
PSOList in the future generation.

7. The algorithm goes back to Step 2 and proceeds until a termination criterion is met.

One issue that we encountered when trying to implement this algorithm consists on the fact
that in Li (2003) it is claimed that the 𝜔 parameter of Equation (C.7) is updated dynamically
in the algorithm. However, we have decided to implement a fixed user-defined 𝜔 parameter
since the mathematical expression for achieving this dynamical behavior is not indicated.
This, of course, completely changes the performances of the algorithm, due to the fact that
the particles’ velocity substantially drives the generation of new offspring and thus the entire
optimization process. For this reason, we have also decided to benchmark from scratch this
new implementation of the NSPSO algorithm, whose results are presented in Appendix B.

To summarize, the input parameters, besides the number of generations and the popula-
tion size, to be chosen for starting the optimization process are the following:

1. 𝜔: the particles’ inertia weight. It holds 𝜔 ∈ [0, 1]

2. 𝜂 : the magnitude of the force applied to the particle’s velocity in the direction of its
previous best position. It holds 𝜂 > 0.

3. 𝜂 : the magnitude of the force applied to the particle’s velocity in the direction of its
global best. It holds 𝜂 > 0.

4. 𝜒: the velocity scaling factor. It holds 𝜒 > 0.

5. 𝑉 : maximum allowed particle’s velocity. It holds 𝑉 ∈ (0, 1]

5.2. Performance Metrics 43

6. 𝐿𝑆𝑅: the leader selection range parameter. This parameter is used for selecting the
leader of each particle among the best 𝐿𝑆𝑅𝑚𝑜𝑑(𝑝𝑜𝑝) individuals (where 𝑝𝑜𝑝 is the popu-
lation size and𝑚𝑜𝑑() represents the modulo operation). Following the same terminology
as used for PSO, this means that 𝐿𝑆𝑅 regulates the neighborhood size in which the best
individual is selected. It holds 𝐿𝑆𝑅 ∈ [1, 100].

7. 𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚: the diversity mechanism can be chosen between niche countmethod,
crowding distance and maxmin function.

5.2. Performance Metrics
Before diving into the mathematical formulation of the algorithms used, it is first fundamen-
tal to discuss the performance metrics that will be used for benchmarking different multi-
objective (MO) optimizers. Indeed, while for a single-objective minimization problem it is
sufficient to check in how many function evaluations the algorithms have managed to reach
a certain fitness value for trading-off different algorithms and establish a performance rank-
ing, which will generally vary depending on the optimization problem; this is not the case
for multi-objective problems. In fact, as we have already pointed out, an MO optimization
procedure often leads to finding multiple optimal solutions. One possible way of comparing
multiple algorithms could be to simply count the number of Pareto optimal individuals at the
end of the evolution. However, this does not tell us anything about the closeness of these
individuals to the real optimal front (if it is known) and the spread of these individuals within
the Pareto front. For circumventing these issues, multiple performance metrics are typically
combined. In particular, these are typically classified in three major classes:

1. Convergence metrics: they evaluate how far is the final Pareto front from the real one.
Typically, we only know the Pareto optimal front for mathematical problems (that are
often used as benchmark problems), whereas we do not have this information for many
real world problems. In this case, we limit ourselves to establish what is the best, if
any, final Pareto optimal front among the algorithms.

2. Diversity metrics: they evaluate the scatter of solutions in the final Pareto front.

3. Metrics for both convergence and diversity.

More than 50 convergence metrics have been developed until now (Grosan et al., 2003).
However, the analysis of all these metrics and their application for benchmarking the MO
algorithms used in this study goes beyond the scope of this research. We will thus limit
ourselves to only discuss two performance metrics: one that can be used in any problem and
is typically used for trading-off performances of different MO algorithms, another one that is
very useful for benchmarking performances in two well known test suites.

The first one is the hypervolume indicator (often referred to as Lebesgue measure (Fleis-
cher, 2003) or S-metrics (Zitzler, 1999)). This is a popular quality measure for MO optimizers
since it represents both a convergence and a diversity metric.

The second one is called p-distance: this is a particular kind of metric that is only useful
for peculiar problems in which the true Pareto front is known and in which the Pareto optimal
solutions can be found by minimizing a certain distance function. This latter metrics will only
be used for two widespread test suites (i.e., ZDT and DTLZ) that construct their problems
employing the aforementioned distance function.

Due to the fact that one single metric might not capable of establishing the quality of
solutions both in terms of diversity and convergence, we will combine these two metrics
whenever possible. Also, we will always combine them with the number of final Pareto front
individuals found, as well as with a graphical representation of the final fronts, whenever
possible (i.e., for two or three-objectives problems).

5.2.1. Hypervolume Metric
This metric was first introduced in Zitzler et al. (2002) and it has soon become one of the most
used performance metrics for MO algorithms. Indeed, not only does this metric evaluate

44 5. Optimization

both convergence and diversity using a single value, but it also has the property of being
strictly Pareto compliant, meaning that the Pareto optimal front has the key characteristic of
maximizing the hypervolume value. This means that any dominated set will result in a lower
hypervolume value.

Before introducing the mathematical definition of this metric, it is first important to give
some definitions. Given a set of xxx ∈ ℝ decision vectors and a set of fff(xxx) ∈ ℝ objective
functions, we have already discussed in Section 5.1 that since objectives can be conflicting,
we search for a set of good solutions by defining the concept of Pareto dominance. This will
hereby be expressed using the symbol: ”≺”. Given two decision vectors xxx, xxx’, we say that the
former dominates the latter if fff(xxx) dominates fff(xxx), and in these cases we write:

xxx ≺ xxx ⟺ fff(xxx) ≺ fff(xxx) (5.12)

We can thus define the Pareto optimal set as: {xxx ∈ ℝ | ∄ xxx ∈ ℝ ∶ xxx ≺ xxx}. The corresponding
image in the objective space ℝ is called Pareto front.

Typical definitions of the hypervolume indicator are based on polytopes (Zitzler, 1999).
Nevertheless, without introducing these concepts it is still possible to introduce the hypervol-
ume concept (which is nothing more than a generalization of the area, and volume concepts
in n-dimensions) in a simpler way. The computation of the hypervolume in 2-dimensions is
shown in Figure 5.2.

By taking a sub-set 𝐵 of the objective functions space and letting Λ denote the Lebesgue
measure (which is the common method to measure subsets of n-dimensional Euclidean
space, and which corresponds to the concepts of length, area and volume for the case of
n=1, 2 and 3, respectively), then the hypervolume (𝐼) can be defined as:

𝐼 (𝐵,yyy) = Λ(⋃
yyy∈

{yyy |yyy ≺ yyy ≺ yyy }), 𝐵 ⊂ ℝ (5.13)

where 𝑚 is the objective space dimension, yyy, yyy ∈ 𝐵 belong to a sub-set of the overall objective
function vectors and where yyy ∈ ℝ refers to a reference point that should be dominated
by all Pareto optimal solutions.

Albeit recent improvements, the exact computation of the hypervolume for high dimen-
sions is still a bottleneck and quickly becomes unfeasible for objective space dimensions
higher than 10. For overcoming this problem, a lot of research has been carried on for ap-
proximating the hypervolume computation for high dimensions, while still using exact algo-
rithms for low dimensions (such as 2, 3 or 4). In particular, in Nowak et al. (2014), a study is
performed to benchmark the state-of-art hypervolume algorithms. From this study, it is con-
cluded that for two and three dimensions, two exact algorithms shall be used (Guerreiro et al.,
2012), (Beume et al., 2009), due to their low computational time. However, for higher dimen-
sions (i.e., from four to ten), the Walking Fish Group algorithm (While et al., 2011) seems to

Figure 5.2: Graphical representation of the hypervolume computation in two dimensions 3.

5.3. Ant Colony Optimization 45

be the most suitable. This algorithm takes advantage of the bounding boxes to compute the
exclusive contributions of points that are then used for the hypervolume computation. The
asymptotic time does not seem to be very good, but experimental and theoretical evidence
shows that is the fastest exact algorithm for high dimensions (Bringmann and Friedrich,
2013), (Priester et al., 2013). For dimensions bigger than 10, however, the computation time
increases toward unfeasible values, even for very powerful computers. Typically, this forced
researchers to scale down the problems before treating them. In Nowak et al. (2014), it is
demonstrated that for the dimensions bigger than 10 the best approximation algorithm in
terms of accuracy of the approximation and run-time is the algorithm by Bringmann and
Friedrich (Bringmann and Friedrich, 2009), which uses a Monte Carlo-like sampling method
together with a racing approach to approximate the hypervolume computation.

To conclude, we will make use of these studies to establish the algorithm to be used for
either computing the hypervolume exactly or for approximating it (depending on the objective
function dimension). In particular, we will use the following algorithms:

• For 𝑑 = 2 → dimension-sweep exact algorithm.

• For 𝑑 = 3 → Beume exact algorithm.

• For 4 ≤ 𝑑 ≤ 10 → Walking Fish Group exact algorithm.

• For 𝑑 > 10 Bringmann and Friedrich approximation algorithm.

5.2.2. P-Distance Metric
This metric was first introduced in Märtens and Izzo (2013) and it is useful for test-problems
(such as ZDT and DTLZ) that are constructed using a distance function that is minimized by
all the Pareto-optimal solutions. The authors leverage this aspect for defining a convergence
metric that can be useful for evaluating the performance of a certain found final Pareto front.
If we call 𝑔(xxx) the distance function of a certain problem, 𝑃 a set of solutions (which we want
to evaluate the performance of) and xxx∗ any Pareto-optimal decision vector, we then define:

Γ(𝑃) = 1
|𝑃|∑

xxx∈

(𝑔(xxx) − 𝑔(xxx∗)) (5.14)

where |𝑃| . The lower the Γ(𝑃) value, the better the solutions of 𝑃 are (i.e., meaning that they
will be closer to the real Pareto-optimal front). This metric has also the interesting property
of reaching a value of zero, in case that all the set of solutions 𝑃 belong to the real Pareto-
optimal front. Also, this metric has the main advantage of not relying on any established
reference set. It has, however, the drawback that it can only be applied to mathematical
problems that make use of the distance function in their constructions.

5.3. Ant Colony Optimization
Although a single and multi-objective version of an Ant Colony Optimizer (ACO) has been
implemented in this thesis study, we have decided to group this class of algorithms in a
separate chapter, due to the high relevance of this class of algorithms in this thesis study.
Indeed, both the single and multi-objective extension of ACO used for this research have
been both theoretically and practically implemented in this thesis study for the first time.
In particular, while the single-objective extension is strongly inspired by another ACO first
introduced in Schlüter (2012), although several modifications have been introduced in that
formulation; its multi-objective counterpart is a completely new idea that merges some multi-
objective concepts (e.g. hypervolume metric and nondominated sorting strategy) into the ant
colony optimization framework.

In this section, we will first introduce the general framework of ant colony optimization
for single-objective problems and some basics definition. We will finally also discuss the
multi-objective extensions. The structure of this section is shown in Figure 5.3.
3http://lopez-ibanez.eu/hypervolume, date of access: August 2019

http://lopez-ibanez.eu/hypervolume

46 5. Optimization

 5.3 Ant Colony Optimization

5.3.1 Mixed Integer
Ant Colony Optimizer

5.3.2 Single-Objective
Mixed Integer ACO

(ACOmi)

5.3.3 Multi-Objective
Hypervolume-Based

ACO (MHACO)

5.3.1.1 The Origins of Ant Colony
Optimization

5.3.1.2 Extended ACO for Non-
Convex Mixed Integer Nonlinear

Programming

5.3.1.3 Oracle Penalty Method

Figure 5.3: Block diagram of Section 5.3.

5.3.1. Mixed Integer Ant Colony Optimizer
Before diving into the implemented algorithm, we will investigate the working principle of
the ACO. In particular, we will explore an ACO with an extension to mixed integer search
domains, with an Oracle penalty method to handle the constraints. In this thesis study, the
ACO principle has been fundamental since we constructed two different algorithms from this
principle (one for single-objective and one for multi-objective). For a better understanding
of this algorithm, it is first necessary to introduce the basic working principle of ACO. This
algorithm was introduced for the first time by Marco Dorigo in his PhD thesis at Politecnico
di Milano (Dorigo, 1992). Originally, this algorithm was only used for combinatorial prob-
lems, but soon it has become interesting and useful for many other problems and branches
(trajectory optimization is one of these). In its rudimental form, this algorithm exploits the
behavior of real ant colonies to create artificial ants, which can find the shortest path between
two points. We will thus first describe the ant colony optimization origins and the biological
mechanism behind it, and we will then discuss into detail one type of ACO: the mixed integer
search domain, which is particularly used for trajectory optimization.

5.3.1.1 The Origins of Ant Colony Optimization
ACO is inspired by the natural mechanism through which real ant colonies forage food.
These ants explore several paths from their nest to seek food, and they leave pheromone
trails along their way for enabling other ants in the colony to follow their path. In this way,
the shortest path is soon discovered by the ants and followed by the entire colony. The
amount of pheromone released is proportional to the quantity and quality of food found:

5.3. Ant Colony Optimization 47

this makes the shortest path to the ’best’ source of food soon to prevail on the others. This
indirect communication between ants through pheromone is called stigmergy and is the basic
principle that inspired Dorigo and his colleagues.

As we already pointed out, the first algorithm was mainly developed for combinatorial
problems (e.g. the traveling salesman problem), and it was presented as the Ant System
(AS). This algorithm can be described in some basic passages.

First of all, the model consists of a graph 𝐺 = (𝑉, 𝐸), where 𝑉 are two nodes and 𝐸 two paths.
Therefore, 𝑣 represents the nest of the ants, and 𝑣 represents the food source, whereas 𝑒
and 𝑒 symbolize two paths with two different lengths. The path 𝑒 has a length 𝑙 , whereas
the path 𝑒 has a length 𝑙 , and we now assume that 𝑙 > 𝑙 . Hence, 𝑒 is the shortest path
between the nest and the source food, while 𝑒 is the longest. Besides, we introduce an
artificial pheromone value 𝜏 (where the index 𝑖 refers to the 𝑖 path: in this case i=1,2). This
value indicates the strength of the pheromone in the corresponding path. Now, introducing
𝑛 artificial ants, we can describe the behavior of each ant as follows: starting from the nest,
each ant chooses the path to follow (in this case between path 𝑒 and 𝑒), with a probability:

𝑝 = 𝜏
∑ 𝜏

𝑖 = 1, 2 (5.15)

Therefore, if 𝑝 > 𝑝 the ants will more probably follow 𝑒 , and vice versa.
When returning back to the nest, the ants follow the same path, and they change the

pheromone value associated with that trait. In particular, having chosen the path 𝑒 , the ant
then changes the pheromone associated with that path from 𝜏 to 𝜏 +𝑄𝑙 , where the positive

constant 𝑄 is a parameter of the model.
This means that the amount of pheromone added to the path is:

Δ𝜏 = 𝑄
𝑙 (5.16)

This will cause the shortest path to having the highest pheromone increase, and this will
soon lead all the ants to choose the shortest path because its probability will increase during
the evolution of the algorithm (as it can be seen from Equations (5.15) and (5.16)). As it is,
this model is, however, flawed. Indeed, if a short path will not be discovered immediately, but
only after a while, the ants will still follow the longer path (that was previously the shortest),
due to the amount of pheromone accrued in the meantime. For avoiding this problem, the
amount of pheromone released is subject to evaporation over time. This behavior is simulated
by changing the pheromone value (𝜏) as follows:

𝜏 ⇒ (1 − 𝜌) ⋅ 𝜏 𝑖 = 1, 2 (5.17)

where 𝜌 ∈ (0, 1] is a parameter that controls the evaporation of pheromone.
A simplified ACO algorithm version can be summarized with the following steps:

1. Initialize all of the arcs with a uniform pheromone level.

2. Randomly places ants on the grid.

3. Progress forward, tracing a path by probabilistically selecting the next node based on
the relative pheromone levels of surrounding nodes.

4. Erase loops in the path traced.

5. Retrace steps.

6. Globally updates the trails implementing pheromone evaporation according to the value
of the 𝜌 parameter.

7. Apply the pheromone increase to the retraced trails (Δ𝜏).
This algorithm is still subject to some fallacies that are typically solved depending on the
specific problem with several specific variants of the ACO algorithm. We will now introduce
an ACO algorithm with an extension to mixed integer search domains.

48 5. Optimization

5.3.1.2 Extended ACO for Non-Convex Mixed Integer Nonlinear Programming
Here we will discuss a recent extension of the ACO to mixed integer search domains. This
extension was introduced in Schlüter et al. (2009), and is extensively discussed in Schlüter
(2012). Also, it is implemented in the software MIDACO for trajectory optimization purposes,
and it has been tested on challenging space optimization problems at the European Space
Agency and Astrium (Airbus Group) (Schlüter, 2010), (Schlüter et al., 2013).

Before going into details in the algorithm implementation and characteristics, it is first
necessary to introduce some mathematical general definitions that link ACO to MINLP (mixed
integer non linear programming).

First of all, a feasible set 𝐾 of a mixed integer optimization problem is introduced, based
on equality and inequality constraints.

The mathematical formulation of the general multi-objective MINLP can be written as:

min(FFF(XXX)) = (𝑓 (XXX), ..., 𝑓 (XXX)) (5.18)

subject to:

𝑔 (XXX) = 0 𝑖 = 1, ..., 𝑚 (5.19)
𝑔 (XXX) ≤ 0 𝑖 = 𝑚 + 1, ..., 𝑚 (5.20)
XXX ≤ XXX ≤ XXX (5.21)

Thus, the objective is to minimize all the objective functions while satisfying 𝑚 equality
constraints and𝑚−(𝑚 +1) inequality constraints, where the decision variablesXXX are included
between a lower (XXX) and upper (XXX) boundaries. The vector XXX is constituted of two different
vectors (XXX = (xxx ,yyy)): a vector of discrete variables of dimension 𝑛 (xxx ∈ ℝ), and a vector
of continuous variables of dimension 𝑛 (yyy ∈ ℝ).

For introducing the mechanism through which the offspring is generated in the ACO
framework, it is useful to introduce some mathematical concepts:

Definition 1
A function 𝑃:ℝ → ℝ with:

∫ 𝑃(𝑡)𝑑𝑡 = 1 (5.22)

is called a continuous Probability Density Function (cPDF). Whereas a function 𝑄:ℤ → ℝ
with:

∑ 𝑄(𝑑) = 1 (5.23)

is called a discrete Probability Density Function (dPDF).

The ant colony optimization, similarly to other evolutionary algorithms, uses individual ants
to explore the search space and applies the concept of ’survival of the fittest’ to generate
offspring from the current solution. The individual ants are evaluated depending on their
constraints violations and objective function values: these two aspects are typically combined
in a single penalty function. In Section 5.3.1.3, we will then discuss into details the oracle
penalty method employed in this research.

After every generation, the individuals are ranked depending on penalty function values,
and the best individuals are chosen to generate future generations stochastically. In this
way, the algorithm will likely improve the individuals in future generations. The following
definitions are useful for formalizing the meaning of individual, generation, and fitness, in
the context of ACO:

Definition 2
An element (xxx,yyy) ∈ ℝ × ℤ is called individual (or ant). Any individual (xxx,yyy) is

called feasible if and only if (xxx,yyy) ∈ 𝐾. Otherwise, is called unfeasible. A set GGG ∶= {(xxx,yyy) ,

5.3. Ant Colony Optimization 49

-20 -10 0 10 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4 PDF 1

PDF 2

PDF 3

multi-kernel

Figure 5.4: Three individual Gauss PDFs and their multi-kernel PDF

(xxx,yyy) ,...,(xxx,yyy) } is called a generation of size 𝑣 ∈ ℕ, if all the components 𝑥 (for 𝑖 = 1, ..., 𝑛
and 𝑙 = 1, ..., 𝑣) are samples of a set of 𝑛 cPDF 𝑃 ,..., and all the components 𝑦 (for
𝑗 = 1, ..., 𝑛 and 𝑙 = 1, ..., 𝑣) are samples of a set of 𝑛 dPDF 𝑄 ,..., . These individuals
belonging to GGG are not necessarily feasible, and their feasibility has to be checked at a later
phase when evaluating the various ants.

Moreover, the archive in which the best individuals are stored throughout the various gen-
erations, as well as the evolutionary operator used for creating new individuals starting from
the solution archive, have to be defined. This is done in the following definition:

Definition 3
A set SSS ∶= {(xxx,yyy) , ..., (xxx,yyy) } is called a solution archive of size 𝐾 if all individuals of SSS are

ordered regarding their fitness (such that the first one is the best and the last one is the
worst).

A function ℰ ∶ (ℝ × ℤ) → (ℝ × ℤ) that creates a generation of 𝑣 individuals
based on 𝐾 individuals of a solution archive SSS is called an evolutionary operator.

Note that the solution archive SSS contains 𝐾 n-dimensional solution vectors (sss = (xxx,yyy) ,,sss =
(xxx,yyy)), their corresponding 𝐾 objective function values, constraints violations and the penalty
function values. In general, 𝐾 and 𝑣 are two parameters independent from each other, but it
always holds 𝐾 < 𝑣.

We will now introduce a specific evolutionary operator that is used for producing the
offspring. The ACO operator used is based on 𝑛 multi-kernel Gauss probability density func-
tions 𝒢 ,..., , where 𝑛 = 𝑛 + 𝑛 . One multi-kernel PDF 𝒢 is a weighted sum over 𝐾
individual Gauss PDF. It can thus be written as:

𝒢 (𝑡, 𝜔, 𝜇, 𝜎) = ∑𝜔 1
𝜎 √2𝜋

𝑒
(𝑡 − 𝜇)
2(𝜎) ℎ = 1, ..., 𝑛 + 𝑛 (5.24)

where the term:

1
𝜎 √2𝜋

𝑒
(𝑡 − 𝜇)
2𝜎 (5.25)

represents a single Gauss PDF. In Figure 5.4 an example of three PDF and their multi-kernel
PDF is shown.

The version of the multi-kernel PDF has a different implementation for the integer domain:
indeed, for that domain a discretized version is applied, which accumulates the probability

50 5. Optimization

given by 𝒢 (𝑡, 𝜔, 𝜇, 𝜎) around an integer 𝑑 in the interval: [𝑑 − 12 , 𝑑 +
1
2]. Hence, we can define

the already discussed cPDFs and dPDF (there will be one for each continuous and discrete
variable) as:

𝑃 (𝑡) = 𝒢 (𝑡, 𝜔, 𝜇, 𝜎) 𝑖 = 1, ..., 𝑛 (5.26)

𝑄 (𝑑) = ∫
/

/
𝒢 (𝑡, 𝜔, 𝜇, 𝜎)𝑑𝑡 𝑗 = 1, ..., 𝑛 (5.27)

From Equations (5.26) and (5.27), it is possible to see that each PDF is identified by three
parameters: {𝜔 , 𝜇 , 𝜎 }. Hence, these three parameters are responsible for the evolution
of the search process of the ACO and they are of extreme importance. Indeed, the search
process is performed through 𝑃 (𝑡) and 𝑄 (𝑑) for each variable, and these parameters can be
seen as the pheromone values (in analogy with the biological process). The parameters 𝜔
are only dependent on the size 𝐾 of the solution archive SSS, and they behave as weights for
each PDF in the multi-kernel PDF 𝒢 (𝑡, 𝜔, 𝜇, 𝜎). Indeed, as we already pointed out, the archive
SSS is ordered in terms of performance (the best ones are the first). Therefore,the weights are
calculated as:

𝜔 = 𝐾 − 𝑘 + 1
∑ 𝑗

(5.28)

Thus, we have asmany weights as the solutions in the archive (which are 𝐾 in total), and these
weights are useful for computing the pheromones for each of the continuous and discrete
variables in the problem. It is important to notice that a property of the weights is that:

∑𝜔 = 1 (5.29)

The parameter 𝜇 are the means of each PDF within the multi-kernel PDF. They can be
computed from the ants: (xxx,yyy) ,..., contained in SSS in the following way:

𝜇 = {𝑥 if ℎ = 1, ..., 𝑛
𝑦 if ℎ = 𝑛 + 1, ..., 𝑛 (5.30)

The standard deviations 𝜎 are related to each individual PDF within the multi-kernel PDF.
The method to calculate them is based on the concept of maximum distance (𝐷) and mini-
mum distance (𝐷) between each variable dimension ℎ, in all the solution archive (xxx,yyy) ,...,

(e.g. for h=1 then 𝑥 , ..., 𝑥 are taken into consideration). These distances are computed as:

𝐷 = {𝑚𝑖𝑛{|𝑥 − 𝑥 | ∶ 𝑝, 𝑞 ∈ ℕ, 𝑝 ≠ 𝑞 ≤ 𝐾} if ℎ = 1, ..., 𝑛
𝑚𝑖𝑛{|𝑦 − 𝑦 | ∶ 𝑝, 𝑞 ∈ ℕ, 𝑝 ≠ 𝑞 ≤ 𝐾} if ℎ = 𝑛 + 1, ..., 𝑛 + 𝑛

𝐷 = {𝑚𝑎𝑥{|𝑥 − 𝑥 | ∶ 𝑝, 𝑞 ∈ ℕ, 𝑝 ≠ 𝑞 ≤ 𝐾} if ℎ = 1, ..., 𝑛
𝑚𝑎𝑥{|𝑦 − 𝑦 | ∶ 𝑝, 𝑞 ∈ ℕ, 𝑝 ≠ 𝑞 ≤ 𝐾} if ℎ = 𝑛 + 1, ..., 𝑛 + 𝑛

The standard deviations 𝜎 are then computed as:

𝜎 =
⎧⎪
⎨⎪⎩

𝐷 − 𝐷
#𝑔𝑒𝑛 if ℎ = 1, ..., 𝑛

𝑚𝑎𝑥{𝐷 − 𝐷
#𝑔𝑒𝑛 , 1

#𝑔𝑒𝑛 , (1 −
1

√𝑛
)/2} if ℎ = 𝑛 + 1, ..., 𝑛 + 𝑛

(5.31)

5.3. Ant Colony Optimization 51

where #𝑔𝑒𝑛 is the number of generations reached.
In the case that the search space is discrete, the standard deviation will never be smaller

than 𝑚𝑎𝑥{ 1
#𝑔𝑒𝑛 , (1 −

1
√𝑛

)/2}, even if 𝐷 − 𝐷 = 0. This situation may happen in the

case that all the solution vectors in SSS have converged to the same integer. This condition
is enforced to sample the multi-kernel PDF with a sufficient standard deviation, which al-
lows exploration of other integers, nearby the found ones. Indeed, if this procedure was not
implemented the algorithm would have been less flexible, and would have more easily got
stuck.

To summarize, the solution saved in the solution archive will generate new solutions
through the multi-kernel PDF. This is done by considering the importance of the solutions
in the solution archive (i.e., for a solution sss , the lower the index 𝑘 the better the solution in
terms of the objective function and penalty function) and the values of the several solution
vector components of each member of the archive. This generates a triplet of parameters
(weight, mean and standard deviation), which are then used for generating new ants from
the solution archive. These new solutions will be evaluated and compared with the solutions
in the solution archive. If the new ants perform better than the one stored in SSS, then the
solution vectors in the solution archive are replaced starting from the tail of the vector (e.g.
solution sss is replaced before sss , if 𝑔 > 𝑓). This replacement process corresponds to the
biological process of pheromone evaporation.

In particular, the incremental construction of new individuals (i.e., ants) is done by first
choosing the mean 𝜇 for every ℎ. This choice is not performed completely randomly, but
it is carried out depending on the weights 𝜔 : this causes, for instance, the mean 𝜇 to be
more likely chosen, whereas 𝜇 has the lowest probability to be selected. Furthermore, a
random number is produced starting from the selected mean, using the related standard
deviation (𝜎). By doing this for all the dimensions of the ants, a new ant is created, and this
allows another objective function and penalty function evaluation to be performed, which
also allows us to rank the solution and establish whether it has to replace another solution
in the solution archive or not. This is carried out throughout all the generations.

An aspect to be noted is that Equation (5.24) only defines themulti-kernel PDF 𝒢 (𝑡, 𝜔, 𝜇, 𝜎),
however, for a numerical implementation of the algorithm, a mathematical technique is nec-
essary to actually produce the stochastic sample from the given PDF.

To summarize, the general framework of ACO for MINLP can be explained through the
following steps:

1. Generate the first generation GGG of ants: the first generation will have 𝑣 individuals:
(xxx,yyy) , ..., (xxx,yyy) based on a uniform cPDF for the continuous variables xxx and on a uniform
dPDF for discrete variables yyy.

2. Repeat the steps from 3 to 5 until the stopping criteria are met.

3. Select 𝐾 best individuals from the current generation, based on their fitness value (com-
prehensive of the objective function and penalty function) and save them as solution
archive SSS.

4. Apply the evolutionary operator (described above) on the solution archive to produce
the next generation of 𝑣 ants.

5. Introduce all the ants created to the solution archive and check whether they perform
better than the lowest ranked individual in SSS. If this is the case, then discard those
individuals from the archive that have lower fitness and introduce the better new ones
in SSS.

5.3.1.3 Oracle Penalty Method
The oracle penalty method was first introduced in Schlüter (2010). As any other penalty
method, its objective is to transform an originally constrained problem into an unconstrained
one, by inserting penalty functions in the original objective function. In this research, this
penalty method is employed for the SO ACO.

52 5. Optimization

In general, the oracle penalty method is especially meant for stochastic metaheuristics op-
timization problems. Furthermore, its strength is that it only requires one parameter (called
the ’oracle’) to be tuned: making the penalty functions easy to understand and handle.

We will first introduce the basic oracle penalty function, and then we will introduce some
modifications and adjustments for showing some extensions to the basic method.

The basic idea is to transform the objective function 𝑓(XXX) into an equality constraint to be
added to the others in the form of:

𝑔 (XXX) = 𝑓(XXX) − Ω = 0 (5.32)

where Ω is a parameter called oracle. In this transformed problem, the objective function
results to be redundant and a new objective function (𝑓(XXX)) can be declared as constant zero
function. Hence, the transformed problem can be expressed as:

minimize 𝑓(XXX) ≡ 0
subject to ∶ 𝑔 (XXX) = 𝑓(XXX) − Ω = 0 𝜔 ∈ ℝ
𝑔 (XXX) = 0 𝑖 = 1, ..., 𝑚 ∈ ℕ
𝑔 (XXX) ≤ 0 𝑖 = 𝑚 + 1, ..., 𝑚 ∈ ℕ

(5.33)

Assuming now that XXX∗ is the solution that defines the global optimum of the MINLP, then an
oracle parameter of the kind: Ω = 𝑓(XXX∗) would imply that a solution of Problem 5.33 is directly
the global optimal solution of the MINLP. The algorithm will hence start to equally search to
minimize 𝑔 (XXX). However, we would like the algorithm not only to minimize the objective
function, but also to maintain the constraints violated as little as possible. For doing this,
the concept of residual function is used. A residual function measures the violation of the
constraints by applying a norm function over all the 𝑚 constraint violations of the MINLP
problem (i.e., if there is no constraint violations, the residual function will be zero). In our
research, we have decided to employ an 𝑙 norm as residual function. This means that the
residual function would have the following definition:

𝑙 = 𝑟𝑒𝑠(XXX) =√∑|𝑔 (XXX)| + ∑ min{0, 𝑔 (XXX)} (5.34)

The penalty function defined by the basic version of the oracle penalty method consists in a
function that uses the information on the residuals and on the objective function, to establish
the penalty. In particular, the penalty function (𝑝(XXX)) can be defined as:

𝑝(XXX) = 𝒜 (𝑓(XXX), 𝑟𝑒𝑠(XXX)) ⋅ |𝑓(XXX) − Ω| + (1 −𝒜 (𝑓(XXX), 𝑟𝑒𝑠(XXX))) ⋅ 𝑟𝑒𝑠(XXX) (5.35)

where 𝒜 (𝑓(XXX), 𝑟𝑒𝑠(XXX)) is defined as:

𝒜 (𝑓(XXX), 𝑟𝑒𝑠(XXX)) =

⎧
⎪⎪

⎨
⎪⎪
⎩

1 − 1

2√|𝑓(X
XX) − Ω|
𝑟𝑒𝑠(XXX)

if 𝑟𝑒𝑠(XXX) ≤ |𝑓(XXX) − Ω|

1
2√

|𝑓(XXX) − Ω|
𝑟𝑒𝑠(XXX) if 𝑟𝑒𝑠(XXX) > |𝑓(XXX) − Ω|

For conciseness, from now on we will define 𝛼 as: 𝛼 = 𝒜 (𝑓(XXX), 𝑟𝑒𝑠(XXX)).
It is clear that 𝛼 is always limited between 0 and 1, and it balances the penalty function

depending on the value of both |𝑓(XXX) − Ω| and 𝑟𝑒𝑠(XXX). Indeed, if the residuals (𝑟𝑒𝑠(XXX)) are
’less violated’ it results that 0.5 ≤ 𝛼 ≤ 1, and the penalty function will focus on penalizing the
transformed objective function. On the other hand, if |𝑓(XXX) − Ω| is smaller than 𝑟𝑒𝑠(XXX), then
0 ≤ 𝛼 ≤ 0.5 and this will cause the penalty function to penalize more the residuals, increasing
their weight.

5.3. Ant Colony Optimization 53

A crucial aspect that constitutes a substantial pitfall of the basic oracle penalty function,
is that the penalty function, and thus the search for the optimum, is strongly related to the
value of Ω. This means that we need information on the global optimal objective value to
make this strategy effective. In Schlüter (2010) an extension is mathematically explained
and introduced to solve this issue. This extension led to the definition of an extended oracle
penalty function.

This penalty function is of the form:

𝑝(XXX) = {𝛼 ⋅ |𝑓(XXX) − Ω| + (1 − 𝛼) ⋅ 𝑟𝑒𝑠(XXX) if 𝑓(XXX) > Ω or 𝑟𝑒𝑠(XXX) > 0
−|𝑓(XXX) − Ω| if 𝑓(XXX) ≤ Ω and 𝑟𝑒𝑠(XXX) = 0 (5.36)

where 𝛼 is computed as:

𝛼 =

⎧
⎪
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎩

|𝑓(XXX) − Ω| ⋅ 6√3 − 2
6√3

− 𝑟𝑒𝑠(XXX)

|𝑓(XXX) − Ω| − 𝑟𝑒𝑠(XXX) if 𝑓(XXX) > Ω and 𝑟𝑒𝑠(XXX) < |𝑓(XXX) − Ω|
3

1 − 1

2√|𝑓(X
XX) − Ω|
𝑟𝑒𝑠(XXX)

if 𝑓(XXX) > Ω and
|𝑓(XXX) − Ω|

3 ≤ 𝑟𝑒𝑠(XXX) ≤ |𝑓(XXX) − Ω|

1
2√

|𝑓(XXX) − Ω|
𝑟𝑒𝑠(XXX) if 𝑓(XXX) > Ω and 𝑟𝑒𝑠(XXX) > |𝑓(XXX) − Ω|

0 if 𝑓(XXX) ≤ Ω

(5.37)

Now that the penalty function is extended, it is necessary to explain how the oracle parameter,
Ω, has to be handled during the optimization procedure, to steer the algorithm towards the
search of the global optimum. The oracle parameter Ω is initialized with a very big value (i.e.,
Ω >> 𝑓(XXX), for any XXX). This will cause the search strategy to focus only on the residual for
the first optimization runs, up to the point that a feasible solution is found. Indeed, after the
first optimization run, the oracle parameter follows the following update strategy:

Ω = {𝑓 if 𝑓 < Ω and 𝑟𝑒𝑠 ≤ 𝑟𝑒𝑠
Ω else

where 𝑖 refers to the current generation number and 𝑟𝑒𝑠 is a user-defined tolerance that
defines the residuals feasibility threshold. Hence, if no feasible solution has been found
so far (i.e., solutions such that 𝑟𝑒𝑠(XXX) ≤ 𝑟𝑒𝑠) the oracle parameter will be maintained large
enough. On the other hand, if a feasible solution has been found, then the oracle parameter
is updated with the latest feasible solution, which has the lowest objective function value.
It has to be noted that if a reasonable value for a feasible solution is known, then one can
initialize Ω using a value reasonably lower than the currently known objective function value.

From our definitions, it is clear that the oracle penalty method only works for single-
objective optimization. For this reason, this method was only used for the SO implementation
of ACO and another sorting strategy was employed to rank the solutions in the MO extension.
In the next two sections, we will discuss both the SO and MO extensions, as well as their
input parameters and working principles.

54 5. Optimization

5.3.2. Single-Objective Mixed Integer ACO (ACOmi)
This algorithm is constructed based on the principles introduced in Section 5.3.1. In partic-
ular, the same oracle penalty method and pheromone values as explained in that section are
used. However, some parts have been modified for improving the algorithm: indeed, when
implementing the basic version explained above, it was found that premature convergence
was achieved, thus causing the algorithm to get stuck even for very simple SO test problems.

For this reason, the following modifications were added to the algorithm:

1. Using Equation (5.31), the standard deviations were soon driven to zero, thus causing
the algorithm not to generate offspring far enough from previous individuals, and to get
stuck soon during the evolution process. For solving this, a new user-defined param-
eters has been introduced: NGenMark. Basically, instead of #gen, in Equation (5.31),
GenMark was used so that the equation becomes:

𝜎 =

⎧
⎪

⎨
⎪
⎩

𝐷 − 𝐷
𝐺𝑒𝑛𝑀𝑎𝑟𝑘 if ℎ = 1, ..., 𝑛

𝑚𝑎𝑥{𝐷 − 𝐷
𝐺𝑒𝑛𝑀𝑎𝑟𝑘 , 1

𝐺𝑒𝑛𝑀𝑎𝑟𝑘 , (1 −
1

√𝑛
)/2} if ℎ = 𝑛 + 1, ..., 𝑛 + 𝑛

(5.38)

This parameter is the same as the number of generations. However, when the GenMark
parameter reaches the NGenMark value, it is restarted again from 1 and it is increased
again by one as the generation counter increases by one as well. For instance, let us
assume that the author chooses NGenMark = 7, then, this means that the GenMark
parameter will be increased until 7, when the population is evolved until the 7th gener-
ation. Afterwards, the GenMark parameter is started again from 1 and then increased
until 7, when the generation value reaches 14. This is repeated again with the same
logic for the entire evolution process. In this way, (for continuous variables), as long as
the 𝐷 − 𝐷 parameter is different than zero, 𝜎 is ensured not to reach very small
values if the user decides so (by selecting a low value for the NGenMark parameter). Of
course, there is also the risk that NGenMark is chosen so small that the consequent
standard deviations are too large and the algorithm thus struggles to converge. For this
reason, this parameter often requires tweaking and tuning.
In particular, two parameters are used to allow the user to monitor the spread of the
individuals stored in the solution archive and thus establish how to set NGenMark.
This is strictly related to the standard deviation values since very spread individuals
might require a lower standard deviation value (hence a higher NGenMark), whereas
very cluttered individuals might require a higher standard deviation value (hence a lower
NGenMark), which may ensure a wider search in the variables’ domain. For allowing
the user to determine this more easily, the flatness in the variables (i.e., dx) and in
the penalties (i.e., dp) of the solution archive are stored for each generation. These are
defined as:

𝑑𝑥 =∑(|𝑥 , − 𝑥 , |) (5.39)

𝑑𝑝 = |𝑝 − 𝑝 | (5.40)

where 𝑝 is the penalty function value of the last (i.e., the worst) individual in the solu-
tion archive, whereas 𝑝 of the first (i.e., the best), both computed as defined in Equation
(5.36). Also, 𝑛 is the variables’ dimension, 𝑖 is the 𝑖 variables’ component, 𝑥 , indicates
the components of the first decision vector (i.e., the best in the solution archive) and
𝑥 , the components of the last decision vector (i.e., the worst in the solution archive).

5.3. Ant Colony Optimization 55

2. In Section 5.3.1, we have discussed the multi-kernel gaussian distribution properties
and its use for the ant colony optimization algorithm. However, in practice, we have
decided to implement a different strategy for generating these individuals. This strat-
egy uses the same concept as the multi-kernel distribution, but employing a different
method. Also, it allows the user to establish whether to focus more on the first individ-
uals of the archive, for producing the offspring. This strategy was first introduced in
Bernardo Jr and Naval Jr (2010).

For presenting its implementation, it is first necessary to redefine the weights. Indeed,
the weights used in the multi-kernel gaussian function, instead of being defined as
shown in Equation (5.28), are defined as follows:

𝜔 = 1
𝑞𝐾√2𝜋

𝑒
(𝑘 − 1)
2𝑞 𝐾 (5.41)

where 𝑘 refers to the 𝑘th individual in the solution archive, whose members range from 1
to 𝐾 (which represents the solution archive size). Also, 𝑞 is a new user-defined parameter
that substantially regulates the weights’ definition. Indeed, if 𝑞 is set to high values, then
the resulting weights will be of similar magnitude and every individual in the solution
archive will have a similar probability of being selected. Whereas if 𝑞 is chosen to be very
small, then the algorithm will focus more on the very first individuals of the solution
archive (which are considered to be the best). Besides, Equation (5.29) does not hold
anymore for the redefined weights.

As a consequence, the sampling process is not done anymore by directly using the multi-
kernel Gaussian distribution function shown in Equation (5.24), but it is performed in a
more practical way. This is carried out by only selecting one of the Gaussian functions of
the multi-kernel PDF, whose selection is done by taking into account the probability 𝑝
of choosing the 𝑘th Gaussian function, for each variables’ component ℎ. This probability
is computed as:

𝑝 = 𝜔
∑ 𝜔

(5.42)

These probability functions have the property of having their sum equal to one. Math-
ematically, this means that:

∑𝑝 = 1 (5.43)

The process of sampling the chosen Gaussian distribution is then executed as follows:
from the probability values the cumulative probability is extracted, and each individual
is assigned with that cumulative distribution function value. Afterwards, a random
number between 0 and 1 is generated using a uniformly distributed random generator,
and the Gaussian function is chosen accordingly.

For instance, let us assume that there are five individuals in the archive and that their
variables’ dimension is one (i.e., ℎ = 1). Assuming that the user chooses 𝑞=1, the con-
sequent weights (computed using Equation (5.41)) will be: 𝜔 = 0.07979, 𝜔 = 0.07041,
𝜔 = 0.06389, 𝜔 = 0.060227 and 𝜔 = 0.057938. Hence, the resulting probability function
values (computed as explained in Equation (5.42)) will be: 𝑝 = 0.24014, 𝑝 = 0.21192,
𝑝 = 0.19229, 𝑝 = 0.18127 and 𝑝 = 0.17438. Also, their corresponding cumulative dis-
tribution functions are: 𝑐𝑑𝑓 = 0.24014, 𝑐𝑑𝑓 = 0.45206, 𝑐𝑑𝑓 = 0.64435, 𝑐𝑑𝑓 = 0.82562
and 𝑐𝑑𝑓 = 1. Thus, when the random number generator will generate a number 𝑛𝑢𝑚
between 0 and 1, this will determine which probability density function will be chosen.
In particular:

56 5. Optimization

• if 0 < 𝑛𝑢𝑚 < 𝑐𝑑𝑓 , then the Gaussian function of the first individual will be chosen.
• if 𝑐𝑑𝑓 < 𝑛𝑢𝑚 < 𝑐𝑑𝑓 , then the Gaussian function of the second individual will be
chosen.

• if 𝑐𝑑𝑓 < 𝑛𝑢𝑚 < 𝑐𝑑𝑓 , then the Gaussian function of the third individual will be
chosen.

• if 𝑐𝑑𝑓 < 𝑛𝑢𝑚 < 𝑐𝑑𝑓 , then the Gaussian function of the fourth individual will be
chosen.

• if 𝑐𝑑𝑓 < 𝑛𝑢𝑚 < 𝑐𝑑𝑓 , then the Gaussian function of the fifth and last individual will
be chosen.

For how the weights are defined, it is clear that the higher an individual is placed in
the rank, the higher will be the probability that its Gaussian function is chosen. Also,
the influence of the user-defined 𝑞 parameter can be clearly seen: if this parameter
is set to 0.5, the consequent cumulative distribution functions are: 𝑐𝑑𝑓 = 0.38163,
𝑐𝑑𝑓 = 0.61310, 𝑐𝑑𝑓 = 0.76999, 𝑐𝑑𝑓 = 0.89389 and 𝑐𝑑𝑓 = 1. As it can be seen, the first
individuals will now be way more likely to be chosen (e.g. the first individual has now
38% probability to be chosen, whereas when 𝑞 = 1, it only had 24% probability to be
selected).
As one may point out, in the first phase of the algorithm optimization process, we would
rather have more evenly distributed weights, so that all the individuals in the archive
are used for the generation of the offspring. Whereas when the generations’ number is
high and the evolution process is mature, we would like to focus more on the very first
individuals in the archive, to possibly achieve convergence. For taking this into account
another user-defined parameter was introduced, called 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. This parameter is an
integer that can range between 1 and the generation number. When the generation’s
value reaches the 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 value, then the 𝑞 value is changed from the user-defined
choice to a value of 0.01. This small value for 𝑞 ensures that when the generation
reaches the 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 value, the algorithm will focus on the very first individuals of the
archive, for generating the offspring. Also, if this behavior is not wanted by the users,
they are also allowed to switch-off this dynamic behavior of 𝑞, and leave the user-defined
choice of 𝑞 for the entire evolution.

3. The last novelty of the algorithm is the introduction of an accuracy parameter (called
𝑎𝑐𝑐) that makes sure that the individuals’ penalty functions are diverse enough. Indeed,
this parameter works as follows: before a new individual is accepted within the solution
archive, it has not only to outperform at least the last individual, but it also has to have
a penalty function value that is at least 𝑎𝑐𝑐 away from the outperformed individual in
the solution archive. In this way, we make sure that the individuals in the solution
archive (whenever possible) have penalty function values that are a 𝑎𝑐𝑐 value distant
from each other. Of course, if the 𝑎𝑐𝑐 parameter is set to zero, then there are no distance
constraints for adding new individuals in the archive.

5.3.3. Multi-Objective Hypervolume-Based ACO (MHACO)
This algorithm was developed both theoretically and practically in this thesis study and it
represents a completely new strategy for MO optimization. Its idea comes from a fusion be-
tween three different concepts: nondominated sorting, hypervolume metric, and ant colony
optimization. In particular, the nondominated sorting strategy and the hypervolume metric
are used for ranking the individuals and their offspring, whereas the ant colony optimization
idea is the key to understanding how new individuals are generated. Therefore, this algo-
rithm represents a multi-objective extension of ACOmi, the ant colony optimizer introduced
in Section 5.3.1.

The algorithm strategy can be summarized as follows:

1. The initial population of size 𝑁𝑃 is randomly generated within the box-bounds of the
variables. Also, a solution archive of size 𝑘𝑒𝑟 < 𝑁𝑃 is also generated using the individ-
uals of the initial population.

5.3. Ant Colony Optimization 57

2. If the generation number is higher than 1, then a merged list of 𝑁𝑃 + 𝑘𝑒𝑟 individuals is
created, where the individuals belonging to the solution archive and the offspring of the
previous generation are collected.

3. The fast nondominated sorting strategy (the same as NSGA-II) is used for sorting the
individuals into different nondomination ranks. This process is thoroughly discussed
in Appendix C.

4. The hypervolume metric is computed for each individual at each nondomination level.

5. A sorting strategy is implemented: in case the individuals have different nondomination
ranks, the lower nondomination level is preferred. In case that the nondomination level
is the same, then the hypervolume metric is used to rank the individuals. In particular,
the higher the hypervolume value, the better the individuals are considered and they are
thus placed in a higher position in the ranking. Mathematically, this can be expressed
using a hypervolume-comparison operator (i.e., <). According to this operator, an
individual 𝑖 is considered better than an individual 𝑗 (and thus placed higher in the
ranking) if the following is verified:

𝑖 < 𝑗 if (𝑖rank < 𝑗rank)
or ((𝑖rank = 𝑗rank) and (ℎ𝑣(𝑖) > ℎ𝑣(𝑗)))

where the ℎ𝑣(𝑖) represents the hypervolume contribution of the 𝑖th individual.

6. Based on the results of the sorting strategy, if some solutions of the solution archive
are outperformed by new individuals (in terms of nondomination ranks or hypervolume
values), then the solution archive is updated.

7. Once the ranking is done, it is possible to generate new offspring. This is done using
the multi-kernel gaussian distribution already discussed in Section 5.3.1. In particular,
the same strategy as ACOmi is used for handling and generating the pheromone values.
The user is thus left to choose the three parameters (i.e., 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 𝑁𝐺𝑒𝑛𝑀𝑎𝑟𝑘 and 𝑞)
to tune the pheromone values, and to thus steer the optimization.

8. The algorithm goes back to Step 2 and repeats itself. It is thus clear that at the first
iteration, only the initial population will be ranked, whereas, for all the others, both the
solution archive and the population are sorted.

One important aspect of this algorithm is the hypervolume value of each individual in the
nondominated front. Indeed, as we have already pointed out in Section 5.2.1, this is strictly
dependent on the choice of the reference point, which needs to always be dominated by all the
other individuals. For achieving this, the reference point is generated by taking the maximum
fitness, for each component, from all the individuals in the merged list. Then, its coordinate
is increased by 1% in each coordinate (for ensuring that the hypervolume value is different
than zero for all the individuals). The result is a point that is strictly dominated by all other
points for each nondominated front and that is thus ideal for being used as a reference point.

If, for instance, we have three individuals in the merged list, in a problem with three
dimensions, with the following fitness vectors: {100, 10, 8}, {15, 20, 7} and {2, 18, 90}. Then,
these individuals belong to the same nondominated front and the reference point will be
created by increasing by 1% the coordinates of the following vector: {100, 20, 90}.

The algorithms used for the hypervolume computation are those indicated in Section
5.2.1: they will thus change depending on the dimension of the problem.

Overall, the algorithm has thus the following input values to be chosen and tuned (besides
the generation and population sizes):

1. 𝑘𝑒𝑟: the dimension of the solution archive (same use as ACOmi).

2. 𝑞 (convergence speed parameter): same use as ACOmi.

3. 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (threshold parameter): same use as ACOmi.

58 5. Optimization

4. 𝑁𝐺𝑒𝑛𝑀𝑎𝑟𝑘 (standard deviations convergence speed parameter): same use as ACOmi.

5. 𝑒𝑣𝑎𝑙𝑠𝑡𝑜𝑝 (evaluation stopping criterion): if a positive integer is assigned here, the al-
gorithm will count the runs without improvements (in terms of the ideal point), if this
number will exceed the 𝑒𝑣𝑎𝑙𝑠𝑡𝑜𝑝 value, the algorithm will be stopped and will return the
evolved population until that moment. The ideal point is a fictitious point that has, in
each component, the minimum value of the objective functions of the input points.

6. 𝑓𝑜𝑐𝑢𝑠 (focus parameter): this parameter is used for making the search towards the
minimum greedier and more likely to get stuck in local minima (same use as ACOmi).

As we can observe, by designing from scratch the MO extension for the ACO, we have also
managed to keep the number of input parameters to only six and to remove the oracle pa-
rameter. Also, among these six, we have seen that only 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 and 𝑁𝐺𝑒𝑛𝑀𝑎𝑟𝑘 are critical
to be tweaked and tuned (especially when the population and generation sizes are changed).
While the other parameters are typically set to certain values: in particular, the 𝑘𝑒𝑟 is typi-
cally chosen to be equal to the population size, 𝑞 is set to 1, 𝑒𝑣𝑎𝑙𝑠𝑡𝑜𝑝 and 𝑓𝑜𝑐𝑢𝑠 are typically
not activated (unless the user has a specific time or convergence constraints). Of course,
this is just a general rule and may not be applicable to all the problems: depending on each
problem, the user should thus pay attention to all these parameters and decide whether to
tune them, in case that the optimization results are not satisfactory.

Furthermore, since this algorithm represents an absolute novelty w.r.t. literature, it re-
quires further study to understand how to set these parameters depending on which type of
optimization problem is handled.

Concerning the computation speed, MHACO has the possibility to parallelize the fitness
computation of the current individuals on multiple cores, thus making the optimization pro-
cess considerably faster for difficult problems (especially for machines with many cores).
However, similarly to ACOmi, for employing this strategy, it is required that the problem is
thread-safe.

5.4. Problem Definition
In this section, we will describe the characteristics of the optimization problems studied in
this research. As we have already mentioned, the scope of this study is to design a solar
sailing mission for a journey in a polar orbit around the Sun. This is done by approaching
the problem with different strategies: first with a single-objective strategy and then with a
multi-objective one. Furthermore, in the SO framework, the problem is approached in two
different ways: first the geocentric and heliocentric phases are optimized separately in two
optimization problems and then concurrently in one single problem.

In Sections 5.1.1 and 5.1.2, we have already discussed how SO and MO problems can
be formulated. In the following sections, we will focus on the characteristics of our specific
problem. In particular, we will first discuss the problem dimension in Section 5.4.1, and
its objectives and constraints in Section 5.4.2. Finally, in Section 5.4.3 we will discuss the
optimization approach.

5.4.1. Problem Dimension
When optimizing a problem, its dimension is crucial for the optimization outcome. The prob-
lem dimension corresponds to the decision vector length: hence, more variables to be opti-
mized will result in a longer decision vector and bigger search space, which typically compli-
cates the optimization process.

In our case, we have different problem dimensions, depending on the type of problem. For
SO, we have the following variables:

1. 𝛼 : first cone angle of the geocentric phase (see Section 4.3.2 for its definition). It holds
𝛼 ∈ [0∘, 90∘].

2. 𝛼 : second cone angle of the geocentric phase (see Section 4.3.2 for its definition). It
holds 𝛼 ∈ [0∘, 90∘].

5.4. Problem Definition 59

3. 𝛼 : third cone angle of the geocentric phase (see Section 4.3.2 for its definition). It
holds 𝛼 ∈ [0∘, 90∘].

4. 𝛼 : spiral inwards phase cone angle (see Section 4.3.1 for its definition). It holds 𝛼 ∈
[−90∘, 0∘].

5. 𝛼 : circularization phase cone angle (see Section 4.3.1 for its definition). It holds 𝛼 ∈
[−90∘, 90∘].

6. 𝛼 : orbit cranking phase cone angle (see Section 4.3.1 for its definition). It holds 𝛼 ∈
[0∘, 90∘].

7. 𝛼 : spiral outwards phase cone angle (see Section 4.3.1 for its definition). It holds
𝛼 ∈ [0∘, 90∘].

8. 𝑇 : launch date (i.e., Julian date in which the sailcraft will be launched into the
initial GTO orbit). It holds: 𝑇 ∈ [2022-01-01,2028-01-01], where the launch date
is defined in yyyy/mm/dd.

9. 𝜔 : argument of perigee of the initial GTO orbit. It holds: 𝜔 ∈ [0∘, 360∘].

10. 𝑅 : distance at which the circularization phase will start. It holds: 𝑅 ∈ [0.3 au, 0.7 au].

11. 𝑅 : distance at which the cranking phase will start. It holds: 𝑅 ∈ [0.26 au, 0.3 au].

For the MO problem, the same variables are also present, with the addition of the sail area,
which will now vary in the following range: 𝐴 ∈ [5000m , 24000m] . Hence, the problem
dimension is 11 for SO and 12 for MO. Concerning the objectives, while in the SO mission
the flight time is the only objective, for the MO case, there are four different objectives. These
include the time of flight, the sail mass and two constraints treated as objectives (i.e., the
final time constraint and the final orbit constraint, whose description is presented in Section
5.4.2). Moreover, for the SO case, another optimization strategy for analyzing whether this
problem can be solved in a better way by splitting the problem into two different ones with a
lower dimension was also investigated. Its general description is presented in Section 5.4.3
and the results of this different strategy compared with the original one are discussed in
Chapter 8.

5.4.2. Objectives and Constraints
The aim of this study is to either minimize the time of flight (𝑡𝑜𝑓), for the SO case, or the
time of flight and the sail mass (𝑚), for the MO case. Both of these shall be minimized while
satisfying the constraints. The time of flight is computed by simply counting the required
time for the sail to reach the final circular orbit with 90∘ inclination and 0.4 au distance from
the Sun. Whereas the mass is computed by multiplying the sail loading by its area.

While making its journey to the Sun, the sail has to fulfill several constraints. In partic-
ular, the following constraints are active:

1. The sailcraft shall not crash on any of the planets. For enforcing this, we have stopped
and penalized (with a death penalty) any simulation where the sailcraft goes below a
safe distance from each planet. These distances (in terms of altitude) were chosen to
be equal to 100 km for the Earth, 1500 km for Venus and Mercury and 300 km for the
Moon. Also, the sailcraft cannot go below 0.22 au from the Sun (otherwise the materials
and instruments are not capable of working well anymore, due to the Sun’s heat and
magnetic field).

2. The sailcraft shall reach a final circular orbit at 0.4 au from the Sun, with an inclination
of 90∘.

3. The sailcraft shall reach the final orbit before the 1st of January 2033, for scientific
reasons.

60 5. Optimization

The first constraints were maintained as death penalties however, the other two were trans-
formed to allow the algorithms to handle them in a more efficient way: the implemented
procedure for transforming them is presented in Sections 5.4.2.1 and 5.4.2.2. Also, in the
MO problems, the constraints 2 and 3 (the transformed versions) are turned into objectives
to be minimized since our employed MO algorithms cannot handle constraints. Thus, in the
MO problem, we will handle four different objectives.

5.4.2.1 Final Orbit Constraints
The final orbit constraints cannot be treated as death penalties, since a final trajectory with
an almost circular orbit and parameters that are near to the ideal ones (e.g. 0.4 au of semi-
major axis and 90∘ of inclination) might still be an appealing mission scenario. However, it
has also to be considered that a variation of 1% in the inclination is different than a variation
of 1% in the semi-major axis. For taking this into account, we have turned these constraints
into one single Δ𝑉 constraints. This means that we take into account how much it would
cost in terms of Δ𝑉 to correct the final orbit and reach the ideal one. Ideally, we would like
to achieve an orbit with Δ𝑉 = 0, meaning that we place the sailcraft into an orbit with zero
eccentricity, 0.4 au of semi-major axis and 90∘ of inclination. However, whenever this is
not done, we compute the cost in terms of Δ𝑉 for correcting this orbit, so that a correction of
inclination will have a different effect than a correction in the eccentricity or in the semi-major
axis. In this way, we ensure a more physical representation of the problem. In particular, we
consider as if an impulse maneuver should be done for correcting these orbits since we know
the mathematical equations for computing the Δ𝑉 in such cases. As indicated in Wakker
(2015), we can compute this Δ𝑉 (in the optimal case in which the propellant consumption for
doing the maneuver shall be minimized) as follows:

Δ𝑉 =2√
𝜇
𝑎 sin(Δ𝑖/2) (5.44)

Δ𝑉 , ={
𝑉 , (√1 + 𝑒 − √1 + 𝑒) + 𝑉 (1 − √1 − 𝑒) if 𝑟 > 𝑟 ,
𝑉 (√1 + 𝑒 − 1) + 𝑉 , (√1 − 𝑒 − √1 − 𝑒) if 𝑟 , < 𝑟 < 𝑟 ,
𝑉 (√1 + 𝑒 − 1) + 𝑉 , − 𝑉 , √1 − 𝑒 if 𝑟 < 𝑟 ,

(5.45)

where 𝑟 is the radius of the ideal orbit (i.e., 0.4 au) and 𝑉 is its circular velocity (computed as:
𝑉 = √𝜇 /𝑟), 𝑒 and 𝑎 are the final eccentricity and semi-major axis, reached by the sailcraft
when the simulation is stopped, 𝑟 , and 𝑟 , are the apocenter and pericenter radii of the final
orbit when the simulation is stopped (computed as: 𝑟 , = 𝑎 (1 + 𝑒) and 𝑟 , = 𝑎 (1 − 𝑒)),
𝑉 , and 𝑉 , are the circular pericenter and apocenter velocities of the reached orbit when
the simulation is stopped (computed as: 𝑉 = √𝜇 /𝑟 and 𝑉 = √𝜇 /𝑟), 𝑉 , is the apogee
velocity (computed as 𝑉 , = √𝜇/𝑎 (1 − 𝑒)/(1 + 𝑒)), 𝜇 is the Sun’s gravitational parameter
(in m /s) and Δ𝑖 is the required inclination change.

Also, 𝑒 is the eccentricity of the transfer orbit that is used for going from the reached
elliptical orbit to the final ideal one: this is computed differently depending on the cases.
In the case that 𝑟 > 𝑟 , , then the impulse is performed at the pericenter of the reached
orbit and it thus holds 𝑒 = (𝑟 − 𝑟 ,)/(𝑟 + 𝑟 ,). In the case that 𝑟 , < 𝑟 < 𝑟 , , then a two-
impulses maneuver with one of the impulses applied in the apocenter of the final orbit is
performed: hence 𝑒 = (𝑟 , − 𝑟)/(𝑟 , + 𝑟). In the case that 𝑟 < 𝑟 , , then the impulse is
performed at the apogee of the reached orbit: it thus holds 𝑒 = (𝑟 , − 𝑟)/(𝑟 , + 𝑟). For
changing eccentricity and semi-major axis, we have decided to implement these impulsive
strategies because, as explained in Wakker (2015), they represent the optimal ones (in terms
of propellant consumption) to reach a circular orbit from an elliptical one, in an impulsive
maneuver scenario.

Our final constraint will thus be:

𝑔 = Δ𝑉 = Δ𝑉 + Δ𝑉 , (5.46)

5.4. Problem Definition 61

The implemented optimization algorithms will thus try to maintain 𝑔 ≤ 0, whenever possible.
Of course, a Δ𝑉 smaller than zero does not make sense, and the algorithms will thus effectively
try to push the sailcraft towards the ideal orbit when trying to satisfy this constraint.

5.4.2.2 Final Time Constraint
This constraint is handled by transforming the ideal final time (i.e., 𝑇) and the simulation
final time (i.e., 𝑇) in Julian seconds, and by computing their difference. In particular, the
following is done:

𝑔 = {𝑇 − 𝑇 if 𝑇 > 𝑇
0 otherwise

(5.47)

where the ideal final time corresponds to the Julian date of 1st January 2033, expressed in
Julian seconds.

Similarly to what happened for the final orbit constraint, the optimization algorithms will
try to satisfy 𝑔 ≤ 0, which will effectively mean to only maintain the orbits that fulfill the
final time constraint, if possible.

5.4.3. Optimization Approach
As we have already mentioned above, all the variables are box-bounded (meaning that they
vary within fixed lower and upper boundaries). The first population is generated randomly,
using a uniformly distributed random generator: afterwards, this population is fed to the
optimization algorithm that performs the evolution process and improves the individuals
in the population. Every comparison between different algorithms is run three times and
starting with the same initial populations (thus using the same seed for the random number
generators) so that the results are based on the same initial population sets and are thus
more representative of the differences between the algorithms. As we have to deal with both
single and multi-objective problems, both SO and MO algorithms have been implemented.
Also, the SO part was optimized using two different strategies:

1. Separate geocentric and heliocentric phases: in this case, the optimization process was
split into two different problems. The first one is a single-objective unconstrained prob-
lem where the sail has to escape the Earth’s gravitational pull in the fastest possible
time (i.e., minimizing 𝑡𝑜𝑓). In this case, the variables will only be 5: 𝛼 , 𝛼 , 𝛼 , 𝑇
and 𝜔 . Also, no constraints are present, besides the death penalties that are activated
when the sailcraft reaches too low altitudes around the Earth and/or the Moon: in
these cases, the simulation is stopped and the individual is discarded by assigning an
extremely high 𝑡𝑜𝑓 to its orbit. Applying several SO algorithms for optimizing this, we
will eventually obtain the best variables to optimize the geocentric orbit. We will then
be ready to use the final condition of the best geocentric orbit for optimizing the helio-
centric phase separately. In this second sub-problem, the objective is still the 𝑡𝑜𝑓, but
there are now the final orbit and final time constraints indicated in Equations 5.46 and
5.47 (besides the death penalties, in case the sailcraft reaches too low altitudes over the
Earth or Venus or Mercury or the Sun). For this sub-problem, we will thus deal with
six variables: 𝛼 , 𝛼 , 𝛼 , 𝛼 , 𝑅 and 𝑅 . In this case, the optimization algorithms will
not return a single best solution (unless both the constraints will be satisfied and the
𝑡𝑜𝑓 minimized), but the optimal solution will be a trade-off between the constraints vio-
lations (particularly, the Δ𝑉 one) and the 𝑡𝑜𝑓. For this reason, as we will see in Chapter
7, this problem can be treated as an SO problem but studied and evaluated as a bi-
objectives one, where feasible candidates in terms of final time constraint are compared
in terms of 𝑡𝑜𝑓 and Δ𝑉.

2. Concurrent geocentric and heliocentric phases: in this framework, the geocentric and
heliocentric phases are treated as one single optimization problem with 11 variables
and the same constraints as the separate case.

62 5. Optimization

Concerning the MO case, besides adding the mass as objective, the two constraints (i.e., those
expressed in Equations (5.46) and (5.47)) are also treated as such: thus constructing a four
objectives unconstrained problem, which can be treated using NSGA-II, MOEA/D, NSPSO
and MHACO. Of course, the death penalties related to the minimum allowable distances to
the various celestial bodies are still active.

Chapter 6

Software
Both the trajectory simulation and optimization procedure mentioned in this thesis study will
be implemented in the form of softwaremodels. Therefore, in Section 6.1, we will first describe
the software architecture of the implemented models. Then, in Section 6.2, we will talk
about the external software used for this research, as many of the optimization algorithms
as well as environment models and numerical methods have been created using external
software packages. Finally, in Section 6.3 the numerical methods used for the integrator
and propagator, as well as their trade-offs, will be discussed.

6.1. Software Architecture
The previously discussed trajectory simulation and the optimization procedure, have to be
performed using certain software. In the following section, we will discuss the software ar-
chitecture for both these aspects.

6.1.1. Trajectory Simulation
As far as concerns the trajectory simulation, the software has to provide the user with the
following aspects:

1. Environment.

2. External forces (i.e., perturbations and gravitational attraction of the main attractor).

3. Propagation and integration schemes.

4. Solar-sail vehicle model.

Whenever some of the aforesaid models were not already implemented in the selected soft-
ware, they had to be implemented manually during the research.

We will assume that the environment does not encompass the vehicle, which is treated
conceptually separately, as a vehicle model. An example of some relevant solar system body
environment models that will be useful for our case is:

1. Ephemeris of the planets, the Moon and the Sun.

2. Gravity field of the celestial bodies.

3. Atmospheric model of the Earth.

4. Radiation model.

The software to be chosen shall be equipped with these environment models, or their imple-
mentation shall be possible.

Moreover, the solar-sail vehicle model shall include the following aspects:

1. Mass.

2. Area.

3. Attitude (i.e., cone and clock angles).

4. Sail characteristics (i.e., front and back non-Lambertian coefficients, front and back
emissivity coefficients, reflectivity coefficient and specular reflection coefficient).

63

64 6. Software

 �⃗�, 𝑡

Retrieve
ephemeris of

celestial bodies

𝑡

Input

�⃗�

𝑟&, 𝑟'

𝑟', 𝑟&, 𝑟(),*,…, 𝑟(),+

Set-up Earth
exponential
atmosphere

model

Set-up
radiation
models

Output

 𝑃

𝜇',𝜇&	𝜇(),* …, 𝜇(),+

		𝜚

𝑟'

Perform
coordinate

transformation

�⃗�	

,

Figure 6.1: Environment architecture.

From a given attitude, the model shall be able to give, as output, the resulting non-ideal
sail force. Since there is no loss of propellant, the mass of the vehicle will be kept constant
throughout the mission, and thus no integration procedures are required to compute the
mass.

To summarize, the software architecture related to the simulation model can thus be
decomposed into the following sub-models:

1. Environment architecture.

2. External forces and vehicle architecture.

3. Guidance architecture.

4. Propagation architecture.

These architectures will be explained in the following sections using workflows. All the equa-
tions and variables specified in the following sections have correspondence with those used
in this report unless otherwise stated.

6.1.1.1 Environment architecture
The environment architecture is shown in Figure 6.1. In the workflow, the two input values
are the state vector of the sail (xxx) and the corresponding time (𝑡). The indices 3b,n refer to the
third body gravitational perturbation of the n-body. These can be Mercury, the Moon, Venus,
the Earth, and the Sun. On the other hand, the subscripts 𝐸 and 𝑆 refer to the Earth and
the Sun, as these two bodies will act as central gravitational bodies in two different phases
of the mission. Besides, the radiation model shall be set-up: in this way we can retrieve the
radiation pressure value (𝑃) of the Sun acting on the sailcraft. Finally, the Earth’s exponential
atmosphere model is set-up, and this helps us to determine the density (𝜌) of the air at the
altitude in which the sail is located w.r.t. the Earth.

6.1.1.2 External forces and vehicle architecture
The external forces and vehicle architecture can be seen in Figure 6.2. In particular, the total
force due to the radiation pressure (i.e., FFF) is computed as shown in Equations (3.30) and

6.1. Software Architecture 65

x

Inputs

Compute 3rd
body

perturbations

�⃗�#$,&, �⃗�#$,',.., �⃗�#$,(

Compute
gravity force

�⃗�)

�⃗�*

𝐿, 𝐷

Compute
total mass

𝑚./.

x �⃗�./.

Output

External forces

Vehicle

Compute
aerodynamic

forces

Compute total
radiation

pressure force
(including
eclipse)

𝑥	, 𝑡

𝛼, 𝛿

	𝐶7, 𝑠, 𝐵:, 𝐵$, 𝜀:, 𝜀$, 𝑃, 𝐴

		𝜇), 𝑟), 𝜇*, 𝑟*, 𝜇#$,&, … , 𝜇#$,(, 𝑟#$,&, … , 𝑟#$,(

		𝜓, 𝜚

State
vector

Sail
angles

Aerodynamic
inputs

Radiation pressure force inputs

Gravity inputs

Figure 6.2: External forces and vehicle architecture.

(3.31). The only difference is that the eclipse is taken into account in the simulation model,
which causes this force to go to zero when the sailcraft is shadowed w.r.t. the Sun.

In the workflow, we display several input blocks, with the following meanings:

1. Compute 3rd body perturbations: this block requires as input the state vector and the
gravity inputs and it returns as output the various gravitational accelerations exerted
by these bodies on the sailcraft.

2. Compute gravity force: this block requires as input the central bodies (i.e., Earth or Sun,
depending on whether the sailcraft is in the geocentric or heliocentric phase) positions
and gravitational parameters. Also, the state vector has to be fed as input to this block.
This block then returns the gravity field of the central body.

3. Compute total mass: this block requires the sail area and sail loading as inputs and
returns the total mass of the sail as output.

4. Compute total radiation pressure force (including eclipse): this block is useful for com-
puting the total non ideal radiation pressure force exerted on the sail. For doing so, the
radiation pressure force inputs are required, as well as the state vector, sail angles and
position of the Sun.

5. Compute aerodynamic forces: this block requires as input the aerodynamic inputs, the
state vector, and the sailcraft area and returns as output the lift and drag forces acting
on the sail.

6.1.1.3 Guidance architecture
It is important to notice that the sail has to be properly steered to minimize the mission time
and cost. Hence, in the simulation model, it is important to have a solar-sail guidance system

66 6. Software

�⃗�, 𝑡

		𝜇', 𝑟', 𝜇), 𝑟)

Compute sail
angles 𝛼, 𝛿	

Output

Inputs

Figure 6.3: Guidance architecture.

�⃗�(𝑡 + ∆𝑡), 𝑡 + ∆𝑡

𝑥, 𝑡, �⃗�*+*

Set-up
equations
of motion

Integrate state
variables

Input

Perform
coordinate

transformation

Perform
coordinate

transformation

Transformed output

Output

Figure 6.4: Propagation architecture.

that is capable of maneuvering the sailcraft depending on its position w.r.t. to the Earth and
the Sun. The guidance architecture is shown in Figure 6.3.

6.1.1.4 Propagation architecture
Finally, inside the simulator, it is crucial to have a propagation module that is capable of
taking the current state of the sailcraft and propagate it in time, depending on the forces
acting on the body. The propagation architecture is shown in Figure 6.4. In this figure, we
notice that the variable FFF is passed as input: this is the total force, as a summation of all
the forces acting on the sailcraft (central body gravitational force, third-body perturbations,
solar-sail force, aerodynamic forces, etc.). Also, for integrating the state vector and retrieve
the state of the sailcraft, it is necessary to first set-up the equations of motion in the simulator.
For doing this, a propagation model has to be established: this will be an outcome of this
research study, as its choice influences both the CPU time and the quality of the solutions.

6.1.1.5 Simulation architecture
Having discussed all the aspects needed for constructing a simulation model, we can now
integrate all the different models to create a simulation architecture. This is shown in Figure
6.5.

As can be seen in the figure, the simulation model presents an iterative nature, since it
has to be continuously updated throughout the whole propagation time. Also, it can be seen
that a block called termination conditions has been added as input: this includes all the
conditions that, if violated, make the simulation end. For instance, if the sail approaches the
Sun too closely or if the propagation time exceeds a certain maximum value, the simulation
is interrupted. In this way, on the one hand, it is ensured that the simulation stops when
the desired conditions are reached. On the other, it is also ensured that the simulation is
stopped if certain constraints are violated, thus avoiding to waste CPU time.

6.1.2. Optimization Model
In Figure 6.6, the general architecture of the complete optimization model is shown. In this
figure, we see that the simulation model has been enclosed inside the simulator block. There-
fore, we take for granted that the optimization problem has already been set-up (either for SO

6.1. Software Architecture 67

�⃗�#, 𝑡#

Occulting
bodies

Solar sail
guidance settings

A 𝜀', 𝜀(, 𝐵', 𝐵(,
	𝐶,, 𝑠

Aerodynamic
settings

Ephemerides of
bodies

Termination
conditions

Input

Update environment

Update external forces
and vehicle properties

Update guidance

Propagate to next state

Are the termination
conditions met?

𝑡 = 𝑡 + ∆𝑡

�⃗�(𝑡)

𝐿(𝑡), 𝐷(𝑡)

𝛼(𝑡), 𝛿(𝑡)

�⃗�8(𝑡), �⃗�9(𝑡)	
	�⃗�:(;(𝑡), … , �⃗�:(=(𝑡)	

 �⃗�?@?(𝑡)

𝑞B(𝑡)

no

yes Stop simulation and save
output to file

Environment output

Guidance output

External forces and vehicle
output

Propagation output
Output

Figure 6.5: Simulation architecture.

or for MO) and that the simulator is ready for being employed in the optimization scheme by
the user. As we can observe from the architecture, the algorithm input parameters, the num-
ber of individuals and the number of generations are necessary to construct the optimization
method. Once this has been done, and once the initial population is randomly generated
using a uniform random distribution and is evaluated in the simulator (i.e., a specific prob-
lem to be optimized), the objectives and constraints values can then be stored. Once this is
done the optimization algorithm takes this population and its corresponding objectives and
constraints, and evolves them to the next generation (in case that the stopping criteria are
not met). This procedure is repeated until either the stopping criteria are met or the final gen-
eration number is reached. Once the evolution stops, the optimization algorithm will return
the final population that has been evolved.

Of course, each optimization algorithm has its own working principle and a different evo-
lution strategy. Nevertheless, as we will explain in Section 6.2, many of the optimizers used
are implemented in external software and it is thus superfluous to discuss their specific
structure here. However, the ant colony optimizer (for both SO and MO) represents a nov-
elty of this research and requires a more detailed discussion. In Figure 6.7, the software
architecture of the implemented ant colony optimizers (i.e., ACOmi and MHACO) is shown.

68 6. Software

Create initial population
randomly

Number of
individuals

Number of
generations

Algorithm input
parameters

Stopping criteria are met and/or final
generation is reached

Evolve population

Compute objectives and
constraints values

Compute trajectory

For each individual

pop0

 popn

Simulator

OR

yes

no

Return current
population

Inputs

Output

Optimization
algorithm

Generation count increases

Figure 6.6: Architecture of the general optimization model.

6.2. External Software
Most of the software models are created using external software packages: whenever neces-
sary (i.e., for the optimization algorithms and problems ACOmi, MHACO, NSPSO, and WFG,
as well as for the non-ideal radiation model of the solar-sail) external software have been ex-
tended for including new models of our interest. In the following sections, we will discuss the
external software used for both the simulation model, in Section 6.2.1, and the optimization
procedure, in Section 6.2.2.

6.2.1. Simulation Model
In this section, we will discuss several different external software used for this research.
In Section 6.2.1.1, we will first discuss a trajectory simulation software (i.e., Tudat) used for
constructing and simulating all our solar-sail problem formulations. Then, in Section 6.2.1.2,
we will introduce Pykep: a trajectory simulation software used during the verification and
validation phase, as it makes several global trajectory optimization problems available for

6.2. External Software 69

Set up fitness Set up variables

Single
objective

Multiple
objectives

OR OR

• time of flight

• mass
• time of flight

OR

Separate
optimization

(Section 5.6.3)

2nd
strategy

1st
strategy

Set up ACOmi or MHACO parameters:

Multiple objectives
(MHACO)

Single objective
(ACOmi)

Initialize first population with
pseudo-random number generator

Initialize first population with
pseudo-random number generator

Rank solutions using nondominated
sorting and hypervolume

computation

Compute penalty function
(Equations 5.56 and 5.57)

Compute pheromone values
(Equations 5.51, 5.58 and 5.61)

Update and sort SA based on
penalty functions values

Generate new ants
(Equation 5.45) and store

them

Compute trajectory

Simulation
model

Compute objective
function(s)

while stopping criteria are met

Set up equality, inequality
constraints and variables’
boundaries

if stopping
criteria are
met

Retrieve optimal variables
and objective(s) values

Inputs

Output

Concurrent
optimization

(Section 5.6.3)

Figure 6.7: Architecture of the ant colony optimizers for both SO and MO.

70 6. Software

use.

6.2.1.1 Tudat
For setting-up the simulation model of this research, the TU Delft Astrodynamics Toolbox
(i.e., Tudat) was used. This is an open source software toolbox, which has been developed
and maintained by TU Delft students and staff of the Aerospace Faculty. Everything is pro-
grammed in C++, and it is offered the possibility of a wide choice between environment models
and numerical models. The software offers the following environment models for the trajec-
tory simulation:

1. Ephemeris: defines the state of any celestial body as a function of time (Dynamical
Barycentric Time seconds since J2000 is default). These ephemerides are tabulated
and retrieved from SPICE 1.

2. Gravity models: defines the gravity field of the body, in terms of its gravitational potential
and associated quantities.

3. Atmospheric model: defines the atmospheric properties (density, temperature, etc.) as
a function of the relative position of the vehicle and time. This will be useful for modeling
the atmosphere of the Earth during the geocentric phase (i.e., in particular during the
drag phase).

4. Aerodynamic coefficient interface: defines the aerodynamic properties of the body, such
as its aerodynamic coefficients as a function of some set of independent variables.

5. Radiation pressure interface: defines the radiation pressure properties of the body. At
the moment of this research study, Tudat was only capable of simulating a cannon ball
radiation pressure model for the Sun. For this reason, it was necessary to implement
an extension for the environment, guidance and force settings, to compute the solar-
sail non-ideal force. As explained in Appendix B, this contribution has been thoroughly
validated and verified and also included in the open-source software for allowing future
researchers and students to use it.

6.2.1.2 Pykep
Pykep is a scientific library developed by the Advanced Concepts Team (ACT) at the Euro-
pean Space Agency (ESA) (Izzo, 2019). Its purpose is to provide basic astrodynamics tools for
aerospace researchers. The library is entirely written in C++ and also interfaced in Python.
Although this software does not offer the variety of environment and numerical models of
Tudat, which is the main reason why the former was preferred in this research, however, it
offers a wide library of space problems inspired from real space missions (such as Cassini,
Rosetta, Messenger, etc.). These problems are already implemented as optimization prob-
lems2 and can directly be coupled with any optimizer. We have thus decided to make use of
this software for testing the new algorithms developed in this research on space applications.
The outcome of these benchmarks on several space problems are thoroughly discussed and
presented in Appendix B.

6.2.2. Optimization Procedure: PaGMO
The optimization model employed in this research makes use of the global optimizers found
in the PaGMO library (Biscani and Izzo, 2019). PaGMO (C++) or PyGMO (Python) is a sci-
entific library for massively parallel optimization. It offers a wide range of global and local
optimizers, as well as well-known test problems. We have made use of this library for both the
global optimization techniques and various test problems. PaGMO and PyGMO are typically
used for solving constrained, unconstrained, continuous and integer, single-objective and
multiple objective optimization problems. Whenever new algorithms had to be implemented
1https://naif.jpl.nasa.gov/naif/spiceconcept.html, date of access: August 2019
2https://esa.github.io/pykep/documentation/trajopt.html, date of access: August 2019.

https://naif.jpl.nasa.gov/naif/spiceconcept.html
https://esa.github.io/pykep/documentation/trajopt.html

6.2. External Software 71

(e.g. ACOmi, MHACO, and NSPSO) or new test problems had to be tested (e.g. WFG), which
were not available in PaGMO, it was decided to integrate these methods within the software,
so that future researchers can also use them in their work. PaGMO is indeed developed in a
full Free/Libre and Open-Source Software (FLOSS) philosophy. This means that the source
code is openly shared and available and people are encouraged to contribute to the PaGMO
project. Of course, there are several tests and verification procedures that have to be under-
gone before new optimization algorithms or test problems are implemented. This can be a
downside, as it requires a lot of testing and debugging time, however, it has resulted to be
extremely useful in our study, as it has allowed us to thoroughly verify and validate all the
newly implemented methods. This software was conceived by the ACT and it has been exten-
sively used for space applications (Izzo, 2010), (Izzo, 2007), (Vinkó and Izzo, 2008), (Biscani
et al., 2010).

PaGMO provides a long list of optimizers3 and test problems4. Each optimizer requires
several input parameters:

1. A box-bounded optimization problem (which can typically be mixed-integer, constrained
or unconstrained, single-objective or multi-objective, depending on the type of optimiz-
ers to be used).

2. The dimension of the continuous search space (i.e., continuous variables’ dimension).

3. The dimension of the integer search space (i.e., integer variables’ dimension).

4. The number of objective functions.

5. The number of equality constraints.

6. The number of inequality constraints.

7. The lower and upper bounds of each variable.

Besides, each optimizer requires a set of specific input parameters: their choice was per-
formed in two manners. In some cases, these parameters were selected based on the sugges-
tions of the authors of these algorithms (whose formulation and original papers are referred
to in Appendix C). In some other cases, if this information was not available or if better sets of
input parameters were found, these input parameters were changed during the verification
and validation phase. In particular, in case an algorithm was clearly outperformed by the
others, its input parameters were modified in an attempt to improve its performances. The
test problems solved in the verification and validation phase and the performances of the
algorithms on these tests can be further analyzed in Appendix B.

As a result of the aforesaid two strategies, the input parameters for all the SO and MO
algorithms available in PaGMO were selected. We will now list their values, for each of the im-
plemented methods. In particular, concerning artificial bee colony (ABC) only the maximum
number of trials for abandoning a source has to be chosen. This was set to 20.

Conversely, when considering the simple genetic algorithm (SGA), the following parame-
ters were chosen:

1. 𝐶𝑅: crossover probability. This was set to 0.9.

2. 𝑚: mutation probability. This was set to 0.02.

3. 𝑝 : mutation strategy. This was set to polynomial mutation.

4. 𝑝 : selection strategy. This was set to be tournament selection.

5. 𝑝 : crossover strategy. This was chosen to be exponential.

6. 𝐷𝐼: distribution index. This was set to be 1.
3https://esa.github.io/pagmo2/docs/algorithm_list.html, date of access: August 2019.
4https://esa.github.io/pagmo2/docs/problem_list.html, date of access: August 2019.

https://esa.github.io/pagmo2/docs/algorithm_list.html
https://esa.github.io/pagmo2/docs/problem_list.html

72 6. Software

7. 𝑆𝑇: tournament size. This was set to be 2.

Regarding the particle swarm optimizer (PSO), the following parameters were selected:

1. 𝜔: particles’ inertia weight. This was set to 0.7298.
2. 𝜂 : magnitude of the force applied to the particle’s velocity, in the direction of its previous

best position. This was set to 2.05.

3. 𝜂 : magnitude of the force applied to the particle’s velocity in the direction of the best
position in its neighborhood. This was set to 2.05.

4. 𝑉 : maximum allowed particle velocity, as a fraction of the box-bounds. This was set
to 0.5.

5. 𝑁: neighborhood parameter, which handles the width of the neighborhood, for each
particle. This was set to 4.

Moreover, for the differential evolution optimizer (DE), the following parameters were chosen:

1. 𝐹: weight coefficient. This was set to 0.8.
2. 𝐶𝑅: crossover probability. This was set to 0.9.

While for the self-adaptive variants of DE (i.e., SADE and DE1220), the parameters are self-
tuned and do not need to be set by users.

Concerning theMO optimizers, PaGMOmakes available two different algorithms: MOEA/D
and NSGA-II. In the first case, the following input parameters were chosen:

1. 𝑊𝐺: weight generation. Method used to generate the weights. In our case, the weights
are generated using the ”grid” method.

2. 𝐷: decomposition method. This was set to be Chebyshev.

3. 𝑁: size of weight’s neighborhood. This was set to be 20.
4. 𝐶𝑅: crossover parameter. This was set to be 1.

5. 𝐹: parameter for the differential evolution operator. This was set to 0.5.

6. 𝜂 : distribution index used for polynomial mutation. This was set to 20.

7. 𝑃: probability that the neighborhood is considered at each generation, rather than the
entire population. This was set to 0.9.

8. 𝐿: maximum number of copies reinserted in the population. This was set to 2.

Whereas concerning the NSGA-II algorithm, the following input parameters were selected:

1. 𝐶𝑅: crossover probability. This was set to 0.95.
2. 𝜂 : distribution index for crossover. This was set to 10.

3. 𝑚: mutation probability. This was set to 0.01.

4. 𝜂 distribution index for mutation. This was set to 50.

The output of all these optimizers consist of the population of individuals throughout the
generations, together with their objective functions and constraint violations values.

This research has extensively contributed to PaGMO’s software, by implementing a new
single objective ant colony optimizer5 (i.e., ACOmi), a multi-objective test-suite6 (i.e., WFG),
a completely new MO ant colony optimizer 7 (i.e., MHACO), as well as a MO particle swarm
optimizer8 (i.e., NSPSO).
5https://esa.github.io/pagmo2/docs/cpp/algorithms/gaco.html#_CPPv4N5pagmo4gacoE, date of access:
August 2019.

6file:///Users/giacomoacciarini/Develop/pagmo2/doc/sphinx/_build/html/docs/cpp/problems/wfg.
html#_CPPv4N5pagmo3wfgE, date of access: August 2019.

7https://github.com/esa/pagmo2/pull/326, date of access: August 2019.
8https://esa.github.io/pagmo2/docs/cpp/algorithms/nspso.html, date of access: September 2019.

https://esa.github.io/pagmo2/docs/cpp/algorithms/gaco.html#_CPPv4N5pagmo4gacoE
file:///Users/giacomoacciarini/Develop/pagmo2/doc/sphinx/_build/html/docs/cpp/problems/wfg.html#_CPPv4N5pagmo3wfgE
file:///Users/giacomoacciarini/Develop/pagmo2/doc/sphinx/_build/html/docs/cpp/problems/wfg.html#_CPPv4N5pagmo3wfgE
https://github.com/esa/pagmo2/pull/326
https://esa.github.io/pagmo2/docs/cpp/algorithms/nspso.html

6.3. Numerical Methods 73

6.3. Numerical Methods
In this section, we will discuss a trade-off for the numerical methods used in this research. In
particular, we will first benchmark the propagator to be used, in Section 6.3.1. Afterwards,
in Section 6.3.2, we will also discuss the reason why a Runge-Kutta Fehlberg technique has
been chosen as the integrator scheme.

6.3.1. Propagator Selection
Numerical integration has started to play a pivotal role in solving the orbital mechanics prob-
lem, in favor of analytics and semi-analytics techniques, which were used in the past. How-
ever, through the transformation of the state variables in the equations of motion, it is pos-
sible that the overall dynamical stability of the integration is improved and better results
are obtained. In particular, by expressing the differential equations as r̈rr = ∑FFF/𝑚 we usually
assume that Cartesian state variables (i.e., Cowell propagator) will be used for propagating
the orbit. However, these are just one out of many possible formulations: there are many
equivalent representations to express the dynamics. Although these other representations
are equivalent, some of them may bring advantages with respect to the others (e.g. in terms
of accuracy of the solution, or efficiency of the computation, or stability: i.e., singularities
are avoided). Hence, it is worthy to discuss different propagation schemes and their advan-
tages and disadvantages. Usually, Cartesian coordinates are used for their simplicity and
numerical properties, but also other formulations exist, which can become more attractive
for certain kinds of problems. Some of the most popular propagation schemes for space
applications are:

1. Cowell.

2. Encke.

3. Kepler elements.

4. Modified equinoctial elements.

5. Unified state model.

All these propagators make use of the sets of state variables discussed in Section 3.2.
Every propagation scheme can be developed starting from the general formulation of the

equations of motion as:
𝑑xxx
𝑑𝑠 = fff(xxx, 𝑠;ppp,uuu) (6.1)

where xxx is the state variables vector; 𝑠 is the independent variable (which is usually the
time 𝑡); ppp are the environmental parameters (e.g. the gravitational parameter); and uuu are the
control parameters. The choice of the propagation scheme influences the state variables xxx
and the independent variable 𝑠.

The first propagation scheme, and the most straightforward one is the Cowell propagator,
which makes use of the Cartesian elements as state variables, and the time as the inde-
pendent variable (i.e., xxx = (rrr , ṙrr) and 𝑠 = 𝑡). For very long and perturbed missions its
large values for the state derivative and its variations make difficult to adapt the time step
and make the method subject to large numerical error. Nevertheless, due to its robustness
(i.e., it is singularity free) and simplicity, it will be used as a benchmark for the propagator
selection.

The Encke propagator selects as independent variable the time and as dependent variable
the variation from a perturbed and an osculating orbit (i.e., xxx = (Δrrr , Δṙrr) and 𝑠 = 𝑡). The
Encke propagator brings some advantages with respect to Cowell: the state derivative and
their variations are now small. However, the method loses its advantages over time when
Δrrr becomes of similar magnitude to rrr. Also, the mathematical representation of the differ-
ential equations is more complex. Hence, we understand that for very long and perturbed
simulations (such as our solar sailing mission), this method presents drawbacks, which can
seriously compromise the results: we thus exclude this method from our propagators’ choice.

74 6. Software

Another possibility is to use the Keplerian elements: in this case, the true anomaly is the
only element that varies fast during the propagation, whereas the other elements are usually
subject to slower variations. However, although this representation mostly solves the issues
of the aforesaid propagators, it is not singularity free. Indeed, there are singularities not only
for 𝑒 = 0 and 𝑖 = 0, but also for hyperbolic orbits at large distances. For this reason, also this
propagator is discarded for our case.

Starting from this set of Keplerian elements the orbital elements have been reformulated
to prevent singularities. This has led to another propagator scheme: modified equinoctial
elements (MEE). This formulation, together with the unified state model (USM) seems to be
quite attractive for the optimization of solar sailing missions. Both of these techniques use
time as an independent variable. Also, three different types of USM exist. In Section 3.2, the
state variables corresponding to each of these propagators are introduced and discussed.
Furthermore, in Appendix A the four possible representations of the equations of motion
using the three types of USM and the MEE propagators are mathematically discussed.

In this section, we limit ourselves in doing a trade-off for testing the three USM prop-
agators and the MEE propagator against Cowell. In Mooij (2012), USM, MEE, and Cowell
were compared for a solar sailing polar mission. The objective of the paper was to assess
the advantages and disadvantages of these methods, in terms of accuracy and computation
time.

In particular, these three methods were compared for the same solar sailing polar mission
described by Candy (2002), and they were assessed for a model in which an evolutionary algo-
rithm is used as optimizer, and both SO and MO optimizations are tested. This long duration
low-thrust mission, which also makes use of an optimizer, is ideal for testing these propa-
gators in terms of CPU load, number of function evaluations and accuracy of the results.
Minimizing the CPU load per each run can bring significant enhancements: we would gain
a lot of time to be used for tuning the optimizer, for instance. This low-thrust mission has
indeed a duration around 10 years, and thus the CPU time is in general large (i.e., around
twenty seconds per function evaluation). The MEE has turned out to have a superior perfor-
mance w.r.t. Cowell in terms of stability. Indeed, the integration could continue from four up
to ten times longer than the Cartesian model before the solution starts to deviate. The USM
model has demonstrated to be exceptionally better than the Cartesian elements in terms of
CPU time (usually one order of magnitude lower): this makes the USM very appealing for
these kinds of optimization problems.

The results found in Mooij (2012) were found by using the same optimization method, and
by testing four types of integration methods of the Runge-Kutta Fehlberg family

It is clear that these results heavily depend on the environment, integration, guidance and
optimization models used. Therefore, although the missions are similar, slight variations
in these models can cause the results to deviate. For these reasons, we have decided to
perform this trade-off again, by applying it to the solar-sail mission with the geocentric and
heliocentric phases optimized concurrently. Furthermore, it was decided to compare the
propagators for a single-objective mission using the Delta-V Strategy (already introduced and
discussed in Chapter 5). The ACOmi optimizer was used for optimizing each of these missions
with different propagators, whereas the chosen integrator was Runge-Kutta Fehlberg 56 for
all the runs, with an integration tolerance of 10 for the geocentric phase and 10 for the
heliocentric phase.

The different propagators are confronted in an optimization framework where 100 indi-
viduals are evolved over 40 generations. The quality of the solutions in terms of constraints
violations and fitness minimization when the different propagators are used will be analyzed.
Also, a study of the different time required for running the optimization with a different prop-
agator will be carried out, as well as an analysis of the number of final best solutions provided
by each propagator.

In Figure 6.8, the Pareto fronts are shown for the best individuals over three runs. As can
be seen, the results are plotted in a 2-dimensional graph in which the x-axis represents the
Δ𝑉 (i.e., the constraint violation value in the final orbit), whereas the y-axis the time of flight
(in Julian Days). Also, in the figure, we referred to the USM with quaternions as USM7, to
the USM with exponential mapping as USM6e and to the USM with Rodrigues parameters

6.3. Numerical Methods 75

0 500 1000 1500 2000 2500 3000 3500 4000 4500

DeltaV [m/s]

2000

2200

2400

2600

2800

3000

F
it
n

e
s
s
 [

d
a

y
s
]

Cowell
MEE
USM7
USM6e
USM6
MEE + USM6

100 200 300

2150

2200

2250

1000 1500 2000

2100

2150

Figure 6.8: Pareto fronts of the best of all the three runs.

Table 6.1: Propagator trade-off: CPU time (i.e., Time), average number of best individuals (i.e., N) and their feasibility
ratio (i.e., Feasibility).

Cowell MEE USM7 USM6e USM6 hybrid Units
Time 26 18 27 31 29 20 [h]
N 13 8 8 9 11 9 [-]

Feasibility 85.9 100 89 100 97 100 [%]

as USM6. We can use this figure to compare and discuss the performances of the different
propagators. However, this information has to always be coupled with the time required
for each propagator to perform the optimization. This information is displayed in Table 6.1.
There, the mission with two different propagators (i.e., MEE for the geocentric phase and USM
Rodrigues for the heliocentric phase) is referred to as ”hybrid”. Moreover, the time represents
the average wall clock time over three runs. Together with the time information, in the table
we can also observe the average number of individuals that belong to the best Pareto fronts
and their average feasibility ratio (i.e., ratio between number of feasible individuals and the
total number of individuals, where the feasibility is established depending on whether the
solution violates the final time constraint or not). Moreover, it has to be considered that only
the individuals that managed to complete the orbit were considered for the statistics: this
means that all the individuals that could not escape the Earth or crashed in any celestial
body were excluded, as they also represent infeasible individuals. In particular, it was found
that 25% of the overall individuals managed to complete the mission for MEE, USM7, USM6e
and the hybrid one, and around 30% for Cowell and USM6.

As can be seen, the best propagator in terms of time is the MEE, with nearly half of the time
w.r.t. the worst (i.e., USM6e). The only other propagator that is competitive with this time
is the hybrid one, with only two hours more required, which corresponds to an approximate
increase of 10%. However, by looking at the Pareto fronts, the situation is slightly different,
and it results in a bit more difficult to identify a clear winner. When the best results over
three runs are compared, we notice that the hybrid propagator explores the domain in the
most spread out way, although it does not reach the minimum values of Δ𝑉 as USM6 and
USM7. The USM6e seems to be the worst also in this case: its front, indeed, not only results
to be the worst in terms of spread but also the worst in terms of Pareto points (i.e., all its
points result to be dominated by other propagators except for one). By inspection, the USM6
propagator seems to be the best in terms of Pareto front (i.e., almost all its points seem to
be Pareto dominant w.r.t. the other fronts), with the only exception of high Δ𝑉, where its
performances seem to be outweighed by MEE.

If we compare the number of Pareto individuals and their feasibility ratios (shown in Ta-
ble 6.1), we observe that the Cowell propagator and the USM6 propagator have the highest
average number of Pareto individuals per run. However, the average feasibility value of the

76 6. Software

Cowell propagator is around 85%, which means that only 8.5 out of 10 of those Pareto points
can actually be seen as such since the others violate the final time constraint and are thus
not feasible solutions.

In conclusion, inspecting the Pareto fronts in Figure 6.8, and by looking at the numbers
in Table 6.1, we can conclude that the best propagators for such a mission (considering not
only the best individuals in the front but also the time required for running the optimization
with different propagators) are USM6 and MEE. Another interesting candidate could also be
the hybrid propagator, however, its Pareto fronts’ shapes, as well as its number of Pareto
individuals, do not seem to add strong advantages to the MEE propagator, which would
justify the increased wall-clock time. Moreover, comparing USM6 and MEE, we can observe
that their overall best Pareto fronts are very similar and a clear winner cannot be identified.
The USM6 is able to find more Pareto fronts individuals, although the MEE has a smaller
wall-clock run time (18 hours against 29).

All things considered, we have decided to use the MEE as a propagator for all the runs
of the mission. Indeed, the performances of the other propagators do not seem to bring
significant advantages that would justify longer simulation times. Therefore, this propagator
will be used for all our optimization runs discussed in Chapter 7, unless otherwise stated.

6.3.2. Integrator Selection
Once the equations of motion are set-up, we need to solve them. To do this, we need nu-
merical techniques to integrate the state derivative: ẋxx = fff(xxx, 𝑡). Since we will perform this
operation numerically, assuming that yyy is the analytical solution and yyy is the numerical so-
lution, we will always have a residual error 𝜀𝜀𝜀 = yyy − yyy. Our objective is to select numerical
integrators able to reduce as much as possible this error, while still maintaining the compu-
tational effort limited. The following integration methods represent the most popular choices
for space applications:

1. Runge-Kutta (RK) variable step-size integrator.

2. Adams-Bashforth (AB) variable step-size/order integrator.

3. Bulirsch-Stoer (BS) variable step-size integrator.

First of all, the Adams-Bashforth integrator was excluded. Indeed, it has the natural tendency
to lower the step-size during the integration, and this prevents it to integrate accurately
high eccentric orbits (usually, this method is used for very low or moderate eccentric orbits)
(Montenbruck and Gill, 2012). Since in our case we are dealing with orbits that can range
from 𝑒 = 0 to 𝑒 > 1 we have to discard this method.

We are thus left with two different integration schemes: either a Runge-Kutta variable
step-size integrator or a Bulirsch-Stoer variable step-size integrator. Research by Mooij
(2012), has discussed a thorough trade-off between four different RK variable step-sizes in-
tegrators (i.e., RK Fehlberg 4(5), RK Fehlberg 5(6), RK Fehlberg 6(7) and RK Fehlberg 7(8)):
in such a benchmark study, different relative and absolute integration tolerances have been
tested and studied for a solar sailing polar mission. Due to the similarities of such a mission
to our problem, we have thus decided to take this study as a baseline for the selection of our
integration scheme. Besides, the BS method does not result to be ideal for problems that are
either stiff or non-smooth and for differential equations that have singular points inside the
interval of integration. Although almost all our propagator schemes do not have robustness
problems (i.e., no singular points), the smoothness of the problem is not ensured and we
thus prefer an RK Fehlberg technique, which is more stable for such problems (Kiusalaas,
2013).

All things considered, we have thus decided to select the RKF 5(6) integration scheme:
this method, according to Mooij (2012), has demonstrated to have favorable properties for
this particular type of mission. In particular, for balancing between function evaluations and
accuracy, the RKF 5(6) method was chosen with a relative integration tolerance of 10 for the
geocentric phase and 10 for the heliocentric phase, while the maximum step-size was left
free to vary between 10 and 10 s, as this was pointed out to be more advantageous. This

6.4. Verification and Validation 77

integration scheme and its setting are available for the use in Tudat and have been employed
for this whole research study. In the following section, the description of the Runge-Kutta
Fehlberg scheme will be presented.

Runge-Kutta Fehlberg Methods
Among the Runge-Kutta methods, there are a number of methods called adaptive. These
produce an estimate of the local truncation error for a single step, for changing the step-size
as desired. Hence, the working principle of these methods is to change the step-size based
on an error evaluation at each step. The integration procedure of these methods can be
represented as follows:

xxx∗ = xxx + ℎ∑𝑏∗kkk (6.2)

where the time is discrete and each time step can be related to the previous one as: 𝑡 =
𝑡 +ℎ and where xxx and xxx are the state vectors at the times 𝑡 and 𝑡 , respectively. For
integrating the equations, it is enough to have the initial conditions xxx , since the kkk factors
can be written as:

kkk = fff(𝑡 ,xxx)
kkk = fff(𝑡 + 𝑐 ℎ, xxx + ℎ(𝑎 kkk))
...
kkk = fff(𝑡 + 𝑐 ℎ, xxx + ℎ(𝑎 kkk + 𝑎 kkk + ... + 𝑎 , kkk))

(6.3)

Moreover, the error can be computed as:

eee = xxx − xxx∗ = ℎ∑(𝑏 − 𝑏∗)kkk (6.4)

where the 𝑐 , 𝑎 , , 𝑏 and 𝑏∗ coefficients have known values that can be found in the original
article where these methods were introduced (Fehlberg, 1964).

6.4. Verification and Validation
In this thesis study, the verification and validation (V&V) of the implemented software was
done at two levels. First of all, each unit was verified separately. Furthermore, also the
whole integrated system was verified. This was done for both the simulation model and the
optimization procedure. All the methods and results of the verification and validation phases
are discussed and presented in Appendix B. Concerning the simulation model, the purpose of
the V&V phase was to make sure that all the implemented models were working as expected:
for doing this, we have first checked that each unit of the simulation model was producing the
expected results (for instance, we checked that the generated solar radiation pressure force
was correct and that the software was free of bugs). Moreover, we have also validated the
integrated system by reproducing the entire mission scenario of a previously studied solar
sailing polar mission to the Sun.

Furthermore, concerning the optimization procedure, we first verified that the imple-
mented methods were free of bugs and that the algorithms were fully covered by the tests.
Afterwards, we also made sure that the performances of the implemented algorithms were
not clearly outperformed by other popular and already verified optimization algorithms (e.g.
differential evolution, genetic algorithms, etc.). By doing so, we have also tweaked and tuned
both the standard algorithms and the implemented ones. This has allowed us to establish a
set of competitive input parameters for all the implemented algorithms used in this research,
over all the studied test problems. In this way, when optimizing the mission of our interest,
we were able to use the results of the V&V phase in the choice of the input parameters.

78 6. Software

Chapter 7

Results
In this chapter, we will present and comment on the results of this thesis study. In particular,
we will first discuss the algorithms tuning strategy, in Section 7.1. We will then apply the
knowledge derived from this to perform optimizations of both the single-objective and multi-
objective formulations of the solar sailing polar mission, introduced in Chapter 5. This is
done in Sections 7.2 and 7.3, respectively. In particular, we will analyze and benchmark
different orbits coming from different problems and solved various optimization algorithms.
This will be done not only for both single and multi-objective types of mission but also for the
geocentric and heliocentric phases both separately and together. Furthermore, a Monte Carlo
local refinement will be performed and discussed for each optimized problem to understand
whether nearby solutions can further improve the best results. Then, in Section 7.4, the
random seed influence on the optimization results will be addressed. Finally, the optimal
trajectory will be discussed in Section 7.5, by not only showing the trajectory to be flown but
also displaying the evolution of some key variables during the sail journey to the Sun.

7.1. Algorithm Tuning
In this research study, three new algorithms were introduced: ACOmi, MHACO, and NSPSO.
While NSPSO has been almost entirely derived from literature. However, the other algo-
rithms have been developed in this thesis study and the choice for the values of their input
parameters has to be discussed. Hence, while NSPSO requires a little tuning (only on those
parameters that have not been subjected to previous studies), the other two algorithms re-
quire a more thorough investigation. In the following sections, we will deal with the tweaking
and tuning of all these three methods. The problem in which these algorithms will be tested
is the solar-sail problem of our interest. In details, we will first discuss the ACOmi tuning in
Section 7.1.1, for then tackling the MHACO and NSPSO tuning in Sections 7.1.2 and 7.1.3,
respectively. This study will be particularly useful for our research, as it will allow us to
establish a set of input parameters to be used for optimizing the solar sailing polar mission
and benchmark its optimization results against other well-known algorithms. A thorough de-
scription of both the single and multi-objective solar-sail problems used in the thesis study
can be found in Section 5.4.

7.1.1. ACOmi Tuning
As we have already pointed out in Chapter 5, the ACOmi algorithm has several input pa-
rameters that can be chosen. Some parameters pertain to the convergence speed (i.e., 𝑞,
𝑁𝐺𝑒𝑛𝑀𝑎𝑟𝑘, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑): their values, in principle, should be tweaked and tuned, however,
since these parameters have been introduced in this research and have been thoroughly
studied in several test problems discussed in Appendix B, we have come to the conclusion
that their values can be kept fixed at 𝑁𝐺𝑒𝑛𝑀𝑎𝑟𝑘 = 7, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 25 and 𝑞 = 1.0. Also, the
𝑓𝑜𝑐𝑢𝑠 parameter has been maintained fixed at 0. We are thus left with only three parameters
to tweak: 𝑘𝑒𝑟, 𝑜𝑟𝑎𝑐𝑙𝑒 and 𝑎𝑐𝑐. Two of these parameters (i.e., 𝑘𝑒𝑟 and 𝑜𝑟𝑎𝑐𝑙𝑒) were introduced
in the original formulation of the extended ant colony optimizer (Schlüter, 2012). As reported
there, the 𝑜𝑟𝑎𝑐𝑙𝑒 parameter should preferably be chosen as near as possible to the global op-
timum. Whenever this global optimum is not known, it should be chosen to be equal to 10 .
In our case, we do not precisely know the location of the global optimum. However, we know
from previous studies that a total geocentric time of flight of 230 Julian days should be near
the global optimum (Candy, 2002), (Garot, 2006), (Spaans, 2009). We have thus decided
to perform a benchmark study where an optimization with an oracle parameter of 230 JD

79

80 7. Results

0 10 20 30 40 50

Gen [-]

240

260

280

300

320

M
in

 F
it
n

e
s
s
 (

a
v
e

ra
g

e
)

[J
D

] 230 JD
1e9

38 40
242
244
246
248

(a) Average fitness for 100 individuals and 40 gen-
erations.

0 10 20 30 40 50

Gen [-]

220

240

260

280

300

320

M
in

 F
it
n

e
s
s
 (

b
e

s
t)

 [
J
D

]

38 40

232
234
236
238

(b) Best fitness for 100 individuals and 40 gener-
ations.

Figure 7.1: Average and best fitness values for two different oracle parameters.

0 10 20 30 40 50

Gen [-]

240

260

280

300

320

M
in

 F
it
n

e
s
s
 (

a
v
e

ra
g

e
)

[J
D

]

39 40 41

244

246

248

(a) Average fitness for 100 individuals and 40 gen-
erations.

0 10 20 30 40 50

Gen [-]

220

240

260

280

300

320

M
in

 F
it
n

e
s
s
 (

b
e

s
t)

 [
J
D

]

acc=0.01
acc=0

38 40 42
237

238

239

(b) Best fitness for 100 individuals and 40 gener-
ations.

Figure 7.2: Average and best fitness values for two different accuracy parameters.

was compared with another one with an oracle parameter of 10 JD. In Figure 7.1, we show
the best and average fitness values as a function of the generation number. Each optimizer
was run with a fixed set of input parameters: 𝑘𝑒𝑟 = 100, 𝑎𝑐𝑐 = 0.0, 𝑞 = 1, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 25,
𝑁𝐺𝑒𝑛𝑀𝑎𝑟𝑘 = 7, 𝑓𝑜𝑐𝑢𝑠 = 0. Also, each run was performed three times with three controlled
seeds, so that the randomness could be removed and the optimizers could start from the
same initial population. The results in the figure are representative of the best and average
over three runs.

As we can see, the advantages of choosing a smaller oracle parameter (i.e., closer to the
global optimum) are evident: runs with an oracle parameter of 230 JD not only reach the
best and average minimum fitness overall, but they also are almost always below the curve of
the high oracle parameter, meaning that they even reach the best values with fewer function
evaluations. In our thesis study, we have thus decided to keep the oracle parameter to 230
JD.

Similarly to what has been done for the oracle parameter, we have decided to implement a
similar tuning strategy for the accuracy parameter. This parameter, as explained in Section
5.3.2, regulates the distance between penalty function values stored in the archive. We are
thus interested to see whether the removal of such distance (i.e., setting 𝑎𝑐𝑐 = 0) could be
helpful to our case, or if a certain distance shall be maintained. We have thus checked the
average and best fitness progression of two optimization algorithms: one with 𝑎𝑐𝑐 = 0 and
another one with 𝑎𝑐𝑐 = 0.01. The other input parameters were selected to be: 𝑘𝑒𝑟 = 100,
𝑜𝑟𝑎𝑐𝑙𝑒 = 10 , 𝑞 = 1, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 25, 𝑁𝐺𝑒𝑛𝑀𝑎𝑟𝑘 = 7, 𝑓𝑜𝑐𝑢𝑠 = 0. Each algorithm was run three
times with three controlled seeds. The best and average results are shown in Figure 7.2

Although the best overall value is found for 𝑎𝑐𝑐 = 0.01 (i.e., 237.93 JD against 238.07
JD), the average runs with 𝑎𝑐𝑐 = 0 show a better convergence behavior both in terms of
convergence speed and average minimum value. Also, their absolute minimum value is not

7.1. Algorithm Tuning 81

0 10 20 30 40 50

Gen [-]

240

260

280

300

320
M

in
 F

it
n

e
s
s
 (

a
v
e

ra
g

e
)

[J
D

]

36 38 40

244

245

246

(a) Average fitness for 100 individuals and 40 gen-
erations.

0 10 20 30 40 50

Gen [-]

220

240

260

280

300

320

M
in

 F
it
n

e
s
s
 (

b
e

s
t)

 [
J
D

]

ker=30
ker=50
ker=75
ker=100

38 40

234

236

238

(b) Best fitness for 100 individuals and 40 gener-
ations.

Figure 7.3: Average and best fitness values for four different solution archive sizes.

very far and is within a 0.5 JD distance. For all these reasons, we have decided to select an
accuracy value of zero (i.e., 𝑎𝑐𝑐 = 0) for our research.

Finally, we also tuned the 𝑘𝑒𝑟 parameter to see what is the value that performs the best
in terms of fitness (i.e., time of flight). We have benchmarked four different 𝑘𝑒𝑟 values: 30,
50, 75, 100. The average and best results over three runs with controlled seeds are shown
in Figure 7.3.

As we can observe, the results with 𝑘𝑒𝑟 = 100 are the best in terms of the best fitness and
the second best in terms of average fitness. Nevertheless, we cannot establish a clear winner
both in terms of the best fitness values and convergence speed to reach these values. Indeed,
lower 𝑘𝑒𝑟 sizes seem to reach lower fitness values faster, but they also seem to get stuck more
easily. This behavior could be foreseen as lower 𝑘𝑒𝑟 sizes mean that the algorithm will focus
more on generating new individuals around a few best ones. This will, of course, boost the
convergence speed while weakening the diversity. It will thus be easier to get stuck in local
minima, but it will also be easier to converge faster towards a certain minimum.

All things considered, we have thus decided to prefer a 𝑘𝑒𝑟 size of 100, which corresponds
to be the same as the population size. Therefore, as a general rule for this research, we will
always maintain a solution archive size as big as the population size (e.g. if population size
is 200, then 𝑘𝑒𝑟 = 200).

7.1.2. MHACO Tuning
In this section, we will discuss how we tweaked and tuned the input parameters of the MO
MHACO algorithm. In principle, each optimization problem requires input values to be cho-
sen accordingly. However, this often means very long computation time as the problem has
to be run over and over for each different input set. Therefore, very often the user prefers self-
adaptive algorithms (i.e., algorithms that can adapt their input parameters throughout the
optimization process) or algorithms where little tweaking and tuning are required. Although
MHACO has been tested on several problems, and its capabilities have been thus studied in
diverse sets of problems (which are presented in Appendix B), it is still a new algorithm and
we thus do not know whether its input parameters have to be thoroughly adjusted for each
problem, or if little changes have to be made. Thus, we have decided to use the knowledge
acquired from the validation tests and some algorithm insights coming from the general con-
struction of the algorithm to narrow down a set of different input parameters to be traded-off
for the solar sailing polar mission. This will help to establish an ideal set of input parameters
for MHACO, which can then be used for when, in Section 7.3, this algorithm will be com-
pared with other MO optimizers in the solar-sail mission. As we have already pointed out in
Section 5.3.3, this algorithm has six input parameters. Most of them have a similar working
principle as those of its single-objective counterpart (i.e., ACOmi). As a matter of fact, for
most of the problems 𝑞 can be set to 1 and the focus parameter to 0. Also, in our case, we
are not interested in stopping the optimization process before the end of the generations, and
we thus do not trigger the 𝑒𝑣𝑎𝑙𝑠𝑡𝑜𝑝 parameter. We are thus left with only three parameters

82 7. Results

Table 7.1: nine tested different sets of input parameters for MHACO algorithm.

Options 𝑁𝐺𝑒𝑛𝑀𝑎𝑟𝑘 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑘𝑒𝑟
Option 1 7 25 popsize
Option 2 10 25 popsize
Option 3 12 25 popsize
Option 4 14 25 popsize
Option 5 12 35 popsize
Option 6 7 35 popsize
Option 7 7 35 20
Option 8 8 35 40
Option 9 8 35 20

Table 7.2: Joint hypervolume values w.r.t. the reference point, for MHACO algorithm with nine different options for
the input parameters.

Options pop= 56 pop=120 pop=220
Option 1 477372.67×10 486743.41×10 472589.17×10
Option 2 478128.68×10 485813.03×10 481644.95×10
Option 3 474189.01×10 485813.03×10 488377.64×10
Option 4 477862.30×10 488159.23×10 486466.86×10
Option 5 468965.80×10 489236.12×10 478474.98×10
Option 6 467075.85×10 473465.33×10 474939.19×10
Option 7 478805.27×10 501915.54×10 500235.87×10
Option 8 484182.78×10 484680.88×10 498216.61×10
Option 9 494756.29×10 499735.20×10 506573.98×10

to tweak: 𝑘𝑒𝑟, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 and 𝑁𝐺𝑒𝑛𝑀𝑎𝑟𝑘. Based on our verification and validation experience
with the algorithm, we have decided to test five different 𝑁𝐺𝑒𝑛𝑀𝑎𝑟𝑘 values and two different
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 values. In particular, 𝑁𝐺𝑒𝑛𝑀𝑎𝑟𝑘 was varied between 7, 8, 10, 12 and 14, whereas
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 was varied between 25 and 35. Furthermore, the 𝑘𝑒𝑟 parameter was set to either
a small number (i.e., 20 or 40) or it was chosen as big as the population size: this was done
because for the SO ant colony optimizer that we developed, when the 𝑘𝑒𝑟 parameter was
traded-off, it was verified that either a small value or the biggest possible (i.e., as big as the
population size) typically perform better. We thus constructed nine different input sets: each
of these is shown in Table 7.1.

Each algorithm was run three times with controlled seeds (for removing randomness and
for having the same initial population set) with three different population sizes (i.e., 56, 120
and 220 individuals). The hypervolume values and the front progressions have been used
to determine the best input parameters for the algorithm among the ones tested. The hy-
pervolume values have been computed on all the three final runs, for each population size.
While the reference point was set to be the same for all the different algorithms and pop-
ulation sizes: so that the results can be comparable for the different population sizes. Its
coordinates have been chosen to be: (500 kg, 3×10 s, 10×10 m/s, 0.001 s), where the first
coordinate represents the sailcraft mass (𝑚), the second the total time of flight (𝑡𝑜𝑓), the third
the final Δ𝑉 and the fourth the final time constraint violation (Δ𝑇). Of course, since the
problem has four objectives, the reference point is four-dimensional.

The results of these nine options in terms of joint hypervolume values of the Pareto-optimal
solutions found with the different population sizes, over three runs, are reported in Table 7.2,
and shown in Figure 7.4.

Also, in Figure 7.5, the best Pareto front individuals number as a function of the number
of generations is shown. This represents an average over the three runs and is plotted for
three different population sizes (i.e., 56, 120 and 220).

By looking at these results, some conclusions can be drawn. First of all, in terms of joint
hypervolume values, Option 9 performs as the best for two population sizes (i.e., 56 and 220),

7.1. Algorithm Tuning 83

60 80 100 120 140 160 180 200 220

Pop Size [-]

4.7

4.8

4.9

5

5.1

J
o

in
t

H
y
p

e
rv

o
lu

m
e

 V
a

lu
e

 [
-]

10
11

op 1
op 2
op 3
op 4
op 5
op 6
op 7
op 8
op 9

Figure 7.4: Graphical representation of the joint hypervolume values reported in Table 7.2. These values are shown
for all the nine options and as a function of the population sizes.

0 5 10 15 20 25 30 35 40 45

Gen [-]

0

5

10

15

20

25

30

35

40

#
 P

a
re

to
 P

o
in

ts

38 40
20

30

(a) 56 individuals and 40 generations.

0 5 10 15 20 25 30 35 40 45

Gen [-]

0

10

20

30

40

50

60

#
 P

a
re

to
 P

o
in

ts
op.1
op.2
op.3
op.4
op.5
op.6
op.7
op.8
op.9

38 40

30

40

50

(b) 120 individuals and 40 generations.

0 5 10 15 20 25 30 35 40 45

Gen [-]

0

10

20

30

40

50

60

#
 P

a
re

to
 P

o
in

ts 38 40

30

40

50

(c) 220 individuals and 40 generations.

Figure 7.5: Average number (over three runs) of Pareto points throughout the generations for nine different MHACO
algorithm input sets. The results are shown as a function of the number of generations.

while for the population size of 120, Option 7 outperforms it, although Option 9 is still the
second and not far from the best hypervolume value. Therefore, the lower the 𝑘𝑒𝑟 values
are, the better the solutions seem to be. However, when looking at the front progression the
results are completely different. Indeed, there it seems that Option 5 performs in the best way
(whereas in terms of hypervolume value is one of the worst for all the population sizes). This
might suggest that the algorithm gets stuck in local optimal fronts in the case of Option 5,
whereas for the other cases the algorithm still keeps searching. As a further step for a future
study, it could be interesting to verify whether this situation changes or stabilizes when the
generations are increased, to also better understand whether the aforesaid hypothesis could
correspond to the truth.

The greatest contributors to the hypervolume values, for the population sizes of 56, 120

84 7. Results

and 220 are the following individuals, respectively: (129.12 kg, 1988 JD, 3543.21 m/s, 0 s),
(178.18 kg, 1972.81 JD, 3543.21 m/s, 0 s) and (129.35 kg, 1975.56 JD, 1335.96 m/s, 0 s). It
has to be noted, however, that the greatest contributors are not necessarily the best solutions.
Indeed, the single contributions also account for how cluttered the points are. A solution that
is located with many others in the front, for instance, will result in a smaller contribution to
the hypervolume w.r.t. another one far away from the others. This means that the greatest
contributor is often a point quite isolated in the front, which does not always result to be
the best for our physical solution. For instance, by looking at the greatest contributors, in
this case, we notice that they all have a quite high Δ𝑉 and mass, but a low 𝑡𝑜𝑓. This is
related to the fact that a few solutions exist with these characteristics in the Pareto-optimal
front. Nonetheless, if we analyze the data of the best front (i.e., the one of Option 9 for 220
individuals), we find, for instance, an individual that has: (104.09 kg, 2076 JD, 97.46 m/s,
0 s). This individual will generate an orbit with nearly 20 kg less mass and an almost perfect
final operational orbit w.r.t. that of the greatest contributor, although it will require nearly
100 more days for reaching that final operational orbit. It is clear that determining which of
these solutions is better depends on the specific characteristics of the problem. Therefore,
a trade-off between the different individuals in the front and their objectives values shall be
made by the mission analysis team. Indeed, it is always useful to look at the entire front while
analyzing and comparing the individuals within that front, rather than taking the greatest
hypervolume contributor as the best solution. This aspect will be treated in more detail in
Section 7.3, where a few candidate best solutions will be selected and benchmarked for the
solar sailing polar mission.

7.1.3. NSPSO Tuning
Similarly to what has been done in Section 7.1.2, we will now tweak and tune the NSPSO
algorithm for figuring out what are the ideal parameters to be used in our optimization pro-
cess. Since this algorithm is only used for MO problems, the tuning phase will be performed
on the solar-sail MO problem discussed in Section 5.4. Nevertheless, before this tuning and
tweaking phase on the solar-sail mission of our interest, the verification and validation of
the algorithm on several MO test problems have been carried out. The results of these tests
are discussed in Appendix B. These tests, together with the theoretical studies coming from
literature, have been pivotal for both having an idea of the possible performances of this al-
gorithm when compared to NSGA-II and MOEA/D, and for understanding how to select the
input parameters of the algorithm, depending on the type and dimension of the problem.

As a consequence, the only NSPSO input parameter that will be tweaked is the employed
diversity strategy. As explained in Section 5.1.2.1, this algorithm has three possible strate-
gies to be chosen: niche count, crowding distance and maxmin function. Each of these will
substantially change the algorithm behavior: for our problem, it is thus important to un-
derstand which one performs the best. As far as concerns the other parameters (i.e., 𝜔, 𝜒,
𝜂 , 𝜂 , 𝑉 , 𝐿𝑆𝑅): their value has been chosen either according to the original paper where
NSPSO was introduced and discussed or according to the results we obtained from the test
problems. The input parameters used for this benchmark study are: 𝜔 =0.4, 𝜒 =1.0, 𝜂 =2.0,
𝜂 =2-0, 𝑉 =0.5, 𝐿𝑆𝑅 =50.

For tweaking the three different diversity strategies used, we followed the same method-
ology used for MHACO: we monitored the front progression and the hypervolume values of
these algorithms when they are run with three population sizes (i.e., 56, 120 and 220). Each
population size is run three times, with three different controlled seeds: so that the ran-
domness is canceled and the initial populations of each algorithm with different diversity
strategies are always the same when the seed is the same. The average (over three runs)
front progressions for the three population sizes are shown in Figure 7.6. While in Table
7.3 the joint hypervolume computations are shown for all the population sizes and algorithm
strategies. In particular, these hypervolume values have been computed for all the three final
population sets of each population size and each strategy.

Also, the reference point has been chosen to be the same for all the different algorithms
and population sizes: so that the results can be comparable also across different population
sizes. The reference point is set to be the following: (500 kg, 3 × 10 s, 5000 m/s, 0.001 s),

7.1. Algorithm Tuning 85

0 5 10 15 20 25 30 35 40 45

Gen [-]

0

5

10

15

20

#
 P

a
re

to
 P

o
in

ts

(a) 56 individuals and 40 generations.

0 5 10 15 20 25 30 35 40 45

Gen [-]

0

5

10

15

20

25

#
 P

a
re

to
 P

o
in

ts

NSPSO (nc)
NSPSO (cd)
NSPSO (maxmin)

(b) 120 individuals and 40 generations.

0 5 10 15 20 25 30 35 40 45

Gen [-]

0

5

10

15

20

25

30

#
 P

a
re

to
 P

o
in

ts

(c) 220 individuals and 40 generations.

Figure 7.6: Average number of Pareto points throughout the generations for NSPSO algorithm with three different
diversity strategies (niche count, crowding distance, maxmin function).

Table 7.3: Joint hypervolume values w.r.t. the reference point, for NSPSO algorithm with three different diversity
strategies (niche count (NC), crowding distance (CD), maxmin function (MaxMin)).

Diversity Strategy pop= 56 pop=120 pop=220
NC 210216.75×10 228613.80×10 220412.32×10
CD 220412.32×10 219146.81×10 224427.84×10

MaxMin 211557.15×10 220291.27 ×10 223243.22×10

where the first coordinate represents the sailcraft mass (𝑚), the second the total time of flight
(𝑡𝑜𝑓), the third the final (Δ𝑉) and the fourth the final time constraint violation (Δ𝑇).

As we can see from the hypervolume values, the NSPSO algorithmwith niche count has the
overall best performance, which happens for 120 individuals, but it is outperformed by the
other two diversity strategies when looking at the 56 and 220 population sizes alone. Indeed,
for both 56 and 220 individuals, NSPSO with crowding distance performs in the best manner.
Furthermore, we observe a generally improving trend (in terms of hypervolume values) when
the population size is increased, although this is not always true (e.g. NSPSO with crowding
distance worsens from 56 to 120 individuals). The individual that contributes the greatest
to the hypervolume for NSPSO with niche count and 120 individuals is the following: (𝑚 =
104 kg, 𝑡𝑜𝑓 = 2202.63 JD, Δ𝑉 = 114.43 m/s, Δ𝑇 = 0 s). While if we check the greatest
contributors for the highest hypervolume values of both 56 and 220 individuals (which are
both generated by NSPSO with crowding distance), we find the following two points: (𝑚 =
197.55 kg, 𝑡𝑜𝑓 = 2426.04 JD, Δ𝑉 = 119.61 m/s, Δ𝑇 = 0 s) and (𝑚 = 104 kg, 𝑡𝑜𝑓 = 2543.93
JD, Δ𝑉 = 97.453 m/s, Δ𝑇 = 0 s), respectively.

When confronting the average Pareto fronts progressions (over three runs), the NSPSO
with crowding distance seems to perform very well. Indeed, as we can see from Figure 7.6,
it always reaches the highest final numbers of Pareto points values (as it happens for 120
and 220 individuals), or the second highest (as it happens for 56 individuals). Also, it seems
to be the algorithm that increases more steadily the number of Pareto points throughout the
generations, while the others either display a more accentuated wobbling, or they lose their

86 7. Results

Table 7.4: Optimizers trade-off in the geocentric phase (for three different function evaluation sizes: 2050, 4100,
6150 and 8200, by keeping the generations number fixed to 41).

Fevals ABC DE DE1220 PSO SADE SGA ACOmi

𝑡𝑜𝑓 [JD]

2050 232.13 242.20 241.53 230.43 236.80 238.96 231.51
4100 238.18 241.63 231.35 231.21 238.67 239.04 233.80
6150 234.01 230.98 232.63 233.16 233.31 235.07 229.11
8200 232.28 231.52 235.22 232.33 234.09 229.56 232.61

𝑡𝑜𝑓 [JD]

2050 236.81 245.78 242.20 232.63 240.94 246.35 235.77
4100 243.35 244.16 237.80 231.82 241.64 244.67 234.42
6150 235.21 236.92 236.08 233.56 235.66 238.22 232.88
8200 233.09 235.24 237.40 232.46 237.32 236.90 237.88

rising rate at higher generations, thus displaying a flatter curve for high generations (as it
seems to be the case for NSPSO with niche count, especially for 56 and 220 individuals).
All things considered, we have thus decided to choose NSPSO with crowding distance for
population sizes of 56 and 220 individuals, for making the comparison and trade-off against
MHACO, NSGA-II and MOEA/D and establish the overall best solutions of these algorithms
in the MO solar sailing polar mission. While for the case of 120 individuals, NSPSO with niche
count was chosen to be compared with the other algorithms. The results and discussions of
such benchmarks are presented in Section 7.3.

7.2. Single-Objective
In this section, we will discuss the results of the optimization procedure applied to the SO
solar-sail mission. As we have already mentioned in Chapter 5, in such a mission we will
only optimize the time of flight (𝑡𝑜𝑓). In particular, we will first treat the SO problem as two
separate problems: an unconstrained SO problem for the geocentric phase and a constrained
SO problem for the heliocentric phase. These two optimization procedures are presented in
Sections 7.2.1 and 7.2.2, respectively: in both cases, the 𝑡𝑜𝑓 is the objective to be minimized.
Then, in Section 7.2.3 we will optimize the geocentric and heliocentric phase as a unique SO
constrained problem. Finally, in Section 7.2.4, the results coming from the two different
strategies will be compared and traded-off. All these optimizations will be executed using
several different SO optimizers. Most of these are well known and have been extensively
used in the space sector (Vinkó and Izzo, 2008), (Izzo, 2010), (Izzo, 2007).

7.2.1. Geocentric Phase
In this section, we only study the geocentric phase. Therefore, we have an SO unconstrained
problem with box-bounded variables. In this framework, we use several different optimizers
to find the best sets of these variables, which minimize the time of flight. In particular, we
run each optimizer for three times for removing the randomness that is inherent in these
metaheuristic algorithms. Furthermore, every run is executed with the same seed, so that
all the algorithms always start from the same initial population. As we can observe from the
plots in Figure 7.7, six different optimizers are used (i.e., Artificial Bee Colony (ABC), Dif-
ferential Evolution (DE), Differential Evolution 1220 (DE1220), Particle Swarm Optimization
(PSO), Self-Adaptive Differential Evolution (SADE), Simple Genetic Algorithm (SGA), mixed
integer Ant Colony Optimizer (ACOmi)): each of these was compared in terms of minimum
𝑡𝑜𝑓 value, as a function of the generations used for evolving the algorithm. Also, four different
population sizes were implemented (i.e., 50, 100, 150 and 200). The results, shown in the
figures, represent the best runs of each of the optimizers. The absolute best optimal value
of time of flight is found using the ant colony optimizer (ACOmi), which also performs very
well in general, showing a steady improving behavior with often the best or one of the best
final optimal values of 𝑡𝑜𝑓. The final average and best values of the different algorithms for
different population sizes are shown in Table 7.4.

It has to be noted that all the algorithms have executed their number of function evalua-
tions in 41 generations and with a population size of 50, 100, 150 and 200 individuals. The

7.2. Single-Objective 87

0 5 10 15 20 25 30 35 40 45

Generations

220

240

260

280

300

320

340
F

it
n

e
s
s
 (

d
a

y
s
)

38 40

230

235

240

(a) 50 individuals and 41 generations.

0 5 10 15 20 25 30 35 40 45

Generations

220

240

260

280

300

320

F
it
n

e
s
s
 (

d
a

y
s
)

Bee Colony
DE
DE1220
PSO
SADE
SGA
ACOmi

38 40
230

235

240

(b) 100 individuals and 41 generations.

0 5 10 15 20 25 30 35 40 45

Generations

220

240

260

280

300

320

F
it
n

e
s
s
 (

d
a

y
s
)

38 40

230

235

(c) 150 individuals and 41 generations.

0 5 10 15 20 25 30 35 40 45

Generations

220

230

240

250

260

270

280

F
it
n

e
s
s
 (

d
a

y
s
)

39 40 41

230

235

(d) 200 individuals and 41 generations.

Figure 7.7: Optimization of geocentric phase for different population sizes and optimization algorithms

only exception is the artificial bee colony, that executes twice the number of the individuals
function evaluations per generation. Hence, if a population size of 50 is chosen, the algorithm
will perform 100 of function evaluations after one generation. For avoiding to have confusing
results, we have uniformed the ABC’s plot to the others by splitting the number of individ-
uals per generation by two. Indeed, the main driver for the algorithm performance both in
terms of accuracy and computation time is the function evaluation value: this is found by
multiplying the number of individuals by the number of generations and thus results to be
the same for all our tested algorithms.

As we can observe from Table 7.4, in general, the results do not always improve when the
function evaluations are increased. The reason is that most of these algorithms manipulate
the population for evolving new individuals: hence, by increasing the population size, we
change the behavior of the algorithm, which, in turn, might reduce its convergence speed
or worsen its performance. This aspect can be clearly seen in Figure 7.8, in which the best
results for the various algorithms (in terms of minimum 𝑡𝑜𝑓) are plotted as a function of the
function evaluations (when the number of generations is kept fixed).

On the other hand, if the same population size is maintained and the generations are
increased, we might expect to have either the same or better results. This is not, however,
the case for the algorithms that have an internal mechanism that makes use of the number
of generations: in this case, increasing the generation number does not strictly mean an
improvement in performance since the algorithm changes its behavior (this is the case for
ACOmi, for instance). For demonstrating this behavior, we have decided to run PSO and
ACOmi with the same number of function evaluations (i.e., 2050, 4100, 6150, 8200), but
fixing the number of population to 50 individuals and only varying the number of generations
(i.e., 40, 80, 120 and 160). The results are shown in Table 7.5.

In particular, we observe that while PSO improves, on average, when the generations are
increased (with the exception for the case of 41 generations and 50 individuals, which shows
the minimum for PSO in terms of the time of flight), this does not happen for ACOmi. More-
over, we notice that PSO has a more regular behavior when the generations are increased
and the population size is kept fixed, contrary to what happened when the generations were
kept fixed and the population size was varied. However, the best result still remains that

88 7. Results

2000 3000 4000 5000 6000 7000 8000 9000

Fevals [-]

228

230

232

234

236

238

240

242

244

M
in

 F
it
n

e
s
s
 (

d
a

y
s
)

Bee Colony
DE
DE1220
PSO
SADE
SGA
ACOmi

Figure 7.8: Best final time of flight of the optimization algorithms as a function of the function evaluations (for a
generation size fixed to 41).

Table 7.5: Optimizers trade-off in the geocentric phase (for three different function evaluation sizes: 2050, 4100,
6150 and 8200, by keeping the population size fixed to 50 and varying the generation sizes between 40, 80, 120
and 160).

Fevals PSO ACOmi

𝑡𝑜𝑓 [JD]

2050 230.43 231.51
4100 231.23 236.64
6150 231.04 235.92
8200 230.92 231.91

𝑡𝑜𝑓 [JD]

2050 232.63 235.77
4100 233.90 239.35
6150 232.04 237.07
8200 232.01 233.41

of 40 generations and 50 individuals. Hence, for both PSO and ACOmi an increase in the
function evaluations has not brought an increase in the performances (in both cases in which
either the generations or the population sizes were increased). For ACOmi this kind of un-
predictable behavior can be explained by looking at the mathematical formulation of the
optimizer. Indeed, this algorithm has an internal mechanism based on two parameters (i.e.,
the 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 and the generation mark, 𝑁𝐺𝑒𝑛𝑀𝑎𝑟𝑘, input parameters) that are strictly re-
lated to the number of generations. Indeed, if the threshold is chosen to be 20, for instance,
then the algorithm will start focusing more on the best individuals of the archive already
from the 20th generation. This might be powerful if we are running 200 individuals for 40
generations (because, perhaps, the very best individuals found at the 20th generations are
already candidate solutions, and it thus might result worthy to focus on improving them,
rather than keeping the search more spread). However, if we are running 50 individuals for
160 generations (which corresponds to the same function evaluation number) this might not
be ideal since it might cause the algorithm to get stuck on local optima.

In conclusion, as we have already pointed out, from the various results (by testing dif-
ferent population sizes and by also varying the generations’ size), we can conclude that the
absolute best results are found with the ant colony optimizer (with 150 individuals and 41
generations). Moreover, we have observed that PSO seems to perform very well overall, as
it reaches the third best absolute minimum value at only 2050 function evaluations, and it
displays a quite low average among the different function evaluation sets tested. We have
thus decided to test these two algorithms with a higher population size of 300 individuals
(by maintaining 41 generations), to see whether these results could improve even further if
much bigger function evaluations are performed. Surprisingly, as can be seen in Table 7.6,
for ACOmi we do not observe any improvement with respect to the absolute best and average

7.2. Single-Objective 89

Table 7.6: PSO vs ACOmi for 300 individuals and 41 generations.

Fevals PSO ACOmi
𝑡𝑜𝑓 [JD] 12300 229.55 235.15
𝑡𝑜𝑓 [JD] 12300 231.26 237.69

Table 7.7: Best solution found with ACOmi optimizer (150 individuals and 41 generations).

Symbol ACOmi Best
𝑇launch 755970192 s
𝜔0 359.41∘
𝛼E1 26.06∘
𝛼E2 7.68∘
𝛼E3 0.08∘
𝑡𝑜𝑓 229.11

best, whereas for PSO we find an absolute best of 229.55 Julian Days, which is less than 1%
worse than the absolute best found with ACOmi using 150 individuals.

Analyzing the results, it seems that increasing too much the number of individuals does
not bring substantial improvements for the ant colony optimizer. This can be explained by
noticing that together with the population size, we are also increasing the kernel size (i.e., the
number of individuals stored in the solution archive). This means that more individuals are
used for generating new ants for future generations, and this might cause these individuals
to be more spread and less focused around the found optimal solution. Even though this
might be an advantage in some cases (i.e., when there are multiple local minima or when
the minimum is very hard to find), this is however not ideal when we want to reach a certain
area where the minimum is located and then narrow down the search to a smaller portion
of the domain. Indeed, such a big kernel size causes the search always to be quite spread,
thus partially impeding local convergence.

Due to the fact that many function evaluations still have not been able to improve the
overall best found solution with ACOmi for only 6150 function evaluations, we have decided
to proceed to the local Monte Carlo improvement using such a solution. In the following
section, this local refinement will be discussed: its purpose is to try to enhance the best
solution by slightly varying the optimal solution’s variables.

7.2.1.1 Local Refinement: Geocentric Phase
As we have already pointed out, the best overall solution is found using ACOmi with 150
individuals and 41 generations. In Table 7.7, the time of flight (in Julian Days) together
with all the optimized variables corresponding to it, is shown. The time shown in the table
(i.e., 𝑇) is expressed in Julian seconds; this corresponds to the following launch date:
2023-12-16 at 03h:43m:12s 1.

By running this solution separately in the simulator, we verified that it is a feasible solu-
tion, and that the sailcraft safely (i.e., without impacting the Moon and without decreasing its
altitude w.r.t. the Earth too much) escapes the Earth gravity. However, before proceeding to
the heliocentric phase with this solution, we have decided to perform a local refinement using
a Monte Carlo technique around this best solution, for checking whether this is actually the
best, or if a faster trajectory can be found in the nearby search space. In particular, each
variable was box-constrained in a 1% range and a Monte Carlo run was performed using a
uniform distribution for varying each variable. This distribution was chosen because we do
not have any physical insights that can allow us to use any particular distribution. The runs
were performed three times with 15,000 function evaluations each and the resulting times
of flights as a function of the number of function evaluations are shown in Figure 7.9.

As can be seen, the solutions found with the Monte Carlo technique are quite well spread,
1https://nsidc.org/data/icesat/glas-date-conversion-tool/date_convert/, date of access: August,
2019

https://nsidc.org/data/icesat/glas-date-conversion-tool/date_convert/

90 7. Results

Table 7.8: Best solution found with MC local refinement of the geocentric phase.

Symbol MC Best
𝑇launch 755940988.8 s
𝜔0 358.737∘
𝛼E1 25.92∘
𝛼E2 7.69∘
𝛼E3 0.08∘
𝑡𝑜𝑓 228.45 JD

besides two gaps that form between 230 and 250 Julian Days and slightly below 260 Julian
Days. In this histogram only the feasible solutions are shown, meaning that the solutions that
have violated the conditions imposed to the orbit (i.e., crashing onto the Moon’s surface or
going too near to the Earth or not reaching the sphere of influence of the Earth within a limited
amount of time) are excluded. However, by checking the average number of feasible solutions
over three runs, we observe that these are 98.62% of the total. Hence, these gaps might be
caused by the fact that within those variable bounds (i.e., 1% of the optimal value), there are
no solutions that produce those times of flights’ values. In any case, further investigation of
these gaps is not very interesting for our study, since they happen to be at quite high fitness
values w.r.t. the optimal values of interest. Performing the MC refinement, we managed
to improve the 𝑡𝑜𝑓 by 0.29%. Indeed we managed to find a new optimum with a 𝑡𝑜𝑓 value
of 228.45 Julian Days. Its corresponding best variables are shown in Table 7.8. With this
solution, we can thus extract the initial conditions to be used for the optimization of the
heliocentric phase, which will be performed in the following section.

7.2.2. Heliocentric Phase
As we have pointed out in the previous section, the best found solution of the geocentric
phase can be used for extracting the initial conditions to be used for the heliocentric phase.
In particular, the final ephemeris time and the final sailcraft state variables’ vector of the geo-
centric phase are needed for this to happen. By simulating the geocentric phase with the best
found variables, we find the initial conditions for the heliocentric phase shown in Table 7.9,
where 𝑇i indicates the initial ephemeris time in second (which corresponds to the following
date: 2024-07-31 09h:45m:41s), and it is found by summing the 𝑡𝑜𝑓 and the launch time in
seconds of the best geocentric phase. The variables 𝑥i, 𝑦i, 𝑧i, �̇�i, �̇�i, �̇�i represent the final posi-
tion and velocity of the sailcraft when the geocentric phase is stopped, expressed in Cartesian
coordinates. The propagator used for this mission is the USM Rodrigues propagator. For the

230 240 250 260 270 280 290 300 310

Fitness [JD]

0

500

1000

1500

2000

2500

F
e

v
a

ls
 [

-]

1st run

2nd run

3rd run

Figure 7.9: 1% local MC refinement within for the best solution in the geocentric phase (time of flight vs function
evaluations for three different runs).

7.2. Single-Objective 91

Table 7.9: Initial conditions for the heliocentric phase.

Symbol Initial Conditions
𝑇i 775691141.52 s
𝑥i 94909925.09 km
𝑦i -118495784.90 km
𝑧i 75147.28 km
�̇�i 23.15744 km/s
�̇�i 19.41567 km/s
�̇�i 0.12347 km/s

0 500 1000 1500 2000 2500 3000 3500 4000 4500

DeltaV [m/s]

1700

1750

1800

1850

1900

1950

2000

2050

2100

F
it
n

e
s
s
 [

d
a

y
s
]

50

70

100

150

200

0 100 200

1780

1800

1820

2500 3000 3500 4000

1740

1760

Figure 7.10: ACOmi population size trade-off for the heliocentric phase.

heliocentric case, we have decided to apply the USM Rodrigues propagator (instead of the
MEE propagator) because we have observed from the propagator trade-off study in Section
6.3.1, that the USM Rodrigues propagator is the best in terms of quality of solutions (for the
solar sailing polar mission of our interest), but it has the main disadvantage that it has a
way higher wall-clock time. In this case, we are not worried about this second aspect, since
the heliocentric phase is less computationally expensive than the geocentric phase (i.e., less
than one second per function evaluation versus nearly twenty), thus making the wall-clock
time difference between propagators negligible.

In this case, the problem is a SO constrained one, however, all the algorithms used in
the geocentric phase (except for ACOmi) cannot handle constraints. Nonetheless, as already
pointed out in Chapter 5, a meta-algorithm exists to modify these algorithms in such a way
that constraints can also be handled. Hence, this meta-algorithm is applied for three single-
objective algorithms (i.e., ACOmi, PSO and DE1220) for allowing their application to this
problem. These algorithms have been selected due to their good performances demonstrated
in the optimization of the geocentric phase, across different population sizes. The results
found with these algorithms will be confronted with those found with ACOmi alone. It has to
be noted that ACOmi can be applied both without and with the meta-algorithm: this allows
us to confront these two techniques and establish whether it is better to use ACOmi alone,
or to couple it with the meta-algorithm. The constraints to be handled are the final time
violation and the Δ𝑉 (which represents one of the two constraints, that we would ideally like
to be zero). Before confronting these algorithms, a study is made for establishing the correct
population size to be used for ACOmi, when used alone. In particular, the generation size is
kept fixed at 41 and the population size is varied between 50, 70, 100, 150, 200. The results
of this trade-off are plotted in terms of the time of flight (in Julian Days) versus the Δ𝑉. These
are shown in Figure 7.10.

Only the solutions that fulfill the final time constraint (i.e., final time violation equals to
zero) are represented in these Pareto fronts, whereas the others are excluded. It can be seen

92 7. Results

from this plot that higher population sizes offer more advantages in this optimization. Indeed,
if for instance we observe the area on the left, the two most interesting points (i.e., those that
keep the 𝑡𝑜𝑓 at low values while also minimizing the Δ𝑉) are found with a population size
of 200 (i.e., 𝑡𝑜𝑓=1786 JD and Δ𝑉=46.03 m/s) and of 150 (i.e., 𝑡𝑜𝑓=1783 JD and Δ𝑉=47.55
m/s). One could notice that the nearby solution with 70 individuals (i.e., 𝑡𝑜𝑓=1785 JD and
Δ𝑉=60.27 m/s) is not much worse than the aforementioned ones, and due to the fewer func-
tion evaluations, should be preferred. However, this can be objected with two main points:

1. The heliocentric phase is much less computationally expensive than the geocentric
phase, due to the absence of atmosphere and less dynamically varying environment (i.e.,
the wall-clock time for 2050 function evaluations is only 500 seconds against 40,000
seconds of the geocentric phase, and for 8200 function evaluations is only 2500 seconds
against 180,000 seconds of the geocentric phase). This means that while the function
evaluations may be a bottleneck for the geocentric phase, so that lower population sizes
might be preferred, even though they slightly worsen performances, this is not the case
for the heliocentric phase, in which the computation time problem is almost absent,
due to very fast simulations.

2. For the entire (Δ𝑉, 𝑡𝑜𝑓) space, we do not observe behavior of low population sizes com-
parable to that of higher sizes. The 150 and 200 individuals runs seem to explore the
domain more efficiently, by reaching more and better solutions in key parts of the graph
(i.e., minimizing the objective and the constraint both separately and concurrently).

For these reasons, we have decided to opt for a population size of 200 individuals for the
heliocentric phase optimization.

Having done this population size trade-off, we could then compare the three algorithms
coupled with themeta-algorithm for handling the constraints (i.e., PSO, DE1220, and ACOmi)
and ACOmi alone. Each run was executed three times to remove the intrinsic randomness of
these metaheuristic techniques and the same function evaluations were used (i.e., 20,000).
Also, each run was performed with a controlled seed, to have the same initial population
(generated randomly) for all the algorithms. This aspect is further explained and analyzed in
Section 7.4.

The results of this study in terms of Δ𝑉 and 𝑡𝑜𝑓 are shown in Figure 7.11. Concerning the
ACOmi algorithm alone, for having the same number of function evaluations, a population
size of 200 individuals was selected, with 100 generations. While for the other three, 50
individuals with 20 generations and 20 iterations were chosen for the algorithms and the
meta-algorithm (the meta-algorithm description can be found in Appendix C).

The figure represents the best Pareto front over three runs of all the solutions of the
algorithms. As can be seen, all the algorithms seem to converge to the same front, which
means that we probably converged towards the absolute best front. The only exception is
the ACOmi optimizer alone, which does not seem to be competitive with the others, reaching
a worse Pareto front. In particular, almost all its individuals are dominated by those of the
other three algorithms. The DE1220 algorithm seems to have the best performances for low
values of Δ𝑉 (i.e., below 400 m/s), thus making its solutions very interesting. For instance,
two Pareto dominant solutions, one with 𝑡𝑜𝑓=1776 JD and Δ𝑉=23.67 m/s, and the other one
with 𝑡𝑜𝑓=1775 JD and Δ𝑉=35.64, seem to be very appealing. Conversely, for higher Δ𝑉’s the
ACOmi algorithm coupled with the meta-algorithm seems to perform in the best way, also
managing to reduce the most the fitness value (finding a minimum 𝑡𝑜𝑓 of 1707 JD but for
the highest Δ𝑉 of 3293 m/s). Another interesting solution of ACOmi is that of 𝑡𝑜𝑓=1754 JD
and Δ𝑉=403.5 m/s, which seems to be an acceptable trade-off between a low time of flight
and a reasonably low Δ𝑉 violation.

From Figure 7.11, we can extract several best solutions: indeed, contrary to the geocentric
phase, in this case, we cannot identify a single best solution, but the best solutions will be a
trade-off between Δ𝑉 and time of flight values. Due to this, we decided to identify three candi-
date best solutions (two that minimize the two objectives separately and one that minimizes
both the objectives concurrently). These three candidate solutions (i.e., Candidate 1, 2 and
3; coming from PSO, DE1220 and ACOmi, all with the meta-algorithm, respectively), together
with their corresponding variables and constraint violation values are shown in Table 7.10.

7.2. Single-Objective 93

0 500 1000 1500 2000 2500 3000 3500

DeltaV [m/s]

1700

1750

1800

1850

1900

1950

2000

2050

2100

F
it
n

e
s
s
 [

d
a

y
s
]

ACOmi w CSTRS
PSO w CSTRS
DE1220 w CSTRS
ACOmi w/o CSTRS

100 200 300

1760

1770

1780

2800 3000 3200

1710

1720

Figure 7.11: Trade-off of different optimizers for the heliocentric phase.

Table 7.10: Three candidate best solutions for the heliocentric phase, and their corresponding fitness values and
constraints violations.

Symbol Candidate 1 Candidate 2 Candidate 3 Units
Δ𝑉 12.92 23.67 3239.29 [m/s]
𝑡𝑜𝑓 2042 1776 1707 [JD]
Δ𝑎 5.3×10 1.4×10 1.9×10 [au]
Δ𝑖 8.9×10 1.3×10 0.08 [deg]
Δ𝑒 0.55×10 5.5×10 0.137 [-]
𝛼S1 -49.57 -35.22 -38.91 [deg]
𝛼S2 -14.98 -31.90 -17.80 [deg]
𝛼S3 37.81 39.73 35.59 [deg]
𝛼S4 57.32 39.36 34.95 [deg]
𝑅1 0.39 0.36 0.3 [au]
𝑅2 0.30 0.28 0.26 [au]

Besides the fitness and constraints values and the corresponding variables, in this table,
we also show the violations of the final ideal semi-major axis, inclination, and eccentricity. As
we have already mentioned in Chapter 5, these three orbital elements are handled through
one single constraint (i.e., the Δ𝑉) for accounting the fact that correcting these elements once
reached the final orbit has a different cost, depending on the type of orbital element to be
adjusted. Nevertheless, it is still useful to understand what are the final orbital elements
violations corresponding to a certain value of Δ𝑉.

Before computing the total flight time (also adding the geocentric phase), we decided to
run a Monte Carlo simulation around the found best solutions first, to control whether we
can improve these results. This will be done in the following section.

7.2.2.1 Local Refinement: Heliocentric Phase
Similarly to what has been done for the geocentric phase, also in this case we run a Monte
Carlo simulation around the optimal solutions, by varying each of the variables within a 1%
range.

It has to be noted that in this case there are three candidate solutions, and we thus have
to perform the runs three times per solution, for a total of nine simulations. Each of these
runs will have 20,000 function evaluations, to make sure to sufficiently explore the search
space around the best solutions.

In Figure 7.12, we show all the feasible sampled points around the candidate solutions.
Furthermore, in Figures 7.13b and 7.13a, we show the histograms that represent the distri-
butions of the Δ𝑉 and 𝑡𝑜𝑓 values of the candidate solutions as a function of the runs. First

94 7. Results

Figure 7.12: MC run around the three candidate solutions of the heliocentric phase. In the figure, also the Pareto-
optimal fronts around each candidate solutions have been highlighted.

//

1720 1740 1760 1780 2020 2040 2060

Fitness [JD]

0

500

1000

1500

2000

F
e

v
a

ls
 [

-]

(a) vs number of runs.

0 500 1000 1500 2000 2500 3000

Fitness [JD]

0

500

1000

1500

2000

2500

3000

F
e

v
a

ls
 [

-]

1st candidate

2nd candidate

3rd candidate

3000 3200
0

500

1000

0 500 1000
0

1000

2000

(b) vs number of runs.

Figure 7.13: and distribution as a function of the number of runs for the three candidate solutions of the
heliocentric phase.

of all, it is interesting to point out that for the first candidate solution, all the points sampled
were feasible. Conversely, for the second candidate solution, 62% of the sampled points were
feasible; whereas for the third candidate solution, only 39% of the points were feasible. This
also gives us an indication of the sensitivity of each candidate solution (e.g., in the third case,
in a real mission scenario, if we miss all the input variables by 1%, we risk to fail the mission
with a probability of 61%, which seems to be a risky scenario).

Also, as we can observe from Figure 7.12: from the runs that we executed, we can define
a Pareto front around each candidate solution. This permits us to narrow down the choice
to only a little number of points. From these simulations, we see that the Candidate 1 can
be completely discarded since Candidate 2 reaches the lowest values of Δ𝑉 (i.e., 9.389 m/s),
while maintaining a way lower time of flight (i.e., around 200 days less): thus causing the
Candidate 2 Pareto-optimal front to be dominant w.r.t. that of Candidate 1. Conversely,
Candidate 3 (depicted in green in the figure) displays lower time of flights than the other
candidates (i.e., around 100 days less than Candidate 2), but it has way higher values of
Δ𝑉 (in the order of 3 km/s), thus causing the final orbit to be quite far away from the ideal
operational one.

All things considered, we have thus decided to select the best solution from the Pareto-
optimal front of Candidate 2. In particular, we have decided to choose the solution with the
lowest Δ𝑉 of 9.389 m/s, and a corresponding time of flight (considering only the heliocentric
phase) of 1781 Julian days. The reason is that the Pareto-optimal points of Candidate 2 do
not display big differences in terms of flight time (i.e., they all range between 1772 and 1781
days), but they have quite different Δ𝑉. We have thus decided to choose the nearest orbit to

7.2. Single-Objective 95

Table 7.11: The best overall solution, coming from the optimization of the geocentric and heliocentric phases sepa-
rately.

Symbol Best Candidate Units
Δ𝑉 9.39 [m/s]
𝑡𝑜𝑓 2009.237 [JD]
Δ𝑎 2.88×10 [au]
Δ𝑖 2.82×10 [deg]
Δ𝑒 3.0×10 [-]

𝑇launch 2023-12-15 yyyy/mm/dd
𝜔0 358.737 [deg]
𝛼E1 25.92 [deg]
𝛼E2 7.69 [deg]
𝛼E3 0.08 [deg]
𝛼S1 -35.09 [deg]
𝛼S2 -31.91 [deg]
𝛼S3 39.78 [deg]
𝛼S4 39.60 [deg]
𝑅1 0.3587 [au]
𝑅2 0.2847 [au]

the ideal one, sacrificing nine days of flight time. All the parameters of this best solution,
as well as its total time of flight (i.e., geocentric plus heliocentric 𝑡𝑜𝑓 summed), is shown in
Table 7.11: there, we have also displayed the parameters of the best geocentric orbit used
for optimizing the heliocentric phase.

7.2.3. Geocentric and Heliocentric Phase
Having optimized the geocentric and heliocentric phases separately, and having found the
best candidate solution, we have decided to also optimize the whole mission as one single
problem with 20,000 function evaluations and with the same algorithms used for the helio-
centric only phase. The reason why this number of function evaluations was selected was to
maintain the same simulation time as the previous two optimizations. Indeed, our objective
is to compare this second strategy by maintaining a similar wall-clock time: so that we can
estimate the best strategy to tackle the problem based on similar computation times. This
builds up a single-objective constrained problem (similar to the heliocentric phase problem),
in which we have 11 variables (i.e., 𝛼E1, 𝛼E2, 𝛼E3, 𝜔0, 𝑇launch, 𝛼S1, 𝛼S2, 𝛼S3, 𝛼S4, 𝑅1, 𝑅2), one
fitness (i.e., 𝑡𝑜𝑓) and 2 constraints (i.e., the Δ𝑉 and the final time constraint). Therefore, we
can treat the results similarly to what is done in the heliocentric phase, by plotting the Pareto
front in the (Δ𝑉, 𝑡𝑜𝑓) space of only those solutions that fulfill the final time constraint viola-
tion. This plot can be seen in Figure 7.14. As we can see, DE1220 with the meta-algorithm
seems to outperform all the other algorithms throughout almost the entire search space. Due
to the fact that these algorithms are metaheuristic their performances are really problem de-
pendent and cannot be mathematically forecasted before. Indeed, as can be seen, while in
the geocentric mission the ACOmi algorithm outperformed the others, in this case, DE1220
performs better: this is just related to the different nature of the problem and the different
fashion in which the two optimization algorithms act. In general, it is not possible to deter-
mine a metaheuristic global optimizer that outperforms the others in any kind of problem.
Another aspect to be considered are the number of function evaluations: perhaps, increasing
this number would allow the other algorithms to all converge to the same or even better Pareto
optimal front. However, since we wanted to compare this mission scenario with the afore-
mentioned one, based on a similar wall-clock time (which is highly influenced by the number
of function evaluations), we decided to keep the number of function evaluations to 20,000
and compare the two mission scenarios based on nearly the same computation times. From
Figure 7.14, we can extract three overall best candidate solutions, which all come from the
DE1220 algorithm with meta-algorithm. The three candidate solutions are shown in Table

96 7. Results

0 500 1000 1500 2000 2500 3000 3500 4000

DeltaV [m/s]

1850

1900

1950

2000

2050

2100

2150

2200

F
it
n

e
s
s
 [

d
a

y
s
]

ACOmi (w cstrs)
PSO (w cstrs)
DE1220 w cstrs
ACOmi (w/o cstrs)

50 100 150 200

2020

2040

2060

2080

Figure 7.14: Trade-off of different optimizers for the geocentric and heliocentric phases, optimized in one single SO
problem.

Table 7.12: Three candidate best solutions for the geocentric and heliocentric phases optimized together, and their
corresponding fitness and constraints violations values.

Symbol Candidate 1 Candidate 2 Candidate 3 Units
Δ𝑉 32.41 98.76 3679.58 [m/s]
𝑡𝑜𝑓 2159 2019 1895 [JD]
Δ𝑎 1.32×10 2.15×10 1.55×10 [au]
Δ𝑖 2.4×10 8.7×10 4.3×10 [deg]
Δ𝑒 1.3×10 3.9×10 1.6×10 [-]

𝑇launch 2026-10-16 2022-12-21 2027-03-02 yyyy/mm/dd
𝜔0 6.20 5.73 6.15 [deg]
𝛼E1 18.95 31.89 27.20 [deg]
𝛼E2 2.69 4.44 21.03 [deg]
𝛼E3 12.20 6.32 12.88 [deg]
𝛼S1 -42.26 -37.99 -36.64 [deg]
𝛼S2 -43.46 -34.16 -34.11 [deg]
𝛼S3 37.66 39.91 34.87 [deg]
𝛼S4 54.12 40.56 35.49 [deg]
𝑅1 0.521 0.332 0.401 [au]
𝑅2 0.282 0.286 0.272 [au]

7.12. Together with the fitness values, the constraint values and their respective best vari-
ables, also the final orbital elements violations with respect to the ideal values are shown.
The launch time is represented as a calendar date, without specifying the hours, minutes
and seconds of the day: it is thus useful to also indicate the time in seconds J2000. For the
three candidate solutions 1, 2 and 3, these times are: 845433504 s, 724907750.4 s, and
857245248 s

At this point, before proceeding with a Monte Carlo refinement for improving the three
candidate solutions, it is interesting to compare the results when the geocentric and helio-
centric phases are optimized concurrently and separately. For doing this, we can confront
the Pareto fronts shown in Figure 7.11 with those of Figure 7.14. The only aspect to be mod-
ified is the time of flight: in the heliocentric only phase we did not add the 𝑡𝑜𝑓 of the best
found geocentric phase solution (which corresponded to 228.45 JD): we can now add this
time to the fronts and inspect the differences between each single algorithm when the two
problems are treated either separately or as a single one. In Figure 7.15, this comparison is
shown: in particular, each sub-figure represents the Pareto front of an algorithm in the case
in which the problem is treated as two separate optimization problems, or when these two

7.2. Single-Objective 97

0 500 1000 1500 2000 2500

Delta-V [m/s]

1950

2000

2050

2100

2150

2200

2250

2300

2350
F

it
n

e
s
s
 [

d
a

y
s
]

1 Optimization
2 Optimizations

(a) ACOmi without meta-algorithm.

0 500 1000 1500 2000 2500 3000 3500

Delta-V [m/s]

1900

1950

2000

2050

2100

2150

2200

F
it
n

e
s
s
 [

d
a

y
s
]

1 Optimization
2 Optimizations

(b) ACOmi with meta-algorithm.

0 500 1000 1500 2000 2500 3000 3500

Delta-V [m/s]

1900

1950

2000

2050

2100

2150

2200

2250

2300

F
it
n

e
s
s
 [

d
a

y
s
]

1 Optimization
2 Optimizations

(c) PSO with meta-algorithm.

0 500 1000 1500 2000 2500 3000 3500 4000

Delta-V [m/s]

1850

1900

1950

2000

2050

2100

F
it
n

e
s
s
 [

d
a

y
s
]

1 Optimization
2 Optimizations

(d) DE1220 with meta-algorithm.

Figure 7.15: Pareto fronts comparison between geocentric and heliocentric phase optimizations done separately and
concurrently.

problems are optimized together.
As can be seen, all the fronts coming from the two phases optimized separately are always

dominant with respect to those coming from their concurrent optimization. The only excep-
tion happens for DE1220, where for high Δ𝑉 (i.e., Δ𝑉>1300 m/s) the front of the two phases
together starts to dominate the other one and reaches very low values of time of flight.

This means that for this number of function evaluations, there are no advantages in treat-
ing the problem as one single optimization problem, but it is actually better to split it into two
different ones. Hence, this also means that the problem, at least for these numbers of func-
tion evaluations, seems to be separable (i.e., the problem can be separated in two different
times of flights, which can be optimized independently without worsening the performances).
It has also to be noted that by increasing the number of function evaluations, we expect the
Pareto fronts of the geocentric and heliocentric phase optimized as one single problem to
converge towards those of the two phases optimized separately: indeed, when optimized sep-
arately, the geocentric phase has been subjected to nearly 10,000 function evaluations, plus
a local MC refinement of 15,000 evaluations. The solution found with these techniques, has
then been subjected to other 20,000 function evaluations when optimizing the heliocentric
phase. Hence, the domain has been explored more effectively for the two problems treated
separately, since the two phases concurrently have been optimized with 20,000 function
evaluations. Mainly, the reason for this is that the heliocentric phase is very light in terms
of computation time, and we could thus run 20,000 function evaluations without increasing
the wall-clock time too much so that the overall wall-clock time for the two separate and joint
phases was maintained similar. Perhaps, by strongly increasing the function evaluations, we
could also expect an enhancement of the concurrent optimization w.r.t. the separate one.
However, this has to be paid in terms of computation time.

As a final remark, we can observe how the solution found with the geocentric and helio-
centric phase optimized in one single problem results to be more versatile. In fact, while the
three candidate solutions of the two problems treated separately have the same 𝑡𝑜𝑓 for the
geocentric phase, equal to 228.45 JD. However, this is not the case anymore for the second
strategy, and the three candidate solutions result to have the following 𝑡𝑜𝑓 for the geocentric

98 7. Results

phase: 265.10 JD, 232.81 JD, 273.81 JD. In terms of overall 𝑡𝑜𝑓, the third solution (i.e., the
one with a geocentric 𝑡𝑜𝑓 of 273.81 JD) seems to have the lowest overall time of flight. This
means that the candidate solution with the highest geocentric flight time is also the one with
the lowest overall flight time. Nevertheless, the fact that the final orbit results to be quite far
from the ideal one (with a Δ𝑉 of 3.68 km/s) makes this solution less appealing.

All things considered, we can summarize the main aspects of the separate and concurrent
optimization as follows:

1. For having the same performances in the optimization problem where the two phases are
handled concurrently, it is required to use more function evaluations that thus increase
the wall-clock time.

2. The joint problem seems to find more versatile solutions, due to the fact that the time
of flight of the geocentric phase is free to vary and is not constrained to a single value.

3. By splitting the two phases we can handle the computation time in a better way, due to
the fact that the geocentric and heliocentric phases have very different wall-clock times.

4. It is possible that, when optimizing the joint problems, if the function evaluations are
increased until very high values (i.e., 40,000, 100,000 or even more), we can then find
the best Pareto fronts for all the algorithms (contrary to what happens for 20,000 func-
tion evaluations). However, this was not checked, due to the very high wall-clock times
(for 20,000 function evaluations, each run was already taking around 4.5 days). There-
fore, the two phases optimized separately seems to give better results for the wall-clock
times that we analyzed.

7.2.3.1 Local Refinement: Geocentric and Heliocentric Phases
Similarly to what has been done in the heliocentric and geocentric phase alone, also, in this
case, an MC local refinement is run within a 1% bound of all the variables, for the three
candidate solutions. In this case, due to the quite high simulation times (in the order of 20
seconds per function evaluations), 15,000 function evaluations are performed. Also, each
MC run is executed three times, to remove the randomness.

In Figure 7.16, we show all the feasible individuals for all the three candidate solutions,
where each candidate is run three times (for a total of nine runs) with different seeds, for
ensuring to remove the randomness. Also, the Pareto-optimal solutions shown in red pertain
to all the runs of all the candidates: thus constituting the overall Pareto-optimal front of the
MC local refinement. Besides, in Figures 7.17b and 7.17a, the histograms that represent the
distributions of the Δ𝑉 and 𝑡𝑜𝑓 values of the candidate solutions as a function of the runs are
shown: the only exception is Candidate 3, which is not displayed in these figures. The reason
is that the feasible points were less than 100 out of 15,000 runs: thus making impossible to
do statistics with this small amount of data.

As seen in these figures, there are only two main areas that are appealing in terms of
Pareto-optimal solutions: one that pertains to Candidate 2 and one to Candidate 3. In partic-
ular, the Pareto-optimal individuals that pertain to Candidate 2 seems to be more interesting,
as the Δ𝑉 is maintained very low (reaching a minimum value of 26.16 m/s) while keeping the
time of flights values that range between 1957 JD and 2062 JD. However, the lowest 𝑡𝑜𝑓’s
are found for the Pareto-optimal solutions at very high Δ𝑉 (i.e., around Candidate 3). In par-
ticular, the lowest value of 𝑡𝑜𝑓 found is 1887 JD, but it corresponds to a Δ𝑉 of 3636 m/s.
Concerning the feasibility, the MC runs have shown that Candidate 1 has 98% of feasible
individuals, whereas Candidate 2 has 54% feasible individuals and Candidate 3 only 0.36%.
This means that candidate 3 is a very ’unstable’ solution, in the sense explained in Section
7.2.2.1. For all these reasons and similarly to what has been done in Section 7.2.2.1, we
have decided to choose as best individual the one with the lowest Δ𝑉 (that comes from the
MC run around Candidate 2). The parameters of this individual are shown in Table 7.13. In
this table, the launch date corresponds to an ephemeris time of 728913000 s.

Therefore, we now have all the elements to discuss and compare the best individuals of
the separate and concurrent optimizations: this will be done in the following section.

7.2. Single-Objective 99

Figure 7.16: MC run around the three candidate solutions of the geocentric and heliocentric phase. In the figure,
also the Pareto-optimal fronts around each candidate solutions have been highlighted.

1900 2000 2100 2200 2300 2400 2500

Fitness [JD]

0

500

1000

1500

2000

2500

3000

F
e

v
a

ls
 [

-]

(a) vs number of runs.

0 500 1000 1500 2000 2500 3000 3500

DeltaV [m/s]

0

500

1000

1500

2000

2500
F

e
v
a

ls
 [

-]

500 1000 1500
0

500

1000

500 1000 1500

500
1000
1500
2000

(b) vs number of runs.

Figure 7.17: and distribution as a function of the number of runs for two candidate solutions of the geocentric
and heliocentric phases.

7.2.4. Optimizations Comparison
As we have already discussed in Sections 7.2.1, 7.2.2 and 7.2.3, the optimizations were
performed using two different strategies: in one case, the geocentric phase was optimized
separately and then, with the best found solution, the heliocentric phase was optimized. On
the other hand, we have also performed a single optimization of both the phases concurrently.
Now, we can thus compare the results coming from the two strategies. In particular, in Figure
7.18 we compare the Pareto-optimal shapes of the Monte Carlo runs of both the strategies.

As we can observe, the separate phases are capable of finding more Pareto-optimal points
(i.e., 51 versus 12): this was predictable since these results come from two optimizations
and several MC simulations (with 20,000 evaluations each). Therefore, we might not find
surprising that the separate phases manage to explore the search space in a more accurate
fashion. However, the Pareto-optimal front of the separate phases is not always better than
the one of the two phases optimized concurrently. Especially for high Δ𝑉, this latter seems
to find better Pareto-optimal solutions. This is due to the fact that the 𝑡𝑜𝑓 of the geocentric
phase is flexible in concurrent optimization. Indeed, as we have already explained in Section
7.2.3.1 the lowest overall 𝑡𝑜𝑓 is found for high geocentric time of flights: these solutions are
however not explored in the separate optimizations, as only the minimum geocentric 𝑡𝑜𝑓 is
then optimized in the heliocentric phase.

To summarize, we have a conflicting scenario where we are able to find better solutions
for low Δ𝑉 with a separate optimization, but the concurrent optimization seems to find more
optimal individuals for higher Δ𝑉 and lower 𝑡𝑜𝑓. In our case, we have decided to select the
best individual with a low Δ𝑉 value, as this means that we are nearer to the ideal operational

100 7. Results

Table 7.13: The best overall solution, coming from the optimization of the geocentric and heliocentric phases con-
currently.

Symbol Best Candidate Units
Δ𝑉 26.16 [m/s]
𝑡𝑜𝑓 2062.40 [JD]
Δ𝑎 8.89×10 [au]
Δ𝑖 3.46×10 [deg]
Δ𝑒 9.90×10 [-]

𝑇launch 2023-02-05 yyyy/mm/dd
𝜔0 5.7896 [deg]
𝛼E1 31.78 [deg]
𝛼E2 4.42 [deg]
𝛼E3 6.29 [deg]
𝛼S1 -37.85 [deg]
𝛼S2 -33.92 [deg]
𝛼S3 40.05 [deg]
𝛼S4 40.28 [deg]
𝑅1 0.3324 [au]
𝑅2 0.2851 [au]

0 500 1000 1500 2000 2500 3000 3500 4000

DeltaV [m/s]

1850

1900

1950

2000

2050

2100

F
it
n

e
s
s
 [

J
D

]

1 Optimization
2 Optimizations

20 40 60 80 100
2000

2010

2020

Figure 7.18: Pareto-optimal shapes of the MC runs around the best candidates.

orbit when we reach the Sun. Therefore, the individual shown in Table 7.11 is selected as the
best overall solution for the SO solar-sail problem: this individual comes from the geocentric
and heliocentric phases optimized separately. Nevertheless, we expect that this individual
can also be found in the concurrent optimization if more function evaluations are performed
(e.g., increasing the population size or the generation size, or both).

7.3. Multi-Objective
Until now, the mission has been optimized by minimizing the time of flight, while trying to
fulfill some constraints. Nevertheless, the sail configuration was kept fixed, so that both the
area and the mass of the sail could not vary. We now ask ourselves: what happens if we allow
the area and mass of the sail to vary within certain bounds? Can we find other interesting
solutions with a smaller area and mass?

Of course, the area of the sail is a crucial parameter for such a mission since the low-
thrust force generated by the sail is proportional to its area, and we thus expect that by
varying this parameter the results will strongly change. Until now, the sail area and mass
were kept fixed at values of, respectively, 9,800 m and 204 kg. Now, we allow the area of

7.3. Multi-Objective 101

the sail to vary between 5,000 and 24,000 m , which means that the mass varies between
104 and 499.2 kg (remembering that the sail area and mass are related by Equation (2.3)).
By adding this new objective in the mission, we thus obtain a multi-objective constrained
problem: this makes a whole new set of algorithms available, but also excludes those that
we used for single-objective problems. In particular, we will apply four different algorithms,
whose working principles and characteristics are discussed in Chapter 5 and in Appendix C:
NSGA-II, MOEA/D, MHACO and NSPSO. The first two algorithms are well known and very
popular in the scientific community, with a long-standing heritage of tests and benchmarks
in various problems. On the other hand, the last two are not widely used and thus required
more tweaking and tuning (as it is shown in Sections 7.1.2 and 7.1.3). In particular, MHACO
was introduced in this thesis study for the very first time, and thus results to be a brand new
MO algorithm.

As already mentioned in Section 5.4, for making these algorithms usable for our problem,
it is necessary to turn the final orbit and final time constraints into objectives. In fact, these
algorithms are not capable of handling constraints, and a common strategy to circumvent
this issue is to turn inequality and equality constraints into objectives. Indeed, our purpose
is to keep the Δ𝑉 constraint as near to zero as possible and to keep the final time constraint
strictly to zero, whenever possible: these algorithms, by minimizing these two values, will try
to achieve this. Similarly to what has been done in Sections 7.2.2 and 7.2.3, the solutions
that violate the final time constraint and other operational constraints (i.e., they crash into
celestial bodies or they reach too low altitudes above them) are considered unfeasible and
thus not shown in the Pareto fronts. Therefore, in this post-processing phase, the problem
results as if it is a 3-objectives unconstrained problem with the peculiarity that certain types
of solutions (i.e., those that violate the final time and operational constraints) are excluded.

When comparing the four aforementioned MO algorithms, we had to establish their sets of
input parameters. First of all, three different population sizes were tested: 56, 120 and 220.
The generation size was kept fixed at 40 and it was not tweaked during the optimization. The
reason is that previous studies suggested that this number of generations seems to be a good
compromise between finding optimal solutions and maintaining a reasonable computation
time (Garot, 2006),(Spaans, 2009). Instead, it was preferred to tweak the population sizes and
the algorithms’ input parameters. As far as concerns both NSPSO and MHACO, their input
parameters were derived from both the V&V phase, thoroughly discussed in Appendix B, and
the tuning phase, presented in Sections 7.1.2 and 7.1.3. As a consequence, for the population
sizes of 56 and 220, the input parameters chosen for MHACO corresponded to those of Option
9, in Table 7.1, while for a population size of 120, to Option 7. On the other hand, for NSPSO,
the same input parameters mentioned in Section 7.1.3 were chosen, with the niche count
diversity strategy for 120 individuals and the crowding distance diversity strategy for 56
and 220 individuals. Concerning MOEA/D and NSGA-II, their input parameters are those
presented in Section 6.2.2 and they were determined during the V&V phase.

By running these four algorithms on the three aforementioned population sizes over three
runs per population set (for removing the randomness), we have found the Pareto front pro-
gressions shown in Figure 7.19 (where the number of Pareto optimal points found at each
generation are shown). Also, the joint hypervolume values depicted in Figure 7.20 and nu-
merically indicated in Table 7.14 were found. As can be seen, the NSGA-II algorithm seems to
outperform the others in terms of the absolute maximum value of the hypervolume. Further-
more, when looking at each population set we observe that MHACO outperforms the other
algorithms for 56 individuals but it results to be worse than NSGA-II for 120 and 220 indi-
viduals, although it still outperforms MOEA/D and NSPSO for all the population sizes. This
trend is not compliant with what we observe in the Pareto front progression plots. Indeed,
there we observe that MOEA/D seems to outperform all the other algorithms for all the pop-
ulation sizes, whereas NSGA-II always performs as second best and MHACO as third best.
Therefore, as already pointed out in Section 7.1.2, the number of Pareto points as a function
of the generations does not seem to be a very trustworthy performance metric, especially if
it is not associated with other metrics. In fact, MOEA/D might result in a bigger number
of Pareto-optimal individuals due to the fact that it has converged to a local optimal front,
whereas the other algorithms are still progressing towards the global best. For this reason,

102 7. Results

0 5 10 15 20 25 30 35 40 45

Generations [-]

0

10

20

30

40

50

#
 P

a
re

to
 P

o
in

ts

(a) 56 individuals and 40 generations.

0 5 10 15 20 25 30 35 40 45

Generations [-]

0

10

20

30

40

50

60

#
 P

a
re

to
 P

o
in

ts

NSGA-II
MOEA/D
NSPSO
MHACO

(b) 120 individuals and 40 generations.

0 5 10 15 20 25 30 35 40 45

Generations [-]

0

10

20

30

40

50

60

#
 P

a
re

to
 P

o
in

ts

(c) 220 individuals and 40 generations.

Figure 7.19: Average number (over three runs) of Pareto points as a function of the generations for NSGA-II,
MOEA/D, NSPSO and MHACO algorithms .

Table 7.14: Joint hypervolume values w.r.t. the reference point, for NSGA-II, MOEA/D, NSPSO and MHACO.

Algorithms pop= 56 pop=120 pop=220
NSGA-II 492228.09×10 502815.24×10 518969.89×10
MOEA/D 483955.84×10 485162.83×10 497872.69×10
NSPSO 455460.43×10 465393.45×10 462066.31×10
MHACO 494756.29×10 501915.54×10 506573.98×10

60 80 100 120 140 160 180 200 220

Pop Size [-]

4.5

4.6

4.7

4.8

4.9

5

5.1

J
o

in
t

H
y
p

e
rv

o
lu

m
e

 V
a

lu
e

 [
-]

10
11

NSGA-II
MOEA/D
NSPSO
MHACO

Figure 7.20: Graphical representation of the joint hypervolume values reported in Table 7.2. These values are shown
for all the four tested algorithms and as a function of the population sizes.

we should always couple this information with other performance metrics that also account
for how good the Pareto fronts of the different algorithms are (such as the hypervolume metric
used in this research).

7.3. Multi-Objective 103

Concerning the hypervolume values, it can be seen that the best overall hypervolume value
is found for NSGA-II with 220 individuals. By checking the greatest contributors (among
all the population sizes) for all the best runs (in terms of hypervolume values) of the four
algorithms, we find the following values:

• For NSGA-II, the best run results to be for 220 individuals and has the following greatest
contributor: (105.79 kg, 1952.71 JD, 557.11 m/s, 0 s).

• For MOEA/D, the best run happens for 220 individuals and displays the following great-
est contributor: (243.07 kg, 1991.35, 1102.15 m/s, 0 s).

• For NSPSO, the best run results to be for 120 individuals and has the following greatest
contributor: (104 kg, 2202.63 JD, 114.43 m/s, 0 s).

• For MHACO, the best run results to happen for 220 individuals and has the greatest
contributor equal to: (129.35 kg, 1975.56 JD, 1334.96 m/s, 0 s).

However, as already pointed out in Section 7.1, the greatest contributors to the hypervolume
are not necessarily the best individuals in the front, but they are the ones that are located in
less crowded regions of the fronts. Therefore, we cannot base our choice of the best solutions
on the greatest contributors to the hypervolume only. Moreover, having three objectives (the
fourth one is the final time constraint, which results to be equal zero for all the found points),
we would need to plot a three-dimensional Pareto front, which is not very insightful for the
search of the best candidates. For this reason, we have decided to restrict our search to only
the individuals with the lowest mass: indeed, we would like to see whether it is possible to fly
the mission with the minimum mass, while maintaining a reasonably low time of flight and
Δ𝑉. Furthermore, the mass results to be a very critical objective since it heavily influences
the cost of the mission (i.e., a higher mass to be launched means a higher launch cost).

Therefore, we show in Figure 7.21, three different Pareto fronts that only display the
individuals with a mass smaller than 105 kg and with the final time constraint fulfilled (i.e.,
Δ𝑇 = 0 s). These solutions are representative of the Pareto optimal solutions over three
different runs with three different seeds for all the algorithms. Also, three population sizes
are treated: 56, 120 and 220. Each run within the population set has a different randomly
generated initial population, however, the seed is controlled for making sure that the initial
populations are the same for the various algorithms so that they all start from the same
baseline.

Surprisingly, we discover that the Pareto front of NSGA-II results to dominate that of the
other algorithms for a population size of 56, although MHACO displayed a higher joint hyper-
volume value. This can be explained by remembering that we are only plotting the solutions
with a mass smaller than 105 kg, thus hiding several individuals that have a higher mass and
are considered in the hypervolume computation. Therefore, MHACO displays better individ-
uals in terms of the time of flight and Δ𝑉 for higher mass values. Also, for a population size
of 56, MHACO is capable of finding a Pareto optimal front with more diversified individuals
(i.e., less crowded). Indeed, by looking at the final front size (of the three runs combined), we
observe a size of 28 for MHACO and 55 for NSGA-II: out of 55 individuals, NSGA-II displays
only eight individuals with a mass higher than 106 kg (i.e., 85% of the found individuals are
below 106 kg), while for MHACO, 15 individuals are above 106 kg (i.e., less than 50% of the
found individuals are below 106 kg).

Now, looking at the three found fronts, together with the information coming from the
hypervolume computations, we can determine the best candidate solutions. Similarly to
what has been done for the SO case, we would like to select three candidate best solutions,
which will then be refined with a local Monte Carlo simulation, as shown in Section 7.3.1.
We will thus select three types of individuals: one that extremely minimizes the time of flight,
one that extremely minimizes the Δ𝑉, and one that represents a trade-off between these two
objectives. As we can observe from the Pareto optimal front plots, the two individuals with
the lowest 𝑡𝑜𝑓 and Δ𝑉 have the following objective functions’ values: (104.013 kg, 1959.75
JD, 2598.12 m/s), (104.31 kg, 2049.78 JD, 41.66 m/s, 0 s). While for the individual that
minimizes both the time of flight and the Δ𝑉 concurrently, the following objective functions

104 7. Results

0 500 1000 1500 2000 2500 3000 3500 4000

DeltaV [m/s]

2000

2050

2100

2150

2200

2250

2300

2350

to
f

[J
D

]
50 100 150

2050

2100

2150

(a) 56 individuals and 40 generations.

0 500 1000 1500 2000 2500 3000 3500 4000

DeltaV [m/s]

2000

2050

2100

2150

2200

2250

2300

2350

2400

to
f

[J
D

]

NSGA-II
MOEA/D
MHACO
NSPSO

(b) 120 individuals and 40 generations.

0 500 1000 1500 2000 2500 3000 3500 4000 4500

DeltaV [m/s]

1800

2000

2200

2400

2600

2800

3000
to

f
[J

D
]

100 200 300 400 500

1980

2000

2020

2040

2060

2080

(c) 220 individuals and 40 generations.

Figure 7.21: Pareto optimal fronts for three different algorithms (i.e., NSGA-II, MOEA/D, NSPSO and MHACO) run
over three population sizes, with three runs per population set. Here, only the individuals that fulfill the final time
constraint (transformed into objective) and have a mass smaller than 105 kg are benchmarked with respect to the
time of flight () versus the final orbit objective (i.e.,).

are found: (104.30 kg, 1983.34 JD, 465.30 m/s, 0 s). All these individuals are found with the
NSGA-II optimizer. Furthermore, the variables and objective functions’ values corresponding
to these three candidate solutions are shown in Table 7.15. The launch dates of the three
candidates can be expressed in Julian seconds as 782406432 s for Candidate 1, 753091344
s for Candidate 2 and 752030956.8 s for Candidate 3.

We now have all the elements to refine these three solutions with a Monte Carlo simulation
and finally discuss the best overall candidate to be chosen for flying the mission. This is
discussed in the following section.

7.3.1. Local Refinement
As it was done for the single-objective case, an MC local refinement run is executed for
understanding whether we can improve the three candidate solutions presented in Table
7.15. In particular, each variable is varied within a 1% bound and three runs with three
different seeds are executed for each candidate solution so that the randomness is canceled.
Moreover, 15,000 function evaluations are performed around each candidate solution. First
of all, in terms of solutions feasibility (i.e., those that do not violate the final time constraint),
we observe a very high percentage of feasible solutions: 83% for Candidate 1 and 88% for
Candidate 2 and 3 (each averaged over three runs).

Since all three candidate solutions vary in a 1% range of the areas shown in Table 7.15, all
the masses of the individuals in the MC simulations will be smaller than 106 kg. We can thus
plot all the individuals of all the nine runs of the MC simulations in terms of flight times and
Δ𝑉. This is done in Figure 7.22, where only the feasible individuals are displayed. Moreover,
in Figures 7.23b and 7.23a, the histograms that represent the distributions of the Δ𝑉 and
𝑡𝑜𝑓 values of the candidate solutions as a function of the runs are shown. It is important to
remember that in all these figures, only the individuals with a mass that is between 104 and
106 kg are shown.

From these figures, we can observe that the MC runs around each candidate produce

7.3. Multi-Objective 105

Table 7.15: Three candidate best solutions of the MO optimization, and their corresponding fitness values.

Symbol Candidate 1 Candidate 2 Candidate 3 Units
Δ𝑉 41.66 465.30 2598.12 [m/s]
𝑡𝑜𝑓 2049.78 1983.34 1959.75 [JD]
𝑚 104.31 104.30 104.013 [kg]

𝑇launch 2024-10-17 2023-11-12 2023-10-31 yyyy/mm/dd
𝜔0 348.73 358.27 357.674 [deg]
𝛼E1 22.16 23.19 35.07 [deg]
𝛼E2 10.26 17.62 1.28 [deg]
𝛼E3 0.37 9.70 10.88 [deg]
𝛼S1 -35.22 -36.87 -38.43 [deg]
𝛼S2 -37.00 -30.25 -22.84 [deg]
𝛼S3 40.27 40.71 38.57 [deg]
𝛼S4 38.45 36.11 33.38 [deg]
𝑅1 0.354 0.307 0.395 [au]
𝑅2 0.285 0.287 0.264 [au]
𝐴 5015.07 5014.19 5000.64 [m2]

Figure 7.22: All the Monte Carlo runs around the three candidate solutions found in the MO simulation.

1800 2000 2200 2400 2600 2800

tof [JD]

0

500

1000

1500

2000

2500

3000

3500

F
e

v
a

ls
 [

-]

2050 2100

1000

2000

3000

(a) vs number of runs.

-2000 0 2000 4000 6000 8000 10000

DeltaV [m/s]

0

1000

2000

3000

4000

5000

6000

F
e

v
a

ls
 [

-] 0 500 1000 1500
0

1000

2000

(b) vs number of runs.

Figure 7.23: and distribution as a function of the number of runs for the three candidate solutions of
multi-objective case.

very different results. In particular, the runs around Candidate 1 result to be more spread
in terms of Δ𝑉 and 𝑡𝑜𝑓: we hence observe a very wide range of possible solutions when the
variables are slightly varied. This also means that the candidate solutions of this type result
to be more unstable, as the mission profile varies strongly when the variables are only varied

106 7. Results

0 500 1000 1500 2000 2500 3000 3500 4000

DeltaV [m/s]

1850

1900

1950

2000

2050

2100

F
it
n

e
s
s
 [

J
D

]

MO: 104 kg
SO (2 Optimizations): 204 kg
SO (1 Optimization): 204 kg

20 60 100
1950

2000

2050

Figure 7.24: Pareto-optimal fronts comparison of two SO optimizations and one MO optimization. All the individuals
of the SO cases have a mass of 204 kg, whereas those of the MO case have a mass between 104-106 kg.

by 1%. Therefore, this highlights the difficulty for the optimizer of finding the solutions with a
very low Δ𝑉, as they seem to be located in an area of the search space that is crowded of points
with a much higher Δ𝑉. Concerning Candidate 2, we observe a very different situation: all
the individuals coming from the MC simulations seem to be quite cluttered in a certain area
of the graph, thus allowing more stability of the solutions. Finally, Candidate 3 results to be
a compromise between an unstable and stable situation, being less spread than Candidate
2 but more cluttered than Candidate 1.

We now have all the elements to compare the best overall candidates of the MC runs with
those of the SO case. However, it is first important to recall that for the MO case, we have
managed to find solutions with a mass between 104-106 kg, this makes a huge advantage
w.r.t. the SO case, as they were all representative of a mass of 204 kg.

In Figure 7.24, we compare the Pareto-optimal fronts for three different situations: two
single-objective cases (one where the geocentric and heliocentric phases are optimized to-
gether and one where they are optimized separately) and one multi-objective case.

Some interesting conclusions can be drawn from this plot: first of all, the SO case where
the two phases are optimized separately manages to achieve the solutions with the lowest Δ𝑉,
reaching a minimum value of around 9 m/s, as already shown in Table 7.11. Nevertheless,
theMO simulation displays a Pareto front that is always dominant, except for low Δ𝑉. Besides,
this front shows more spread solutions in the front: thus granting more freedom to the
mission analyst (i.e., a more diverse set of solutions to choose from). Finally, it has to be
considered that the MO case has solutions with half of the mass w.r.t. the SO cases.

All things considered, we have thus decided to choose the best overall individual from
the MO optimization. In particular, we have selected the individual with the smallest Δ𝑉 of
27.89 m/s, with a corresponding flight time of 2078 JD, which is nearly 70 days higher than
the one of the best SO solution. The variables and constraint violations corresponding to
this best overall solution are displayed in Table 7.16. The launch time expressed in Julian
seconds corresponds to 752567328 s. In Section 7.5, we will investigate this solution and
its physical characteristics.

7.4. Random Seed Influence
As we have pointed out when describing the optimization of the different missions, the seed
of the optimization algorithms was always controlled. In practice, this means that the com-
parisons between different algorithms (or between the same algorithms with different input
parameters) were always made starting from the same initial populations of individuals: so
that the performances could be compared starting from the same baseline. If that had not
been done, the results would have been biased due to the differences in the initial population.
The main reason for this is that we are using metaheuristic global optimization algorithms

7.4. Random Seed Influence 107

Table 7.16: The best overall solution among all the mission profiles studied (i.e., two SO and one MO optimization
problems).

Symbol Best Candidate Units
Δ𝑉 27.89 [m/s]
𝑡𝑜𝑓 2078 [JD]
Δ𝑎 1.58×10 [au]
Δ𝑖 1.11×10 [deg]
Δ𝑒 7.97×10 [-]

𝑇launch 2023-11-06 yyyy/mm/dd
𝜔0 357.58 [deg]
𝛼E1 23.12 [deg]
𝛼E2 17.75 [deg]
𝛼E3 9.76 [deg]
𝛼S1 -37.09 [deg]
𝛼S2 -30.32 [deg]
𝛼S3 40.86 [deg]
𝛼S4 35.80 [deg]
𝑅1 0.3041 [au]
𝑅2 0.2893 [au]
𝐴 5062.2 [m2]
𝑚 105.29 [kg]

for designing the mission. These algorithms are very useful when we need to sample a search
space that is too large to be completely explored (e.g. by grid sampling methods or Monte
Carlo methods). Controlling the seed, thus allows us to both make the results reproducible
and compare the algorithms on the same initial population.

As we could observe in previous chapters, for all the simulated mission scenarios, we have
always executed each run three times, with three different seeds. This happened to make
sure that the trade-off is as objective as possible and we are not biased due to some random
effect. However, are three runs enough for avoiding the results to be biased? How did we
come up with this number?

For answering this question, we repeated the SO geocentric mission and the MO geocentric
and heliocentric mission over ten runs with ten different controlled seeds. If the found results
over ten different seeds consistently differ from those of three seeds, then this would probably
mean that ten runs, or maybe more, are needed to remove the randomness. This operation
should thus be repeated for higher runs with controlled seeds, until the results start to
converge. Since analyzing the seed influence over the entire set of optimization algorithms
used in this research and for all the population sizes goes beyond the scope of this study,
we limited ourselves to only study the seed influence on two different mission profiles (i.e.,
the SO geocentric mission and the MO mission), using the SO and MO ant colony optimizers
(i.e., ACOmi and MHACO) with a population size of 50 and 56 (for the SO and MO case,
respectively) and evolving the algorithms for 40 generations.

In Table 7.17, we show the mean and standard deviations of the fitness values (in Julian
days) for the SO case with three and ten runs. As far as concerns the MO case, in Table 7.18,
we display the hypervolume mean and standard deviations of three runs, versus that of ten
runs. This means that the hypervolume was computed for the Pareto optimal solutions of
each run, and their values were then averaged either over three or over ten runs. As we can
see, in both cases the results seem to suggest that three runs are already satisfactory for
having trustworthy results when comparing the optimizers. Concerning the SO, the differ-
ence between ten and three runs are about 0.36% in the mean and 10.63% in the standard
deviations. Whereas for the MO case, only 0.085% in the mean and 0.033% in the standard
deviation.

For both cases, the differences both in the standard deviations and in the mean values
are very low when compared to the differences we found among the different optimization

108 7. Results

Table 7.17: Random seed influence for the SO case: 3 vs 10 controlled seeds. The mean () and standard deviation
() of the best fitness values found for these two cases are shown.

Runs 𝜇 𝜎 Units
3 235.77 4.82 [JD]
10 236.61 4.31 [JD]

Table 7.18: Random seed influence for the MO case: 3 vs 10 controlled seeds. The mean () and standard deviation
() of the hypervolume values of the Pareto optimal solutions for these two cases are shown.

Runs 𝜇 𝜎 Units
3 479206750047.6506 11710423955.584814 [-]
10 479618359646.7511 11714274259.124847 [-]

algorithms, or even between the same algorithm with different input parameters, as it can
be seen in Sections 7.1, 7.2 and 7.3. Therefore, we have considered three runs enough to
remove the randomness, and in this entire research we have optimized the solar sailing polar
mission to the Sun by running the SO and MO algorithms three times, using the same three
controlled seeds for each batch of runs, so that the algorithms are compared starting from
the same initial populations.

Moreover, running each optimization three times instead of ten or more has permitted
us to spend nearly three times less computation time, thus allowing us to investigate other
aspects (e.g., doing more algorithms tuning or studying the problem with different formula-
tions).

7.5. Optimal Trajectory
Now that both the SO and MO optimizations have been executed, we can select the best
overall solution and show some characteristics of its mission profile.

In particular, due to its smaller mass (i.e., nearly half w.r.t. the SO case) and a 𝑡𝑜𝑓 and
a Δ𝑉 of only 70 days and 15 m/s higher, we have decided to select the best solution coming
from the MO phase.

Regarding this best solution, the heliocentric flight time is about 1810 JD, whereas the
geocentric time lasts nearly 268 JD. The orbits corresponding to these two phases and their
projections are shown in Figures 7.25 and 7.26.

We will now analyze the two phases separately, by studying the characteristics of each
phase: in particular, we will mainly focus on the various accelerations exerted on the sailcraft
during both phases. All these accelerations will be discussed in terms of acceleration norms,
while their real effect manifests itself throughout a three components vector.

Concerning the geocentric phase, by analyzing the perturbing accelerations to which the
sail is subjected in this phase, we found out some interesting aspects. First of all, for this best
solution, the atmospheric drag barely affects the sail in terms of acceleration norm: indeed,
not only, its maximum peaks at only 1.0×10 m/𝑠 but its action on the sail lasts only a
few minutes (for the rest of the time it always maintains a value lower than 10 m/s). This
aspect is only true for the best individuals, whereas the worst ones always display a stronger
and longer influence of the atmosphere. This confirms that the atmosphere is an influential
perturbing acceleration for this mission, as it was already demonstrated in Candy (2002).
Secondly, the solar-sail acceleration, the Moon acceleration and the Sun’s acceleration acting
on the sailcraft are analyzed. As we could expect, the Sun’s acceleration grows as the sailcraft
escapes the Earth (i.e., the time increases), with some wobbling, due to the elliptic shapes of
the escape trajectories. Towards the end of the geocentric phase, the heliocentric acceleration
outweighs the Earth’s one, thus causing the central body to shift from the Earth to the Sun.
Furthermore, the solar radiation pressure also shows a predictable behavior: the maximum
values of this acceleration stay almost constant for the entire geocentric phase (as the sailcraft
basically maintains a fixed distance w.r.t. the Sun in the geocentric phase). Nevertheless,
there is a slight decrease in this peak acceleration throughout the flight time: this hints that

7.5. Optimal Trajectory 109

0

10
5

Y [km]

-2

-4
-4

10
5

X [km]

-2 0

-3

2 4 6

-2

Z
 [
k
m

]

10
5

-1

0

(a) Geocentric orbit.

-2 0 2 4 6 8

X [km] 10
5

-5

-4

-3

-2

-1

0

1

Y
 [

k
m

]

10
5

(b) Projection of the geocentric orbit onto the (X,Y)
plane.

-2 0 2 4 6 8

X [km] 10
5

-4

-3

-2

-1

0

1

Z
 [

k
m

]

10
5

(c) Projection of the geocentric orbit onto the (X,Z)
plane.

-5 -4 -3 -2 -1 0 1

Y [km] 10
5

-4

-3

-2

-1

0

1

Z
 [

k
m

]

10
5

(d) Projection of the geocentric orbit onto the (Y,Z)
plane.

Figure 7.25: Geocentric orbit in the equatorial reference system of the best solution found in Section 7.3.

-0.4

-0.2

1

0

Z
 [
A

U
]

X [AU]

0.2

0

0.4

Y [AU]

-1-0.50-1 0.51

(a) Heliocentric orbit.

-1 -0.5 0 0.5 1 1.5

X [AU]

-1

-0.5

0

0.5

1

1.5

Y
 [

A
U

]

(b) Projection of the heliocentric orbit onto the
(X,Y) plane.

-1 -0.5 0 0.5 1 1.5

X [AU]

-0.6

-0.4

-0.2

0

0.2

0.4

Z
 [

A
U

]

(c) Projection of the heliocentric orbit onto the
(X,Z) plane.

-1 -0.5 0 0.5 1 1.5

Y [AU]

-0.6

-0.4

-0.2

0

0.2

0.4

Z
 [

A
U

]

(d) Projection of the heliocentric orbit onto the
(Y,Z) plane.

Figure 7.26: Heliocentric orbit in the ecliptic reference system of the best found in Section 7.3.

110 7. Results

0 50 100 150 200 250 300

Flight Time [JD]

0

2

4

6

8

10

12

A
lt
it
u

d
e

 [
k
m

]

10
5

255 257 259

1

1.1

1.2
10

5

(a) Best overall solution presented in Table 7.16.

0 50 100 150 200 250

Flight Time [JD]

0

2

4

6

8

10

A
lt
it
u

d
e

 [
k
m

]

10
5

225 226
0.8

1
1.2
1.4
1.6
1.8

10
4

(b) Candidate 2 solution of Table 7.15.

Figure 7.27: Altitude of the sail w.r.t. the Moon in the geocentric phase, as a function of the flight time in Julian
days.

the sailcraft is escaping in the opposite direction w.r.t. the Sun, meaning that the optimal
trajectory has a heliocentric phase that starts at a further distance w.r.t. the Sun. We can
explain this by observing that the sailcraft would have not been able to be propelled by the
solar pressure radiation if it had escaped in the direction of the Sun (indeed, in that case,
the sailcraft would have been in the towards the Sun phase, and the solar radiation pressure
could have only caused a decelerating effect). Therefore, the optimal trajectories often result
in an escape distance higher than the Sun-Earth distance. Moreover, the solar pressure
acceleration sometimes goes to zero in the geocentric phase: this happens due to the fact
that the sailcraft is either shadowed by the Earth w.r.t. the Sun or is in the ”towards the
Sun” phase.

Finally, by investigating the Moon’s acceleration as a function of the flight time, we notice
that the acceleration peaks at a certain point in the trajectory, reaching peak values of around
5×10 m/s . To better investigate this, we show the Moon-sail altitude, in Figure 7.27a: as
we can observe, the sailcraft never reaches a Moon’s altitudes lower than 90,000 km. This
means that the optimal trajectory does not display any flyby to the Moon, as the sailcraft does
not enter the sphere of influence, which is located at around 65,000 km from the surface.

However, this aspect is not always verified: indeed, if the desired time of flight should be
maintained to lower values, the sail seems to perform a flyby to the Moon. For instance, in
Figure 7.27b, we show the Moon-sail distance plot of the Candidate 2 solution presented in
Table 7.15: this solution displays a very low time of flight, even though its Δ𝑉 is not among
the best ones. As we can observe, for this solution, the sail reaches Moon’s altitudes of
around 8,000 km, meaning that it enters the sphere of influence of the Moon. As a result,
the sail manages to escape the Earth’s gravitational attraction in only 239 Julian days. As
a consequence, the Moon’s gravitational acceleration becomes predominant during a certain
phase of the mission (peaking at maximum values of 4.5×10 m/s) and the Moon starts
to act as a central body. It would thus be interesting to include the Moon’s flyby in the
optimization for observing whether other interesting sets of solutions could be found if the
gravity assist to the Moon is included in the mission profile.

Now that the geocentric orbit has been thoroughly studied, we can analyze the heliocentric
phase. This phase starts as soon as the sail reaches the sphere of influence of the Earth. The
final objective of this phase is to achieve as precisely as possible a circular orbit of 0.4 au of
radius and 90∘ of inclination around the Sun. In Figure 7.28 we show the orbital elements
of the sail. The sail reaches a final eccentricity of 7.968×10 , a final inclination of 89.99∘
and a final semi-major axis of 0.40016 au.

The main accelerations in this phase are only due to the central gravity of the Sun, third-
body perturbations from other planets and solar pressure radiation. The twomain perturbing
bodies in this phase are the Earth, Mercury, and Venus: although the perturbing magnitude
is very different (with the Earth’s peak perturbing acceleration being one thousand times
stronger than the other two planets: 5 × 10 vs 5 × 10 m/s), they act in a different phase
of the sail journey, thus making all of them important to include. Indeed, the Earth’s acceler-

7.5. Optimal Trajectory 111

500 1000 1500 2000 2500

Flight Time [JD]

0.02

0.04

0.06

0.08

0.1

0.12
E

c
c
e

n
tr

ic
it
y
 [

-]

2000 2100
0

1

2
10

-3

(a) Eccentricity vs flight time.

0 500 1000 1500 2000 2500

Flight Time [JD]

0.2

0.4

0.6

0.8

1

1.2

S
e

m
i-
m

a
jo

r
a

x
is

 [
a

u
]

2000 2100

0.395

0.4

0.405

(b) Semi-major axis vs flight time.

0 500 1000 1500 2000 2500

Flight Time [JD]

0

20

40

60

80

100

in
c
lin

a
ti
o

n
 [

d
e

g
]

2000 2100
88.5

89

89.5

90

(c) Inclination vs flight time.

Figure 7.28: Semi-major axis, inclination and eccentricity of the sail w.r.t. the Sun in the heliocentric phase of the
mission, as a function of the flight time in Julian days.

0 500 1000 1500 2000 2500

Flight Time [JD]

0.2

0.4

0.6

0.8

1

1.2

S
u

n
-S

a
il

D
is

ta
n

c
e

 [
A

U
]

1080 1100 1120 1140

0.26

0.265

0.27

2020 2040 2060 2080

0.36

0.38

0.4

(a) Sun-sail istance vs flight time.

0 500 1000 1500 2000 2500

Flight Time [JD]

0

0.5

1

1.5

2

2.5

3

3.5

4

S
R

P
 A

c
c
e

le
ra

ti
o

n
 [

m
/s

2
]

10
-3

(b) Solar radiation pressure acceleration vs flight
time.

Figure 7.29: Distance of the sail w.r.t. the Sun and solar radiation pressure acceleration acting on the sail, as a
function of the flight time in Julian days.

ation only acts in the very first phase, when the sail is still near the Earth, whereas the other
ones act in a later stage. Concerning the solar radiation pressure acceleration, its behavior
is now very different w.r.t. that of the geocentric phase. Indeed, as shown in Figure 7.29b,
we can now see that this acceleration increases as we move towards the Sun, and starts to
wobble during the cranking phase. In the end, when spiraling outwards to the final orbit of
0.4 au, this acceleration drops again: basically, it has a behavior that is strictly dependent
on the sailcraft distance to the Sun (similarly to what also happens for the Sun’s gravitational
acceleration). To confirm this, we show the Sun-sail distance in Figure 7.29a.

To summarize, the optimal mission seems to have several key features. First of all, the
atmospheric drag seems to play a marginal role, meaning that the best trajectory is the one
where this perturbing force is not very prominent. Secondly, the Moon flyby seems an aspect
to be investigated further: while it does not play a role for the best mission, for an optimal
mission where the time of flight is to be preferred w.r.t. the Δ𝑉 it can become a pivotal aspect

112 7. Results

to consider. Moreover, concerning the heliocentric phase, it seems that this phase is more
regular w.r.t. the geocentric one: there are less unpredictable perturbing forces, and those
that are present all have a regular behavior (i.e., predictable from theoretical considerations).
As a final remark, by comparing these results with previous studies such as those presented
in Candy (2002), Garot (2006) and Spaans (2009), we observe a strong enhancement: while
in those cases, the best found solution completed the entire mission in 2064 days, which is
very close to our best value of 2078 days. However, in this case, we perform the mission with
only 104 kg of mass, whereas 204 kg were required in their mission scenario. This means
that we manage to fly the mission with the same final conditions but with almost half of the
mass. Furthermore, in this case, we have a wider range of possible solutions to choose from:
we can either select a mission with a very low time of flight and a final orbit that is slightly
off w.r.t. to the ideal one, or we can maintain a final orbit that is very close to the ideal one
but accepting a higher time of flight. This aspect is crucial, as it leaves the mission analyst
more freedom in choosing the mission profile. Nonetheless, it is important to highlight that
those missions were developed for a different launch window: indeed, they were planning to
visit the Sun in the occasion of the 25th solar cycle (i.e., around 2023), whereas we plan to
study the Sun in its 26th solar cycle (i.e., around 2033), as we would not be able to reach the
Sun in time for the 25th solar cycle. Therefore, although previous missions can be used for
a better understanding of the quality of the solutions found in our study, we should always
keep in mind that they pertain to a different launch window, and their results are thus not
directly comparable with ours.

Chapter 8

Conclusions and
Recommendations
This thesis specialized in two main topics: first, in developing a new ant colony optimization
algorithm, and second in comparing that global optimizer with other state-of-art optimizers
on a solar sailing polar mission. This research thus proposed the introduction of two new ant
colony optimizers for both single and multi-objective optimizations. These algorithms have
been first tested on a wide set of problems for V&V purposes. Then, as a second step, a solar
sailing polar mission was optimized using both a single and multi-objective formulation of the
problem. For each of these problems, an ant colony optimizer was developed: this has hence
led to the birth of ACOmi (mixed integer ant colony optimizer for SO) and MHACO (multi-
objective hypervolume-based ant colony optimizer). These algorithms were developed in the
context of a solar sailing mission but they were formulated for any kind of problem. Therefore,
they can be applied to any optimization problem, although they are originally developed for
space trajectory optimization. The outcome seems to be very promising: with nearly 104 kg
of mass and 2078 JD of flight time, we manage to reach the final circular operational orbit of
0.4 au and 90∘ inclination around the Sun. The sail and its 5 kg payload shall be deployed
at the perigee of a GTO orbit on 6 November 2023. After 268 days the sail should be able
to escape the Earth’s gravitational pull and start orbiting the Sun. Then, after other 1810
days, it should be able to reach a final operational orbit with 0.4 au and 89.99∘ inclination.
The arrival date is foreseen to be the 15th of July 2029.

In this chapter, we will first make a review of the research question and subquestions in
Section 8.1. Then, we will discuss the simulation and optimization conclusions in a separate
section (i.e., Sections 8.2). Finally, in Section 8.3, we will address the recommendations for
further studies.

8.1. Research Questions Overview
As stated in Chapter 1, the main research question of this study was:

Can the time and cost of a solar-sail mission to the Sun be optimized by using a global
optimization technique?

As we have discussed in this report, we were able to optimize the solar sailing mission us-
ing a global optimization technique. When comparing the data with those found on previous
studies, the results seem to be very promising: we manage to fly the mission with only 104
kg of propellant and 2078 Julian days.

Several subquestions were related to the aforementioned research question, in particular,
these were divided in two main groups. We hereby present an overview of these subquestions:

1. How well can an ant colony optimization algorithm perform compared to other already
implemented optimization strategies in the framework of a solar sailing polar mission?

a. Is the ant colony optimizer able to find trajectories that do not violate the equality
and inequality constraints?

b. How does the ant colony optimizer behave in terms of best found solutions when
compared to other optimization algorithms?

113

114 8. Conclusions and Recommendations

2. Is it possible to improve the current solutions for a solar sailing mission by optimizing the
trajectory with multiple objective functions?

a. How does the physical trajectory vary when the cost and duration of the mission are
optimized separately?

b. Can we develop a new ant colony optimization algorithm for multiple-objectives that
is competitive with multi-objective state-of-art algorithms?

3. What is the most suitable way for modeling the trajectory of a sailcraft in a solar sailing
mission?

a. What is the influence of the perturbing accelerations in the optimization technique?

b. Can the problem be represented in a more simple and effective way, without com-
promising the quality of the solutions?

In the following section, each of these subquestions will be separately discussed.

8.2. Simulations and Optimizations Conclusions
In this section, we will discuss the outcome of this thesis study related to each research
subquestion. This will be done by treating each aspect in a separate paragraph.

Ant Colony Optimizer Performances
As we can observe, various research questions revolve around the question whether an ant
colony optimizer is capable of being competitive with other global techniques for space tra-
jectory optimization. In this thesis, both the single and multi-objective ant colony optimizers
have been tested on a wide range of problems before being applied for the solar-sail mission.
In particular, for SO, the algorithm has been tested on 4 different unconstrained continu-
ous test problem, 24 constrained continuous problems and an integer constrained problem.
Moreover, it was also applied on 6 different real-life inspired trajectory optimization prob-
lems. In all these cases, the algorithm was benchmarked with other SO global optimizers,
which currently represent the state-of-art methods.

Also the multi-objective extension was tested on 21 different problems (belonging to three
different well known test-suites).

All these testing phases have allowed us not only to adjust and enhance the algorithms’
behavior, but also to develop a thorough understanding of their working principles, so that
the different input parameters could have then been tweaked in a more physical and mean-
ingful way.

When applying the ant colony optimizers for the solar sailing mission, we were deeply im-
pressed by the results: the ACO either performed as the best algorithm (e.g. for the geocentric
phase) or among the very best ones (e.g. for the heliocentric phase and for the MO mission).
This confirms that indeed ACO does behave in a competitive way w.r.t. other optimization
algorithms, and that in some cases even outperforms global techniques with a long-standing
heritage, such as differential evolution.

Multi-Objective Solar Sailing Mission
Multi-objective optimization has demonstrated to be a very powerful technique for the solar
sailing polar mission of our interest: indeed, by including the mass as a separate objective
we have managed to find orbits with a time of flight of 2078 JD and a mass of 104 kg, which
nearly satisfy completely the Δ𝑉 constraints (with a value of around 27 m/s). When compared
to SO, we observe a completely different situation: indeed, for SO, the best found solution had
a 𝑡𝑜𝑓 of 2062 JD, but a mass of 204 kg, which is nearly twice as the mass of the MO case. This
aspect was preferred, although the SO mission reached a smaller Δ𝑉 value of around 9 m/s.
Furthermore, MO also required substantially fewer function evaluations (we could find very

8.3. Recommendations 115

promising results already with nearly 2296 function evaluations). Thus, the MO formulation
of the problem allowed us to find competitive solutions in a shorter time, also allowing a
more flexible mission profile, where different sail areas and mass could be evaluated. The
very variable and complex configuration of the environment in such a mission (i.e., Moon’s
flyby, atmospheric drag, etc.) makes the problem cumbersome and counter-intuitive in some
cases: as a result, by increasing the solar-sail area did not always result in a better mission
profile.

Trajectory Problem Modelling

In this study, the trajectory was modeled in two main ways: by only treating the time of flight
as objective (i.e., SO mission) or by also including the mass (i.e., MO mission). As we have
already pointed out, this second strategy has turned out to be more powerful and versatile for
the mission of our interest. However, another aspect that was also handled was how to deal
with the equality and inequality constraints. In particular, in this research, it was decided to
turn all the orbital constraints (i.e., final eccentricity, semi-major axis and inclination around
the Sun) into a Δ𝑉 constraint: so that their violation actually translates into an estimation
of how much propellant should be used for correcting the final orbit. This was included as
one of the objectives in the MO mission, and was treated as a single inequality constraint
in the SO counterpart. As we have observed, this has led a more flexible scenario in which
we could also explore very interesting orbits, which have a higher Δ𝑉. In previous studies,
this mission was optimized for SO and with a single fitness formulation that included both
the orbit elements violations, the cost and the mass. However, this formulation turns out
to be very subjective. Also, it does not allow to explore a wide range of solutions, due to the
fact that the complexity of the problem is reduced to only one single equation. Our mission
formulation, on the other hand, seems to give a more objective and comprehensive picture
of the situation. With such a formulation, we were able to find better solutions in the same
or lower number of function evaluations.

Another aspect to be noted is that by optimizing the geocentric and heliocentric phases
separately, for SO, it was found that better results could be achieved in terms of overall
wall-clock time, compared to the case in which these two phases are handled concurrently.

Concerning the perturbations, we verified that it is essential to include the Moon and
Sun’s third body perturbations in the geocentric phase and that is also fundamental to take
into account the solar pressure radiation variations during the geocentric phase. Indeed, we
observed that the maximum solar pressure acceleration varies in a noticeable way during
this phase, thus shaping the trajectory in a different way. Also, it was verified that both Mer-
cury and Venus act as third-body perturbations of the same strength during the heliocentric
phases. Although this also depends on the trajectory flown, it was verified that, in general,
both these celestial bodies can perturb the sailcraft with similar acceleration magnitudes.
Hence, if one of the two body is included as perturbation, the other one must be included as
well.

Finally, we have also studied the influence of five different propagation schemes (i.e.,
Cowell, modified equinoctial elements and unified state model with quaternions, exponential
mapping and Rodrigues parameters) for the SO geocentric and heliocentric mission. We
have benchmarked them comparing the different Pareto fronts found and the total wall-clock
time required for finding these fronts. It turned out that the modified equinoctial elements
propagator represents the best compromise between low wall-clock time and good quality of
the Pareto front. Therefore, this propagator has been used over the entire research.

8.3. Recommendations
The recommendation for further studies are divided in three parts: those that concern the
optimization part only, those that pertain to the simulation model and those that regard both
of them. We will tackle each of these in the following paragraphs.

116 8. Conclusions and Recommendations

Optimization Recommendations
Concerning the optimization part, we recommend future researchers to take into account the
following aspects:

1. Tweaking and tuning all the input parameters of the algorithm is, in general, time con-
suming and often subjective. Although we could find a set of input parameters that
gave the best result in a group of more, we could not conclude that those sets of param-
eters are the best overall. Hence, it is recommended to develop a technique for avoiding
this burden to the future users of global optimization techniques. This could be done
in three ways: one possibility is to develop an artificial intelligence technique that is
capable of tweaking the algorithm in the most efficient way, given a set of training data
(i.e., neural networks or other machine learning techniques, for instance). The second
possibility, is to develop a self-adaptive method for adjusting these parameters automat-
ically, inside the algorithm. As we have seen in this thesis study, this technique has
already been implemented in several differential evolution variants, demonstrating to be
very effective and handy. The third possibilit is to use hyper-parameters optimization,
such as Bayesian optimization, to establish the optimal input set for the optimization
algorithm.

2. Although this was not among the primary objectives, in this study, we developed a non-
dominated sorting particle swarm optimizer (NSPSO) algorithm. This, however, seemed
to be clearly outperformed by other MO optimizers. Nonetheless, we were not able to
establish, whether this was due to the lack of a more thorough tweaking and tuning
of the many input parameters of the algorithm, or if this only mirrored the weakness
of the algorithm itself. A more thorough study seems necessary to solve this. In any
case, with the same time allotted for the benchmarking and testing phases, the other
MO (including MHACO) algorithms have seemed to be more powerful.

3. Can a local optimization method improve the results? In this thesis study, we only fo-
cused on global optimization techniques, although wemake use of some optimal steering
laws for formulating the optimization problem. It would, however, be interesting to see
what are the performances of a local optimizer on this problem, and if it can be coupled
with a global one, to improve the overall performances of the mission. For doing this,
several local optimizers available in PaGMO could be used.

4. From our study, we have concluded that if a single-objective problem is handled, then it
is better to split the geocentric and heliocentric phases, and optimize them separately.
It would be interesting to see what happens for very high function evaluations: is the
problem still separable in that case?

Trajectory Simulation Recommendations
While analyzing the solar sailing polar problem, we dealt with some interesting and peculiar
aspects that have raised several recommendations for future studies. These can be summa-
rized as follows:

1. The flyby to the Moon seems to be a pivotal aspect of the mission when the 𝑡𝑜𝑓 should
be minimized: it thus seems to be crucial to include a flyby to the Moon in the mission
profile for observing whether a wider set of possible interesting solutions can be found.
For future studies, it is recommended to further investigate this, and possibly include
some of the flyby parameters (e.g. flyby angle, etc.) to be optimized.

2. The type of final orbit is fundamental for the whole optimization phase. A different
final orbit is hence expected to result in different optimization outcomes. It would be
interesting to extend the possible final orbits to more than one (e.g. by including circular
orbits in a different resonance with the Earth), so that a more flexible mission profile
can be designed.

8.3. Recommendations 117

3. When trading-off five different propagators for the SO geocentric and heliocentric mis-
sion, it turned out that the modified equinoctial elements represent a good compromise
between low wall-clock time and good quality of the Pareto front. This result, however,
is problem dependent, and other propagators (such as the modified equinoctial ele-
ments with Rodrigues parameters) have also shown interesting results. It would thus
be interesting to compare these propagators for all the mission profiles (i.e., for the sep-
arate geocentric and heliocentric phases and for the multi-objective case) and establish
whether there is a propagator that best suits all these mission scenarios, in terms of
quality of the Pareto front and wall-clock time.

118 8. Conclusions and Recommendations

Appendix A

Equations of Motions
In this appendix, the equations of motion (i.e., Equation (3.38)) that describe the translational
dynamics of the spacecraft will be derived. In particular, this will be done for three different
types of state variables introduced in the previous sections: Cartesian elements, modified
equinoctial elements, and unified state model. Moreover, three possible representations of
the equations of motion using different modifications of the USM will be described (namely,
using quaternions, modified Rodrigues parameters and exponential mapping).

A.1. Cowell Propagator
Given a certain Cartesian position vector rrr = (𝑥, 𝑦, 𝑧) and velocity vector vvv = (𝑣 , 𝑣 , 𝑣) , the
state variable vector is defined as:

xxx = (rrrvvv) (A.1)

In the Cowell propagator, this vector is used as state variable, and the time has the role
of independent variable. This results in the following equations of motion (set of first-order
differential equations):

𝑑𝑥
𝑑𝑡 = 𝑣 (A.2)

𝑑𝑦
𝑑𝑡 = 𝑣 (A.3)

𝑑𝑧
𝑑𝑡 = 𝑣 (A.4)

𝑑 𝑥
𝑑𝑡 = − 𝜇

(√𝑥 + 𝑦 + 𝑧)
𝑥 + 𝑎 , (A.5)

𝑑 𝑦
𝑑𝑡 = − 𝜇

(√𝑥 + 𝑦 + 𝑧)
𝑦 + 𝑎 , (A.6)

𝑑 𝑧
𝑑𝑡 = − 𝜇

(√𝑥 + 𝑦 + 𝑧)
𝑧 + 𝑎 , (A.7)

where aaa = (𝑎 , , 𝑎 , , 𝑎 ,) is the vector that represents the sum of perturbing ac-
celerations (including the solar-sail force).

A.2. Modified Equinoctial Elements
As we already pointed out, MEE is a modified version of the Kepler elements, made to avoid
mathematical singularities, which limited the use of the Kepler elements. Their first appear-
ance was in Walker (1986), and the relation between MEE and Kepler elements (𝑎, 𝑒, 𝜈, 𝜔, Ω, 𝑖)
is:

119

120 A. Equations of Motions

𝑝 = 𝑎(1 − 𝑒) (A.8)
𝑓 = 𝑒 cos(𝜔 + Ω) (A.9)
𝑔 = 𝑒 sin(𝜔 + Ω) (A.10)

ℎ = tan
𝑖
2 cosΩ (A.11)

𝑘 = tan
𝑖
2 sinΩ (A.12)

𝐿 = Ω + 𝜔 + 𝜈 (A.13)

For the unperturbed two-body problem, all the elements except for 𝐿 result to be constant.
However, when there are perturbations in the model, we can derive (see Walker (1986) for the
derivation) the following differential equations that describe the variations of the MEE due to
these forces:

𝑑𝑝
𝑑𝑡 =√

𝑝
𝜇
2𝑝
𝑤 𝑎 (A.14)

𝑑𝑓
𝑑𝑡 =√

𝑝
𝜇(sin(𝐿)𝑎 + ((𝑤 + 1) cos 𝐿 + 𝑓)𝑎𝑤 − (ℎ sin 𝐿 − 𝑘 cos 𝐿) 𝑓𝑤𝑎) (A.15)

𝑑𝑔
𝑑𝑡 =√

𝑝
𝜇(− cos(𝐿)𝑎 + ((𝑤 + 1) sin 𝐿 + 𝑔)𝑎𝑤 + (ℎ sin 𝐿 − 𝑘 cos 𝐿) 𝑓𝑤𝑎) (A.16)

𝑑ℎ
𝑑𝑡 =√

𝑝
𝜇
𝑠
2𝑤 sin(𝐿)𝑎 (A.17)

𝑑𝑘
𝑑𝑡 =√

𝑝
𝜇
𝑠
2𝑤 sin(𝐿)𝑎 (A.18)

𝑑𝐿
𝑑𝑡 =√𝑝𝜇

𝑤
𝑝 + 1

𝑤√
𝑝
𝜇 (ℎ sin 𝐿 − 𝑘 cos 𝐿)𝑎 (A.19)

where:

𝑠 = 1 + ℎ + 𝑘 (A.20)
𝑤 = 1 + 𝑓 cos 𝐿 + 𝑔 sin 𝐿 (A.21)

𝑟 = 𝑝
𝑤 (A.22)

The perturbing acceleration components (𝑎 , 𝑎 , 𝑎) are in the same direction of the forces
expressed in Figure A.1: hence, 𝑎 is the perturbing acceleration in the direction of the radial
outwards, 𝑎 is the component of the acceleration in the direction of the angular momentum
vector (hhh = rrr×vvv), and 𝑎 is the acceleration perpendicular to the aforesaid two, in the direction
that completes the right-hand orthogonal reference system. It is quite easy to pass from the
Cartesian elements to the modified equinoctial elements. Indeed, having transformed the
Cartesian elements to Kepler elements, by simply applying the equations listed from Equation
(A.8) to Equation (A.13), we can pass from Kepler elements to modified equinoctial elements.
However, the opposite (from modified equinoctial to Cartesian) is not as trivial as this case.

After some manipulations (see Walker (1986) for further details), we can describe the
transformation between MEE to Cartesian variables as follows:

A.3. Unified State Model 121
Fundamentals of Astrodynamics SS Method of variation of orbital elements 599

Figure 22.2: Geometry of the fS fN fW acceleration frame relative to the orbit and to the inertial reference
frame.

Figure 22.3: Geometry of the acceleration frames rotations.

where fx , fy , fz are the components of the perturbing acceleration, regardless whether these can
be derived or not from a potential function. The partial derivatives x/ j, y/ j, z/ j can be
elaborated further. J.C.F. Gauss (1777-1855) has done this around 1813 for the first time, when
he computed the perturbations that Jupiter exerts on the orbit of the asteroid Pallas. He
decomposed the three components of the perturbing acceleration into three other orthogonal
directions: a radial component, fS, a component in the orbital plane perpendicular to the radius
vector, fN , and a component perpendicular to the orbital plane, fW. The component fN points in the
direction of motion; the component fW in the direction of the orbital angular momentum vector.
Figure 22.2 shows the geometry of these acceleration components in inertial space. To express
fx , fy, fz in terms of fS , fN , fW , we can apply the method of rotation matrices. First, we rotate the
frame fS fN fW about the fW-axis over an angle -(+), then we apply a rotation about the line of
nodes over an angle -i, and finally we apply a rotation about the Z-axis over an angle - . These
rotations are indicated in Figure 22.3. We then can write for the relations between the coordi-
nates:

Figure A.1: Geometry of the , and components of the force with respect to the orbit and to the inertial
reference frame (X,Y,Z)(Wakker, 2015).

𝑥 = 𝑟
𝑠 (cos 𝐿 + 𝛼 cos 𝐿 + 2ℎ𝑘 sin 𝐿) (A.23)

𝑦 = 𝑟
𝑠 (sin 𝐿 − 𝛼 sin 𝐿 + 2ℎ𝑘 cos 𝐿) (A.24)

𝑧 = 2 𝑟𝑠 (ℎ sin 𝐿 − 𝑘 cos 𝐿) (A.25)

𝑣 = − 1𝑠 √
𝜇
𝑝 (sin 𝐿 + 𝛼 sin 𝐿 − 2ℎ𝑘 cos 𝐿 + 𝑔 − 2𝑓ℎ𝑘 + 𝛼 𝑔) (A.26)

𝑣 = − 1𝑠 √
𝜇
𝑝 (− cos 𝐿 + 𝛼 cos 𝐿 + 2ℎ𝑘 sin 𝐿 − 𝑓 + 2𝑔ℎ𝑘 + 𝛼 𝑓) (A.27)

𝑣 = 2
𝑠 √

𝜇
𝑝 (ℎ cos 𝐿 + 𝑘 sin 𝐿 + 𝑓ℎ + 𝑔𝑘) (A.28)

where 𝑠, 𝑤 and 𝑟 are the same as the ones in Equations (A.20), (A.21) and (A.22), respectively;
and 𝛼 can be computed as:

𝛼 = ℎ − 𝑘 (A.29)

A.3. Unified State Model
In this section, we will discuss the equations of motions derived from three different sets
of state variables, all belonging to the unified state model class: those that make use of
quaternions, those that take advantage of the modified Rodrigues parameters and those that
use the exponential mapping. In doing this, we will make use of the definitions introduced
in Section 3.2.

A.3.1. Quaternions
Before introducing the USM equations of motion using quaternions, it is first fundamental
to describe certain parameters that will be used.

We recall that the velocity of the spacecraft (vvv) is written as the sum of two components:
one along the direction of the velocity at periapsis (RRR) and one along the perpendicular direc-
tion to the radius vector, at any instant time (CCC):

122 A. Equations of Motions

vvv = CCC+RRR (A.30)
It is clear that for rotating from ℱ to ℱ , a Euler rotation of an angle 𝑖 around the line of
nodes has to be made. On the other hand, for rotating from ℱ to ℱ , another Euler rotation
has to be made, around the direction of ̂fff , of an angle 𝜆. This angle is called true longitude,
and it is defined as the sum of the right ascension of the ascending node, the argument of
perigee and the true anomaly:

𝜆 = Ω + 𝜔 + 𝜈 (A.31)
We can now describe the orientation of ℱ w.r.t. ℱ in quaternions as follows:

(
𝜖
𝜖
𝜖
𝜂
) =

⎛
⎜⎜⎜⎜

⎝

sin
𝑖
2 cos (

Ω − 𝜔 − 𝜈
2)

sin
𝑖
2 sin (

Ω − 𝜔 − 𝜈
2)

cos
𝑖
2 sin (

Ω + 𝜔 + 𝜈
2)

cos
𝑖
2 cos (

Ω + 𝜔 + 𝜈
2)

⎞
⎟⎟⎟⎟

⎠

(A.32)

In the case of equatorial orbits and circular orbits, Ω and 𝜔 are not defined, respectively.
However, the USM can still be used and the four parameters of the quaternion that expresses
the orientation of the orbit, shown in Equation (A.32), will all be set zero.

Unfortunately, the use of this propagator implies a more complex definition of the equa-
tions of motion. To define them, it is first necessary to pass through intermediate steps, which
will now be listed in Equations (A.33), (A.34), (A.35) and (A.36). First of all, it is possible to
relate the quaternions to the angle 𝜆 as:

(sin 𝜆cos 𝜆) =
1

𝜖 + 𝜂 (2𝜖 𝜂
𝜂 − 𝜖)

hence:

𝜆 = tan (2𝜖 𝜂
𝜂 − 𝜖) (A.33)

Furthermore, using the hodograph the velocities expressed in the ℱ frame can be found as:

(𝑣𝑣) = (0𝐶) + [
cos 𝜆 sin 𝜆
− sin 𝜆 cos 𝜆] (

𝑅
𝑅) (A.34)

The relation between 𝐶 and 𝑣 is expressed through the parameter 𝑝:

𝑝 = 𝐶
𝑣 (A.35)

Finally, we define a parameter 𝛾 as:

𝛾 = 𝜖 𝜖 − 𝜖 𝜂
𝜖 + 𝜂 (A.36)

Now, to express the equations of motion, we have to compute the perturbing accelerations
aaa = (𝑎 , 𝑎 , 𝑎) (i.e., all the accelerations acting on the body except for the central gravity
field) in the ℱ frame. As derived in Altman (1972) the dynamic equation for the quaternion
have the following angular velocities:

𝜔 = 𝑎
𝑣 (A.37)

𝜔 = 0 (A.38)

𝜔 = 𝐶𝑣
𝜇 (A.39)

A.3. Unified State Model 123

As one would expect, the angular velocity component along the êee axis (𝜔) is zero: indeed,
there is no velocity component out of the local orbital plane. The parameter 𝐶 can be easily
found remembering that the angular momentum vector can be computed as:

hhh = (
ℎ
ℎ
ℎ
) = rrr × vvv = (

𝑥
𝑦
𝑧
) × (

𝑣
𝑣
𝑣
) = (

𝑦𝑣 − 𝑧𝑣
𝑧𝑣 − 𝑥𝑣
𝑥𝑣 − 𝑦𝑣

) (A.40)

Now, using the quaternion time derivative (see for instance Wie (2008)) we can compute:

(
̇𝜖
̇𝜖
̇𝜖
�̇�
) = 1

2
⎡
⎢
⎢
⎣

0 𝜔 0 𝜔
−𝜔 0 𝜔 0
0 −𝜔 0 𝜔
−𝜔 0 −𝜔 0

⎤
⎥
⎥
⎦
(
𝜖
𝜖
𝜖
𝜂
) (A.41)

Moreover, the time derivative of the hodographic velocity components can be written as (see
Chodas (1981) for the entire derivation):

(
�̇�
�̇�
�̇�

) = [
0 −𝑝 0

cos 𝜆 −(1 + 𝑝) sin 𝜆 −𝛾𝑅 /𝑣
sin 𝜆 (1 + 𝑝) cos 𝜆 𝛾𝑅 /𝑣

](
𝑎
𝑎
𝑎
) (A.42)

The two systems of equations in Equation (A.42) and (A.41) constitute the equations of motion
for the USM, using the quaternions. However, we still need to express 𝑅 and 𝑅 in the ℱ
frame to solve these equations. This can be done by first expressing RRR in the ℱ frame, for a
true anomaly of 90∘:

RRR | ∘ = (
𝑅
0
0
) (A.43)

For 𝜈 = 90∘, it holds:

𝜆| ∘ = Ω + 𝜔 + 90∘ (A.44)

The rotation matrix from ℱ to ℱ can be written as:

CCC ← | ∘ = [
cos((Ω + 𝜔) + 90∘) − sin((Ω + 𝜔) + 90∘) 0
sin((Ω + 𝜔) + 90∘) cos((Ω + 𝜔) + 90∘) 0

0 0 1
] (A.45)

Hence, we can write RRR in the ℱ frame by simply multiplying this matrix for RRR expressed in
the ℱ frame:

(
𝑅
𝑅
0
) = [

cos((Ω + 𝜔) + 90∘) − sin((Ω + 𝜔) + 90∘) 0
sin((Ω + 𝜔) + 90∘) cos((Ω + 𝜔) + 90∘) 0

0 0 1
] × (

𝑅
0
0
) (A.46)

One final observation is that we usually know the Cartesian perturbing acceleration vector in
the inertial frame (i.e., aaa). We thus need to transform this vector from the inertial frame
(ℱ) to the orbital frame (ℱ). This can be done by using the quaternion matrix CCC ← defined
as:

CCC ← = [
1 − 2(𝜖 + 𝜖) 2(𝜖 𝜖 + 𝜖 𝜂) 2(𝜖 𝜖 − 𝜖 𝜂)
2(𝜖 𝜖 − 𝜖 𝜂) 1 − 2(𝜖 + 𝜖) 2(𝜖 𝜖 + 𝜖 𝜂)
2(𝜖 𝜖 + 𝜖 𝜂) 2(𝜖 𝜖 − 𝜖 𝜂) 1 − 2(𝜖 + 𝜖)

] (A.47)

Indeed, it holds:

aaa = CCC ← fff , (A.48)

124 A. Equations of Motions

A.3.2. Modified Rodrigues Parameters
We have already pointed out that by using a different set of parameters for describing the
orientation of the orbit, modifications to the USM can be introduced. One of these is made
through the use of the modified Rodrigues parameters. Although presenting a singularity
in their representation, these parameters benefit from the use of shadow parameters for
avoiding this singularity.

To derive the equations of motion for this case, it is necessary to convert quaternion
elements into MRP. This can be done (for both the normal and shadow parameters) as follows:

𝜎𝜎𝜎 = 𝜖𝜖𝜖
1 + 𝜂 ∀𝜂 ≠ −1 (A.49)

𝜎𝜎𝜎 = −𝜖𝜖𝜖
1 − 𝜂∀𝜂 ≠ 1 (A.50)

Now, by inserting the expression found in Equation (A.32) inside Equations (A.49) and (A.50),
we find:

𝜎𝜎𝜎 = (1 + cos (𝑖2) cos (
Ω + 𝑢
2))

⎛
⎜⎜

⎝

sin (𝑖2) cos (
Ω − 𝑢
2)

sin (𝑖2) sin (
Ω − 𝑢
2)

cos (𝑖2) sin (
Ω − 𝑢
2)

⎞
⎟⎟

⎠

(A.51)

𝜎𝜎𝜎 = (cos (𝑖2) cos (
Ω + 𝑢
2 − 1))

⎛
⎜⎜

⎝

sin (𝑖2) cos (
Ω − 𝑢
2)

sin (𝑖2) sin (
Ω − 𝑢
2)

cos (𝑖2) sin (
Ω − 𝑢
2)

⎞
⎟⎟

⎠

(A.52)

The rest of the equations concerning the shape of the orbit, will be the same: hence, Equation
(A.42) will still hold for this case. However, the parameters constituting this equation will be
computed differently. In particular, the relations for the cosine and sine of 𝜆 will be computed
as follows:

(sin 𝜆cos 𝜆) =
1

4𝜎 + (1 − 𝜎) (4𝜎 (1 − 𝜎)
(1 − 𝜎) − 4𝜎) (A.53)

The differential equations in terms of MRP and SMRP can be derived using the fact that 𝜔 = 0
as:

�̇�𝜎𝜎 = 1
4 (

(1 − 𝜎 + 2𝜎)𝜔 + 2(𝜎 𝜎 + 𝜎)𝜔
2(𝜎 𝜎 + 𝜎)𝜔 + 2(𝜎 𝜎 − 𝜎)𝜔
2(𝜎 𝜎 − 𝜎)𝜔 + (1 − 𝜎 + 2𝜎)𝜔

) (A.54)

Since both the differential equations and the relations that express the cosine and sine of
𝜆 are the same for MRP and SMRP, the aforementioned equations hold for both the sets of
parameters.

A.3.3. Exponential Mapping
Also in this case, the differential equations associated with �̇�, �̇� , and �̇� , are the same as
the quaternions. Also, the expression of 𝜔𝜔𝜔 is the same. The time derivative of ȧaa (needed for
expressing the complete set of equations of motion) can be expressed as shown in Grassia
(1998), as follows:

ȧaa = 1
2(Φcot

Φ
2𝜔𝜔𝜔 −𝜔𝜔𝜔 × aaa−

𝜔𝜔𝜔 ⋅ aaa
Φ (cotΦ2 −

2
Φ)) (A.55)

A.3. Unified State Model 125

It is clear that a singularity is present at Φ = 0. In Grassia (1998) a method to avoid this
singularity is also proposed, using the Taylor expansion:

ȧaa ≈ 1
2(
12 − Φ

6 𝜔𝜔𝜔 −𝜔𝜔𝜔 × aaa−𝜔𝜔𝜔 ⋅ aaa(60 + Φ360)aaa) (A.56)

126 A. Equations of Motions

Appendix B

Verification and Validation
In this appendix, we will discuss the verification and validation of both the simulation model
and the optimization procedure. In particular, the appendix will be organized as follows:
in Section B.1 we will discuss the unit tests for the simulation model. While in Section
B.2, we will investigate the validation of the entire mission with respect to the reference
mission introduced in Section 2.3. Finally, in Section B.3, the optimization procedure will be
verified and the results of the benchmarks will be presented. This last section is also useful
to establish the set of input parameters to be used in this research for the implemented
optimization algorithms.

B.1. Simulation Model
Concerning the simulation model, as we have already pointed out in Chapter 6, an existing
software was used for representing and formalizing the governing equations of the sail in
its journey to the Sun: Tudat. The software part that is already implemented in Tudat is
assumed to be free of errors since Tudat includes several unit-tests for verifying and validating
each software component. These pre-existing models include all the mathematical methods
(i.e, propagators, integrators, etc.) and all environmental models (i.e., cannon-ball solar
pressure radiation, gravitational forces and third body perturbations, aerodynamic forces,
etc.). The only exception concerns the non-ideal solar-sail force model. Indeed, Tudat is
only capable of simulating the cannon ball force model, which assumes the solar-sail force
to always be perpendicular to the reflecting surface and parallel to the Sun-sail vector. This
is an approximation that is often acceptable for satellites in geocentric orbits, but that would
cause a consistent error in the trajectory if applied for a solar sailing polar mission. For this
reason, the non-ideal solar-sail force model was introduced in Tudat and several unit-tests
have been introduced to verify and validate it.

In particular, the V&V procedure was executed by checking the following aspects:

1. The non-ideal solar-sail force model has to be equal to the cannon ball, when the cone
angle is zero and the normal to the sail and the Sun-sail vector are parallel.

2. At several different distances from the Sun, it was checked that the non-ideal solar-sail
force model corresponds to the theoretical value when the cone and clock angles are set
to zero. This was done at Earth, Venus and Uranus’ distances. Also, it was checked for
a random distance.

3. The solar-sail model was checked and compared to the Ulysses satellite at 1 AU. This
was done for the case in which the cone and clock angles are equal to zero.

4. Finally, the update procedure of the solar-sail force model was checked (when the cone
and clock angles are varied) and 17 different unit tests have been executed for checking
whether the non-ideal solar-sail force model returned the expected values for the force
when the attitude angles are controlled and known. The theoretical values for the force
were retrieved from McInnes (1999). The following sets of cone and clock angles have
been tested (i.e., (𝛼, 𝛿)): [90∘, 0∘], [90∘, 90∘], [90∘, 180∘], [90∘, 360∘], [-90∘, 0∘], [-90∘, 90∘],
[-90∘, 180∘], [-90∘, 360∘], [0∘, 0∘], [0∘, 90∘], [0∘, 180∘], [0∘, 360∘], [45∘, 45∘], [-45∘, -45∘],
[45∘, -45∘], [-45∘, 45∘], [80∘, 80∘], [-80∘, 80∘] and [15∘, 25∘]. These cone and clock angles
were chosen in such a way that all the possible singularities were verified (to make sure
that the force model was bug free: an example is [0∘, 0∘] or [90∘, 90∘]). Besides, some
random sets of angles were verified (e.g. [15∘, 25∘] or [80∘, 89∘]).

127

128 B. Verification and Validation

Table B.1: The best overall solution, coming from the optimization of the geocentric and heliocentric phases con-
currently.

Symbol Values Units
𝑚 204.0 [kg]
𝐴 9800 [m]

𝛼 3 [deg]
𝜖 0.05 [-]
𝜖 0.64 [-]
𝐵 0.79 [-]
𝐵 0.55 [-]
𝑠 0.88 [-]
𝛼 0.94 [-]

B.2. Integrated System Tests
In this section, we will tackle the V&V of the entire trajectory (including both the geocentric
and heliocentric phases). In particular, the reference mission was used for validating our
simulation model for the entire journey of the sail. This is also a higher level test to actually
verify that all the mathematical and environmental models implemented work well together
and produce accurate results (something that is not verifiable from the unit tests only). Also,
this V&V procedure has allowed us to understand and discover some key aspects of the
mission that would not be probably noticed otherwise.

For reproducing the reference mission, the same environment and mathematical model
had to be set. In particular, starting from the same attitude angles, the same initial perigee
argument and launch time, and the same cranking and circularization distances, we expect
to find the same resulting orbit with the same time of flights (for both the geocentric and
heliocentric phases). The variables’ values corresponding to the reference mission can be
seen in Table 2.1.

Slight modifications had to be performed to adapt our environment and mathematical
model to that of the reference mission:

1. The atmosphere model was modified to be the same as in Spaans (2009). Hence, the
variation of the density as a function of the altitude was expressed as:

𝜌(ℎ) = 35(243352ℎ . + 4537152ℎ
. (.

ℎ
11000)) (B.1)

2. The shadowing of the Earth and other planets on the sail was only considered in the
geocentric phase, whereas it was neglected in the heliocentric phase.

3. The propagator used was Cowell.

4. The integrator used was Runke-Kutta Fehlberg with an integration tolerance of 10 for
the Geocentric phase and 10 for the Heliocentric phase.

5. The same values for the sail area, mass, the angle-of-attack during the atmospheric
phase and all the non-ideal solar-sail force constants, were chosen (these can be found
in Table B.1).

6. In the geocentric phase, only the Moon and the Sun were considered as third body
perturbation, whereas in the heliocentric phase only the Earth, Venus and Mercury’s
gravitational pull are considered as third body perturbations.

7. The solar radiation pressure value is considered fixed when the sail is in the geocentric
phase.

B.2. Integrated System Tests 129

-5 0 5 10 15 20

X [km] 10
5

-6

-4

-2

0

2

4

Y
 [

k
m

]

10
5

sail orbit

Moon orbit

Figure B.1: Geocentric phase validation plot.

-1

-0.2

0

Z
 [

A
U

]

0.2

0

0.4

Y [AU]

1

X [AU]

-1-0.500.51

Figure B.2: Heliocentric phase validation plot.

By performing the simulation using these values, we found the results shown in Table B.2
concerning the time of flight, whereas we obtained the orbits shown in Figures B.1 and B.2,
for the geocentric and heliocentric phases, respectively. By comparing these with those of
the reference mission, which can be found in Spaans (2009), it is clear, also by inspection,
that the two orbits are almost identical. We do not indeed expect the two orbits to be exactly
identical for several reasons, which pertain both to the geocentric and heliocentric orbits.
Concerning the geocentric orbits, the following differences can cause the two orbits to slightly
diverge:

1. The initial time is indicated in days in the reference mission (Spaans, 2009). We as-
sumed that this was referred to Modified Julian Days, and thus corresponded to a cer-
tain initial time in seconds. However, if a slightly different initial time in seconds was

Table B.2: Validation results for the whole mission.

Symbol Values Spaans Units
𝑡𝑜𝑓geo 276.42 277.5 [kg]
𝑡𝑜𝑓helio 1792 1787 [kg]
𝑖final 90 90 [deg]
𝑎final 0.4 0.4 [au]
𝑒final 0.007 0.004 [-]

130 B. Verification and Validation

chosen for the reference mission, this could consistently change the orbit, especially
due to the varying position of the Moon (whose gravitational pull may be consistently
different even within one or two hours differences in the launch time of the sail).

2. Different inclinations of the equatorial plane are considered. Indeed, we decided to use
the inclination as it is indicated in the SPICE ephemeris files, whereas the author of
the reference mission self-coded an inclination of the equatorial plane as equal to 23.5∘,
which is slightly off from the real value (i.e., 23.43674∘).

3. It is not clear which average radius of the Earth was considered for computing the
altitude of the sailcraft (and thus for establishing the initial conditions). We considered
an average radius of 6371 × 10 m, but this might be slightly different from the original
mission.

Concerning the heliocentric phase, the fact that it was started with slightly different initial
conditions w.r.t. those of the geocentric phase (due to the aforementioned differences) may
have also caused these orbits to slightly diverge.

Overall, since it is a low-thrust orbit, it is clear that even very small differences in the
environmental and mathematical models might cause quite consistent differences in the two
trajectories and in the time of flights of the two phases. For these reasons, we considered our
results (which are only off by 0.39% and 0.28% for the time of flight, in the geocentric and
heliocentric phase, respectively) satisfactory, considering the differences in the simulation
models.

B.3. Optimization Procedure
Several different optimizers have been used in this thesis study. Most of them were already
coded in the PaGMO software, and they were thus already tested both in terms of performance
and usage. However, since three new algorithms have been implemented in this software (and
are now available for the entire scientific community), a thorough validation and verification
procedure has been conducted for them. In particular, the V&V strategy consists of two
different parts: first of all, it is made sure that the algorithm works for the sets of problems
for which it is supposed to, and that it throws an error when wrong input parameters (or
wrong population, wrong problems, etc.) are passed to the algorithm. Also, it is made sure
that the algorithm is covered at 100%, meaning that it is made sure that the tests cover all
the lines of the code. These tests are performed using different tools, such as Travis CI 1,
AppVeyor 2, Circle CI 3 and Codecov 4. Travis CI is a hosted continuous integration service
released underMIT license and often used to build and test software, which is developed using
GitHub. Similarly, also Circle CI and Appveyor are continuous integration services, which
are often used for software that is being developed in GitHub. This software is considered
the state-of-art test framework for those who develop software through GitHub. All details
concerning the working principles of this software can be found on their official websites as
discussing all aspects in detail is beyond the scope of this thesis.

When the algorithm is fully tested in its use, it has to be tested in terms of performance.
Since these algorithms are all metaheuristic (i.e., they contain a certain degree of random-
ness for sampling design spaces that are too large to be fully explored), it is not easy to fully
assess their performance. Nevertheless, several test suites have been developed throughout
the years to establish how an optimization algorithm performs with respect to several dif-
ferent problems, which have different characteristics. In particular, the problems obviously
vary between single and multi-objective optimization. For this reason, we treated these two
classes of problems separately. In particular, we verified and validated the SO optimizer
ACOmi against other popular algorithms, on four continuous unconstrained problems (i.e.,
Ackley, Griewank, Rosenbrock, Schwefel), on an integer constrained problem (Golomb Ruler)
and on 24 different continuous constrained problems (CEC2006 test suite). Finally, we also
1https://travis-ci.org/, date of access: August 2019.
2https://www.appveyor.com/, date of access: August 2019.
3https://circleci.com/, date of access: August 2019.
4https://codecov.io/, date of access: August 2019.

https://travis-ci.org/
https://www.appveyor.com/
https://circleci.com/
https://codecov.io/

B.3. Optimization Procedure 131

tested ACOmi on 6 different popular space related problems (i.e., Cassini, Earth-Venus-Earth
transfer, Messenger, Rosetta and two different types of Earth-Mars transfer). On the other
hand, the MO algorithms have been validated on 21 different MO problems against NSGA-II
and MOEA/D algorithms, belonging to three different popular test suites (i.e., ZDT, DTLZ
and WFG).

All these tests have been useful to demonstrate that the SO and MO ant colony optimizers,
as well as the NSPSO algorithm, have competitive results w.r.t. other well-known algorithms
with a strong heritage (e.g., differential evolution, genetic algorithm, evolutionary algorithms,
etc.) on a wide set of popular test problems. Also, these tests were essential to establish the
set of input parameters to be chosen for the optimization algorithms: this hold for both
the newly implemented algorithms and the already known ones (such as particle swarm
optimization, differential evolution, etc.). We will now discuss in Sections B.3.1 and B.3.2,
all the results of the tested algorithms for both the SO and MO cases.

B.3.1. Single-Objective V&V
After having tested the use of ACOmi, its performances were tested on a set of different prob-
lems. In particular, since this algorithm can handle integer and continuous variables, as well
as constrained and unconstrained box-bounded problems, it was necessary to benchmark it
in all these types of single-objective problems. It has to be noted that this algorithm is the
first one in PaGMO capable of implementing a parallelization strategy for computing the fit-
ness in parallel using multiple threads. The improvements deriving from this parallelization
scheme are, however, strictly related to the difficulty of the problem. For a very simple test
problem like Rosenbrock, using a parallelization scheme based on multi-threads (such as
the one implemented for ACOmi) does not bring any computation time advantage. Of course,
for applying the parallelization scheme, it is required that the problem is thread-safe 5.

In the following section, we will first treat the verification and validation of ACOmi on
several continuous unconstrained problems, in Section B.3.1.1. Then, in Section B.3.1.2 we
will treat continuous and integer constrained problems. Finally, in Section B.3.1.3, we will
discuss the V&V of the ACOmi optimizer on several real-life inspired space problems.

B.3.1.1 Continuous Unconstrained Problems
When verifying the single-objective ACOmi algorithm, we have decided to test it against three
well-known algorithms (i.e., PSO, SADE and SGA), for three popular single-objective uncon-
strained problems: Ackley, Griewank, Rosenbrock and Schwefel. This was done for two
different population sizes (i.e., 40 and 200) and averaging the results over 10 runs. The test
results for the case of 200,000 function evaluations are shown graphically in Figure B.3.
Besides, in Table B.3 we have shown the numerical results of the algorithm at the last gen-
eration step. All these problems are mathematical problems whose minima are known and
equal to zero. As it can be seen, the ACOmi algorithm is competitive with almost all the other
algorithms for all the problems and population sizes. Furthermore, these results are only
useful to show that the algorithm can actually compete with the standard SO algorithms for
known test problems. We have thus decided not to spend too much time to tweak and tune
ACOmi for achieving even better results.

Ackley
This is a scalable box-constrained continuous SO problem first introduced in Ackley (1987).
Its generalized objective function can be formulated (for 𝑛 dimensions) as follows:

𝐹(𝑥 , ..., 𝑥) = 20 + 𝑒 − 20𝑒
1
5√ / ∑

− 𝑒 / ∑ cos() (B.2)

5A piece of code is said to be thread-safe when the implemented functions can correctly perform simultaneous
tasks using multiple threads. This means that these multiple threads must be able to access the same shared
data in parallel. In short, for having thread-safety it is required that the code can be executed simultaneously by
multiple-threads.

132 B. Verification and Validation

0 25000 50000 75000 100000 125000 150000 175000
Fevals [-]

10−13

10010

1007

1004

1001

102
Be

st
 [-
]

Ackley n=10: gen=1000, pop=200

0 25000 50000 75000 100000 125000 150000 175000
Fevals [-]

10−15

10012

1009

1006

1003

100

Be
st
 [-
]

Griewank n=2: gen=1000, pop=200

ACOmi
SGA
SADE
PSO

0 25000 50000 75000 100000 125000 150000 175000
Fevals [-]

10−1

100

101

102

103

104

105

Be
st
 [-
]

Rosenbrock n=10: gen=1000, pop=200

0 25000 50000 75000 100000 125000 150000 175000
Fevals [-]

10−12

10010

1008

1006

1004

1002

100

102
Be

st
 [-

]
Schwefel n=4: gen=1000, pop=200

Figure B.3: Graphical representation of test results of ACOmi, SGA, SADE and PSO on several test problems, for
200,000 function evaluations.

where 𝑥 ∈ [−15, 30]. The global minimum is located at 𝑥 = 0 and equals zero (i.e., 𝐹(0, ..., 0) =
0). The graphical representation of this function in two dimensions is shown in Figure B.4.

The Ackley function implemented for our research is ten-dimensional (i.e., 𝑛 = 10).

Griewank
This popular test function for unconstrained optimization was first introduced in Griewank
(1981). It represents a box-constrained continuous single-objective problem, that can be
generalized (for 𝑛 dimensions) as follows:

𝐹(𝑥 , ..., 𝑥) =∑𝑥 /4000 −∏ cos(𝑥
√𝑖
) (B.3)

where 𝑥 ∈ [−600, 600] and the global minimum is placed at 𝑥 = 0, and equals zero (i.e.,
𝐹(0, ..., 0) = 0). The shape of this function for two dimensions is shown in Figure B.5.

B.3. Optimization Procedure 133

Table B.3: Test results of ACOmi, SGA, SADE and PSO on several test problems, for 40,000 and 200,000 function
evaluations: the subscript 40 refers to the former, whereas 200 to the latter.

Problems ACOmi SGA SADE PSO
Ackley40 3.99680×10-15 0.10322 3.99680×10-15 1.89182×10-14

Griewank40 0.00771 0.04782 0.0 0.0
Rosenbrock40 0.75354 6.87421 0.84379 2.08644
Schwefel40 0.0 0.10886 0.0 23.68766
Ackley200 3.99680×10-15 0.02407 3.28626×10-15 6.483702×10-15

Griewank200 0.0 0.00751 0.0 0.0
Rosenbrock200 0.03937 3.97623 0.23784 1.08399
Schwefel200 0.0 0.00667 0.0 0.0

Figure B.4: Two-dimensional Ackley function.

The Griewank function implemented in this thesis study is two-dimensional (i.e., 𝑛 = 2).

Rosenbrock
This is another popular SO unconstrained scalable test problem, first introduced in Rosen-
brock (1960). Its generalized objective function is:

𝐹(𝑥 , ..., 𝑥) =∑[100(𝑥 − 𝑥) + (𝑥 − 1)] (B.4)

where 𝑥 ∈ [−5, 10]. The global minimum is located at 𝑥 = 1 and equals to zero (i.e., 𝐹(1, ..., 1) =
0).

The version implemented in this thesis study is ten-dimensional (i.e., 𝑛 = 10). In Figure
B.6, a two-dimensional representation of the Rosenbrock function is shown.

Schwefel
This is also a scalable box-bounded continuous unconstrained problem. It was first intro-
duced in Laguna and Martí (2005) and its generalized objective function can be formulated
as follows:

134 B. Verification and Validation

Figure B.5: Two-dimensional Griewank function.

Figure B.6: Two-dimensional Rosenbrock function.

𝐹(𝑥 , ..., 𝑥) = 418.9828872724338𝑛 −∑𝑥 sin(√|𝑥 |) (B.5)

where 𝑥 ∈ [−500, 500]. The global minimum is in 𝑥 = 420.9687, where the objective function
reaches a value of zero (i.e., 𝐹(420.9687, ..., 420.9687) = 0). Its two-dimensional representation
can be seen in Figure B.7.

In this research, the four-dimensional Schwefel function was used (i.e., 𝑛 = 4).

B.3. Optimization Procedure 135

Figure B.7: Two-dimensional Schwefel function.

B.3.1.2 Continuous and Integer Constrained Problems
In this section, we will discuss two different types of constrained problems: integer ones,
treated with the Golomb Ruler problem, and continuous ones, handled with 24 different
problems introduced in 2006, during the Congress on Evolutionary Computation, in Canada.

Golomb Ruler
This problem was discussed in Babcock (1953) and represents an integer constrained prob-
lem. A Golomb ruler with 𝑛 marks, is a set of 𝑛 distinct nonnegative integers (𝑎 , ..., 𝑎) along
an imaginary ruler, such that there are not two pairs of marks the same distance apart.
The number of marks on the ruler represents its order and the largest distance between
two of its marks is its length. If no shorter Golomb ruler of the same order exists, then the
Golomb ruler is considered optimal. We thus have a constrained box-bounded integer prob-
lem, where we would like to find an optimal Golomb ruler of a given order 𝑛. We can also
tweak the maximum distance between consecutive ticks (i.e., 𝑙). The decision vector is:

xxx = [𝑑 , .., 𝑑] (B.6)
where 𝑑 indicates the distance between consecutive ticks. The ticks on the ruler are recon-
structed as:

𝑎 =0

𝑎 =∑𝑑
(B.7)

where 𝑖 = 1, .., 𝑛 − 1.
The problem can thus be formulated as follows:

Find ∶ 1 ≤ 𝑑 ≤ 𝑙 ∀𝑖 = 1, ..., 𝑛 − 1

which minimizes: ∑𝑑

subject to: |𝑎 − 𝑎 | ≠ |𝑎 − 𝑎 | ∀(𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡)𝑖, 𝑗, 𝑙, 𝑚 ∈ [0, 𝑛]

(B.8)

136 B. Verification and Validation

Table B.4: Golomb Rulers test data, for 40,000 and 200,000 function evaluations.

Golomb Rulers ACOmi IHS Known Best
(𝑛=4, 𝑙 =6, fevals=40,000) 6.0 6.0 6
(𝑛=4, 𝑙 =6, fevlas=200,000) 6.0 6.0 6
(𝑛=5, 𝑙 =11, fevals=40,000) 11.0 11.5 11
(𝑛=5, 𝑙 =11, fevals=200,000) 11.0 12.0 11
(𝑛=6, 𝑙 =17, fevals=40,000) 17.0 22.8 17
(𝑛=6, 𝑙 =17, fevals=200,000) 17.0 23.1 17
(𝑛=7, 𝑙 =25, fevals=40,000) 25.4 43.8 25
(𝑛=7, 𝑙 =25, fevals=200,000) 25.0 41.7 25

The constraints can easily be transformed into one single equality constraint in the form
𝑐 = 0, where 𝑐 represents the count of repeated distances.

We chose to minimize four different Golomb ruler with: (𝑛 = 4, 𝑙 = 6), (𝑛 = 5, 𝑙 =
11), (𝑛 = 6, 𝑙 = 17) and (𝑛 = 7, 𝑙 = 25). We have chosen these rulers since they
have been mathematically proven and their fitness values (and the corresponding optimal
decision vectors) are known. We benchmarked two different algorithms for this: improved
harmony search (IHS) and ACOmi. The former, is a metaheuristic algorithm said to imitate
the improvisation process of musicians. This algorithm, thoroughly described in Mahdavi
et al. (2007), was chosen since it can handle integer variables and deal with constraints
(whereas the other algorithms like PSO, SADE, etc. cannot deal with integer variables nor
handle constraints). The results for 200,000 function evaluations are displayed in Figure B.8.
Also, in Table B.4 the numerical results for both 20,000 and 400,000 function evaluations
are shown. As we can see, the fitness values are often floats instead of integers: this is just
because these numbers are actually an average of ten different runs for each Golomb Ruler.
As we can see, ACOmi consistently outperforms IHS and often finds the best fitness for all the
tested rulers, thus demonstrating to be competitive also for integer constrained optimization
problems.

CEC2006 Test Suite
For benchmarking ACOmi on constrained SO problems with continuous variables, we have
decided to test it on 24 constrained SO problems, which were presented during the 2006 IEEE
Congress on Evolutionary Computation. During this event, a competition on constrained
real-parameter optimization problems was organized. Therefore, several algorithms could be
tested on these problems, whoseminima are known and whose formulation is mathematically
defined.

As we have already discussed, the standard SO algorithms that we have discussed in
Chapter 5 are not capable of handling constraints. However, a meta-algorithm exists for
allowing SO unconstrained algorithms to deal with constraints as well. It has to be said
that ACOmi is capable of handling constraints: it can thus be used either with or without
the meta-algorithm. We decided to benchmark three different algorithms: ACOmi, ACOmi
with the meta-algorithm and SADE with the meta-algorithm. In our study, we are not very
concerned about the performances of the algorithm w.r.t. every other optimization algorithm
available, but we just want to make sure that the performances of the algorithm on SO
continuous constrained problems are competitive and not clearly outperformed. Besides, we
decided to include ACOmi with the meta-algorithm for controlling whether the use of such a
meta-algorithm could improve ACOmi itself, for some problems. This information was also
helpful for our thesis study itself, where we decided to also include ACOmi with the meta-
algorithm. In this thesis, we will not discuss into details the mathematical formulation and
the constraint functions of each of the 24 problems, but we will limit ourselves to only show
the results. The interested reader can find the definition and properties of each of these
problems in Liang et al. (2006). In Figure B.9, B.10, B.11 and B.12, we show a graphical
representation of the objective function values against the number of function evaluations

B.3. Optimization Procedure 137

0 25000 50000 75000 100000 125000 150000 175000
Fevals [-]

6.000

6.025

6.050

6.075

6.100

6.125

6.150

6.175

6.200

Be
st
 [-
]

G.R. (n= 4, lmax = 6): gen=1000, pop=40

0 25000 50000 75000 100000 125000 150000 175000
Fevals [-]

11.0

11.5

12.0

12.5

13.0

13.5

Be
st

 [-
]

G.R. (n= 5, lmax = 11): gen=1000, pop=40
ACOmi
IHS

0 25000 50000 75000 100000 125000 150000 175000
Fevals [-]

18

20

22

24

26

28

Be
st

 [-
]

G.R. (n= 6, lmax = 17): gen=1000, pop=40

0 25000 50000 75000 100000 125000 150000 175000
Fevals [-]

25

30

35

40

45

Be
st

 [-
]

G.R. (n= 7, lmax = 25): gen=1000, pop=40

Figure B.8: Golomb Rulers results for 200,000 function evaluations: graphical representation.

for all the 24 test problems.
In particular, this is done on a semi-logarithmic scale, where on the y-axis we place the

logarithm of the absolute value of the difference between the found objective value and the
real one, at every function evaluation. While on the x-axis we display the number of function
evaluations. Each run was averaged over three runs and executed with 500,000 function
evaluations. However, as we can observe, some algorithms do not reach that function evalu-
ation value, but they stop before. The reason is twofold: first of all, as it happens for ACOmi
without the meta-algorithm in problem 12, it happens that the algorithm reaches the real
minimum: this causes the algorithm not to be defined anymore (since it would be the loga-
rithm of zero, which results to be minus infinity). Furthermore, the second reason is related
to the implementation of the meta-algorithm: this method is constructed in such a way that
if the same individuals happen to be chosen again throughout the iterations, then their func-
tion evaluations are not evaluated again but a sort of memory mechanism is implemented for
evaluating the fitness values only once for each individual. Hence, it may happen that the
function evaluations are not the expected ones, but they are less than the expected values.

138 B. Verification and Validation

10−12

10−9

10−6

10−3

100

lo
g1

0(
|f-

f*
|)

P1: pop=200 and 125

ACOmi
SA with SADE
SA with ACOmi 10−2

10−1

lo
g1

0(
|f-
f*
|)

P2: pop=200 and 125

10−4

10−3

10−2

10−1

100

lo
g1

0(
|f-
f*
|)

P3: pop=200 and 125

10−10

10−7

10−4

10−1

102

lo
g1

0(
|f-
f*
|)

P4: pop=200 and 125

0 100000 200000 300000 400000 500000
Fevals [-]

101

102

103

lo
g1

0(
|f-

f*
|)

P5: pop=200 and 125

0 100000 200000 300000 400000 500000
Fevals [-]

10−10

10−7

10−4

10−1

102

lo
g1

0(
|f-
f*
|)

P6: pop=200 and 125

Figure B.9: CEC2006 benchmark: we hereby show the results of problems 1, 2, 3, 4, 5 and 6, in terms of objective
function values w.r.t. the real optimum, plotted as a function of the function evaluations.

This behavior, for instance, can be seen in problems 11 and 12 for SADE with the meta-
algorithm. An aspect to be noted is that for each of these problems, the oracle parameter
was chosen to be equal to the best objective function value for each problem (since this was
given in the problems). Also, the other parameters are: 𝑘𝑒𝑟 = 100 for the case without the
meta-algorithm, and 𝑘𝑒𝑟 = 125 for the case with the algorithm, 𝑞 = 1, 𝑎𝑐𝑐 = 0, 𝑁𝐺𝑒𝑛𝑀𝑎𝑟𝑘 = 7.
Concerning the 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 parameter, it holds 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 1000 without the meta-algorithm,
and 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 80 with the meta-algorithm. Also, all the algorithms with the meta-algorithm
are run for 40 iterations, with a generation size of 100 and a population size of 125. Whereas
the ACOmi algorithm alone is run with a generation size of 2500 and a population size of 200
individuals. This is done for having the same nominal number of function evaluations.

As we can observe from the graphical data, ACOmi without meta-algorithm seems to out-
perform the other algorithms in most of the problems, thus demonstrating to be a very com-
petitive algorithm also for constrained optimization problems.

B.3. Optimization Procedure 139

10−2

10−1

100

101

102

103

lo
g1

0(
|f-
f*
|)

P7: pop=200 and 125

10−9

10−7

10−5

10−3

10−1

lo
g1

0(
|f-
f*
|)

P8: pop=200 and 125

ACOmi
SA with SADE
SA with ACOmi

10−2

100

102

104

106

lo
g1

0(
|f-
f*
|)

P9: pop=200 and 125

100

101

102

103

104

lo
g1

0(
|f-
f*
|)

P10: pop=200 and 125

0 100000 200000 300000 400000 500000
Fevals [-]

10−14

10−11

10−8

10−5

10−2

lo
g1

0(
|f-
f*
|)

P12: pop=200 and 125

0 100000 200000 300000 400000 500000
Fevals [-]

10−4

10−3

10−2

10−1

lo
g1

0(
|f-
f*
|)

P11: pop=200 and 125

Figure B.10: CEC2006 benchmark: we hereby show the results of problems 7, 8, 9, 10, 11 and 12, in terms of
objective function values w.r.t. the real optimum, plotted as a function of the function evaluations.

B.3.1.3 Global Trajectory Optimization Problems
The global trajectory optimization problems are a set of box-bounded space problems often
used in literature to test global trajectory optimization algorithms on space applications (Izzo,
2010), (Vinkó et al., 2007b), (Vinkó and Izzo, 2008). These problems take inspiration from
real interplanetary trajectories such as Rosetta, Cassini, Messenger, Earth-Mars transfers,
etc., and their thorough description can be found in the aforesaid references. In particular,
we have decided to test three well-knownmetaheuristic algorithms (i.e., SGA, PSO and SADE)
against our mixed integer ant colony optimization algorithm (i.e., ACOmi). All these tests have
been performed by running these algorithms on six different problems:

1. Cassini 2: a Cassini-inspired multiple gravity assist (MGA) problem, with a deep space
maneuver (DSM). This problem is thus inspired by the Cassini spacecraft interplanetary
journey to Saturn. The final orbit around Saturn is set to a pericenter radius of 𝑟 =
108950 km and an eccentricity of 𝑒 = 0.98. The spacecraft makes the following planets’
sequences: Earth-Venus-Venus-Earth-Jupiter-Saturn, which is the same as the real

140 B. Verification and Validation

10−2

10−1

100

101
lo
g1

0(
|f-
f*
|)

P13: pop=200 and 125

10−3

10−2

10−1

100

101

102

103

lo
g1

0(
|f-
f*
|)

P14: pop=200 and 125

10−3

10−2

10−1

100

lo
g1

0(
|f-
f*
|)

P15: pop=200 and 125

10−9

10−7

10−5

10−3

10−1

lo
g1

0(
|f-
f*
|)

P16: pop=200 and 125

ACOmi
SA with SADE
SA with ACOmi

0 100000 200000 300000 400000 500000
Fevals [-]

10−4

10−3

10−2

10−1

100

101

102

lo
g1

0(
|f-
f*
|)

P17: pop=200 and 125

0 100000 200000 300000 400000 500000
Fevals [-]

10−1

100

101

102

lo
g1

0(
|f-
f*
|)

P18: pop=200 and 125

Figure B.11: CEC2006 benchmark: we hereby show the results of problems 13, 14, 15, 16, 17 and 18, in terms of
objective function values w.r.t. the real optimum, plotted as a function of the function evaluations.

Cassini mission.

2. E-V-E MGA 1DSM: an Earth-Venus-Earth multiple gravity assists problem, with a deep
space maneuver allowed for each leg.

3. Messenger: a Messenger-inspired MGA 1 DSM problem. This mission is a rendezvous
to Mercury, modeled with a multiple gravity assist and one deep space maneuver. The
fly-by sequence is Earth-Venus-Venus-Mercury-Mercury-Mercury. This represents a
particularly difficult and complex mission to design since the many fly-bys and the
possible resonances due to the planets’ configurations make the global optimization
techniques struggle to find the best solution.

4. Rosetta: this is a problem inspired by the real Rosetta mission, which is a rendezvous
mission to the comet 67P/Churyumov-Gerasimenko. The selected fly-by sequence is
Earth-Earth-Mars-Earth-Earth-Comet. Deep space maneuvers are also included.

5. E-M 5 imp: this is an Earth Mars transfer with 5 impulses.

B.3. Optimization Procedure 141

10−1

100

101

102

103

lo
g1

0(
|f-
f*
|)

P19: pop=200 and 125

10−2

10−1

100

101

lo
g1

0(
|f-

f*
|)

P20: pop=200 and 125
ACOmi
SA with SADE
SA with ACOmi

101

102

lo
g1

0(
|f-

f*
|)

P21: pop=200 and 125

104

6 × 103

lo
g1

0(
|f-

f*
|)

P22: pop=200 and 125

0 100000 200000 300000 400000 500000
Fevals [-]

103

3 × 102

4 × 102

6 × 102

lo
g1

0(
|f-

f*
|)

P23: pop=200 and 125

0 100000 200000 300000 400000 500000
Fevals [-]

10−11

10−9

10−7

10−5

10−3

10−1

lo
g1

0(
|f-
f*
|)

P24: pop=200 and 125

Figure B.12: CEC2006 benchmark: we hereby show the results of problems 19, 20, 21, 22, 23 and 24, in terms of
objective function values w.r.t. the real optimum, plotted as a function of the function evaluations.

6. E-M 7 imp: this is the same as the one above, but 7 impulses are used, thus making
the problem slightly more difficult.

All these problems have the same objective functions, that is the total Δ𝑉 used for the mission.
Of course, the lower this value, the better.

These problems have been optimized using two different population sizes: 20 and 200,
over 1000 generations (for a total of 20,000 and 200,000 function evaluations, respectively).
Also, each optimizer was run ten times with ten different controlled seeds, to make sure to
remove the randomness and have trustworthy results. Also, all the optimizers were always
started with the same population of individuals. The results corresponding to 200,000 func-
tion evaluations are shown graphically in Figure B.13. Also, for both 20,000 and 200,000
function evaluations we display the numerical results in Tables B.5 and B.6.

Overall, we can see that ACOmi has competitive results with the other optimizers, some-
times also outperforming them (e.g., in the case of Rosetta). Thus, having tested this algo-
rithm on both mathematical and space trajectory problems and having demonstrated that its

142 B. Verification and Validation

104

2×104

3×104

4×104

6×104
Be

st
 [m

/s
]

Cassini 2: gen=1000, pop=200

104

6×103Be
st
 [m

/s
]

E-V-E MGA 1DSM: gen=1000, pop=200

2×104

3×104

4×104

6×104

Be
st
 [m

/s
]

Messenger: gen=1000, pop=200

104

Be
st
 [m

/s
]

Rosetta: gen=1000, pop=200
ACOmi
SGA
SADE
PSO

0 25000 50000 75000 100000 125000 150000 175000
Fevals [-]

104

6×103

7×103

8×103

9×103

Be
st
 [m

/s
]

E-M 5 imp: gen=1000, pop=200

0 25000 50000 75000 100000 125000 150000 175000
Fevals [-]

104

6×103

Be
st
 [m

/s
]

E-M 7 imp: gen=1000, pop=200

Figure B.13: ACOmi, PSO, SADE and SGA performances on 6 global trajectory optimization problems for 200,000
function evaluations.

performances are competitive with the current state-of-art optimizers, we consider it as veri-
fied and validated. Also, these problems have helped us to determine how to tweak and tune
the algorithm depending on the type of problems and the population and generation sizes.
Furthermore, these test problems have also been used in the design phase of the algorithm,
for enhancing its performances and adjust its behavior throughout the evolution process.

B.3.2. Multi-Objective V&V
Concerning MO optimization, two new algorithms have been developed and implemented in
PaGMO, in this thesis study. The first one was derived from literature: the nondominated
sorting particle swarm optimizer (NSPSO), whereas the second was coded from scratch, start-
ing from the idea of ACOmi and extending it for multi-objective using the hypervolume con-
cept: the multi-objective hypervolume-based ant colony optimizer (MHACO). After having
tested the usage of both these algorithms, they have been benchmarked on three different
test-suites: the Zitzler, Deb and Thiele (ZDT) test suite (Zitzler et al., 2000), the Deb, Thiele,

B.3. Optimization Procedure 143

Table B.5: Best found values (in terms of , measured in m/s) of ACOmi, SGA, PSO and SADE on a population
size of 20for 6 global trajectory optimization problems.

Problems ACOmi20 SGA20 SADE20 PSO20

Cassini 2 15113.7 23294.8 15586.9 15963.4
E-V-E 5638.4 6397.8 5261.0 5425.5
Messenger 21978.2 33376.6 22410.0 18765.1
Rosetta 6376.9 17801.6 10186.1 8127.2
E-M 5 5696.5 5949.7 5775.9 5745.1
E-M 7 5706.2 6555.8 5848.7 5659.9

Table B.6: Best found values (in terms of , measured in m/s) of ACOmi, SGA, PSO and SADE on a population
size of 200 for 6 global trajectory optimization problems.

Problems ACOmi200 SGA200 SADE200 PSO200

Cassini 2 9339.9 13525.8 11742.9 9189.1
E-V-E 5236.6 5935.6 4553.2 4652.3
Messenger 19618.5 18621.8 16840.3 15305.7
Rosetta 3258.8 7636.2 7017.6 4129.7
E-M 5 5630.6 5760.2 5684.8 5632.2
E-M 7 5637.4 5759.3 5732.9 5635.9

Laumanns and Zitzler (DTLZ) test suite (Deb et al., 2005) and the Walking Fish Group (WFG)
test suite (Huband et al., 2006). The ZDT and DTLZ test suites are commonly used test
suites. The first one, only concerns bi-objective problems, whereas the latter has the advan-
tage to include scalable fitness problems, thus also allowing to test the algorithms for many
objectives. However, both these test problems have some drawbacks and do not cover certain
types of problems. For this reason, the WFG was introduced and used also as a benchmark
set (Huband et al., 2006). Of course, for all these test-suites the exact ideal Pareto front is
known, and the found Pareto fronts can directly be confronted with that.

The objective of this V&V is to check whether the two implemented algorithms (i.e., MHACO
and NSPSO) can be competitive with MOEA/D and NSGA-II (i.e., two widely used and tested
optimizers) for MO optimization. The input parameters of these algorithms have been kept as
constant as possible, for avoiding a specific tweaking and tuning of the algorithm for each of
these problems, which would have been very time consuming and problem specific. In par-
ticular, for NSGA-II and MOEA/D, the input values presented in Section 6.2.2 were used, as
they demonstrated to have good performances on most of the problems. For MHACO the fol-
lowing input parameters were chosen: 𝑘𝑒𝑟 = 𝑝𝑜𝑝 , 𝑞 = 1, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 128, 𝑁𝐺𝑒𝑛𝑀𝑎𝑟𝑘 = 27,
𝑓𝑜𝑐𝑢𝑠 = 0 and the 𝑒𝑣𝑎𝑙𝑠𝑡𝑜𝑝 parameter was not activated, while for NSPSO the niche count
diversity mechanism was used for most of the problems and the following input parameters
were used for most of the problems: 𝜔 = 0.4, 𝜂 = 2, 𝜂 = 2.0, 𝑉 = 0.5, 𝐿𝑆𝑅 = 50. Whenever
either MHACO or NSPSO resulted to be clearly outperformed by the other algorithms in terms
of p-distance, hypervolume and number of Pareto-optimal individuals, the input parameters
have been tweaked for checking whether a more competitive performance could be achieved.

Of course, by tweaking and tuning the algorithm we can expect that it improves: ideally,
depending on the type of problem, a set of input parameters exists for the algorithm to op-
timize that problem in the most efficient way. However, we do not focus on this aspect, and
we thus do not spend too much time enhancing the performances, but we rather verify the
competitiveness of these algorithms. We hence only observe whether the results produced in
terms of various performance criteria (i.e., p-distance, hypervolume, number of Pareto solu-
tions in the last front, etc.) are similar among the algorithms. For having the possibility to
inspect the results, we have decided to only run bi-objective problems.

From the results we got, we conclude that the two algorithms have competitive results
w.r.t. both MOEA/D and NSGA-II. Besides, they sometimes outperform them in some prob-
lems. We always have to keep in mind that the purpose of this study was not to improve pre-
vious algorithms’ performance on these test-suites, but rather to figure out whether NSPSO

144 B. Verification and Validation

and MHACO could be competitive with the widespread MO optimizers. Of course, if we would
like to improve these results even more tweaking and tuning should be done to find the most
efficient input parameters of these algorithms for achieving better results. Also, we have not
focused our study on many objectives optimization (i.e., 10, 50, 100 or more objectives), as
this is a separate field, which was not directly related to our research.

This benchmark has been done using three population sets (i.e., 32, 64 and 128), evolving
each algorithm for 250 generations, and by executing each run ten times for removing the
randomness and with a controlled seed, to have the same initial populations. The results
of this benchmark are analyzed in terms of hypervolume values (i.e., the higher the better),
p-distances values (the lower the better) and number of Pareto-optimal individuals in the
final population. Concerning the p-distance and hypervolume values, these results have
been divided into two sets: one where we display the results of MHACO against both NSGA-II
and MOEA/D, for the three different population sizes and for both the hypervolume and the
p-distance, and another one where we do the same comparisons but for NSPSO.

Concerning MHACO, the results coming from this validation phase can be seen in Tables
B.7, B.8 and B.9 for the hypervolume values, and in Tables B.10, B.11 and B.12 for the
p-distance values. Moreover, the same number of tables was also produced for showing
the results of NSPSO against NSGA-II and MOEA/D. These numerical results can be seen
in Tables B.13, B.14 and B.15 for the hypervolume values, and in Tables B.16, B.17 and
B.18 for the p-distance values. On the other hand, concerning the number of Pareto-optimal
individuals, we have grouped all the four algorithms together and we have shown the results
in Tables B.19, B.20 and B.21. Each value in these tables is an average over three runs.

From these results, we can notice that NSPSO seems to struggle more on ZDT4, DTLZ1
and DTLZ3, whereas MHACO seems to be outperformed on ZDT4, DTLZ3 and DTLZ6. This
aspect may be adjusted with a more refined and thorough tweaking and tuning of the input
values. This, however, results to be time consuming and to go beyond the scope of this V&V
procedure, where we wanted to demonstrate that in most of these problems the algorithms
behavior could be verified in terms of both usage (i.e., they could run without issues) and
performances (i.e., they could be competitive with MOEA/D and/or NSGA-II in most of these
problems).

For completeness, in the following sections, we will provide the mathematical description
of all the employed test-suites.

B.3.2.1 ZDT test suite
This is a wide-spread test suite, which was conceived for bi-objective problems (Zitzler et al.,
2000). It consists of 6 problems: the first four and the last one are all continuous variables’
problems, whereas the 5th one is an integer problem. As it is often done for comparing
algorithms that cannot deal with integer variables (as it happens for MOEA/D), for comparing
the algorithms we have thus decided to only use the 5 continuous problems.

All these problems are minimization problems, in which we would like to minimize both
the two fitnesses (𝑓 (xxx), 𝑓 (xxx)). In particular, each of these test functions is structured in the
same manner and it consists of three functions: 𝑓 , 𝑔, ℎ:

Minimize 𝑇(xxx) = (𝑓 (𝑥), 𝑓 (xxx))
Subject to 𝑓 (xxx) = 𝑔(𝑥 , ..., 𝑥)ℎ(𝑓 (𝑥), 𝑔(𝑥 , ..., 𝑥))
where xxx = (𝑥 , ..., 𝑥)

where 𝑛 is the variables’ dimension. The authors recommend a certain dimension for each
of the problems: 𝑛 = [30, 30, 30, 10, 11, 10]. These dimensions will thus be used in our case.

Each of the problems of the test suite can be formulated as follows:

ZDT1
This is a continuous box-constrained bi-objective problem, where:

B.3. Optimization Procedure 145

Table B.7: Hypervolume trade-off (MHACO vs MOEA/D vs NSGA2 on a population size of 32).

Problems MOEA/D 32 MHACO 32 NSGA2 32
ZDT1 5.60521416 5.56493892 5.71608537
ZDT2 10701.75495905 10607.88202384 10727.701467
ZDT3 5.29511749 5.75015199 6.11519368
ZDT4 581.84487543 581.48477781 677.77787996
ZDT5 / / /
ZDT6 4.56833663 3.54344788 5.75409382
DTLZ1 91682.30167486 91682.57068519 91681.63579175
DTLZ2 0.38960076 0.38106638 0.40068458
DTLZ3 578869.31173575 578679.55732527 578832.53370347
DTLZ4 10165.33069082 10116.06537193 10131.94020926
DTLZ5 10199.28558643 10179.82240874 10199.27578719
DTLZ6 10979.2034656 10972.05072546 10978.99285502
DTLZ7 10208.80711175 10246.58853106 10208.81595428
WFG1 10162.91009828 10069.74583633 10078.68031725
WFG2 6.06884694 6.30198718 5.68517331
WFG3 7.12206994 6.46126271 7.13875659
WFG4 7.37976975 6.37102619 7.39635473
WFG5 7.34657575 6.67163127 7.53551429
WFG6 8.94916903 9.14174821 9.33939618
WFG7 10471.58869241 10361.93596388 10462.63451077
WFG8 7.69959253 6.18514162 6.89729072
WFG9 9.78333785 9.40460617 9.57984289

Table B.8: Hypervolume trade-off (MHACO vs MOEA/D vs NSGA2 with a population size of 64).

Problems MOEA/D 64 MHACO 64 NSGA2 64
ZDT1 5.81072491 5.80454584 5.86159956
ZDT2 10736.54350845 10679.29104344 10754.77433633
ZDT3 5.91961744 6.10988226 6.24685769
ZDT4 606.32764414 534.76262348 722.77253513
ZDT5 / / /
ZDT6 5.32037729 4.35762678 6.48063238
DTLZ1 92671.46194399 92671.5274698 92670.70029827
DTLZ2 0.41223905 0.40765706 0.41691899
DTLZ3 578869.31839251 578744.98009298 578867.92288507
DTLZ4 10199.70072334 10188.45150817 10166.30179513
DTLZ5 10200.17944552 10191.58144326 10200.17350132
DTLZ6 10981.27593247 10976.15211454 10981.23305192
DTLZ7 10253.78410107 10251.96564207 10211.56391154
WFG1 10157.26691424 10090.3965477 10128.03079218
WFG2 7.80470365 7.82207872 7.79276901
WFG3 9.20475751 8.95044206 9.20262895
WFG4 8.52791941 7.94013916 8.52993563
WFG5 8.33974337 8.05953149 8.43981338
WFG6 9.55582369 9.69685009 9.91480153
WFG7 10603.92028265 10442.2431013 10525.06650005
WFG8 8.37685827 7.23600575 7.76047001
WFG9 9.68939911 9.63522549 9.56199282

146 B. Verification and Validation

Table B.9: Hypervolume trade-off (population size: 128).

Problems MOEA/D 128 MHACO 128 NSGA2 128
ZDT1 5.87010927 5.88042026 5.90338596
ZDT2 10761.36515338 10732.0327118 10773.56051095
ZDT3 6.23942464 6.18568337 6.32594527
ZDT4 683.47552524 676.85316254 747.59938023
ZDT5 / / /
ZDT6 5.10448042 4.80593587 6.77723054
DTLZ1 99929.03782669 99929.04286897 99928.915215
DTLZ2 0.42182439 0.42280552 0.42457594
DTLZ3 629101.38897944 629029.37151961 629100.6033699
DTLZ4 10200.02790986 10194.51854924 10200.02849473
DTLZ5 10200.54000741 10200.23248696 10200.53602246
DTLZ6 10989.36256178 10986.53363978 10989.31126731
DTLZ7 10213.209114 10255.14298125 10255.48135147
WFG1 10162.87629543 10090.92714595 NaN
WFG2 8.01762875 7.90089083 7.46785127
WFG3 10.39828301 10.30284008 10.41410762
WFG4 8.65030758 8.172753 8.69189383
WFG5 8.54447338 8.3623464 8.59974148
WFG6 9.65725346 9.76008362 9.91668875
WFG7 10624.38388636 10505.69518352 10585.1801076
WFG8 8.99005078 8.21929392 8.46910645
WFG9 10.0340789 9.6748688 9.79291525

Table B.10: P-distance trade-off (MHACO vs MOEA/D vs NSGA2 on a population size of 32 individuals).

Problems MOEA/D 32 MHACO 32 NSGA2 32
ZDT1 0.16327763 0.12611162 0.0293881
ZDT2 0.07069111 0.2724249 0.01231875
ZDT3 0.98580786 0.42460238 0.01847673
ZDT4 57.09439147 144.0521526 23.4321128
ZDT5 / / /
ZDT6 2.54834424 3.84769796 1.17727217
DTLZ1 1.55304507 0.57038582 2.04855862
DTLZ2 3.40883082×10 0.00145649 2.20774811×10
DTLZ3 0.16703657 16.19169878 5.21160793
DTLZ4 0.00027264 0.00056951 2.06165852×10
DTLZ5 3.40883082×10 0.00145649 2.20774811×10
DTLZ6 0.01181132 1.7947661 0.13342154
DTLZ7 4.17646050×10 0.00234079 9.31748365×10

B.3. Optimization Procedure 147

Table B.11: P-distance trade-off (MHACO vs MOEA/D vs NSGA2 with a population size of 64).

Problem MOEA/D 64 MHACO 64 NSGA2 64
ZDT1 0.05413535 0.04372473 0.00471381
ZDT2 0.05046506 0.11091524 0.00281303
ZDT3 0.43830665 0.20257633 0.00465985
ZDT4 54.00833935 246.34576719 5.46353146
ZDT5 / / /
ZDT6 1.69297054 2.88108694 0.42782386
DTLZ1 6.20793802×10 0.02006755 1.66724282
DTLZ2 1.75237798×10 0.00072231 7.35852363×10
DTLZ3 0.02845748 10.77884714 0.67055369
DTLZ4 0.00018812 0.00070195 8.06493553×10
DTLZ5 1.75237798×10 0.00072231 7.35852363×10
DTLZ6 0.00253952 1.78315624 0.03807964
DTLZ7 2.70626013×10 0.00092652 3.83535612×10

Table B.12: P-distance trade-off (MHACO vs MOEA/D vs NSGA2 with a population size of 128).

Problems MOEA/D 128 MHACO 128 NSGA2 128
ZDT1 0.03877232 0.02380317 0.00124501
ZDT2 0.0341838 0.06162727 0.00073551
ZDT3 0.11202489 0.20323239 0.00137918
ZDT4 35.05038224 91.75185272 2.63902538
ZDT5 / / /
ZDT6 2.01597067 2.46467676 0.20803473
DTLZ1 1.20577628×10 0.00609794 0.33564028
DTLZ2 9.10006010×10 0.00039529 6.00403863×10
DTLZ3 0.00076059 9.87855792 0.34197763
DTLZ4 0.00010256 0.00027907 8.64787851×10
DTLZ5 9.10006010×10 0.00039529 6.00403863×10
DTLZ6 0.00139555 1.2149684 0.03593371
DTLZ7 8.69694479×10 0.00064627 5.34667770×10

148 B. Verification and Validation

Table B.13: Hypervolume trade-off (NSPSO vs MOEA/D vs NSGA2 on a population size of 32).

Problems MOEA/D 32 NSPSO 32 NSGA2 32
ZDT1 3.4559696 3.65426523 3.65451556
ZDT2 10102.43382865 10066.78311812 10152.06732687
ZDT3 10238.76977339 10279.58897337 10294.48863904
ZDT4 1620103.99232668 1457062.74302579 1647999.33983491
ZDT5 / / /
ZDT6 10207.92979539 10361.68249398 10364.49183578
DTLZ1 162166.95071301 161404.0699437 162166.27617563
DTLZ2 120.24966975 120.25247392 120.25868146
DTLZ3 2755639.27932227 2731065.81555699 2755602.11006836
DTLZ4 113.74118677 107.61308381 110.68345
DTLZ5 0.21805835 0.21213144 0.22824271
DTLZ6 3.17228889 3.16658622 2.93257983
DTLZ7 118.26426256 114.19736833 118.23772989
WFG1 151.9621354 153.25765732 142.05304443
WFG2 148.44920629 151.65382838 145.2237346
WFG3 161.21943705 159.79856202 161.10061822
WFG4 161.55637372 157.65677691 161.05953566
WFG5 158.12581162 153.29335851 159.18566119
WFG6 204.18822433 202.61932173 207.44871992
WFG7 159.66746736 161.17866082 158.88543323
WFG8 11.82022289 8.82337507 10.92193094
WFG9 36.77906309 31.08277254 35.66646098

Table B.14: Hypervolume trade-off (NSPSO vs MOEA/D vs NSGA2 with a population size of 64).

Problems MOEA/D 64 NSPSO 64 NSGA2 64
ZDT1 3.59452737 3.67207367 3.68554132
ZDT2 10186.77092383 10200.90063168 10200.63813395
ZDT3 10247.58491252 10261.74982319 10267.31444963
ZDT4 1637497.71811025 1432633.6028558 1668646.4787854
ZDT5 / / /
ZDT6 10290.50432235 10366.77202485 10451.29821172
DTLZ1 163488.93427329 162703.81033471 163488.16438284
DTLZ2 120.2814699 120.2787037 120.28509672
DTLZ3 2755639.29692633 2755639.29692633 2755637.90679656
DTLZ4 112.89361204 106.75573159 109.82948574
DTLZ5 0.22991069 0.22880069 0.23439078
DTLZ6 3.19737837 3.20153301 3.12475714
DTLZ7 122.17117863 114.08727148 117.84822336
WFG1 147.84821167 157.27602915 144.61813845
WFG2 156.29556735 164.26574756 156.1857532
WFG3 163.44787192 163.36748104 163.11060693
WFG4 162.25310911 157.89345214 161.7437617
WFG5 158.90905784 155.29108461 159.51017757
WFG6 191.15602256 167.16308986 196.97391454
WFG7 162.55675403 158.04908735 154.56909363
WFG8 14.17534868 10.66209341 12.5348636
WFG9 36.89508556 29.1764626 35.45347331

B.3. Optimization Procedure 149

Table B.15: Hypervolume trade-off (NSPSO vs MOEA/D vs NSGA2 with a population size of 128).

Problems MOEA/D 128 NSPSO 128 NSGA2 128
ZDT1 3.6449406 3.69538358 3.7056356
ZDT2 10186.01332428 10200.89010093 10200.91791574
ZDT3 10275.95015023 10278.79550239 10281.09391726
ZDT4 1653653.43798041 1562028.55352806 1681648.1216013
ZDT5 / / /
ZDT6 10213.36466078 10480.87780418 10443.50243847
DTLZ1 172757.56305401 172161.86888352 172757.44156658
DTLZ2 120.26497643 120.26412721 120.26706026
DTLZ3 2864635.38062922 2851957.36175022 2864634.6099994
DTLZ4 116.58519013 113.51500536 116.587623
DTLZ5 0.23385066 0.23309494 0.23662311
DTLZ6 3.20612182 3.20842751 3.12506959
DTLZ7 120.85042545 120.84323571 124.88872398
WFG1 148.69818482 160.57401908 NaN
WFG2 159.0969238 164.32238141 152.90882144
WFG3 163.77689916 163.62271568 163.73830881
WFG4 163.09510471 160.31315305 163.29396045
WFG5 159.24076693 154.80489979 159.54917593
WFG6 170.24049236 171.86691343 174.14211336
WFG7 165.66924623 164.09164029 161.63688916
WFG8 14.96802716 11.12221898 13.04781365
WFG9 37.08577863 31.04443055 36.72290612

Table B.16: P-distance trade-off (NSPSO vs MOEA/D vs NSGA2 on a population size of 32 individuals).

Problems MOEA/D 32 NSPSO 32 NSGA2 32
ZDT1 0.16327763 0.01002195 0.0293881
ZDT2 0.05434864 0.20785872 0.00894705
ZDT3 0.98580786 0.138507 0.01847673
ZDT4 48.8124939 200.28145259 10.95756434
ZDT5 / / /
ZDT6 2.54834424 1.75335143 1.17727217
DTLZ1 1.55304507 4.16011842 2.04855862
DTLZ2 3.40883082×10 0.00190017 2.20774811×10
DTLZ3 0.16703657 164.60083575 5.21160793
DTLZ4 0.00027264 0.01903876 2.06165852×10
DTLZ5 2.23272826×10 0.0022779 1.31845948×10
DTLZ6 0.01050075 0 0.1552787
DTLZ7 9.31748365×10 0.00018991 4.17646050×10

150 B. Verification and Validation

Table B.17: P-distance trade-off (NSPSO vs MOEA/D vs NSGA2 with a population size of 64).

Problems MOEA/D 64 NSPSO 64 NSGA2 64
ZDT1 0.03650967 0.00758809 0.00273574
ZDT2 0.02116328 0.00231174 0.00133105
ZDT3 0.31568176 0.01025467 0.00350863
ZDT4 46.44798895 240.71529621 6.63590182
ZDT5 / / /
ZDT6 1.03850418 1.31309502 0.26417885
DTLZ1 6.20793802×10 5.59874658 1.66724282
DTLZ2 1.15180817×10 0.00122837 2.87010912×10
DTLZ3 0.02845748 170.29164529 0.67055369
DTLZ4 0.0001362 0.00046277 2.73442967×10
DTLZ5 1.00479667×10 0.00110522 1.71645715×10
DTLZ6 0.00079428 0 0.03578814
DTLZ7 1.93409100×10 0.00048034 1.15131103×10

Table B.18: P-distance trade-off (NSPSO vs MOEA/D vs NSGA2 with a population size of 128).

Problems MOEA/D 128 NSPSO 128 NSGA2 128
ZDT1 0.03877232 0.00666478 0.00124501
ZDT2 0.04648895 0.0037544 0.00068299
ZDT3 0.11202489 0.00954386 0.00137918
ZDT4 39.72507701 120.81867099 3.28794181
ZDT5 / / /
ZDT6 2.01597067 0.02501404 0.20803473
DTLZ1 1.20577628×10 3.0494438 0.33564028
DTLZ2 9.10006010×10 0.00105327 6.00403863×10
DTLZ3 0.00076059 88.01688417 0.34197763
DTLZ4 0.00010256 0.0005665 8.64787851×10
DTLZ5 9.51934365×10 0.00093886 1.01001907×10
DTLZ6 0.00123816 0 0.05327033
DTLZ7 8.69694479×10 0.0004422 5.34667770×10

B.3. Optimization Procedure 151

Table B.19: Number of Pareto-optimal individuals in the final population (MOEA/D vs MHACO vs NSPSO vs NSGA2
with a population size of 32).

Problems MOEA/D 32 MHACO 32 NSPSO 32 NSGA2 32
ZDT1 31 32 21 32
ZDT2 30 22 29 32
ZDT3 31 32 11 32
ZDT4 13 23 1 21
ZDT5 / / / /
ZDT6 15 18 22 26
DTLZ1 29 30 16 32
DTLZ2 32 32 11 32
DTLZ3 30 19 2 32
DTLZ4 32 26 14 32
DTLZ5 32 32 26 32
DTLZ6 32 32 32 32
DTLZ7 32 32 24 32
WFG1 31 20 21 32
WFG2 30 32 11 32
WFG3 31 32 31 32
WFG4 32 21 32 32
WFG5 32 32 32 32
WFG6 6 32 5 32
WFG7 32 32 16 32
WFG8 32 32 10 32
WFG9 11 32 7 32

Table B.20: Number of Pareto-optimal individuals in the final population (MOEA/D vs MHACO vs NSPSO vs NSGA2
with a population size of 64).

Problems MOEA/D 64 MHACO 64 NSPSO 64 NSGA2 64
ZDT1 62 64 41 64
ZDT2 60 41 38 64
ZDT3 49 64 12 64
ZDT4 11 17 1 33
ZDT5 / / / /
ZDT6 24 20 57 60
DTLZ1 63 64 38 64
DTLZ2 64 64 18 64
DTLZ3 60 20 1 64
DTLZ4 64 64 49 64
DTLZ5 64 64 54 64
DTLZ6 64 31 64 64
DTLZ7 64 64 45 64
WFG1 29 12 28 64
WFG2 64 64 20 64
WFG3 64 64 60 64
WFG4 64 25 64 64
WFG5 64 64 63 64
WFG6 5 64 20 64
WFG7 64 64 38 64
WFG8 64 64 19 64
WFG9 19 64 7 64

152 B. Verification and Validation

Table B.21: Number of Pareto-optimal individuals in the final population (MOEA/D vs MHACO vs NSPSO vs NSGA2
with a population size of 128).

Problems MOEA/D 128 MHACO 128 NSPSO 128 NSGA2 128
ZDT1 126 128 73 128
ZDT2 110 94 73 128
ZDT3 103 128 28 128
ZDT4 26 19 1 52
ZDT5 / / / /
ZDT6 32 18 127 117
DTLZ1 128 128 68 128
DTLZ2 128 128 26 128
DTLZ3 126 18 21 128
DTLZ4 128 128 100 128
DTLZ5 128 128 105 128
DTLZ6 128 42 128 128
DTLZ7 128 128 75 128
WFG1 28 20 43 0
WFG2 128 128 128 128
WFG3 128 128 115 128
WFG4 128 34 128 128
WFG5 128 128 125 128
WFG6 20 128 34 128
WFG7 128 128 81 128
WFG8 125 127 27 128
WFG9 35 128 28 128

𝑔(xxx) = 1 + 9(∑𝑥)/(𝑛 − 1) (B.9)

𝑓 (xxx) = 𝑥 (B.10)

𝑓 (xxx) = 𝑔(xxx)[1 − √𝑥 /𝑔(𝑥)] (B.11)

with 𝑥 ∈ [0, 1] ∀𝑖.

ZDT2
This is a continuous box-constrained bi-objective problem, where:

𝑔(xxx) = 1 + 9(∑𝑥)/(𝑛 − 1) (B.12)

𝑓 (xxx) = 𝑥 (B.13)

𝑓 (xxx) = 𝑔(xxx)[1 − (𝑥 /𝑔(𝑥))] (B.14)

with 𝑥 ∈ [0, 1] ∀𝑖.

ZDT3
This is a continuous box-constrained bi-objective problem, where:

B.3. Optimization Procedure 153

𝑔(xxx) = 1 + 9(∑𝑥)/(𝑛 − 1) (B.15)

𝑓 (xxx) = 𝑥 (B.16)

𝑓 (xxx) = 𝑔(xxx)[1 − √𝑥 /𝑔(𝑥) − 𝑥 /𝑔(xxx) sin (10𝜋𝑥)] (B.17)

with 𝑥 ∈ [0, 1] ∀𝑖.

ZDT4
This is a continuous box-constrained bi-objective problem, where:

𝑔(xxx) = 91 +∑[𝑥 − 10 cos 4𝜋𝑥] (B.18)

𝑓 (xxx) = 𝑥 (B.19)

𝑓 (xxx) = 𝑔(xxx)[1 − √𝑥 /𝑔(𝑥) − 𝑥 /𝑔(xxx) cos (10𝜋𝑥)] (B.20)
𝑓 (xxx) = 𝑥 (B.21)

𝑓 (xxx) = 𝑔(xxx)[1 − √𝑥 /𝑔(xxx)] (B.22)

where 𝑥 ∈ [0, 1] and 𝑥 ∈ [−5, 5] ∀𝑖 = 2, .., 10.

ZDT6
This is a continuous box-constrained bi-objective problem, where:

𝑔(xxx) = 1 + 9[(∑𝑥)/(𝑛 − 1)]
.

(B.23)

𝑓 (xxx) = 1 − 𝑒 sin (6𝜋𝑥) (B.24)

𝑓 (xxx) = 𝑔(xxx)[1 − (𝑓 (xxx)/𝑔(xxx))] (B.25)

with 𝑥 ∈ [0, 1] ∀𝑖.

B.3.2.2 DTLZ test suite
This is also a wide-spread test suite, which was conceived for multi-objective problems with
scalable fitness and variables’ dimensions. It consists of 7 problems: all the problems are
continuous box-bounded problems with scalable fitness and variables’ dimensions. In par-
ticular, when the authors constructed this test suite, they had in mind the following key
points (Deb et al., 2005):

1. Test problems should be easy to construct.

2. Test problems should be scalable in both their objectives and decision variables’ dimen-
sions.

3. The Pareto-optimal front of the problems should be easy to comprehend, and its exact
mathematical formulation should be known.

4. The difficulty of the problems should vary so that possible bottlenecks of the algorithms
that are being tested can be found.

Each of the problems of the test suite can be formulated as follows (whenever is used, 𝑘 is
always defined as 𝑘 = 𝑛 −𝑀 + 1, with 𝑛 number of variables and 𝑀 number of objectives):

154 B. Verification and Validation

DTLZ1
This is a rather simple test problem, with 𝑀 objectives and a linear Pareto-optimal front. The
objective functions have the following mathematical formulation:

𝑓 (xxx) =12𝑥 𝑥 ...𝑥 (1 + 𝑔(xxx))

𝑓 (xxx) =12𝑥 𝑥 ...(1 − 𝑥)(1 + 𝑔(xxx))
. .
. .
. .

𝑓 (xxx) =12𝑥 (1 − 𝑥)(1 + 𝑔(xxx))

𝑓 (xxx) =12(1 − 𝑥)(1 + 𝑔(xxx))

(B.26)

where 0 ≤ 𝑥 ≤ 1, for 𝑖 = 1, 2, ..., 𝑛. Also, the functional 𝑔(xxx) is formulated as follows:

𝑔(xxx) = 100[|xxx | + ∑
∈xxx

(𝑥 − 0.5) − cos(20𝜋(𝑥 − 0.5))] (B.27)

The Pareto-optimal solution corresponds to xxx = [0...0].

DTLZ2
In this test problem, the objective functions have the following formulation:

𝑓 (xxx) =(1 + 𝑔(xxx)) cos(𝑥 𝜋/2) cos(𝑥 𝜋/2)... cos(𝑥 𝜋/2) cos(𝑥 𝜋/2)
𝑓 (xxx) =(1 + 𝑔(xxx)) cos(𝑥 𝜋/2) cos(𝑥 𝜋/2)... cos(𝑥 𝜋/2) sin(𝑥 𝜋/2)
𝑓 (xxx) =(1 + 𝑔(xxx)) cos(𝑥 𝜋/2) cos(𝑥 𝜋/2)... cos(𝑥 𝜋/2) cos(𝑥 𝜋/2)

. .

. .

. .
𝑓 (xxx) =(1 + 𝑔(xxx)) cos(𝑥 𝜋/2) sin(𝑥 𝜋/2)
𝑓 (xxx) =(1 + 𝑔(xxx)) sin(𝑥 𝜋/2)

(B.28)

where 0 ≤ 𝑥 ≤ 1 for 𝑖 = 1, 2, ..., 𝑛 and the function 𝑔(xxx) has the following definition:

𝑔(xxx) = ∑
∈xxx

(𝑥 − 0.5) (B.29)

The Pareto-optimal front is located at xxx = [0.5..0.5].

DTLZ3
In this case, the objective functions are formulated in the same way as Equation (B.28), but
a different 𝑔 function is used:

𝑔(xxx) = 100[|xxx | + ∑
∈xxx

(𝑥 − 0.5) − cos(20𝜋(𝑥 − 0.5))] (B.30)

The global Pareto-optimal front is located at xxx = [0.5..0.5]

B.3. Optimization Procedure 155

DTLZ4
This problem is the same as 𝐷𝑇𝐿𝑍2 but modified with a meta-variable mapping:

𝑓 (xxx) =(1 + 𝑔(xxx)) cos(𝑥 𝜋/2) cos(𝑥 𝜋/2)... cos(𝑥 𝜋/2) cos(𝑥 𝜋/2)
𝑓 (xxx) =(1 + 𝑔(xxx)) cos(𝑥 𝜋/2) cos(𝑥 𝜋/2)... cos(𝑥 𝜋/2) sin(𝑥 𝜋/2)
𝑓 (xxx) =(1 + 𝑔(xxx)) cos(𝑥 𝜋/2) cos(𝑥 𝜋/2)... cos(𝑥 𝜋/2) cos(𝑥 𝜋/2)

. .

. .

. .
𝑓 (xxx) =(1 + 𝑔(xxx)) cos(𝑥 𝜋/2) sin(𝑥 𝜋/2)
𝑓 (xxx) =(1 + 𝑔(xxx)) sin(𝑥 𝜋/2)

(B.31)

where 0 ≤ 𝑥 ≤ 1 for 𝑖 = 1, 2, ..., 𝑛 and where:

𝑔(xxx) = ∑
∈xxx

(𝑥 − 0.5) (B.32)

The 𝛼 parameter is set to 𝛼 = 100.

DTLZ5
In this case, a transformed variable (𝜃) is introduced and DTLZ2 is modified as follows:

𝑓 (xxx) =(1 + 𝑔(xxx)) cos(𝜃 𝜋/2) cos(𝜃 𝜋/2)... cos(𝜃 𝜋/2) cos(𝜃 𝜋/2)
𝑓 (xxx) =(1 + 𝑔(xxx)) cos(𝜃 𝜋/2) cos(𝜃 𝜋/2)... cos(𝜃 𝜋/2) sin(𝜃 𝜋/2)
𝑓 (xxx) =(1 + 𝑔(xxx)) cos(𝜃 𝜋/2) cos(𝜃 𝜋/2)... cos(𝜃 𝜋/2) cos(𝜃 𝜋/2)

. .

. .

. .
𝑓 (xxx) =(1 + 𝑔(xxx)) cos(𝜃 𝜋/2) sin(𝜃 𝜋/2)
𝑓 (xxx) =(1 + 𝑔(xxx)) sin(𝜃 𝜋/2)

(B.33)

where 0 ≤ 𝑥 ≤ 1 for 𝑖 = 1, 2, ..., 𝑛 and where the 𝜃 variables are constructed as follows:

𝜃 = 𝜋
4(1 + 𝑔(𝑟))(1 + 2𝑔(𝑟)𝑥) for𝑖 = 2, 3, ..., 𝑀 − 1 (B.34)

Also, the 𝑔 function has the following expression:

𝑔(xxx) = ∑
∈xxx

(𝑥 − 0.5) (B.35)

DTLZ6
In this test problem, we use the same objective functions as those of DTLZ5 (expressed in
Equation (B.33)). The difference, however, is the 𝑔 function:

𝑔(xxx) = ∑
∈xxx

𝑥 . (B.36)

156 B. Verification and Validation

DTLZ7
This problem has a disconnected set of Pareto-optimal regions, and it can be formulated as
follows:

𝑓 (xxx) =𝑥
𝑓 (xxx) =𝑥

. .

. .

. .
𝑓 (xxx) =𝑥

𝑓 (xxx) =(1 + 𝑔(xxx))ℎ(𝑓 , 𝑓 , ..., 𝑓 , 𝑔)

(B.37)

where 0 ≤ 𝑥 ≤ 1 for 𝑖 = 1, 2, ..., 𝑛 and where the ℎ function is constructed as follows:

ℎ(𝑓 , 𝑓 , ..., 𝑓 , 𝑔) = 𝑀 −∑[𝑓
1 + 𝑔(1 + sin(3𝜋𝑓))] (B.38)

Also, the 𝑔 function is defined as follows:

𝑔(xxx) = 1 + 9
xxx

∑
∈xxx

𝑥 (B.39)

B.3.2.3 WFG test suite
This test suite was developed after a thorough study on multi-objective test problems that
have highlighted a few areas that were not covered by the standard test suites (i.e., ZDT
and DTLZ) and that thus required attention (Huband et al., 2006). In their analysis, the
authors point out that not only are many test problems poorly constructed, but a particular
class of nonseparable multimodal problems is poorly represented. An objective function
is multimodal when it has multiple local optima, whereas an objective function with only a
single optimum is unimodal. A special class of multimodal objective functions is the deceptive
one. For an objective function to be deceptive, as defined by Deb (1999), it is required that it
has at least two optima: the real optimum and a deceptive one. The search space of deceptive
problems must favor the finding of the deceptive optimum, thus making difficult for the
algorithm to find the real one. Furthermore, a nonseparable problem has the characteristic
that cannot be optimized by considering each parameter in turn, independently among each
other. For multi-objective problems, this implies that if we have a separable problem, then
the ideal points can be found by minimizing only one parameter at a time, thus making it
easier to find at least some Pareto optimal points.

In particular, in Huband et al. (2006), the limitations of the ZDT and DTLZ test suites
are discussed and analyzed. As the authors point out, the ZDT test suite seems to have the
following issues:

1. Only the class of bi-objective problems is represented.

2. No fitness landscapes with flat regions are represented.

3. The only deceptive problem is ZDT5, but it is binary encoded.

4. No degenerate Pareto optimal front (i.e., a front that has a lower dimension w.r.t. the
objective space of the problem) is present among the problems.

5. The class of nonseparable problems is not represented.

B.3. Optimization Procedure 157

6. All the problems have either extremal or medial parameters (i.e., the optimum is placed
either at the edge or at the middle part of the domain). This is considered bad practice
because in box-bounded problems these optima are often found by chance, since the
algorithm often tends to explore out of the box-bounded domain, and many algorithms
have a bounce-back mechanism that pushes the variables either at the middle or at the
edges of the domain when this happens.

While DTLZ solves some of these issues, it is still considered by the authors somewhat inad-
equate to well represent all the problems. In particular, they point out the following draw-
backs:

1. None of the problems has flat regions in the fitness landscapes.

2. No deceptive problems are represented.

3. The class of nonseparable problems is not represented.

For overcoming these aspects, the authors thus introduce a new test suite, which consists
of 9 different test problems. All the problems have the following format:

Given zzz = 𝑧 , ..., 𝑧 , 𝑧 , ..., 𝑧
Minimize 𝑓 ∶ (xxx) = 𝐷𝑥 + 𝑆 ℎ (𝑥 , ..., 𝑥)
where xxx = {𝑥 ,, 𝑥 } =

= {𝑚𝑎𝑥(𝑡 , 𝐴)(𝑡 − 0.5) + 0.5, ..., 𝑚𝑎𝑥(𝑡 , 𝐴)(𝑡 − 0.5) + 0.5, 𝑡 }
ttt = {𝑡 , ..., 𝑡 } ← ttt ← ... ← ttt ← zzz[,]

zzz[,] = {𝑧 ,[,], ..., 𝑧 ,[,]}
= {𝑧 /𝑧 , , ..., 𝑧 /𝑧 , }

where 𝑀 is the number of objectives, xxx is a set of 𝑀 parameters, zzz is a set of decision variables
of size 𝑛 >= 𝑀, D>0 is a distance scaling constant, 𝐴 ∶ are degeneracy constants, and
they are all within the [0,1] bounds: for each 𝐴 =0, the Pareto optimal front is reduced by
one. ℎ are shape functions, 𝑆 ∶ > 0 are scaling constants and ttt ∶ are transition vectors,
where ”←” is used for indicating that from one transition vector another one is constructed,
via transformation functions. All the variables have the domain such that 𝑧 ∈ [0, 𝑧 ,] ∀
𝑖 = 1, ..., 𝑛, where 𝑧 , > 0. In particular, the upper bound is chosen as: 𝑧 , = 2(𝑖 + 1). It
is interesting also to notice how all the 𝑥 will have domain [0,1].

Even though these test problems are more complex than the previous ones, their con-
struction can be easily implemented by following the transformation and shape functions
constructions shown in Tables B.22 and B.23. All the problems are shown in Table B.24.

It is important to point out that all the problems are scalable, with no extremal nor medial
parameters, and they have dissimilar Pareto optimal trade-off magnitudes and dissimilar
parameter domains, as well as known Pareto optimal sets. The properties of each specific
problem is shown in Table B.25.
This test suite was not already available in PaGMO and was thus implemented during this
thesis work. The suite was thoroughly tested before being applied (by checking that the cor-
rect objective functions are returned for known inputs, and by verifying the correct behavior
of the problems). Having verified and validated the test suite, it was made available in PaGMO
(both in C++ and Python): its description and use can be found in the official website of the
software6.

6https://esa.github.io/pagmo2/docs/cpp/problems/wfg.html, date of access: August, 2019.

https://esa.github.io/pagmo2/docs/cpp/problems/wfg.html

158 B. Verification and Validation

Table B.22: WFG shape functions (Huband et al., 2006), in all the cases , ..., are within the box-bounds [0, 1].

B.3. Optimization Procedure 159

Table B.23: WFG transformation functions (Huband et al., 2006), where have always domain [0,1].

160 B. Verification and Validation

Table B.24: WFG test suite construction (Huband et al., 2006) (in the table, we let yyy ttt and for ttt , we let
yyy zzz[,] { / , ..., /()}).

B.3. Optimization Procedure 161

Table B.25: WFG test problems properties (Huband et al., 2006).

162 B. Verification and Validation

Appendix C

Global Optimization Methods
In this appendix, we will explain the working principle of each of the single andmulti-objective
algorithms used in this research. The discussion will thus cover all the global optimizers
used, except for the SO and MO ant colony optimizer and the nondominated sorting particle
swarm optimizer, which were developed and defined within this thesis study and are thus
separately discussed in Section 5. This appendix is organized as follows: first, in Section
C.1, the SO methods are discussed and then, in Section C.2, the MO methods are presented.

C.1. Single-Objective Methods
In this section, we will deal with the single-objective global optimizers. In particular, we will
treat six different SO optimizers (i.e., DE, SADE, DE1220, SGA, PSO, and ABC) and a meta-
algorithm used for turning single-objective unconstrained problems into constrained ones
(so that the aforementioned algorithms can be applied for all the problems that pertain to
these two classes).

C.1.1. Standard Differential Evolution (DE)
The Differential Evolution (DE) algorithm was first designed in Storn and Price (1997) and
represents a direct search method that takes advantage of 𝑁𝑃 𝑛-dimensional decision vectors
(also known as individuals):

xxx , , 𝑖 = 1, 2, ..., 𝑁𝑃 (C.1)

where 𝐺 refers to the generation currently being evolved. Indeed, this algorithm is also of
the evolutionary kind: it thus evolves a set of individuals (called population) throughout a
certain number of user-defined generations.

Similarly to many other algorithms of this kind, the initial population is initialized ran-
domly within the box-bounds in which the decision vectors are defined, using a uniformly
random number generator and trying to cover the search space as much as possible.

The algorithm can be described through three simple passages:

1. Mutation: in this process, DE produces a new individual by adding the weighted differ-
ence between two other individuals of the same population to a third one. Mathemat-
ically, for each individual 𝑥 , , 𝑖 = 1, 2, ..., 𝑁𝑃, a mutant vector is generated by using the
following formula:

vvv , = xxx , + 𝐹 ⋅ (xxx , − xxx ,) (C.2)

where 𝑟 , 𝑟 and 𝑟 ∈ {1, 2, ..., 𝑁𝑃} are three randomly generated and mutually different
vectors, and 𝐹 ∈ [0, 1] is a user-defined parameter called weight coefficient. A two-
dimensional example of this process is shown in Figure C.1.

2. Crossover: having mutated the vector, its mutated parameters are then mixed together
with those of another chosen vector (called target vector), to produce a trial vector.
In particular, this trial vector (i.e., 𝑢 , = (𝑢 , , 𝑢 , , ..., 𝑢 ,)) is constituted, in
which:

𝑢 , = {𝑣 , if (𝑟𝑎𝑛𝑑𝑏(𝑗) ≤ 𝐶𝑅) or 𝑗 = 𝑟𝑛𝑏𝑟(𝑖)
𝑥 , if (𝑟𝑎𝑛𝑑𝑏(𝑗) > 𝐶𝑅) and 𝑗 ≠ 𝑟𝑛𝑏𝑟(𝑖) (C.3)

163

164 C. Global Optimization Methods

Figure C.1: Graphical representation of the mutation process for the DE algorithm (Storn and Price, 1997)

Figure C.2: Graphical representation of the crossover process for the DE algorithm (Storn and Price, 1997)

where 𝑗 = 1, 2, ..., 𝑛 and 𝐶𝑅 is a user-defined parameter in the [0, 1] range, called crossover
constant. Also, 𝑟𝑎𝑛𝑑𝑏(𝑗) is the jth evaluation of a uniformly distributed number in
[0, 1] and 𝑟𝑛𝑏𝑟(𝑖) is a randomly chosen index (∈ 1, 2, ..., 𝑛 which makes sure that uuu ,
obtains at least one parameter from vvv , . An example of the crossover process for a
7-dimensional decision vector is shown in Figure C.2 .

3. Selection: if the trial vector brings an improvement in terms of the cost function (i.e.,
if it yields a lower cost function value than the target vector), then it substitutes the
target vector in the future generation. Hence, it is only checked whether uuu , leads to
a smaller cost function w.r.t. xxx , . If this is the case, xxx , is set to 𝑢 , , otherwise, the
old decision vector 𝑥 , is used again in the following generation.

In the above scheme, we have seen some parameters that have some freedom of choice.
Besides the 𝐹 and 𝐶𝑅 parameters, there are the following aspects to be chosen:

1. A vector to be mutated (i.e., it could be a random vector or the best vector).

2. the number of different vectors to be used.

3. The crossover scheme.

Based on the three aspects, 10 different variants of DE have been developed. All of these vari-
ants make use of two possible crossover schemes: either binomial crossover or exponential
crossover. A comparison of these two crossover techniques and their detailed implementation
is discussed in Zaharie (2007).

To summarize, the DE algorithm, besides the number of individuals and generations, has
three tweakable parameters: the two constants 𝐹 and 𝐶𝑅, and the DE variant.

C.1.2. Self-Adaptive Differential Evolution (SADE)
Differential evolution has become a popular algorithm throughout the years. For this reason,
many authors have decided to introduce changes to the basic algorithm and produce their

C.1. Single-Objective Methods 165

own variants. An interesting one is shown in Brest et al. (2006). In this paper, the authors
propose a self-adaptive DE scheme: meaning, a DE algorithm that self-adapts its parameter,
thus preventing the user from the burden to tweak them. In particular, they propose the
self-adaptation of two of the three DE input parameters mentioned in Section C.1.1: the two
constants (i.e., 𝐶𝑅 and 𝐹).

As explained by the authors, better values of these two input parameters lead to better
decision vectors’ choices that, in turn, allow us to find better fitness values. For this reason,
they propose a self-adaptive scheme for 𝐹 and 𝐶𝑅, which are adapted at every 𝐺 generation,
that works as follows:

𝐹 , = {𝐹 + 𝑟𝑎𝑛𝑑 ⋅ 𝐹 if 𝑟𝑎𝑛𝑑 < 𝜏
𝐹 , , otherwise

(C.4)

𝐶𝑅 , = {𝑟𝑎𝑛𝑑 , if 𝑟𝑎𝑛𝑑 < 𝜏
𝐶𝑅 , , otherwise

(C.5)

where 𝑟𝑎𝑛𝑑 , for 𝑗 = 1, 2, 3, 4, are uniformly distributed random values in the [0, 1] range.
𝜏 , 𝜏 , 𝐹 and 𝐹 are user-defined parameters. This might suggest that the user-defined pa-
rameters have increased from two to four: this is however wrong since the authors have
experimentally set fixed values for all these constants: 𝜏 = 𝜏 = 0.1, 𝐹 = 0.1 and 𝐹 = 0.9.
In this way, 𝐹 ∈ [0.1, 1.0] and 𝐶𝑅 ∈ [0, 1]. The reason why the authors decide to pass from
𝐹 ∈ [0, 1], as defined in the original DE algorithm, to 𝐹 ∈ [0.1, 1] is that 𝐹 = 0 corresponds to a
new trial vector generated using crossover but no mutation.

Using this proposed scheme, the user has thus only to choose the DE variant: this reduces
the tweakable parameters to only one (besides the number of individuals and generations).

C.1.3. Differential Evolution Variant (DE1220)
Similarly to the one explained in Section C.1.2, this is another self-adaptive DE scheme,
proposed by the owners of the PaGMO optimization toolbox 1. This algorithm is identical to
the one shown in Section C.1.2, with the innovation that a self-adaptation for the mutation
variant is also added. In this way, the users are only left to choose the number of generations
and the population size, and they do not have to worry about any other input parameters.

The mutation variant is chosen according to the following scheme:

𝑉 = {𝑟𝑎𝑛𝑑𝑜𝑚 if 𝑟 < 𝜏
𝑉 otherwise

(C.6)

where 𝑖 is the currently being evolved generation, 𝜏 is set to be equal to 0.1, 𝑟𝑎𝑛𝑑𝑜𝑚 selects
a random mutation variant (in the range between 1 and 10, since 10 different variants are
possible) and 𝑟 is a uniformly distributed random number in the [0, 1] range.

Due to its simplicity, and due to the fact that no input parameters of the algorithm have
to be chosen by the user, we have decided to also include this algorithm in our trade-off.

C.1.4. Simple Genetic Algorithm (SGA)
This algorithm was first introduced in Holland et al. (1992), and then thoroughly discussed
and analyzed in Oliveto et al. (2007). This algorithm is part of the class of genetic algorithms
(GA), which are metaheuristic algorithms that belong to the broad class of evolutionary algo-
rithms and that are inspired by the process of natural selection. This simple genetic algorithm
(SGA) makes use of three processes already discussed in Section C.1.1: selection, crossover,
and mutation. The algorithm first selects 𝑁 individuals from the population, it then creates
a new population of individuals from the chosen one (using crossover), and it finally mutates
this new population to obtain another set of individuals, which will hopefully improve the
fitness values. Several different genetic algorithms distinguish each other only in the type of
selection, crossover and mutation methods used. In our research, we have decided to employ
a rather standard genetic algorithm scheme, which makes use of the following three types:
1https://esa.github.io/pagmo2/docs/cpp/algorithms/de1220.html

https://esa.github.io/pagmo2/docs/cpp/algorithms/de1220.html

166 C. Global Optimization Methods

1. Tournament selection: each offspring (i.e., new individual) is selected based on the
minimal fitness of a random group of two individuals.

2. Exponential crossover: this consists in selecting a random point in the parent chromo-
some and inserting it in the following genes with a certain probability 𝐶𝑅 (which is set
to be 0.9), until the algorithm stops.

3. Polynomial mutation: this is a very popular mutation scheme introduced in Deb and
Agrawal (1999).

Besides the aforementioned three procedures, also a reinsertion scheme is used. This scheme
is called pure elitism and consists in placing, at every 𝐺 generation, all the new and old
individuals in the same pool and only selecting the best (in terms of minimal fitness values)
𝑛 individuals to be passed to the next generation (where 𝑛 is the population size).

Having discussed the simple genetic algorithm variant employed in this study, as for the
other optimizers, we are left to choose the population size and generations’ number for making
the algorithm work for a single-objective unconstrained problem.

C.1.5. Particle Swarm Optimization (PSO)
This evolutionary algorithm was first introduced in Eberhart and Kennedy (1995) and then
many modifications and variants have been developed throughout the years. The version
that we propose in this study is the standard one and is inspired by the foraging behavior of
swarms.

In this algorithm, we have a population of 𝑁𝑃 individuals to be evolved for 𝐺 generations.
The first population is initialized randomly within the box-bounds of each decision vector’s
component. For the following generations, each decision vector xxx is updated using the in-
formation of where it achieved the best performance in previous generations (i.e., xxx) and
using the best decision vector in a certain neighborhood (i.e., xxx). This information is used
for defining a velocity vector, which will then be used for updating the decision vector:

vvv = 𝜔(vvv + 𝜂 rrr ⋅ (xxx − xxx) + 𝜂 rrr ⋅ (xxx − xxx)) (C.7)
xxx = xxx + vvv (C.8)

where 𝑖 = 1, 2, ..., 𝐺 refers to the current generation being evolved, and 𝜔, 𝜂 , 𝜂 are three user-
defined parameters. The two random vectors rrr and rrr are uniformly distributed random
numbers in the [0, 1] range.

To summarize, in this algorithmwe can tweak and tune, besides the number of individuals
and generations, three different parameters (i.e., 𝜔, 𝜂 , 𝜂). Additionally, there is also the
possibility to limit the particles’ velocity within a certain user-defined maximum value.

C.1.6. Artificial Bee Colony (ABC)
This algorithm was first introduced in Karaboga and Basturk (2007) and is based on the bi-
ological mechanism throughout the bees seek their food source. In particular, for describing
the algorithm, we first need to classify the bees in three different groups: onlookers, employed
bees and scouts. The first group is constituted by the bees that are waiting for making a de-
cision before choosing a food source. The second group is made by the bees that are going
to the food source already previously visited. The third group is made by the bees that are
performing a random search for food sources.

In this algorithm, the initialized population is split into employed artificial bees and on-
lookers. The number of employed bees is equal to the number of food sources found. When-
ever a food source is finished, the employed bee becomes a scout. What drives the choice
is the nectar amount: the better the source of food, the higher the nectar. Hence, after
the first population is randomly initialized, a nectar ranking among all the food sources is
established and new bees are sent out as scouts for seeking new food sources, using the
information retrieved by the employed bees. Thus, we can summarize the algorithms’ steps
in three passages (after the population is initialized randomly):

C.1. Single-Objective Methods 167

1. The employed bees are sent out to the food source and the nectar is measured.

2. The food sources are then selected by the onlookers, once the information retrieved by
the employed bees are processed.

3. The scout bees are finally determined and they are sent to explore new possible sources
of food.

These iterations are repeated all over for as many generations as requested. The informa-
tion of previously found sources of food is stored for the purpose of finding new candidate
sources of foods after the information is shared in the hive with the onlookers. Of course,
the onlookers will prefer the food areas with more nectar. When the nectar amount of a food
source increases, the probability of choosing that food source also increases.

In the algorithm, the position of a food source thus represents a feasible solution to the
problem, and the nectar level is representative of the fitness of the associated solution.

Provided that the nectar amount of a new bee is higher than the previous one, then the
bee forgets that nectar amount and holds in memory the new one. The onlooker bees select
a food source based on the information retrieved by the employed bees and according to the
probability value associated with it. This is simply computed by doing:

𝑝 = 𝑓𝑖𝑡
∑ 𝑓𝑖𝑡

(C.9)

where 𝑁 is the population size and 𝑓𝑖𝑡 is the fitness value of a solution 𝑖, as evaluated by the
employed bee.

The critical part of the algorithm is the production of new food sources around the found
one. This is done, for each component of each individual decision vector, using the following
expression:

𝑣 = 𝑥 + 𝜙 (𝑥 − 𝑥) (C.10)

where 𝑘 ranges from 1 to the number of employed bees, 𝑗 goes from 1 to the dimension of the
search space, 𝑖 goes from 1 to the number of individuals. The indices 𝑘 and 𝑗 are randomly
chosen, but 𝑘 is always kept different from 𝑖. 𝜙 represents a random number in the [-1, 1]
range.

The more 𝑥 and 𝑥 difference decreases, the more the perturbation on 𝑥 decreases
too, thus producing a closer individual from the previous one. This is done for enhancing
convergence towards the optimal solution.

Once the new candidate positions 𝑣 are produced, their fitness values are compared with
those of 𝑥 and if the new source of food results to possess a higher or equal value of nectar,
the old source is replaced with the new one.

If a solution is not updated in terms of nectar for a certain number of generations, which
is called limit, then that solution is dropped.

It is clear, from our description, that besides the population and generation sizes, the
artificial bee colony algorithm has only one control parameter: the limit parameter value.

C.1.7. Self-Adaptive Constraints Handling Meta-Algorithm
This meta-algorithm represents a constraint handling algorithm that permits the usage of
any single-objective unconstrained optimization algorithm on single-objective constrained
problems. This is very useful in our case, since most of our optimization problems (i.e., the
heliocentric phase and the geocentric and heliocentric phase) have constraints, but all the
single-objective algorithms that we would like to apply (except for ACOmi) cannot handle
them, and they thus could not be used for them, if this meta-algorithm was not applied.

This strategy was first introduced in Wright and Farmani (2001), however, it was then
refined in Farmani and Wright (2003), were a more dynamic algorithm was implemented for
refining the previous method. This method basically changes a single-objective constrained
problem into an unconstrained one, by turning its constraint functions into penalty functions
to be added to the fitness. In particular, a two-stages penalty method is employed. This

168 C. Global Optimization Methods

approach has two main advantages: first of all, it does not require any tweaking or tuning of
parameters by the user. Secondly, it has also been demonstrated to find the global optimal
(feasible) solution, starting from a population of unfeasible individuals.

For describing this method, we first have to introduce some definitions. We have a cer-
tain minimization problem, where we would like to minimize an objective function: 𝑓(xxx) =
𝑓(𝑥 , ..., 𝑥), whose value depends on the decision vectors’ components. The problem is sub-
jected to 𝑞 inequality constraints:

𝑔 (xxx) ≤ 0, 𝑗 = 1, ..., 𝑞 (C.11)

and (𝑚 − 𝑞 + 1) equality constraints:

ℎ (xxx) = 0, (𝑗 = 𝑞 + 1, ..., 𝑚) (C.12)

The meta-algorithm is constituted in three passages:

1. Each individual receives an infeasibility value. This infeasibility value accounts for
both the number of active constraints on each individual and the extent to which each
constraint is violated. For doing this, the sum of the norm of the constraint values
is computed (only for the violated constraints). This is thus done by first setting the
constraints to zero if they result feasible. Also, a small user-defined tolerance 𝛿 can
be set: this means that solutions with equality constraints’ values below that small
threshold still result as zero. Mathematically, this means that we can redefine the
constraints as follows:

𝑐 (xxx) = {max(0, 𝑔 (xxx)), if 1 ≤ 𝑗 ≤ 𝑞
max(0, (|ℎ (xxx| − 𝛿)), if 𝑞 + 1 ≤ 𝑗 ≤ 𝑚 (C.13)

where 𝑚 is the number of inequality and equality constraints. We can then compute
the solution’s infeasiblity (i.e., 𝑖(xxx)), as follows:

𝑖(xxx) =
∑ 𝑐 (xxx)

𝑐 ,
𝑚 (C.14)

where the 𝑐 , value represents the maximum value of the constraint violation in the
population being evolved.

2. The worst and best solutions of the search space are identified. In particular, we define
three different individuals:

xxx best individual;
xxx worst of the infeasible solutions;
xxx solution with the highest objective function value in the current population.

In the case that the current population has at least one feasible decision vector, the best
individual will thus be the one with the lowest objective function value. However, if this
is not the case, then it will be the solution with the lowest infeasibility value (neglecting
the objective function values). Concerning the worst individual, two situations may
happen: the first is that one or more infeasible solutions in the population have objective
function values that are lower than the one of the best individual. In this case, the
worst is taken as the individual with the highest infeasibility value, and the objective
function value lower than the best solution. The second case is the one in which all the
infeasible individuals in the population have objective function values higher than the
best individual. In this case, the worst is taken as the one with the highest infeasibility
value.
It must be noted that in both the aforementioned cases, if two or more individuals have
the same infeasibility value, then the objective function will drive the choice (i.e., the
individual with the highest objective function value among them will be the worst).

C.2. Multi-Objective Methods 169

3. The infeasible solutions are finally penalized: this is done before converting the objective
function value in fitness. For describing this procedure, it is first important to introduce
some definitions. We will call 𝐹(xxx) the fitness, ̇𝑓(xxx) the penalized objective function value
after the first penalty and ̈𝑓(xxx) the penalized objective function value after the second
penalty. The fitness is just the objective function value after subtracting the second
penalized objective function after the second penalty. The infeasible solutions are first
penalized using the infeasibility values of the worst and best solutions (i.e., 𝑖(xxx) and
𝑖(xxx), respectively), together with the highest objective function value in the current
population (i.e., 𝑓(xxx)). The first stage penalty is only applied if an infeasible solution
exist with an objective function value lower than the current best solution (i.e., if xxx ∃
such that 𝑓(xxx) < 𝑓(xxx) and 𝑖(xxx) > 0). If such case is verified, the first stage penalty is
introduced to make sure that the objective function values of the infeasible solutions is
increased so that the worst infeasible solution will turn out to have an objective function
value higher or equal that of the best solution. Mathematically, this is achieved by
defining the following penalized objective function:

̃𝑖(xxx) = 𝑖(xxx) − 𝑖(xxx)
𝑖(xxx) − 𝑖(xxx) (C.15)

̇𝑓(xxx) = 𝑓(xxx) + ̃𝑖(xxx)(𝑓(xxx) − 𝑓(xxx)) (C.16)

As it can be noted, if the penalty is not applied, then ̇𝑓(xxx) = 𝑓(xxx).
The second penalty is useful for increasing the objective function values so that the
penalized objective function value of the worst individual is equal to that of the worst
objective individual. This is achieved by defining the following penalized objective func-
tion:

̈𝑓(xxx) = ̇𝑓(xxx) + 𝛾| ̇𝑓(xxx)|(𝑒
(̃xxx) − 1
𝑒 − 1) (C.17)

𝛾 =
⎧
⎪
⎨
⎪
⎩

𝑓(xxx) − 𝑓(xxx)
𝑓(xxx) , if (𝑓(xxx) ≤ 𝑓(xxx))

0.0, if (𝑓(xxx) = 𝑓(xxx))
𝑓(xxx) − 𝑓(xxx)

𝑓(xxx) , if (𝑓(xxx) > 𝑓(xxx))
(C.18)

The 𝛾 parameter makes sure that the penalization is fair depending on the objective
function values of the worst, best and highest individuals.

This method is thus capable, through a dynamical and self-tuned two-stages penalty, to
transform any single-objective constrained problem into an unconstrained one, thus allow-
ing many algorithms to work in a wider range of problems. Also, if an optimization algorithm
is able to handle both constrained and unconstrained optimization problems (which is the
case for ACOmi, as shown in Section 5.3.1), we can compare the performances of the algo-
rithm alone, with those of the algorithm coupled with this self-adaptive constraints handling
technique.

C.2. Multi-Objective Methods
Multi-objective (MO) optimization is a crucial area of mathematics involved in the minimiza-
tion of problems that have more than one objective function value to be optimized concur-
rently. As we have already pointed out, in this case, for a nontrivial problem, no single best
solution can be found, but a set of multiple optimal solutions exists (called Pareto front). The
methodology and implementation of MO algorithms are thus completely different from single-
objective ones. In this section, we will discuss the working principle and pseudo-code of two
popular multi-objective optimizers: the nondominated sorting genetic algorithm (NSGA-II)
and the multi-objective evolutionary algorithm with decomposition (MOEA/D). These are well
known and tested MO algorithms.

170 C. Global Optimization Methods

Figure C.3: Crowding distance computation (points marked with the same filled circles belong to the same nondom-
inated front) (Deb et al., 2002).

C.2.1. Nondominated Sorting Genetic Algorithm (NSGA-II)
This algorithm was first introduced in Deb et al. (2002), and is one of the most popular and
used MO optimization algorithms. This is a genetic algorithm and thus takes advantage of a
certain type of crossover and mutation for then evolving the population to the next generation
using the nondominated sorting and crowding distance comparison concepts. These two
aspects are thus fundamental for understanding how the algorithm works. The algorithm
description can be presented as follows:

1. Nondominated sorting: the objective is to sort the population into different nondomi-
nation levels (where the concept of domination was already introduced in Section 5.1.2
and mathematically described in Equation (5.7)). The procedure for doing this is quite
simple, whereas its implementation is slightly more sophisticated (for reducing the com-
putational time required for sorting the individuals) and is thoroughly described in the
original paper (Deb et al., 2002). The Pareto-optimal front of the current population
is first identified, and each solution belonging to this front is assigned a value of zero.
Afterwards, these individuals are removed from the population, and a second Pareto-
optimal front is found. To this second set of Pareto-optimal individuals, a value of one
is assigned (thus referring to the fact that they are worse in terms of Pareto-optimality
w.r.t. those who have a rank of zero, but better w.r.t. those with a rank of two). This
procedure is repeated until all the individuals are sorted and a rank is assigned to each
of them. This procedure will, in general, allow us to store both the number of solutions,
which dominate a certain solution 𝑝 (i.e., the so-called domination count 𝑛) and the
set of solutions that the solution 𝑝 dominates (i.e., 𝑆). The domination count of the
individuals belonging to the first nondominated front will thus be zero. It is thus clear
that the nondomination count can range from 0 to a maximum of 𝑁𝑃 − 1 (where 𝑁𝑃 is
the number of individuals in the current population).

2. Crowding distance comparison: when evaluating the performances of a certain popu-
lation in a MO framework, besides convergence towards a Pareto-optimal set, it would
also be desired to maintain a certain spread of solutions within the fronts. For achieving
this, the crowded-comparison operator is introduced in NSGA-II. After having identified
only the solutions belonging to a certain nondominated Pareto front, we take one indi-
vidual 𝑖 within that front and we compute the average distance of that solution w.r.t.
the two nearest solutions belonging to the same front: in this way we get an estimate of
the average side length of the cuboid (which is shown with a dashed box in Figure C.3).
It is thus clear that for storing the crowding distance of each individual, we only need to
first divide the population in nondominated fronts, and then sort the individuals within
each front according to their objective function values, in ascending order. Also, the
boundary solutions (i.e., solutions with smallest and largest objective function values)

C.2. Multi-Objective Methods 171

are assigned an infinite distance value. All the other solutions are assigned a distance
value that is computed through the absolute normalized difference in the objective func-
tion values of two adjacent solutions (which is basically identical to the concept of Eu-
clidean distance). In this way, a solution with a smaller crowding distance value will re-
sult to be more crowded with respect to the others. We can thus introduce the so-called
crowded-comparison operator (i.e., <) that leads the selection process of NSGA-II, tak-
ing into account both the nondomination rank (𝑖rank) and crowding distance (𝑖distance)
value of every individual 𝑖 in the population. In particular, an individual 𝑖 is preferred
than an individual 𝑗 if the following is verified:

𝑖 < 𝑗 if (𝑖rank < 𝑗rank)
or ((𝑖rank = 𝑗rank) and (𝑖distance > 𝑗distance))

This means that between two solutions, we prefer that with a lower domination rank.
If the two solutions have the same domination rank, then the solution with the higher
crowding distance value (meaning that is located in a less crowded region) is preferred.

To summarize, after the first random population is created, the algorithm proceeds by first
computing the nondomination levels and crowding distances of each individual. These values
are used for sorting the population according to the crowding-comparison criterion. Then,
binary tournament selection, crossover and mutation operators are used for generating the
new population (i.e., offspring). At this point, at every generation, both parents and offspring
are compared and sorted according to the crowding-distance comparison, and only the best
𝑁𝑃 individuals (where 𝑁𝑃 is the population size) are used for generating the future offspring.
In this way, elitism is also ensured.

C.2.2. MO Evolutionary Algorithm with Decomposition (MOEA/D)
This popular multi-objective algorithm, of the differential evolution class, was first introduced
in Zhang and Li (2007b), and represents one of the most used MO algorithms for space
applications. Its performances are often compared to that of NSGA-II, and this algorithm has
sometimes demonstrated to outperform its genetic counterpart (Li and Zhang, 2009).

The authors of this DE algorithm have leveraged the decomposition strategy to create
a powerful MO optimizer. The strategy basically consists of dividing the MO problem into
several sub-problems, which are optimized separately using for each one the information of
neighboring sub-problems.

Three different approaches are possible for converting the problem into sub-problems:
weighted sum approach, Chebyshev approach, and boundary intersection approach. In our
research, we chose to implement the Chebyshev decomposition method, which is extensively
described in Zhang and Li (2007a).

The scalar optimization problem, in this decomposition method, is written as:

min
xxx∈

ggg (xxx|𝜆,zzz∗) = max{𝜆 |𝑓 (xxx− 𝑧∗|)} (C.19)

where zzz∗ = (𝑧∗ , ..., 𝑧∗) is the reference point (i.e., for a minimization problem: 𝑧∗ = 𝑚𝑖𝑛{𝑓(xxx|xxx ∈
Ω)}), for each 𝑖 = 1, ..., 𝑚.

For each Pareto optimal point xxx∗ a weight factor, 𝜆, exists such that xxx∗ is the optimal
solution of the expression in the Equation (C.19).

Hence, one, by just changing the weight of the weight factors, would be able to obtain
different Pareto optimal solutions. This approach does not come without drawbacks: indeed,
one major pitfall is that the aggregation function is not smooth for continuous multi-objective
optimization problems. However, if the computation of the derivative of the aggregation func-
tion is not requested (as it is the case in Zhang and Li (2007a)), then this approach can still
be used.

Now that the decomposition approach has been discussed, we can move to the algorithm
description.

172 C. Global Optimization Methods

Let 𝜆 , ..., 𝜆 be a set of even spread weight factors, and zzz∗ be the reference point, then,
using Chebyshev approach, we can decompose the problem into N scalar optimization sub-
problems, and we can express the objective function of the 𝑗 sub-problem as:

ggg (xxx|𝜆 ,zzz∗) = max{𝜆 |𝑓 (xxx) − 𝑧∗} (C.20)

where: 𝜆 = (𝜆 , ..., 𝜆) . The purpose of MOEA/D, is the minimization of all these N objective
functions in a single run, simultaneously. One important aspect is that ggg is continuous of
𝜆, which makes the optimal solution of ggg (xxx|𝜆 ,zzz∗) close to that of ggg (xxx|𝜆 ,zzz∗), when 𝜆 and 𝜆
are close to each other. Hence, all the information about the 𝑔 with weight factors close to
𝜆 , should help the algorithm in the optimization of 𝑔 (xxx|𝜆 ,zzz∗). This is a key characteristic
of MOEA/D.

In MOEA/D, a neighborhood of weight factor vector of 𝜆 is defined as a set of weight factors
that are close to it (i.e., {𝜆 , .., 𝜆 }). The population is then made of the best solution found so
far for each sub-problem, considering that only the sub-problems in the neighborhood are
used for optimizing every single sub-problem.

For each generation 𝑡, the algorithm (which uses the Chebyshev approach) maintains:

• N points in the population: xxx , ...,xxx ∈ Ω (where xxx is the current solution to the 𝑖
sub-problem).

• 𝐹𝑉 , ..., 𝐹𝑉 , where 𝐹𝑉 represents the F-value of xxx (hence: 𝐹𝑉 = FFF(xxx), for 𝑖 = 1, ..., 𝑁).

• zzz = (𝑧 , .., 𝑧) where 𝑧 is the best value found so far in terms of objective 𝑓 .

• an external population (called 𝐸𝑃) used for collecting non-dominated solutions, which
are found along the way.

• probability that parent solutions are selected from the neighborhood (𝛿).

Also, polynomial mutation will be used in the algorithm. In particular, this operation, in this
case, generates yyy = (𝑦 , , ..., 𝑦 ,) from yyy = (𝑦 , ..., 𝑦) in the following way:

yyy = {yyy + 𝜎 × (𝑏 − 𝑎) with probability 𝑝
yyy with probability 1 − 𝑝

with:

𝜎 =
⎧⎪
⎨⎪⎩

(2 × 𝑟𝑎𝑛𝑑)
1

𝜂 + 1 − 1 if 𝑟𝑎𝑛𝑑 < 0.5

1 − (2 − 2 × 𝑟𝑎𝑛𝑑)
1

𝜂 + 1 otherwise

where 𝑟𝑎𝑛𝑑 is a uniform distributed number from [0,1], 𝜂 is the distribution index and 𝑝 is
the mutation rate (two control parameters).

The output of the algorithm will be the external population (𝐸𝑃). The steps followed by the
algorithm can be summarized as follows:

1. Set 𝐸𝑃 = 0

2. Compute the Euclidean distances between any two weight vectors, and set up the 𝑇
closest weight vectors for each of the weight vector considered: BBB(𝑖) = (𝑖 , ..., 𝑖) (where
𝜆 , .., 𝜆 are the 𝑇 closest weight vectors to each 𝜆 considered).

3. Initialize a population xxx , ...,xxx randomly (or with a specific method to be selected de-
pending on the application), and define the various 𝐹𝑉 .

4. Initialize zzz = (𝑧 , ..., 𝑧) (their definition is typically problem related).

5. For 𝑖 = 1, ..., 𝑁 do steps 6-11.

C.2. Multi-Objective Methods 173

6. Uniformly generate a number 𝑟𝑎𝑛𝑑 between [0,1], and set:

𝑃 = {BBB(𝑖) if 𝑟𝑎𝑛𝑑 < 𝛿{1, ..., 𝑁} otherwise

7. Choose randomly two indexes (𝑘 and 𝑙) from 𝑃 and generate a new solution yyy from xxx ,
xxx and xxx , using genetic operators (i.e., DE operators explained in the previous section).

8. Apply polynomial mutation (i.e., using the DE mutation techniques explained in the
previous section) on yyy, with probability 𝑝 , to produce yyy .

9. Update zzz: for each 𝑗 = 1, ..., 𝑚, if 𝑧 < 𝑓 (yyy) then set 𝑧 = 𝑓 (yyy).

10. Update the neighboring solutions by setting xxx = yyy and 𝐹𝑉 = FFF(yyy) for each index
𝑗 ∈ BBB(𝑖), if 𝑔 (yyy |𝜆 ,zzz) ≤ 𝑔 (xxx |𝜆 , 𝑧).

11. Update 𝐸𝑃 by first erasing from 𝐸𝑃 all the vectors that are dominated by FFF(yyy), and
then add FFF(yyy) to 𝐸𝑃 if no vectors in 𝐸𝑃 dominate FFF(yyy).

12. If any stopping criterion is satisfied, then stop the algorithm and return 𝐸𝑃; otherwise,
go back to step 6.

174 C. Global Optimization Methods

Bibliography
Doyle, J., and Madjarska, M., “Solar transient events and their importance for coronal heat-
ing,” Science progress, Vol. 87, No. 2, 2004, pp. 101–130.

Mueller, M. R., D., and Gilbert, H., “Solar orbiter,” Solar Physics, Vol. 285, No. 1-2, 2013, pp.
25–70.

Goldstein, B., Buffington, A., Cummings, A., Fisher, R., Jackson, B., Liewer, P., Mewaldt, R.,
and Neugebauer, M., “Solar Polar Sail mission: report of a study to put a scientific space-
craft in a circular polar orbit about the sun,”Missions to the Sun II, Vol. 3442, International
Society for Optics and Photonics, 1998, pp. 65–77.

Macdonald, M., Hughes, G., McInnes, C., Lyngvi, A., Falkner, P., and Atzei, A., “Solar polar
orbiter: a solar sail technology reference study,” Journal of Spacecraft and Rockets, Vol. 43,
No. 5, 2006, pp. 960–972.

Coverstone, V., and Prussing, J., “Technique for escape from geosynchronous transfer orbit
using a solar sail,” Journal of Guidance, Control, and Dynamics, Vol. 26, No. 4, 2003, pp.
628–634.

Candy, S., “Evolutionary Optimisation for a Solar Sailing Solar Polar Mission,” TU Delft, MSc
Thesis, 2002.

Garot, D., “Trajectory optimisation of a solar polar sail mission,” TU Delft, MSc Thesis, 2006.

Spaans, J., “Improving Global Optimization Methods for Low-Thrust Trajectories,” TU Delft,
MSc Thesis, 2009.

Wie, B., “Hovering control of a solar sail gravity tractor spacecraft for asteroid deflection,”
Proceedings of the 17th AAS/AIAA Space Flight Mechanics Meeting, AAS, Vol. 7, 2007, p.
145.

Okada, T., Iwata, T., Matsumoto, J., Chujo, T., Kebukawa, Y., Aoki, J., Kawai, Y., Yokota,
S., Saito, Y., Terada, K., et al., “Science and Exploration in the Solar Power Sail OKEANOS
Mission to a Jupiter Trojan Asteroid,” Lunar and Planetary Science Conference, Vol. 49,
2018.

Lyngvi, A., van den Berg, M., and Falkner, P., “Study overview of the interstellar heliopause
probe,” ESA Techn. Reference Study, SCI-A/2006/114/IHP, Noordwijk, 2007.

Dachwald, B., Ohndorf, A., and Wie, B., “Solar sail trajectory optimization for the solar polar
imager (SPI) mission,” AIAA/AAS Astrodynamics Specialist Conference and Exhibit, 2006a,
p. 6177.

Sauer, C., “Solar sail trajectories for solar polar and interstellar probe missions,” Vol. 103,
1999.

Wie, B., “Solar sail attitude control and dynamics, part 1,” Journal of Guidance, Control, and
Dynamics, Vol. 27, No. 4, 2004, pp. 526–535.

Wie, B., “Thrust vector control of Solar sail spacecraft,” AIAA Guidance, Navigation, and Con-
trol Conference and Exhibit, 2005, p. 6086.

Wie, B., Thomas, S., Paluszek, M., and Murphy, D., “Propellantless AOCS design for a 160-
m, 450-kg sailcraft of the Solar Polar Imager mission,” 41st AIAA/ASME/SAE/ASEE Joint
Propulsion Conference & Exhibit, 2005, p. 3928.

175

176 Bibliography

McInnes, C. R., Solar Sailing: Technology, Dynamics and Mission Applications, Springer,
1999.

Dachwald, B., Ohndorf, A., and Wie, B., “Solar sail trajectory optimization for the solar polar
imager (SPI) mission,” AIAA/AAS Astrodynamics Specialist Conference and Exhibit, 2006b,
p. 6177.

Schlüter, M., “MIDACO software performance on interplanetary trajectory benchmarks,” Ad-
vances in Space Research, Vol. 54, No. 4, 2014, pp. 744–754.

Wie, B., Space vehicle dynamics and control, American Institute of Aeronautics and Astro-
nautics, 2008.

Wakker, K. F., “Fundamentals of astrodynamics,” 2015.

Walker, M., “A set of modified equinoctial orbit elements,” Celestial Mechanics and Dynamical
Astronomy, Vol. 38, No. 4, 1986, pp. 391–392.

Grassia, F., “Practical parameterization of rotations using the exponential map,” Journal of
graphics tools, Vol. 3, No. 3, 1998, pp. 29–48.

Fu, B., Sperber, E., and Eke, F., “Solar sail technology—a state of the art review,” Progress
in Aerospace Sciences, Vol. 86, 2016, pp. 1–19.

Anderson, J., Fundamentals of aerodynamics, Tata McGraw-Hill Education, 2010.

Myatt, D., Becerra, V., Nasuto, S., and Bishop, J., “Advanced global optimisation for mission
analysis and design,” Final Report. Ariadna id, Vol. 3, 2004, p. 4101.

Vinkó, T., Izzo, D., and Bombardelli, C., “Benchmarking different global optimisation tech-
niques for preliminary space trajectory design,” 58th international astronautical congress,
International Astronautical Federation Hyderabad, India, 2007a, pp. 24–28.

Schlüter, M., Gerdts, M., and Rückmann, J., “A numerical study of MIDACO on 100 MINLP
benchmarks,” Optimization, Vol. 61, No. 7, 2012, pp. 873–900.

Schlüter, M., Wahib, M., and Munetomo, M., “Numerical optimization of ESA’s Messenger
space mission benchmark,” European Conference on the Applications of Evolutionary Com-
putation, Springer, 2017, pp. 725–737.

Parsopoulos, K., and Vrahatis, M., “Particle swarm optimization method for constrained op-
timization problems,” Intelligent Technologies–Theory and Application: New Trends in Intel-
ligent Technologies, Vol. 76, No. 1, 2002, pp. 214–220.

Yang, J., Chen, Y., Horng, J., and Kao, C., “Applying family competition to evolution strate-
gies for constrained optimization,” International conference on evolutionary programming,
Springer, 1997, pp. 201–211.

Storn, R., and Price, K., “Differential evolution–a simple and efficient heuristic for global
optimization over continuous spaces,” Journal of global optimization, Vol. 11, No. 4, 1997,
pp. 341–359.

Brest, J., Greiner, S., Boskovic, B., Mernik, M., and Zumer, V., “Self-adapting control param-
eters in differential evolution: A comparative study on numerical benchmark problems,”
IEEE transactions on evolutionary computation, Vol. 10, No. 6, 2006, pp. 646–657.

Oliveto, P. S., He, J., and Yao, X., “Time complexity of evolutionary algorithms for combinato-
rial optimization: A decade of results,” International Journal of Automation and Computing,
Vol. 4, No. 3, 2007, pp. 281–293.

Eberhart, R., and Kennedy, J., “Particle swarm optimization,” Proceedings of the IEEE inter-
national conference on neural networks, Vol. 4, Citeseer, 1995, pp. 1942–1948.

Bibliography 177

Karaboga, D., and Basturk, B., “A powerful and efficient algorithm for numerical function
optimization: artificial bee colony (ABC) algorithm,” Journal of global optimization, Vol. 39,
No. 3, 2007, pp. 459–471.

Wright, J., and Farmani, R., “Genetic algorithms: A fitness formulation for constrained min-
imization,” Proceedings of the 3rd Annual Conference on Genetic and Evolutionary Compu-
tation, Morgan Kaufmann Publishers Inc., 2001, pp. 725–732.

Farmani, R., and Wright, J. A., “Self-adaptive fitness formulation for constrained optimiza-
tion,” IEEE Transactions on Evolutionary Computation, Vol. 7, No. 5, 2003, pp. 445–455.

Castellini, F., “Global optimization techniques in space missions design,” Politecnico di Mi-
lano, MSc Thesis, 2008.

Zhang, Q., and Li, H., “MOEA/D: A multiobjective evolutionary algorithm based on decompo-
sition,” IEEE Transactions on evolutionary computation, Vol. 11, No. 6, 2007a, pp. 712–731.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T., “A fast and elitist multiobjective genetic
algorithm: NSGA-II,” IEEE transactions on evolutionary computation, Vol. 6, No. 2, 2002,
pp. 182–197.

Zhang, Q., and Li, H., “MOEA/D: A multiobjective evolutionary algorithm based on decompo-
sition,” IEEE Transactions on evolutionary computation, Vol. 11, No. 6, 2007b, pp. 712–731.

Li, X., “A non-dominated sorting particle swarm optimizer for multiobjective optimization,”
Genetic and Evolutionary Computation Conference, Springer, 2003, pp. 37–48.

Li, X., “Better spread and convergence: Particle swarm multiobjective optimization using the
maximin fitness function,” Genetic and Evolutionary Computation Conference, Springer,
2004, pp. 117–128.

Fonseca, C. M., Fleming, P. J., et al., “Genetic Algorithms for Multiobjective Optimization:
FormulationDiscussion and Generalization.” Icga, Vol. 93, Citeseer, 1993, pp. 416–423.

rey Horn, J., Nafpliotis, N., and Goldberg, D. E., “A niched Pareto genetic algorithm for multi-
objective optimization,” Proceedings of the first IEEE conference on evolutionary computation,
IEEE world congress on computational intelligence, Vol. 1, Citeseer, 1994, pp. 82–87.

Luce, R. D., and Raiffa, H., Games and decisions: Introduction and critical survey, Courier
Corporation, 1989.

Balling, R., “The maximin fitness function; multi-objective city and regional planning,” Inter-
national Conference on Evolutionary Multi-Criterion Optimization, Springer, 2003, pp. 1–15.

Grosan, C., Oltean, M., and Dumitrescu, D., “Performance metrics for multiobjective op-
timization evolutionary algorithms,” Proceedings of Conference on Applied and Industrial
Mathematics (CAIM), Oradea, 2003.

Fleischer, M., “The measure of Pareto optima applications to multi-objective metaheuristics,”
International Conference on Evolutionary Multi-Criterion Optimization, Springer, 2003, pp.
519–533.

Zitzler, E., Evolutionary algorithms for multiobjective optimization: Methods and applications,
Vol. 63, Citeseer, 1999.

Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., and Da Fonseca Grunert, V., “Perfor-
mance assessment of multiobjective optimizers: An analysis and review,” TIK-Report, Vol.
139, 2002.

Nowak, K., Märtens, M., and Izzo, D., “Empirical performance of the approximation of the
least hypervolume contributor,” International Conference on Parallel Problem Solving From
Nature, Springer, 2014, pp. 662–671.

178 Bibliography

Guerreiro, A. P., Fonseca, C. M., and Emmerich, M. T., “A Fast Dimension-Sweep Algorithm
for the Hypervolume Indicator in Four Dimensions.” CCCG, 2012, pp. 77–82.

Beume, N., Fonseca, C. M., López-Ibáñez, M., Paquete, L., and Vahrenhold, J., “On the
complexity of computing the hypervolume indicator,” IEEE Transactions on Evolutionary
Computation, Vol. 13, No. 5, 2009, pp. 1075–1082.

While, L., Bradstreet, L., and Barone, L., “A fast way of calculating exact hypervolumes,”
IEEE Transactions on Evolutionary Computation, Vol. 16, No. 1, 2011, pp. 86–95.

Bringmann, K., and Friedrich, T., “Parameterized average-case complexity of the hypervol-
ume indicator,” Proceedings of the 15th annual conference on Genetic and evolutionary com-
putation, ACM, 2013, pp. 575–582.

Priester, C., Narukawa, K., and Rodemann, T., “A comparison of different algorithms for
the calculation of dominated hypervolumes,” Proceedings of the 15th annual conference on
Genetic and evolutionary computation, ACM, 2013, pp. 655–662.

Bringmann, K., and Friedrich, T., “Approximating the least hypervolume contributor: NP-
hard in general, but fast in practice,” International Conference on Evolutionary Multi-
Criterion Optimization, Springer, 2009, pp. 6–20.

Märtens, M., and Izzo, D., “The asynchronous island model and NSGA-II: study of a new mi-
gration operator and its performance,” Proceedings of the 15th annual conference on Genetic
and evolutionary computation, ACM, 2013, pp. 1173–1180.

Schlüter, M., “Nonlinear mixed integer based optimization technique for space applications,”
Ph.D. thesis, University of Birmingham, 2012.

Dorigo, M., “Optimization, learning and natural algorithms,” PhD Thesis, Politecnico di Milano,
1992.

Schlüter, M., Egea, J., and Banga, J., “Extended ant colony optimization for non-convex
mixed integer nonlinear programming,” Computers & Operations Research, Vol. 36, No. 7,
2009, pp. 2217–2229.

Schlüter, M., “Non-linear Mixed-Integer-based Optimization Technique for Space Applica-
tions,” ESA Conference - International NPI Day, 2010.

Schlüter, M., Erb, S., Gerdts, M., Kemble, S., and Rückmann, J., “MIDACO on MINLP space
applications,” Advances in Space Research, Vol. 51, No. 7, 2013, pp. 1116–1131.

Bernardo Jr, R. M., and Naval Jr, P. C., “Implementation of an ant colony optimization algo-
rithm with constraint handling for continuous and mixed variable domains,” Proceedings
of the 10th Philippine Computing Science Congress, PCSC, Vol. 10, 2010, pp. 95–101.

Izzo, D., “esa/pykep: Bug fixes and more support on Equinoctial Elements,” , Feb. 2019.
doi:10.5281/zenodo.2575462, URL https://doi.org/10.5281/zenodo.2575462.

Biscani, F., and Izzo, D., “esa/pagmo2: pagmo 2.11.1,” , Aug. 2019. doi:10.5281/zenodo.
3364433, URL https://doi.org/10.5281/zenodo.3364433.

Izzo, D., “Global optimization and space pruning for spacecraft trajectory design,” Spacecraft
Trajectory Optimization, Vol. 1, 2010, pp. 178–200.

Izzo, D., “1st ACT global trajectory optimisation competition: Problem description and sum-
mary of the results,” Acta Astronautica, Vol. 61, No. 9, 2007, pp. 731–734.

Vinkó, T., and Izzo, D., “Global optimisation heuristics and test problems for preliminary
spacecraft trajectory design,” Eur. Space Agency, Adv. Concepts Team, ACT Tech. Rep.,
Tech. Rep. GOHTPPSTD, 2008.

https://doi.org/10.5281/zenodo.2575462
https://doi.org/10.5281/zenodo.3364433

Bibliography 179

Biscani, F., Izzo, D., and Yam, C., “A global optimisation toolbox for massively parallel engi-
neering optimisation,” arXiv preprint arXiv:1004.3824, 2010.

Mooij, E., “Orbit-State Model Selection for Solar-Sailing Mission Optimization,” AIAA/AAS
Astrodynamics Specialist Conference, 2012, p. 4588.

Montenbruck, O., and Gill, E., Satellite orbits: models, methods and applications, Springer
Science & Business Media, 2012.

Kiusalaas, J., Numerical methods in engineering with Python 3, Cambridge university press,
2013.

Fehlberg, E., “Zur numerischen Integration von Differentialgleichungen durch Potenzreihen-
Ansätze, dargestellt an Hand physikalischer Beispiele,” ZAMM-Journal of Applied Mathe-
matics andMechanics/Zeitschrift für Angewandte Mathematik undMechanik, Vol. 44, No. 3,
1964, pp. 83–88.

Altman, S., “A unified state model of orbital trajectory and attitude dynamics,” Celestial me-
chanics, Vol. 6, No. 4, 1972, pp. 425–446.

Chodas, P., “Application of the extended Kalman filter to several formulations of orbit deter-
mination,” NASA STI/Recon Technical Report N, Vol. 82, 1981.

Ackley, D., “A Connectionist Machine for Genetic Hillclimbing, vol ume SECS28 of,” , 1987.

Griewank, A. O., “Generalized descent for global optimization,” Journal of optimization theory
and applications, Vol. 34, No. 1, 1981, pp. 11–39.

Rosenbrock, H., “An automatic method for finding the greatest or least value of a function,”
The Computer Journal, Vol. 3, No. 3, 1960, pp. 175–184.

Laguna, M., andMartí, R., “Experimental testing of advanced scatter search designs for global
optimization of multimodal functions,” Journal of Global Optimization, Vol. 33, No. 2, 2005,
pp. 235–255.

Babcock, W. C., “Intermodulation interference in radio systems frequency of occurrence and
control by channel selection,” The Bell System Technical Journal, Vol. 32, No. 1, 1953, pp.
63–73.

Mahdavi, M., Fesanghary, M., and Damangir, E., “An improved harmony search algorithm
for solving optimization problems,” Applied mathematics and computation, Vol. 188, No. 2,
2007, pp. 1567–1579.

Liang, J., Runarsson, T. P., Mezura-Montes, E., Clerc, M., Suganthan, P. N., Coello, C. C.,
and Deb, K., “Problem definitions and evaluation criteria for the CEC 2006 special session
on constrained real-parameter optimization,” Journal of Applied Mechanics, Vol. 41, No. 8,
2006, pp. 8–31.

Vinkó, T., Izzo, D., and Bombardelli, C., “Benchmarking different global optimisation tech-
niques for preliminary space trajectory design,” 58th international astronautical congress,
International Astronautical Federation Hyderabad, India, 2007b, pp. 24–28.

Zitzler, E., Deb, K., and Thiele, L., “Comparison of multiobjective evolutionary algorithms:
Empirical results,” Evolutionary computation, Vol. 8, No. 2, 2000, pp. 173–195.

Deb, K., Thiele, L., Laumanns, M., and Zitzler, E., “Scalable test problems for evolutionary
multiobjective optimization,” Evolutionary multiobjective optimization, Springer, 2005, pp.
105–145.

Huband, S., Hingston, P., Barone, L., and While, L., “A review of multiobjective test prob-
lems and a scalable test problem toolkit,” IEEE Transactions on Evolutionary Computation,
Vol. 10, No. 5, 2006, pp. 477–506.

180 Bibliography

Deb, K., “Multi-objective genetic algorithms: Problem difficulties and construction of test
problems,” Evolutionary computation, Vol. 7, No. 3, 1999, pp. 205–230.

Zaharie, D., “A comparative analysis of crossover variants in differential evolution,” Proceed-
ings of IMCSIT, Vol. 2007, 2007, pp. 171–181.

Holland, J. H., et al., Adaptation in natural and artificial systems: an introductory analysis
with applications to biology, control, and artificial intelligence, MIT press, 1992.

Deb, K., and Agrawal, S., “A niched-penalty approach for constraint handling in genetic
algorithms,” Artificial Neural Nets and Genetic Algorithms, Springer, 1999, pp. 235–243.

Li, H., and Zhang, Q., “Multiobjective optimization problems with complicated Pareto sets,
MOEA/D and NSGA-II,” IEEE transactions on evolutionary computation, Vol. 13, No. 2,
2009, p. 284.

	Introduction
	Mission Characteristics and Heritage
	Past Missions and State-of-Art Technology
	Mission Parameters Definition
	Thermal Conditions
	Initial and Final Time Conditions and Orbital Elements

	Mission Heritage and Requirements
	Reference Mission
	Reference Vehicle
	Solar Sailing Mission Optimization
	Mission and System Requirements

	Flight Dynamics
	Reference Frames
	State Variables
	Equations of Motion
	Environment
	Solar Radiation Pressure
	Perturbations

	Guidance
	Heliocentric Phase
	Geocentric Phase
	Flight Sections
	Heliocentric Flight Sections
	Geocentric Flight Sections

	Optimization
	Global Optimization
	Single-Objective Optimization
	Multi Objective Optimization

	Performance Metrics
	Hypervolume Metric
	P-Distance Metric

	Ant Colony Optimization
	Mixed Integer Ant Colony Optimizer
	Single-Objective Mixed Integer ACO (ACOmi)
	Multi-Objective Hypervolume-Based ACO (MHACO)

	Problem Definition
	Problem Dimension
	Objectives and Constraints
	Optimization Approach

	Software
	Software Architecture
	Trajectory Simulation
	Optimization Model

	External Software
	Simulation Model
	Optimization Procedure: PaGMO

	Numerical Methods
	Propagator Selection
	Integrator Selection

	Verification and Validation

	Results
	Algorithm Tuning
	ACOmi Tuning
	MHACO Tuning
	NSPSO Tuning

	Single-Objective
	Geocentric Phase
	Heliocentric Phase
	Geocentric and Heliocentric Phase
	Optimizations Comparison

	Multi-Objective
	Local Refinement

	Random Seed Influence
	Optimal Trajectory

	Conclusions and Recommendations
	Research Questions Overview
	Simulations and Optimizations Conclusions
	Recommendations

	Appendices
	Equations of Motions
	Cowell Propagator
	Modified Equinoctial Elements
	Unified State Model
	Quaternions
	Modified Rodrigues Parameters
	Exponential Mapping

	Verification and Validation
	Simulation Model
	Integrated System Tests
	Optimization Procedure
	Single-Objective V&V
	Multi-Objective V&V

	Global Optimization Methods
	Single-Objective Methods
	Standard Differential Evolution (DE)
	Self-Adaptive Differential Evolution (SADE)
	Differential Evolution Variant (DE1220)
	Simple Genetic Algorithm (SGA)
	Particle Swarm Optimization (PSO)
	Artificial Bee Colony (ABC)
	Self-Adaptive Constraints Handling Meta-Algorithm

	Multi-Objective Methods
	Nondominated Sorting Genetic Algorithm (NSGA-II)
	MO Evolutionary Algorithm with Decomposition (MOEA/D)

	Bibliography

