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Summary

Collective behavior is abundant in nature, from flocks of birds down to the coherent motion of microbes. At
the small scale, microbes such as algae swim at low Reynolds number Re ∼ O (10−3), that is in an environ-
ment dominated by viscosity. Due the highly viscous environment the hydrodynamic forces imposed by the
organism span over relative long range, therefore the collective behavior of microbes is with increasing in-
terest to the fluid mechanics community. Understanding how microbes interact with different environments
and each other has much relevance new lab-on chip applications, bio-film formation, and promising value
to emergent microfluidic technologies.

This thesis is an experimental study that focuses on the motile algae C. reinhardtii that is of length scale
of lb = 10[µm] and propels its body by beating two flagella. We track multiple of these microorganisms in 3
dimensions for sufficient long times using a 4 camera system to study their motility in an unconfined geome-
try of size l ∼ 1[mm]. Based on imposed flow signature imposed by the algae there is interest two strains, the
wild-type (cc125) that pulls it surrounding fluid in, and a mutant (mbo-1) with reverse swimming gait that
pushes fluid out. The main goal of this thesis study the detailed motion and interaction of cells with planar
physical boundaries as well as with each other. To do this we study the motility of individual cells at varying
density in relative dilute regime, with as well interest to possible phase transition of the cell suspension as a
collective system.

To track the position of the algae as physical object in the fluid domain we use recent advances in the liter-
ature on the tracking of birds and insects, rather than performing a full tomographic reconstruction from the
camera plane by the commercial software LAVISION DAVIS. Using a integer optimization technique (ILP) we
match different paths of the particle images among the camera planes by a recursive divide and conquer strat-
egy in MATLAB to reconstruct trajectories made by the algae. We justify the performance of the experimental
reconstruction towards the Pareto frontier, and quantify the algorithm of the tracking towards the available
resources in the different camera planes. After having reconstructed the time positional information in the
object domain, we study the motion of the microorganisms by the dynamics along their trajectories using the
Frenet-Serret framework.

In our results we find unexpected behavior of the wild-type (cc125) algae mostly swimming up and down
the fluid domain. In case of the mutant (mbo-1) cells we find they mostly crowd the surface, which they
remain immobile and therefore of less interest. For the motile wild-type algae we find a non-uniform con-
centration profile over the height of the domain, which a significant portion remains at the boundary. For
the algae that freely explore the bulk we find that they move along helical trajectories with a tendency to left-
handed chirality. For the algae that are motile at the surface the majority is found to circle clockwise over
the surface. Based on the concentration profile over the height of the domain, we define a boundary region
that extends up to lb = 100[µm]. In this region we find that most algae touch the boundary and swim either
co-planar to the boundary or reflect of the boundary. For the reflecting cells there is strong correspondence
between in incident and outgoing orientation of the cell along its trajectory with respect to the boundary. The
cell-cell interaction have a much wider range of complex behavior, due the high degrees of freedom as the
cell are freely suspended in the bulk. Therefore we only touch upon the complexity of these events in light of
the cell-wall interactions. We find that the algae do not significantly reorient when coming close together as
they tend to conserve their relative angle along the trajectories. This is not necessarily a trivial consequence
of cells ignoring each other as they can perform complex motion during these events.

We discuss the dynamics that are obtained towards the current literature. Our method is unique in the
sense that the 4 camera system allows higher cell densities in the fluid domain than many single camera
methods. We find that our study to sheds new light on the boundary action in comparison to studies in
the confined geometry. We conclude that we can explain the up and down swimming in the domain by the
boundary action as a fixed point operation due the geometric aspect ratio of the flow domain. For the cell-cell
interaction we conclude that we have not yet studied the right metric to study their complexity in detail. We
end this thesis with recommendation for further for improvement of the developed algorithm as well as for
the carried out experiments. Further we propose that future work should include different unconfined flow
geometries as an engineering outlook. At last it would be very interesting to study the algae suspended in
visco-elastic fluids widely found in biology, whereas they remain largely unexplored in experiments.
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1
Introduction

In his letter to the Philosophical Transactions of the Royal Society of London in 1676, Antoni Leewenhoeck
[53] first reported the existence of small "dierkens" or animalcules swimming in the canals of Delft using his
first invented microscope. Nowadays such animalcules are called microorganisms and vary in length scale
from 1 to 100 microns of which many are motile and propelled by flagella and cilia. These microorganisms in-
clude bacteria [50], algae [35], spermatozoa [32], plankton [37], which move around to explore their environ-
ment by imposing stress to the surrounding fluid [51]. Due their smallness microbes swim at low-Reynolds
number, i.e. Re ∼ O (10−3). Here the Reynolds number is defined as Re = ρUl /µ, with U and l the velocity
and length-scale of the organism, and ρ and µ the density and dynamic viscosity of the fluid. Since Reynolds
number is very small (Re ¿ 1) microorganisms swim in an environment dominated by viscosity. Life at low-
Reynolds number yields a very different physical intuition than common fluid mechanics. In the seminal
work by E.M. Purcell [71] "one would best picture to cit as being stuck in a basing of molasses". In absence of
inertia the hydrodynamics are governed by the time reversal Stokes equations. As consequence microbes can
only propel by non-reciprocal shape transition, with an overall swimming gait being force and torque free.
Such non-reciprocal deformations of microorganisms as mechanism of propulsion where first recognized by
G.I.Taylor [83] who described the action of a waving sheet and J.Lighthill [58] who discussed the squirming of
spherical body and later the role of flagella and cilia [57]. Despite the time dependent geometric deformation
of micro-swimmers [75, 76], the relative far-field flow of fluid can be simplified to a characteristic flow either
pulling or pushing on the fluid with a velocities that decays as ∼ 1/r 2, with r the radial coordinate away from
the organism. Force and torque free, microorganisms do impose an active stress to the fluid with forces asso-
ciated to the fluid flow that span relative long range. Therefore, within the fluid mechanics community, there
is increasing interest in how microorganisms influence the motion of each other, and how they interact with
physical boundaries.

Suspensions of living organisms display a rich set of self-organized collective behavior, which the motion
of many organisms is correlated over length-scales much larger than the organism itself, including the forma-
tion complex vortex states [19, 60, 74, 90], with features found at many scales [85]. On the mesoscopic scale,
i.e. the scale between the microscopic size and macroscopic environment, such active suspensions or living
fluids [47, 73] have attracted high levels of interest and form a new class of multiphase flows and complex
fluids. Contrary to what would be expected in the viscous Stokes regime, active suspensions of E. Coli have
been reported to break down in vortical structures [30, 88], reminiscent of large scale turbulence in the iner-
tial regime. There is much interest how to understand such critical phase transitions in large assemblies of
microorganisms as active particles [86]. This new class of active materials raises new questions : can one ma-
nipulate such active fluids with control parameters such as the type of swimmer (pusher vs. puller), the cell
density, and the surrounding geometry. The role of active fluids has promising value to emergent microfluidic
technologies, e.g. phase sorting and navigation [20, 23, 31, 33, 67], enhanced tracer diffusion [42, 55], novel
means of micro-scale transport [21, 45, 77], artificial propulsion [29, 81], the problem of microfluidic mixing
[78] as well as new insight to bio-film formation [68].

The aim of this master thesis is to experimentally study the motility of the green algae Chlamydomonas
reinhardtii of characteristic length scale l = 10[µm] as a model micro-swimmer [1, 35]. In particular there is
interest to characterize how the motile algae interact with physical boundaries such as walls, and how the
algae interact with each other in an unconfined geometry (≥ 100 body-lengths). These areas remain largely
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2 1. Introduction

unanswered in the literature. Additionally there is interest how the cells collectively swim at varying cell den-
sity, and whether the suspension undergoes critical phase transition from incoherent to coherent motion.
Two different phenotypes are studied, the wildtype (cc125) which pulls on the fluid, and its backward swim-
ming mutant (mbo-1) which pushes the fluid out. We study the algae by 3D micro particle tracking methods
using a 4 camera system. We study algae suspension of increasing cell density up to a point which a full tomo-
graphic reconstruction would be needed, which is beyond the scope of this work. The structure of this thesis
is twofold. First we introduce the methodology developed in this thesis to reconstruct the 3 dimensional tra-
jectories made by individual algae in chapter 2. Secondly, starting from the results in chapter 3 we focus for
most part on the physics of the freely swimming cells, which are discussed towards the current literature in
chapter 4. We end this thesis to summarize our main conclusions in chapter 5 and present outlook and rec-
ommendation for future work in chapter 6. Any supplementary information can be found in the appendices.

1.1. Literature Review
Algae are dual-flagellated microorganisms that belong to the unicellular eukaryote. Algae are autotrophic
micro-organisms that harvest energy from inorganic material by performing photosynthesis. Algae adjust
their motility to control their trajectories in search of light to gradients in light intensity, formally known as
phototaxis [1]. As motile microorganisms beat their flagella at frequency f = 60[Hz] to exploit the environ-
ment, they create substantial flow. From low-Reynolds number hydrodynamics, the time averaged flow field
around C. reinhardtii can be understood in term of a three-component assembly of singularity solutions to
the Stokes equations and classified as a puller [27]. In the near field on the other hand the flow is highly time
dependent [36], and can oscillate between a puller and pusher type flow signature [46].

In the analysis of single trajectories the algae do not swim along straight lines as they constantly revolve
around and reorient their longitudinal axis which results in spiraling trajectories, a common feature among
many microorganisms. A first mathematical treatment of this motion of trajectories of microorganisms was
discussed by Crenshaw [13] using the Frenet-Serret differential geometry of curves. This methodology [13, 15]
was further used in subsequent studies including algae [14, 16–18], which the resulting trajectories of the or-
ganism was found to be influenced by external stimuli of light. Recently this framework has been used to
characterize the swimming dynamics of the like-wise dual flagellated micro-swimmer P. minimum (dinoflag-
ellate) by Lee et al. [52]. In their work they followed several organisms for long times in the bulk and as well
near boundaries, and found increased speed near the boundary that could be well explained of hydrody-
namic cause [51]. Like with the presence of a boundary, algae as well have been reported to respond the
shear flow in of the suspending fluid [9], which they align along the vorticity vector. Such response to sur-
rounding fluid of the organism has as well been reported in the presence of another organisms, as it has been
reported that the flagella synchronize true the hydrodynamics [8], which could lead to non-trivial hydrody-
namic interactions between freely suspended cells.

Bacteria are widely known to get attracted to, and circle clockwise above solid boundaries. The clock-
wise circling can be well explained by a hydrodynamic force balance between the head an tail [48], whereas
the attraction is thought to be dominated hydrodynamics mediated by collision with the wall [7, 56]. Such
boundary interaction can yield subtle differences as for example bacteria swim counterclockwise near free
fluid interfaces [22, 54]. In a quasi 2D geometry Kantsler et al. [43] studied near field interactions of wild-
type algae (cc125) and mutant backward swimming phenotype (mbo-1) cells with solid walls. The wild-type
cells where found to be able to bounce of solid boundaries with loss of information of approach, whereas the
mutant cells hardly escaped the solid boundary. A recent study by Contino et al. [11] show that wild-type al-
gae scatter of small pillars due combination of contact and hydrodynamic lubrication forces. However these
experiments have been carried out in Hele-Shaw cells of two closely packed plates at separation length δ of
δ = 25[µm], i.e. at size of the organism including its flagella. In comparison much richer boundary interac-
tions have been reported for the larger ciliated Volvox (l = 300[µm]) in the unconfined geometry [26], with
existence of hydro-dynamically bound states as waltzing limit-cycles.

Critical phase transitions in collective behavior of microorganisms remain largely unexplained, and a
complete description of the interactions between individual organisms is of wide interest. Ishikawa et al. [41]
conducted extensive numerical and analytic study on the hydrodynamic interaction between two spherical
squirmers with imposed tangential velocity along the cell surface. Based on the computational results they
conclude that the cells first attract each other, then reorient dramatically when withing near reach, and de-
part again. To verify the results of the imposed tangential surface velocity profile along the surface, another
paper by Ishikawa and Hota [40] compared two interacting paramecia of elipsoidal shape at length-scale
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of l ∼ 200[µm] with their numerical method, with much agreement and verified their model is accurate.
However due experimental reasons they limit their study to a quasi 2D Hele-Shaw cell at separation dis-
tance δ = 70[µm], whereas in the first paper [41] they conclude that 2D restriction can lead to misleading
results by over simplification. Despite the possible over simplification, two theoretical studies by Alexander
et al. [3], Pooley et al. [70] focus on plane dynamics of two interacting three-link swimmers modelled as 3
dimensional bodies. Based on shape transition of three-link swimmer, they find that certain types of swim-
ming yield a conservation of relative angle of approach and departure. However the results on the three-link
swimmers are hard to generalize to physical microorganisms, which have much more advanced swimming
gaits. Another rigorous analytic treatment on long-time hydrodynamic interactions was presented by Miche-
lin and Lauga [62] for pushers and pullers, which investigated the long time hydrodynamics of two orbiting
organisms. A recent study by Drescher et al. [28] addressed the mechanisms of inter-cellular interactions and
boundary action for much smaller E-Coli (l ∼ 2[µm]). They conclude that the hydrodynamic domain of inter-
action extends up to two body-length where after it is destroyed by Brownian noise and thermal fluctuation.
In case of algae Brownian motion is not expected to play a large role due its larger size l = 10[µm], which
mechanisms of hydrodynamic interactions remain largely unknown.

Tracking of motile microorganisms in 3D was first conducted by Berg [6] on single 1 micron E-coli. Many
3D microscopic imaging methods have been developed later. Several single camera methods have been used
such as total internal reflection microscopy [87], defocussing microscopy [93, 94], single camera holography
[38, 39, 63], scanning microscopy [12], lens free on chip holography [79], phase contrast microscopy [10, 82].
As single camera methods are problematic at increasing density due occlusions, only few studies have used a
stereoscopic 2 camera system [5, 25, 84] to track micro-organisms in 3 dimensions. In this work we make use
of a 4 camera system to track and reconstruct the position of motile algae in a 3D object for long times using
Lagrangian particle tracking (LPT). LPT has long been of interest to the fluid dynamics community to study
tracers dynamics [61, 65, 89], and is as well referred to as 3D particle tracking velocimetry (3D-PTV). The idea
of this method is to identify particle image midpoints in the individual camera planes and then triangulate
and track the position in a calibrated object domain. At the heart of this method lies consistent tracking
and matching of particle images in different camera planes, which the consistent matching [61] is often seen
as the most difficult part. To integrate the matching with the time tracking of the object position many ap-
proaches have been proposed, such as genetic algorithms [24], neural networks [34], self organized maps [64]
and ant collony optimization [66]. In a study of tracking bats, Wu et al. [95] first put to question whether it is
better to first track multiple positions in the individual camera plane and then match the trajectories among
the different camera’s, or first match multiple particle images among the camera planes and then track the
particles as triangulated objects. In this study it was found that first finding trajectories of particle images in
the different camera planes is more robust to ambiguities in the stereoscopic matching. The method of Wu
et al. [95] solves a combinatoric problem of candidate matches of camera tracks formulating it as a discrete
optimization problem. This discrete optimization is then efficiently solved using integer linear programming
(ILP) to certain constraints that grant a unique reconstruction of the object position. Their method was fur-
ther improved in [96, 97] relaxing some of the contraints to deal occlusions in the camera plane, with similar
techniques proposed by [59, 91, 92, 98] on fruit flies. The most recent advances on LPT have been made by
Attanasi et al. [4] on the tracking of birds and insects. In their work they reduce the computational complexity
of the combinatoric problem by an efficient recursive divide and conquer strategy. As well do they evaluate
the performance of their algorithm by use of the Pareto frontier in the "number of objects vs. tracked number
of frames"-plane to quantify the efficiency of the algorithm to the available resources in the different camera
planes.





2
Methodology

To simultaneously track multiple microorganisms freely swimming three dimensional fluid domain, we adopted
the experimental setup previously developed to perform flow measurements in a thin immersion droplet
[44]. In this study [44] the fluid was seeded with passive tracers particles and flow velocities where measured
using tomographic micro particle image velocimetry (µPIV). In this study we track algae swimming in an sus-
pension as active moving particles to do this we developed a Lagrangian particle tracking (LPT) algorithm
inspired by recent the work of Attanasi et al. [4] on birds and insects, that makes use of integer linear pro-
gramming (ILP). Our method is implemented in MATLAB, several reasons motivated the decision to develop
our own tracking algorithm rather than using available commercial imaging software LAVISION DAVIS. First
the available particle tracking velocimetry (PTV) license in DAVIS aims to combine PIV with PTV to recon-
struct an instantaneous velocity field, and does not guarantee tracking for long times which is the objective
here. Secondly, here we explore cell concentrations starting with the dilute regime, which implies extending
recording times to gather the required experimental data. In case of long recording times available license for
tomographic reconstruction would require unrealistic amount of 3D image files, of which most data would
be trashed.

2.1. Flow Chamber and Cell Cultures
We conduct experiments on the green algae C. reinhardtii. This microorganism has a cell body of size lb =
10[µm] and swims by beating two flagella of as well lf ∼ 10[µm] and is slightly bottom heavy [1]. We have spe-
cial interest in the wildtype (cc125) (Figure 2.1a) which pulls fluid inward, and its mutant backward swimming
phenotype (mbo-1) (Figure 2.1b), which pushes fluid out by a reversed flagella stroke. All cell cultures used
for experiments have been carefully grown and counted following well established methods (see for example
Quaranta et al. [72]). To conduct experiments the cell suspensions are diluted to the desired concentration
in the buffer Tris-hydroxymethyl-aminomethane (Tris). The algae solution is then loaded into a flow cham-
ber (Figure 2.1c) using an extra wide pipette to minimize any de-flagellation. The flow chambers are made
of 1.5[mm] thick laser-cutted acrylic sheet with outer dimensions of 26× 76[mm] and a 15[mm] diameter
center hole as the reservoir for the cell-suspensions. The bottom surface of the flow chamber is sealed by a
0.1[mm] thick glued Danzig Dekglazer glassware of 20×40[mm], and once the cells are loaded into they are
covered with the same glassware on top, held by capillary forces. To prevent the cells from sticking/adhering
to the flow chamber its exposed surface, the flow chambers are treated with a protein solution of 1[mg] bovine
serum albumin (BSA) (Aldrich A7906-50G) and 1[mg] premixed salts PBS (in lab-stock) at 100[ml], based on
the saturation of the contact line [80]. After the mixture is prepared, the glassware is cleaned for 25 minutes in
an ultrasonic chamber with a surfactant solution (Hellmanex III 0.5 [vol.%]), rinsed 5× with DI-water, again
put in the ultrasone with DI-water only and as well rinsed 5× with DI-water. The laser cut acrylic sheet is only
cleaned 5× with ethanol and rinsed with DI-water, since the exposed surface is much less and out of field
of view in the experiment. Both the glassware and acrylics are dried with pressurized dry-air to remove the
cleaning liquids. After cleaning the bottom glassware is glued to the flow chambers using Norland optical ad-
hesive 81 with 4 minutes UV curing. Once the flow chambers are assembled, both the flow chamber and the
cleaned cover glassware are put into an oxygen-plasma for 30 seconds to charge and further clean the surface
such that the BSA-PBS solution will adhere to the surface. The BSA-PBS solution and cleaned flow-chamber
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6 2. Methodology

and glass covers are put into contact for 1 hour, where after they are rinsed with DI-water and cleaned with
pressurized dry-air. When the flow chamber is filled with a specific suspension an additional 30 minutes is
waited before experiments are conducted to make sure that the algae have regrown most of their flagella, and
are well adjusted to the environment of the flow chamber.

(a) Wildtype (cc125) (b) Mutant (mbo-1) (c) Flowchamber

Figure 2.1: Materials as used. a) Wildtype algae (cc125), with a swimming stroke that pulls fluid in. b) Mutant backward swimming
phenotype (mbo-1), that pushes fluid out. (Courtesy of Greta Quaranta) c) Fully functional flow-chamber before cells are supplied.

2.2. Experimental Setup
The experimental setup in Figure 2.2b consist of 4 CCD camera’s (LAVISION IMAGER PRO 4M) imaging at
15.4[fps]. Using the depth of field, each camera films an projected object volume, which can be used for
stereoscopic reconstruction as in Figure 2.2a. A LAVISION WINDOWS XP machine with a DAVIS 7.2 acquisition
system to trigger and read the camera’s. The recording time trec for the based suspension was set to 1000
frames, i.e. trec ∼ 60[s], and was doubled when the cells density was halved up to 8000 frames, i.e. trec ∼
8[min]. To position the flow chamber in the object volume, a tens micron precision x, y, z stage is mounted
on top of the setup (see Figure 2.2b).

1

Flowchamber

LED

CCD

Prisma

Lens

Pinholes

2

4

5

6

(a) Stereoscopic optics

Stage

CCD

Pinholes

(b) Experimental setup

Figure 2.2: Experimental setup. a) Stereoscopic representation of the optical path, (1) LED source, (2) positioned flow-chamber, (3)
objective, (4) pinhole, (5) lens (6) prisma, (7) CCD camera. b) Physical setup, with pinhole card as inset.
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All camera’s have a likewise train of optics. From the top we flash a LED panel to illuminate flow domain
which the algae which scatter the light forward (more details in subsection 2.2.2). The forward scattered
light enter a lens objective that combines all camera’s in one point under an absolute angle of 10o, with a
magnification of M = 1.5. Passing the objective the light rays cross a pinhole and lens system. Here the depth
of field is increased by a laser-cutted pinhole card (inset Figure 2.2b) with respect to the original configuration
[44]. The pinhole card shrinks the original pinhole diameter do = 7[mm] to dp = 2[mm]. Using a scaling
derived from [44] for the depth of field z0 ∝ d−2, we successfully increase the depth of field by (do/dp)2 ∼
O (10×), and extend its experimental value of 200[µm] to a depth of field of 2[mm], as consistently found in
the experiments. At last, with exclusion of the upward positioned camera (bottom Figure 2.2b), the optical
path is deflected 90o to the side by a mirror prism into the CCD camera’s.

2.2.1. Calibration
To relate the coordinates of a physical object xo = [x, y, z]T ∈ R3 to the camera planes xm = [x, y]T ∈ R2 in-
cluding any magnification and optical distortion, a calibration procedure is carried out. Using the installed
stage (Figure 2.3a) we place a LAVISION MP 100[µm] flat calibration grid (Figure 2.3b) at position of the flow
chamber holder. First all camera’s are made co-planar imaging the calibration without pinhole card, using
the narrow depth of field this allows to reduce the Scheimflug effect by mechanically adjusting the orienta-
tion of each camera [2]. Then the CCD chip is trimmed to a section of approximately 400×400[px] with the
calibration grid centered, representing approximately a 2×2[mm] centered plane. Installing the pinhole card
the calibration grid is imposed at 21 planes spaced 100[µm] apart to impose a 100[µm3] cubic grid along the
height of the domain z. The bounding box to the object domain under these setting is 2×2×2[mm], with a
significant cut-off along the sides of object domain as the CCD cameras are oriented under a 10o absolute an-
gle (see Figure 2.5a). Having carried out the calibration, we fit an analytic calibration mapping xm = fcal

m (xo)
that maps the physical object space to the camera image plane fcal : R3 → R2. First we use the commercial
software DAVIS to construct a 3rd order polynomial mapping [2] in each x, y object plane imposing the cal-
ibration target at fixed height z, then the coefficient returned by DAVIS are fit in the object domain height z
using a 2nd order polynomial in MATLAB.

fcal (xo) ≡c0(z)+c1(z)x +c2(z)y

+c3(z)x y +c4(z)x2 +c5(z)y2

+c6(z)x2 y +c7(z)y2x +c8(z)x3 +c9(z)y3

The calibration procedure has been carried out before and after a set of experiments, such that any mechan-
ical misalignment during the experiments can be compensated for.

2.2.2. Lighting Conditions
The algae are illuminated by a green LED panel at wavelength of λ = 527[nm] flashed from the top using
a DC source @ 3.5[V] and 1[A]. All experiments have been carried out at room temperature T ∼ 25oC and
at moderate light intensity of I ≤ 200[µmol/m2s] with no measurable light intensity gradient. Under these
setting no photo-taxis or bleaching of the cells has been reported to take place [1]. The light of the LED is
scattered forward into the direction of the camera by the algae (Mie scattering) and the cells appear as bright
spots or particles on the CCD chip Figure 2.4a. To reduce the background light produced by the LED, the
flow chamber is masked by a punched black card installed below (Figure 2.3c) and above the flow chamber
(Figure 2.3c). During experiments the camera’s where triggered at a frame rate of 15.4[fps] with an exposure
time of texp = 104[µs].

2.3. Image Processing
The raw DAVIS .im7 image files (Figure 2.4a from the multiple camera planes delivered by the acquisition
system are read into MATLAB using the LAVISION code readimx.m ). Starting with the raw image in the camera
plane the algae appear as bright spots up to diameter d ∼ 5[px]. In the upcoming sections we will refer to the
algae as particles, and their scattered light that appear as bright spots in the camera plane as particle images.
Using image processing tools we wish to find the midpoints of the particle images by estimating the location
of their local midpoints. There are several experimental artifacts that need to be eliminated to find the correct
particle image midpoint. These artifacts include pixel noise, image background, and blinking of the particle
images, i.e. intensity level of the particle images is not constant in time. The particle image blinking is likely
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(a) Calibration stage
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y

x

(b) Calibration target (c) Bottom mask (d) Top mask

Figure 2.3: Calibration and stage. a) Calibration stage with installed target. b) Calibration target in camera plane in several planes along
the domain height z. c) Flow chamber with bottom mask and LED illumination installed. d) Addition of the top mask before conducting
experiments.

due the rotation of the algae, it is possible that certain organelles scatter more light than others and that the
periodic rotation of the cell results in periodic variation of the light intensity. Our image processing algorithm
extract the midpoint positions from the individual camera planes by loading in a time sliding queue of image
frames for each individual camera over prescribed time span. Using multiple time frames in the queue for
each separate camera in time, we hope to cope with the experimental artifact taking into account for time
varying information of the particle images in the camera planes. We make extensive use of the mean µ〈•〉 and
standard deviation σ〈•〉 of the light intensity levels from the image files in the time sliding queue to define
threshold and segmentation levels with user defined weights that can be tweaked to process the image files
for each experiment separately.

2.3.1. Image Filtering
First, to suppress pixel noise in the image, a linear Gaussian convolution is performed in the camera plane
by imgaussfilt.m, with the width of the Gaussian matched to the expected particle shape. This filter can
both be thought of as a weighted noise filter, or as a particle shape detection by convolution of a predefined
shape with the image. A second artifact that needs to be removed is that the particle images appear to blink
in time. To suppress this blinking a nonlinear Min-Max filter is implemented, to correct the large contrast
variation of the particle images in time. Here we use a modified version of pwMinMax.m from the PIVware
toolbox by the group of J. Westerweel. Instead of locally windowing the minimum and maximum of the
image using ordfilt2.m, we use optimized routines for the grayscale dilation (imdilate.m) and erosion
(imerode.m) with identical prescribed input and results, however with reduced computational cost. As well
slight improvement is achieved as the gray scale dilation and erosion allow to prescribe a circular window /
neighborhood (getnhood.m & strel.m), which is fit slightly larger to the particle diameter at d = 7[px], and
better captures its shape. An example of a filtered image in the camera plane can be found in Figure 2.4b.
In all image processing routines we have used symmetric image borders to reduce the domain of boundary
influence, which the reduced boundary influence is masked out in the final filtered image.

2.3.2. Particle Image Midpoint Finding Routine
First, as can be recognize by careful inspection of Figure 2.4b, a small portion of the particle images are not
corrected in contrast by the min-max filter and remain in the background as less bright grey spots. As these
particle images can reappear in later image frames we designed a procedure that tries to include a portion
of the particle images that remain in the background. First we count the particle images that appear bright
enough the be detected by assigning a segmentation level to the MATLAB local maxima finder of the computer
vision toolbox by step.m in combination with vision.LocalMaximaFinder. This combination of MATLAB

routines deals well with partially overlapping particle images, by searching for local intensity value maxima
in the image. By estimating the number of particle images in each camera frame we use to image queue to as
well find the variation of that number in time. Then to include the particles that remained in the background,
we impose an expected number of particle images to find in the camera plane including the variation in time
by the previous step, and return this to the vision.LocalMaximaFinder routine. Doing so we hope to count
as well the particle images that where blinking and remained in the background as grey spots. The found
particle image maxima are stored as a binary map which we thicken to a binary mask using bwmorph.m,
this operation conserves the number of particles as it allows no overlap. An example of the binary mask
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can be found in Figure 2.4c. We then introduce this mask together with the raw images from the camera to
regionprops.m to estimate the particle image midpoints based on a intensity value weighted midpoint as
marked in Figure 2.4d. The particle image midpoint are then stored in some list.

(a) Raw image (b) Filtered image (c) Binary masking (d) Midpoint estimate

Figure 2.4: Consecutive image processing. a) Raw image from the camera plane. b) Min-Max filtering to compensate for contrast vari-
ation and remove the background. c) The binary mask obtained by the peak finding routine. d) Weighted midpoints estimate to define
the particle image midpoint.

2.4. 3D Lagrangian Particle Tracking Algoritm
In this section we explain how we track multiple particle as physical objects moving true the 3 dimensional
object domain for sufficient long times by information from multiple camera planes. As is sketched in Fig-
ure 2.5a the 3D position of an particle, here the micro-algae, can be reconstructed by information from mul-
tiple camera’s in the object domain, this we refer as triangulation. The object triangulation can achieved by
formulating a least squares problem to the calibration mapping to solve the best fitting object position to the
particle image midpoints in different camera planes. However, since we have multiple object moving true
the object domain, we first need to find which particle images in the different camera’s belong to the same
physical object, this is referred as matching [61]. Matching can be achieved by projecting a particle image
midpoint true the object space and projecting is back on another camera which it ideally crosses another
particle on its so-called epipolar line [89] as is sketched in Figure 2.5b for a 4 camera system. Both the cor-
respondence matching for particle images among different camera planes, and the tracking of the particle as
physical object in time is sensitive to mismatching, hence we need a robust approach. To efficiently track and
reconstruct the object position we follow the work by Attanasi et al. [4], and as well references therein. First
we track particle image midpoints in time in the different camera planes separate up to a point which we can-
not track, e.g. by occlusion or disappearance. Then we find a consistent correspondence matching between
the different trajectories that have been formed in the camera plane to later triangulate a tracked object. As
reported by Wu et al. [95] this matching of trajectories is robust against possible mismatching in the corre-
spondence among the different camera plane. The matching of trajectories among multiple camera views
can be formulated as a integer optimization problem that is of combinatoric origin, which in this case can
be efficiently solved using linear integer programming (ILP). To further reduce the computational complexity
of this combinatoric problem, we implement a recursive divide and conquer strategy that first matches long
tracks among the different camera views, with much inspiration by the more recent work of Attanasi et al.
[4]. Unlike the work by [4], we do not deal with occluding particle images during the track matching. Here,
to simplify the algorithm, we only deal with short term occlusions during the triangulation of the position of
the physical object. With the upcoming subsections we will define the trajectory of a physical object as γl

o
[4], here with l a tracking index and subscript o to indicate the object. This trajectory contains its projections
in the camera plane, which yet have to be matched, as γl

o = {γl
m} with m the camera index. First we explain

how we track particle image midpoints in the different camera planes to create unmatched indexed tracks
γl

m in the separate camera planes. Second we explain how the integer optimization problem matches the 2D
trajectories among different camera planes to form a complete object trajectory γl

o that can then be triangu-
lated after. To solve this optimization problem efficiently to find all the physical object, we explain how we
implement a recursive divide and conquer strategy, starting with long tracks first. At last we end this section
how we triangulate the object position, and how the triangulation unlike the matching algorithm deals with
occlusions.
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Figure 2.5: Triangulation and matching. a) Sketch of the physical object in relation to the different camera planes from the object
domain. b) Each camera has multiple epipolar lines projected from the other camera views where we need to match which epipolar line
correspond to which particle image midpoint indicated by the dots.

2.4.1. 2D Particle Tracking Algorithm
First we restrict to the individual camera plane, which contains a list of particle image midpoints as extracted
from the camera plane in subsection 2.3.2. We aim to track the multiple midpoints in the camera plane up to
a degree allowed by occlusion and disappearance from the field of view or by shortly blinking. Here we start
to define a track as a single particle image midpoint that was moving in the consecutive image frames as γl

m .
Here m denotes the index of the camera of interest and l a specific index that is assigned to a certain track
in that camera. These indices are of vital importance as they will later be used to compare different formed
tracks among different camera planes. We can create these tracks up to a point that the displacement between
the consecutive particle image midpoints in a certain camera m is uniquely defined within a prescribe as a
search radius around the particle image midpoint in time. We use a search radius since the actively moving
particle can rapidly change its direction. This search radius is set a expected spatial displacement is based
on the average displacement between two consecutive image frames with user defined confidence bound,
using a consistent time forward and backward nearest neighbor search. When the algorithm measures no
unique displacement for a certain particle image midpoint within this search range between the consecutive
images frames it raises the index l and continues to define a new track. The unique correspondence in the
consecutive image frames is a vital part of the algorithm as we cannot match tracks between multiple cameras
when the motion of the tracks is inconsistent. A typical result of this algorithm can be found in Figure 2.6.
During this reorganization of the particle image midpoints list from subsection 2.3.2 there is no loss of data.

2.4.2. Track Matching Algorithm
The previous defined tracks γl

m in the different camera planes that are yet unmatched among different cam-
era planes, the matching of these tracks is the goal of this section. We start with the definition of a discrete
cost function c that we will use to formulate an integer optimization problem. This cost function measures
the overall average distance d (see Figure 2.7a) between a track indexed as l in camera m and the epipolar
line of a possible candidate track match indexed as h projected from another camera s with m 6= s. This cost
function is therefore only defined between a track γl

m and a candidate match γh
s whenever they intersect in

the same time frames n. We express this cost function formally as,

c l h
ms ≡µ

〈
d

(
γl

m ,γk
s

)〉
n

with γl
m

n∩γh
s ∉∅.

The cost function is positive definite and convex as it measures the a distance between point and the epipolar
line projected from another camera, and ideally yields a true minimum at zero, i.e. no disparity between the
calibration and experiment. However several sources of disparity are present, e.g. mechanical misaligned
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(a) Incoming particle image midpoints

0 50 100 150 200 250 300 350 400
x[px]

0

50

100

150

200

250

300

350

400

y
[p
x
]

(b) 2D Trajectories

Figure 2.6: 2D Particle tracking. a) Incoming data from the midpoints estimates. b) Different formed trajectories γl
m in the camera plane.

in the stage after the calibration and differences in the optical path due additional refraction e.g. due the
glassware and the water, and at approximately pixel level a cumulative error of the particle midpoint estimate
and uncertainty in the calibration mapping.

We limit the spatial domain of possible candidate matches between tracks in the different camera planes
to keep the number of combinations of candidates matches comprehensive. To explain how, we continue
to the graphic interpretation of Figure 2.7a. The black dot in Figure 2.7a denotes a particle image midpoint
of a indexed track γl

m , and the line an epipolar line from another particle image midpoint from a different
camera with track γh

s and m 6= s. We take only into account possible candidate matches which the black
dot remains in reach of the white dots on the epipolar line, denoted by the ellipse surrounding them. This
decreases the number of possible matches and works well for long tracks in the different camera’s. In addition
we demand that the point and epipolar line travel in the same direction by limiting the standard deviation
of their relative distance d , which the two compared tracks are limited to diverge their relative motion. In
this way we continue to limit possible matched of short time intersection. Doing so this greatly reduces the
computational complexity limiting the amount of possible candidate matches.

(s,h)

(a) Cost function

(m,

(s,h)

�

(b) ILP Constraints

Figure 2.7: Structure of the integer optimization problem. a) Geometric picture of the discrete cost function as the distance between
the selected coordinate (m, l ) and candidate epipolar line (s,h), the ellipse indicates a spatial threshold b) Constraints for the integer
optimization as described in the text.
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To match the tracks among different camera’s, we want to find the minimal value of the discrete cost
function between the tracks and candidate matches, as being the best possible match. This can be done
by formulation a integer minimization to this cost function, subjected to certain constraints that define a
unique basis of tracks that we can triangulate later on. To formulate this problem, the indexed cost function is
vectorized as c lh

ms → ci , and we introduce a binary integerλi ∈ [0∨1] that selects components of the vectorized
cost function to match two tracks together in different camera planes. Here λi is yet unknown, and this
variable will need to be solved by the minimization problem. As the cost function is vectorized, we store
the track and camera indexing as (li ,mi )&(hi , si ) for the candidates, and as well store the initial frame of
time intersection nini

i the end frame of time intersection nend
i for the candidate match. Hence every λi has a

specific set of corresponding indices that define relations between camera planes and identify the time span
of intersection. These will be used to construct certain constraints to the optimization. We start with the full
mathematical problem statement as is presented below.

c (λ) = min
λi

ciλi

s.t.

0 ≤λi ≤ 1 (2.1)(
Si j −δi j

)
λ j = 0 (2.2)(

Ai j −Nδi j
)
λ j ≥ 0 (2.3)

Bi jλ j ≤ 1 (2.4)∑
i
λi = N (2.5)

On top we find the global minimization statement, that sums over all components of ci factorized with the
solution vector λi that is either 0∨1, which we use the Einstein summation convention. This problem defi-
nition is linear and can be efficiently solved using integer linear programming (ILP) with the MATLAB solver
intlinprog.m. Then in Equation 2.1 to Equation 2.5 several equilibrium and in-equilibrium constraint fol-
low, which the solver needs to comply with. The first constraint in Equation 2.1 well illustrates this concept
as the integer to solve, i.e. λi , is forced to a binary integer ∈ [0∨1]. The other constraint of Equation 2.2 to
Equation 2.5 are more involved, therefore we turn to a schematic representation in Figure 2.7b. In Figure 2.7b
we have schematized a track in a camera as the index pair (mi , li ) and another camera as (si ,hi ) that will be
matched by λi to triangulate later on. The 4 quartiles of the circle in Figure 2.7b represent the four different
cameras in our setup, where the arrows between the quartiles represent the solution vector λi matching the
pair (mi , li ) and (si ,hi ) by minimizing the cost ci between these pairs.

We start with the first constraint of Equation 2.2. This constraint we will refer to as the symmetry con-
straint. In Figure 2.7b this symmetry constraint is visualized by the back and forth arrows between the index
pair (mi , li ) and (si ,hi ), and demands two links of λi to co-exist both ways. We express this constraint for-
mally by using a matrix Si j that operates on a specific link λ j to map it onto its symmetric counterpart λi as
λi = Si jλ j . This matrix if formally constructed using the stored indexing as,

Si j ≡
[
(li = h j )∧ (hi = l j )∧ (mi = s j )∧ (si = m j )

]
.

This mean if a component of λi with index pairs (mi , li )&(si ,hi ) along the rows of Si j has an unique symmet-
ric counterpart λ j with index pairs (m j , l j )&(s j ,h j ) along column of Si j then Si j = 1, which can be used to
map λ j on to λi . In Equation 2.2 we subtract the solution vector λi from mapped vector Si jλ j , which can
only add up zero if the symmetric index pairs are both selected or none.

Next we continue with the first in-equilibrium constraint of Equation 2.3, which is indicated by the three
arrows that approach the black dot in Figure 2.7b. This constraints demand at least N = 3 links to exist to
the index pair (si ,hi ) for our 4 camera system in some time frame. In such in-equilibrium constraint the
minimization will choose the least number needed. To formalize this statement, we create a matrix Ai j that
performs a summation over λ j and maps it onto λi .

Ai j ≡
[

(hi = h j )∧ (si = s j )∧ (nini
i ≤ nend

j )∧ (nend
i ≥ nini

j )
]

This matrix means if a component ofλi with (hi , si ) along the columns of Si j , has a similar linkλ j with {h j , s j }
along the rows of Ai j then Ai j = 1, and can be used to sum over the number of found similar linksλ j and map
is ontoλi . Here in addition we need to use the information of the start nini

i and end nend
i of the intersection, as
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all the track matches need to intersect in time together. As Ai j sums over the components of λ j we substract
the solution vector λi times N = 3, which forces a minimum of N = 3 links to approach (hi , si ) in Figure 2.7b.

We continue with the second in-equilibrium constraint of Equation 2.3. Demanding a minimum number
links to approach (hi , si ) in Figure 2.7b, still allow multiple links to come from 1 camera as indicated by the
dashed lines in Figure 2.7b, thus need to be forced out. These links are excluded as we demand that each link
to (hi , si ) from a camera is unique. This uniqueness can be forced by further restriction to matrix Ai j which
we define as Bi j

Bi j ≡
[

Ai j ∧ (mi = m j )
]

.

Additional in Bi j to Ai j each component of λi and λ j need to share camera m. As Bi jλ j performs a sum-
mation of the selected components in λ j we demand uniqueness by a maximum of 1 in the summation by
Equation 2.4. Together the constraint Equation 2.2 and Equation 2.4 guarantee a unique basis

At last we need to force the minimization to not select the trivial minimal solution to the cost of λi =
0, as our constraints still allow, which would match nothing. Therefore we end with the last constraint of
Equation 2.5 to ask the solver to match at least a complete basis of tracks γl

o. We find a complete basis by
demanding a total number of at least N = 3 links. By the other constraints this will add up to 12 links to be
formed which define a basis that can be triangulated, for our 4 camera system. Since it is our goal to find
more than 1 trajectory, the next section is devoted to introduce an efficient solution strategy to increase the
number of tracks to be found. The described matrices in this section are relatively sparse and therefore are
efficiently constructed in MATLAB using bsxfun.m exploiting the sparsity.

2.4.3. Divide and Conquer Algorithm
The full combinatoric optimization problem gets increasingly computational complex with multiple camera
planes, number of tracked particle midpoints, increasing disparity between the calibration and experiment,
and the number of time frames to be processed. As well do we not know how many physical object can be
tracked in among the different camera’s. So far with the end of the last section track the matching algorithm
only solves 1 basis, in this section we increase this number. We increase the number of tracks that can be
matched in an iterative procedure that finds the maximum number of correct possible trajectories γl

o. How-
ever solving the complete optimization problem for every iteration as a search for a new tracks to match is
very inefficient and time consuming, therefore we make some crucial observations similar to the work by
Attanasi et al. [4]. First we define feasible solution set F that contains all possible combination of trajecto-
ries allowed by the candidate matches. We observe that we need to find the correct solution set Λ ⊆ F that
matches only the correct tracks γl

o together that comply with the integer optimization constraints. This im-
plies that there exist as well an exclusion set E = (Λ)c ⊆ F . This we can use during an iterative procedure,
since the current number of matched tracks in the iteration rules out certain other links that have created as
possible candidate matches by conflict in constraints.

To design a iterate procedure we first define the current solution set as L that contains correctly matched
tracks γl

o, and exclusion set E that contains candidate matches that are ruled out by L. Additional we define
a feasible match set as G ≡ (L∪E)c ⊆ F . Then we want to further decrease the computational complexity of G
by selecting some sub-problem G∗ ⊆G of choose, which we solve first. We identify the following criteria that
can be used.

1. Match tracks that have a large intersection in time, and are therefore more likely to be correct matches
denoted as G int.

2. Branch from the current solution L to find remaining links that complete the current solution L denoted
as Gbran.

3. Select time frames to find to find tracks that can we matched, denoted by G time.

4. Further reduce the computational complexity by considering cost values to expectation by the solution
set L, denoted as Gexp.

We implement these criteria in a recursive "Divide and Conquer" strategy. First we implement criteria 1−2
as a recursive subdivision G∗ and conquer by the solution and exclusion set L,E . Then, since there can still
remain links λi that can yield possible correct matches between tracks, we sweep true the time frames by a
recursive division of 3−2 in similar fashion. As we select the set G∗ some constraint can not be met a priory,
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hence can be used to further shrink G∗ in advance. Whenever the selected sub-problem G∗ is still to large we
use criterion 4 to limit the selected sub-problem G∗ further by considering only expected cost values.

Practically this recursive divide and conquer strategy can implemented in the optimization of the previous
section by defining a the current solution vectorλn

i and a next oneλn+1
i . From the current solution vector one

can compute the current exclusion vector ei for example by the constraints as ei = ((Si j+δi j )(Bi j−δi j )λ j < 1).
The current solution vector λn

i and exclusion vector ei can be used to redefine the upper and lower bound to
the next solution vector λn+1

i of Equation 2.2 as,

λn
i ≤λn+1

i ≤ ei .

Then we force new matches by increasing the minimal number of solutions to find of Equation 2.5 as,∑
i
λn+1

i =∑
i
λn

i +N .

In addition to the recursive divide and conquer strategy, we define as well a vector d n
i that measures the

overall disparity between combinations of camera’s as the average cost of the the solution set L, for each
combination of camera views separately. During the iterative divide and conquer algorithm we compensate
for the expected disparity between camera views as,

c (λ) = min
λi

∣∣ci −d n
i

∣∣λn+1
i

This compensation for the cost function can be seen as some form of machine learning.

2.4.4. Triangulation
Having matched segments of tracks among different camera’s we are now able to define a complete the trian-
gulation. We reconstruct the physical object position xo by use of a create a least squares problem to invert
the calibration mapping. To partially deal with disappearance and occlusion of particles in different cam-
era’s, we allow the least squares problem to be incomplete, which it at least need two camera’s. To do this we
introduce a integer weight wm ∈ [0∨1].

R (xo) =
∑
m

wm

∥∥∥xm − fcal
m (xo)

∥∥∥
2

We wish to minimize this residual R to find the best object location. Such problem can either be solved naively
in MATLAB using fminunc.m / fmincon.m which is robust, or more time efficient by user defined Newton-
Raphson routine. Since the mapping function is of polynomial form, we expect the Newton-Raphson scheme
to converge as the derivatives are well behaved and non-vanishing, and implement the following iterative
scheme.

Newton-Raphson Scheme : ∇∇R
(
xn

o

)
vn +∇R

(
xn

o

)= 0

xn+1
o = xn

o +vn

We can easily create this problem by the MATLAB symbolic toolbox using gradient.m and hessian.m to
find analytic expressions for the gradient and hessian matrix, and functionalize them by matlabFunction.m.
We iterate the Newton-Raphson scheme at sufficient sub-pixel accuracy with relative error of εres = ‖vn‖2 <
O (10−3), which defines the numeric precision of the code.

2.5. Post Processing
Up so far we have discussed the pre processing steps that includes all procedures to track and triangulate
the time-positional information of the micro-swimmers in the object space. In this section we continue to
post process and retrieve properties to interest of the individual trajectories by the micro-swimmers, and as
well define the boundaries to the fluid domain they swim in. Several methods are discussed and motivated
to refine the data. We start to discuss how we parametrize, smooth and differentiate the obtained 3D time
positional information by curve fitting and interpolation. Secondly we discuss how we define the boundaries
of the top and bottom glassware by the fitting of planes to an independent triangulation of algae that remain
immobile. After we discuss how this information can be used to find desirable properties of trajectories to
quantify their dynamics.
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2.5.1. Curve Fitting
As will be explained in subsection 2.5.3 we need up to the 3rd order time derivative of the time parametrized
trajectory r(t ) to study the kinematics of the microorganisms along their trajectory. Since numeric differ-
ences, e.g. central differences, are sensitive to the discretization and noise from the experiment we aim to
use a curve fitting procedure to the raw object data xo to discard noise and find the time derivatives by ana-
lytic means [18]. In this work we choose to least squares fit a polynomial curve to the raw object data xo in
time. Such a curve has desirable properties which it can well describe oscillatory behavior for short times,
and it decouples the least squares problem wherefore it allows to fit a polynomial in time to each coordinate
separately. We prescribe this as a smoothing procedure on a time sliding stencil that can as well find the
time derivative by analytic means. Smoothing a signal by a polynomial is a widely used method and is for-
mally known as a Savitzky-Golay filter. Such filter is know to best preserve the dynamics while rejecting noise
by the polynomial smoothness requirement. We functionalize a user defined the Savitzky-Golay filter using
the functions polyfit.m and polyder.m to simultaniously smooth and differentiate (which not available
in the matlab routine smooth.m). Our user defined script as well allows a non-uniform time stencil to take
into account time positions of the physical object that could non be triangulated but where continued to be
matched in later frames. As well is special care taken to the ends of a trajectory, which it was either started to
be tracked or was not tracked anymore. At the ends we grow and destroy the prescribed stencil size Nstn, and
smooth at reduces the polynomial order Nord to allowed level Nord < Nstn. Since we need up to the 3rd order
derivative in subsection 2.5.3, we aim to fit at least Nord = 3 order polynomials.

2.5.2. Bounding Domain
To study how the algae interact with physical boundaries we independently define the upper and lower
boundary of the glassware, by a separate triangulation of immobile algae. We do this by a stripped down
version of the explained tracking algorithm, which reconstructs the position of immobile algae that are stuck
to the top and bottom of the flow-chamber. To find the immobile algae we use a time averaged image in each
camera. Using the reconstructed object coordinates of the immobile algae we fit a plane up to 1st order to in-
clude any inclination of the flow chamber using the MATLAB fitting toolbox fit.m. At last we compensate for
the size of the algae shifting the top plane 1/2 body-length up and the bottom plane 1/2 body-length down.
Since the immobile algae have a slight negative buoyancy they presumably sink to the bottom of the flow
chamber which is better sampled, therefore the top boundary is not included in any quantitative results.

2.5.3. Trajectory Kinematics
The filtered time-positional information of the algae in the fluid domain used to compute their local frame
of reference by the Frenet-Serret framework [13]. In this section we keep the notation to practical insight and
elaborate the details of this framework up to the degree that is needed. The Frenet-Serret framework defines
a local frame by use of the local tangent t, normal n, and bi-normal vector b to the trajectory position vector
r(t ) known as the Frenet trihedron {t,n,b}.

t(t ) ≡ r′(t )

‖r′(t )‖2
, n(t ) ≡ t′(t )

‖t′(t )‖2
, b(t ) = t(t )×n(t ).

Here (•)′ = d
dt denotes the time derivative. These vectors can be computed by the analytic differentiation

of the fitted curves in subsection 2.5.1. This right-handed orthogonal basis is sketched in Figure 2.8, and
is assumed to follow the organisms instantaneously in the absence of inertial forces. Therefore the dynamic
evolution of this frame along a curve is therefore of great interest, as it much relates to the kinematics imposed
by the algae. The dynamics of the trihedron along the trajectory can be understood by the curvature κ and
torsion τ which describe evolution of the trihedron along its paths as, t

n
b


,s

=
 0 κI 0
−κI 0 τI

0 −τI 0

 t
n
b


where , s denotes the differentiation with respect to the arc-length,

s(t ) =
∫ t

o
‖r′(ξ)‖dξ.

The curvatureκ∼ [m−1] quantifies how much a trajectory is bend, and can be understood as an inverse radius
of bending r−1. Likewise the torsion τ∼ [m−1] can be understood as a measure how much the trajectory twist
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and fails to be co-planar. Therefore the trihedron is constantly reorienting with respect to its Darboux vector
ω,

ω= τt+κb.

The curvature and torsion can as well directly be computed from the analytic differentiation of the fitted
curves in subsection 2.5.1.

κ(t ) = ‖r′(t )× r′′(t )‖2

‖r′(t )‖3
2

, τ(t ) = [r′(t ),r′′(t ),r′′′(t )]

‖r′(t )× r′′(t )‖2
2

It is clear these entities are now time dependent, which they dependent up to the 3rd order derivative, hence
sensitive to noise. Therefore they are smoothed by a moving average filter since these should be slowly chang-
ing variables by the motile organisms. The trajectories of micro-algae and likewise organisms have been re-
ported to be of helical nature [18, 52]. A helix can be better understood in terms of its radius R, pitch P , and as
well the angular velocity magnitudeΩ in addition to the velocity magnitude V of the organisms. We compute
these quantities using the information from the curvature and torsion by,

R = κ

κ2 +τ2 , P = 2πτ

κ2 +τ2 , Ω= sgn(τ)V
√
κ2 +τ2.

These measures will be used to quantify the kinematics of the trajectories that are made by the micro-algae.

e

e1

3

R

Figure 2.8: Trajectory kinematics. Local position r(t ) of the Frenet trihedron {t,n,b} with respect to a fixed Cartesian reference {e1,e2,e3}.
The Frenet trihedron travels along trajectory γ(t ) with position vector r(t ), curvature κ(t ) and torsion τ(t ). The inset show specific
interpretation to the Darboux vectorω.

2.6. Algorithm Peformance and Synthetic Data Validation
Before we continue to the results of chapter 3, we end this chapter by an evaluation of the Lagrangian particle
tracking (LPT) algorithm by comparing the experimental reconstruction to results obtained by self generated
synthetic data. This section is only of exploratory origins to quantify the overall quality of the processed data,
and not to do a detailed study the performance of the LPT algorithm by different setting. We evaluate the
quality of the algorithm by use of the Pareto frontier in line with the work by Attanasi et al. [4]. The Pareto
frontier marks the distribution of available resources, here the spatio-temporal sampling in the T N -plane.
The Pareto frontier can be seen as an efficiency boundary, with T the temporal sampling as the number of
time frames, and N the maximum possible number of tracked object. The available resources are identified
as the number of particles in the camera views Ncam and the maximum available number of frames in the
post-processing Tmax. It is clear that this yields a boundary to the available resources and cannot be crossed
in the reconstruction for each individual experiment. However this definition does not take into account that
particles can leave the domain, hence would limit the tracked number of frames without having a perfor-
mance drop. Therefore we as well define a truncation to the Pareto frontier, which the temporal sampling is
truncated by the residence time in the domain (∼ 400×400[px]) by the expected particle image displacement
(∼ 4[px/frm]), here Tmax ∼ 150 frames. We rationalize the number of reconstruction objects Nobj and the
tracked number of frames Tobj towards both the Pareto frontier and its truncation to quantify the behavior
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of the algorithmic reconstruction of the experiment. We identify a quantitative efficiency of the algorithmic
reconstruction ηrec as,

ηrec =
Nobj

Ncam
.

The experimental data was processed on both a dual core i7 laptop with 16 GB RAM and local clusters with
either 8 cores and 24 GB RAM running 2 jobs in parallel or 12 cores with 65 GB running 4 jobs in parallel.
Using MATLAB the code was not compiled to match maximum efficiency, we found the run-time lasted 2-3
days on average. To fit the memory capacity of the used machines the experiments where subdivided into
either 4 or 8 separate time series.

2.6.1. Synthetic Data
We start to test the algorithm by using synthetic data that we designed to mimic to extreme case of the exper-
iment. First, we model the active swimmers as helical trajectories, expected from the literature [16, 18, 52].
Second we aim to mimic immobile algae as small circular orbits having no net displacement over long times.
Using the synthetic data there is interest whether we rule out or identify any source of directional bias in the
object tracking and reconstruction at varying density. The synthetic data is created by randomly imposing
the described trajectories in the domain with periodic boundary conditions. The number of imposed time
frames Timp and objects Nobj, as well as the object domain size and overall displacement of the objects are
sampled to what is observed in the experiments of the next section. The settings and results for the synthetic
data experiments summarized in Table 2.1a for the helical trajectories, and Table 2.1b for the circular orbits.
For both types of trajectories it is found that most imposed object where reconstructed at an quantified over-
all reconstruction efficiency of ηrec ∼ 98[%]. In addition there was no qualitative indication for sources of
directional bias, and therefore can be assumed to be ruled out under these conditions. In Figure 2.9a we plot
the reconstruction in the T N -plane for the synthetic data experiments. It is clear that the helical trajectory
(blue marks) follow the truncation to the Pareto frontier as they can leave the domain. In contrast the circular
orbits (green marks) are tracked up to the available resources as they do not leave the domain, and therefore
mark the Pareto frontier [4]. Exploring these two extreme cases we conclude that the algorithm can achieve
a high reconstruction efficiency. We expect a proper experimental tracking of the reconstructed object to lie
within the Pareto frontier and its truncation, as the experiment have both motile and immobile algae in the
flow domain.

dilution Timp[#] Nimp[#] Nobj[#] Tobj[#] ηrec[%] d [px]
1:base 0×125 800 - - - -
2 0×250 400 - - - -
4 2×500 200 196.62±2.32 73.59±79.41 98.31 2.09±84.86 ·10−3

8 2×1000 100 98.63±1.20 69.02±102.76 98.63 5.73±173.46 ·10−3

16 1×2000 50 49.72±0.60 101.56±119.91 99.43 0.24±0.22 ·10−3

32 2×2000 25 24.84±0.42 75.52±125.17 99.35 0.55±20.27 ·10−3

(a) Helix trajectories

dilution Timp[#] Nimp[#] Nobj[#] Tobj[#] ηrec[%] d [px]
1:base 0×125 800 - - - -
2 2×250 400 390.09±0.33 218.66±81.20 97.52 0.20±0.21 ·10−3

4 3×500 200 196.10±0.54 221.74±244.71 98.05 0.25±0.25 ·10−3

8 1×1000 100 98.00±0 1000.00±0.00 98.00 0.20±0.19 ·10−3

16 2×2000 50 49.23±0.35 1437.48±699.19 98.44 0.14±0.18 ·10−3

32 1×2000 25 25.00±0.00 2000.00±0.00 100.00 0.23±0.25 ·10−3

(b) Circular orbits

Table 2.1: Results for the synthetic data reconstruction. a) Imposed helix trajectories. b) Imposed circular orbits. Both have Timp the
imposed number of frames, Nimp the imposed number of objects, Nobj the reconstructed number of object, Tobj the tracked number of
frames in the object, ηrec the reconstruction efficiency, and d the disparity between the camera’s (here at numeric precision of the code,
see subsection 2.4.4 ).
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2.6.2. Experimental Data
We vary the cell density in the performed experiments by diluting the cell suspensions halving the density
each time the suspension is diluted, with the methods described in section 2.1. We refer to each experiment
by its dilution steps taken toward the base suspension. In addition, as the experiment is diluted, the recorded
number of frames is doubled, up to Tfrm = 8000 frames, therefore the available resources in the T N -plane are
expected to scale as T ∼ N−1. In Table 2.2a we present the reconstruction results for the wild-type (cc125), and
in Table 2.2b for mutant (mbo-1) cells, which for both we will present the results in chapter 3. The base sus-
pensions for both the types was found to be to computational involved to triangulate due their high density,
and are therefore excluded. For the wild-type (cc125) cells the average reconstruction efficiency was found
to be around ηrec ∼ 70[%]. Part of this efficiency can be explained by the edges that are lost in the relative
orientation of the camera’s under absolute angle of 10o. Other sources include disparity, partially-identified
particles images, occlusions, mismatching, wrongly identified noise, and increasing computational complex-
ity by cell density. In Figure 2.9a we find that the reconstruction for the wild-type cells (blue) does not mark
the Pareto frontier [4], but do follow its expected scaling of T ∼ N−1. Part of the discrepancy between the re-
construction and frontier can be explained due the non-ideal reconstruction efficiency ηrec ∼ 70[%]. However
a more significant influence can be identified as some part of the motile algae can leave the domain within
the time-span of the experiment, whereas only immobilized algae can be tracked for the whole experiment.
Therefore the expected reconstruction performance in the T N -plane should lie within the Pareto frontier and
its truncation, as explained in the previous subsection. This expectation is indeed found in Figure 2.9a, which
the highest density falls below the truncation but remain within order of the synthetic tracking experiments.
As we continue to the mutant (mbo-1) cells we found that the algorithmic reconstruction was more computa-
tionally involved since most of the algae crowd the glassware (see chapter 3), and therefore had high localized
cell densities in the fluid domain. As can be found in Table 2.2b, we did not triangulate all time frames of the
experimental data for reason that will be explained in chapter 3, and reduced the computational complex by
limiting the number of time frames to process. In overall we found a reconstruction efficiency of ηrec ∼ 50[%],
which be due the high localized density at the surface as many algae cannot consistently be found among
the different camera views In Figure 2.9b we find that the mutant experiments (marked green), do not follow
the Pareto frontier as defined, since they where processed as reduced time frames. Taking into account that
less frames where processed, the tracking of the objects seem to be about half the available resources, which
presumably is as well due the high localized density at the surface. In overall we find that the tracking of the
object in the flow domain is at expected reconstruction quality, which the physical object are tracked for suf-
ficient long times. In addition we find that the reconstruction achieved here yields comparable result to the
literature e.g. [91, 95–98], but does not outperform the recent work of Attanasi et al. [4].

dilution Tcap[#] Tproc[#] Nobj[#] Tobj[#] ηrec[%] d [px]
1:base 1000 0×125 - - - -
2 2000 8×250 543.70±21.43 57.04±58.78 60.82 1.59±0.78
4 4000 8×500 278.66±9.02 141.10±140.74 75.36 1.59±0.76
8 8000 8×1000 143.96±5.95 232.94±260.19 74.31 1.61±0.89
16 8000 4×2000 72.31±5.72 332.91±453.93 73.75 1.56±0.78
32 8000 4×2000 52.46±3.88 605.96±718.30 64.39 1.71±1.04

(a) Wild-type (cc125)

dilution Tcap[#] Tproc[#] Nobj[#] Tobj[#] ηrec[%] d [px]
1:base 1000 0×125 - - - -
2 2000 0×250 - - - -
4 4000 1×500 337.72±5.95 237.50±195.67 71.84 1.53±0.82
8 8000 2×1000 162.05±4.44 347.85±376.42 57.74 1.55±0.81
16 8000 2×500 97.62±3.36 223.98±206.77 42.69 1.60±0.87
32 8000 2×500 53.53±2.83 215.95±215.71 41.13 1.56±0.87

(b) Mutant (mbo-1)

Table 2.2: Results for the experimental data reconstruction. a) Wild-type (cc125) experiment, actively exploring the fluid domain. b) Mu-
tant (mbo-1) experiments, mostly crowding the bottom glassware. Both have Tcap the captured number of frames, Tproc the processed
number of frames, Nobj the reconstructed number of object, Tobj the tracked number of frames in the object, ηrec the reconstruction
efficiency, and d the disparity between the camera’s.
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(a) Synthetic data (b) Experimental data

Figure 2.9: Reconstruction performance in the T N -plane, the dashed lines marks the identified to the Pareto frontier and its truncation.
a) Synthetic data reconstruction with the imposed helical trajectories (blue) flowing the truncation and the circular orbits (green) mark-
ing the Pareto frontier. b) Experimental data reconstruction with the wild-type (cc125) cells following the expected scaling T ∼ N−1 and
the mutants (green) are at reduced data processing (see text).





3
Results

We continue to the results obtained from the experimental reconstruction discussed in section 2.6. The goal
of this chapter is to explore the physics of the swimming algae to as much detail as allowed by the experimen-
tal accuracy. This chapter is outlined as follows. First we introduce the triangulation of the tracked physical
object (algae), on the experiments carried out with the wildtype (cc125) cells and explain why we withdraw
attention from the experiments on the mutant (mbo-1) cells. Secondly we continue to study the geometry of
the trajectories made by the individual organisms by using the methods introduced in subsection 2.5.3. With
the first two sections we hope to give a good understanding how the algae explore and move true the fluid
domain. We end this chapter with the main goals of this research which is to study interactions of cells with
physical boundaries and with each other. We aim to focus much on the cell-wall interactions, since they are
of less complexity. For the cell-cell interactions we only touch upon the complexity in light of the cell-wall
interactions, since the dynamics of the cell-cell interactions have much more degrees of freedom, which a
full study remains beyond the scope of this thesis. We aim to present the results in a descriptive nature, the
discussion and conclusion on our results will be left for the following chapters.

3.1. Experimental Reconstruction in the Eulerian Reference Frame
We start with the classical fluids point of view, i.e. the Eulerian frame, and fix our frame of reference to the
calibrated object domain. In Figure 3.2a to Figure 3.2e a 10 seconds time-shot is presented of the object re-
construction for the wildtype (cc125) cells together with the bottom boundary definition as they explore the
domain. In Figure 3.2f we present a single experiment for the mutant (mbo-1) backward swimming pheno-
type. We will refer to each specific experiments by the amount of dilution to the base suspension. As can
be found in Table 3.1 we where able to reconstruct the experiments done with the 2−32× diluted base sus-
pension, whereas the base suspension was to computationally involved. We successfully reconstruct a cell
density φd ranging from φd =O

(
104 −105

)
[cells/ml] in agreement with expectations that can be drawn from

the density of the base suspension. Based on the disparity between the triangulation of the physical objects
and particle images in the camera plane, the triangulation of the physical objects yields an overall precision is
within the tens micron range εo ∼ 3[µm]. As trivial consequence a similar accuracy for the plane fit εs ∼ 5[µm]
is found, here based on the plane fit residual from the triangulated boundary points. Therefore the overall
accuracy of the experiment lies within the length scale of the organism lb = 10[µm]. The overall reconstructed
height h of the object domain was found to be h = 1.2[mm], and is consistently found among the different
experiments. However this object height is 20% smaller than expected from the used 1.5[mm] thick acrylic
sheet. This could be either explained due a cumulative error from the tens micron precision z-stage or due
bending stresses in the glued glassware, and need to be taken care of in the discussion of the results when ap-
plicable. The overall x y-span of the object domain was found to be in range of 2×2[mm] loosing some edges
to expectation by the relative orientation of the cameras (see subsection 2.2.1). This domain is sufficient un-
bounded for the algae as is extends up to ∼ 200 body lengths. Our curve fitting procedure of subsection 2.5.1
to the time-positional information of the tracking algorithm, was found to perform best at prescribed stencil
of Nstn = 15 points fitting a Nord = 6th order polynomial.

First we focus our attention to the 2− 16× diluted experiments in Figure 3.2a to Figure 3.2d done with
the wild-type cells (cc125). We find unexpected behavior as the algae explore the domain, which they mostly
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swim up and down the top and bottom glassware at equal pace. The color scheme in Figure 3.2 indicates this
behavior by the orientation θ of tangent vector t of the organism towards the z-direction e3 of the calibrated
object domain as θ ≡ 90o −∠(t,e3) ∈ [−90o ,+90o], shifted to clarify up at θ→+90o and down →−90o . Using
the color scheme the cells swim down (blue) at θ ∼−70o and up at θ ∼+70o (yellow), as the direction naturally
follows. Much different behavior is found near the reconstructed boundary which the algae remain to circle
clockwise or wobble co-planar θ ∼ 0o to the surface (cyan), as will be studied in more depth in section 3.3. In
Figure 3.1a to Figure 3.1d we compute a overall cell count averaged in time over the height h of the domain for
the 2−16× diluted experiments. This count can be seen as a cell concentration profile, where it is found that
a significant proportion remains at the boundary. First we note that the sharp peak just above the surface in
the different figures is due to immobile cells that remain at the surface, as the size of this count corresponds
well to the number of cells used to define the bottom boundary definition. Then, ignoring this peak by visual
inspection, a similar decaying trend can be found from the boundary to the bulk. We use this trend to ratio-
nalize a finite length scale lbnd = 100[µm] which the algae are found to remain near the boundary for all the
experiments together. This length scale indicates an domain of influence by the surface up to 10 body-length
of the organism, and can as well be found on top of the domain. From now on we will refer to the boundary
region as up to lbnd away from any physical boundary, and the bulk region as the remaining domain outside
this layer. We continue our attention to the most diluted suspension done with the wild-type (cc125) cells in
Figure 3.2e and find only few algae that explore the bulk. This experiment can as well be use to verify that our
flow-domain is at rest, as only on the full course of the experiment a Stokesian background flow was found
(see Appendix A). Concerning the time averaged cell count over the height h of the domain, we find that the
cell concentration profile is less smooth due a less available number of data points. We end this section to
continue to the mutant (mbo-1) experiment of Figure 3.1f and its concentration profile in Figure 3.2f. It is
found that the mutant cells remain mostly to crowd the surface, which they remain immobile on the total
course of the experiment. Since we find no interesting behavior in these experiment we discard them from
the upcoming sections and only briefly discuss them in the next chapter. The remaining experiments with
the mutant cells as where introduced in section 2.6 can be found in Appendix B.

(a) 2 diluted wild-type (cc125) (b) 4 diluted wild-type (cc125) (c) 8 diluted wild-type (cc125)

(d) 16 diluted wild-type (cc125) (e) 32 diluted wild-type (cc125) (f) 8 diluted mutant (mbo-1)

Figure 3.1: Cell count over the height z of the fluid domain. The boundary region is indicated by the dashed red lines. a-e) Cell density
count for the wild-type cells. f) Cell density count for the mutant (mbo-1) cells.
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(a) 2 diluted wild-type (cc125) (b) 4 diluted wild-type (cc125)

(c) 8 diluted wild-type (cc125) (d) 16 diluted wild-type (cc125)

(e) 32 diluted wild-type (cc125) (f) 8 diluted mutant (mbo-1)

Figure 3.2: 10 second time shot of the triangulated trajectories. a-e) Reconstruction at halving the density, with on few cells in the most
dilute case. f) Reconstruction for the mutant (mbo-1) cells mostly crowding the surface, with only few in the bulk. The color scheme
denotes the orientation of the cells along their trajectories towards the surface ∈ [−90o,90o], mostly swimming up and down.
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dilution φdens[cells/ml] trec[s] / proc. ttrk[s] εptri[µm] εsfit[µm]
1:base 0.5 ·106 - - - -
2 0.1499±0.058 ·106 129.9 / 8 3.6±3.8 3.66±1.80 5.62±1.15
4 0.0882±0.0029 ·106 259.7 / 8 7.81±8.28 3.67±1.76 3.64±0.81
8 0.0360±0.0016 ·106 519.5 / 8 16.11±17.68 3.73±2.04 7.05±2.69
16 0.0215±0.0021 ·106 519.5 / 4 16.59±29.91 3.60±1.80 3.74±1.35
32 0.0194±0.0019 ·106 519.5 / 4 41.13±50.38 3.94±2.39 7.97±9.82

Table 3.1: Experimental properties for the object reconstruction and tracking of wild-type (cc125) cells. Here φdens denotes the cell
density, trec / proc. the recording, ttrk the overall object tracking, εptri the disparity distance, εsfit the residual of the plane fit.

3.2. Swimming Kinematics in the Lagrangian Frame
In Figure 3.3 we have plotted several trajectories in case of the 16× diluted base suspension. On the top in
Figure 3.3a we have included an algae clearly swimming up and down the top and bottom of the flow chamber
for long times. It is found that the trajectories among the experiments are of typical helix shape (see the inset
of Figure 3.4a). On the bottom of the page in Figure 3.3c we include a trajectory circling clockwise at the
surface along a typical trajectory by the inset. In the middle of both figures in Figure 3.3b a trajectory of more
complex shape can be found, which the organism is frequently changing it’s direction. This reorientation
indicates that the organisms swimming gait can severely change character for short times. In the figures
along the left column of Figure 3.3 the color code indicates the velocity V of the organism. We find in the
experiments all together a typical velocity of V ∼ 106.63±35.17[µm/s] not significant depending on the cell
density. Going down along the left column of Figure 3.4 it can be found that the velocity increases, from
V ∼ 100[µm/s] in the bulk to V ∼ 150[µm/s] at surface. This increase by 50[%] is significant towards measured
squeeze of the flow domain, hence could be of physical interaction with the boundary. However this increase
in the motility of the organism in the boundary region is not reflected when we compute mean velocity in the
two regions separate as V ∼ 107.18±34.52[µm/s] for the bulk, and V ∼ 106.53±36.64[µm/s] for the boundary
region (excluding stuck cells), hence might be only of occasional cause. In the figures of the right column
of Figure 3.3 the color code indicates the rotation rate Ω and is found at an average absolute value of |Ω| ∼
10.00±8.14[s−1]. On top of the right column in Figure 3.3 we observe that the trajectory is at negative rotation
rate, which indicates a left-handed chirality of the helix shape. As we go down the column the left-handedness
is found to be perturbed in line with the frequency of reorientation. In the bottom of Figure 3.3 we observe
another different behavior for the surface circling of the organism. It is found that as the algae is circling along
the surface it flips its rotation rate positive, hence in contrast to the bulk swimming at right-handed chirality
for long times. We again ask the question whether these changes in the bulk and boundary are significant.
In contrast with the velocity, we find that the absolute rotation rate is |Ω| ∼ 8.34±6.35[s−1] in the bulk where
67.81± 3.88[%] of the algae swim at left-handed chirality, whereas in the boundary region the rotation rate
increases significant to |Ω| ∼ 12.36±9.84[s−1] at 54.618±1.71[%] left-handed chirality among all experiments
together. We therefore find for reasons yet unexplained a significant change in signature of rotation rate as
the organism is in presence of the boundary.

To further interpret the shape of the typical helix trajectories we focus on the Lagrangian dynamics of the
local frame defined by the trihedron to the trajectory of the organisms as introduced in subsection 2.5.3. We
use the curvature κ and torsion τ to compute the radius R and pitch P of the helix. As the curvature and
torsion are very sensitive measures we first smooth their time signal on a moving average stencil of Nstn = 15
points. After smoothing we discard values of |τ|,κ> 0.2[µm−1] as blown up derivatives, physically this means
we do not take into account bending radii of curvature below 1/2 body-length. In similar vane as Lee et al. [52]
who studied the likewise organism P. Minimum, we have interest how the velocity of the organism relates to
the shape of its trajectory. In Figure 3.4 we plot the relative probability density (RD) of the radius vs. velocity,
the pitch vs. velocity, and the pitch vs. radius. In Figure 3.4a the pitch and velocity scale in a linear fashion
at negative pitch, i.e. left-handed chirality. In Figure 3.4b the radius as well tends to scale in a linear fashion
with the velocity, however lacks definition in extending spread. In contrast we find in Figure 3.4c that the
pitch and radius collapse that peak value of P ∼ 50[µm] and radius of R ∼ 5[µm]. This indicates that the
overall shape of helices by the algae can be understood in term of elongated helices with an aspect ratio of
R/P ∼ 0.1. Therefore the Darboux vectorω that is re-orienting the trihedron almost lines up with the velocity
vector v of the organism.
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(a) Up and down swimmer in the bulk

(b) Frequent re-orienting swimmer in the bulk

(c) Circling swimmer in wall region

Figure 3.3: Typical trajectories that have been tracked for long times with indicate both the velocity V and rotation rateΩ in respectively
the left and right column of the page. a) Typical trajectory of the up and down swimming behavior at V ∼ 100[µm/s] and Ω∼−10[s−1],
i.e. left-handed chirality. b) A trajectory with frequent periods of re-orientation including velocity peaks at V ∼ 150[µm/s] and occasional
flip in chirality byΩ∼+10[s−1]. c) Wall-bound trajectory circling over the surface clockwise at significant higher velocity of V ∼ 150[µm],
and flipping chirality byΩ∼+10[s−1].
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(a) Radius vs. velocity (b) Pitch vs. velocity (c) Pitch vs. radius

Figure 3.4: Relative probability density (RD) of helix path for the wild-type (cc125) cells. a) Velocity and radius at large spread. b) Velocity
and pitch, which negative pitch indicating left-handed chirality. c) Shape of the helix in terms of radius and pitch.

3.3. Cell-Wall Interactions
We continue with the first goal of this thesis, which is to study how algae interact with physical boundaries
in an unconfined geometry. We define interaction events only with the bottom boundary when the distance
between the algae and boundary falls within a certain threshold length ltrs. We set this length to match with
the observed boundary region at ltrs = 100[µm], i.e. ∼ 10 body lengths (lb ∼ 10[µm]) excluding the flagella
(lf ∼ 10[µm]). Additionally we filter out events that did not pass this boundary with at least one body-length,
this to circumvent instantaneous events as considered an threshold artifact. Once we record a event we map
the trajectory in frame of the boundary, which we count a total number of O (104) events with similar behavior
for all the individual experiments, therefore present as a whole. As a first approach we have focus on the ori-
entation of the organism relative to the boundary by the incident and outgoing angles θi & θo, the minimum
recorded distance lmin and residence time tres at the surface. In this work we will not consider the detailed
dynamics of the organisms as in the previous section, which yet remains beyond the scope of this work. We
define the incoming and outgoing angles with respect to the physical boundary as the orientation towards
the fitted plane definition using the angle between the tangent vector t of the algae and the surface normal
e′3, as θ ≡ 90o−∠(t,e′3) ∈ [−90o,+90o]. This angular definition is a signed version of the work by Kantsler et al.
[43], we smooth this signal by a first order polynomial on a stencil of Nstn = 30 frames to find the long time
scale orientation of the helix path over approximately 2 periods of revolution.

In Figure 3.5 we present a series of typical results for individual trajectories of the algae that approach the
boundary together with their time-series of height z(t ) relative to the surface, which the color code indicates
the orientation of the algae towards the surface. Presented along the rows of Figure 3.5 we observe four
distinct types of behavior in our experiment. On the top two rows (Figure 3.5a and Figure 3.5b) we present
two cases of algae that crash into the surface and depart again, this we will refer to as reflection. On the bottom
two rows (Figure 3.5c and Figure 3.5d) we find two typical examples of algae that remain at the surface, which
is called wall-bound. We start to discuss Figure 3.5a in more detail. Here the algae comes in at steep angle
and depart again at symmetric reflection, after having spend some residence time at the surface. During this
scattering event we find that the algae come within reach of contact lc ∼ 20[µm] with the surface indicated by
the dashed red line. This region is identified to be within reach of contact by half the cell-body lb ∼ 5[µm] plus
flagella lf ∼ 10[µm] including the accuracy of the experiment εexp ∼ 5[µm], hence we refer to this regions as
the contact region. As we continue to Figure 3.5b, we find another distinct type of reflection event. Here the
algae comes in at a more moderate as well varying orientation, then shortly touches the surface within reach
of contact, and depart the surface at much steeper orientation, as well indicated by the color code. There is
large interest whether such a symmetric or steepening reflection is a universal boundary interaction, as will
be studied in subsection 3.3.2. In Figure 3.5c find a typical case of co-planer clockwise circling (when viewed
from above). As can be seen in time series next to the triangulated path, this organism did not escape the
direct contact zone during circling as it remained co-planar. At the bottom row in Figure 3.5d, we present
an example in which an considered surface bound algae escape the direct contact zone in a (quasi) periodic
manner. This algae seems to perform much more complex "acrobatics" as it wobbles above the surface, we
call this type of motion surface wobbling.
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(a) Symmetric reflection

(b) Asymmetric reflection

(c) Wall-bound clockwise circling

(d) Wall-bound wobbling

Figure 3.5: Typical surface trajectories in time span of 10 seconds as found in the 16× diluted experiment. In red we denote the contact
region lc and in black the threshold length ltrs to define the surface region.
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In Figure 3.6 we schematize the relevant aspects of the typical events of Figure 3.5. To study these typical
events we only consider the tracks that where tracked for sufficient time > 2[s] and had a typical signature
of reflection or wall-bound. We take these events a building blocks to combination of them and discard the
events which the algae approach the surface and remained wall-bound or vice versa.
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Figure 3.6: Schematics of the surface event. The angle-in/out are computed at the beginning and end of these events, for the reflection
events this is at ltrs indicated by the line above the surface.

3.3.1. Wall-Bound
We start with the wall-bound cells, and discuss them all together with no distinction between circling and
wobbling or any unidentified types of motion. In Figure 3.7a we find that the incident angle (blue) and out
going angle (red) overlap on a bell like shape. In overall the algae are found to be swimming co-planar to the
boundary θ ∼ 0o, which could be expected by the definition of these events. However the overall width of the
bell shape tells us that the algae still had sufficient degrees of freedom in the surface region at approximately
θ ∼±30o, this could allow them to escape. As well can it be found that there is a slight bias of angle at approach
to and departure from the surface, this would be best explained by cells that approach and depart the contact
region. In Figure 3.7b we find a strong tendency of the cells to all touch within narrow contact with the surface
at ∼ 10[µm], with a long tail extending over the no-contact region. This could indicate that all cells near the
boundary are likely to collide with the boundary, or remain there as circling trajectories. For completeness we
find in Figure 3.7c long residence times > 2[s], this verifies that the algae within the boundary region where
tracked for sufficient long times, here shown up to tres = 10[s].

(a) Angle-in/out contact wall-bound (b) Min. distance contact wall-bound (c) Residence time contact wall-bound

Figure 3.7: Filtered wall-bound events. a) Incident angle θi (blue) and outgoing angle θo (red). b) Minimum distance lmin with the
contact region indicated by the red dashed line. c) Residence time in the surface region tres, with the red dashed line at 2[s].

3.3.2. Reflection
Unlike with the wall-bound cells, we study the reflecting cells separate for the events that came within range
of contact lc = 20[µm] or not in Figure 3.8. We define the incident and outgoing angle at the begin and end
of the surface event at ltrs = 100[µm] away from the boundary. We start with the cells that came within reach
of contact. In Figure 3.8a we find that the reflection of these events is well presented in the histogram with
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a clear peak at incident angle of θi ∼ −70o and outgoing angle of θi ∼ +70o, with much similarity as what is
observed in the flow-chamber of section 3.1. With contrast the wall-bound events in Figure 3.7a, there is in
Figure 3.8a by the definition of the reflection events no overlap at the origin. In addition we find in Figure 3.8a
that the incident angle is slightly more spread around θi ∼−70o, whereas the outgoing angle narrows it peak
around θo ∼ +70o at departure. As before with the wall-bound cells, we find in Figure 3.8b the minimal
distance falls within narrow range of contact ∼ 10[µm], rather than being distributed over the contact region
up to lc = 20[µm]. In Figure 3.8c the residence time counted for the cell that came within the contact region
approach from and leaving to the bulk, peaks at a finite tres ∼ 2[s] where-after it decays in a long tails including
both our typical event of Figure 3.5a and Figure 3.5b. The peak value at tres ∼ 2[s] indicates that the surface
reflection is dominated by short touch to the the surface as it takes about 2 second to approach and depart
the surface.

We continue with the cells that reflected of the surface but not came within reach of contact. These event
would be to high interest, as they could be of hydrodynamic origin and reveal hydrodynamic interactions.
First we note that in our experiments we count much less events only within the order of hundreds O (102).
This is could very well be due the majority of the cells swimming up and down the flow domain, and therefore
approach the surface such that they will always impact it. In contrast with the contact region we find in
Figure 3.8d that the reflection takes place spreading out from moderate angle. In Figure 3.8e the minimum
length scale to the surface is found to be distributed more less uniform, hence indicating no specific region
attraction. As we study the residence time in Figure 3.8f we find a significant drop below the previous surface
approach and departure at tres ∼ 2[s], this verify that most of the cells did not fully approach the surface.

(a) Angle-in/out contact (b) Minimal distance contact (c) Residence time contact

(d) Angle-in/out no-contact (e) Minimal distance no-contact (f) Residence time no-contact

Figure 3.8: Filtered reflection events. a-c) Reflection with contact. d-f) Reflection with no contact. Along the columns of the figures
grid we find from left right, the incident angle θi (blue) and outgoing angle θo (red), the minimum distance lmin with the contact region
indicated by the red dashed line, the residence time in the surface region tres with the red dashed line at 2[s].

In the typified reflection events we find much indication for a correspondence between the incidental and
outgoing angle of orientation of the algae along its trajectory. We continue to study whether there would be
such a mechanism of reorientation in more detail by asking whether there is a conditional relation between
the incident and outgoing angle [11]. To do this we compute the conditional probability (CP) to the outgoing
angle θo conditional to the absolute incoming angle |θi| denoted as P (θo| |θi|). We do this again separately
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for the contact and no-contact zone to later discuss possible discrepancies that could be of hydrodynamic
origin. We start with the contact zone in Figure 3.9a, this figure should be read as: "How does the (absolute)
incident angle map most likely to a outgoing one?". We find in Figure 3.9a that moderate incident angles
|θi | < 45o map to higher outgoing ones above the inset bisectrix (dashed red line) at θo ∼ 50o . On the contrary
we find that incident angle above |θi | > 70o map back by a linear trend at lower θo . This indicates a specific
boundary interaction where the outgoing orientation of the organisms mapped around θo ∼ 70o. We continue
to question whether there is relation between the minimal length-scale of the event and the deflection angle
∆θ ≡ θo −θi as we plot the CP of P (∆θ|lmin) in Figure 3.9b. Within the contact region it can be found on the
right that the most prominent re-orientation takes place within lmin ∼ 10[µm], whereas less events where
captured as it spread out to lc = 20[µm]. Less prominent results are obtained for the length-scale outside the
contact region > lc = 20[µm], since we have much less available data point. However we do find indication
that in this region the reorientation mechanisms completely changes. Due less data point we increase the bin
size and in Figure 3.9c find rough results that the outgoing angle has much less correlation with the (absolute)
incident. More interesting is however that in Figure 3.9d the deflection angle is found to decrease with the
minimal distance. This is much to of our interest, as in this region this would be due long range hydrodynamic
forces.

(a) P (θo| |θi|) @ contact (b) P (∆θ|lmin) @ contact

(c) P (θo| |θi|) @ no-contact (d) P (∆θ|lmin) @ no-contact

Figure 3.9: Conditional probabilities (CP) of reflection events. a) Angle-out θo to (absolute) angle-in |θi| at contact. b) Deflection ∆θ to
minimal distance ltrs at contact. c) With increased bin size due less data points, angle-out θo to (absolute) angle-in |θi| at no-contact. b)
With increased bin size due less data points, deflection ∆θ to minimal distance ltrs at no-contact.
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3.4. Cell-Cell Interactions
We continue to the second objective of this thesis, which was is set to study of interactions between the
cells. We count cell-cell events looping over all the algae and ask which algae saw another one within relative
distance between the cells below a certain threshold range ltrs. By this procedure it is clear that we count
all events twice from either viewpoint of the individual micro-swimmer. We set the threshold as before with
the cell-wall interactions to ltrs ∼ 100[µm] based on the boundary attraction region. This length scale lies well
within a minimal mean free path of about lmfp ∼ 200[µm] based on the most dense 2× diluted suspension, i.e.
approximately 500[cells] in the flow domain of 2×2×1.2[mm]. We count a overall number off event of O (104),
which we limit our study only to the bulk, outside the boundary regions of the top and bottom glassware. In
this section we stress that we only touch upon the complexity of the defined cell-cell events in light off the
cell-wall events, where the cell-cell interactions add up to much degrees of freedom with respect to the fixed
boundary as they are freely suspended in the fluid.

First we start to present 3 distinct typical cases which can be found in the first 3 rows on the page of
Figure 3.11. In the figures in left column of Figure 3.11, the 3D trajectories are plotted with time as color-code
to indicate the direction of swimming. In the figures in the right column of Figure 3.11 we include the relative
distance corresponding to the 3D path as time series with the color-code as the relative angle of approach
between the organisms. Here the relative angle between a track l and another track h is defined by their
tangent vectors t as θ ≡∠(tl ,th) ∈ [0o,180o] as can be found in Figure 3.10.

In Figure 3.11a we find trajectories for which the algae meet each other in counter direction at θ→ 180o ,
this we will refer to as counter-swimming. We find in Figure 3.11a their trajectories only shortly touches
within reach of 5 body-lengths, where after they quickly pass by. It can be seen that as the organisms comes
withing reach of 5 body-length, both the paths of the two organisms are found deflected, where after it de-
parts at conserved angle. This is to much interest as it indicates some form of interaction without contact
between the organisms, and apparently with no consequence to their relative orientation based on their tan-
gent vectors. In Figure 3.11b we find a typical trajectory that crosses angle of θ ∼ 90o , we will refer to this as
cross-swimming. Again both organisms come within reach of ∼ 5 body-lengths, and as well depart at con-
served angle. We end with the last distinct type of interaction in Figure 3.11c. This yields a case which two
organisms where more slowly approaching at moderate relative angle of θ ∼ 20o swimming in the same direc-
tion, this we will refer to as co-swimming. We find similar behavior which the previous discussed trajectories,
whereas this case specific approaches up to ∼ 2−3 body-lengths. Note that the co-swimming event they both
deflect their path to the right (going down).

Introducing these three typical types of passing trajectories, we have excluded a much richer set of tra-
jectories. Therefore, to indicate the complexity of the trajectories that come close, we have included in Fig-
ure 3.11d two trajectories that appears to be co-swimming to some extend, however in a much more complex
3D path. Here we find some form of randomization of the outgoing angle at the threshold length ltrs. Note
that for hydrodynamic interactions such events would of large interest, asking whether these "acrobatics"
would be due hydrodynamics in the farfield? In Appendix C we have included some more cell-cell events of
higher complexity to give a wider impression of the diversity of events, as is encouraged to be explored.
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Figure 3.10: Schematics of the cell-cell events. On the left a case of counter-swimming is illustrated, and on the right a case of co-
swimming. In the middle a sketch of the no-contact and contact regions are sketched, and on the bottom the angle definition of the cells
with respect to each other is illustrated. ltrs is indicated as a circle surrounding both organisms. Note that this picture is much simplified.
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(a) Counter-swimming

(b) Cross-swimming

(c) Co-swimming

(d) A case of more complexity

Figure 3.11: Typical cell-cell events in time span of 10 seconds as found in the 16× diluted experiment. a) Counter-swimming char-
acterized by large relative orientation θ → 180o. b) Cross-swimming at θ ∼ 90o. c) Co-swimming at moderate relative angle θ → 0o.
d) Complex co-directional case with synchronous behavior and quasi periodic drifting distance at the far-field. In red we denote the
contact region and in black the threshold ltrs that define the events.
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In the overall complexity of trajectories that come within reach of each other we attempt to schematize
their event in Figure 3.10. We continue to use the subscript i,o for the incident and outgoing orientations
between the organism respectively. In light of the cell-wall events we continue with similar definitions for the
residence time tres and minimal length-scale lmin, and record in the incident and outgoing angle at ltrs. Note
that the schematics of Figure 3.10 do not include the dynamic evolution op the individual paths by the micro-
organisms, therefore is much simplifying. This limit our access to these events as we cannot differentiate
whether the event was of simple signature as in Figure 3.11a to Figure 3.11c, or of complex "acrobatic" form
as in Figure 3.11d.

(a) Minimal Distance (b) Angle-in (blue) angle-out (red) (c) Residence time

Figure 3.12: Cell-cell events. a) Histogram of the minimal distance of approach lmin, which only the green part is considered in the
remainder as explained in the text. b) Relative angle of approach θi (blue) and departure θo (red), with linear increase up to domination
by counter-swimming cells. c) Residence time tres within of the events, with sharp peak at tres ∼ 1[s].

As we study the different types of sketched behavior, we find wide range of different types of interactions,
whereas in the cell-wall interaction we could already differentiate between reflecting cells and wall-bound
cells. In Figure 3.12a we find, as the organisms come in reach with each other, that much less events where
captured that approached within a range of contact with the cell body lc = 20[µm], i.e. 2× a half cell body plus
flagella of either one of the organisms. When we study these events in more detail we find that they are af-
fected by experimental artifacts presumably due long time exclusions that arise when the cells remain nearby,
which the the algorithm of section 2.4 is not designed to deal with. For this reason we continue to only con-
sidered the no-contact data in our reconstruction trust worthy enough, and filter all data that remain outside
the contact region. In addition we filter the trajectories that where tracked for sufficient time (> 2[s]) to ex-
clude short term triangulation’s, which are not revealing much information. Now we are left what is indicated
by the green bars in Figure 3.12a, we find for both the blue and green bars a more-less linear trend increase at
minimal separation length, outside the contact region. In the histogram of Figure 3.12b we find that there is a
linear increase in event counts from co-swimming incident and outgoing orientation to counter-swimming
of the organisms along their trajectories. The dominating events of counter-swimming is presumably best
explained by the up and down swimming of the cells between the top and bottom glassware, which would
increase the frequency of events with counter swimming cells. Note that this count not necessarily means
that there less cells co-swimming. These cells could have had longer lasting events, therefore less frequently
counted. As we turn to the residence times in Figure 3.12c we find that the residence times of the overall
events fall mostly within the span of tres ∼ 5[s], with a sharp peak at tres ∼ 1[s]. In case of co-swimming cells,
we would expect to find long residence times, however this might be limited by the geometry of the flow-
domain. Due the up and down swimming cells we would likely be limited to find cell-cell residence times
within tres ∼ 10[s] which would more less correspond with co-swimmers crossing the height of the domain.

So far we have not made any attempt to quantify how different considered variables θi,o, lmin, tres, could
relate to each other. In a similar vane to the cell-wall interaction we continue to explore whether there are
conditional relations between the variables, as explained and studied in the end of subsection 3.3.2 for the
cell-wall events. We start with the question what typical outgoing angle θo we find at certain incident angles θi

between the organisms that pass by each other. In Figure 3.13a we compute the conditional probability (CP)
of P (θo|θi). We find that the conservation of relative incident angle and outgoing one between the organisms
as was found in Figure 3.11a to Figure 3.11c, is well reflected as most events follow the bisectrix indicated by
the red dashed line as θo ∝ θi in Figure 3.13a. As we focus on the spread around the bisectrix we find at mod-
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erate angles up to θi ∼ 90o to have some bias in spread that map higher relative outgoing angles between the
organisms. This raise the question whether this would indicate a weak tendency to a divergent re-orientation
as could be expected for puller type micro-swimmers [51]. However this could as well be a cause by the do-
main of the relative orientation angle of θ ∈ [0o,180o], that allows no symmetric spread at moderate angles
of θ < 90o along the vertical direction in Figure 3.13a. At last in Figure 3.13b we do find that there is some
correspondence between incident angle and residence time between the organisms, which co-swimming or-
ganisms remain longer together at moderate relative angles. This could as well explain the increase spread
in Figure 3.13a as the organism could diffuse its orientation on a longer time-scale. We end to note that the
conservation of angle is not necessary trivial consequence of cells ignoring each other, which such ignorance
would be well illustrated by the cross-swimming cells of Figure 3.11b. As was shown in Figure 3.11a cells can
deflect their paths in near reach of each other, or slowly turn in similar direction as was found Figure 3.11c,
these cell not necessarily ignored each other, while they did conserve their relative orientation.

(a) Angle-out to angle-in P (θo|θi) (b) Residence time to angle-in P (tres|θi)

Figure 3.13: Conditional probability distribution to the no-contact zone of the cell-cell events. a) Outgoing angle to the incident angle,
with overall conservation of angle θo ∝ θi. b) Residence times conditional to the incoming angle showing a extended residence time at
moderate incident angles θi < 90o.
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Discussion

As was found in chapter 3, the wild-type cells unexpectedly explored the domain mostly swimming and down,
whereas with the mutant cells mainly crowd the surface. This chapter continues to discuss on the physical
results of chapter 3 obtained with our methods as described in chapter 2, and is structured as follows. First we
will consider the dynamics of the individual micro-swimmers and discuss our results in both biological and
fluid mechanics context to work by others. Second we will consider the cell-wall interactions, and compare
our results in the unconfined fluid domain on similar studies done in the confined quasi 2D geometry [11, 43]
. We propose that the results obtained by the cell-wall events can explain the up and down swimming in the
bulk of the wild-type cells. The cell-cell interaction will only be considered shortly, since we are still in need
for a better metric to study these events. We discuss our result up to the resolution of the experiment, i.e.
limited to the positional information within the reconstruction uncertainty. Our discussion will only attempt
to shed light on the actions of the flagella by use of work by others, as the shape of the algae is not captured
in our experimental methods.

4.1. Individual Swimming Dynamics
In chapter 2 we found that the algae typically swim along helical paths, which we found three distinct types
of trajectories, swimming up and down, swimming with frequent reorientation and circling at the surface. In
this section we focus on the trajectories in the bulk to discuss the dynamics of the free swimming cells, as it
was found that the presence of the surface influences the dynamics.

Crenshaw [16] first performed a 3 dimensional reconstruction on the motility of algae to study the mech-
anism of photo-taxis. In this study is was found that without significant light the algae swim in left-handed
chiral helical trajectories, whereas in the presence of sufficient light it was found that the chirality changes
to right-handedness. In the experiments of chapter 3 we find that 67.81±3.88[%] of the algae swim at left-
handed chirality in the bulk. In light of the work by Crenshaw [16] this would well explain that the majority of
our cells do not respond to the LED illumination, whereas only a much smaller portion of the cells responds
to the LED source by flipping its chirality. In addition to the long helices made by the cells that swim up and
down, we as well find some trajectories to frequently reorient during their exploration of the domain. This
could be due cells colliding frequent with other cells, however this we think is unlikely since we do as well
observe long helices swimming up and down. A better explanation of this frequent reorientation would be
found with the work by Polin et al. [69] who reported similar behavior as an eukaryotic version of the run and
tumble mechanism for bacteria, that mediates periods of long runs with reorientation to explore the envi-
ronment. In the work by Polin et al. [69] it was found that the algae reorient more frequent in the absence of
light. As our lighting conditions are mild, this would allow some portion of the cells to be in search of light,
and therefore more frequently reorienting. This would well explain the frequent reorienting behavior of some
algae as we find it in line with the work by [69], however we do not continue to study this in more depth.

As reported well in the literature many microorganisms propel along helical trajectories, as we find as
well for the experiments of chapter 3. In our experiments we find an overall swimming speed of V = 106.63±
35.17[µm/s] and a rotation rate of about |Ω| = 10.00±8.14[s−1]. This means that based on the size of the algae
lb = 10[µm] the cell revolves and displaces 10 bodies a second. Lee et al. [52] recently studied the dynamics
for the likewise dual flagellated microorganism P. Minimum that is a slightly larger micro-swimmer of lb =
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15[µm]. Our results go well in line with the work by Lee et al. [52], who found slightly slower speeds of about
V = 79.15±16.90[µm/s] and similar rotation rates of Ω = 7.43±3.10[µm/s]. However in our results we find
much more spread. This could be well explained due the tracking of many microorganisms at once, whereas
Lee et al. [52] only followed a few cells for long times using a single camera imaging system. Despite the
increased spread we do find clear peaks of radius at R ∼ 5[µm] and pitch P ∼ 50[µm] in our data. This would
indicate that the algae swim along 2× wider helical and more elongate trajectories compared to P. Minimum
with radius R = 3.61[µm] and pitch P = 25[µm] [52], with a similar aspect ratio of the helix shape (R/P ). In
Figure 4.1 we have included our results on the pitch vs. velocity (Figure 4.1a) and a reprint of the work by Lee
et al. [52] (Figure 4.1b) as comparison how the velocity scales with the pitch for two microorganisms. Here
it is clear that we have as well contrast with the work by [52], which we find that the wild-type algae have a
tendency to swim at left-handed chirality, whereas they report a equal probability of left and right handedness
for P. Minimum. This might be explained as the microorganism P. minimum has no photo-receptor, which
has been reported to influence chirality of the algae by Crenshaw [16] as explained at the beginning of this
section.

(a) Wild-type (cc125) (b) P. Minimum [52]

Figure 4.1: Comparison of the velocity versus pitch. a) The measured pitch and velocity for the wildtype (cc125). b) Reprint of the work
by Lee et al. [52] on the likewise organism P. Minimum.

4.2. Cell-Wall Interactions
In the beginning of chapter 3 we find that the algae are distributed over a non-uniform concentration profile
over the height of the domain. This concentration profile is to interest since the found increase in concen-
tration at the boundaries of the domain indicate some form of boundary interaction. Based on the concen-
tration profile we rationalized a characteristic length-scale of lbnd = 100[µm] over which the concentration
increased towards the boundary. This overall concentration profile over the height of the domain is found to
have much agreement the work by Lee et al. [52] on the likewise microorganism P. Minimum, which the over-
all concentration profile as well extends up to lbnd = 100[µm]. Similar cell concentration profiles have also
been widely reported for spermatozoa and bacteria, and can be explained for bacteria by collision with the
surface mediated by hydrodynamics forces [7, 56]. Due the mechanical origins given to explain the surface
accumulation, our results suggest that a similar mechanism is at stake for the algae.

As excluded in the previous section the dynamics of the cells where found to be perturbed by the presence
of the boundary. In section 3.2 we found that our typical example of circling algae at the boundary was swim-
ming faster, however we did not find an overall increase in the velocity, with V ∼ 107.18±34.52[µm/s] in the
bulk and V ∼ 106.53±36.64[µm/s] in the surface region. On the contrary the rotation rate in the experiment
increased to |Ω| ∼ 12.36±9.84[s−1] at the surface over |Ω| ∼ 8.34±6.35[s−1] in the bulk, whereas the chirality
changed to almost equal division with left-handed chirality of 54.618±1.71[%] over 67.8±3.88[%] in the bulk.
Our results in the boundary region contrast with the work by Lee et al. [52] for the likewise P. Minimum. In
their work they found an mild increase in the velocity from V ∼ 79.15±16.90[µm/s] to V ∼ 85.60±14.14[µm/s],
and a decrease in the rotation rate from |Ω| ∼ 7.43±3.10[s−1] in bulk to |Ω| ∼ 7.46±3.17[s−1] at the boundary,
whereas they did not report any change on the chirality of the helix trajectory. Here our results for the veloc-
ity contrast with a hydrodynamic point of view, as it would be expected that the velocity near the boundary
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would increase [51].

We find that the cells that remained at the surface for long times where found to circle at the surface
within range of flagella contact. This circling behavior has been explained by the work of Lauga et al. [48] in
terms of short range hydrodynamic forces for bacteria, due a force balance between the head and helical tail.
Again due the mechanical origin of the hydrodynamic explanation [48], we could expect this to be as well
responsible for the circling motion of the algae. However we did not capture the detailed action of the flagella
in our experiments, hence we cannot rule out flagella contact, which as well could explain this behavior as the
organism is within range of flagella contact. The flagella interaction with the boundary could as well perturb
the overall chirality to 54.618±1.71[%] and explain the increase in rotation rate as reported here. At last we
found that most of the cells that remain near the boundary tend to swim co-planar to the boundary, this is
in well agreement with the work by Lee et al. [52], who found the same similar behavior. We end to note that
not all cells that come in contact with the boundary and remain near circle at the boundary, we found as well
cells that quasi periodically touch the surface. Such complex surface interactions would interesting to further
study in light of the work by [26] on the periodic waltzing of the much larger Volvox lb ∼ 300[µm].

We continue to discuss the cells that approached the bottom surface of the flow domain from the bulk and
left by reflection. Previous work by Kantsler et al. [43] in a quasi 2D Hele-Shaw cell of two closely packed plate
at separation distance δ = 25[µm] showed the wildtype cells come to the boundary and can escape again,
whereas the mutant cells do not escape after arrival. This would well explain why we find that the mutant
(mbo-1) cell remain to crowd the surface. Here we propose that this could be due the reversed swimming
stroke [43], where they mostly go to the surface due slight bottom heaviness [1], which would sink and orient
the organism to the bottom boundary. For the wild-type (cc125) cells it was found by Kantsler et al. [43] that
upon arrival most cells come in contact with the surface by their flagella. In the experiments presented in
subsection 3.3.2 it was found that most of the algae indeed come within contact range below lc = 20[µm] at
10[µm]. This would imply that the contact between the flagella indeed dominates as reported [43], however
here we cannot differentiate whether this is direct contact or hydrodynamic lubrication with the flagella as
was recently found to have different consequences by Contino et al. [11] for algae scattering of micro-pillars.
In addition to the work by [43] we as well track the organisms at much longer time scales. In line with their
work we find reflection events that only touch upon the surface with short duration of ∼ 0.5[s] when we
compensate for the entrance and departure time of about 2[s]. In contrast we find that the algae as well
can spend a much wider range of residence times at the surface, as both seen in the typical examples of
section 3.3 and the computed residence times of subsection 3.3.2. In case of incident and outgoing angle
during the reflection event we as well find significant difference that much contrast the overall conclusions
by [43]. Whereas Kantsler et al. [43] find a loss of memory of the incident angle and identifies a trapping
mechanism, we find that the organism approaches and leaves the boundary at almost symmetric reflection
mostly at θi ∼−70o , θo ∼+70o. As Kantsler et al. [43] find a trapping mechanism due the loss in information
of the incident angle, we identify a most likely departure at θo ∼ 70o, hence no trapping of the microorganism
and identify a reflection mechanism. To some extend this difference can be explained by different definitions
of the cell-wall event. Whereas the work by Kantsler et al. [43] focuses on the very near wall region at 2 body-
lengths away from and 5 body-lengths along the boundary, our experiments zoom out to much less confined
region up to atleast 10 body-lengths in all directions. This suggest that experiments by Kantsler et al. [43]
could have only partially captured our definition of the wall event, as we as well report much longer residence
times near the surface during reflection event. Here it remains to debate what is a better definition of a cell-
wall event. On the other hand this could as well be due the confined environment of the experiments by [43],
which much restricts the motion of the organism, whereas our experiments do not do this.

Additionally to the work by [43] we identify, within the definition of our events, that their is strong corre-
spondence between the incoming and outgoing angle for the reflecting cells from the bulk. This is to much
interest how cells interact with physical boundaries, as we have studied as the end of subsection 3.3.2 in form
of conditional probability. For the cells that come withing contact reach to the boundary, we find that mod-
erate absolute incoming angles are mapped at high outgoing angles. On the other hand, increased absolute
incoming angles map to the outgoing angles that scale along a linear trend that crosses the bisectrix both
at |θi|&θo ∼ 70o. Such a trend was not found for the algae that come in range with the boundary at no con-
tact, however so far we can only notice the discrepancy between the two as the no-contact zone had only
few counts. We reprint the results at the end of subsection 3.3.2 all together for the contact and no-contact
region in Figure 4.2a, and continue to discuss why this is to our interest. We propose this mechanism can
well explain why the algae swim up and down in our flow domain in terms of a fixed point operation when we
take into account the overall aspect ratio of the flow chamber. The overall aspect ratio of the flow chamber
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is about h/D ∼ 0.1, with h the height and D the diameter. This forces the frequency of collision with the top
and bottom boundary separated at h higher than the extending sides of the domain separated at D . In term
of a statistical sampling process this would yield a recursion between the top and bottom boundary as,

θn+1 = fio(θn).

This recursion process is sketched in Figure 4.2b. Here we typify the mapping between θi and θo by a coarse
model as the green line in Figure 4.2a and Figure 4.2b as,

fio(θi) = 45o +0.33|θi| with θi ∈ [−90o,0o].

The details of this action at the boundary remain to debate as we do not have detailed information to the
action of the flagella at the boundary. Similar approach was taken done by Contino et al. [11] for micro-algae
scattering of micro-pillars of diameter d ∼ 25[µm]. As we compare the conditional probability of P (θo| |θi)
with the work of [11] we find much difference, with special care to the angle definitions. Whereas moderate
collision with the pillar they report a moderate outgoing angle with less occurrence of contact, we report a
steepened angle of departure, and where they report high incident angles mapping to moderate departures
of +40o, we find a reflecting events at +70o. This discrepancy in the mechanisms of interaction with physical
boundaries is highly like due the completely different geometry of the pillar and the plane physical bound-
ary. In an engineering point of view this is interesting as there is freedom to design specific geometries to
manipulate the boundary action with the cells.

(a) P (θo| |θi|) at cell-wall events

i�

o�

|  |

(b) Fixed point operation

(c) Trajectory swimming up and down

Figure 4.2: Recursion process in the flow domain geometry due the boundary action. a) The measured conditional probability distribu-
tion. b) Fixed point operation between the top and bottom glassware. c) Result of a trajectory swimming up and down between the top
and bottom glassware of the fluid domain.
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4.3. Cell-Cell Events
The cell-cell interactions are much more complexity, since the have much more degrees of freedom than the
cell-wall events as they are freely suspended in the bulk. In light of the cell-wall interaction we have only
attempt to touch upon the complexity of the cell-cell events, which we continue to discuss the results of
section 3.4 towards the current literature.

We start to with the distinctive events that we identified at varying angle of approach. We found for the
presented typical events in section 3.4 that the trajectories come within reach of about 5 body-lengths. This is
interesting since the hydrodynamic domain of influence as discussed for bacteria (lb ∼ 2[µm])extends signif-
icant over 2 body-lengths where after it decay in noise of the environment [28] . Due the mechanical origins
of the hydrodynamic domain of influence, this could very well be generalized to the flow cause by algae [27],
where algae might suffer less from noise in the environment due their larger size and could extend this hy-
drodynamic influence over 5 body-lengths. We find that as the cells come close and then depart again at
conserved angle. This is not necessarily due the cells ignoring the presence of each other, as individual path
are found to show some deflection either shortly at minimal separation or for longer times swimming to-
gether. Such a conservation of the angle of approach has has as well been reported in the theoretical work by
Pooley et al. [70] and Alexander et al. [3]. In their in plane numerical study on three-link swimmers approach-
ing each other, it was found that this conservation of angle is due to the swimming gaits of the three-link
swimmer as being a direct consequence of time reversibility between the shapes of the three-link swimmers.
Despite the indication that such interactions could exist by our experiments, it be would oversimplifying to
relate the shape transition of algae to the three-link swimmer, as the algae has a much more complex shape
and time dependent flow field [36, 46].

Studying all the events together, we found that the cells in the bulk can come within close reach of each
other up to a length scale that would allow contact between the cell bodies at lc = 20[µm]. However we found
this is much less frequent, where most cells remain within distance of no-contact with an increasing count
of events at larger minimal separation. The only experimental work that has been mentioned in this thesis
on the interaction of two microorganisms away from boundaries, has been carried out for two much larger
Paramecia [41] in the confined geometry. Here it was reported that the Paramecia only interact in near the
contact range by reorientation. However since our introduced track matching algorithm of section 2.4 has
not been designed to deal with long time occlusion of the particle images in the camera plane, we had to
exclude these events that where counted at contact between the cells, as these events could be affected by
tracking artifacts. Therefore, unfortunately, this work cannot further discuss the near field interactions to-
wards what was found with Paramecia [41]. Limiting the events as described in section 3.4 we did not found
much indication of distinct types of events like with the cell-wall interactions. We therefore directly contin-
ued to see whether we could trace some form of conditional relations between the variables of interest. We
found that indeed most cell pass each other at conserved relative angle, which at moderate incident angles
the cells where found to have increased residence time. We found that at moderate angles of approach the
distribution of the outgoing angles increases by some spread in the conditional probability at larger deflec-
tion. In light of the work of by Lauga and Powers [51] this deflection to larger outgoing angle could be due
divergent reorientation based on the overall flow signature of the wild-type cells, which can be identified as
a puller. However since at moderate angles the residence time as well increases, this could as well be due to
reorientation of the organism itself on longer timescales.

Unlike with the typical events that where identified at range of angle of approach, as well a case of much
more complex interaction was shown. Many complex behaviors of cell interactions (e.g. [8]) can be thought
that could find unexplained mechanisms of interactions that have not been captured by our study of the
experiments here. In light of the numerical work by [40] we end to note that we did find that indeed the
interactions of cells with each other can be very complex.





5
Conclusions

Using the methodology of chapter 2 we have been able to reconstruct and track multiple algae in a 3 dimen-
sion fluid domain. By use of synthetic data we found that tracking algorithm as described in section 2.4 in
the ideal case either marks the Pareto frontier or follows its truncation. As we evaluated the experimental
reconstruction as well towards the Pareto frontier, we found results that we could rationalize to expectation
based on the synthetic data. We found an overall triangulation efficiency of ηrec ∼ 0.7 for the wild-type cells
and much lower ηrec ∼ 0.5 for the mutant cells due the high localized density at the bottom boundary.

Unexpectedly our experiments where found to be dominated by up down swimming between the top and
bottom glassware in the fluid domain for the wild-type cells. Dependent on the cell density we did not find
much different behavior, hence we do not report any phase change of the suspension in range of φdens ∼
O (103 − 104), being as well to interest beforehand the carried out experiments. As reported among many
microorganisms as well as for algae [16, 18] we find in overall that the algae swim along elongated helical
trajectories in the bulk, here mostly up and down the fluid domain. As well do we find that a small portion
frequently reorients, which we subscribe to behavior reported by Polin et al. [69]. We found that the algae
swim at likewise characteristics as their likewise organism P. Minimum as studied by Lee et al. [52], however
with 2× increase in size of their helical path. In contrast with the work by [52] we find that algae have tendency
to swim at right handed chirality in the bulk, instead of equal probability as reported for P. Minimum [52]. This
would be well explained by the work of [16, 18], which the algae in our experiments respond to the mild LED
illumination.

We find similar concentration profiles over the height of the domain as reported by Lee et al. [52]. Within
characteristic length-scale of this concentration profile to the boundary we find that most algae come in con-
tact, and the algae that remain near the boundary tend to align their direction co-planar to the boundary
which is as well reported for P. Minimum [52]. Such concentration profiles and typical behavior have as well
been found among bacteria and spermatozoa, which can be explained as a consequence of hydrodynamic
forces mediated by collision [7, 56]. We find unlike the results by Lee et al. [52] no significant overall increase
of speed of the organism at the boundary, as could be expected from hydrodynamic theory [51]. As expected
from the literature on bacteria, the algae as well swim along clockwise circles at the boundary, this has been
well explained by the work of Lauga et al. [48] in terms of short range hydrodynamic forces between the head
and tail of the bacteria. Here we follow this explanation, however we have no insight of the detailed action of
the flagella at the boundary, therefore with the different shape of the algae the details of this similarity with
bacteria as far as discussed remains unclear. As well do we find that in our experiments that the chirality was
found to be influenced by the boundary at increased rotation rate of the organisms. Short range hydrody-
namics forces or flagella contact could very well explain this behavior, however we have no information on
the flagella and therefore we did not identify the responsible mechanism. Another type of wall interaction is
found for algae that typically touch the wall in a quasi periodic manner. This could resemble some complex
bound state as has been reported for larger Volvox near the boundaries in the unconfined geometry [26].

We turn to the cells that approach from the bulk to the boundary and departed at reflection. Kantsler
et al. [43] reported that flagelar contact dominates cell-wall interactions. We extend these findings to the un-
confined geometry which we measure that the majority of the cells come within close range to the boundary
which we cannot rule out flagella contact. However, in light of the work by Contino et al. [11] it remains to
debate whether the flagella came in direct contact or hydrodynamic lubrication, as we cannot tell from our
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methodology. In continuation we find much contrasting results with the work done by Kantsler et al. [43] in
the confined quasi 2D geometry. Whereas they find a trapping mechanism of the cells at close range to the
boundary, we find a reflection at the boundary with extending residence times. This discrepancy can par-
tially be explained by the difference in the definition of the event. As we capture events over a larger spatial
domains and record for much long residence times, the work by Kantsler et al. [43] is limited to capture only a
part of the event we describe. On the other hand, this discrepancy in results could as well be of physical cause,
since the experiments of Kantsler et al. [43] where carried out in the confined geometry, hence could limit the
motion of the organism. Unlike Kantsler et al. [43] we not report a loss of information of the incident angle, as
we find that there is correspondence between the absolute incident angle to the outgoing one. We find that
at moderate absolute incident angles the outgoing angle increases, whereas at higher absolute incident angle
the outgoing angle collapses on a linear trend that crosses the bisectrix in the |θi|,θo-plane. We find that this
correspondence can well explain why the algae are mainly swimming up and down in our flow domain. We
propose that due to the high aspect ratio of the flow domain the frequency of cells swimming up and down is
higher and therefore the boundary interaction yields a fixed point operation at θ ∼±70o between the top and
bottom of the flow chamber.

We end our conclusions with the cell-cell interactions, which where found to be at much higher com-
plexity. The only experimental work that has been mentioned in this thesis, is on the interaction of two
microorganisms away from boundaries has been carried out for two much larger Paramecia [41] in the con-
fined geometry, which where reported to only interact in near the contact range. However here we limited
our study only to the events that did not came in close contact, since our methodology does not deal with
long term occlusions of the particle images in the camera plane. We find that the frequency of the events of
the cells that are in counter orientation have higher occurrence, this would be best explained as our data is
dominated by up and down swimming cells, which co-swimming is counted with less occurrence. Despite
we still have a sufficient number of event that are co-swimming. We find that the overall conservation of
relative angle of three typical results as identified in the data, is well reflected in the conditional probability
distribution of relative orientation angle out to the incoming one. Such a conservation relative orientation
has been reported in the theoretical literature on the in plane motion of three-link swimmers [3, 70]. However
its is hard to relate the three-link model used to the algae in this experimental work, and therefore we draw
no conclusions between theory and experiments. In addition we discussed that divergent reorientation as
expected from hydrodynamic theory [51] and experimentally identified hydrodynamic domains of influence
[27, 28] could not be identified. At this point we rather stay in line with the conclusion of the numeric work
by Ishikawa et al. [41] who as mentioned that the 3D case of interacting spherical squirmers can be of high
complexity, as is as well found for the algae. We conclude that we have not yet found the right metric to access
the complexity of the cell-cell events in fair detail.



6
Outlook and Recommendations

The methodology developed for thesis can be seen as a simplified version of recent the work by Attanasi et al.
[4], which has been to much inspiration as well to references therein. To simplify the algorithm we did not
deal with occlusions during the matching of trajectories among different camera planes. This had conse-
quence to the extend we could study the cell-cell interactions, as we unfortunately had to exclude the results
that came in reach of contact due long time occlusions. Therefore it would be advisory to deal with occlusions
during the matching of tracks among cameras, this could be done by additional temporal constraints and re-
laxation of the matching constraints [4, 96]. Another improvement could be made in the definition of the cost
function. In this work we matched tracks by projecting the epipolar line using a numeric procedure similar to
the triangulation of the tracked physical object. Here we could as well directly have used the residual in the
triangulation of some candidate match as a trifocal distance less sensitive to ambiguities[4]. Additional, since
the triangulation of the object is a continuous unknown, a mixed continuous integer optimization could fur-
ther centralize the consecutive steps in our algorithm. For such problem there exist efficient methods, such
as mixed integer linear programming (MILP) and quadratic programming methods (QP), and would be ad-
visory to study further. At last during the optimization some form of time-marching could be user to predict
location of objects to improve the rather simple approach of radial search around the particle images in the
camera plane to define tracks.

Based on the experimental results obtained in this work, we recommend that further studies should be
carried out in even more unconfined geometries that would not cause directional bias of up and down swim-
ming due the aspect ratio of the flow-chamber. In larger fluid domains it might as well be of interest to im-
prove the lighting conditions by laser sheet illumination, which could improve the image quality by increased
contrast. For the processing of the cell-wall an cell-cell interaction, there as well remain many interesting dy-
namics to be explored. For example as reported on the scatter of micro-pillars [11], algae have different speed
on approach and decrease velocity on departure of a micro-pillar. Such a more detailed study of the dynamics
of individual organisms could as well likely be observe for boundary interaction in unconfined geometries as
we studied here. Such approaches of more detail could as well shed new light on the cell-cell interactions, as
we concluded to not yet have found the right metric to study these events. Next to the triangulation of the al-
gae, it might as well be interesting to seed the flow with sufficient small tracers to reconstruct the velocity field
around them by tomography, or perform tomography to exploit the detailed shape of the flagella interacting
with boundaries, obstacles or even other cells.

Second we can put the boundary interaction in a more engineering question as: "How can we manipulate
different flows of microorganisms depending on the boundary shape?". It would be nice to study how algae
interact with convex and concave surfaces, as well as patterned surfaces and suspended obstacles in the
unconfined geometry. This will presumably will shed new light on the work done in the confined geometry
[11, 43], which is as well relevant to other microorganisms due the mechanical actuation [20, 23, 31, 33, 67],
Such a study could have as well large impact to new insight to bio-film formation [68].

At last we have only considered a Newtonian fluid in the cell suspension, whereas many microorganisms
life in a non-Newtonian environment, e.g. mucus in the stomach wall. Not much experimental work has
focused on non-Newtonian fluids, which could yield many new types of behavior, whereas the literature
is mainly of theoretical study [49]. Such a study could shed new light on the dynamics of the motility of
microorganisms in different natural environments, here with much relevance to e.g. medical industries.
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Stokesian Background Flow
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46 A. Stokesian Background Flow

(a) 3D Triangulation (b) x y-view

(c) xz-view (d) y z-view

Figure A.1: Approximately 1 minute time capture of an experiment with only few active cells, we recognize a slowly creeping background
flow which we qualify of Stokesian signature. As well can be seen that the reconstruction can poses artifacts like noisy triangulated
particles, here in summation over 1000 frames.



B
Triangulation of the Mutant Experiments
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(a) 4 diluted mutant (mbo-1) (b) 8 diluted mutant (mbo-1)

(c) 16 diluted mutant (mbo-1) (d) 32 diluted mutant (mbo-1)

Figure B.1: 10 second time shot for the triangulation of the mutant backward swimming phenotype (mbo-1). a) Highest density that
was triangulated, with spurious triangulation of the plane definition due poor image quality of the time averaged image frames in each
camera by cells all crowding the surface. b-d) Triangulation of the mutant cells at decreasing density by dilution, with no interesting
dynamics as most cells remain at the surface.



C
Complex Cell-Cell Interactions
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Figure C.1: Cell-cell events of higher complexity which remain to be classified and explored in future work.
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