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Abstract 

Research pertaining to end-use water analysis plays a pivotal role in enabling local 

communities to enhance their management of pipelines, water resources, and associated 

policies. Nowadays, various end-use models have been developed based on diverse 

databases and measurements. Nonetheless, a predominant drawback prevalent in most 

of these models is their limited spatial scope and sluggish computational speed. This 

thesis endeavors to address these challenges through the proposition of a generative 

adversarial network (GAN) based stochastic end-use demand model. The SIMDEUM 

model, a stochastic end-use model, was first published in 2010. Since its inception, it 

has garnered substantial recognition and validation from numerous researchers. Within 

this thesis, the GAN model utilizes SIMDEUM as the training set and undergoes 

validation utilizing a comprehensive measurement dataset, encompassing over 1000 

households from the Netherlands and the United States. Remarkably, the GAN model 

attains an error rate of 12% for end uses, coupled with an R2 value exceeding 0.8 for 

the overall model. In contrast to SIMDEUM, the GAN model significantly enhances 

computational speed by more than 500%. Furthermore, the GAN model can be tailored 

to specific requirements and seamlessly processes raw data.It is concluded that the 

GAN-based stochastic water use model presented in this thesis adeptly simulates end-

use water demand. 

Keywords: End-use water demand, Generative adversarial network (GAN), Long 

short-term memory (LSTM)  
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1. Introduction 

The increase in the number of cities and global population, combined with climate 

change, poses a huge challenge to water availability and water distribution systems 

(Yang et al., 2018). Although residential water accounts for a relatively small 

proportion of total water use compared to agricultural and industrial water, the growth 

rate of residential water use is fast (Flörke et al., 2013). According to the World 

Resources Institute, residential water use increased by 600% from 1960 to 2014 

(Madias et al., 2022). Rapid urbanization makes water scarcity more severe in 

developing countries (Sivakumaran et al., 2010). 

In response to water scarcity, governments and organizations have proposed numerous 

water conservation programs. These measures include water conservation initiatives, 

water restrictions, source substitution and education, etc (Makki et al., 2015). However, 

the effectiveness of water conservation programs cannot be simply measured by 

numerical changes in water use (Makki et al., 2015). A study shows that higher-income 

people tend to buy premium equipment, resulting in more water-efficient showers and 

laundry, but on the other hand, 24% of higher-income people contribute to 80% of the 

water used for irrigation (Willis et al., 2009). To validate the effects of the policy and 

find the methods to further reduce water use, an in-depth understanding of end-use 

water is necessary (Gato-Trinidad et al., 2011). Besides political significance, the study 

of end-use water has important implications for the exploitation and reuse of water 

resources (Mazzoni et al., 2023). Drinking water is high-quality water, but drinking 

water is not necessary for every end use in daily use. Being able to use rainwater or 

recycled water for irrigation or toilets would help significantly in saving drinking water 

(Willis et al., 2013). The volume and availability of local water resources (storm water, 

roof water & recycled water) are highly variable. Learning and building end-use models 

can help governments to systematically plan and utilize these possible local water 

resources and achieve integrated urban water management (Kumudu et al., 2011). 

Given that domestic water consumption is discontinuous and each end use has its 

specific water quality, bottom-up end-use water models help to understand how 

pollutants/nutrients accumulate (or dilute) in sewers and how future changes in water 

use may affect them (Bailey et al., 2020; Blokker et al., 2008). Water leaks are 

widespread in households, accounting for an average of 5% of household’s total water 

consumption (Gato-Trinidad et al., 2011). In certain instances, leaks have been 
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observed to reach an alarming range of 25% to 53% (Gato-Trinidad et al., 2011). With 

an End-use water demand model, detection of leakage or unknown water use pattern 

becomes possible (Mazzoni et al., 2023). Moreover, the analysis of end-use serves as a 

valuable tool for water companies in formulating effective pricing strategies and 

incentivizing users to cultivate more responsible water consumption habits (Barberán 

et al., 2000). 

End-use water modeling is a method for summarizing and modeling end uses, such as 

toilet, shower and so on. Numerous researchers have endeavored to develop distinct 

models for end-use water demand, with various spatial and temporal scales. Early and 

widely used models include the regression models (Sivakumaran et al., 2010) and the 

PRP models (Steven et al., 2007). The SIMDEUM model proposed by (Blokker, 2010) 

gives actual physical meaning to the model after analyzing the statistical data of users 

and end uses, realizing the transformation from simulating the phenomenon to 

analyzing the essence. Cominola (2016) proposed a stochastic simulation model based 

on the US data and Rathnayaka (2017) launched a new end-use water demand model 

similar to SIMDEUM based on the Australian statistical data. Compared with 

SIMDEUM, this model adds new end uses (e.g. evaporative cooler) and different user 

groups (Rathnayaka et al., 2017b). 

Nevertheless, the existing end-use demand models have limitations in spatial and 

temporal scope. From a spatial perspective, people in different regions have different 

living habits and water using habits. In Australia, people prefer to shower in the 

morning and showering is the largest water consumption end use, but in the United 

States, people prefer to shower at night and the largest water consumption end use is 

the toilet (DeOreo et al., 2016; Gato-Trinidad et al., 2011). Although models such as 

SIMDEUM have the ability to be extended to different regions, people with a good 

understanding of the model and distribution analysis of the corresponding regions are 

required. Given this circumstance, multiple nations, including the United States, 

Australia, and the Netherlands, have independently formulated their respective end-use 

water models. (Blokker et al., 2011; Mayer et al., 1999; Willis et al., 2009). 

Measurements to obtain statistical values require significant human and financial 

resources, and the results are limited by its spatial representation and not generalizable 

(Mayer et al., 1999). This geographical limitation exists not only between countries, 

but also between industries. Encompassing every facet of life through categorical 

modeling is an arduous task, bordering on impossibility. From a temporal perspective, 
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the use of explicit functions to compose time series lacks flexibility. The explicit 

functions have domains (e.g. one day) and cannot track changes outside the domain. 

For many models, each day of the simulation is independent and the mutual information 

between days is zero. The combination of domain and resolution (e.g. 1 day and 1 s for 

SIMDEUM) makes the model accurate within the defined time scale, but blurs other 

time scales and additional patterns are required for better simulation (Rathnayaka et al., 

2017b). For example, variables (or parameters) that need to be tracked and measured 

over long periods of time are often ignored or defined as states, such as summer and 

winter, which makes it difficult for models to simulate the gradual transition of seasons. 

The existing models also suffer from two types of algorithmic problems. Firstly, linear 

equations are widely used to describe the relationship between variables and drivers. 

For example, the frequency of shower in Stochastic Demand Generator suggested by 

(Duncan et al., 2008) is only related to household size. However, studies showed that 

the increase in water use is not simply proportional to the number of people in the 

household (Mazzoni et al., 2023; Rathnayaka et al., 2011). Water consumption is 

influenced by many factors which makes it difficult to be described as a combination 

of parameter-based linear functions (Wang et al., 2018). Secondly, statistical models 

have correlation problems between variates. Multiple variates may each come from a 

statistically meaningful distribution, but do not constitute a statistically meaningful 

multivariate distribution. Creaco et al. (2015) employed a bivariate-normal equation to 

establish the correlation between intensity and duration. However, as the number of 

variables expands, the demand for computational power and time escalates 

exponentially. Therefore, a model with higher computational efficiency is needed. 

Finally, models founded on probability distributions encounter challenges when 

attempting to establish sensible constraints on water usage. For example, users in 

SIMDEUM are likely to use the same end use (e.g. WC) continuously in a short period, 

due to its high probability of occurrence during that period. While this approach 

generates outcomes of macroscopic significance, it often compromises the rationality 

of individual behavior, thereby resulting in excessive water consumption within a short 

timeframe. 

Compared to traditional statistical models, artificial intelligence models have the 

advantage of using fewer assumptions and obtaining good results on variables with non-

linear relationships (Ghalehkhondabi et al., 2017; Wang et al., 2018). In the case of 

SIMDEUM, for instance, assumptions regarding the distribution type are necessary, 
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whereas such requirements are not obligatory within the deep learning model. The 

efficacy of a neural network predominantly hinges upon factors such as the composition 

of the training dataset, the neural network's architecture, and the underlying algorithm 

employed. Generative Adversarial Network (GAN) represents a deep learning model 

rooted in game theory, enabling both semi-supervised and unsupervised learning 

approaches (Creswell et al., 2018). GANs are implicit generative models, which means 

that GANs are devoid of modeling-induced errors (Ian et al., 2020). Another reason to 

use deep learning models is that urban water use is characterized by high complexity 

and high variability, so demand models are required to have the ability to quickly 

change on a small scale in response to the possible changes (Mitchell et al., 2007). The 

changes could include technical upgrade of end uses, adjustment of water policy in 

some regions and the emergence of new water use strategies (or habits). With deep 

learning models, the raw dataset can be directly used to update the model without the 

need for further analysis of data, such as penetration ratios and efficiency.  

SIMDEUM effectively emulates residential end-use water demand through the distinct 

simulation of end uses and individual users, achieving a commendable level of accuracy. 

Nevertheless, SIMDEUM is not exempt from encountering the challenges highlighted 

in the above pertaining to traditional models. This thesis proposes a novel generative 

adversarial network (GAN) based end-use water model for short-term residential water 

modelling. The main research question for this model is: To what extent can the model 

achieve a prediction accuracy comparable to SIMDEUM in the final application by 

processing the raw data directly? On this basis, the model endeavors to address the 

limitations encountered by traditional models in terms of space, time and computational 

speed. 

 

2. Methods and Materials 

2.1. SIMulation of water Demand, and End-Use Model(SIMDEUM) 

According to the findings, the predominant indoor water demand can be accurately 

represented by singular rectangular pulses. In light of this principle, SIMDEUM 

effectively characterizes these pulses using the following equation (Blokker, 2011): 

 Q = ∑ 𝐵(𝐼, 𝐷, 𝜏) (1) 
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 𝐵(𝐼, 𝐷, 𝜏) = {
𝐼    𝜏 < 𝑇 < 𝜏 + 𝐷
0       𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 (2) 

Where I represents the pulse intensity (L/s); D represents the pulse duration (s); 𝜏 

represents the pulse starting time(s). 

SIMDEUM is characterized by its adaptability and versatility. Typical inputs for 

SIMDEUM include the duration (e.g. 2days), household type, weekday/weekend, 

pattern, etc. Furthermore, users can customize most variates, including the composition 

of user groups, the behavior of users and the frequency of end uses, by changing or 

introducing statistical data in SIMDEUM. For a one-day simulation, the output of 

SIMDEUM is an array with 4 dimensions – time, users, end uses and patterns. Users 

can aggregate different dimensions in the output to enable analysis of different aspects. 

Different from traditional models, SIMDEUM does not totally rely on measurements, 

but is based on surveys of specific household members (or groups) and household 

appliances. SIMDEUM consists of 8 different end uses (see Figure 1). Except the 

intensity, other parameters of end uses, including the duration, frequency and start time, 

are related to the user. Among 8 different end uses, dishwasher, washing machine, 

kitchen tap and outside tap are shared by households. The use of the toilet, bathroom 

tap, bathtub and shower are controlled by the performance of each individual user. The 

influencing factors for the end uses include the age of the user, the user's diurnal habit, 

and the time end uses are used. After determining the parameters of users and habits, 

SIMDEUM employs a randomized process to generate end-use parameters, drawing 

Figure 1. Structure of SIMDEUM 
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from the corresponding distribution for each parameter. In Figure 1, SIMDEUM 

calculates from left to right and finally obtains the daily water demand. Although 

SIMDEUM has a resolution of seconds, it does not support sub-daily simulations (e.g. 

from 3pm to 4pm). 

As a stochastic model, SIMDEUM has been proven to be effective and efficient in 

simulating residential water demand (Blokker et al., 2017). Nowadays, SIMDEUM has 

been extended to the non-residential fields. With the support of prior knowledge and 

specific pattern, SIMDEUM has a root mean square error (RMSE) less than 30% and a 

coefficient of determination (R2) greater than 0.7 on time scales of 5 minutes, 1 hour, 

and 1 day (Blokker et al., 2011). Due to the lack of data, the simulation of SIMDEUM 

for hotel and nursing house is not ideal (Blokker et al., 2011). Besides normal water 

demand, SIMDEUM are extended to other water types, such as hot water and waste 

water (Blokker et al., 2017). SIMDEUM has been used by researchers and students in 

their studies (Blokker et al., 2017). Considering that SIMDEUM has achieved good 

results in the field of end use modelling, this study will use SIMDEUM data as input to 

simulate and compare the results with SIMDEUM. 

2.2. Dataset 

The dataset used in this thesis has two sources – SIMDEUM (python version, 

“pySIMDEUM”) and measured data. Measured data includes data from Zandvoort 

(Netherlands) and REU2016 (USA). SIMDEUM data are mainly used for training 

models due to its reliability and large amount and the measured data are mainly used 

for validation. The basic information of the datasets is summarized in Table 5. 

It is found that over 99% of water events in SIMDEUM are less than 1200s (20min) in 

duration. This thesis utilizes data with a resolution of 4 seconds instead of 1 second, 

resulting in a majority of water events having a duration of less than 300 seconds. In 

order to accurately represent water usage in line with the precision of 0.1 L, a variable 

is employed to track and store the accumulated amount of water consumed. This 

variable is consistently updated and propagated until it reaches the threshold of 0.1 L, 

at which point it is added to the water consumption at the corresponding moment. This 

approach imposes a limitation on the data resolution of SIMDEUM in this thesis, 

restricting it to 0.1 L intervals to replicate the behavior of real smart water meters during 

simulation. 
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In SIMDEUM, the different combinations of user types can be grouped into 3 

household types – one person, two persons and family. This thesis combines these three 

types with weekend/weekday feature as input and creates a 4000-day dataset. In 

addition to the family type and the weekday information, other conditions are randomly 

specified inside SIMDEUM. The feature composition of this 4000-day SIMDEUM 

dataset is shown in Table 1 and detailed end use composition is shown in Table 2. 

Weekends and weekdays in this experiment are equally weighted variables. To prevent 

the model from focusing more on weekdays, the ratio between weekday and weekend 

is 1:1 in the dataset instead of 5:2. After inputting the features, SIMDEUM outputs the 

results in the form of a Dataframe (pandas package). The DataFrame results are indexed 

by time, with the end-use name as the column name. Since there is only one pattern in 

pySIMDEUM, there is also one pattern in the SIMDEUM dataset.  

Table 1. Feature composition of the dataset 

Household Size (unit: day) 

 Weekday Weekend 

one person 500 500 

two person 500 500 

family 1000 1000 

Table 2. Composition of the end use in the dataset 

End Use dataset (unit: count(ratio)) 

Toilet 40622(35.4%) Bath tub 39(<0.1%) 

Bathroom Tap 28376(24.5%) Kitchen Tap 30965(26.7%) 

Outside Tap 2524(1.8%) Shower 4839(3.9%) 

Washing Machine 6195(5.4%) Dishwasher 2639(2.3%) 

 

Basic information for water users in Zandvoort area in shown in Table 3. In the 

Zandvoort area, there are not only residents, but also 3 hotels and 32 clubs. Clubs 

account for about 9% of the total water consumption, hotels for 24%, and residents for 

68%. Among hotels and clubs, NH Hotel has the greatest impact (14%).The Zandvoort 

dataset contains not only water consumption in the Zandvoort area, but also information 

on water nodes and households in the Zandvoort area. Blokker (2010) studied the 

residence time of water at four different locations in the Zandvoort area by means of 
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tracers (Blokker, 2010). Location 1, 2 and 4 are based or close to the residential 

apartment; location 3 is located at NH Hotel. Table 9 shows the basic information in 

the Zandvoort area. 

Table 3. Basic information about the Zandvoort area (Blokker, 2010)  

 

REU2016 dataset used in this thesis refers to the Residential End Uses of water report, 

version 2 (DeOreo et al., 2016). The report covers 1,000 households in 23 regions of 

the United States. Compared with the SIMDEUM data, bathroom taps and kitchen taps 

are collectively referred to faucets in REU2016. The proportion of faucet use increases 

sharply, with a corresponding decrease in other end uses (except for bathtubs). 

Compared with Zandvoort dataset, the REU2016 dataset does not include 

demographical information on households.  

Table 4. REU2016 End Use Dataset (DeOreo et al., 2016)  

 

Table 5. Summary of the basic information on the three datasets 

 Amount Q(m3/h) 

Small beach club 21 1.02 

Large beach club 11 1.10 

Residence 310 5.70 

Apartment building 26 10.50 

NH Hotel 1 3.247 

Beach Hotel 1 1.783 

Palace Hotel 1 0.50 

End Use Count (ratio) End Use Count (ratio) 

Toilet 124685(18.9%) Bathtub 1742(0.3%) 

Faucet 495931(75.2%) Outside Tap 4754(0.7%) 

Shower 17079(2.6%) Cloth washer 11184(1.7%) 

Dishwasher 3982(0.6%)   

 SIMDEUM Zandvoort REU2016 

Year / 2009 2013 

Real data ⅹ √ √ 

Type of data Residential residential & non-residential Residential 

Household Information √ √ ⅹ 
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*8 represents the total end use number included in SIMDEUM and 6 represents end 

use number used in this thesis 

 

2.3. Generative Adversarial Network (GAN) 

In machine learning, there are two distinct types of models – discriminative models and 

generative models. Discriminative models focus on learning the boundary while 

generative models aim to learn and model the joint probability distribution of the input 

features and the labels. The generative adversarial network (GAN) is an implicit 

generative network widely used in image recognition/generation, text mining and 

speech synthesis (Aggarwal et al., 2021). GAN was first proposed by (Goodfellow et 

al., 2014) and can perform supervised, unsupervised, and reinforcement learning tasks.  

Figure 2. Structure of (A) Basic generative adversarial network (GAN); (B) 

Conditional GAN (CGAN) 

The basic GAN consists of a generator and a discriminator (Figure 2). Generator 

receives inputs (noise) from a prior distribution p(z) and converts it into samples as real 

as possible by means of generator functions G(z ; θ𝐺). The generated samples are 

then mixed with the real samples and passed to discriminator to distinguish the 

authenticity. Traditional generative network used Kullback-Leibler (KL) divergence 

(also called relative entropy) to measure the distance between the fake distribution and 

the real distribution, but the KL divergence is asymmetric, making it difficult to balance 

Number of households 4000 371 1000 

Time span / 207 days 403 days 

Resolution 4 second 15 minutes 10 second 

Precision 0.1 L 1 L 0.01 L 

End use number 8(6)* / 13(5) 
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generation accuracy and generation diversity (Arjovsky et al., 2017). To optimize, GAN 

uses Jensen-Shannon (JS) divergence to measure the distance of distributions. 

The loss of the discriminator and generator based on the JS divergence are calculated 

as follows: 

 Loss𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑜𝑟 = −𝔼𝑥~𝑃𝑟
[log(𝐷(𝑥))] − 𝔼𝒙~𝑷𝒈

[𝐥𝐨𝐠(𝟏 − 𝐃(𝐱))] (3) 

 Loss𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 = −𝔼𝒙~𝑷𝒈
[𝐥𝐨𝐠(𝑫(𝒙))] (4) 

where D(x) is the discriminator's judgment on inputs, calculated by JS divergence, 

D(x) ∈ (0,1) ; Pr and Pg are the distributions of the real and generated samples, 

respectively. It can be seen that −𝔼𝑥~𝑃𝑔
[log(1 − D(x))]  in Equation (3) is the 

opposite of  −𝔼𝑥~𝑃𝑔
[log(D(x))]  in Equation (4). Attempting to minimize the 

opposite loss function results the generator and discriminator against each other.  

2.4. Conditional Wasserstein GAN 

Although GAN has achieved good results in different fields, instability is nowadays 

still a difficult part in the training processes (Jabbar et al., 2021). Theoretically, GAN 

converges when generator and discriminator reach Nash equilibrium (Goodfellow et al., 

2020). However, this adversarial learning method is found to be instable in practical for 

two reasons (Appendix 7.2): 

1. The support set often comes from low-dimensional manifolds, which cannot fill the 

high-dimensional space in the model, resulting in the gradient vanishing. 

2. Model collapse caused by the asymmetry of KL divergence in JS divergence 

To optimize the convergence problem of GAN, scholars have proposed different 

solutions to specific problems (Yan-Lin et al., 2022). Artificial noise addition on the 

generator and discriminator and batch normalization can mitigate the gradient 

vanishing slightly by increasing the alignment of real and fake distributions. To 

fundamentally solve the convergence problem, Arjovsky et al. (2017) proposed 

Wasserstein distance (equation 5) to substitute JS divergence and subsequently 
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employed it to construct a Wasserstein Generative Adversarial Network (WGAN). 

 W(𝑃𝑟 , 𝑃𝑔) = 𝑖𝑛𝑓𝛾~ ∏(𝑃𝑟,𝑃𝑔)𝔼(𝑥,𝑦)~γ[∥ 𝑥 − 𝑦 ∥] (5) 

In which, ∏(𝑃𝑟 , 𝑃𝑔) represents the joint distribution of all possible combinations of 𝑃𝑟 

and 𝑃𝑔 ; ∥ 𝑥 − 𝑦 ∥  is the norm of x – y and inf is infimum. Compared to JS/KL 

divergence, the Wasserstein distance is smooth and provide meaningful gradients in 

high-dimensional space for two non-overlapping distributions. 

Conditional GAN (CGAN) is a variant of GAN proposed by (Mirza et al., 2014) and 

its structure is shown in Figure 2. Conditional GAN increases the ability of GAN to 

output specific results by introducing conditional variables in both generators and 

discriminators. In this thesis, WGAN-GP is introduced into the CGAN to get more 

stable gradients while outputting specific results. It is worth to mention that the labels 

need to be excluded in the process of gradient calculation. The conditional improved 

loss function is converted to: 

 𝔼𝑥̃~𝑃𝑔
[D(𝑥̃|𝑦)] − 𝔼𝑥~𝑃𝑟

[D(𝑥|𝑦)] + λ ∙ 𝔼𝑥̂~𝑃𝑥̂
[(∥ ∇𝑥̂D(𝑥̂|𝑦) ∥2− 1)2] (6) 

WGAN-GP has relatively stable and smooth gradients in the case of strong 

discriminators. A common training method is to preferentially train discriminators 

several times, and then have the perfect discriminator drive the generator. This thesis 

uses WGAN-GP as the base logic and the training algorithm used in this thesis is shown 

in Table 6. 

Table 6. Algorithm of WGAN-GP used in this thesis 

Algorithm – WGAN-GP 

Require: The gradient penalty coefficient λ, the number of discriminator iterations 

per generator iteration ndiscriminator, the batch size m, Adam parameters α, β1, β2 

Require: Initial discriminator parameters ω0, initial generator parameters 𝜃0 

While θ has not converged do 

   For t = 1,…, ndiscriminator do 

      For i = 1,…,m do 

         Sample real data x ~ Pr, label y, latent variable z ~ p(z), ε ∈ [0,1] 

         𝐱̃ ← 𝐺𝜃(𝒛, 𝒚) 

         𝒙̂ ← ε𝐱 + (1 − ε)𝐱̃ 

         L(𝑖) ← 𝐷𝜔(𝐱̃|𝒚) + 𝐷𝜔(𝒙|𝒚) + λ(∥ ∇𝒙̂D𝜔(𝒙̂|𝒚) ∥2− 1)2 

      end for 
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      ω ← 𝐴𝑑𝑎𝑚(∇𝜔
1

𝑚
∑ L(𝑖)𝑚

𝑖=1 , 𝜔, 𝛼, 𝛽1, 𝛽2) 

   end for 

   Sample a batch of latent variables {𝐳(𝑖)}
𝑖=1

𝑚
 ~ 𝑝(𝒛) and label y 

   θ ← 𝐴𝑑𝑎𝑚(∇𝜃
1

𝑚
∑ −D𝜔(𝐺𝜃(𝒛, 𝒚))𝑚

𝑖=1 , 𝜃, 𝛼, 𝛽1, 𝛽2) 

end while 

 

2.5. Conditional LSTM-WGAN Model 

Yu et al. (2021) employed Long Short-Term Memory Generative Adversarial Network 

(LSTM-GAN) to generate time series data, yielding favorable outcomes. In order to 

validate the applicability of this methodology for water demand modeling, this thesis 

proposed an LSTM-WGAN end-use water demand model. The proposed model is built 

upon the algorithm presented in Table 6.  

2.5.1. Model overview 

In this thesis, the term “LSTM-GAN End Use Model” (LGEUM) is used to express the 

overall model and term “GAN” is used to describe the GAN part in the overall model. 

The LGEUM includes two parts, the “end use model” and the “user behavior model”. 

These two names will be used to refer specifically to two sub-models. Besides the GAN, 

the LGEUM includes a data pre-processing part and a result processing part. 

Referring to SIMDEUM, a total of 8 end uses are used in the LGEUM – Wc, bathtub, 

bathroom tap, kitchen tap, outside tap, shower, washing machine and dishwasher. The 

LGEUM employs a single tap as the smallest spatial scale and a temporal scale of 1 

second. The LGEUM provides three family types (single person, two persons, and 

families with more than 2 people) and distinguishes between weekdays and weekends. 

Designed with flexibility in mind, the LGEUM can incorporate additional end uses and 

demographic characteristics and can be trained on various temporal or spatial 

resolutions. 

2.5.2. Dataset pre-processing 

The GAN has fixed input patterns in both end use model and user behavior model. To 
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have the ability to process raw data, the LGEUM wraps data pre-processing functions 

to convert the raw data into the desired format.  

The preprocessing functions for the end use model provide two raw data input formats: 

1. Input intensity and duration. This input mode is suitable for data that can be described 

by intensity and duration alone (e.g. SIMDEUM); 2. Input complete water events. This 

input mode is suitable for real data (e.g. REU2016).  

The user behavior model simulates the start time and frequency of water use events at 

the same time. For the input required by the user behavior model, the length of the input 

represents the frequency of use and the value represents the start time of the event. The 

maximum length (frequency) of the input is set to 50 because the probability of a 

household using the same end use more than 50 times in a day is less than 5% in 

SIMDEUM. Value from 0-1 represent the start time of the event during the day – 0 for 

no occurrence, 0.5 for 12:00 and 1 for 24:00. To facilitate subsequent result processing 

(section 2.5.4), the start times are sorted in descending order.  

For both end use model and user behavior model, one-hot encoding is used to label 

categorical features. A typical label includes 12 features – one person, two persons, 

family, weekday/weekend, WC, bathtub, kitchen tap, bathroom tap, outside tap, shower, 

washing machine and dishwasher. For most features in the label, 1 means the feature 

exists and 0 means not; for weekday information, 1 means weekday and 0 means 

weekend. Only one 1 is allowed for the same type of feature (e.g., 8 end uses are of the 

same type). To prevent labeling errors and improve efficiency, labels can be generated 

by inputting names or index numbers. Besides generating labels, remove unwanted 

features from labels by index is also feasible. The GAN model can automatically adapt 

to the input label shape, making it easy to extend/reduce the features as required.  

The LGEUM provides functions to repeat samples for a specific end use or feature. In 

this thesis, the samples for bathtubs are repeated 20 times and the samples for outside 

taps are repeated 2 times.  

2.5.3. Selection of kernels and Hyperparameters 

In the LGEUM, Long Short-Term Memory (LSTM) and 1D-Convolutional Neural 

Network (1D-CNN) are employed as kernels in the generator and discriminator 
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components. LSTM is a variant of RNN and has commendable performance in the 

processing of long sequences and time series (Zhou et al., 2023). By controlling the 

transmission state, LSTM can remember important information for a long time and 

forget the unimportant information. The 1D-Convolutional Neural Network (1D-CNN) 

represents a specialized variant of CNN suitable for effectively handling time series 

and textual data. In this thesis, 1D-CNN is used in the discriminators. The rapid 

computational speed of 1D-CNN supports WGAN-GP in enabling efficient and 

repeated training of the discriminator without significantly consuming extensive time 

and computational power. 

The model is highly sensitive to the optimizer parameters, gradient penalty weight and 

learning rate. In the experiment, the parameters for performing the grid search are 

shown in Table 7. To conserve computational power, if the generator loss function 

shows an increasing trend for 20 consecutive epochs, the model will be truncated and 

subjected to review. In addition to grid search, the rest hyperparameters are adjusted 

according to the results of the model. 

Table 7. Parameter set used in grid search 

 Range 

Optimizer Default Adam, PMSProp, Adam (beta_1=0.5, beta_2=0.9) 

Gradient penalty  0.01, 0.05, 0.1, 0.3, 1 

learning rate 0.0001, 0.0002, 0.0005, 0.001 

Activation Tanh, ReLu, LeakyReLu(alpha = 0.1), LeakyReLu(alpha = 0.2) 

Dropout rate 0.1, 0.2, 0.5 

 

The hyperparameters used in the model can be divided into three categories: the overall 

hyperparameters used for training (Table 8), the generator hyperparameters (Table 9) 

and the discriminator hyperparameters (Table 10). In Table 8, the maximum time steps 

of LSTM is set to 300 because long input sequences may result in vanishing gradients. 

In Table 9 and Table 10, the structure of generator and discriminator is inspired by (Yu 

et al., 2021).  

Table 8. Training parameters 

Batch size(end use model) 64 

Batch size(user behavior model) 96 
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Random latent vector 32 

LSTM length(end use model) 300 

LSTM length(user behavior model) 50 

Optimizer Adam (beta_1=0.5, beta_2=0.9) 

Learning rate 0.0002 

Training epoch(end use model) 100 

Training epoch(user behavior model) 500 

Gradient penalty weight 0.1 

Extra discriminator training 5 

Loss function generator Reduced mean 

Loss function discriminator Reduced mean 

 

Table 9. Generator structure 

 End Use Model User behavior Model 

Input layer 32(random vector) + 6(end use) 32 + 6(end use) + 4(family type) 

Layer 1 Dense, 1800, LeakyReLU Dense, 200, LeakyReLU 

Layer 2 LSTM, 4, Dropout = 0.2 LSTM, 8, Dropout = 0.5 

Layer 3 LeakyReLU(alpha = 0.2) LeakyReLU(alpha = 0.2) 

Layer 4 LSTM, 8, Dropout = 0.2 LSTM, 16, Dropout = 0.5 

Layer 5 LeakyReLU(alpha = 0.2) LeakyReLU(alpha = 0.2) 

Layer 6 Dense, 1 Dense, 1 

 

Table 10. Discriminator structure 

 End Use Model User behavior Model 

Input layer 6(end use) + 1 6(end use) + 4(family type) + 1 

Layer 1 Conv1D, 64, kernel size = 3 Conv1D, 64, kernel size = 8 

Layer 2 LeakyReLU(alpha = 0.2) LeakyReLU(alpha = 0.2) 

Layer 3 Dropout = 0.3 Dropout = 0.3 

Layer 4 Conv1D, 128, kernel size =3 Conv1D, 128, kernel size = 8 

Layer 5 LeakyReLU(alpha = 0.2) LeakyReLU(alpha = 0.2) 

Layer 6 Dropout = 0.3 Dropout = 0.3 

Layer 7 Flatten layer Flatten layer 

Layer 8 Dense, 1 Dense, 1 
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2.5.4. Result processing 

The main function of result processing is to merge the results from two sub-models. In 

result processing, days are used as the basic time unit. Water consumption beyond 24:00 

will be added to the morning of the same day (instead of the next day). The water use 

event will regain a 1s resolution (from 4s resolution) by interpolation. 

Masks are utilized to delineate the boundary and, consequently, ascertain the valid data 

points. The length of a water event (or frequency) is deemed concluded when a value 

surpassing the defined boundary is encountered. For the end use model, the presence of 

an intensity value below 0.001 indicates the end of a water use event. For the user 

behavior model, the start time does not necessarily converge to 0 or 1, making it 

difficult to determine the noise. The judgment boundaries are shown in Table 11.  

Table 11. Boundaries for valid start time for different end uses 

End Use Boundary 

Toilet 0.025 < Start time < 1 

Bathtub 0.05 < Start time < 1 

Kitchen Tap 0.002 < Start time < 1 

Bathroom Tap 0.002 < Start time < 1 

Outside Tap 0.15 < Start time < 1 

Shower 0.05 < Start time < 1 

 

2.6. Model Environment 

The model in this thesis is trained based on TensorFlow 2.8-GPU and Python 3.8. In 

addition to TensorFlow, some TensorFlow components (e.g. TensorFlow_docs) and 

sklearn are necessary. 

2.7. Validation Methods 

This thesis uses Root Mean Square Error (RMSE, equation 7), coefficient of 

determination R2, Relative Error (RE, equation 8) and Graphical Comparison as 

performance metrics.  
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For the end use model and the user behavior model, the results generated by the GAN 

are compared with SIMDEUM. The comparisons encompass various aspects of end 

uses, including intensity, duration, volume, frequency, and patterns. In the calculation, 

the SIMDEUM value is treated as the true value and the value generated by GAN is 

considered as the predicted value.  

For the overall end use model, the results generated by the LGEUM are compared with 

the Zandvoort dataset. The number of households assigned to each water node in the 

Zandvoort area is derived by computing the ratio between the base water demand and 

the total water demand. Subsequently, the LGEUM is employed to simulate the 

corresponding number of households. The generated water demand data for each water 

node is integrated with EPANET 2.2 (15-minute resolution), which is utilized to 

analyze and determine both the water demand and water age within the Zandvoort area. 

In the validation process, the generated water demand and water age is compared with 

SIMDEUM, EPANET model (Top-down water demand model) and Zandvoort 

measurement data. The non-residential patterns, such as those from clubs and hotels, 

which are not encompassed within the GAN model, are maintained in the results 

derived from the EPANET model. 

 RMSE = √∑ (𝑦̂𝑡−𝑦𝑡)2𝑇
𝑡=1

𝑇
× 100% (7) 

 RE =
𝑦̂−𝑦

𝑦
× 100% (8) 

Where 𝑦̂ is predicted value and y is true value (or measurement value). 

 

In order to assess and verify the extensibility, the GAN model is fine-tuned using the 

REU2016 dataset. Seventy percent (70%) of the REU2016 dataset is allocated as the 

training set, while the remaining thirty percent (30%) is designated as the test set. Given 

the absence of resident information, the extensibility validation process exclusively 

focuses on the end use model. The intensity, duration, and volume of the end use events 

generated by the GAN are subjected to comparison with the test set of the REU2016 

dataset. 
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3. Results & Discussion 

3.1. End Use Model 

3.1.1. Training overview 

The end use model is designed to determine the intensity and duration of water events 

for each end use. There is no household type distinction between end uses, so no 

additional label entry is required for this section. The end use model is trained for 100 

epochs. The training time for each epoch ranged from 234s to 323s, with a total of 

around 8.3 hours. In the test, using CNN in the discriminator is more than 4 times faster 

than using LSTM.  

3.1.2. Feasibility of GAN simulation end use 

In contrast to SIMDEUM, end use events in GAN do not exhibit identical intensities. 

Shower events are taken as examples in Figure 4 because of their long duration and 

variable pattern. In Figure 4, it can be seen that the shower event generated by GAN 

has an upward trend while SIMDEUM has a stepwise change. The intensity of the event 

in Figure 4(b) is not stable because of three reasons: 1. the results of GAN are calculated 

from random points of the prior distribution (normal distribution in this thesis); 2. The 

variability of intensity in the dataset; 3. The structure of GAN and number of epochs. 

Ultimately, the GAN model incorporates five end uses. The inclusion of washing 

machines and dishwashers is omitted due to their fixed and non-continuous patterns in 

pySIMDEUM. Simulating washing machines and dishwashers (abbreviated as W&D) 

in GAN has the following challenges: 

1. The duration of most W&Ds exceeds 1200s, which means that the GAN needs a 

lower resolution to cover them. 

2. The simulation of GAN is variable. Currently, the pattern of W&Ds in the dataset is 

fixed and GAN has no advantage over SIMDEUM on the simulation of W&Ds. 

3. Water demand of W&Ds is not continuous. In early experiments, separate 

simulations of the water use peaks and intervals of W&Ds were tried. Due to the fixed 

pattern in dataset, GAN simulates the water use peak well (like bathtub in section 4.1.3). 

However, GAN needs another model to simulate the interval between peaks. This extra 
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model requires to determine the number and duration of intervals. In practice, the 

combination of events can easily lead to distortion and an extra model leads to a 

decrease in computing speed and an increase in training difficulty. 

There are two feasible methodologies to simulate W&Ds in GAN: 1. reducing the 

resolution; 2. treating W&Ds as continuous events (as in REU2016). Both of them 

require a more diverse W&Ds dataset and is subject to future validation. In addition, 

GAN is going to allow access to exogenous results. In addition to introducing new end 

uses into the model, end uses with relatively fixed patterns can be independently 

calculated and subsequently integrated into the final results.  

 Figure 4. The shower event generated by (a) GAN; (b) SIMDEUM 

 

3.1.3. Result comparison 

The comparison of event intensity and duration between SIMDEUM and GAN are 

shown in Table 12. This comparison is based on simulations of SIMDEUM and GAN 

for 1000 days each.  

Table 12 illustrates that simulations for longer duration end uses (e.g., shower) tend to 

exhibit shorter durations, while shorter duration end uses demonstrate longer durations. 

This discrepancy may arise from the model's limited capacity to accurately differentiate 

between labels. In general, the intensity of the end use is generally underestimated in 

the whole Table 12. Notably, the extent to which an end use is overestimated in terms 

of duration (e.g., Kitchen Tap) correlates with the extent to which it is underestimated 

in terms of intensity. 

(a) (b) 
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Table 12. Comparison of event intensity and duration between SIMDEUM and GAN 

 

Among the end uses, the toilet and bathtub have small errors in all three metrics. the 

toilet benefits from its largest sample size and the bathtub benefits from its fixed pattern 

and 20 times repeating. However, mere repetition ignores the variability of the water 

event itself. This may lead to high accuracy in the comparison with SIMDEUM but 

distortion in the comparison in the measurement data. Improving the diversity of 

samples is an important direction for further optimization of the LGEUM model. 

Although the kitchen faucet has a small volume error, this is due to the neutralization 

of intensity and duration. Outside Tap has the largest volume error (-26.1%), which is 

mainly caused by its short duration (-28.5%). Results for short-duration end uses (e.g. 

taps) suffer from lower intensity and longer duration compared to SIMDEUM. One 

possible reason is the decrease in resolution (1s to 4s) in the dataset. Overall, most 

relative errors in Table 10 are negative, indicating that the water consumption of events 

in GAN model is less than that of SIMDEUM. 

 Intensity(L/s) Duration(s) 

 SIMDEUM GAN RE(%) SIMDEUM GAN RE(%) 

Toilet 0.084 0.075 -10.7% 60.177 60.248 0.1% 

Bathtub 0.198 0.187 -5.6% 603.223 581.20 -3.6% 

Kitchen Tap 0.042 0.032 -23.8% 26.221 36.716 40.0% 

Bath Tap 0.054 0.045 -16.7% 27.741 40.292 45.2% 

Outside Tap 0.090 0.093 3.3% 233.762 167.05 -28.5% 

Shower 0.131 0.124 -5.3% 525.101 421.13 -19.8% 

Overall RMSE   13.1%   28.5% 

       

 Volume(L)    

 SIMDEUM GAN RE(%)    

Toilet 5.055 4.519 -10.6%    

Bathtub 119.438 108.68 -9.0%    

Kitchen Tap 1.101 1.175 6.7%    

Bath Tap 1.498 1.813 21.0%    

Outside Tap 21.039 15.535 -26.1%    

Shower 68.788 52.220 -24.0%    

Overall RMSE   18.0%    
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Figure 5 shows the probability distribution of the total water consumption for four 

typical end uses. The bathtub is excluded because of its fixed water pattern in the 

SIMDEUM. In Figure 5, the probability distribution of SIMDEUM is a combination of 

multiple explicit probability distributions, represented by the solid blue line. The 

probability distribution of GAN is generated from a histogram of 1000 days of data, 

represented by the orange scatter.  

In Figure 5, the water consumption distribution of GAN's toilets (a), bathroom taps (b), 

and outside taps (d) exhibits a resemblance to that of SIMDEUM. There are clear peaks 

in the distribution of showers in Figure 5(c) because the duration of shower depends on 

the user’s age and the intensity depends on the shower type in pySIMDEUM. Given 

the relatively narrow disparity in intensities, the shower water consumption is primarily 

regulated by 5 user types in pySIMDEUM, thereby leading to the presence of 5 peaks 

in Figure 5(c). The orange scatter(GAN) is overall to the left compared to the solid blue 

line(SIMDEUM), which corresponds to the fact that the shower event in GAN 

consumes less water in Table 12. 

 Figure 5.  Water consumption probability distribution of (a) Toilet; (b) Bathroom 

Tap; (c) Shower; (d) Outside Tap  

(a) 

(c) 

(a) (b) 

(d) 
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3.2. User Behavior Model 

3.2.1. Training overview 

The user behavior model is designed to determine the start time and frequency of water 

consumption events for households consisting of different user groups. To train the user 

behavior model, the full label described in the method section is required. The model 

was trained for 300 epochs, for a total of 2.1 hours. 

3.2.2. Feasibility & Result comparison 

Table 13 shows the comparison of average frequency of end uses in GAN and 

SIMDEUM based on 4000 days. Considering the significant differences in frequency 

among various end uses throughout a day, in addition to relative error(RE), Table 13 

introduces weighted relative error to assess the actual impact of a specific end use on 

the overall user behavior model. Weighted RE in Table 13 is calculated as:  

 Weighted RE =  (
frequency(SIMDEUM)

sum of frequency(SIMDEUM)
)  ×  RE (22) 

In Table 13, there are 6 end uses with relative errors of less than 8%, including less than 

5% for toilet and bathroom taps. The smallest relative error comes from the bathroom 

tap (-3.59%) while the largest relative error comes from the bathtub (-87.5%). The large 

error in the bathtubs is mainly due to the small sample size. The bathtub is hardly used 

in GAN’s simulation. Although the average frequency of bathtub in Table 13 is 0.01, 

for one- and two-person households, the frequency of bathtub is 0, which means the 

user behavior model fails to simulate the bathtub.  

In contrast to the end use model, the user behavior model adopts days as the 

fundamental unit instead of end uses. This change aims to explore potential correlations 

between different end uses within a single day. However, this method leads to a fact 

that the start time pattern of bathtub can’t be repeated for 20 times like events. The 

method of adding weights to the bathtubs without changing the small sample size was 

tried, but it did not bring improvement to the overall model. Due to the low frequency 

(weight), the imprecision of the bathtub has limited impact on the overall simulation, 

resulting in a weighted RE of -0.15%. To improve the simulation of end use with small 
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sample sizes (or low frequency, e.g. bathtub), future optimizations to the structure of 

model and dataset are required. Other ways to address bathtub uncertainty include 

adding human intervention (e.g. repeats) or building new models. 

Overall, Simulation of end use frequencies using GAN is feasible and has yielded good 

results. GAN and SIMDEUM are similar in terms of the frequency of end uses, with a 

RMSE of weighted RE equal to 4.2%.  

Table 13. Average daily frequency of end uses in GAN and SIMDEUM 

 

Not all end uses in SIMDEUM have unique patterns (or distribution). Most end uses 

follow the user's presence pattern, which means the higher the probability of user 

presence, the higher the probability of the end use being used. This algorithm ignores 

the uniqueness of each end-use itself, inevitably leading to conflicting end uses at the 

same time and heavy use of end uses in a short period of time. The GAN model provides 

channels for each end use to obtain its unique “pattern”. These “patterns” interact with 

each other to create a holistic “pattern” for a household. The holistic “pattern” in GAN 

varies with household composition and external conditions. Under the influence of the 

holistic pattern, the pattern of all end uses in the GAN is determined simultaneously, 

rather than one by one.  

In the Figure 6, the start time pattern of the 3 end uses with the highest weighted RE (in 

Table 13) are compared. The pattern curves in Figure 6 are derived from the same 

household combination as in the SIMDEUM dataset. The R2 scores for (a), (b), (c) in 

Figure 6 are 0.73, 0.79 and 0.14, respectively. The R2 scores indicates that the start time 

pattern of toilet and bathroom taps of GAN has a good agreement with SIMDEUM's. 

 SIMDEUM GAN RE(%) Weighted 

RE(%) 

Toilet 15.01 15.74 4.86% 1.58% 

Bathtub 0.08 0.01 -87.5% -0.15% 

Kitchen Tap 15.92 14.77 -7.22% -2.49% 

Bathroom Tap 12.24 11.80 -3.59% -0.95% 

Outside Tap 1.00 1.07 7.00% 0.15% 

Shower 1.84 1.71 -7.06% -0.28% 

Overall RMSE   36.2% 4.2% 
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Figure 6(a) shows a peak in the use of toilets in GAN at around 11:00, which is not 

observed in SIMDEUM. In Figure 5(c), SIMDEUM’s bathroom tap has a start time 

pattern with distinct peaks. The reason for this phenomenon is that unlike the bathroom 

taps, the kitchen taps have its own start time pattern and GAN does not simulate it 

effectively. In Figure 5(c), the GAN maintains a similar pattern to that in Figure 5(a) 

and (b). This may be caused by the impact of other end uses on the kitchen tap. In 

addition, the patterns in the model are closely related to the masks described in the 

Table 11. Therefore, changing the hyperparameters in the mask can make the model 

more closely match the data to be simulated. 

Figure 6. SIMDEUM and GAN’s start time pattern for (a) Toilet; (b) Bathroom Tap; 

(c) Kitchen Tap  

 

3.3. LSTM-GAN End Use Demand Model (LGEUM) 

3.3.1. Model Overview 

The LSTM-GAN Water demand model discussed in this section consists of two 

separate sub-models, the end use model (section 3.1) and user behavior model (section 

3.2). The model adds events provided by the end use model to the corresponding 

(c) 

(a) (b) 
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timeline based on the start time and frequency provided by the user behavior model. 

The output of the model contains 3 dimensions – time, end use and intensity. During 

the process of sub-model merging, within the same household, the toilet will 

consistently employ the same event whenever it is used, while other end uses will 

invoke the end use model for a new simulation each time they are utilized. In practice 

the end use is influenced by many other factors, such as season, wealth and climate 

(Mayer et al., 1999), which is not included in the model. The model uses uniform global 

variables for each part, so that features can be easily introduced or replaced. 

The model is able to process on raw data, without the need to understand the data. Under 

different conditions, the average computing time of GAN simulation for one day is 

0.0527s. Compared with SIMDEUM, GAN has 546% faster computing speed (average 

0.288s). When running the simulation for an equivalent number of days, GAN 

consumes 2181MB of memory, whereas SIMDEUM utilizes 1697MB. In general, 

GAN is more suitable for large scale and large number of simulations. 

3.3.2. Flow Validation 

Figure 7 and Table 14 show the cumulative frequency comparison of Qmax between 

SIMDEUM and GAN for different time scales, based on 300 households. To compare 

with the GAN, washing machines and dishwashers are excluded from the SIMDEUM 

in Figure 7. RMSE in Table 14 is composed of two parts: the absolute values and as 

percentages of the SIMDEUM means.  

It can be seen from the Figure 7, the orange line representing GAN is predominantly 

positioned to the left of the blue line representing SIMDEUM. This indicates that GAN 

exhibits a more restrained behavior in terms of Qmax. The negative RMSE in Table 14 

validates this conclusion. There are two explanations for this phenomenon: 1. Water 

events are more dispersed in GAN, with fewer short-term bursts of water use. There are 

few cases where multiple end uses are used consecutively at the same time; 2. In section 

3.1.3, it is found that the events simulated by GAN have a lower intensity compared to 

SIMDEUM. In Figure 7(a), GAN and SIMDEUM have clear maximum difference 

based on 5 min Qmax. GAN reaches a maximum water consumption of 50L, while 

SIMDEUM reaches 70L. In Figure 6(b), the hourly Qmax of GAN and SIMDEUM 

match well with an R2 score of 0.96. Overall, The Qmax of GAN is basically consistent 

with SIMDEUM, and the average R2 is greater than 0.8. 
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Figure 7. Cumulative frequency comparison of Qmax between SIMDEUM and GAN: 

(a) per 5 min; (b) per 1 hour; (c) per day  

Table 14. Statistics of Qmax comparison between SIMDEUM and GAN 

 

Figure 8. Cumulative frequency comparison of (a) Q and (b) Qdiff between GAN and 

SIMDEUM 

A comparison (500 households) of the flow rate Q and the flow difference Qdiff for a 

time scale of 5 minutes is shown in Figure 8. The R2 of Figure 8(a) and (b) are 0.91 and 

0.96, respectively. In Figure 8(a) GAN uses less water, consistent with Figure 7 and in 

(b), GAN has smaller flow changes. Overall, GAN not only has less short-time water 

 RMSE R2 

Qmax (l / 5 min) 5.41 (-13.5%) 0.71 

Qmax (l / hour) 11.23 (-12.4%) 0.96 

Qmax ( l / day) 84.18 (-22.3%) 0.77 

(a) (b) (c) 

(a) (b) 
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consumption, but also the change of water consumption is smoother.  

 

3.3.3. Water Demand Validation 

Figure 9 shows the water consumption pattern in the Zandvoort area on a time scale of 

15 minutes. The green dashed line plots the average pattern of GAN (2000 households), 

which has no geographical difference. Due to the absence of washing machine and 

dishwasher in the result of GAN, the probability distributions instead of the demand are 

compared in the Figure 9. Due to the presence of hotels, Zandvoort has a higher 

midnight water demand than Haarlem, while the rest of the day the water demand is 

roughly the same. GAN currently only provides residential water simulation and the 

water consumption of GAN in Figure 9 is significantly lower at midnight than the actual 

consumption. In addition, there is a rapid decrease in water GAN’s consumption 

between 20:30 and 22:00, which is much stronger than the actual change.  

Figure 9. Water demand patterns in the Zandvoort, Haarlem area and GAN 

Compared to the residents, clubs and hotels provide significant amount of water 

consumption at midnight in the Zandvoort area, especially the NH Hotel (location 3), 

which counts for 14% hotel water consumption. Without correction, SIMDEUM and 

therefore LGEUM are not suitable for simulating water consumption for the entire 

Zandvoort region. In Figure 10, the GAN retains the midnight water demand of NH 

Hotel in location 3. The Figure 10 refers to (Blokker, 2010), in which the time scale of 

SIMDEUM and the measurement curve is 5 minutes while the time scale of GAN is 15 

minutes.  
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In both Figure 9 and Figure 10, the GAN has a noon water consumption peak from 

10:30 to 12:30, which is higher than measurements. The main components of this peak 

are 49.4% Toilet, 34.3% shower and 9% kitchen tap. This result is consistent with 

Figure 6(a) and shows that toilets in GAN may be overused during this time period. 

Despite the retention of midnight water demand in NH hotel, GAN has a lower midnight 

(1:00-5:30) water consumption in Figure 10 compared with measurements. This 

indicates that retaining part of the water demand cannot completely solve the problem 

of LGEUM's lack of pattern. Compared to SIMDEUM, GAN maintains the same 

downward trend in the evening as the measurements, and the water demand in the early 

morning is more like the measurements. In addition, the different cut-off values for 

different end uses in the mask may play an important role because mask will lead to a 

decrease in the number of value around 0 and 1(around 0:00). However, mask has a 

great influence on the boundary, while the influence on the other values is negligible. 

Figure 10. Comparison between measured and simulated water demand in the 

Zandvoort area (Blokker, 2010) 

The possible changes to Figure 10 caused by the absence of washing machines and 

dishwashers in the GAN model must be considered. In Netherlands, washing machines 

account for about 14% of total water use, and dishwashers account for about 3% 

(Mazzoni et al., 2023). In SIMDEUM, the washing machine are mainly used in the 

morning (7:30 - 11:00) and followed by the afternoon (19:00 - 21:00). Therefore, the 

main effect of the washing machine on the water demand pattern in Figure 10 is a 

possible increase of up to 14% in the morning and afternoon peaks, with a 

corresponding small decrease in the other hours. Considering that washing machine are 

more often used on weekends, during which they are used more evenly than weekdays, 
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the influence of the washing machine on the water consumption pattern may be less 

than 10%. 

Same as Figure 10, all information (except LGEUM) in the Figure 11 are referenced to 

(Blokker, 2010) rather than regenerated. In Figure 11, the blue, orange and green lines 

represent the original EPANET model, LGEUM and SIMDEUM, respectively. The 

water age of SIMDEUM and LGEUM are calculated using the methodology described 

in section 2.7. The light blue area represents the 90% confidence interval of LGEUM. 

The confidence intervals are obtained from multiple simulations of the LGEUM, 

employing diverse initial latent vectors, representing the uncertainty of the model (not 

to variation). Since pySIMDEUM contains only one pattern, the LGEUM trained on it 

lacks pattern variation as well. There are additional patterns are evident in alternative 

versions of SIMDEUM, offering further opportunities for the enhancement of LGEUM.  

Figure 11. Measured residence time and modelled water age at 4 different locations in 

the Zandvoort area: (a) location 1; (b) location 2; (c) location 3; (d) location 4 (Blokker, 

2010) 

In Figure 11 (a), (b)&(c), it can be seen that GAN maintains a similar trend. In Figure 

11 (a)&(b), GAN has a longer water age in the morning and similar water age in the 

(a) (b) 

(c) (d) 
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afternoon comparing with EPANET and SIMDEUM. In Figure 11(c), GAN is very 

similar to EPANET because location 3 is the NH hotel and GAN keeps the pattern of 

NH hotel from EPANET model. Figure 4(d) shows the water age of an apartment 

building of 15 residences and GAN covers almost all measurement points at this 

position. Overall, the GAN matches the measurement points better than the original 

EPANET model for the Zandvoort area but weaker than SIMDEUM. This indicates 

that the bottom-up water demand model can better simulate water demand, while the 

pattern diversity of GAN still needs to be improved. Since the actual composition of 

the measurements is not known, it remains to be verified whether the GAN is correct 

for the composition of the total water consumption. 

3.4. Extensibility validation 

In this section, extensibility of the GAN is validated with the REU2016 dataset from 

the United States. The GAN is trained with the same neural network structure and data 

preprocessing for 15 more epochs on top of the original model. Each epoch takes about 

400s, with a total of 6000s. Due to the incompleteness of the REU2016 data on user, 

there is no extension validation of the user behavior model in this section. In the 

experiment, it was found that the outside tap has an excessive duration in the REU2016 

dataset (Table 15), with an average of 1972s. Therefore, the resolution of outside tap in 

the REU2016 dataset is corrected to 20s instead of 4s while other end uses maintains 

the same resolution. It is recommended to introduce an automatic resolution adjustment 

mode in the data pre-procession part, which allows the resolution to be adjusted 

according to the event length. By introducing this mode, the GAN model can better 

process raw data. 

Table 15 presents a comprehensive comparison of intensity and duration between GAN 

and REU2016 measurements. The end use exhibiting the most substantial error in Table 

15 is the bathtub, with an error rate of 21.22%. A significant contributing factor to this 

disparity is the fixed pattern attributed to the bathtub in SIMDEUM, whereas it exhibits 

variability in REU2016. This results in a fact that the bathtub lacks training (too much 

modular training) although bathtub has a low error in Table 12. This highlights the 

necessity for enhancing GAN specifically for end uses that exhibit limited diversity. In 

REU2016, kitchen taps and bathroom taps are collectively referred to as faucets. This 

change reduces conflicts between similar end uses and significantly increases the 
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sample size of faucet. As a result, faucet has the lowest RE (-4.05%) in Table 15. In 

REU2016, the outside tap is not only used for irrigation, but also for other purposes 

such as car washing, which has a huge demand of water, with longer duration and higher 

intensity. The distinctive features result in a lower error for the simulation of outside 

taps compared with Table 12. Despite the small percentage of toilets and showers in 

REU2016, small errors were achieved in Table 15. One possible reason is the higher 

similarity of the toilet and shower events to SIMDEUM.  

Table 15. Comparison of event intensity and duration between GAN and measurements 

(meas) 

 Intensity(L/s) Duration(s) 

 meas GAN RE(%) meas GAN RE(%) 

Toilet 0.158 0.133 -15.8% 65.34 72.58 11.1% 

Bathtub 0.284 0.278 -2.11% 276.77 342.75 23.6% 

Faucet 0.045 0.046 2.22% 38.59 36.11 -6.43% 

Outside Tap 0.328 0.297 -9.45% 1972.16 1882.64 -4.54% 

Shower 0.128 0.151 18.0% 477.16 379.18 -20.5% 

Overall RMSE   11.6%   15.2% 

       

 Volume(L)    

 meas GAN RE(%)    

Toilet 10.32 9.65 -6.49%    

Bathtub 78.6 95.28 21.22%    

Faucet 1.73 1.66 -4.05%    

Outside Tap 646.86 559.14 -13.56%    

Shower 61.07 57.26 -6.23%    

Overall RMSE   12.09%    

 

The water demand probability distribution for two end uses with the lowest volume 

error (faucet and shower) are showed in Figure 12. The JS divergence for Figure 12(a) 

and (b) is 0.095 and 0.290, respectively. It can be seen from the values in Table 15 and 

the shape in Figure 12, GAN has substantial changes to adapt to REU2016. GAN 

simulations for REU2016 have smaller errors in intensity, duration and volume 

compared to simulations for SIMDEUM. Most end uses have a RE lower than 10%. 

Both the bathtub and outside tap have low weight in the model, and thus better results 

can be expected from GAN if weighted RMSE is introduced. In general, compared to 
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SIMDEUM, GAN has better results on REU2016 in this validation. Two possible 

reasons are: 1. The training of REU2016 is based on SIMDEUM and more training 

epochs may bring better results; 2. GAN is more suitable for changeful datasets. These 

conclusions need to be further verified.  

 Figure 12. Water consumption probability distribution of (a) Faucet; (b) Shower 

Facing water scarcity, developing countries often do not have the capacity to conduct 

large-scale research (Sivakumaran et al., 2010). The fine-tuning and raw data 

processing ability of GAN may help developing countries achieve better water 

management at a lower cost. On the basis of a generic GAN model in the further, the 

developing country can obtain a model adapted to the local dataset through small-scale 

data collection and fine-tuning training. 

3.5 Uncertainty analysis 

The LGEUM exhibits two primary sources of uncertainty. The first pertains to the 

absence of washing machines and dishwashers, which may have influenced the results 

by less than 10%. Although the impact of these appliances on total water consumption 

is limited, their influence on water usage patterns remains unclear, warranting further 

investigation. The second source of uncertainty arises from the lack of variation within 

the LGEUM. Certain end uses, such as bathtubs, maintain fixed patterns within the 

LGEUM. Additionally, the users in LGEUM lack diversity, as only one pattern is 

accessible in the current version of pySIMDEUM. It is advisable to incorporate more 

diverse patterns into LGEUM for training purposes, thereby mitigating the uncertainty 

attributed to variability.  

 
 



36 

 

4. Conclusion 

A LSTM-GAN end use model (LGEUM) is developed in this thesis. For the research 

question, the LGEUM simulates the end use demand well based on the SIMDEUM 

dataset. LGEUM attains an overall RMSE of 18% and 4.2% for the end-use model and 

user behavior model, respectively, when evaluated against SIMDEUM. Additionally, 

LGEUM exhibits substantial similarity in water consumption distributions, further 

corroborating its effectiveness. In validation with measured data, LGEUM maintains 

an R2 score above 0.7 on all time scales. The LGEUM shows good agreements with 

SIMDEUM and Zandvoort (Netherlands) measurements both numerically and in terms 

of distribution. In addition, LGEUM has good extensibility and achieves a 12% overall 

RMSE on the REU2016 dataset (US), which is even lower than that of SIMDEUM. In 

terms of computational speed, the GAN model improves 546% compared to 

SIMDEUM. However, LGEUM is still lacking in terms of variation and simulation of 

W&Ds. It is recommended to introduce more patterns in LGEUM to make the model 

more diverse and realistic. As new end uses and features are introduced in the future, a 

better way to balance the sample size is worth investigating. 

LGUEM presents viable solutions to several constraints found in conventional models. 

The GAN model establishes its fundamental logic through extensive training on the 

SIMDEUM dataset, while enabling users to further train the GAN model with local 

databases, thereby surpassing spatial limitations. Moreover, the GAN model allows the 

utilization of training sets with varying resolutions, thereby alleviating temporal 

constraints. Additionally, by simulating all events in a day simultaneously, the GAN 

model effectively addresses the computational limitations encountered in traditional 

models. Above all, the strong adaptability, fast computational speed and simple update 

methods make GAN models promising in the field of end-use water modeling. 
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7. Appendix 

7.1 Extra Equations 

KL divergence: D𝐾𝐿(P ∥ Q) = − ∑ 𝑃(𝑖)𝑙𝑛(
𝑄(𝑖)

𝑃(𝑖)
)𝑖  (1) 

JS divergence: D𝐽𝑆(P ∥ Q) =
1

2
D𝐾𝐿 (P(x) ∥

P(x)+Q(x)

2
) +

1

2
D𝐾𝐿 (Q(x) ∥

P(x)+Q(x)

2
) (2) 

Loss function of GAN: 

 Loss𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑜𝑟 = −𝔼𝑥~𝑃𝑟
[log(𝐷(𝑥))] − 𝔼𝒙~𝑷𝒈

[𝐥𝐨𝐠(𝟏 − 𝐃(𝐱))] (3) 

 Loss𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 = −𝔼𝒙~𝑷𝒈
[𝐥𝐨𝐠(𝑫(𝒙))] (4) 

Wasserstein Distance: 

 W(𝑃𝑟 , 𝑃𝑔) = 𝑖𝑛𝑓𝛾~ ∏(𝑃𝑟,𝑃𝑔)𝔼(𝑥,𝑦)~γ[∥ 𝑥 − 𝑦 ∥] (5) 

 

7.2 Two Type of Collapse in GAN 

When we make the derivative of Equation (3) with respect to D(x) equal to 0, the 

optimal discriminator 𝐷∗(𝑥) is obtained as： 

−
𝑃𝑟(𝑥)

𝐷(𝑥)
+

𝑃𝑔(𝑥)

1 − 𝐷(𝑥)
= 0 

 𝐷∗(𝑥) =
𝑃𝑟(𝑥)

𝑃𝑟(𝑥)+𝑃𝑔(𝑥)
 (6) 

Substituting Equation (6) into Equation (3) and simplifying Equation (3) to: 

Loss𝑑 = −𝔼𝑥~𝑃𝑟
[

𝑃𝑟(𝑥)

1
2 ∙ (𝑃𝑟(𝑥) + 𝑃𝑔(𝑥))

] − 𝔼𝑥~𝑃𝑔
[

𝑃𝑔(𝑥)

1
2 ∙ (𝑃𝑟(𝑥) + 𝑃𝑔(𝑥))

] + 2 ∙ log 2 
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 = −𝟐 ∙ 𝑱𝑺(𝐏𝒓 ∥ 𝐏𝒈) + 𝟐 ∙ 𝐥𝐨𝐠 𝟐 (7) 

From Equation (7), it can be seen that minimizing the loss function defined by the 

original GAN is equivalent to minimizing the JS divergence between the real 

distribution and the fake distribution under the condition of the optimal discriminator. 

The more the discriminator is trained, the closer the loss function is to Equation (7). 

One would deduce that optimize the discriminator first, and then optimize the generator 

based on the optimized discriminator can achieve the overall optimization. But in reality, 

the better the discriminator is trained, the worse the training of the generator would be. 

This is because the support sets of Pr and Pg are often low-dimensional manifolds in 

high-dimensional space. For example, a common method to obtain 128-dimensional 

generated data is that we first obtain a 32-dimensional support set from the prior 

distribution and extend it to 128 dimensions by means of a neural network. Obviously, 

a 32-dimensional support set (manifold) is not enough to fill a 128-dimensional space. 

The manifolds lead to a discontinuous distribution in the high-dimensional space and 

the probability of Pr and Pg perfect align is almost 0 (Arjovsky et al., 2017). This leads 

to 𝐉𝐒(𝐏𝒓 ∥ 𝐏𝒈) = 𝐥𝐨𝐠𝟐 𝐨𝐫 → ∞ and the optimization for the generator based on the 

gradient descent does not work in this situation (Arjovsky et al., 2017): 

 lim
||𝐷−𝐷∗||→0

∇𝜃 𝔼𝑧~P(z)[log(1 − D(𝑔𝜃(𝑥)))] = 0 (8) 

Equation (8) is the direct cause of the gradient vanishing. 

Another instability of GAN comes from model collapse, also called mode dropping. 

When D* (Equation 6) is substituted into KL(P𝑔 ∥ P𝑟) (Equation 1): 

 KL(P𝑔 ∥ P𝑟) = 𝔼𝑥~𝑃𝑔
[log

𝑃𝑔

𝑃𝑟
] = 𝔼𝑥~𝑃𝑔

[log

𝑃𝑔

𝑃𝑟+𝑃𝑔
𝑃𝑟

𝑃𝑟+𝑃𝑔

] 

 = 𝔼𝑥~𝑃𝑔
[log (1 − 𝐷∗(𝑥))] − 𝔼𝑥~𝑃𝑔

[log (𝐷∗(𝑥))] (9) 

Introduce Equation (7) into Equation (9) and organize: 

 −𝔼𝑥~𝑃𝑔
[log(𝐷∗(𝑥))] = 𝐊𝐋(𝐏𝒈 ∥ 𝐏𝒓) − 𝟐 ∙ 𝑱𝑺(𝐏𝒈 ∥ 𝐏𝒓) 
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 +2 ∙ 𝑙𝑜𝑔2 + 𝔼𝑥~𝑃𝑟
[log(𝐷∗(𝑥))] (10) 

The left side of Equation (10) is the generator's loss and only the first two terms on the 

right side depend on Pg. In these two terms, JS divergence is symmetrical but KL 

divergence is not. KL(P𝑔||P𝑟) penalizes untruthful samples greatly. Therefore, the 

model tends to generate safer samples and gradually loses diversity (Arjovsky et al., 

2017). 

7.3 Solution of WGAN 

In equation 5, arbitrarily sample the joint distribution 𝛾  from ∏(𝑃𝑟 − 𝑃𝑔)  and 

calculate the mathematical expectation of the distance between the real samples and the 

fake samples based on 𝛾 . Among all joint distributions, the infimum of this 

mathematical expectation is the Wasserstein distance. 

However, 𝑖𝑛𝑓𝛾~ ∏(𝑃𝑟,𝑃𝑔)  in the equation (5) is not directly solvable. Therefore, the 

authors of WGAN transform equation (5) based on Kantorovich-Rubinstein Duality as 

(Arjovsky et al., 2017): 

 W(𝑃𝑟 , 𝑃𝑔) =
1

𝐾
∙ 𝑠𝑢𝑝∥f∥𝐿≤𝐾 (𝔼𝑥~𝑃𝑟

[𝑓(x)] − 𝔼𝑥~𝑃𝑔
[𝑓(x)]) 

 ≈
1

𝐾
∙ 𝑚𝑎𝑥𝜔:∥𝑓𝜔∥𝐿≤𝐾 (𝔼𝑥~𝑃𝑟

[𝑓(x)] − 𝔼𝑥~𝑃𝑔
[𝑓(x)]) (11) 

Where ∥ f ∥𝐿  is Lipschitz constant. Equation (13) can be solved by using a neural 

network with parameter 𝜔 to substitute 𝑓𝜔. It is important to note that Equation (11) 

must satisfy the Lipschitz continuity, which is ∥ 𝑓𝜔 ∥𝐿≤ 𝐾. In the WGAN, the absolute 

value of the parameters will be clipped to no more than a fixed constant c in order to 

satisfy the restriction (K can be any value but can’t be infinite). However, this method 

of weight clipping is prone to the following two problems (Gulrajani et al., 2017): 1. 

parameter bipolarity (convergence to c or -c); 2. the choice of constant c directly affects 

the model effect, and may lead to gradient vanishing and gradient explosion.  

Gulrajani et al.(2017) proposed a novel structure of WGAN with a gradient penalty(GP) 

instead of weight clipping (Gulrajani et al., 2017). The gradient penalty forces the 

discriminator network to satisfy the 1- Lipschitz continuity. It was also found that 
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constraining the L2 norm of the gradient around 1 performed best (Gulrajani et al., 

2017). The loss function in WGAN-GP is thus calculated as: 

 Loss𝑡𝑜𝑡𝑎𝑙 = 𝔼𝑥̃~𝑃𝑔
[D(𝑥̃)] − 𝔼𝑥~𝑃𝑟

[D(𝑥)] + λ ∙ 𝔼𝑥̂~𝑃𝑥̂
[(∥ ∇𝑥̂D(𝑥̂) ∥2− 1)2] (12) 

In equation (14), the first two items are the Wasserstein distance and the third item is 

the gradient penalty; 𝑥̃ represents the fake samples; 𝑥̂ represents samples from the 

interpolated space of the real and fake data, 𝑥̂ = 𝜀𝑥̃ + (1 − 𝜀)𝑥, where 𝜀 ∈ [0,1]. 

 


