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STATE-SPACE BASED NETWORK TOPOLOGY IDENTIFICATION

Mario Coutino†, Elvin Isufi†, Takanori Maehara‡, Geert Leus†

Delft University of Technology, Delft, The Netherlands†

AIP RIKEN, Tokyo, Japan‡

ABSTRACT
In this work, we explore the state-space formulation of network pro-
cesses to recover the underlying network structure (local connec-
tions). To do so, we employ subspace techniques borrowed from sys-
tem identification literature and extend them to the network topology
inference problem. This approach provides a unified view of the tra-
ditional network control theory and signal processing on networks.
In addition, it provides theoretical guarantees for the recovery of the
topological structure of a deterministic linear dynamical system from
input-output observations even though the input and state evolution
networks can differ.

Index Terms— state-space models, topology identification,
graph signal processing, signal processing over networks

1. INTRODUCTION

In recent years, major efforts have been focused on extend traditional
tools from signal processing to cases where the acquired data is not
defined over typical domains such as time or space but over a net-
work (graph) [1, 2]. The main reason for the increase of research in
this area is that network-supported signals can model complex pro-
cesses. For example, by means of signals supported on graphs we
are able to model transportation networks [3], brain activity [4], and
epidemic diffusions or gene regulatory networks [5], to name a few.

As modern signal processing techniques take into account the
network structure to provide signal estimators [6–8], filters [9–12],
or detectors [13–15], appropriate knowledge of the interconnections
of the network is required. In many instances, the knowledge of the
network structure is given and can be used to enhance traditional
signal processing algorithms. However, in other cases, the network
information is unknown and needs to be estimated. As the impor-
tance of studying such structures in the data has been noticed, re-
trieving the topology of the network has become a topic of extensive
research [16–24].

Despite the extensive research done so far (for a comprehen-
sive review refer to [2, 17]), most approaches ignore any physical
model beyond the one induced by the so-called graph filters [18,25]
drawn from graph signal processing (GSP) [10, 26, 27]. Among the
ones that propose a different interaction model e.g., [20, 24], none
of them considers the network data (a.k.a. graph signals) as states
of an underlying process nor considers the network inputs and states
may evolve on different underlying structures. However, different
physical systems of practical interest can be defined through a state-
space formulation with (probably) known functions, i.e., brain activ-
ity diffusion, finite element models, circuit/flow systems. For these
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processes, a more general approach to find the underlying connec-
tions is required. In this work, we therefore focus on the general
problem of retrieving the underlying network structure, from input-
output signals, of a process that can be modeled through a determin-
istic linear dynamical system whose system matrices depend on the
interconnection of the network.

2. STATE-SPACE MODELS FOR NETWORK PROCESSES

Let us consider a tuple of graphs G1 = {V, E1} and G2 = {V, E2}
to represent two networks, whereV = {v1, . . . , vn} and Ei ⊆ V×V
for i ∈ {1, 2} denote their vertex and edge sets, respectively. Further,
let P be a process over {G1,G2} that describes the evolution through
time of a signal (the state) x(t) defined over G1 coupled with another
signal (the input signal) defined over G2. Such process can be de-
scribed through the linear dynamical system

x(k + 1) = f1(S1)x(k) + f2(S2)u(k) ∈ R
n, (1a)

y(k) = Cx(k) +Du(k) ∈ Rl, (1b)

whereSi, i ∈ {1, 2}, is the matrix representation of the graph Gi , i.e.,
the shift operator in the GSP terminology,C ∈ Rl×n, andD ∈ Rl×n

are the observation matrices and fi : Rn×n → Rn×n is a matrix
function defined via the Cauchy integral [28]

fi(S) :=
1

2πi

∫
Γfi

f s
i (z)R(z,S)dz, (2)

where f s
i

is the scalar version of fi which is assumed to be analytic
on and over the contour Γfi . Here, R(z,S) is the resolvent ofS given
by [28]

R(z,S) := (S − zI)−1. (3)

Model (1) is expressed in its state-space representation and cap-
tures the relation between the input, output, and the state through a
first-order difference equation [29]. It connects the output (observ-
ables), y(k), to a set of variables (states), x(k), which vary over time
and depend on their previous value and on external inputs (excita-
tions), u(k).

After observing model (1), a natural question that arises is: as-
suming the observation matrix C and the relation between P and
{Gi,Gj } are known, how can we retrieve {Si,Sj }, i.e., the network
structures, from a number of samples of the input signal u(k) and
the output signal y(k)?

We aim to answer this question by employing techniques com-
monly used in control theory which rely on results for Hankel matri-
ces and linear algebra. In particular, we employ subspace techniques
which do not require any parametrization of the model, hence we
avoid the problem of performing nonlinear optimization, as in the
prediction-error methods [30].
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3. IDENTIFIABILITY CONDITIONS FOR LTI SYSTEMS

For the sake of simplifying notation, from this point on, we omit the
dependency on Si and Sj of the system matrices in (1) and refer
to the matrices fi(Si) and fj (Sj ) as A and B, respectively. Prior
to introducing the methods for network topology identification, we
briefly recap the requirements on the system matrices (A,B,C,D)
for applying subspace techniques for estimating them.

The main requirement for system identification is the minimal-
ity condition of system (1). This property is intrinsically related to
two well-known properties of dynamical systems: reachability and
observability. The first property refers to the ability of the input,
u(k), to steer the system state to the zero state within a finite time
interval. The second property refers to the ability to observe the time
evolution of the states through the evolution of the output; that is, it
answers the question of uniqueness between state and the output.

Before stating these notions mathematically, let us introduce the
following two matrices [29]

• Controllability Matrix: Cs , [B AB · · · As−1B],

• Observability Matrix: Os , [CT · · · (As−1)TCT ]T .

Based on these matrices, the following two lemmas state the con-
cepts of reachability and observability in a more formal way.

Lemma 1. (Reachability) The LTI system (1) is reachable if and
only if rank(Cn) = n.

Lemma 2. (Observability) The LTI system (1) is observable if and
only if rank(On) = n.

Using these results we can now formally state the definition of
minimality of a system.

Definition 1. (Minimality) The LTI system (1) is minimal if and only
if it is both reachable and observable. Furthermore, the dimension
of the state vector x(k) of the minimal system defines the order of
the LTI system.

As the system identification framework only guarantees recov-
ery of a minimal system, from this point on, we only consider prob-
lem instances where the system of interest is minimal. This is not a
restrictive assumption, as even when we retrieve a minimal system
of order p < n, this can be interpreted as a system on the nodes of a
hypergraph, i.e., clusters of nodes that drive the general behavior of
the process over the network.

4. SUBSPACE NETWORK IDENTIFICATION

In this section, we introduce a general framework for estimating
the topology of the networks, i.e., the associated matrices {S1,S2},
from input-output relations. To do so, we first provide the methods
for retrieving the system matrices in (1). Then, we state the required
conditions and propose different methods for estimating the graph
matrices {S1,S2} from the obtained system matrices.

4.1. State-Space Identification

It is not hard to show that the state of the system (1) with initial state
x(0) at time instant k is given by

x(k) = Akx(0) +
k−1∑
i=0
Ak−i−1Bu(i). (4)

Observing the expression relating the states, the input and the
output in (1), we can specify the following relationship between the
batch input {u(k)}s−1

k=0 and the batch output {y(k)}s−1
k=0

y(0)
...

y(s − 1)

 = Osx(0) + Ts

u(0)
...

u(s − 1)

 , (5)

where

Ts ,



D 0 0 · · · 0
CB D 0 · · · 0
CAB CB D · · · 0

. . .
. . .

. . .

CAs−2B CAs−3B . . . CB D


, (6)

and s is the size of the batch which must be larger than the number
of states (assuming the number of nodes is the number of states this
implies s > n).

Given that the underlying system is time-invariant (i.e., the
graph does not change in time), the following relation holds [31]

Ym = OsXm + TsUm (7)

where Xm , [x(0),x(1), · · · ,x(m − 1)], yi,s , [y(i)T ,y(i +
1)T , · · · ,y(i + s − 1)T ]T , Ym , [y0,s,y1,s, · · · ,ym−1,s], ui,s ,

[u(i)T ,u(i+1)T , · · · ,u(i+s−1)T ]T andUm , [u0,s,u1,s, · · · ,um−1,s]
with m > s.

Throughout this work, we assume that C has rank equal to n.
Despite this assumption seems restrictive, we consider it to simplify
the exposition of the approach. Dealing with dynamical models
whose output dynamics satisfy l < n is not trivial. As it will be-
come evident, disambiguation of the system matrices requires extra
information whenC is fat or singular. This more specialized case is
studied in more detail in the extension of this work [32].

To identify the system matrices from (1), we first make use of
the following lemma.

Lemma 3. (Verhaegen and Dewilde [33]) Given the following RQ
factorization [

Um

Ym

]
=

[
R11 0 0
R21 R22 0

] 
Q1
Q2
Q3

 , (8)

for appropriately sized matricesR andQ, the following relationship
holds for the input-output data matrices

YmΠ
⊥
m = R22Q2, where UmΠ

⊥
m = 0. (9)

Using Lemma 3, it can be shown that

range(YmΠ
⊥
m) = range(Os) = range(R22Q2). (10)

Therefore, from the singular value decomposition (SVD) of R22,
i.e.,R22 = URΣRV

T
R , we can obtain the transition matrixA (up to

a similarity transform) as follows. First, from

UR = OsT =


CT

CT (T −1AT )
...

CT (T −1AT )s−1


=


CT

CTAT
...

CTA
s−1
T


, (11)
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where we have defined AT := T −1AT and CT := CT for an un-
known similarity transformation matrix T ∈ Rn×n, we can compute
an estimate ÂT ofAT by solving the overdetermined system

UR,lAT = UR,r, (12)

which exploits the shift-invariance of the system. Here, we have
defined the matrices

UR,r := UR(l + 1 : sl, :), (13)
UR,l := UR(1 : (s − 1)l, :), (14)

and abused the MATLAB notation to denote the rows and columns
that are considered for building system (12). From (11), we can
observe that an estimate ĈT ofCT can be obtained by selecting the
first l rows of UR .

Since C is assumed full rank, we can estimate the similarity
transform T from CT , i.e., T̂ = C−1ĈT . Therefore, the estimate
Â, forA, can be obtained as

Â = C−1ĈT ÂT (ĈT )
−1C . (15)

While a similar approach with matricesR21 andR11 can be per-
formed for retrieving a transformedB, i.e.,BT = T

−1B, [33], here
we compute it, together with the initial state xT (0) = T −1x(0), by
solving a least squares problem. This is done to keep the exposition
of the approach conceptually simple, as the usage of the information
inR21 andR11 requires the introduction of another (more involved)
shift-invariant structure.

To do so, first, observe for given matricesAT andCT the output
y(k) can be expressed linearly in the matricesBT andD as

y(k) = CTA
k
TxT (0)+( k−1∑

q=0
u(q)T ⊗ CTA

k−q−1
T

)
vec(BT ) + (u(k)T ⊗ Il)vec(D),

(16)
where Il is the l × l-identity matrix. From here, by defining
θ = [xT (0)T vec(BT )

T vec(D)T ]T , we can find the system
matrices by solving

min
θ

1
m

∑m−1
k=0 ‖y(k) − Ψθ‖

2
2, (17)

where Ψ , [CTA
k
T
, (

k−1∑
q=0

u(q)T ⊗ CTA
k−q−1
T

), (u(k)T ⊗ Il)].

After the estimates B̂T and D̂ are obtained, we can solve for
the original matrices by appropriately multiplying them with the es-
timate of the similarity transform as we did to retrieve A [cf. (15)].

4.2. Network Identification

At this point, the system matrices have been obtained. Now, we
consider different scenarios for estimating the topology of the un-
derlying networks.

Known Scalar Mappings { f s
1 , f s

2 }. In this case, we first obtain
the eigenvalues of the graph matrices by applying the inverse map-
pings ( f s

1 )
−1 and ( f s

2 )
−1 to the spectra of the respective matrices.

Therefore, for guaranteeing a unique set of eigenvalues for the graph
matrices, the functions { f s

1 , f s
2 } should be bijective, i.e., a one-to-

one mapping, on an appropriate domain. For instance, for Si being
the normalized Laplacian, the mappings should be bijective in the
interval [0, 2] as the spectrum of the normalized Laplacian lies there.

When the inverse mappings cannot be found analytically (e.g.,
due to computational reasons), the problem of finding the eigenval-
ues of the graph matrices boils down to a series of root finding prob-
lems. That is, consider [ωi]k as the kth eigenvalue of the matrix
Mi , where M1 := Â and M2 := B̂, and f s

i
is the known scalar

mapping. Then, estimating the eigenvalue vector λi for each of the
matrices can be formulated as

[λ̂i]k = arg min
[λi ]k ∈R+

‖ f s
i
([λi]k ) − [ωi]k ‖

2
2, (18)

for i ∈ {1, 2}. Fortunately, there exist efficient algorithms to obtain
roots with a high accuracy even for non-linear functions [35]. Fur-
ther, note that even when onlyAT is known, we can still retrieve the
eigenvalues of Si as this matrix is similar toA, i.e.,AT = T

−1AT
. As by definition Â and B̂ are matrix functions of S1 and S2
[cf. (2)], respectively, we can use the eigenbasis from these matrices
to reconstruct the graph matrices as

Ŝi = Ûidiag(λ̂i)Û−1
i , for i ∈ {1, 2}, (19)

with Û1 = eigvecs(Â) and Û2 = eigvecs(B̂).
Unknown Scalar Mappings. When the scalar functions

{ f s
1 , f s

2 } are unknown, we can opt to retrieve the sparsest graphs
that generate the estimated matrices, i.e.,

Ŝi = argmin
ωi ∈Rn

‖Si ‖0

subject to Si = Ûidiag(ωi)Û
−1
i , S ∈ S,

(20)

where diag(·) denotes a diagonal matrix with its argument on the
main diagonal and S is the set of desired graph matrices, e.g., ad-
jacency matrices, combinatorial Laplacian matrices, etc. To do so,
we can employ methods existing in the GSP literature that, given the
graph matrix eigenbasis, retrieve a sparse matrix representation of
the graph [18, 36].

One-Shot State Graph Estimation. As alternative to the pre-
vious two approaches, we can estimate the network topology related
to the states by avoiding the computation of AT explicitly. That is,
after obtaining an estimate of CT , and hence T , we can notice that
system (12) can be modified to include the graph matrix, i.e.,

UR,lT
−1SiA = UR,rT

−1Si, (21)

where UR,l and UR,r are the left and right matrices associated with
UR in (12). Notice that in (21), we not only exploit the shift invari-
ance in theUR matrix but also the fact that Si andA commute. We
can check this relation holds by recalling that [cf. (11)]

UR,lT
−1SiA =


CSiA
CASiA

...

CAs−2SiA


=


CASi

CA2Si
...

CAs−1Si


= UR,rT

−1Si .

(22)
As a result, we can pose the following optimization problem

min
Si ∈S,M ∈M

‖UR,lT
−1M −UR,rT

−1Si ‖
2
F + µ‖Si ‖1 , (23)

where we defined M := SiA to convexify the problem. Here, µ
is a regularization parameter controlling the sparsity of Si and the
optimization is carried out over the set of desired graph matrices, S,
(as in (20)) and M is a convex set of matrices meeting conditions
derived by the matrix representation of the graph, e.g., if Si is re-
stricted to a combinatorial Laplacian then 1TM = 0T must hold.
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Fig. 2: (a) First 50 singular values (σ) of 1
mYm for m = 3 × 104 and s = 169. Here, the original dataset has been interpolated and filter to increase the length of the recordings.

The first knee, i.e., the drop in singular values (SV), occurs at the 5th SV, the second drop happens around the 20th SV. (b) Learned graph from dataset using the proposed one-shot
state graph estimator. (c) Learned graph in [34] using the ETEX dataset.
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Fig. 1: Comparison of the true graph (blue circles) and estimated graph (red crosses) for
both the states and input. (a) Adjacency matrices for the states graph (top) and the input
signal graph (bottom). (b) Eigenvalues for both states and input graphs.

Alternatively, we could solve for Si and A by means of alternative
minimization [37].

Although in principle this approach requires knowledge of T ,
in many instances it is possible to find a graph matrix associated
with the transformed system, i.e., a graph associated with the system
{AT ,BT ,CT ,D}, as the shift invariance property is oblivious to
this ambiguity.

5. NUMERICAL EXAMPLES

To illustrate the performance of the proposed framework, we carry
out a pair of experiments using synthetic and real data.

Synthetic Example. For this example, we consider a simple
system where Si , Sj with n = 15 nodes, f s

1 is a scaled diffusion
map (i.e., f s

1 (x) = αie
−xτi , also known as heat kernel), and f s

2 is the
identity map, i.e., f s

2 (x) = x. It is assumed that all states are mea-
sured, i.e., C = I , and that there is a direct feedback from the input
to the observations, i.e., D = I . As input, we considered a random
piece-wise constant (during the sampling period) binary bipolar sig-
nal with 300 samples each. The reconstruction of the topology using
the proposed framework is shown in Fig. 1. In Fig. 1a, the true and

reconstructed adjacency matrices for the states and input are shown.
As expected, when the data follows a practical model, the recon-
struction of the matrices S1 and S2 is guaranteed to be exact. Here,
since we have considered simple scalar mappings, we only perform
root finding to retrieve the eigenvalues of the graph matrices. The
eigenvalues comparison for both graphs is shown in Fig. 1b.

ETEX dataset. We now consider data from the European Tracer
Experiment (ETEX) [38]. In this experiment a tracer was released
into the atmosphere and its evolution was sampled and stored from
multiple stations in time. As it is unlikely that such a process has
as many states as stations, we cluster the 168 measuring stations in
25 geographical regions and aggregate its measurements as a pre-
processing step. This preprocessing is sustained by looking at the
singular values of 1

mYm in Fig. 1a. In this figure, it is observed that
most of the dynamics can be described with a system of order 5, i.e.,
first knee in the plot. We selected 25 nodes as a trade off between
complexity and graph interpretability (second knee). As the propa-
gation of the tracer is considered a pure diffusion in an autonomous
system, i.e., matricesB andD equal zero, we employ the proposed
one-shot state graph estimation method [cf. (23)] to retrieve the un-
derlying network structure. In this case, the observations are the
system states, i.e., C = I . The estimated graph is shown in Fig. 2b.
The size of the circle representing a vertex is proportional to the de-
gree of the node. We can observe that the region of Berlin presents
the highest degree which is consistent with the concentration results
in [34]. The strong connectivity along the France–Germany region
correlates with the spreading pattern of the agent. Despite that this
graph has fewer nodes than the one obtained in [34] (see Fig. 2c), the
estimated graph presents a better visual interpretability and exhibits
a similar edge behaviour.

6. CONCLUSION

In this paper, we introduced a general framework for graph topology
learning using state space-models and subspace techniques. Specif-
ically, we showed that it is possible to retrieve the matrix represen-
tation of the involved graphs from the system matrices by different
means. In the particular case of the graph related to the states, we
presented a one-shot method for topology identification that does not
require the explicit computation of the system matrix. Numerical
experiments for both synthetic and real data have demonstrated the
applicability of the proposed method and its capabilities to recover
the topology of the underlying graph from data.
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