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Executive Summary

Aircraft stands at airports are scarce resources and should therefore be utilised as effective as

possible. Consequently, airport stand allocation has been a well-researched optimisation problem

since the 1980s. Recent research in stand allocation has focused on the incorporation of robust-

ness in the stand allocation plan. Often a tactical stand allocation plan, created the day before

operations, can not be maintained during actual operations. Aircraft might arrive early or tardy

and influence the stand allocation plan significantly. Therefore, a robust tactical stand allocation

plan, insensitive to small time deviations, is desired. This thesis project extends this research

direction with the application of a new robustness concept in the stand allocation context: re-

coverable robustness. The created recoverable robustness stand allocation model generates a set

of feasible allocation plans, which are testing against several scenarios and recovered if necessary.

The recoverable robust solution to the stand allocation problem can, at least, be recovered in all

tested scenarios. A recoverable robust tactical allocation plan limits the required schedule changes

which can simplify the operations at the airport.

In addition to the concept of recoverable robustness, this research project focuses on commercial

revenues at an airport. Privatisation and competition effects cause airports to focus more on non-

aeronautical revenues. This research project includes an objective function based on commercial

revenues in the stand allocation model, with the aim to stimulate expenditure at the airport. For

both the robustness and commercial revenue aspect of this research project, an extensive literature

review is conducted and specific objectives are defined. To highlight the industrial applicability of

the recoverable robust stand allocation model a case study with Guarulhos International Airport

São Paulo is performed.

Literature Review

Initial research on airport stand allocation started in the 1980s by solving a simplistic model with

basic capacity and allocation constraints [1, 2, 3]. The early models can be extended with, for

example, towing possibilities for long-stay flights, stand compatibility and adjacency constraints

[4, 5, 6]. The objectives used for stand allocation can be divided into passenger-oriented objectives

(minimum walking distance) and airport-oriented objectives [7]. The stand allocation problem

is commonly formulated as a (mixed) integer or binary linear program, due to the nature of the
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allocation and capacity constraints [1, 7].

Research on robustness in airport stand allocation has progressed from fixed buffer time con-

straints to robustness objectives [7, 8, 9]. Another methodology to include uncertainty in the

stand allocation problem is a stochastic approach [10, 11]. Robustness approaches from other

industries typically fall in the general classes of robust optimisation and stochastic programming.

Robust optimisation takes into account the range for the variables, aiming to satisfy the worst

case scenario [12]. Stochastic programming optimises a solution based on different parameter

realisations (scenarios) [13]. Based on the foundations of both a new robustness concept was de-

veloped: recoverable robustness [14]. Recoverable robustness allows for limited recovery in tested

scenarios and has been successfully applied to, amongst others, the timetabling problem [15] and

the tail assignment problem [16].

Besides the operational focus of stand allocation, this research project aims to include a busi-

ness perspective as well. Non-aeronautical revenues are becoming more important for airports

due to privatisation and competition [17]. One aspect is to characterise airport shoppers, who

are especially influenced by time pressure, proximity of the store, culture and variation of goods

[18, 19]. Another revenue metric is the trading area of specific stores, to obtain information on

where passengers shop [20]. These aspects, in combination with revenue data analysis, could

provide useful input for the framework to establish an objective function based on historical

commercial revenue data.

Research Objectives

From the literature review and initial scope three objectives for the research project are defined:

• Objective 1 Create a stand allocation model that effectively incorporates the concept of

recoverable robustness

• Objective 2 Develop a framework to include air-side commercial revenues into the tactical

stand allocation context

• Objective 3 Demonstrate the industrial applicability of the recoverable robust stand allo-

cation model in a case study with Guarulhos Airport

The first two objectives are academic objectives and comply with the contributions stated in the

literature section. The last objective aims to highlight the applicability of the recoverable robust

stand allocation model in the air transport industry with a case study. The performance of the

recoverable robust model is relevant for the research and will therefore be compared with a strict

robust stand allocation model. The strict robust stand allocation model has to satisfy the all

scenarios without recovery possibilities. The hypothesis of the research project is related to the

comparison between the recoverable robust stand allocation model and the strict robust stand
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allocation model:

Hypothesis 1: The recoverable robust solution to the stand allocation problem has a lower cost

of robustness relative to the strict robust solution

The cost of robustness is defined as the deviation from the optimum objective function value

for the stand allocation problem.

For the commercial revenue framework no hypothesis is established. In the time-frame of the

research project it is rather complex to measure, for example, the impact on air-side commercial

revenues. Rather, the applicability of the objective function based on the commercial revenue

framework is evaluated and recommendations are provided.

Recoverable Robust Stand Allocation Model

The recoverable robust stand allocation model consists of an optimisation module and a recovery

module (See Figure 1). The optimisation module generates a set of feasible allocation plans to the

stand allocation problem. The stand allocation problem in the optimisation module is formulated

as a binary program with capacity, allocation, adjacency and towing constraints. The objective

function is set to maximise affinity, based on a commercial revenue framework. The output of the

optimisation module is a set of feasible allocation plans, the input for the recovery module.

Figure 1: High-level Overview of the Components of the Recoverable Robust Stand Allocation

Model

In the recovery module, the generated feasible allocation plans are tested against a number of

scenarios and aimed to be recovered if necessary. The scenarios for scenario testing are determined

with historical arrival time distributions and relations between aircraft visits with similar arrival

times. The allowed recovery strategies in the recovery module are: limited waiting, re-allocation

to a free stand and tow of a long-stay aircraft. The final output of the recoverable robust stand
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allocation model is a recoverable robust solution to the stand allocation problem. The recoverable

robust solution provides a tactical stand allocation plan that can, at least, be recovered by limited

means in all tested scenarios. Moreover, it provides additional information for the controllers on

critical flights and recovery possibilities in the tactical plan.

Results

The recoverable robust stand allocation model is tested in a case study with Guarulhos Inter-

national Airport of São Paulo, focused on the international terminal: Terminal 3. The terminal

consists of 10 wide-body contact-stands, which each can be split into two narrow-body contact-

stands. In total 73 stands are considered and in the case study the number of aircraft visits per

day varies between 64 and 70. To limit the runtime of the model, 60 feasible allocation plans

were generated and tested against 40 scenarios. All cases were solved within 60 minutes on a 8

GB RAM Mac OS X computer.

An objective the of the research was to compare the recoverable robust solution with the so-

lution that has to satisfy all scenarios without recovery (strict robust solution). The results for

the objective to maximise affinity demonstrated an increase in average objective function value

for the recoverable robust solution of 0.8 to 4.5 percent relative to the strict robust solutions.

Furthermore, the average percentage of passengers allocated to a contact-stand over all scenarios

was 2.0 to 6.3 percent higher in the recoverable robust solution. For several cases the worst case

scenario for the recoverable robust solution still maintained a higher percentage of passengers

allocated to a contact-stand than the strict robust solution. It highlights the capability of recov-

erable robust solution to provide a less conservative, yet robust solution to the stand allocation

problem.

In comparison to the allocations of GRU Airport, an increase in affinity of 14.4 to 27.1 percent

was achieved. The difference in percentage of passengers allocated to a contact-stand was between

-1.3 to 3.6 percent. However, GRU Airport allocated several operations to contact-stands at dif-

ferent terminals. The recoverable robust solution is capable of allocating these operations (6.8 -

10.8 percent of the passengers) to the international terminal. An overall increase of passengers

allocated to a contact-stand at the international terminal of of 6.9 - 13.8 percent could be achieved.

The objective function of the recoverable robust stand allocation model, maximisation of affinity

based on a commercial revenue framework, was compared with minimisation of total walking

distance, minimisation of tows and maximisation of passengers allocated to a contact-stand. The

comparison indicated that the airport could focus on either of the objectives at a cost of up to 10

percent of the affinity generated with the maximisation of affinity objective. The minimisation of

tows and maximisation of percentage of passengers allocated to a contact-stand both resulted in
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a significant increase of total walking distance. Therefore, the objectives with best overall charac-

teristics for both the airport and passenger are the maximisation of affinity and the minimisation

of walking distance.

Conclusion and Limitations

With regard to the research project several conclusions were established:

• The recoverable robust solution outperforms the strict robust solution in terms of average

objective function value and average percentage of passengers allocated to a contact-stand

• The recoverable robust stand allocation model is capable of obtaining a robust solution with

an objective function value that approximates the optimum

• The affinity objective results in a relatively good solution in terms of walking distance and

percentage of passengers allocated to a contact-stand

The main limitations to the research project were the limited available revenue data and the scope

of one terminal. It is desirable to test the recoverable stand allocation robust model with a full

airport case study and all required revenue data. Future research could focus on incorporating

an operational stand allocation model, or to compare recoverable robustness with, for example, a

robustness objective in a multi-objective approach.
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List of Acronyms

Table 1: List of Acronyms 1

Acronym Definition

ARR Arrival

at Arrival time

AVG Average

DEP Departure

DOM Domestic

dt Departure time

EU Europe

GRU Guarulhos International Airport of São Paulo

INT International

NA North-America

NCT Non-Central T Distribution

OF Objective Function Value

Pax Passenger(s)

PC Percentage of Passengers allocated to a contact-stand

RR Recoverable Robust

SA South-America

T Terminal

TA Trading Area

WD Walking Distance

1A list of used Airline and Airport abbreviations is provided in Appendix A
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Chapter 1

Introduction

Over the past years air traffic has grown significantly, which resulted in the expansion of many

airports. In the dynamic airport environment, planning is a crucial factor to make effective use

of the scarce resources, such as contact-stands. Airport planning does not only affect passengers,

but crews, catering, maintenance and other service providers as well. A well-known planning

problem for an airport is the stand allocation problem. The stand allocation problem handles the

allocation of aircraft to available stands.

The stand allocation problem has been widely studied since the 1980s. Most research solved

the stand allocation problem without the consideration of time deviations in the flight schedule.

The determined solutions were therefore not robust to flight disruptions and could lead to many

required recovery actions on the day of operation.

This research project includes a recently developed robustness concept into the tactical stand

allocation context: recoverable robustness. In recoverable robustness limited recovery is allowed

to maintain an allocation plan in the tested scenarios. The recoverable robust solution to the

stand allocation problem is then robust, yet relatively close to the optimum. The recoverable

robustness concept has been proven effective in, for example, train timetabling [14]. This research

project is the first application of recoverable robustness in a stand allocation context.

Furthermore, this thesis project aims to include an initial framework to include commercial rev-

enues in a stand allocation model. Non-aeronautical revenues are becoming more important for

airports due to privatisation and competition effects [17]. The title of the research project is:

Incorporation of Recoverable Robustness and a Revenue Framework into Tacti-

cal Stand Allocation

The research is conducted in collaboration with GRU Airport (International Airport São Paulo).
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The academic contribution of the research is two-fold. Firstly, the concept of recoverable robust-

ness will be applied in the stand allocation context, to create a recoverable robust stand allocation

model. Secondly, an initial framework to incorporate air-side commercial revenues into the ob-

jective function of the stand allocation model is described. The academic contributions for the

research project are translated into specific objectives:

• Objective 1 Create a stand allocation model that effectively incorporates the concept of

recoverable robustness

• Objective 2 Develop a framework to include air-side commercial revenues into the tactical

stand allocation context

• Objective 3 Demonstrate the industrial applicability of the recoverable robust stand allo-

cation model in a case study with GRU Airport

The first two objectives are related to the academic contribution of the research project, while

the latter is focused on the industrial applicability. With these objectives in mind, an extensive

literature study is conducted in Chapter 2. A more detailed project plan is provided in Chapter

3. The description of the recoverable robust stand allocation model is found in Chapter 4. Fur-

thermore, an overview of GRU Airport and the performed data analysis are illustrated in Chapter

5. To demonstrate effective working of the recoverable robust stand allocation model, verification

and validation are performed, as explained in Chapter 6. Finally, obtained results and concluding

remarks are discussed in Chapter 7 and Chapter 8.
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Chapter 2

Literature Review

To evaluate the current state of the art in airport stand allocation literature, an extensive review

is conducted. Combined with a review of robustness and airport commercial revenue literature,

the place of this research project in the body of knowledge is established. The remainder of this

chapter will focus mainly on a state of the art representation of the relevant literature (Section

2.1). Different objectives, constraints, modelling approaches and solution techniques for the stand

allocation problem will be outlined. Furthermore, both the robustness and the commercial revenue

aspect will be covered. In Section 2.2 the results of the review will be analysed. Section 2.3

provides a discussion of the literature and identifies research gaps. Next to the main conclusions,

the place of the thesis in literature is discussed in Section 2.4.

2.1 State of the art

Airport stand allocation is a well-researched optimisation problem due to its solving complexity

and interesting context. Research has provided different formulations, modelling approaches and

solution techniques for the problem. The literature review aims to provide an overview of these

differences. Thereafter, concepts in related industries regarding robustness and commercial rev-

enue are reviewed to highlight useful aspects for the research project.

Initial research on stand allocation started in the 1980s by solving simplistic models with ba-

sic constraints [1, 2, 3]. Often stand allocation is referred to as gate assignment, which is valid

when a 1-to-1 mapping of stands and gates exist (i.e. for every stand an air-bridge is available

to connect the stand with the airport terminal) [6]. At many European and South-American

airports remote stands are apparent as well, therefore the correct term is stand allocation. The

objective of the simplistic models was to minimise walking distance for passengers. The simplistic

models covered two basic constraints: One stand can hold one flight per time instance (capacity

constraints) and a flight can only be allocated to one stand (allocation constraints) [1]. Poten-

tial additional constraints as stand compatibility or airline specific areas are mentioned in early
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literature, but are not included in the simplistic models [1]. The stand allocation literature has

built on the simplistic models with variations in constraints, objectives, modelling approaches and

solution methods.

2.1.1 Constraints

As expansion of the simplistic models, other essential operational constraints might be included

to improve applicability at the airports. For example, potential towing of a long-stay aircraft has

been mathematically formulated for the stand allocation model [4, 5, 6]. The aircraft visit is split

into an arrival and a departure part (optionally a part as well [6]) [4, 5]. The exact decision of

when to tow and towing time are not yet modelled.

Another advanced constraint is stand compatibility (aircraft can only be serviced at suitable

stands) [5]. This can be modelled as objective as well, to include airline preferences. For some

airports adjacency constraints need to be included, where placement of two large aircraft next to

each other not possible [21]. Adjacency constraints can also be referred to as shadow constraints

[6]. A variation of the adjacency constraint is the Last-in First-out constraint [4]. A buffer

constraint might be imposed to account for small variations in arrival/departure time [10, 22].

Moreover, a constraint can be in place to split international and domestic flights in the allocation.

2.1.2 Objectives

The objectives for stand allocation can roughly be split into passenger-oriented objectives and

airport-oriented objectives [7]. As mentioned, early research focused on passenger service by

aiming to minimise walking distance [1, 2, 3]. More recent models included transfer passengers

[23, 24]. Other passenger-oriented objectives include minimising passenger “rush” [25], minimising

passenger transit time [24, 26] and minimising passenger waiting time [10]. Although beneficial

for passengers, this objective may lead to high utilisation of contact-stands in proximity of the

main building [6]. Recent research included airport-oriented objectives for the stand allocation

problem as well. The most common airport-oriented objective is the minimisation of unallocated

turns [4, 8, 21, 24]. In some cases a dummy contact-stand is in place to “allocate” the unallocated

turns [10, 24]. Other airport-oriented objectives are the minimisation of stand conflict durations

[11, 22, 26], the maximisation of preferences [4, 8, 27] and minimisation of towing operations

[4, 6, 8]. Operational stand allocation typically aims to minimise the deviation from a specified

stand allocation plan [28].

A recent trend in stand allocation literature is the application of a multi-objective approach

[4, 6, 8, 26]. In general this results in a trade-off between the objectives. Airport preference seems

crucial in determining the objectives for the stand allocation model. Recent literature on tactical

stand allocation included on towing and connecting passengers [4, 6, 25, 26]. Moreover, often a

robustness objective is included to account for small time deviations during operations [4, 8, 26].
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2.1.3 Mathematical Formulations

The mathematical formulation of the objectives and constraints in a stand allocation model can

be described in various manners. Most research formulated the problem as a (mixed) integer

or binary linear program [1, 7]. When only the basic constraints are considered, the model is

naturally a binary integer program [3]. The 0,1 formulation can be extended with the mentioned

advanced operational constraints [4, 28]. Integer formulations require all variables to be integer,

while mixed integer only constrains some of the variables to be integer [6, 29].

Another modelling approach is the multi-commodity network model in which stands “flow”

through the model from source to sink via various arcs (flight operations) [25]. A downside

is the requirement for multiple model copies when heterogeneous stands are present at the airport

[10]. A visualisation of the network model is provided in Figure 2.1.

Figure 2.1: Illustration of the Multi-Commodity Flow Network Model [25]

The Clique Partitioning Problem has also been considered for stand allocation [8, 30]. Although

relatively complex to set up due to the definition of edge weights, it has been successfully ap-

plied for a large airport case study [30]. Finally a dynamic programming formulation could be

utilised [27]. Despite the successful application of the multi-commodity network model, clique

partitioning model and dynamic programming to the stand allocation problem, addition of ad-

vanced constraints might complicate the model [10, 27]. Consequently, recent literature expresses

the problem often as a (mixed) integer or binary program [4, 6, 9, 31].
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2.1.4 Obtaining a Solution to the Stand Allocation Problem

Obtaining a solution for the stand allocation problem can be relatively complicated, since many

of its formulations have been proven NP-hard [6, 27] or NP-complete [8]. This has led to the

development of (meta)-heuristics that provide a solution technique to obtain a “good enough”

solution in reasonable time. One of the solutions techniques is the greedy algorithm [32, 33]. The

drawback of the greedy method is the potential for a large optimality gap [6].

Other popular methods are Tabu search, simulated annealing or a hybrid version of the two

[23, 33]. Tabu search typically consists of a neighbourhood search with an exchange move, in

which two flights-stand combinations are swapped, and an insert move, where a flight is re-

moved from its stand and allocated to a different stand [11]. Tabu search tends to obtain a fast,

reasonably good solution due to the storage of solution deteriorating moves [23]. Recent Tabu

search algorithms ensure not getting stuck at a local minimum, however advanced neighbourhood

searches are still desired [11]. Stochastic approaches for the stand allocation problem can exploit

the Tabu search algorithm effectively as well [11].

Comparably, simulated annealing adopts neighbourhood searches as well, but utilises a probabilis-

tic approach to determine whether to accept an improved solution [24]. For simulated annealing it

is required to set a starting temperature, cooling factor, accept rate and stopping criteria, which

can be complicated to determine [24, 33]. Simulated annealing obtains slower computation times

and less accurate results for an equal problem size compared to the Tabu search algorithm [23].

Another solution method is a hybrid approach of Tabu search and simulated annealing [33].

The comparison between the hybrid version and Tabu search demonstrated a slight improve-

ment in objective function for the hybrid model at the cost of a three times longer computation

time [23]. The downside of both algorithms and the hybrid version is the unknown optimality gap.

Complementary to the methods stated above, other algorithms have been investigated. For ex-

ample, a genetic algorithm can use mutation and cross-over operations of a population to create

feasible solutions to the stand allocation problem [34, 35]. The Tabu search algorithm is demon-

strated superior in both computational speed and solution quality with respect to the genetic

algorithm [23]. Another algorithm, the ejection chain algorithm, was utilised to solve the clique

partitioning problem [8]. Although computational speed is high, the algorithm introduces an

optimality gap of approximately 8 percent for a large airport instance [6]. Literature still aims to

provide new solution algorithms, exhibited by publications on the ant colony algorithm and bee

colony algorithm [9, 31].

A more intuitive solution method to solve large scale problems is column generation [36]. A

column generation approach solved a problem instance of 700 flights and 128 stands within 10

minutes [5]. Recently, a strengthened mixed integer formulation was proposed to solve the stand
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allocation problem to optimality [6]. A large airport instance including over 700 operations and

more than 100 stands was solved to optimality within 35 seconds [6]. The computation time could

even be further reduced by time decomposition or stand decomposition [6]. In comparison, the

ejection chain algorithm and greedy algorithm demonstrated faster computational times, however

optimality gaps of approximately 5 and 18 percent respectively are introduced [6]. The strength-

ened formulation has not been tested in a stochastic environment, but it questions the necessity

of (meta)-heuristics as solution techniques for tactical stand allocation.

2.1.5 Robustness in Stand Allocation

The tactical allocation plan might suffer from uncertainty in arrival/departure times during actual

operations. The tactical stand allocation model has to include measures to handle this uncer-

tainty. As a consequence, research has focused on improving the robustness of the solutions for

stand allocation. Here, the current state of robustness in stand allocation modelling is reviewed.

The robustness measures in stand allocation have progressed from fixed buffer time constraints to

robustness objectives [7, 8, 9]. The idea of using a fixed buffer was recognised early in literature

[1]. The fixed buffer introduces a minimum time between two consecutive flights at the same

stand [1, 10]. The buffer can absorb small deviations in arrival/departure time during operation.

However, a large fixed buffer time for all flights is considered relatively conservative [4]. As a re-

sult, robustness has recently been considered as one of the objectives in multi-criteria approaches

for the stand allocation problem [4, 8]. Robustness objectives can be expressed as minimisation

of desired stand rest [4], maximisation of overall buffer time [9] or minimisation of stand conflicts

[11, 26]. Some formulations penalise the objective function when a certain buffer between flights

is not achieved [4, 8]. Only one paper considers a flight-specific desired stand rests by taking the

95th percentile of historical delay [4].

Another methodology to handle uncertainty is a stochastic approach [10, 11]. Stochastic models

include random parameters by means of scenarios [13]. For stand allocation, the random parame-

ters can be determined by distributions of flight arrival/departure times [11]. Unfortunately only

self-generated flight data is used to create the scenarios in the stochastic stand allocation models

found in literature. A stochastic approach can be computationally expensive due to scenario ex-

pansion [13, 14]. To overcome this drawback often a limited set of scenarios is considered in stand

allocation literature [11]. Furthermore, important advanced constraints as towing are typically

not considered in the stochastic models described [11]. Nevertheless, stochastic programming

does allow for more sophisticated incorporation of robustness and the modelling approaches are

therefore of interest.

2.1.6 Other Robustness Approaches

In addition to the robustness approaches in stand allocation literature, other methodologies are

available in related industries. Robustness approaches typically fall in the general classes of ro-
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bust optimisation and stochastic programming [14]. Robust optimisation takes into account the

range for the variables, aiming to satisfy the worst case scenario [12]. Stochastic programming

optimises a solution based on different parameter realisations [13]. A popular approach is two-

stage stochastic programming, a method that revisits the optimisation problem after initial data

is obtained [14]. It could be applied to the operational stage of stand allocation, to allow for

re-optimisation after several flights have arrived. Based on the foundations of robust optimisation

and stochastic programming two new robustness concepts are considered: light robustness and

recoverable robustness [14, 37].

Light robustness can be viewed as a compromise between the objective function value and han-

dling the uncertainty of input data [37]. A maximum deterioration of the objective function is

set, after which the most robust solution is obtained within the allowed objective value range [37].

Due to allowed constraint violations and a rather simplistic approach light robustness might not

be suitable for all contexts: “it is not clear whether such a simple approach can deliver solutions

that are comparable to those obtained through more involved stochastic programming or robust

models” [37]. This uncertainty is a drawback for the method, although the method is successfully

applied to a timetable information problem [38].

The goal of recoverable robustness is to combine stochastic programming with robust optimi-

sation [14]. Limited recovery is admitted for the scenarios to obtain a less conservative solution

[14]. Recoverable robustness has been successfully applied to, amongst others, the timetabling

problem [15] and the tail assignment problem [16]. Although scenario expansion will remain an

issue for recoverable robustness, an application to the stand allocation problem might provide a

less conservative robust planning solution. The recovery strategies could follow from analysis at

the airport and conversations with the airport controllers. The recoverable robust solution will

not only provide a tactical stand allocation plan, but will express required recovery strategies for

each of the scenarios as well. In contrast to light robustness and recoverable robustness, most

other recent advances in robust optimisation under uncertainty focus on satisfying the worst-case

scenario, which would be too conservative for the stand allocation problem.

2.1.7 Commercial Revenues

The second academic contribution of the research project covers the relation between air-side

commercial revenues and stand allocation. Non-aeronautical revenues are becoming more impor-

tant for airports due to privatisation and competition [17]. The location to which the aircraft is

allocated may influence the spending behaviour of airport passengers. In stand allocation litera-

ture, commercial air-side revenue has not yet been considered. The goal of this research project is

to provide an initial framework for handling air-side commercial revenue in the stand allocation

context.
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One aspect is to characterise airport shoppers, which can be divided into three categories: shop-

ping lovers, mood shoppers and apathetic shoppers [19]. Shopping lovers were especially influenced

by proximity of the store and variation of goods [19]. It has to be noted that the survey only

contained Belgian citizens. Airport passengers tend to shop less under time pressure and culture

influences shopping behaviour as well [18]. Other aspects of shopping behaviour are dwell time

and taxes at origin [39].

Even though the passenger can reasonably be characterised, the link with stand allocation re-

mains relatively unclear. To generate ideas on how to incorporate a revenue metric in stand

allocation, related industries are reviewed. For example, shelves closer to the aisle in supermar-

kets tend to generate more sales due to higher customer traffic [40]. Moreover, in a shelf the first

item encountered tends to be the most profitable one [41].

Another option would be to analyse the trading area of specific stores [20]. The trading area

of retail stores with respect to stands could be determined and utilised to increase sales. A

similar approach is defining the “Buying Association”, which computes the correlation between

product groups [42, 43].

Which of the above methods is suitable for stand allocation will depend on the retail revenue

data available. A suitable methodology will be defined in collaboration with the airport to ef-

fectively incorporate an initial air-side commercial revenue framework into the stand allocation

context.

2.2 Results and Analysis

The development of stand allocation research has progressed towards the involvement of more

operational constraints and objectives, a direction that will likely continue in the future. Re-

quired operational constraints will depend on the terminal lay-out, but towing and adjacency

constraints are demonstrated relevant for many airport case studies in literature. Recent liter-

ature mainly expresses the stand allocation problem with a binary or (mixed) integer formulation.

Furthermore, literature aims to increase the probability of feasibility for the tactical stand alloca-

tion plans during operations. This incorporation of robustness has been considered as constraint,

objective or via a stochastic approach. A new robustness concept, recoverable robustness, has

been successfully applied to train timetabling problems, but it has not yet been considered for

airport stand allocation. The concept can be the next step for robustness incorporation into the

stand allocation problem. The recovery strategies included in recoverable robustness should follow

from discussions with airports.
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Due to privatisation and competition effects, non-aeronautical revenues are becoming more im-

portant for airports. In this context, placement of specific flights to specific stands might have an

impact on air-side commercial revenues generated. Literature on stand allocation does not cover

this link with air-side retail revenues. The literature review of related industries provides initial

ideas for an analysis framework, for example utilising buying association correlations or shelf al-

location indicators. These ideas can be combined with extensive revenue data analysis to design

an initial framework to handle air-side commercial revenues in the stand allocation context.

2.3 Discussion

Stand allocation has been a well-researched optimisation problem for multiple decades. Its solving

complexity and interesting context have led to many variations in mathematical formulations and

solution approaches. Objectives for the stand allocation problem range from minimising walking

distance to minimising towing operations. Furthermore, literature considers towing, stand affin-

ity, adjacency or buffer time constraints complementary to the basic constraints (maximum one

flight per stand per time instance and a flight can only be assigned to one stand). Due to the

solving complexity, many solution techniques have been applied to the stand allocation problem.

A drawback of the variations, and different problem sizes, is the lack of comparison between the

methods. Only recently some papers provided comparisons to analyse differences between solu-

tion techniques. The comparisons displayed a trade-off between optimality and computation time.

Robustness is often included in the stand allocation model as buffer time constraint. Incor-

porating robustness as an objective might be a less conservative approach, especially when using

a flight-specific approach. A stochastic approach has been considered for the stand allocation

problem as well, to handle the uncertainty in arrival/departure times better. Unfortunately lit-

erature only used self-generated scenarios for the problem, instead of historical flight data. The

next step for incorporating robustness in stand allocation is still undefined and the recoverable

robustness may be suitable. The concept can result in a less conservative yet robust solution due

to allowed recovery strategies. The model might suffer from longer computational time due to

scenario expansion, however for tactical stand allocation planning this may not be a critical issue.

On the commercial revenue aspect for stand allocation currently no literature is available. An

initial framework for handling air-side commercial revenues in the stand allocation model will

have to be designed based on extensive revenue data analysis and a literature review of related

industries. The framework could lead to further research on the connection between air-side

commercial revenue and tactical stand allocation.
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2.4 Conclusion

The aim for stand allocation modelling should be to include most operational constraints like tow-

ing, gate affinity and adjacency, depending on airport lay-out and operations. Recent objectives

for the stand allocation model consider maximisation of connecting revenues and minimisation

of towing operations. Furthermore, a robustness objective is often apparent in multi-objective

approaches. New objectives are still being developed to highlight new approaches for the problem.

Binary or (mixed) integer program formulations are most common in stand allocation literature.

The solving complexity of the stand allocation problem has led to the development of many

advanced solution techniques ((meta-)heuristics). However recently, due to a strengthened math-

ematical formulation of the problem and improved computational possibilities, the necessity for

advanced solution techniques is questioned.

Robustness in the stand allocation problem is often expressed with a fixed buffer time or an

objective. A fixed buffer time is considered relatively conservative, although a flight-specific

buffer time improves the methodology. Another measure to incorporate robustness is stochastic

programming. Successful application to the stand allocation problem is demonstrated, but unfor-

tunately self-created data sets are used and constraints regarding towing and stand compatibility

are not included. A new robustness concept, recoverable robustness, can be the subsequent step

for incorporating robustness in the stand allocation problem. The evaluation if the application

of recoverable robustness results in a less conservative robust stand allocation solution due to

allowed recovery is part of the scope of the thesis project. The placement of recoverable robust

stand allocation relative to literature is visualised in Figure 2.2.
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Figure 2.2: Location of the Thesis Scope Relative to Literature

In addition, air-side retail revenues have not yet been considered in the stand allocation context.

Although airport shoppers can be characterised, the relation of air-side retail revenue and stand

allocation is not yet considered in literature. Initial ideas to construct a framework for handling

air-side commercial revenues within the stand allocation context might follow from extensive rev-

enue data analysis and a literature review of related industries. Examples from related industries

entail shelf allocation strategies and trading area estimations. Applicability of those ideas to the

stand allocation problem will highly depend on the revenue data availability and resulting analy-

sis. The placement of the thesis scope regarding commercial revenue is visualised in Figure 2.3.
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Figure 2.3: Location of the Thesis Scope Relative to Literature

The long-term impact of this thesis project will consist of both a robustness and a revenue aspect.

Application of the recoverable robustness concept to the stand allocation problem provides a set

of feasible allocation plans which will be tested against realistic scenarios. The objective is to

evaluate if recoverable robustness can be the next step for robustness in the stand allocation

context. The data analysis performed to generate scenarios for the recoverable robust model

will provide useful insights for future research as well. Furthermore, a contribution of this thesis

project is to provide an initial framework to include air-side retail revenue into the stand allocation

model. Future research may utilise this framework and further investigate the benefit of including

air-side retail revenue in stand allocation.
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Chapter 3

Project Plan

3.1 Introduction

Based on the literature review and research objectives, a detailed project plan is created to further

define the required steps and scope for the research project. The project plan further aims to

provide hypotheses, conceptual ideas and experimental set-ups. Initial thoughts on the outcome

of the project are included as well. An overview of the main research questions and objectives

is provided in Section 3.2, complemented with a methodology part in Section 3.3. Moreover, the

experimental set up and anticipated results are discussed in Sections 3.4 and 3.5. Finally some

concluding remarks are provided in Section 3.6.

3.2 Research questions and objectives

Defining research questions will help to clarify the process of the research project and to relate

the project to the research gaps found in literature. This section aims to provide an overview

of the main research questions. Furthermore, a discussion of the novelty of the project will be

provided. First the research questions for both the robustness and commercial revenue aspect are

explained, followed by the objectives of the thesis project.

3.2.1 Research Questions

Since the thesis project has two distinct contributions to literature, this will be split for the re-

search questions as well. The research question regarding the robustness aspect is formulated as:

Can the cost of robustness for tactical stand allocation be reduced by applying the

concept of recoverable robustness?

The cost of robustness can be defined as the difference in objective function value between the
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optimal solution for the stand allocation problem and a sub-optimal solution which includes a

robustness measure. Incorporating robustness in planning leads to deviations from the optimum,

but the goal is to minimise these deviations, the so-called “cost”. Reducing the cost of robustness

would lead to a robust solution which is relatively close to the deterministic optimal solution of

the stand allocation problem. The measurement of a reduction in cost of robustness will require

the comparison of the recoverable robust solution with another stand allocation model. For the

research project, the recoverable robust solution will be compared with the solution of a strict

robust model. In a strict robust model, recovery is not allowed and therefore all scenarios have to

be satisfied. The goal is to evaluate whether recoverable robustness is the next step for incorpo-

rating robustness in tactical stand allocation. Tactical is defined as the planning created the day

before operations. Recoverable in this context refers to the possibility to recover the plan with

limited actions.

For the commercial aspect of this thesis, a research question is formulates as well:

Can air-side retail revenues effectively be included in tactical stand allocation by

incorporating an initial revenue-based framework?

Air-side retail revenues refer to the sales in the terminal of the airport, after clearing customs.

It covers all types of retail as duty-free, food & beverages and jewelry. The form of the frame-

work will have to follow from the data analysis and conversations with employees of the airport.

Therefore, it is more viable to evaluate the framework established rather than the direct impact

on air-side sales.

3.2.2 Objectives

Based on the research questions stated, objectives for the thesis project are defined. The objectives

are used to further clarify the scope of the project. The objectives are formulated as:

• Objective 1 Create a stand allocation model that effectively incorporates the concept of

recoverable robustness

• Objective 2 Develop a framework to include air-side commercial revenues into the tactical

stand allocation context

• Objective 3 Demonstrate the industrial applicability of the recoverable robust stand allo-

cation model in a case study with Guarulhos Airport

The first two objectives are the academic objectives, while the third objective is to demonstrate

industrial applicability. The industrial applicability will be assessed with a case study. The case

study will have the scope of one terminal, the international terminal of Guarulhos Airport, the

international airport of São Paulo in Brazil.
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3.2.3 Novelty

A novelty of this research project is firstly the application of the concept of recoverable robustness

to the tactical stand allocation problem. The resulting recoverable robust stand allocation model

will generate a set of feasible allocation plans, which are tested against a number of scenarios.

The aim is to find a recoverable robust solution, a solution that can, at least, be recovered over

all specified scenarios by limited means. Second, commercial retail revenue has not yet been

considered as objective in stand allocation literature. This research aims to provide an initial

framework to include air-side retail revenue in the objective function for tactical stand allocation.

3.3 Theoretical Content/Methodology

This section will focus on the methodology to be used during the thesis project, utilising the

research questions from the previous section. The following hypothesis can be defined:

Hypothesis 1: The recoverable robust solution to the stand allocation problem has a lower cost

of robustness relative to the strict robust solution

In the hypothesis, the recoverable robust solutions is expected to be closer to the optimum objec-

tive value relative to the strict robust solution. In the strict robust solution no recovery actions

are allowed and therefore the all scenarios have to be satisfied. For the commercial revenue frame-

work no hypothesis is defined. The objective of the framework is to obtain indications whether

high-revenue flights are allocated to prime locations for retail. To, for example, test an hypothesis

based on measurements in sales data is not possible for the time-frame of the research project.

Rather the applicability of the revenue framework will be assessed, to determine whether further

research in this direction can be recommended. To test the mentioned hypothesis and to evaluate

the commercial revenue framework, the following steps in the project can be described:

Step 1: Extensive data analysis of flight data and revenue data, to establish in-

sights in uncertainty and retail revenue characteristics

In this step extensive data analysis is conducted on flight data and air-side commercial revenue

data. For the flight data historical distributions will be established for the arrival time deviations.

These distributions will be utilised to generate realistic scenarios for the recoverable robust stand

allocation model. The revenue analysis aims to identify which flights contribute most to air-side

retail revenue. If possible, this will be divided into specific product groups or stores in the terminal.

Step 2: Development of a stand allocation model with crucial operational constraints

The core part of the recoverable robust stand allocation model, a stand allocation model, will be

established in this step. Recent literature will provide the basis for the stand allocation model,

with constraints for towing, adjacency and overlap. The exact mathematical formulation will
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depend on the constraints apparent at the airport. The stand allocation model will utilise a

strengthened binary or mixed integer formulation, following recent literature.

Step 3: Establish a framework of how to handle revenue data in this model and

incorporate the framework in the model

This step aims to incorporate the retail revenue data in a stand allocation model. An initial

framework based on literature and the revenue data analysis will have to be established on which

further research can be conducted. The framework will be part of the objective function for the

stand allocation model.

Step 4: Transform the model to a recoverable robust stand allocation model

The stand allocation model has to be transformed into a recoverable robust stand allocation

model by addition of recovery strategies and scenario testing. It entails an extensive study of

the recoverable robustness concept and the definition of the recovery strategies. For the scenario

testing a number of scenarios will be constructed based on the flight data analysis.

Step 5: Evaluate the cost of robustness of Recoverable Robustness and compare

it with non-recoverable robust approaches

In a case study with GRU Airport, the recoverable robust stand allocation model will be be evalu-

ated. A comparison with a strict robust model, which has to satisfy all scenarios without recovery,

will be provided. This step should demonstrate added value of the recoverable robustness concept .

Step 6: Assess the applicability of the revenue framework within the stand allo-

cation context

A final step is to assess the applicability of the revenue framework. The conclusion should establish

whether to pursue further research in this direction.

3.4 Experimental Set-up
The experimental set-up for the thesis project will be in a computer environment. The initial

data analysis will be performed using Microsoft Excel and/or Python. The decision will depend

on the availability, type and quantity of data available. Excel might not be sufficient when large

data-sets need to be analysed. Since the data is from an external source (the airport) care has to

be taken when analysing the data, there might be errors or unexpected outliers which need to be

investigated.

For the flight data analysis, probability sampling will be used to obtain the error between sched-

uled time and actual. Moreover, a “best-fitted” theoretical distribution will established by using

a fit function, available in the statistic SciPy package in Python.
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Data analysis for the commercial revenue data will highly depend on the data available at the

airport. A sales per passenger combined with historical stand allocations should provide useful

insights. Furthermore, a dwell time analysis will be performed using data from electronic boarding

pass scanners.

The recoverable robust stand allocation model will be developed in Python coupled with Gurobi.

Gurobi will perform the optimisation part of the model. The choice for Python is based on its

available work-packages and efficient interaction with optimisation software. The Gurobi module

is chosen for its compatibility with object-oriented programming and its computational speed. For

the optimisation a computer with Mac OS environment will be used, with a 2.7 Ghz processor

and 8 Gb RAM. The set-up of the conceptual model is provided in Figure 3.1.

Figure 3.1: Flowchart of the Set-up of the Conceptual Model

The verification of the recoverable robust stand allocation model will be performed using small

test data-sets. The flight times and stand compatibility will be chosen such that specific con-

straints can be tested. For example, specific flights can only be handled at one stand and it can

be verified if the model works accordingly. The runtime during verification and validation is of

crucial importance to enable fast adjustments to the code if necessary. Similarly the test-scenarios

will be generated to test the working of the recovery algorithms.
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Literature review of related industries will provide ideas for commercial revenue integration in

the recoverable robust stand allocation model. Extensive data analysis on revenue data will be

performed in a computer environment using Microsoft Excel and/or Python. Together the data

analysis and available literature will be combined into an initial framework. The framework will

be incorporated in the Python/Gurobi recoverable robust stand allocation model.

3.5 Results, Outcome and Relevance

The outcome of the recoverable robust stand allocation model should be a recoverable robust

solution with corresponding objective value. Furthermore, recovered flights in the scenarios will

be indicated. Visual results will be presented to simplify the analysis. The current airport solu-

tion and the strict robust solution can be compared with the recoverable robust solution. Since

contact-stands are scarce resources, the recoverable robust solution can be highly relevant for

airports to provide a less conservative yet robust solution.

Anticipated output of the utilisation of a commercial revenue framework into the stand allo-

cation model is placement of high-revenue passengers in spending stimulating locations. The

main relevance is identification of the framework as a first attempt to integrate air-side retail

revenue into the stand allocation context. Main outcome should be to identify whether future

research in this direction is desired.

Regarding the controllers at the airport the relevance of the results is two-fold. The recover-

able robust stand allocation model should provide a robust stand allocation solution. Such a

solution should reduce the number of required recoveries and therefore the workload for the con-

trollers. Furthermore, for every scenario evaluated in the recoverable robust stand allocation

model the flights that cause conflicts and the alternative stands are identified. This provides

valuable information for the controllers and simplifies the recovery process.

3.6 Conclusions

In this research project, two research gaps in tactical stand allocation will be addressed: improve-

ment of the robustness of the stand allocation and implementation of commercial revenues in

the stand allocation model. To increase the robustness of the tactical stand allocation plans, the

concept of recoverable robustness will be included in the stand allocation model. The recoverable

robust stand allocation model will generate a set of feasible allocation plans, which will be tested

against a number of scenarios. The overall goal of the incorporation of recoverable robustness is to

assess whether this concept may be a next step for robustness in tactical stand allocation models.

Effectiveness of the concept will be measured by the cost of robustness and computational speed.
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The revenue framework included in the recoverable robust stand allocation model will be based on

extensive data analysis of revenue data and a literature review of related industries. The frame-

work will determine the basis for the objective function of the optimisation part in the recoverable

robust stand allocation model. The revenue framework may spark future research in this area.

Both aspects of this thesis, the implementation of recoverable robustness into tactical stand

allocation modelling and the implementation of an air-side commercial revenue framework into

the stand allocation context, are highly relevant for airports. Furthermore, the recoverable robust

stand allocation model provides valuable information to the controllers for the day of operation.

Potential conflict flights in the selected schedule are available to the controllers and therefore

problems can be identified and solved earlier and faster. To illustrate the applicability, a case

study with GRU Airport is performed. Similarly, further research on implementation of an air-side

commercial revenue into stand allocation models may be based on the initial framework estab-

lished in this project. With the described project plan, a detailed framework was established to

develop and test the recoverable robust stand allocation model.
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Chapter 4

Recoverable Robust Stand Allocation

Model

This chapter will discuss the development of the recoverable robust stand allocation model. The

development consists of two main modules: an optimisation module and a recovery module. The

optimisation module consists of a stand allocation model and a solution generation methodology.

The recovery module includes a scenario generation methodology and a recovery algorithm.

A schematic overview of the modules in the recoverable robust stand allocation model and their

respective inputs and outputs is provided in Figure 4.1. The modules of the recoverable robust

stand allocation model are highlighted in red, while the inputs and outputs are in blue. Please

note that detailed information on each module and their respective inputs and outputs will be

provided later in this chapter.

Figure 4.1: Overview of the Modules of the Recoverable Robust Stand Allocation Model

The recoverable robust stand allocation model loads the flight schedule and airport lay-out as

input data. The optimisation module generates feasible allocation plans for the flight schedule

and stores the plans into a set of feasible allocation plans. The plans are tested against a number
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of scenarios in the recovery module. The scenarios are generated based on historical arrival time

deviation distributions. If a feasible allocation plan can, at least, be recovered by the recovery

algorithm in the recovery module for all scenarios, the allocation plan is a recoverable robust

solution to the stand allocation problem. Furthermore, the recovery module will indicate crucial

aircraft in the flight schedule, which can aid airport controllers to maintain the allocation plan

during operations.

In Section 4.2 the optimisation module will be explained in detail, with the mathematical for-

mulation of the stand allocation model. Section 4.3.1 will focus on the methodology to generate

the scenarios for the recoverable robust stand allocation model, as first part of the recovery mod-

ule. Furthermore, Section 4.3.2 will describe the recovery algorithm as included in the recovery

module. Finally, Section 4.4 will highlight the expected output of the recoverable robust stand

allocation model.

4.1 Definitions

This section aims to describe some important definitions used in the recoverable robust stand

allocation model to ensure the terms are interpreted correctly. When possible, a graphical repre-

sentation is provided as well.

4.1.1 Gate vs. Stand

Often literature refers to gate assignment rather than stand allocation, therefore it is important

to understand the difference between stands and gates. Typically a gate provides access to the

bridge-way to board the aircraft. A stand is a parking position for an aircraft, which can be a

contact-stand (with bridge-access to the terminal), a remote stand (bus access to the terminal) or

a parking-only stand (no boarding allowed). In the United States remote boarding is not allowed,

leading to a 1-to-1 mapping of stands and gates. There, gate assignment would be an appropriate

term, however in most other airports this is not the case and therefore the term stand allocation

is used throughout this document.

4.1.2 Operation

For this research project, an operation can be viewed as a stand-still of an aircraft. The stand-still

can be for different purposes: disembarkation after arrival, embarkation before departure, parking

or a combination. The combination occurs when the aircraft only stays a short time at the

airport, the operation will then consists of both disembarkation and embarkation (i.e. arrival and

departure). Therefore, an aircraft that visits the airport can have a single or multiple stand-stills

(i.e. operations) at the airport, depending on the length of the stay of the aircraft.
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4.1.3 Visit

An aircraft visit starts with an arriving flight of an aircraft and ends with a departure flight of

the same aircraft. Therefore a visit typically contains two flight numbers. An aircraft visit can

be classified as either short-stay or long-stay, depending on the stay time of the aircraft. As men-

tioned, a short-stay visit consist of only 1 operation, with both disembarkation and embarkation

included. However, to avoid that a long-stay aircraft visit occupies a contact-stand for a long

time, the long-stay aircraft visits are split into three operations: disembarkation, parking and

embarkation. In between the operations, the aircraft is towed if it can not stay at its stand. For

the parking operation parking-only stands might be available at the airport. The operations of a

short-stay and a long-stay visit are exemplified Figure 4.2.

Figure 4.2: Example of a Short-stay Aircraft Visit and a Long-stay Aircraft Visit

4.1.4 Successor

A definition related to only the long-stay visits is successor. A successor needs to be defined

in the operations of a long-stay visit to keep track of required tows. For example, the parking

operation of Visit 1 is the successor of the arrival operation of Visit 1 and the departure operation

of Visit 1 is the successor of the parking operation of Visit 1. The operations in the long-stay

visits are connected with the successor concept. In Table 4.1.4 an example of the operations and

corresponding successors for a long-stay visit are provided.

Operation Successor

Visit 1 Arrival Visit 1 Parking

Visit 1 Parking Visit 1 Departure

Visit 1 Departure -

Table 4.1: An Example of the Successor Definition
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4.1.5 Overlap

An overlap between two visits or operations can be identified by the arrival and departure time

of the visit/operation to a stand. In Figure 4.3 an example of two visits with overlap is provided.

Figure 4.3: Example of Visits with Overlap

4.1.6 Adjacency

Adjacency is an important operational consideration for stand allocation. Adjacency indicates

overlap between specific stands. In this research project adjacency is defined as: a stand can

either be used for 1 wide-body aircraft or 2 narrow-body aircraft. This case is visualised by Stand

1, Stand 1L and Stand 1R (see Figure 4.4). If Stand 1 is occupied by a wide-body aircraft, Stand

1L and Stand 1R can not be occupied and vice-versa.

Figure 4.4: Example of Adjacent Stands 1, 1L and 1R with 2 narrow-body aircraft (left) or 1

wide-body aircraft (right)
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4.1.7 Affinity

Affinity is related to the preference of a specific operation-stand combination. In the recoverable

robust stand allocation model the affinity for each operation-stand combination is based on a rev-

enue framework. Non-aeronautical revenues are becoming increasingly important for airports due

to privatisation and competition between hubs [17]. Furthermore, proximity to stores might influ-

ence the shopping behaviour of airport passengers [18, 19]. The combination of these two aspects

indicated that the allocated stands for passengers may influence the commercial revenue income of

the airport. Therefore, a commercial revenue framework that determines the affinity in the recov-

erable robust stand allocation model can improve the stand allocation from a revenue perspective.

In this research project the affinity is determined for a pier-shaped terminal and expressed in

dollars. The affinity calculation of each operation-stand combination is based on historical sales

in both the terminal stores (i.e. close to security control) and the pier stores (i.e. close to gates),

as well as estimated passenger numbers. The objective of the recoverable robust stand allocation

model will be to maximise the overall affinity. From a commercial revenue perspective, the histor-

ical high-revenue aircraft visits will then be placed to a preferred revenue position with the aim

to stimulate further expenditure.

The terminal stores of the airport are typically at locations where all passengers pass, for ex-

ample close to security control. The affinity calculation for the terminal stores consists of three

parts: historical sales per passenger data, estimated passenger number and a weighting factor for

each contact-stand. The weighting factor for the terminal stores represents the distance factor; if

the allocated stand is further from the terminal stores, a reduction in terminal store expenditure

is expected.

A similar approach is utilised for the pier stores. However, the weighting factor for the pier

stores represents the importance to have an operation at a specific stand for a specific store. The

importance is determined per adjacent gate pair in the pier. Historical sales data and historical

stand allocations can provide insights to determine the weighting factor.

The affinity for each operation-stand combination is calculated as the sum of the terminal and

pier affinities. The operations with both high expenditure at the terminal stores and high num-

ber of passengers will be preferred close to the terminal. High sales at specific pier stores will

increase the value of the affinity close the store. The usage of affinity as objective function will

allocate passengers to their revenue-preferred locations and can therefore positively influence the

non-aeronautical income for the airport.
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4.2 Optimisation Module

The first module of the recoverable robust stand allocation model is the optimisation module.

The optimisation module consists mainly of the stand allocation model with respective objective

function and constraints. Furthermore, the methodology to generate a set of feasible allocation

plans is described.

4.2.1 Stand Allocation Model

In this section the stand allocation model is described, which is the optimisation part in the

recoverable robust stand allocation model. First, the optimisation module loads the input data

for the stand allocation model. The stand allocation model is formulated as a binary problem,

which includes towing, adjacency constraints and stand affinity. Firstly, the data-sets and the

variables will be described to simplify understanding of the stand allocation model. After the

mathematical formulation will be discussed in detail.

4.2.1.1 Data-sets

The required input data and related generated data-sets form the basis of the stand allocation

model. The following input data-sets are essential to the model:

• Set of Aircraft Visits F

• Set of Stands S

These data-sets are obtained from the airport, in the form of a flight schedule and terminal lay-

out map. The data-sets provide the stands and the aircraft visits to be allocated in the stand

allocation model. Based on the input data-sets, the following data-sets are computed by the stand

allocation model:

• Set of Operations O

• Set of Successors Ui for operation i

• Set of Adjacent Stands Q of size S∗S

• Set of Compatible Stands Si, a subset of S for each operation i

• Set of overlapping operations Oovi
a subset of O with overlap with operation i

• Set of Affinity A of size O∗S
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The set of operations O is composed by checking the stay time for each visit in the schedule (set

F). If the visit is considered a long-stay visit, it will be split into three operations (disembarkation,

parking and embarkation). The set O is the combination set of the short-stay operations and the

operations of the split long-stay visits. The successors for the operations in the long-stay visits

are determined in the process as well and stored in the set Ui.

The set of adjacent stands Q handles overlap in the stands at the airport. The set contains,

per stand, the information if it overlaps with another stand. The matrix Q contains a 1 for

adjacent stands, while a 0 is stored for non-adjacent stands.

Due to aircraft and stand classifications it has to be ensured a specific operation and stand

combination is compatible. Therefore, for each operation i a subset of S, Si, is determined. Si

contains the compatible stands for operation i.

Subset Oovi
contains the operations that overlap with operation i. Normally one would de-

fine Visit 1 in overlap with Visit 2 and Visit 2 in overlap with Visit 1 as well. However, from a

mathematical perspective it is sufficient to only consider 1 of the 2. This methodology reduces

the total number of constraints in the model. Therefore an operation i overlaps with operation i’

if:

ati′ ≤ ati ≤ dti′ (4.1)

in which at and dt represent the arrival time and departure time respectively. The extension

of this evaluation over all operations results in a sub-set Oovi
of operations that overlap with

operation i.

Finally, the set of affinities A defines the preference of each operation-stand combination. For the

stand allocation model the affinities are based on commercial revenue data. Each preference in A

is the sum of terminal affinity At
i,j and pier affinity Ap

i,j for each operation-stand (i,j ) combination.

The affinities are included in the objective function calculation to determine an optimal stand

allocation from a commercial revenue perspective.

4.2.1.2 Variables

The variables used in the stand allocation model can be split into two: decision variables and

parameters. The decision variables will be established by the model during optimisation. Param-

eters are values which are defined by the airport/user. In addition, the variables for the affinity

determination are described in this section.

Decision Variables: The stand allocation model will decide on the decision variable values

during optimisation. For the stand allocation model the following decision variables are defined:

• xi,j binary variable to describe whether operation i is allocated to stand j
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• yi binary variable to indicate whether operation i is towed

The choice for binary xi,j and yi variables is logical, since the decision to allocate an operation to

a stand or to tow an operation is a yes/no decision.

Parameters: For the stand allocation model several parameters can be set by the airport.

Changing these parameters might result in different allocation plans for the same set of aircraft

visits.

• Minimum time to tow: Minimum stay time of a visit specified by the airport to allow a

towing operation.

• (Dis)embarkation time: Time required to (dis)embark the passengers, used to determine the

minimum length of the arrival and departure operations for long-stay visits.

• Buffer time: A time between two consecutive operations to allow for short stand servicing

and to handle small schedule deviations. The buffer time will be included in the visit time

and hence in the determination of the overlap.

Affinity Variables: In the objective function the set of affinities A is utilised. The affinity for

each operation-stand combination is the sum of terminal stores affinity At and pier stores affinity

Ap. The variables in the affinity calculations are:

• spi: The sales per passenger for operation i

• Paxi: The estimated passenger number for operation i

• αj: Weighting factor representing the effect of distance on terminal sales

• βi,j,z: Weighting factor representing the effect on the sales of a store in location z due to

operation i allocated to stand j

The values of the variables are determined by revenue data analysis. Both weighting factors will

need to be determined based on the relation between historical stand allocations and historical

revenue data.
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4.2.1.3 Mathematical Formulation

The set-up of the stand allocation model used in the optimisation module follows from the defined

variables and data-sets. The model is subject to certain constraints and aims optimise an objective

function. Firstly, the full mathematical formulation will be provided. Thereafter the objective

function and its components will be explained. Finally the constraints will be described one-by-

one. The full mathematical formulation of the stand allocation model is provided below.

maximise
x

∑
Ai,j ∗ xi,j (4.2)

subject to
∑
j ∈ Si

xi,j = 1, ∀ i ∈ O, (4.3)∑
i ∈ Oovi

xi,j ≤ 1, ∀ i ∈ O, ∀ j ∈ Si, (4.4)

xi,j − xUi,j ≤ yi, ∀ i ∈ O, ∀ Ui 6= 0,∀ j ∈ Si (4.5)

xi,j +
∑

i′ ∈ Oovi

xi′,j′ ≤ 1, ∀ i ∈ O, ∀ j, j′ ∈ S,∀ Qj,j′ = 1, (4.6)

xi,j ∈ {0, 1} (4.7)

yi ∈ {0, 1} (4.8)

Objective Function: The optimisation module to generate feasible solutions to the stand

allocation problem considers the objective to maximise affinity:

maximise
x

∑
Ai,j ∗ xi,j (4.9)

The determination of Ai,j follows from the sum of the terminal and pier affinities which are

determined with the equations below.

At
i,j = αj ∗ spi ∗ Paxi (4.10)

Ap
i,j =

∑
z

βi,j,z ∗ spi,z ∗ Paxi (4.11)

Finally, the two affinities are summed together and included in the objective function.

Ai,j = At
i,j + Ap

i,j (4.12)

Allocation constraints: The first set of constraints covers the aspect that each operation needs

to be allocated to a stand, but not more than once. This is mathematically formulated as:∑
j ∈ Si

xi,j = 1, ∀ i ∈ O (4.13)

It ensures that every operation i in O will be allocated to a compatible stand j of sub-set Si.
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Capacity Constraints: The second set of constraints aims to avoid overlap for the stands.

A stand can only handle one operation per time instance. This is formulated as:∑
i ∈ Oovi

xi,j ≤ 1, ∀ i ∈ O, ∀ j ∈ Si, (4.14)

This formulation ensures that the sum of all overlapping operations for operation i and compatible

stand j is at most one. The stand to which operation i is allocated will have xi,j = 1 and will

therefore not get another overlapping operations allocated.

Tow constraints: To include the long-stay visits efficiently in the stand allocation model they

are split into three operations, and a towing decision variable keeps track of the tows. To indicate

the tows decision variable yi is introduced, and will be required to be 1 if i is allocated to stand

j but its successor Ui is not. This is mathematically included by the following constraint:

xi,j − xUi,j ≤ yi, ∀ i ∈ O, ∀ Ui 6= 0,∀ j ∈ Si (4.15)

The Ui 6= 0 ensures the constraint is only enforced if the operation has a successor.

Adjacency constraints: Adjacency constraints for stand utilisation form an important fac-

tor in the stand allocation. In general an adjacency constraint can be explained as: if operation

i is allocated to stand j, operation i’ can not be allocated to stand j’. For the model this is

formulated as:

xi,j +
∑

i′ ∈ Oovi

xi′,j′ ≤ 1, ∀ i ∈ O, ∀ j, j′ ∈ S,∀ Qj,j′ = 1 (4.16)

The sum of x for operation i and overlapping operations Oovi
for adjacent pair j, k should be less

or equal to 1, as expressed in the formulation.

4.2.2 Generation of Feasible Allocation Plans

The described stand allocation model can be solved to optimality and provide a feasible allocation

plan to the stand allocation problem. However, the desired output of the optimisation module is

a set of feasible plans to the stand allocation problem.

To generate the set of feasible allocation plans the model is solved numerous times, depend-

ing on the number of desired allocation plans set by the user. Different feasible allocation plans

are ensured by the addition of a constraint after every solving iteration.

To formulate the constraint the previous found feasible allocation plan is expressed by the deci-

sion variables xi′,j′ . The next feasible allocation plan to be determined has the decision variables

xi,j. For the previous found feasible allocation plan the decision variables are split into two sets;

one set with operation-stand combinations that were allocated in the previous found plan (i.e.
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xi′,j′ = 1) and one set with the unallocated combinations (i.e. xi′,j′ = 0). The following constraint

is enforced for finding the next feasible allocation plan:∑
xi,j [xi′,j′ = 0] +

∑
(1− xi,j) [xi′,j′ = 1] ≥ 1 (4.17)

The constraint ensures that the number of changes in the plan for xi,j has to be at least one

with respect to the previous plan xi′,j′ (since otherwise the sum would equal 0). For every solving

iteration to find a new feasible plan, a new constraint is added (i.e. in the generation of the fifth

plan, 4 of the above constraints are included in the model). All the generated feasible allocation

plans are stored together in a set of feasible allocation plans. The set of feasible allocation plans is

the output of the optimisation module and provides the input for the next module: the recovery

module.

4.3 Recovery Module
The recovery module consists of two parts: the generation of scenarios and the recovery algorithm.

The scenario generation will be described first, with the determination of the historical arrival

time deviation distributions will as well as the methodology to relate flight pairs. Thereafter, the

recovery algorithm will be described with the allowed recovery actions.

4.3.1 Scenario Generation

From the optimisation module a set of feasible allocation plans is used as input to the recovery

module. To ensure a robust plan, the feasible plans will be tested against scenarios. In literature

often normally distributed scenarios are utilised, without consideration of historical data. The

aim for the recoverable robust stand allocation model is to take advantage of historical flight data

for the scenarios. Ideally two aspects of the historical flight data are included: the historical

distribution of the arrival time deviation and the relation of the arrival time deviations between

aircraft visits.

The first step for the scenario generation is to determine the historical arrival distribution func-

tion for every aircraft visit. In the historical flight data, the arrival time deviation is grouped

per flight number. The theoretical best-fit distribution per flight number is then established by a

distribution fit-function and the Kolmogorov − Smirnov test, considering 23 possible theoretical

distributions. The historical arrival distributions will be utilised to determine the quantity of the

arrival time deviation for the aircraft visits in the scenarios.

To include the relation between aircraft visits in the scenario generation correlation calculations

could be utilised. High correlations between visits can help determine the quantity of the arrival

time deviation with respect to previous arrived visits. However, as will be demonstrated in Chap-

ter 5, correlations between visits may be relatively low. The low correlations did not provide
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enough confidence to continue with a correlation approach.

Therefore, the metric to describe a relation between two visits is the arrival time deviation sign:

positive arrival time deviation or negative arrival time deviation. The metric is expressed as the

percentage of days two visits had a similar sign (i.e. positive or negative) in arrival time deviation.

These percentages are determined for all flight number pair combinations and are utilised in the

scenario generation.

To highlight the methodology for the scenario generation, arriving visit i is considered. Two

criteria are used to determine the methodology for the scenario generation:

1. Amount of visits from the same region as visit i that have arrived in the hour before the

arrival of visit i ≥ 3

2. Amount of visits that have arrived in the hour before arrival of visit i ≥ 3

If either of the two criteria is met, visit i will be handled as a dependent visit. The previously

arrived visits in the last hour (and potentially from same region) will be evaluated with regard

to visit i. The number 3 is chosen to ensure visit i does not depend or a single or two previously

arrived visit(s), which would introduce a relatively large bias.

The previously arrived visits will be annotated with i’, i” etc., in order of arrival. Two indi-

cators of the previous arrived visits are of importance:

• Historical percentage of the same arrival time deviation sign (positive/negative) between

visit i and previously arrived visit i’, noted as P(S)

• In the current scenario, did the previous visit i’ arrive early or late?

The two indicators provide information for the generation of the arrival time deviation for depen-

dent visit i. For dependent visit i two probabilities will be calculated: early arrival P (Early)i

and late arrival P (Late)i. These probabilities will be based on the arrival of the previous visits

and their percentage of the same sign for early/late arrival with visit i, noted as P(S).

The methodology is exemplified with an example of 3 previously arrived visits (i”’,i” and i’,

in order of arrival). In the case the visits have arrived early, early and late respectively the

probabilities for early arrival and late arrival are calculated as:

P (Early)i = P (S)i′′′ ∗ P (S)i′′ ∗ (1− P (S)i′) (4.18)

P (Late)i = (1− P (S)i′′′) ∗ (1− P (S)i′′) ∗ P (S)i′ (4.19)

This method is extended to the general case for an unknown number of available visits, adding

P (S)in to the multiplication of the probabilities if the previous visit arrived with the same sign

as the probability to be calculated (i.e. for P(Early) if visit in arrived early or for P(Late) if visit
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in arrived late) and (1− P (S)in) otherwise.

After the calculation of the probabilities, a random number is generated to determine whether

visit i ’s arrival time deviation is positive or negative, with consideration of the calculated proba-

bilities for early arrival and late arrival. The random number provides the sign of the arrival time

deviation for dependent visit i, but not yet the quantity.

The quantity of the arrival time deviation follows from the determined historical arrival time

deviation distribution in the first step of the scenario generation methodology. To exclude ex-

treme early and tardy deviations, the confidence bounds are set to 0.1 and 0.9 respectively. A

random number n determines a probability p(n) for the quantity of the arrival time deviation

with:

∆ati = p(n) 0.1 ≤ n ≤ lim (4.20)

∆ati = p(n) lim ≤ n ≤ 0.9 (4.21)

for earliness and tardiness respectively. Which of the two equations has to be utilised follows from

the pre-determined sign of the arrival time deviation for dependent visit i. In the equations ati

represents the arrival time for visit i, and lim the limit where p(lim) = 0. The probability p(n)

relates to a quantity of arrival time deviation on the historical arrival time deviation distribution.

The deviation for the arrival time ati will then be added to the nominal arrival time of visit i for

the specific scenario.

The visualisation for the determination of the quantity of arrival time deviation for dependent

visit i with an early arrival (i.e. sign = negative arrival time deviation), is provided in Figure 4.5,

which also highlights the early/late regions, the cumulative arrival time deviation distribution,

the confidence bounds and the limit.

35



Figure 4.5: Determination of Arrival Time Deviation for an Early Visit Based on the Historical

Cumulative Arrival Time Distribution

In case both criteria for a dependent visit can not be met, the visit will be handled as an inde-

pendent visit. The arrival time deviation of independent visits utilises the historical arrival time

deviation distribution determined in the first step of the scenario generation as well. Again, a ran-

dom number n between 0.1 and 0.9 determines probability p(n). The corresponding arrival time

deviation is added to the original arrival time of the visit. Please note that for an independent

visit the sign (positive/negative) of the arrival deviation is not pre-determined. In Figure 4.6 an

example of the arrival time deviation is provided, with dotted lines as the confidence bounds.

Figure 4.6: Determination of Arrival Time Deviation for an Independent Visit Based on the

Historical Cumulative Arrival Time Distribution

The scenario generation methodology aims to include the effect of the relation between aircraft

visits if enough previously arrived visits are available. It aims to ensure a realistic arrival time
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deviation based on historical data. The incorporation of relation between the aircraft visits in

the scenario generation methodology and the effective utilisation of historical data improve the

robustness of the final recoverable robust stand allocation solution. The scenarios, together with

the set of feasible allocation plans, are inputs for the next part of the recovery module: the

recovery algorithm.

4.3.2 Recovery Algorithm

The recovery algorithm aims to find recoverable robust solutions to the stand allocation problem.

The set of feasible allocation plans is tested against the generated scenarios in the recovery algo-

rithm. The recoverable robust solutions are a sub-set of the set of feasible allocation plans, the

recoverable robust solutions are the feasible allocation plans that can, at least, be recovered by

limited means in all created scenarios.

The recovery algorithm contains of two parts: an algorithm to recover a schedule conflicts and a

selection mechanism for the final solution. In the first part of recovery algorithm three recovery

actions are allowed to recover the feasible allocation plans: Waiting, re-allocation to a free stand

and tow of a long-stay visit. In the scenarios, a schedule conflict (i.e. overlap in time) can occur

due to the shifted arrival times. If a conflict occurs, the three recovery actions will be tried to

recover the allocation plan. The allowed recovery actions are described as:

• Waiting: Let an aircraft wait until its allocated stand is free. Obviously, it is not acceptable

to make an aircraft wait extensively therefore a limit is set (5 minutes in the algorithm).

• Re-allocate to a free stand: If the conflict-time is larger than the allowed waiting time,

it is tried to find a free compatible stand for the operation that causes the conflict.

• Tow a long-stay parking operation: If a conflict occurs and there is no free compatible

stand, but a long-stay visit is parked at a contact or remote stand, the long-stay visit is

considered for a towing operation to an available parking-only stand. The freed stand can

then be utilised for (dis)embarkation.

The second part of the recovery algorithm is a selection mechanism for the final recoverable robust

solution. The selection can be based on, for example, the lowest number of recovered scenarios,

the average percentage of passengers allocated to a contact stand over all scenarios or other per-

formance indicators as average walking distance over the scenarios or average required towing

operations. A similar selection procedure is in place for the case that none of the feasible alloca-

tion plans is recoverable robust. A non-recoverable robust will then be selected, for example based

on the lowest number of non-recoverable scenarios or one of the other performance indicators listed.

The complete recovery algorithm, with the three recovery actions, is described as:
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Algorithm 1: Recovery Algorithm
Result: Recovery of Feasible Allocation Plans in Scenario Testing

Start at First Scenario and Feasible Plan;

while Untested Feasible Allocation Plan Exist do

while Untested Scenario Exist do

while Conflict Exists do

Find conflict time ;

if conflict-time ≤ 5 minutes ;

then

Let aircraft wait ;

Move to next conflict
else

Find free, compatible stands ;

if Free compatible stand is available then

Allocate conflict operation to free compatible stand ;

Update recovery variables ;

Move to next conflict
else

Find Towable Operations and Free Parking Stands;

if A long-stay towing operation at a compatible stand and parking stand available then

Tow long-stay parking operation to parking stand ;

Allocate conflict operation to freed stand ;

Update recovery variables ;

Move to next conflict
else

Indicate Allocation Plan as Non-Recoverable;

Move to next conflict ;

end

end

end

end

Go to next Scenario
end

Go to next Feasible Allocation Plan
end

if Recoverable Robust Solutions Found then
Print best Recoverable Robust Solution

else
Print best Non-Recoverable Solution

end

To keep track of the recovery applied in a certain scenario, recovery variables are introduced.

The recovery algorithm alters the feasible allocation plan for a specific scenario and therefore it

is important to store the utilised recovery actions. The recovery actions are stored with recovery

variables:

rs,ci,j


1 if operation i is re-allocated to stand j in scenario s for feasible allocation plan c

-1 if operation i is removed from stand j in scenario s for feasible allocation plan c

0 otherwise

(4.22)

To highlight the application of recovery variables further an example for the allocation constraints

is provided. Operation i can only be allocated once per scenario in every solution and therefore

the following constraints can be described (Please note the set of scenarios T, noted by s and the

set of feasible allocation plans C, noted by c):∑
j ∈ Sc

(xij + rs,ci,j ) = 1, ∀ i ∈ O, ∀ s ∈ T, ∀ c ∈ C (4.23)

The other constraints in the stand allocation model are extended similarly for the recovery algo-

rithm. The recovery variables represent information about the recovery in a specific scenario and

can be provided to the airport controllers if desired. After a recovery move is in place, the same

scenario needs to be re-tested to ensure no other conflicts are apparent in the scenario. In the
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re-testing of the scenario variable r might not be equal to 0, but also be 1 or -1, depending on the

recovery in the previous iterations. The variable r indicates the difference between the original

feasible allocation plan c and the recovered allocation plan for a specific scenario.

The recovery algorithm evaluates the set of feasible allocation plans against the scenarios and

indicates the plans that are recoverable robust solutions to the stand allocation problem. The

output of the recovery module, a recoverable robust solution, is then selected by a criteria chosen

by the airport. This concludes the recovery module in the recoverable robust stand allocation

model. The expected output for the airport controllers will be highlighted in the next section.

4.4 Expected Output

The expected output of the recoverable robust stand allocation model is a recoverable robust

solution to the stand allocation problem. The recoverable robust solution can be visualised with

the respective decision variable values. An example of the visualisation is provided in Figure 4.7,

where the stands are plotted relative to the time. The output for the airport controllers is an html-

plot similar to the figure, with zooming options and labels to provide more detailed information.

In the figure, blue squares indicate (dis)embarkation operations while light-blue squares indicate

parking operations. If a (dis)embarkation operation is allocated to a remote stand the square

would be highlighted in orange.

Figure 4.7: Example of the Visualisation of the Recoverable Robust Solution, with Allocations

per Stands

Furthermore, the recovery per scenario of the recoverable robust solution is stored with the recov-

ery variables. A visualisation of the values of the recovery variables is provided in Figure 4.8. The

figure highlights one operation (red dot) in 5 scenarios, with 3 stands. The superscripts for the

scenario number and the solution number are neglected to enhance readability. In the nominal
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scenario (0), the operation is allocated to stand 2 (x1,2 = 1). For scenarios 1 and 4 the operation

is assumed to require recovery due to a conflict and is therefore re-allocated to another stand.

The original decision variable in the solution is not changed, however the recovery variables for

the specific scenario are updated.

Figure 4.8: Example of the Recovery Variables Values in Different Scenarios

Detailed information will be provided to the airport controllers in the form of the number of re-

allocations per stand and the alternative stand used for specific operations. Special attention can

be given to the conflict operations to spot potential conflicts early during actual operations. The

controller can re-allocate operations effectively with the information on the alternative stands.
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Chapter 5

Case Study

To demonstrate the industrial applicability of the recoverable robust model, a case study is per-

formed in collaboration with Guarulhos International Airport São Paulo (GRU). In this chapter

first, GRU and their stand allocation methodology is introduced. Thereafter, the flight data anal-

ysis is explained. The flight data analysis aims to generate the inputs for the scenario generation

of the recoverable robust stand allocation model: historical arrival time deviation distribution per

flight number and percentage of equal arrival time deviation sign per flight number pair. Finally,

the revenue data analysis is described. In the revenue data analysis the inputs for the affinity cal-

culation of the objective function of the recoverable robust stand allocation model are determined.

GRU is the largest airport in South-America, handling around 40 million passengers per year

and is operated by GRU Airport. In 2012, GRU Airport won the bid for the concession to oper-

ate GRU for 30 years. This not only led to large investments, but raised profit awareness inside

the company as well.

GRU consists of 4 passenger terminals and a cargo terminal. Terminal 1/2 are both domes-

tic and international terminals, and are undergoing a huge retrofit. In 2014 a new international

terminal was opened, Terminal 3, adding a capacity of 12 million passengers per year. Finally

Terminal 4 is a linear terminal, solely for domestic operations. The lay-out of GRU is presented in

Figure 5.1 (Terminal 4 is located left of the apron 1). Outside of the figure, there are parking-only

stands for long-stay aircraft visits located on the right of apron 6.
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Figure 5.1: Lay-out of GRU Airport, with Terminal 3 between Apron 5 and 6

For the research project the focus is on Terminal 3, with 10 wide-body contact stands (each can

be split into 2 narrow-body contact stands). The long-stay visits can be parked both at remote

stands in zone 5 (3 wide-body) and 6 (7 wide-body), and the parking-only stands in zone 9 (13

wide-body). The parking stands are necessary since most international visits arrive early morning

and do not depart until late afternoon.

The current process for stand allocation at GRU Airport is semi-automatic and based on a num-

ber of criteria. Before every day most flights are allocated to an arrival stand, but the departure

stand is not yet determined. In practice, schedule disruptions cause coordinators to re-allocate

operations to different stands, deviating from the initial schedule. As stated by one of the coor-

dinators: “often there is no view of the future, only the current problem is solved. This often

results in quite some unnecessary re-allocations due to previous actions of the controllers”. In the

actual allocation, this is confirmed since typically operations are allocated to Terminal 2 at the

end of the day, when Terminal 3 is congested. The controllers can not find a suitable stand at

Terminal 3 and allocate operations to Terminal 2 instead. GRU Airport uses certain criteria for

their stand allocation (in order of importance):

• International vs. Domestic

• Number of Passengers

• Short stay vs. Long stay

• Connectivity
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The criteria are utilised to determine which aircraft visits have preference for a contact-stand. For

example, an international aircraft visit is preferred over a domestic aircraft visit. Typically the

international visits have a higher passenger number as well, a further indication of the preference

for international visits. For GRU Airport an international, short-stay aircraft visit with high

connectivity and passenger number would have the highest preference. However, no clear metrics

exist to determine the preference of one aircraft visit over another. The coordinators can drag-

and-drop operations in the stand allocation system, where free available stands are highlighted.

It is possible to input preference scores into this system to simplify the picking process for the

coordinators, but this is not used. In the current system of GRU Airport, the estimated time of

arrival of an aircraft can be inserted as well. The source can be either the airline, air traffic control

or online sources as FlightRadar. The insertion is a manual process. When the estimated arrival

time deviates too much from the planned arrival time it can be indicated as overlap in the system.

If the overlap is large, the coordinator needs to recover the schedule manually. Without knowledge

on the impact of a re-allocation, the recovery actions might result in even more required recovery.

The top two criteria for stand allocation at GRU Airport follow from Brazilian legislation, which

requires an average of 95% of all international passengers to be allocated to a contact-stand.

Penalties might be enforced by the Brazilian government if the 95% is violated. GRU Airport

expressed a desire to aim for this percentage in the tactical stand allocation. Therefore, in the

optimisation module of the recoverable robust stand allocation model the following constraint is

added for the case study: ∑
i ∈ O

∑
j ∈ Sct

xi,j ∗ Paxi /
∑
i ∈ O

Paxi ≥ 0.95 (5.1)

In the equation Sct represents the set of contact-stands, a sub-set of S. Paxi contains the esti-

mated passenger number for operation i. It has to be noted that according to GRU Airport the

95% can not always be achieved without compensation of international visits allocated to the

other terminals.

As mentioned in Chapter 4, the recoverable robust stand allocation model can obtain results

with multiple recoverable robust solutions. A selection mechanism is included in the recoverable

robust stand allocation model to select the final solution. The percentage of passengers allocated

to a contact stand is an important performance indicator for GRU Airport, therefore the selection

of the final recoverable robust solution will be based on the average percentage of passengers

allocated to a contact-stand over all the scenarios tested.

Another outcome of the recoverable robust stand allocation model is no recoverable robust so-

lution. All feasible allocation plans could not be recovered in the recovery module, however a

tactical stand allocation for GRU Airport is still required. GRU Airport could decide to allow

allocation to more parking stands to increase the number of remote stands, or to allocate opera-

tions to other terminals. In the recoverable robust allocation model, the non-recoverable robust

43



solution with the highest average percentage of passengers allocated to a contact stand will be

selected, following the desire for a high percentage of passengers allocated to a contact-stand.

To support the research, two data sources are analysed; flight data and revenue data. In col-

laboration with GRU Airport, the required data-sets were determined and collected if possible.

The following data is provided by GRU Airport:

• Historical Flight Data and Stand Allocations (1 year, August 2014 - July 2015)

• Stand lay-outs and Classifications

• Flight Schedules with Aircraft Classifications (July 2015, November 2015)

• Planned and Actual Allocations (November 2015)

• Minimum times required for (Dis-) Embarking

• Duty-free Revenue Data (August 2014 - July 2015)

• Pier Stores Revenue Data (July 2015)

• Terminal Lay-out and Store Locations

• Boarding-pass Data from Electronic Boarding Pass Scanners (1 week, March 2015)

These data-sets will be input into several parts of the recoverable robust stand allocation model.

The flight data will aid the scenario generation and the revenue data will be analysed for the

affinity calculation in the objective function of the stand allocation model. Please note that a list

of airlines and their respective codes used in the data analysis is found in Appendix A.

5.1 Flight Data Analysis

The flight data analysis will be utilised in the scenario generation of the recoverable robust stand

allocation model and consists of historical flight data and passenger numbers. The data is used

to create historical arrival time deviation distributions per flight number. The distributions are

input to the scenario generation methodology in the recoverable robust stand allocation model.

Moreover, insights in the correlations and percentages of equal arrival time deviation sign (posi-

tive/negative) between flight number pairs are provided.
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5.1.1 Data Description and Methodology

For the flight data analysis a full year of historical flight data (August 2014 - July 2015) is

available. An example of the data format is provided in Figure 5.2. For each flight the scheduled

time and actual time are provided, as well as the allocated stand and number of passengers.

Figure 5.2: Example of the Available Flight Data

The flight data analysis is performed using the SciPy library in Python. For every flight number

with an occurrence higher than 30 an historical arrival time deviation distribution is generated, to

ensure representative distributions. The historical arrival time deviations are divided into a high

number of bins and a theoretical best-fit is determined by the Kolmogorov − Smirnov test, with

the evaluation of 23 theoretical distributions. In addition, arrival time deviation distributions are

generated for each airline. These distributions will be used in the scenario generation methodol-

ogy of the recoverable robust stand allocation model in case a distribution based on flight number

can not be found. To avoid generalisation of the home-carrier of the airport (TAM airlines), the

home-carrier’s arrival time deviation distribution is split per region.

For the correlation analysis, Pearson’s R, Spearman’s Rank or Kendall’s Tau correlation method-

ology can be utilised. The selection of the method will depend on the data. Both the correlations

and percentage of equal arrival time deviation sign (positive/negative) is determined between

flight number pairs.

5.1.2 Results

Based on the historical flight data, first the historical arrival time deviation distributions are

determined. The correlation analysis and percentage of equal arrival time deviation sign analysis

are described at the end of this section.

In Figure 5.3 the cumulative arrival time deviation distributions of TAM visits at GRU Air-

port is presented, both per region and overall. The regions are South-America (SA), Europe (EU)

and North-America (NA). It is visible that the majority of the visits arrive before the scheduled

time. From the division it shows that specifically the TAM aircraft from Europe arrive early.

These aircraft visits could impact a non-robust tactical stand allocation significantly. The best

fit theoretical distribution covering all arriving TAM visits is a non-central t (NCT) distribution

(parameters: v = 2.90, µ = 1.01, loc = -39.31, scale = 16.39).
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The same analysis is performed per flight number and for the other airlines, to identify their

arrival time deviation distributions. The distributions per flight number are provided in Ap-

pendix B. In Table 5.1 the results are displayed per airline, for both the percentiles of the arrival

time deviations (i.e. 10th percentile presents the arrival time deviation for 10 percent of the

arriving visits) and best-fitted theoretical distribution.

Figure 5.3: Cumulative Arrival Time Deviation Distribution of TAM Visits at GRU Airport
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Percentile [min]

Airline 10th 20th 30th 40th 50th 60th 70th 80th 90th Best Fit Parameters

SWR -21 -14 -8 -5 -1 2 6.8 11 21 nct v = 2.24 mu = 0.42 loc = -7.14 scale = 11.66

IBE -42 -34 -27 -21 -16 -10 -5 1 16 nct v = 2.26 mu = 0.73 loc = -30.44 scale = 16.28

BAW -25 -18 -12 -8 -4 3 10 20 39.4 nct v = 2.02 mu = 1.11 loc = -21.68 scale = 14.61

TAP -13.8 -4 3 8.8 14 20 27 35 48 nct v = 3.30 mu = 0.67 loc = -0.12 scale = 19.28

AFR -28 -20 -13 -7 -3 2 9 18 29 nct v = 2.30 mu = 0.89 loc = -19.56 scale = 15.94

KLM -21 -14 -10 -6 -3 0.8 5.1 12 24 nct v = 2.41 mu = 0.87 loc = -14.45 scale = 11.91

DLH -31.9 -23 -17 -12 -8 -2 3 10 22 nct v = 1.76 mu = 0.74 loc = -20.50 scale = 14.08

AZA -34 -20.8 -14 -7 -1.5 5 14 23 39.8 nct v = 2.41 mu = 0.80 loc = -20.13 scale = 20.75

SAA -53 -45 -37 -31 -23 -17 -11 -2 8 t v = 1.80 loc = -24.98 scale = 18.75

QTR -37 -30 -26 -22 -19 -15 -11 -5 5 nct v = 2.69 mu = 0.70 loc = -28.22 scale = 12.21

ETD -23.5 -13 -4 2 8 16 25.5 40 61.5 nct v = 3.33 mu = 1.82 loc = -34.20 scale = 21.50

THY -36 -28 -23 -16 -9.5 -2 5 18 34.5 genextreme c = -0.10 loc = -18.10 scale = 23.47

CCA -40.4 -33 -31 -27 -22 -18.2 -11.9 -3 4.7 nct v = 2.51 mu = 1.08 loc = -37.93 scale = 12.94

KAL -31 -23 -18 -13.4 -10 -5.6 -1 6.2 14.1 genlogistic c = 1.49 loc = -15.79 scale = 11.89

SIA -42 -35 -28 -23 -17.5 -12 -4.5 2 9.5 dgamma a = 1.19 loc = -16.47 scale = 16.21

UAE -39.7 -30 -22.1 -17 -10 -4 2 11 31 nct v = 4.97 mu = 1.60 loc = -45.38 scale = 20.34

LAN -25 -20 -15 -10 -6 -1 4 13 29 nct v = 3.02 mu = 2.07 loc = -34.81 scale = 12.32

LAP -55.4 -45 -39 -34.6 -30 -26 -22 -17 -6 t v = 2.48 loc = -30.74 scale = 13.72

AAL -32 -25 -20 -14 -9 -2 7 21 55 nct v = 1.52 mu = 1.27 loc = -32.03 scale = 15.04

DAL -29 -22 -18 -14 -10 -5 4 13 43.3 nct v = 1.53 mu = 1.21 loc = -27.97 scale = 12.50

UAL -34 -24 -17 -12 -6 0 8 21 47 nct v = 3.58 mu = 2.51 loc = -54.07 scale = 17.59

ACA -18.8 -10 -4 1 7 12 20 34.6 64 nct v = 2.42 mu = 2.38 loc = -32.54 scale = 14.28

TAM SA -42 -35 -30 -25 -21 -16 -11 -3.2 10 nct v = 2.66 mu = 0.85 loc = -35.00 scale = 14.58

TAM NA -42 -33 -27 -20.2 -15 -8 -1 9 24 nct v = 3.19 mu = 1.43 loc = -43.95 scale = 18.32

TAM EU -54 -44 -38 -33 -28 -22.4 -16 -8 5 nct v = 3.46 mu = 1.21 loc = -50.64 scale = 16.86

Table 5.1: Arrival Time Deviation Percentiles and Theoretical Best Fit per Airline

Please consult Appendix A for a list of airlines and airports, and their abbreviations. Interestingly,

for most airlines and flight numbers the NCT distribution provides the best fit for the arrival time

deviation distributions. Most stochastic stand allocation models in literature assumed normally

distributed flight data for their scenario generation. The distributions for GRU Airport indicate

the importance of flight data analysis. The application of the recoverable robust stand allocation

model to another airport will require a similar flight data analysis.

To indicate which airlines have a similar historical arrival time deviation distribution, a hier-

archical cluster methodology is applied. Relative distances between the clusters are determined

based on their centroid. Inputs are the 10th, 20th, 30th, 40th, 50th, 60th, 70th, 80th and 90th

percentiles of the historical data. The distance D for a percentile n is calculated as:

Dal1n ,al2n = ||cal1n − cal2n || (5.2)

in which al1 and al2 can represent any airline or cluster. The variable c stands for the centroid.

The distance is calculated between each percentile. The resulting distance vector therefore is

9-dimensional. The magnitude of the distance vector between two airlines or cluster is then

calculated as:

||Dal1,al2 || =
√

(D2
al110 ,al210

+ ... +D2
al190 ,al290

) (5.3)

In Figure 5.4 the clusters created with the hierarchical clustering methodology are presented.

On the y-axis the relative distance between the distributions is plotted. Most North-American

airlines (i.e. DAL, AAL, UAL) are clustered relatively close, as well as some European airlines

(KLM and SWR, BAW and AZA).
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Figure 5.4: Centroid Clustering of Airlines Based on Arrival Time Deviation Distributions

Besides the arrival time deviation distributions, the scenario generation methodology requires an-

other input: the percentages of same sign (positive/negative) arrival time between flight number

pairs. The percentages are utilised to calculate the relative probability if an arriving visit will

arrive early or late, depending on previously arrived visits in the last hour (and region, if possible).

However first, a correlation analysis is provided. As mentioned in Chapter 4 correlations are

not utilised in the scenario generation methodology. High correlations between flight number

pairs would enable the scenario generation methodology to relate the quantity of the arrival time

deviation as well, and not only the sign (positive/negative).

Correlations can be calculated with Pearson’s R correlation, the Spearman’s Rank correlation

or the Kendall-Tau correlation. Since the arrival time deviation is not normally distributed and

the Spearman’s Rank requires monotonic related data and is more sensitive to error and discrep-

ancies in data, the Kendall-Tau correlation is selected. The Kendall-Tau checks whether a data

pair is concordant or discordant. A concordant data-pair in the arrival time deviations has a

deviation in a similar direction relative to the previous day (i.e. both greater than the previous

day or both smaller than the previous day).

The calculated Kendall-Tau correlations for the flight number pairs demonstrated relatively low

correlations. Only 0.3 percent of the flight-pairs showed a correlation above 0.5 or below -0.5,

commonly accepted limits for a moderate relationship between data-sets. Figure 5.5 provides an

overview of distribution of the found correlations. Most flight pairs demonstrate a low correlation
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and therefore the correlations are not used to relate the quantity of delay of one aircraft visit to

another.

Figure 5.5: Overview of Occurrence of Correlations between Flight Pairs

Instead of the correlations, the determination of arrival time deviation sign (positive/negative)

will be used in the scenario generation methodology. For every flight pair the percentage is

calculated and stored for the recoverable robust stand allocation model. Figure 5.6 provides an

overview of the occurrence of percentages for the flight pairs. The percentages are used as input

to the scenario generation methodology to calculate the probability of an early or late arrival for

a specific visit based on previously arrived visits.

Figure 5.6: Overview of Occurrence of the Percentages Equal Arrival Time Deviation Sign between

Flight Pairs
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For other airports it is encouraged to perform similar data analysis, potentially correlations can

be used effectively for other airports to relate the quantity as well. The performed flight data

analysis will be included in the recoverable robust stand allocation model, to generate realistic

scenarios for the scenario testing in the recovery module.

5.2 Revenue Data Analysis
The second part of the data analysis covers revenue data analysis. The revenue data analysis

is utilised to determine the variables of the affinity calculations. The affinities are included in

the objective function of the recoverable robust stand allocation model. Commercial revenue is

becoming more important for airports, especially due to privatisation and competition effects [17].

In Chapter 4 the general idea of affinity (Section 4.1) and the required variables for the application

of affinity in the stand allocation model (Section 4.2.1) were described. This section will describe

the revenue data available at GRU Airport and the results obtained from the data analysis. The

results will be included in the recoverable robust stand allocation model in the calculation of the

affinity. Please recall the scope is the international terminal at GRU Airport (Terminal 3).

The revenue data consists of two parts: the terminal stores data and the pier stores. The main

terminal store is a large duty-free store. Inside the pier several stores and restaurants are located,

which will be included in the revenues analysis as well. The store locations are highlighted pink

in Figure 5.7, the restaurants/bars blue. The terminal stores are located before the entrance of

the pier, therefore they are not visible in the figure.

Figure 5.7: Pier Terminal 3 of GRU Airport

To complement the revenue data analysis, a dwell-time analysis is performed. Dwell-time is often

considered to be an important characteristic for airport expenditure. However, it is not included

in the affinity calculation of the revenue framework in the recoverable robust stand allocation

model. To highlight the reasoning, a dwell-time analysis is provided in sub-section 5.2.3.
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5.2.1 Data Description and Methodology

The data for the terminal stores consists of one year sales per passenger data (August 2014 - July

2015, in dollars), available per month per airline. The pier store data is very limited, only total

revenue data per store for a month (July 2015) is available. To be applicable to stand allocation,

the pier revenue data needs to be related to locations inside the pier. To simplify the locations

the pier of Terminal 3 at GRU is divided into 5 zones, 1 per each opposing pair of gates (See

Figure 5.7, a zone stops after the 2nd gate of the pair). The objective is to determine the influence

of each zone on the revenue, for both terminal and pier stores. The main data-link is historical

stand allocation, with data on passenger numbers and airlines allocated to the respective zones.

Unfortunately, extensive passenger tracking data is not available. It will therefore not be possible

to accurately determine the sales per passenger and the β weighting factors.

5.2.2 Results

The objective of the revenue analysis is to be able to perform the affinity calculations. Conse-

quently, the average sales per passenger needs to be estimated for both the terminal and the pier

stores, as well as the α and β weighting factors.

5.2.2.1 Terminal Stores

The data for the terminal stores is split per airline and month. Almost all passengers have to pass

the terminal stores in order to walk to their gate. The average sales per passenger (in dollars) per

airline over August 2014 - July 2015 is provided in Figure 5.8. The category “Others” represents

airlines as Turkish Airlines and Qatar Airways, for which no separate data is available. The other

acronyms can be found in the list of airlines in Appendix A

Figure 5.8: Average Sales per Passenger at Departure in the International Terminal (August 2014

- July 2015)
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For the airlines TAM, LAN and SAA the average is computed for the period October 2014 -

July 2015, these airlines started operations in the international terminal only in October 2014.

On average, the European carriers spend more compared to the North-American carriers. The

average sales per passenger per airline will be a direct input in the affinity calculation for the

objective function of the recoverable robust stand allocation model.

Ideally, it should be possible to compute the average sales per passenger per origin, destina-

tion and even per day. It would enable more detailed conclusions from the commercial revenue

at the airport. Furthermore, it is recommended to perform a detailed forecast of the sales per

passenger including, amongst others, the dollar exchange rate and seasonality. Due to the large

time gap in data availability between the sales data (up to July 2015) and planned allocations

(November 2015), the average sales per passenger as demonstrated in Figure 5.8 will be utilised

in the affinity calculation for the case study.

The next step is the estimation of the relative importance of each zone for the duty-free store in

the terminal (the α weighting factor in the affinity calculation).

5.2.2.2 α-Calibration

The α weighting factors in the terminal stores affinity calculation are determined by combining

the average sales data with historical stand allocation and passenger numbers. The α factors

represent the importance of each zone for the total revenue of the airport. The assumption is

that the importance decreases with the increasing distance from the terminal. To simplify the

determination of the α factors, the pier terminal is divided into several zones. In Figure 5.9 an

overview of the zones inside the pier is provided.
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Figure 5.9: Overview of the Pier Zones

For each month in the period August 2014 - July 2015 the total sales per zone (in dollars) for

the terminal stores is calculated. The calculation consists of the evaluation of all visits in the

month, with the computation of their average sales per passenger for that month for the airline

multiplied by the passenger number of the aircraft visit. The resulting value is then added to the

sub-total for the zone at which the aircraft visit was allocated. For example, if Visit 1 is allocated

in Zone 4 the average number of passengers of the aircraft visit is multiplied by the average sales

per passenger for the respective airline and added to the subtotal of Zone 4. Ideally, the variation

between days would be included in this analysis to derive more detailed conclusions.

For all five zones the percentage of the sales with respect to the total sales (dollars) is deter-

mined for each month in the period August 2014 - July 2015. In Figure 5.10 an overview of the

sales percentage per zone is provided. The assumption is a linear decreasing effect towards the

end of the pier, visualised by a linear trend-line.
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Figure 5.10: Percentage of Terminal Sales per Zone per Month

The R2-value (0.69) demonstrates that a linear relationship seems a reasonable assumption. The

sales percentages per zone are affected by the airlines allocated to the zone and the number of vis-

its allocated to each zone. This effect, and other factors (variation in spending per day, passenger

behaviour, dollar exchange rate), introduce deviations which can explain the R2 value. However,

since GRU Airport has no fixed airline preferences for specific stands and aims to include variation

in their allocations, it should provide a relatively realistic view.

The linear trend-line (y = −1.21x + 23.65) is used to determine an estimated sales (dollars)

percentage for each of the zones. With Zone 1 as reference value, since it is closest to the terminal

stores, a respective weighting factor for the other zones is determined. Table 5.2 provides an

overview of the estimated sales percentages and α weighting factors for the respective zones.

Zone Sales [% of Total] αj [-]

1 22.44 1.0

2 21.23 0.95

3 20.02 0.89

4 18.81 0.84

5 17.60 0.79

Table 5.2: Estimated Sales Percentages and α Weighting Factors per Zone

For the terminal stores affinity, the α factors provide the final input for the calculation. The

factors are combined with the sales per passenger (dollars) and estimated passenger number for
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an aircraft visit. As example, the terminal stores affinity for a SWR visit with estimated 200

passengers allocated to Zone 5 will generate a terminal affinity of:

At
i,j = α5 ∗ spi ∗ Paxi = 0.79 ∗ 19.6 ∗ 200 = $3097 (5.4)

5.2.2.3 Pier Stores

The second part of the affinity in the objective function of the stand allocation model, the affinity

calculation for the pier stores was not straightforward due to limited data. Some assumptions

were required in order to calculate the pier affinities. The two aspects required for the pier affinity

calculation are the average sales per passenger and the β weighting factors. With one month of

total sales in dollars per store available (July 2015), it was relatively complicated to split the total

sales into sales per passenger.

An aspect that could help to split the monthly total sales is the passenger flow inside the terminal.

If the amount of passengers to which the store is exposed can be determined, an adjusted sales

per passenger can be calculated. Advanced tracking systems can provide data on the passenger

flow based on Wi-Fi and Bluetooth. Unfortunately, these type of systems are not in place at GRU

Airport.

A first step to obtain a realistic assumption for the passenger flow is to determine the num-

ber of passengers that are certain to pass specific zones, due to their stand allocation. These

passengers would need to pass the store in order to walk to their gate. Based on historical stand

allocation and passenger numbers a distribution along the terminal can be made. This is visu-

alised for July 2015 in Figure 5.11, where each number in the zone represents the percentage of

total passengers that is required to pass through the zone. For example, all passengers need to

pass through Zone 1 to walk to their gate, hence the 100%. Furthermore, 17.8 % of the passengers

had a gate allocated in Zone 5 and therefore had to walk through all zones. Please note that only

operations allocated to a contact-stand are included in this analysis.
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Figure 5.11: Overview of the Pier Zones and Respective Percentage of Passengers that need to

pass the Zone

The second step in the passenger flow estimation is to include the behaviour of passengers. Pas-

sengers may not walk straight to their gate and stay there waiting, but may wander around the

pier. It is tried to estimate the area of the terminal in which passenger wander, the trading area

of passengers. For example, a passenger allocated to Zone 1 may visit stores in the other zones

of the pier. Without the availability of advanced tracking systems, the trading area of passengers

is estimated by measuring the flows in the pier. The flows inside the pier were estimated by

experimental measurements, counting passengers on several locations inside Terminal 3 of GRU

Airport. Both passengers moving towards the end of the pier (Pax In) and passengers walking

back to the terminal (Pax Out) were counted at every zone border (a cut). An overview of the

measurements is provided in Table 5.3, for the locations of the cuts please refer to Figure 5.11.
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Measurement Date Time Cut Pax In Pax Out Pax Out / Pax In [%]

M1 October 12th 14:30 - 15:30 Cut 1 456 94 20.6

M2 October 12th 15:45 - 16:45 Cut 1 340 124 36.5

M3 October 12th 17:00 - 18:00 Cut 2 463 212 45.8

M4 October 12th 18:15 - 19:15 Cut 0 1028 193 18.8

M5 October 12th 19:45 - 20:45 Cut 0 1410 293 20.8

M6 November 17th 17:30 - 17:45 Cut 3 69 20 29.0

M7 November 17th 17:45 - 18:00 Cut 2 44 28 63.6

M8 November 17th 18:00 - 18:15 Cut 2 43 41 95.3

M9 November 17th 18:15 - 18:30 Cut 1 73 34 46.6

M10 November 17th 18:30 - 18:45 Cut 1 78 26 33.3

M11 November 25th 15:45 - 16:00 Cut 3 41 28 68.3

M12 November 25th 16:00 - 16:15 Cut 4 20 14 70.0

M13 November 25th 16:15 - 16:30 Cut 4 27 19 70.4

M14 November 25th 16:30 - 16:45 Cut 3 31 48 64.6

Table 5.3: Passenger Flow Measurements at GRU Airport

The measurements could only be performed in October and November, but will be utilised for

the July 2015 pier revenue data. It limits the validity of the pier affinity calculations, but should

still provide an overall indication of the passenger flows. Measurements M4 and M5 at Cut 0

were performed to obtain an indication if passengers would walk back to the terminal stores. This

backward flow was around 20 percent, a further indication the importance of the terminal affinity

in the revenue framework.

From the measurements, the goal is to obtain an assumption for the additional flow due to

passenger movements, on top of passengers that are simply walking towards their respective gate.

The assumption is based on the ratio between the Pax In and Pax Out for all respective cuts in

Table 5.3. Moreover, the additional flow a zone will be expressed as a percentage of the passengers

allocated to the previous zone.

Based on the measurements, an additional passenger flow of 33 percent between Zone 1 and Zone

2 is assumed. This indicates that 33 percent of the passengers allocated to Zone 1 will enter Zone

2. The percentage of Zone 1 passengers is added to the passengers required to pass through Zone

2 to reach their gate. For the border between Zone 2 and Zone 3 an additional flow of 50 percent

will be assumed (i.e. 50 percent of the passengers from Zone 2 will enter Zone 3, although in prac-

tice it will be a mix of passengers allocated to Zone 1 and Zone 2). Please note that measurement

M8 is neglected because of the extreme high value compared due to a proximate boarding process.

For the end of the pier, the measurements show a larger variation due to a lower passenger

flow. At the measurement time of M6 the aircraft allocated at Stand 602 started their boarding
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process, leading to a relative high number of passengers entering the zone. Therefore the approxi-

mation of 30 percent back-flow is considered too low. Considering the other measurements at the

end of the pier and extrapolating from the measurements of the previous zones, the additional for

Zone 4 and Zone 5 is assumed to be 67 and 75 percent of the passengers allocated to the previous

zone (3 and 4 respectively). Advanced passenger tracking systems could provide more detailed

and accurate data and it is encouraged to implement such systems to improve the available data

for the affinity calculations.

Table 5.4 provides an overview of the estimated number of passengers that are required to pass

the zone (Pax Pass) and the assumed additional flow (Extra) per zone. The total number of

passengers that is exposed to a store (Pax TA) is then determined for every zone z as:

Pax TAz = Pax Passz + Extraz ∗ Paxz−1 (5.5)

in which Paxz−1 the number of passengers allocated to the previous zone, expressed as a percent-

age of the total number of passengers. To exemplify, the Pax TA for Zone 2 is calculated as: 77.9

+ 0.33 * (100-77.9) = 85.2 percent. In Table 5.4 the values for all zones are displayed.

Zone Pax Passz [% of Total] Extra [%] Pax TAz [% of Total]

1 100 0 100

2 77.9 33 85.2

3 57.1 50 67.5

4 37.6 67 50.7

5 17.8 75 32.7

Table 5.4: Percentage of Passengers in Trading Area (Pax TA) determined with the Passenger

Flow Estimations

It has to be noted that the values in the table are considered rough estimates, ideally one would

have a large database with realistic passenger tracking to validate the passenger flows. The total

sales in dollars per store is translated to a sales per passenger value with the estimated passenger

number in the trading area for July 2015 of the specific store. The results are summarised in

Table 5.5.
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Name Segment Sales [$] Sales per Pax [$] Zone

365 DELI Cafeteria 195324.96 0.52 1

CAFE DO PONTO Cafeteria 38126.02 0.10 1

H STERN Boutique 138094.50 0.43 2

TRACK & FIELD Fashion 48731.10 0.15 2

CAFFE PASCUCCI Cafeteria 70089.91 0.22 2

PIOLA PIER Fast food 116953.00 0.37 2

V.CAFE Cafeteria 94871.92 0.38 3

MARGARITA VILLE Restaurant 129236.30 0.51 3

GO FRESH Cafeteria 16103.85 0.06 3

BRUNELLA Fast food 8106.00 0.03 3

CHILLIBEANS Convenience 11062.35 0.06 4

PUKET Fashion 25421.82 0.13 4

SCARF ME Fashion 24322.62 0.13 4

LIZ LINGERIE Fashion 7388.28 0.04 4

FOM Convenience 35274.71 0.19 4

EMPORIO DO MEL Cafeteria 12058.73 0.06 4

BACIO DI LATE Cafeteria 39966.14 0.21 4

HAVAIANAS Fashion 60426.74 0.32 4

TOSTEX Fast food 52674.41 0.28 4

BRASIL SOUVENIRS Boutique 38650.48 0.20 4

KONI/ SPOLETO Fast food 72128.25 0.59 5

ON THE ROCKS Restaurant 63233.54 0.52 5

CASA DO PDQ PIER Cafeteria 110102.01 0.90 5

Table 5.5: Overview of Pier Stores Sales, Sales per Pax and Zone

The determination of the sales per passenger per store is important for the pier affinity calculation.

The only unknowns left are the β weighting factors. The β factors indicate the relative importance

of allocating a specific visit to a specific stand with respect to the sales in the zones. Unfortu-

nately, the level of detail of the available data (only total store revenue data for one month, no

realistic passenger tracking) does not allow for a reasonable estimation of the β weighting factors

for GRU Airport. Consequently, for this case study the weighting factors are initially set to 1 for

the zone where the store is located and 0 otherwise. As result, an aircraft visit only generates

pier affinity inside the zone it is allocated.

To continue with the example of the SWR aircraft in Zone 5 the pier affinity will be:

Ap
i,j =

∑
z

βi,j,z ∗ spi,z ∗ Paxi = 1 ∗ (0.59 + 0.52 + 0.90) ∗ 200 = $402 (5.6)

Clearly, the affinity generated at the pier is significant lower than the terminal store affinity. A

detailed estimation of the β-factors would improve the pier affinity calculation. The combined
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terminal and pier affinity for allocating the SWR flight to Zone 5 (Stand 601 or 511) is:

Ai,j = At
i,j + Ap

i,j = $3097 + $402 = $3499 (5.7)

Extension of the affinity calculation for all operations, provides the affinity for each operation-

stand combination. The affinities and the results of the flight data analysis provide the required

inputs for the recoverable robust stand allocation model.

5.2.3 Dwell-time

Dwell-time is commonly accepted as an important parameter for expenditure in airport terminals.

This section aims to highlight why dwell-time is not directly included in the revenue framework to

determine the affinities for the objective function of the recoverable robust stand allocation model.

GRU Airport provided boarding pass scan data for the week March 22th - 29th 2015, with

which a dwell-time for every passenger is calculated. It has to be noted that after the boarding

pass scan, the passenger still needs to clear security and pass the federal police. The effective

dwell-time of the passenger will thus be lower than the dwell-time reported in this section.

Since only boarding pass data for March 2015 is available, revenue data from the terminal stores

for March 2015 is utilised as well. In Figure 5.12 the relation between dwell-time and terminal

stores sales per passenger is plotted. Although for some airlines a longer dwell-time seems to lead

to a higher expenditure per passenger, this is not the case for all. For example, LAN and AFR

had a relatively high expenditure per passenger with a relatively short dwell-time.
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Figure 5.12: Dwell-time versus Average Expenditure Per Passenger March 2015

Unfortunately, a more detailed division (flight number, destination) can not be made due to a lack

of data. In the recoverable robust model, affinities for stands close to the terminal building are

higher due to the higher sales at the terminal stores. As result, aircraft visits with high passenger

numbers or high sales per passenger are preferred for stands close to the terminal. If a longer

dwell-time would always result in higher sales, the visits with long dwell-time would generate a

higher affinity. However, visits with a low dwell-time and high sales are preferred in the revenue

framework as well. Effectively, this increases the potential shopping time for these high-revenue

passengers due to a limited walking distance to their stand.
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Chapter 6

Verification and Validation

Verification and validation are a crucial part of the research project, especially in the develop-

ment of a mathematical model. Verification demonstrates the correct working of a model, while

validation assesses if the appropriate model is built. Verification for the recoverable robust stand

allocation model will be executed by means of simple test cases, while the validation test will

consist of the examination of a flight schedule of the airport to check if it works according to the

standards of GRU Airport. Extensive discussions with the responsible employees at GRU Airport

are required to ensure the correct model is built.

6.1 Verification

Verification prevents mistakes in the final results and makes potential bugs in the model easier to

spot. For the recoverable robust stand allocation model the two main parts to be verified are the

optimisation module and recovery module. The split between the modules allows for the testing

of multiple requirements in the same test case. Three tests were developed to demonstrate the

working of the constraints and recovery strategies.

Test 1: The first test focuses on demonstrating the working of the constraints of the stand

allocation model in the optimisation module. Constraints regarding towing, adjacency and stand

classifications are evaluated. The test set consists of 7 visits, 12 contact stands (4 wide-body)

and 1 parking position. All visits except 1 are wide-body. The narrow-body visit has a high

affinity with stand G509L and adjacency constraints should prevent the usage of stand G509

(other visits have a preference for this stand as well) at the same time. Furthermore, the visits

are given specific flight times to ensure a tow for the long-stay visit to the parking position (G913)

is required. Finally, the scenarios (5 generated) are described to generate overlap, to force the

recoverable robust stand allocation model to return a non-recoverable robust solution due to no

recovery possibilities. The allocation of Test 1 is provided in Figure 6.1.

63



Figure 6.1: Results of Verification Test 1

The result shows the long-stay visit has been split, which confirms the working of the tow con-

straints. The consideration of affinity is demonstrated as well (the narrow-body visit is allocated

to G509L). Moreover, the adjacency constraint is effective since G509 is not used when G509L is

occupied.

When checking the log, it is found that solution 0 is selected even though it is not a recover-

able robust solution, as expected. In one of the scenarios, the overlap between the two flights

located at stand 508 is too large and there are no options to recover. The result indicates the

crucial flights for this planning (at stand G508) as information for the controller.

Test 2: The second test focuses on two of the recovery strategies in the recovery module; recovery

by waiting and towing of a long-stay parking operation. It takes the simplistic case of 2 contact

stands and a parking stand, combined with 3 visits (1 long stay, 2 short). Initially the 2 short term

visits do not have time overlap. Two specific scenarios are generated, one which creates an overlap

less than 5 minutes and a scenario where the two short-stay visits have a longer overlap. These

specific scenarios will require recovery by waiting and by towing a long-stay parking operation.

The resulting allocation for the nominal scenario is showed in Figure 6.2.
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Figure 6.2: Results of Verification Test 2

The initial result shows the long-stay visit at G507 and the two short stays at G508. The allocation

results for the respective scenarios are summarised in Table 6.1.

Name Scenario 0 Scenario 1 Scenario 2

LAP0718-JJ8048 G508 G508 G508

KL0791-KL0792 G508 G508 G507

BA0247-BA0246a G507 G507 G507

BA0247-BA0246p G507 G507 G901

BA0247-BA0246d G507 G507 G507

Table 6.1: Allocation for the Scenarios in Verification Test 2

For Scenario 1 no recovery was needed even though there existed a small overlap, the test adhered

to the expectations. In the second scenario the KL0791-KL0792 operation is re-allocated to G507,

which requires the tow of BA0247-BA0246p to parking stand G901. Both recovery types proved

to work correctly in the verification test.

Test 3: Finally, the remaining recovery of the recovery module needs to be verified: re-allocation

to a free stand. The test consists of two short-stay visits (LAP0718-JJ8048 and KL0791-KL0792)

and two contact-stands, with both a high affinity for the same stand (G507). Initially there is no

overlap between the visits i.e. they can be allocated to the same stand. A scenario is generated

with overlap between the visits and recovery is required. The result is summarised in Table 6.2.

Name Scenario 0 Scenario 1

LAP0718-JJ8048 G507 G507

KL0791-KL0792 G507 G508

Table 6.2: Allocation for the Scenarios in Verification Test 3

65



The overlap is correctly solved by re-allocating one of the visits to another stand. This provides

confidence in the working of the recovery algorithm and allows for continuation towards validation

of the complete model with real flight schedules.

6.2 Validation

Validation ensures the model simulates the operational situation at Guarulhos International Air-

port of São Paulo (GRU) correctly. Validation of the model consists of operational and revenue

aspects, therefore it is crucial to involve experts from all involved departments at GRU Airport.

Main points of contact at GRU Airport during validation process were the strategic planning de-

partment and the planning & performance department. Moreover, conversations with employees

from the commercial department provided useful insights for the revenue framework validation.

Validation of the recoverable robust stand allocation model was a continuous, iterative process.

Topics in the validation process were:

• Objectives for the stand allocation at GRU Airport

• Revenue objectives at GRU Airport

• Constraints for stand allocation apparent at GRU Airport

• Working process of the controllers at GRU Airport

• Lay-out of the model output

In the conversations, the model and current project status was actively discussed. Points for

improvements were incorporated in the model as good as possible. The final model is validated

based on a validation test and several statements from the employees at GRU Airport that aim

to highlight the applicability for GRU Airport. Firstly the results of the validation test will be

discussed.

6.2.1 Validation Test

For the validation test of the model, a real day-schedule from GRU Airport is tested. Since the

revenue data is available up to July 2015, it is decided to use a busy day in July, July 9th. The

schedule consists of 66 aircraft visits, with a total of 142 operations.

The goal is to evaluate the recoverable robust solution provided by the recoverable robust stand

allocation model and compare it with an actual day of operations at GRU Airport. The recovery

moves required will be highlighted and should demonstrate the effectiveness of a recoverable robust

solution. For the test 30 feasible allocation plans will be generated and tested against 20 scenarios.

The recoverable robust solution is further described with some important indicators; objective
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function value (OF) and percentage of passengers assigned to a contact stand (both for the nom-

inal flight schedule and average over all scenarios). The running time and number of recoverable

robust (RR) solutions found will be discussed as well.

The initial step in the validation test is to generate the 30 feasible allocation plans. However,

an initial run with the 95% passenger to contact-stand constraint indicated that it is not feasible

to satisfy the constraint for the flight schedule of July 9th. The responsible managers mentioned

that the 95% for Terminal 3 is usually unachievable but it is compensated by international flights

serviced at contact-stands at the other terminals. This improves the overall percentage for inter-

national passengers at a contact-stand to above the required 95 percent. After discussion with

GRU Airport, it is decided that relaxation of the 95% is acceptable, however the aim for the

deterministic problem should be to approximate the 95%. When possible, the constraint will

be enforced in the case study in the generation of the feasible allocation plans. Otherwise, the

constraint will be automatically relaxed by the recoverable robust stand allocation model.

After the relaxation of the 95% constraint, a re-run of the model did not obtain a recover-

able robust solution from the feasible allocation plans generated. A review of the provided non-

recoverable robust solution demonstrated a high occupancy of the remote and parking-only stands,

resulting in few recovery possibilities. GRU Airport tends to utilise other stands outside Termi-

nal 3 if they require extra capacity, both for parking and boarding operations. The addition of

extra parking stands would increase the recovery possibilities during the scenario testing for the

recoverable robust stand allocation model. However, GRU Airport expressed that ideally the

aircraft are parked in the areas for Terminal 3. To provide the recoverable robust stand allocation

model with more recovery possibilities, it is decided to offer 3 extra parking-only stands for the

case study, at the cost of a penalty. For July 9th, 2 parking positions outside Terminal 3 were

utilised by GRU Airport. Furthermore, GRU Airport allocated 5 operations to Terminal 2 for

embarkation/disembarkation operations. For the additional parking stands a penalty of $ 648 is

imposed (equivalent to the cost of 2 towing operations [44]).

After including the additional parking stands, 27 out of the 30 feasible allocation plans were

found to be recoverable robust solutions to the stand allocation problem (see Table 6.3). Over all

the scenarios an average of 90.4 percent of the passengers is allocated to a contact stand. The

allocation can be found in Appendix C. Due to the higher affinity relatively close to the terminal,

many (dis)embarkation operations are allocated to nearby stands (G507, G508, G604, G605). In

Table 6.3 the percentage of passengers allocated to a contact-stand for both the nominal solution

and average over the scenarios (PC and PC AVG respectively) and number of recoverable robust

solutions are provided.

From the recoverable robust solution to the stand allocation problem the controllers can extract

more information. The number of changes per operation and alternative stands used during recov-

ery are indicated (see Appendix C). The tactical allocation could be coupled with an operational
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Test OF [$] PC [%] PC AVG [%] Time [s] # RR sols

July 9th 348198 92.8 90.4 728 27

Table 6.3: Characteristics of the Recoverable Robust Solution of the Validation Test of July 9th

allocation system minimising the deviation from the allocation. However, this is not part of the

scope of the research project.

6.2.1.1 Comparison Operations July 9th

To further validate the obtained recoverable robust solution for the allocation of July 9th, it is

exposed to the actual operating times of the aircraft visits on July 9th. For the operations the

blocks-on time and blocks-off time for the aircraft are utilised. In case this information is not

available (since the recoverable robust stand allocation model and GRU Airport might split the

long-stay visits differently) the landing or take-off time is utilised.

For the recoverable robust solution of July 9th, 10 operations had to be re-allocated during op-

erations due to schedule conflicts larger than 5 minutes. The operations, initial allocated stand,

new allocated stand and reason for the conflict are provided in Table 6.4.

Operation Initial Stand Re-allocated to Reason

TP0087-TP0082a G507 G511 Arrives early

AA0951-AA0930a G507 G504 Over 12 hours late

IB6827-IB6824a G508 G602 Arrives early

AC0090-AC0091a G510 G505 Previous departs late

JJ8095-JJ8070 G603 G607 Arrives Early

JJ8085-JJ8108a G603 G610 Arrives Early

JJ8081-JJ8090a G604 G608 Arrives early

JJ8111-JJ8110a G605 G603 Arrives Early

JJ8129-JJ8032a G605R G507R Over 3 hours late

Table 6.4: Recovered Operations and Allocated Stands for July 9th

With the recoverable robust solution, five operations had to be re-allocated to a remote stand

(G504, G505, G607, G608 and G610) during actual operations. Two operations suffered from a

large time deviation relative to the provided schedule. Other re-allocations were mainly due to

early arrivals in the peak hours. GRU Airport could decide to send several TAM (JJ) operations

Terminal 2 to increase the percentage of passengers allocated to a contact-stand. The recoverable

robust solution maintained a passenger-to-contact percentage of 86.2 percent. If the remote TAM

operations would be allocated to a contact-stand in Terminal 2, the overall percentage would be

above 91 percent. Furthermore, the percentage could be further increased by towing IB6827-

IB6824p from contact-stand G511 and allocating AC0090-AC0091a to G511. In comparison,
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on July 9th GRU Airport only allocated 78.5 percent of the passengers to a contact-stand at

Terminal 3. The recoverable robust stand allocation model demonstrated to provide an effective

stand allocation solution for the validation test.

6.2.1.2 Limitations

The validation test demonstrated the effectiveness of the recoverable robustness approach in the

stand allocation problem. The solution found complies with the most important operational

constraints, and can be recovered easily in all scenarios. Furthermore, the methodology showed

capable of handling real-time changes in operations for July 9th. However, there are still some

factors that limit the validity of the solution:

• Preference parking: In the optimisation model parking positions are considered homo-

geneous. Parking an aircraft at a remote stand or a parking position has no effect on the

objective function value. Some shorter parking operations are allocated to the stands 901-

913, while in practice this is not desired due to the longer tow time. The issue can be resolved

by controllers and is relatively complicated to include in the model without compromising

the objective function, therefore the current solution is sufficient. As a future improvement

detailed towing costs or towing time could be included as a factor in the optimisation model.

• Contact Stand Utilisation: Due to the strong influence of the terminal stores in the

affinities, contact-stands close to the terminal are used more often indirectly leading to more

conflicts in the scenarios. Furthermore, shops at the end of the pier might be less satisfied

when only few are allocated to their zones. However, the nature of the objective will not

change for the thesis project and therefore the current method is satisfactory for the project.

The revenue analysis has to be revisited with all required data before implementation at

GRU Airport.

• High Demand: There might be infeasible flight schedules for the optimisation model, due

to a lack of stands available for the amount of visits. GRU Airport has the possibility to send

some of these visits to other terminals, however the model does not. Since the scope focuses

on Terminal 3, the model stays within the scope, however the flight schedule will require

manual adjustment in case of exceeding demand. To provide more recovery possibilities and

enhance capacity, three extra parking positions can be utilised during the scenario testing.

• Parameter Estimation: Currently the model uses one (dis)embarkation time for all air-

craft. The 60 minutes used seems reasonable since the average disembarkation time on July

9th was 69 minutes, with a standard deviation of 17 minutes. As a model improvement

the average historical (dis)embarking time could be used or at least split per aircraft class.

GRU Airport emphasised that for the international aircraft a single value is acceptable.

• Variation in Allocations: At peak hours, GRU Airport typically needs to board some

international flights at remote stands. If the model is run 10 times, the same flights will

be allocated to the remote stands. GRU Airport expressed a desire for more variation in

the solution, which could be a good improvement for the model but given the scope of the

project it does not compromise the validity of the model.
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• Runtime: Although the test for July 9th tested 30 solutions with 20 scenarios within

15 minutes, ideally more scenarios and solutions are tested. GRU Airport expressed the

importance for a valid stand allocation is more important than the runtime. After discussion

with GRU Airport, the goal is to not exceed a runtime of 1 hour for the other tests.

6.2.2 Statements

In addition to the validation test, the following statements should further highlight the validity of

the created model for GRU Airport. The statements are based on requirements stated by GRU

Airport employees. Per statement an explanation will be provided to what extend the statement

is met.

Statement 1: “The model provides a feasible stand allocation for GRU Airport”

The solution generated by the recoverable robust stand allocation model should be feasible for the

operations at GRU Airport. The assessment of feasibility was an iterative process, with discus-

sions about the operational constraints, aircraft classifications and stand classifications. For the

recovery module, the recovery actions were discussed, and the feasibility was assessed by checking

the recovery variables and log of the model. After discussing multiple results and demonstrating

the validation test, GRU Airport expressed confidence in the feasibility of the model for their

operational situation at Terminal 3.

Statement 2: “The stand allocation output has to be generated in a reasonable time”

Although runtime is of less importance in tactical stand allocation, still the allocation should be

provided in a reasonable time. It might be better to evaluate more feasible solutions to obtain a

more robust solution. The runtime of the recoverable robust stand allocation model is dependent

on the number of scenarios and number of solutions. The validation test demonstrated possibility

to generate a fast output. However, to obtain more (and potentially better) recoverable robust

solutions GRU Airport accepts a longer runtime.

Statement 3: “Recovery strategies simulate the decision process of the controllers”

Due to the iterative process, this statement is validated. The recovery strategies are in fact based

on the discussions and the decision process of the controllers. Currently 3 strategies are included

in the model, which are used by the controllers during daily operations. In future research other

strategies could be included, such as a swap of two operations.

Statement 4: “Spending at the airport is stimulated by the stand allocation” The

stimulation of spending behaviour of passengers can focus on already existing customers or on

the other passengers. After meetings with the retail manager, strategic planning executives and

other commercial representatives, it was decided to focus on current high-spending aircraft visits.

Therefore, to stimulate spending these passengers should be allocated close to their favourite

shops or restaurants. This is validated in the stand allocation, airlines with high expenditure at

the terminal stores are allocated close to these stores.
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Statement 5: “Even if no solution can be recovered, the model should still output

a feasible solution” This statement can be viewed as a specific addition to statement 2. As

explicitly specified by the airport, it is unacceptable when the recoverable robust stand allocation

model does not return a solution (assuming sufficient stand capacity). The limited recovery

might not always be sufficient for the scenarios hence the model would not be able to provide a

recoverable robust solution. In that case, it was decided in collaboration with GRU Airport to

provide the non-recoverable solution with the highest average percentage of passengers allocated

to a contact-stand over the scenarios.

6.3 Conclusion

Given the scope of the project and after discussion with the employees of GRU Airport, it is

concluded that the recoverable robust stand allocation model is valid for the research project.

An adjustment is made to include extra parking positions in the recovery stage, at the cost of

a penalty, to increase recovery possibilities. This is in line with current GRU procedure, where

other parking positions are utilised if necessary. The verification tests provided confidence in the

working of the model, both operational constraints and objectives are implemented well.

The recoverable robust stand allocation model provided an acceptable solution for the opera-

tions at GRU Airport. Some factors, like parking preferences and variation in the allocations,

limit the validity of the recoverable robust stand allocation model. The aim of GRU Airport to

maintain a 95% passenger-to-contact ratio for international flights is usually not feasible with the

capacity at Terminal 3. In case the optimisation module does not obtain feasible allocation plans

with the 95% constraint, it is decided to relax the constraint.

Furthermore, GRU Airport expressed the desire to test more than 30 feasible allocation plans

as well as to test more than 20 scenarios. The runtime for the recoverable robust stand alloca-

tion model should not exceed 1 hour. A runtime analysis should provide insights in a reasonable

problem size for the time-frame of an hour. To allow for enough recovery possibilities, three addi-

tional parking-only stands are included in the recoverable robust stand allocation model. In case

of limited capacity, GRU Airport utilises parking stands outside of the international terminal as

well. The addition of the extra parking possibilities increases the probability to find a recoverable

robust solution.
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Chapter 7

Results

This chapter evaluates the results of the recoverable robust stand allocation model and compares

the outcomes with the allocations of GRU Airport. The allocations from GRU Airport consist

of the real allocations at the day of operations, since GRU Airport only plans a limited number

of operations the day before (i.e. the tactical planning is not complete). After discussion with

GRU Airport, the initial buffer time in the recoverable robust stand allocation model is set to 15

minutes for the case study.

Moreover, the outcomes of the recoverable robust stand allocation model will be compared with

the results of a strict robust stand allocation model. In the strict robust stand allocation model

recovery is not allowed, therefore the strict robust solution satisfies all generated scenarios. A

strict robust model is comparable to most stochastic stand allocation models found in stand allo-

cation literature, in which all scenarios were required to be satisfied.

The goal of the comparison is to evaluate if the recoverable robust stand allocation model is

capable of providing a robust, yet less conservative solution to the stand allocation problem rela-

tive to the strict robust stand allocation model.

In addition to the comparison between recoverable and strict robustness, the objective func-

tion of the recoverable robust stand allocation model, maximisation of affinity, is compared with

other objectives for stand allocation to highlight the trade-off an airport can make. The objec-

tives considered are: minimisation of walking distance, minimisation of tows and maximisation of

passengers allocated to a contact stand.

However, first the problem size determination for the case study will be explained based on a

runtime analysis. Section 7.2 provides a detailed explanation of one case (November 19th) of

the case study, while Section 7.3 provides an overview of all tested days in the case study. The

deviation from the optimum, the objective function comparison and the comparison with GRU

planning will be provided in this section as well. Finally, Section 7.4 highlights the impact of the
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95% constraint, the buffer time, the scenario generation approach and provides insights in the

number of recovery changes per stand.

7.1 Problem Size

To ensure a reasonable runtime for the recoverable robust stand allocation model, a runtime anal-

ysis is performed. The goal of the runtime analysis is to obtain a reasonable problem size for

the runtime of one hour. Two important factors for the problem size are the number of feasible

allocation plans generated and number of scenarios to be tested. Both impact the final recoverable

robust solution and runtime of the recoverable robust stand allocation model. A higher number

of feasible allocation plans increases the probability of obtaining a (better) recoverable robust

solution, while a higher number of scenarios limits this probability. In contrast, a recoverable

robust solution that satisfies more scenarios is considered more robust.

To analyse the impact, the schedules of November 19th and November 20th are subjected to

various numbers of scenarios and feasible allocation plans.

7.1.1 Number of Feasible Allocation Plans

Firstly, the number of scenarios is set to 20 and the model is run with several numbers of feasible

allocation plans. Furthermore, the tests are repeated for three different seeds of the random

number generator, to include variation in the scenarios. The results for 19/11 and 20/11 are

highlighted in Figure 7.1.

Figure 7.1: Impact of Number of Feasible Allocation Plans on Runtime for 19/11 (left) and 20/11

(right)

The number of feasible allocation plans has a linear impact on the runtime of the model. For

generation of the set of feasible allocation plans the recoverable robust stand allocation model
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has to be solved as many times as the number of feasible allocation plans specified. A problem

size with 100 feasible allocation plans and 20 scenarios seems achievable within the time limit of

an hour. In Figure 7.2 the number of recoverable robust solutions is plotted against the number

feasible allocation plans for three different seeds of the random generator.

Figure 7.2: Number of Feasible Allocation Plans vs. Number of Recoverable Robust Solutions for

Different Seeds for 19/11 (left) and 20/11 (right)

The number of recoverable robust solutions increases with the number of feasible allocation plans

generated. A larger number of recoverable robust solutions increases the probability of obtaining

a solution with a higher average percentage of passengers allocated to a contact-stand in the

solution selection mechanism of the recoverable robust stand allocation model.

7.1.2 Number of Scenarios

For the number of scenarios a similar runtime analysis was performed with the number of feasible

allocation plans set to 40. Again, the test was executed for three different seeds of the random

generator. The effect of the number of scenarios on the runtime is shown in Figure 7.3

Figure 7.3: Impact of Number of Scenarios on Runtime for 19/11 (left) and 20/11 (right)
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The number of scenarios has a linear relationship with the runtime of the recoverable robust stand

allocation model as well. The number of recoverable robust solutions found is plotted against the

number of scenarios in Figure 7.4.

Figure 7.4: Number of Scenarios vs. Number of Recoverable Robust Solutions for Different Seeds

for 19/11 (left) and 20/11 (right)

First, the number of recoverable robust solutions decreases sharply with increasing scenario num-

bers. After a certain amount of scenarios the number of recoverable robust solutions tends to

remain relatively constant. It is therefore recommended to at least maintain a scenario number

between 40 and 60 scenarios for the case study.

7.1.3 Conclusion

The goal of the recoverable robust stand allocation model is to determine a less conservative, yet

robust solution. Consequently, the focus for the test cases is slightly on the generation of feasible

allocation plans. The number of scenarios is recommended to be at least 40 to obtain a robust

solution. The runtime of the model should remain close to an hour, therefore the parameters for

the case study are set to 60 feasible allocation plans and 40 scenarios.

7.2 Solution November 19th
This section explains the solution for the case of November 19th. The flight schedule of November

19th consists of 70 aircraft visits, with a total of 158 operations. At the airport 73 stands are

considered, of which 13 parking-only stands. For the scenarios in the recovery module 3 extra

parking-only stands may be utilised, but only if no other option exists and at a cost of $648 per

usage.

The stand allocation of the recoverable robust solution for November 19th and the list of al-

ternative stands per operation are provided in Appendix D. The list provides insight in the total
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number of changes for an operation and the alternative stands used in recovery.

In Figure 7.5 and Figure 7.6 a part of the allocations for two scenarios of November 19th are

provided. Parking operations are coloured light-blue and (dis)embarkation operations dark-blue.

Please note that the vertical axis represents the names of stands available at the airport. In prac-

tice the recoverable robust stand allocation model produces an html plot with zooming options

and labels to aid the airport controllers.

The allocations of operations AF0454-AF0457a (green), 4C3505-4C3506a (pink) and JJ8103-

JJ8114a (yellow) are highlighted for the nominal scenario (i.e. scheduled times) and Scenario

5 respectively in Figure 7.5 and Figure 7.6. These operations had to be recovered in Scenario 5

due to schedule conflicts and are therefore re-allocated to different stands.

Figure 7.5: Location of AF0454-AF0457a (green), 4C3505-4C3506a (pink) and JJ8103-JJ8114a

(yellow) in the Stand Allocation Solution of November 19th, Nominal Scenario
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Figure 7.6: Location of AF0454-AF0457a (green), 4C3505-4C3506a (pink) and JJ8103-JJ8114a

(yellow) in the Stand Allocation Solution of November 19th, Scenario 5

With the list of alternative stands provided in Appendix D the controller could determine a suit-

able alternative stand for these operations. The key is that the controller now has the information

in advance and can take appropriate action if recovery is required. With the knowledge of alter-

native stands, airport controllers would know how to re-allocate the operations.

The characteristics of the solution obtained for November 19th are summarised in Table 7.1. The

nominal objective function (OF), the nominal percentage of passengers allocated to contact-stand

(PC) and the average percentage of passengers allocated to a contact-stand over the scenarios

(AVG PC) are provided for the selected recoverable robust solution.

Case Visits Runtime [s] OF [$] PC [%] AVG PC [%]

19/11 70 3100 382042 95.7 93.9

Table 7.1: Characteristics of the Recoverable Robust Solution for November 19th

The recoverable robust solution demonstrated a high percentage of passengers allocated to a

contact-stand for both the nominal flight schedule (PC, 95.7%) and on average over the scenarios

(PC AVG, 93.9%). For November 19th, 26 out of the 60 solutions were recoverable robust. Total

penalty for the usage of the additional parking stands equalled $54 432 (84 times in 40 scenarios).

The minimum and maximum objective function value found in the scenarios deviate less than $30

000.

An objective of the research project is to compare recoverable robustness (RR) with strict robust-

ness and the current allocation as performed at GRU Airport. The allocation for strict robustness

has to satisfy all scenarios and recovery is not allowed. Table 7.2 highlights the comparison of the

average objective function value over the scenarios for the recoverable robust solution with the
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objective function value of the strict robust solution and objective function value for the allocation

of GRU Airport for November 19th.

Case AVG RR OF1 [$] Strict OF2 [$] ∆1,2 [%] GRU OF3 [$] ∆1,3 [%]

19/11 372026 356142 4.5 292620 27.1

Table 7.2: Average Objective Value (OF) Comparison Recoverable Robustness (RR), Strict Ro-

bustness (Strict) and GRU Airport

Firstly, it has to be noted that GRU Airport does not focus on maximising affinity during their

stand allocation. The higher average objective function value of the recoverable robust solution

relative to the strict robust solution indicated a lower cost of robustness for the recoverable ro-

bust solution. The recoverable robust solution is therefore closer to the optimum allocation from

a commercial revenue perspective (i.e. affinity).

Moreover, the strict solution required the three extra recovery parking stands to be used 4 times.

The difference in total penalty due to the usage of the additional parkin stands, $54 432 for the

recoverable robust solution and $103 680 for the strict robust solution, is close to $50 000.

In addition to the objective function value, an important performance indicator for the stand

allocation is the percentage of passengers allocated to a contact-stand. Table 7.3 indicates the

average percentage of passengers allocated to a contact-stand for the recoverable robust solution

over all scenarios (AVG PC RR) and the percentage of passengers allocated to a contact-stand

for the strict robust solution (Strict PC). Please note that the ∆-value is the relative difference

between the recoverable robust solution and the strict robust solution in percent points, and sim-

ilarly for the recoverable robust solution and the percentage of passengers allocated to a contact

stand in the allocation of GRU Airport (GRU PC).

Case AVG PC RR1 [%] Strict PC2 [%] ∆1,2 [%.] GRU PC3 [%] ∆1,3 [%.]

19/11 93.9 87.6 6.3 90.3 3.6

Table 7.3: Comparison of Average Percentage of Passengers Allocated to a Contact-stand (PC)

for the Recoverable Robust (RR), Strict and GRU Airport solutions

The recoverable robust solution outperformed the strict robust solution in terms of passengers

allocated to a contact-stand over the scenarios tested. The gap with GRU Airport seems small,

however GRU Airport allocated 14 (dis)embarkation operations to contact-stands at terminals

outside the project scope. With the recoverable robust solution GRU Airport would be able to

increase the number of passengers allocated to the international terminal by an average of 13.8

percent points for November 19th.
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7.3 Overview Results

This section aims to provide an overview of the results obtained from the recoverable robust stand

allocation model for 6 full-day case studies. The results of the recoverable robust stand allocation

model will be compared with the strict robust results and the allocations of GRU Airport. Fur-

thermore, a discussion of the deviation from the optimum and a comparison with the planning

of GRU Airport is provided. Finally, the applicability of the affinity objective is assessed with a

comparison with three other objective functions: minimisation of walking distance, minimisation

of tows and maximisation of passengers allocated to a contact-stand.

Firstly, Table 7.4 indicates the number of recoverable solutions found and parameters of the

selected recoverable robust solution for each case. Please recall that PC stands for the percentage

of passengers allocated to a contact stand, provided for both the nominal scenario and as average

over all scenarios.

Case Visits Runtime [s] OF [$] PC [%] PC AVG [%] RR Solutions

19/11 70 3100 382042 95.7 93.9 26

20/11 66 3304 368574 92.2 90.1 4

23/11 68 2992 376250 95.1 93.0 21

25/11 60 1914 356520 95.2 91.4 56

26/11 70 2669 378880 93.5 92.0 11

27/11 64 2150 365721 92.9 89.8 45

Table 7.4: Overview of Solution Parameters of Test Cases

For three cases (20/11, 26/11 and 27/11), the optimisation module could not obtain feasible

allocation plans due to the 95% passenger-to-contact constraint. Therefore, the constraint was

automatically relaxed for these case studies to obtain the results. GRU Airport can consider allo-

cating some operations to Terminal 2 to achieve the desired 95 percent. All case studies returned

a solution in less than an hour.

An objective of the research project is to compare the recoverable robust solutions with the

strict robust solutions. The objective function value comparison between the recoverable robust

solutions (RR AVG OF) and the strict robust solutions (Strict OF) is provided in Table 7.5.

The average recoverable robust objective function value over all tested scenarios is utilised in the

comparison with the strict robust solution.
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Case RR AVG OF1 [$] Strict OF2 [$] ∆1,2 [%] GRU OF3 [$] ∆1,3 [%]

19/11 372026 356142 4.5 292620 27.1

20/11 358061 351049 2.0 295746 21.1

23/11 367132 364305 0.8 306020 20.0

25/11 341147 333445 2.3 298253 14.4

26/11 371532 355678 4.5 297677 24.8

27/11 351945 341346 3.1 297742 18.2

Table 7.5: Objective Function Value Comparison between the Average Recoverable Robust solu-

tion (RR AVG OF), the Strict Robust solution (Strict OF) and the allocation of GRU Airport

(GRU OF)

It can be seen that the recoverable robust solution maintained a higher average objective function

value than the strict robust solution. Therefore the relative cost of robustness for the recoverable

robust solutions was lower compared to the strict robust solutions. The recoverable robust stand

allocation model provided a robust yet less conservative solution relative to the strict robust stand

allocation model.

Furthermore in Table 7.5, the difference between the objective function value of the recover-

able robust solutions and the objective function value for the allocations of GRU Airport (GRU

OF) indicated that GRU Airport can improve their allocation from a commercial revenue per-

spective.

Another comparison between the recoverable robust solutions and the strict robust solutions

is the total penalty for the utilisation of the extra parking positions outside of the international

terminal (see Table 7.6).

Case RR Penalty [$] Strict Penalty [$] AVG RR Usage Strict AVG Usage

19/11 54432 103680 2.1 4.0

20/11 58968 181440 2.3 7.0

23/11 34992 103680 1.4 4.0

25/11 14256 155520 0.6 6.0

26/11 41472 129600 1.6 5.0

27/11 24624 129600 1.0 5.0

Table 7.6: Comparison of Penalty Values and Average Usage of the Extra Parking Positions for

the Recoverable Robust solution (RR) and Strict Robust solution (Strict)

The penalties and average usage of the extra stands were significantly lower for the recoverable ro-

bust solution relative to the strict robust solution. In the strict robust solution several operations

were allocated to the extra stands for all scenarios (due to the necessity to satisfy all scenarios
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in the strict robust solution). The recoverable robust has more freedom to only utilise the extra

stands when no other recovery possibility is available, which reduces the total penalty.

The next comparison between the recoverable robust solution and the strict robust solution was

based on the percentage of passengers allocated to a contact-stand (Table 7.7). The percentage

of passengers allocated to a contact-stand is an important performance indicator for GRU Air-

port. In Table 7.7 the average percentage of passengers allocated to a contact-stand over all the

scenarios in the recoverable robust solution (AVG RR PC) is compared with the percentage of

passengers allocated to a contact-stand for the strict robust solution (Strict PC). Furthermore, the

worst-case scenario as found in the recoverable robust solution is provided (RR WC PC). Finally,

a comparison with the allocation of GRU Airport (GRU PC) is provided, with an indication of the

amount of passengers allocated to Terminal 2 (T2), outside of the scope of this research project,

within that percentage.

Case AVG RR PC1 [%] RR WC PC [%] Strict PC2 [%] ∆1,2 [%.] GRU PC3 [%] (T2 [%]) ∆1,3 [%.]

19/11 93.9 90.0 87.6 6.3 90.3 (10.2) 3.6

20/11 90.1 87.5 87.7 2.4 87.3 (7.7) 2.8

23/11 93.0 90.8 90.3 2.7 92.5 (6.8) 0.5

25/11 91.4 87.8 87.8 3.6 92.7 (8.2) -1.3

26/11 92.0 89.3 88.9 3.1 90.3 (10.8) 1.7

27/11 89.8 87.0 87.8 2.0 88.5 (7.9) 1.3

Table 7.7: Average Percentage of Passengers at Contact Stand (PC) Comparison for Recoverable

Robustness (AVG RR), Strict Robustness (Strict) and GRU Airport (GRU), and the worst case

for Recoverable Robustness (WC RR)

The comparison between the percentages of passengers allocated to a contact-stand further in-

dicated the less conservative solution obtained by the recoverable robust stand allocation model

relative to the strict robust solution. Even the worst case (WC) scenario in the recoverable robust

solution had a higher or equal percentage of passengers allocated to a contact-stand than the

strict solution for most of the cases.

In the comparison with GRU Airport the percentage of passengers serviced at a contact-stand is

close to the recoverable robust solution. However, in the case study period GRU Airport allocated

6.8 to 10.8 percent of the passengers to a contact-stand out of the scope of the research project,

at Terminal 2 (T2). The recoverable robust solution can service all those passengers at Terminal

3 for the respective case studies. On average, an improvement of 6.9 to 13.8 percent points of

passengers allocated to contact-stands at Terminal 3 compared to the GRU Airport allocation

can be achieved.

7.3.1 Deviation from Optimum

The comparison with strict robustness has provided insights that the recoverable robust solution

is less conservative than the strict robust solution to the stand allocation problem. However,
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the level of conservatism in the recoverable robust solution relative to the optimal deterministic

solution is not yet discussed.

In Table 7.8 the minimum and maximum objective function value found in the scenarios of the

recoverable robust solution for all cases is provided. Furthermore, the optimal objective function

value is provided.

Case Optimum [$] RR OFmax [$] RR OFmin [$] Gap [%]

19/11 382042 382042 355526 -6.94 - 0.00

20/11 368574 368574 343727 -6.74 - 0.00

23/11 376274 376250 358968 -4.60 - -0.01

25/11 356520 356520 322432 -9.56 - 0.00

26/11 379176 379176 358310 -5.43 - 0.00

27/11 365732 365721 339631 -7.14 - 0.00

Table 7.8: Comparison of Objective Function Value for the Optimal Solution and Recoverable

Robust Solution

The comparison indicated that the worst case cost of robustness for the recoverable robust solution

is less than 10 percent of the optimal objective function value.

7.3.2 GRU Planning

In Section 7.3, the results from the recoverable robust model were compared with the real GRU

allocation. This allocation is only known after the day of operations. However, GRU Airport

tends to only plan most (not all) arriving visits, which complicates a comparison between the

tactical allocation plan of GRU Airport with the recoverable robust solution. For completeness,

the affinities of the planned arrival operations are compared with the affinities obtained in the

solution of the recoverable robust model (Table 7.9).

Case RR1 [$] GRU2 [$] ∆1,2 [%]

19/11 182732 166795 9.55

20/11 191035 164595 16.06

23/11 228531 192091 18.97

25/11 182069 158338 14.99

26/11 192786 174632 10.40

27/11 185265 164215 12.82

Table 7.9: Comparison of Recoverable Robustness and GRU Allocation for Planned Operations

The operations planned in the recoverable robust solution generate a higher total affinity than

the operations planned by GRU Airport. The difference in planned affinity indicates that GRU

Airport can improve their tactical stand allocation from a revenue perspective.
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7.3.3 Objective Function Variation

In literature, other objectives such as minimising walking distance for passengers are often used as

objective for the stand allocation model. Maximising affinity based on commercial revenues has

not yet been considered, and a comparison with other objectives can provide useful insights. This

section provides firstly a comparison between the maximisation of affinity and minimisation of

walking distance objectives. Thereafter, the minimisation of tows and maximisation of percentage

of passengers allocated to a contact stand will be included in the comparison.

The affinity calculation for the objective to maximise affinity includes passenger numbers and

tends to be higher closer to the terminal due to high expenditure at the terminal stores, reducing

walking distance for high-revenue passengers. To compare the maximisation of affinity objective

with the objective to minimise walking distance, the model is run with an objective to minimise

walking distance.

The objective function for the minimisation of walking distance is formulated as:

min
∑
i∈O

∑
j∈S

WDj ∗ Paxi ∗ xi,j (7.1)

In which WDj represents the walking distance from the entrance of the pier to the stand and

Paxi the estimated passenger number for operation i. Please note that transfer-passengers are

not included in the objective function, since nearly all transfer passengers at GRU Airport need

to walk to a different terminal (out of the scope of the research project) for their connections.

In Table 7.10 the average walking distance (in minutes) in the recoverable robust solution over

all scenarios with the objective to maximise affinity (AVG AF WD) is compared with the average

minimum walking distance in the minimisation of walking distance solution (AVG Min WD).

Following related literature, the minimum walking distance is expressed in minutes. The walking

speed is assumed to be 4 km/hour [45]. The units for the relative differences are percentages and

per passenger average walking time.

Case AVG AF WD1 [min] AVG Min WD2 [min] ∆1,2 [%] ∆1,2 per pax [min]

19/11 82403 76984 -6.58 0.19

20/11 83502 78972 -5.43 0.16

23/11 81842 77028 -5.88 0.17

25/11 76938 72992 -5.13 0.15

26/11 85184 80607 -5.37 0.16

27/11 83420 76977 -7.72 0.23

Table 7.10: Comparison of Average Walking Distance for the Objectives: Maximisation of Affinity

(AVG AF WD) and Minimum Walking Distance (Min WD)
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The average walking distance found with the maximisation of affinity can be reduced up to 8

percent when focusing solely on minimisation of walking distance. The average reduction is less

than a quarter of a minute per passenger. The objective function focuses on the overall walking

distance therefore for some passengers the walking distance can still be significant. However, the

scope of one terminal should not result in extreme walking distances. If the scope is extended to

all terminals of the airport a ratio to limit the extreme walking distances could be included.

To further indicate the trade-off airport controllers can make for a tactical stand allocation plan

four objectives for the stand allocation problem are compared: maximise affinity, minimise walk-

ing distance, minimise number of tows and maximise the percentage of passengers allocated to a

contact-stand.

The minimisation of number of tows focuses on the towing operations that are needed in the

tactical stand allocation plan. In practice, minimisation of tows will try to maintain the long-stay

aircraft visits at the same stand. To avoid excessive remote boarding operations, the minimisation

of tows has a constraint of 90% of the passengers to a contact-stand, if the 95% constraint can not

be satisfied. A lower percentage is not acceptable for GRU Airport due to the risk of not being

capable to compensate the percentage enough with the operations in the other terminals. Please

recall the tow indicator yi, which leads to the objective function formulation for the minimisation

of tows:

min
∑
i∈O

yi (7.2)

The last objective, maximisation of the passengers allocated to a contact-stand, is chosen with

regard to the 95% required by Brazilian legislation. With maximisation of the percentage allocated

to a contact stand as an objective, it is possible to view to what extend GRU Airport can achieve

the 95%. The objective function is formulated as:

max
∑
i∈O

∑
j∈Sct

Paxi ∗ xi,j/
∑
i∈O

Paxi (7.3)

in which Sct is the set of contact-stands, a sub-set of S. For the comparison between the different

objectives, the recoverable robust solution found with the maximisation of affinity objective is

utilised as reference solution. The metrics included in the comparison are: Average affinity over

the scenarios (Affinity), average walking distance over the scenarios (AVG WD), the number of

tows in the recoverable robust solution (Tow) and average percentage of passengers allocated to

a contact-stand (AVG PC).

In Table 7.11 the relative differences between the different objective functions and the maximisa-

tion of affinity are provided. The differences are expressed as ranges, as found by the assessment

of all six days in the case study. For every case a day-specific table can be found in Appendix E.
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Objective ∆ Affinity [%] ∆ AVG WD [%] ∆ Tow [%] AVG PC [%.]

Max Affinity - - - 89.8 - 93.9

Min WD -2.0 - 0.2 -7.7 - -5.1 -1.1 - 0 90.8 - 94.3

Min Tow -10.3 - -3.4 28.7 - 38.8 -40.2 - -22.6 87.0 - 92.4

Max PC -4.4 - -2.4 32.2 - 41.2 0 - 1.3 91.1 - 94.6

Table 7.11: Ranges of Relative Differences in Affinity, Walking Distance (WD), Towing Operations

and Percentage of Passengers Allocated to a Contact-Stand (PC) for Four Objectives

At relative low loss of affinity the walking distance for passengers can be reduced between 5 to

8 percent in the case study. Similarly the number of tows can be reduced around 40 percent,

although the objective has a negative effect on the percentage of passengers to contact-stand

and the walking distance for passengers. Moreover, the percentage of passengers allocated to a

contact-stand can be slightly improved when used as objective, but also at a cost of affinity and

an increase in walking distance for passengers.

The visualise the variation in the scenarios for the four tested objectives, the walking distance

and affinity of the objectives are plotted for every scenario in November 19th (Figure 7.7). Please

note that an ideal stand allocation plan would maintain a low walking distance with high affinity

(i.e. strive for the bottom right corner in the figure). The plots for the other case studies can be

found in Appendix E.

Figure 7.7: Variation in Walking Distance and Affinity for the Four Objectives in the Scenarios

for November 19th

In general, the scenarios cause a loss of affinity and higher walking distance, due to required

recovery actions. Both the minimisation of walking distance objective and maximisation of affin-

ity objective maintain a relatively low walking distance combined with a relatively high affinity.

The other two objectives obtained a significantly higher walking distance and lower affinity, since

walking distance and affinity are not the objectives in their optimisation.

The airport could decide to focus on the maximisation of affinity, and therefore their commercial
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revenue income, at the cost of a limited increase in walking distance for the passengers. If the

amount of tow operations or the amount of passengers allocated to a contact-stand is absolutely

critical, it could be the objective of the stand allocation. However, this may reduce the commercial

revenue income of the airport and the walking distance of the passengers.

7.4 Sensitivity Analysis

In the recoverable robust stand allocation model several parameters are utilised that influence

the recoverable robust solution found. Firstly, the effect of the 95% constraint for percentage of

passengers allocated to a contact-stand is analysed. Thereafter, the sensitivity of the solution

with respect to the chosen buffer time is highlighted. Furthermore, the influence of the scenario

generation methodology and the stand changes during recovery are discussed in this section.

7.4.1 95% Constraint

One of the additions in the recoverable robust stand allocation model for GRU Airport is the 95%

passenger-to-contact constraint. To comply with Brazilian legislation, this constraint is ideally

met for GRU Airport. As demonstrated in the cases, it is not always possible to obtain feasible

allocation plans with a percentage of passengers allocated to a contact-stand higher than 95%.

Since the objective in the case study is to maximise affinity, the 95% constraint can be a limita-

tion to achieve the maximum possible affinity. For three cases (20/11, 25/11 and 27/11) the 95%

constraint was relaxed in the case study. The impact of the 95% constraint on the affinity for the

other cases (19/11, 23/11 and 26/11) is highlighted in this section.

In Table 7.12 the comparison between cases with the 95% constraint and without the 95% con-

straint is provided in terms of average objective function value for the recoverable robust solution

(AVG RR OF).

Case AVG RR OF1 AVG RR OF2 ∆1,2 [%]

19/11 373195 372026 0.31

23/11 371759 367132 1.26

25/11 344961 341147 1.12

Table 7.12: Comparison of Objective Function Value (OF) for Case Studies without 95%

constraint1 and with the 95% constraint2

The average affinity generated for the model without the 95% constraint is slightly higher. How-

ever, the other relevant comparison is the impact on the percentage of passengers allocated to

contact-stands. In Table 7.13 the comparison between percentage of passengers allocated to a

contact-stand is provided, for both the nominal solution and the average over all the scenarios.
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Case RR PC1 RR PC2 ∆1,2 [%.] RR PC AVG1 RR PC AVG2 AVG ∆1,2 [%]

19/11 95.7 95.7 0.0 93.9 94.1 0.2

23/11 95.1 94.7 -0.4 93.0 93.6 0.6

25/11 95.2 94.6 -0.6 91.4 92 0.6

Table 7.13: Comparison of the Percentage of Passengers allocated to a Contact-stand (PC) for

Case Studies with 95% constraint1 and without the 95% constraint2

In the table, the nominal percentage of passengers allocated to a contact-stand is higher with the

95% constraint (RR PC1 is higher than RR PC2). However, the average percentage of passengers

allocated to a contact-stand over all the scenarios is lower with the 95% constraint included (RR

PC AVG2 is higher than RR PC AVG1). It questions the necessity for the constraint on the

percentage of passengers allocated to a contact-stand. In the affinity objective, preference is given

to favourable contact-stands and will therefore allocate a high percentage of the passengers to a

contact-stand without the 95% constraint as well.

7.4.2 Buffer time

In collaboration with GRU Airport an initial buffer time of 15 minutes was selected for the case

study. The impact of the buffer time is assessed relative to the required stand changes (see Figure

7.8 for November 19th and 20th). The stand changes are the sum of all changes over the scenarios.

Figure 7.8: Number of Stand Changes vs. Buffer time for November 19th (left) and November

20th (right)

For November 19th and November 20th, the lowest number of stand changes over all scenarios is

achieved for a buffer time of 10 or 15 minutes. Similar results are obtained for the other cases,

except for the solution of November 26th, where a 5 minute buffer time results in the lowest

number of stand changes in the solution. A low buffer time can increase the probability of a

conflict in the allocation plan and therefore increase the number of stand changes. In contrast,

a high buffer time results in a more conservative solution and therefore to more required stand

changes as well, due to longer occupancy of the contact-stands. A buffer time between 10 to 20

minutes is therefore recommended to absorb small schedule deviations.
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7.4.3 Scenario Generation

The goal of the scenario generation in the recovery module of the recoverable robust stand al-

location is to create realistic scenarios by considering the relation between aircraft visits. More

specifically, the visits that have arrived in the last hour (and from the same region if possible) can

impact the arrival time deviation of a visit for a specific scenario. This section aims to compare

the proposed scenario generation methodology with a random approach. The difference will be

analysed based on the number of switches from an early/late arrival in the random approach to

a late/early arrival in the proposed methodology.

In Figure 7.9 the time of the day is plotted against the amount of switches from an early/late

arrival in the random approach to a late/early arrival in the scenario generation methodology

for the aircraft visits. The periods without switches indicate no difference between the scenario

generation methodology and a random approach, as expected for the visits that are handled as

independent visits.

However, in the peak periods (highlighted in the plot) the scenario generation influences the

arrival time deviation of the visits relative to a random approach. Sufficient previously arrived

visits in the last hour (from the same region) are available and impact the arrival time deviations

of the aircraft visits. For the visits of November 19th, up to 16 scenarios can have a different

arrival time deviation sign (i.e. positive/negative).

Figure 7.9: Analysis of Arrival Time Deviation Sign Switches due to Scenario Generation Method-

ology

Dominant is the switch between an early arrival in the random approach to a late arrival in the

scenario generation methodology (red bars). The green bars represent the number of changes

from a late random arrival to an early arrival. The scenario generation methodology in the

recoverable robust stand allocation model ensures that, although the historical distributions are
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skewed towards an early arrival, some aircraft visits in the peak periods also obtain a late arrival

time deviation due to previously arrived visits. It increases the variation in the scenarios generated

in the recovery module of the recoverable robust stand allocation model.

7.4.4 Stand Changes

A final analysis is performed to check the stands at which most operations had to be recovered.

Due to the nature of the objective function to maximise affinity, contact-stands close to the

terminal building are preferred in the allocation. As visualised for November 19th in Figure 7.10,

these stands (G507, G508, G604, G605) require more recovery actions as well.

Figure 7.10: Amount of Required Recovery Actions at Contact-stands for November 19th over all

Scenarios

The number of required recovery actions for the other stands for November 19th and the other case

studies are provided in Appendix F. The objective function set results in an uneven utilisation

of the contact-stands, comparable to a minimise walking distance objective function. The effect

could be limited with other objective functions, however this would likely decrease affinity and

increase total walking distance as demonstrated by the maximisation of percentage of passengers

allocated to a contact-stand objective.
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Chapter 8

Conclusion

To finalise the research project, an overview of the conclusions and further recommendations for

future research are provided. Firstly, the results obtained in the research project are discussed

in Section 8.1. Second, contributions of this project to the body of knowledge are highlighted.

Thereafter, limitations of the model and recommendations for future research will be provided

(Section 8.3). Finally, the initial objectives and hypothesis of the project are reviewed in Section

8.4.

8.1 Results

An objective the of the research is to compare the recoverable robust solution with a solution that

has to satisfy all scenarios (strict robust solution). The results demonstrated an increase in objec-

tive function value for the recoverable robust solutions of 0.8 to 4.5 percent relative to the strict

robust solutions. Furthermore, the average percentage of passengers allocated to a contact-stand

over all scenarios was 2.0 to 6.3 percent points higher in the recoverable robust solution. For most

cases the worst case scenario for the recoverable robust solution still maintained a higher per-

centage of passengers allocated to a contact-stand than the percentage found by the strict robust

solution. It highlights the capability of recoverable robust solution to provide a less conservative,

yet robust solution to the stand allocation problem.

In comparison to GRU Airport, the difference in percentage of passengers allocated to a contact-

stand was between -1.3 to 3.6 percent points. However, GRU Airport allocated several operations

to contact-stands at different terminals. The recoverable robust solution is capable of allocating

these operations (6.8 - 10.8 percent of the passengers) to the international terminal. An overall

increase of passengers allocated to a contact-stand at the international terminal of 6.9 - 13.8 per-

cent points could be achieved. All cases were solved within 60 minutes on a 8 GB RAM Mac OS

X computer.
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The objective function of the recoverable robust stand allocation model, maximisation of affinity

based on a commercial revenue framework, was compared with three other objectives: minimi-

sation of walking distance, minimisation of tows and maximisation of passengers allocated to a

contact-stand. The airport can decide to accept a loss of affinity up to 10 percent to either reduce

walking distance by up to 8 percent or reduce towing operations between 20 to 40 percent. The

latter also resulted in a lower passenger-to-contact percentage. The maximisation of passengers

allocated to a contact-stand provided an increase of 0.7 - 1.9 percent points relative to the max-

imisation of affinity in the case study. However, the generated affinity decreased up to 5 percent

and walking distance increased 30 - 42 percent. The comparison between objectives highlighted

applicability of a commercial revenue framework incorporated in tactical stand allocation and the

trade-off airports can make when generating a tactical stand allocation plan.

8.2 Contributions to Literature

The research project has contributed to stand allocation literature from both a robustness and

an objective function perspective. This section highlights the main contributions of the research

project to literature.

• Recoverable Robustness This research project is the first application of recoverable ro-

bustness in the stand allocation context. It includes the three parts of a recoverable robust

model: the original optimisation model, the imperfection of information (scenarios) and the

recovery algorithm. Firstly, a set of feasible allocation plans for the stand allocation prob-

lem is generated. The feasible allocation plans are tested against scenarios and recovered if

required. A recoverable robust solution is obtained if, at least, the allocation plan can be

recovered in all scenarios. The results of the case study demonstrated robust solutions rela-

tive to the stand allocation problem, with an objective function value close to the optimum.

Furthermore, the recoverable robust solutions outperformed the strict robust solutions in

terms of objective function value and percentage of passengers allocated to a contact-stand.

• Revenue Framework The second contribution focuses on a new objective for the stand

allocation problem: affinity based on air-side commercial revenues. This research project

provides an initial framework to include these revenues in the stand allocation problem and

demonstrated the applicability. A lack of data limited the validity and therefore follow-up

research is recommended.

• Airport Data Analysis Another distinction of this research project is the generation of

realistic scenarios for the model. Previous stochastic models considered normal distributed

delays. This research project provides insights in flight data analysis of an airport and

applies the results in the scenario generation for the recoverable robust stand allocation

model.
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8.3 Limitations and Recommendations
Although the research project obtained promising results, there are several recommendations and

limitations that should be considered for future research.

8.3.1 Recommendations

The first recommendation is the addition of an operational stand allocation model or system. A

study on when arrival time information is obtained at the airport and implementation of an oper-

ational stand allocation model in a combination model for both tactical and operational planning

could be a future research direction. Moreover, the recovery algorithm could be extended, for

example with an algorithm to allow a swap between operations.

Second recommendation is to further assess the applicability of the affinity objective function

based on the commercial revenue framework. Firstly to include other airport lay-outs, since the

affinity calculations are established for a pier-shaped terminal and adjustments to the framework

might be required for other shapes. Secondly, due to the limited data availability for the case

study in the research project. Furthermore, effect on air-side commercial revenue at the airport

due to the stand allocation based on the affinity calculation would be interesting to evaluate,

although the effect will be complex to isolate.

The application of the revenue-based affinity objective in a multi-objective approach is an in-

teresting research direction. It is advised to examine the runtime of the recoverable robust stand

allocation model with a new objective function before testing large instances of the multi-objective

approach.

The comparison of recoverable robustness with, for example, deterministic models with a ro-

bustness objective is not assessed in this research project. A research direction to compare several

robustness methodologies is recommended, to provide guidance for future research in the robust

stand allocation context.

8.3.2 Limitations

One limitation of the research project is the scope of only one terminal. The scope of the re-

coverable robust stand allocation model should be extended to cover all terminals, which would

obsolete the additional parking-only stands included in the current model. The scope extension

might require more operational constraints and an extension of the revenue framework.

The extension can have a significant effect on the runtime of the model due to the increased

problem size. Time or space decomposition, other decomposition methods (like Bender’s) or spe-

cial heuristics can be included to limit the runtime, or the number of solutions and scenarios can
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be reduced. It is advised to analyse the runtime of a case study with limited number of solutions

and scenarios, and linearly determine a reasonable problem size.

Preference parking locations and variation in allocation are not included this thesis project. Pref-

erence parking could improve the stand allocation from an operational perspective, to maintain

the shorter parking operations closer to the terminal. It is desirable for airlines to include varia-

tion in the tactical allocation, to limit excessive remote boarding for specific airlines.

The results of the revenue data analysis form a second limitation for the project. The lack

of detailed revenue data and passenger tracking data complicated the estimation of desired pa-

rameters for the revenue framework. Consequently, the affinity calculation is not as accurate as

desired. It is recommended to re-evaluate the affinity calculations based on commercial revenue

with all required data.

8.4 Review Objectives and Hypothesis

The hypothesis related to the research project was described in the project plan as:

Hypothesis 1: The recoverable robust solution to the stand allocation problem has a lower cost

of robustness relative to the strict robust solution

For all test cases the average objective function value of the recoverable robust solution is closer

to the optimum compared to the strict robust objective function value. Consequently, the hy-

pothesis is accepted for the case study. Moreover, the recoverable robust solution maintains a

higher percentage of passengers allocated to a contact-stand as well. The recoverable robust stand

allocation model provides a less conservative yet robust solution to the stand allocation problem.

At the start of the research project three objectives were established:

• Objective 1 Create a tactical stand allocation model that effectively incorporates the

concept of recoverable robustness

• Objective 2 Develop a framework to include air-side commercial revenues into the tactical

stand allocation model

• Objective 3 Demonstrate the industrial applicability of the model in a case study with

GRU Airport

The first objective focuses on the development of the recoverable robust stand allocation model.

The recoverable robust stand allocation model effectively incorporates the recoverable robust

concept in the stand allocation context. The three steps; an optimisation model, the imperfect

information (the scenarios) and recovery with limited means (recovery algorithm) are included in
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the recoverable robust stand allocation model developed. Therefore, the objective is successfully

achieved.

Objective 2 focuses on the air-side commercial revenues at an airport. The objective is met,

since a framework to handle these revenues in combination with stand allocation is constructed

to calculate the preference (affinity) for each operation-stand combination. However, the revenue

framework is only evaluated with limited data for the case study. Future research and more data

could improve the methodology and further evaluate the applicability of commercial revenue in

the stand allocation context.

Finally, the industrial applicability is demonstrated with a case study at the international ter-

minal of GRU Airport. The recoverable robust stand allocation model provided a recoverable

robust solution to the stand allocation problem in reasonable time for GRU Airport. The case

study indicated potential to increase both the revenue perspective and passengers allocated to

a contact-stand at the international terminal of GRU Airport significantly. An extension of the

scope to all four terminals is required before the implementation of the model. Furthermore,

a coupling with an operational stand allocation model/system is recommended to maintain the

schedule during the day of operations.
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Appendix A: List of Airlines & Airports
Table A.1: List of Airlines Part 1

IATA-code ICAO-code Name

4C LCO LAN Colombia

4M DSM LAN Argentina

AA AAL American Airlines

AC ACA Air Canada

AF AFR Air France

AM AMX Aeromexico

AR ARG Aerolineas Argentinas

AT RAM Royal Air Maroc

AU AUT Austral Lineas Areas

AV AVA Avianca

AZ AZA Alitalia

BA BAW British Airways

CA CCA Air China

CM CMP Copa Airlines

DL DAL Delta Airlines

EK UAE Emirates

EQ TAE TAME

ET ETH Ethiopian Airlines

EY ETD Etihad Airways

G3 GLO GOL Linhas Aereas

H2 SKU Sky Airline

HP AWE US Airways

IB IBE Iberia

JJ TAM TAM Airlines

KE KAL Korean Airlines

KL KLM KLM Royal Dutch Airlines

LA LAN LAN Airlines

LH DLH Lufthansa

LP LPE LAN Peru Airlines

LX SWR Swiss Airlines

M3 TUS ABSA Cargo Airline
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Table A.2: List of Airlines Part 2

IATA-code ICAO-code Name

OB BOV Boliviana de Aviacion

PZ LAP TAM Airlines Paruguay

QR QTR Qatar Airways

SA SAA South-African Airways

SQ SIA Singapore Airlines

TK THY Turkish Airlines

TP TAP TAP Portugal

UA UAL United Airlines

UX AEA Air Europa

Table A.3: List of Airports Part 1

Code Country Region City

AEP Argentina South America Buenos Aires-Newbery

AGT Paraguay South America Ciudad Del Este

AMS Netherlands Europe Amsterdam

ASU Paraguay South America Asuncion

ATL United States North America Atlanta

AUH United Arab Emirates Middle East Abu Dhabi

CCS Venezuela South America Caracas

CDG France Europe Paris-De Gaulle

COR Argentina South America Cordoba

CUN Mexico North America Cancun

DFW United States North America Dallas/Fort Worth

DOH Qatar Middle East Doha

DXB United Arab Emirates Middle East Dubai

EWR United States North America Newark

EZE Argentina South America Buenos Aires

FCO Italy Europe Rome-Da Vinci

FRA Germany Europe Frankfurt

IAD United States North America Washington-Dulles

IAH United States North America Houston-Intercontinental

ICN South Korea Asia Seoul

IST Turkey Europe Istanbul

JFK United States North America New York-JFK

JNB South Africa Africa Johannesburg

LAX United States North America Los Angeles
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Table A.4: List of Airports Part 2

Code Country Region City

LFW Togo Africa Lome

LHR United Kingdom Europe London-Heathrow

LIM Peru South America Lima

LIS Portugal Europe Lisbon

MAD Spain Europe Madrid

MCO United States North America Orlando

MEX Mexico North America Mexico City

MIA United States North America Miami

MUC Germany Europe Munich

MVD Uruguay South America Montevideo

MXP Italy Europe Milan-Malpensa

OPO Portugal Europe Porto

ORD United States North America Chicago-O’Hare

ORL United States North America Orlando-Metro

PEK China Asia Beijing

ROS Argentina South America Rosario

SCL Chile South America Santiago

SIN Singapore Asia Singapore

YYZ Canada North America Toronto

ZRH Switzerland Europe Zurich
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Appendix B: List of Distributions per

Flight Number

Please note: Param1, Param2 etc. are the parameters of the distribution in the order as found in

the SciPy documentation of Python.

Table B.1: Historical Arrival Time Deviation Distribution per Flight Number
Flight nr. Destinations # Observations Distribution # Param Param1 Param2 Param 3 Param 4

AAL0215 LAX 364 nct 4 1.53 1.33 -30.05 11.81

AAL0233 MIA 260 nct 4 2.05 1.10 -30.16 14.38

AAL0907 MIA 123 nct 4 2.28 1.09 -27.12 13.41

AAL0919 JFK 66 nct 4 2.79 1.29 -26.41 16.28

AAL0929 MIA 362 nct 4 1.95 1.69 -36.84 15.87

AAL0951 JFK 360 nct 4 1.37 1.04 -38.15 18.53

AAL0963 DFW 363 nct 4 1.51 2.03 -37.94 13.27

AAL0995 MIA 361 nct 4 1.28 1.47 -34.21 14.56

ACA0090 YYZ 361 nct 4 2.86 2.64 -36.04 14.34

AEA0057 MAD 275 nct 4 3.87 2.54 -43.98 18.02

AFR0454 CDG 356 nct 4 1.79 1.14 -30.16 13.61

AFR0456 CDG 317 nct 4 3.01 1.15 -12.72 13.51

AZA0674 FCO 365 nct 4 2.28 0.86 -19.67 20.01

AZA0678 FCO 66 t 3 5.43 -8.52 26.03

BAW0241 LHR 133 nct 4 2.58 1.64 -29.63 17.38

BAW0247 LHR 360 nct 4 1.91 0.98 -19.90 13.20

CCA0907 PEK 104 nct 4 2.51 1.08 -37.93 12.94

DAL0053 DTW 357 nct 4 1.89 1.30 -31.09 11.65

DAL0059 ATL 345 nct 4 1.50 1.34 -24.72 9.56

DAL0105 ATL 342 nct 4 1.61 0.85 -23.12 13.11

DAL0471 JFK 360 nct 4 1.66 2.08 -43.89 15.52

DLH0504 MUC 346 nct 4 1.55 0.81 -16.55 14.20

DLH0506 FRA 356 nct 4 2.04 0.59 -21.90 13.19

ETD0191 AUH 365 nct 4 3.31 1.80 -33.82 21.44

ETH0506 LFW 154 nct 4 2.27 1.30 -7.78 21.96

IBE6821 MAD 180 nct 4 2.20 0.96 -27.24 14.88

IBE6823 MAD 34 genlogistic 3 0.90 -14.56 19.50

IBE6827 MAD 363 nct 4 2.29 0.85 -34.67 15.20

KAL0061 ICN 180 genlogistic 3 1.49 -15.79 11.89

KLM0791 AMS 364 nct 4 2.41 0.87 -14.45 11.91

LAN0750 SCL 365 nct 4 2.92 2.42 -35.91 11.22

LAN0752 SCL 365 nct 4 3.68 3.24 -36.75 9.90

LAN0756 SCL 157 nct 4 2.94 1.88 -36.08 10.32

LAN0758 SCL 188 nct 4 2.81 1.65 -35.98 10.92

LAN0760 SCL 363 nct 4 2.72 2.12 -33.87 12.50

LAP0706 AGT 301 t 3 3.89 -38.19 18.03

LAP0712 ASU 35 nct 4 1.76 2.86 -60.47 6.20

LAP0716 ASU 127 nct 4 1.98 0.74 -32.58 10.09

LAP0721 EZE 84 t 3 2.11 -25.94 7.33

LPE2765 LIM 160 nct 4 4.37 1.96 -30.11 11.34

LPE2767 LIM 365 nct 4 2.97 1.01 -29.70 14.52

QTR0771 DOH 727 dgamma 3 1.39 3.41 15.52

QTR0772 EZE 726 logistic 2 0.21 16.74

SAA0222 JNB 361 nct 4 5.75 -0.85 0.01 20.17

SAA0224 JNB 169 nct 4 1.08 1.02 -55.81 13.64

SIA0068 SIN 156 dgamma 3 1.19 -16.47 16.21

SWR0092 ZRH 362 nct 4 2.44 0.42 -7.10 11.23

SWR2694 ZRH 70 t 3 3.25 -1.12 16.87

TAM8005 AEP 358 nct 4 4.72 3.32 -55.36 11.83

TAM8009 AEP 360 nct 4 2.63 1.56 -31.02 8.68

TAM8015 AEP 361 nct 4 4.07 3.26 -54.14 11.77

TAM8016 ASU 56 t 3 1.48 -10.14 15.20

TAM8019 EZE 363 t 3 3.48 -28.23 11.89
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Table B.2: Historical Arrival Time Deviation Distribution per Flight Number Part 2
Flight nr. Destinations # Observations Distribution # Param Param1 Param2 Param 3 Param 4

TAM8027 SCL 364 gengamma 4 10.82 0.62 -54.55 0.83

TAM8029 SCL 360 nct 4 3.74 1.29 -42.47 13.65

TAM8031 MVD 345 nct 4 3.24 1.84 -43.52 8.25

TAM8035 MIA 145 t 3 3.75 -2.62 18.84

TAM8041 MVD 315 beta 4 7.31 13706175447335.80 -69.78 102121685332109.00

TAM8045 MVD 313 genextreme 3 -0.08 -26.72 13.03

TAM8047 MVD 193 nct 4 3.22 1.86 -46.88 9.14

TAM8051 CCS 76 nct 4 5.57 3.93 -70.48 18.00

TAM8063 MXP 360 nct 4 3.13 1.03 -52.24 15.93

TAM8065 MAD 366 nct 4 4.49 1.35 -44.61 16.42

TAM8067 LIM 345 nct 4 7.20 3.21 -85.14 17.96

TAM8071 FRA 360 dweibull 3 1.10 -24.63 16.22

TAM8073 SCL 196 nct 4 3.81 1.56 -32.47 11.20

TAM8081 JFK 356 nct 4 2.95 1.88 -53.58 21.73

TAM8085 LHR 362 nct 4 3.87 1.05 -50.83 16.42

TAM8087 MCO 359 nct 4 3.98 1.75 -41.42 16.12

TAM8091 MIA 364 nct 4 5.68 2.29 -48.39 13.87

TAM8095 MIA 365 nct 4 3.73 1.78 -48.52 14.70

TAM8097 EZE 98 nct 4 1.55 1.61 -42.37 8.81

TAM8101 CDG 361 nct 4 2.73 2.12 -66.54 15.25

TAM8103 JFK 321 nct 4 3.06 1.89 -71.29 22.96

TAM8107 COR 179 nct 4 2.73 0.93 -31.92 9.47

TAM8111 ORL 289 nct 4 4.48 3.45 -75.63 15.52

TAM8113 MEX 360 genlogistic 3 299.73 -146.97 20.47

TAM8117 COR 118 nct 4 3.80 2.22 -34.88 10.84

TAM8122 ASU 84 genlogistic 3 971.73 -142.57 17.00

TAM8124 ASU 93 beta 4 8.93 2827.43 -62.85 12540.29

TAM8129 ROS 105 t 3 2.81 -43.63 20.17

TAM8131 ROS 227 logistic 2 -42.92 12.17

TAM8135 ASU 107 t 3 2.40 -28.27 10.90

TAM8147 SCL 31 genlogistic 3 2.46 -18.80 11.25

TAM8161 CUN 41 nct 4 8.98 7.99 -76.35 10.53

TAM8183 JFK 36 powerlognorm 4 0.01 0.01 -203.93 135.55

TAM9600 SCL 54 nct 4 1.77 0.53 14.22 19.91

TAM9601 FRA 44 t 3 1.90 3.26 24.87

TAM9611 MIA 37 powerlognorm 4 0.01 0.02 -127.45 84.05

TAM9623 MCO 49 nct 4 1.28 0.15 -30.69 13.32

TAM9716 ASU 30 nct 4 1.64 6.06 -54.19 3.79

TAP0081 OPO 105 t 3 2.38 -5.35 17.24

TAP0083 LIS 40 nct 4 5.14 7.60 -32.70 6.54

TAP0085 LIS 170 genlogistic 3 811.54 -134.25 22.29 0.00

TAP0087 LIS 277 nct 4 3.82 0.20 7.47 17.19

TAP0089 LIS 84 dweibull 3 1.21 27.48 18.14

THY0015 IST 726 logistic 2 19.05 19.58

THY0016 EZE 726 t 3 2.37 4.36 22.88

UAE0261 DXB 364 nct 4 4.97 1.60 -45.38 20.34

UAL0021 IAH 114 nct 4 4.01 4.00 -50.86 12.76

UAL0031 EWR 295 nct 4 4.03 2.61 -54.67 15.08

UAL0148 EWR 58 genextreme 3 -0.39 -10.44 31.95

UAL0845 ORD 352 nct 4 7.07 8.78 -104.88 10.05

UAL0861 IAD 357 nct 4 2.83 1.52 -35.43 14.04

UAL0979 IAH 243 nct 4 2.82 2.27 -34.28 17.45
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Appendix C: Validation Test Allocation
Table C.1: Allocation and Alternative Stands for Validation Test July 9th Part 1

Name Allocation Changes Alternative Stands Name Allocation Changes Alternative Stands

JJ8015-JJ8148 G604R 0 UA0845-UA0844a G508 6 G601 G611

QR0772-QR0772 G605 0 AC0090-AC0091p G611 0

TK0016-TK0016 G507 0 AC0090-AC0091d G510 0

JJ8071-TAM9601p G902 0 AC0090-AC0091a G510 6 G606 G508 G511

JJ8071-TAM9601d G508 0 JJ8031-JJ8010 G605L 0

JJ8071-TAM9601a G603 0 AA0963-AA0906p G905 0

LH0506-LH0507p G502 2 X001 AA0963-AA0906d G604 0

LH0506-LH0507d G605 0 AA0963-AA0906a G602 3 G511 G508 G611

LH0506-LH0507a G507 0 KE0061-KE0062 G509 3 G508

SA0224-SA0225p G913 0 AA0215-AA0216p G606 0

SA0224-SA0225d G603 0 AA0215-AA0216d G510 0

SA0224-SA0225a G509 1 G606 AA0215-AA0216a G604 4 G511 G601 G508

AZ0674-AZ0675p G607 1 X002 LA0750-LA0751p G511 0

AZ0674-AZ0675d G507 0 LA0750-LA0751d G603 0

AZ0674-AZ0675a G604 0 LA0750-LA0751a G605 0

BA0247-BA0246p G609 0 LA0760-LA0761p G501 0

BA0247-BA0246d G507 0 LA0760-LA0761d G501 0

BA0247-BA0246a G508 1 G610 LA0760-LA0761a G605L 0

JJ8065-JJ8000 G505 0 CA0907-CA0908p G610 0

LAP0712-JJ8044 G501 0 CA0907-CA0908d G610 0

JJ8091-JJ8026 G510 0 CA0907-CA0908a G509 0

LH0504-LH0505p G907 0 LP2767-LP2766p G907 0

LH0504-LH0505d G605 0 LP2767-LP2766d G605 0

LH0504-LH0505a G511 0 LP2767-LP2766a G604 11 G602

TP0087-TP0082p G610 2 X002 SQ0068-SQ0067 G510 0

TP0087-TP0082d G508 0 EK0261-EK0262p G609 0

TP0087-TP0082a G605 0 EK0261-EK0262d G510 0

LX0092-LX0093p G912 0 EK0261-EK0262a G508 0

LX0092-LX0093d G508 2 G608 SA0222-SA0223 G503 0

LX0092-LX0093a G601 0 EY0191-EY0190p G607 0

AF0454-AF0457p G608 0 EY0191-EY0190d G605 1 G611

AF0454-AF0457d G605 0 EY0191-EY0190a G507 5 G604 G608 G509

AF0454-AF0457a G507 3 G606 G502 QR0771-QR0771 G511 0

IB6827-IB6824p G601 3 X002 TK0015-TK0015 G602 0

IB6827-IB6824d G604 0 AF0456-AF0459 G509 0

IB6827-IB6824a G604 4 G606 G608 G607 KL0791-KL0792 G604 0

JJ8081-JJ8090p G908 0 TP0081-TP0080 G603 0

JJ8081-JJ8090d G605 0 LA0752-LA0759p G502R 0

JJ8081-JJ8090a G508 6 G606 G604 G608 G610 LA0752-LA0759d G507R 0

JJ8147-JJ8066 G605R 0 LA0752-LA0759a G601R 0

JJ3158-JJ8046 G507L 0 TAM9751-JJ8008 G601L 0

AA0929-AA0234 G509 0 IB6821-IB6820p G912 0

LP2765-LA0757 G605L 0 IB6821-IB6820d G604 0

JJ8129-JJ8032p G501 0 IB6821-IB6820a G507 6 G608 G508

JJ8129-JJ8032d G507R 0 AA0233-AA0950 G507 1 G610

JJ8129-JJ8032a G605R 15 G507R G604R JJ8095-JJ8070 G603 6 G610

UA0148-UA0149p G902 0 JJ3749-JJ8086p G907 0

UA0148-UA0149d G602 0 JJ3749-JJ8086d G507 0

UA0148-UA0149a G510 1 G511 JJ3749-JJ8086a G508 0

AA0951-AA0930p G910 0 LA0758-LA0753 G511R 0

AA0951-AA0930d G602 0 JJ8009-TAM9716 G605R 0

AA0951-AA0930a G507 0 JJ8117-PZ0707 G509L 0

UA0021-UA0020p G906 0 JJ8101-JJ8094p G905 0

UA0021-UA0020d G601 0 JJ8101-JJ8094d G507 4 G602 G502 G511

UA0021-UA0020a G602 0 JJ8101-JJ8094a G602 0

UA0861-UA0860p G909 0 JJ8085-JJ8108p G901 0

UA0861-UA0860d G511 0 JJ8085-JJ8108d G507 0

UA0861-UA0860a G511 0 JJ8085-JJ8108a G509 4 G606 G608

JJ8103-JJ8086 G603 0 JJ8165-JJ8164p G904 0

AA0995-AA0962p G505 0 JJ8165-JJ8164d G604 0

AA0995-AA0962d G508 0 JJ8165-JJ8164a G605 0

AA0995-AA0962a G604 0 JJ8063-JJ8112p G911 0

4M4540-4M4541 G605R 0 JJ8063-JJ8112d G508 0
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Table C.2: Allocation and Alternative Stands for Validation Test July 9th Part 2
Name Allocation Changes Alternative Stands Name Allocation Changes Alternative Stands

UA0845-UA0844p G504 0 JJ8063-JJ8112a G610 0

UA0845-UA0844d G602 0 JJ8161-TAM9614 G611 0

JJ8113-JJ8034p G903 0 JJ8111-JJ8110p G906 2 X002

JJ8113-JJ8034d G509 0 JJ8111-JJ8110d G507 0

JJ8113-JJ8034a G603 0 JJ8111-JJ8110a G605 6 G604 G602

4C3505-4C3506p G503 0 JJ8097-JJ8148p G905 0

4C3505-4C3506d G508 0 JJ8097-JJ8148d G507R 0

4C3505-4C3506a G504 0 JJ8097-JJ8148a G509R 0
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Appendix D: Allocation Results 19/11
Table D.1: Allocation and Alternative Stands 19/11 part 1

Name Allocation Changes Alternative Stands

LA0756-LP2764p G609R 0

LA0756-LP2764d G604R 0

LA0756-LP2764a G605R 0

JJ8015-JJ8014p G506 0

JJ8015-JJ8014d G509R 0

JJ8015-JJ8014a G507R 0

QR0774-QR0774 G605 0

TK0016-TK0016 G507 0

JJ8071-JJ8026p G913 0

JJ8071-JJ8026d G605 0

JJ8071-JJ8026a G605 6 G603 G508

JJ8065-JJ8090p G505 32 X001 G502L

JJ8065-JJ8090d G507 0

JJ8065-JJ8090a G508 0

LA0701-LA0701 G510 0

JJ8091-JJ8064p G608 11 X002 G502L

JJ8091-JJ8064d G605 0

JJ8091-JJ8064a G604 0

JJ8101-JJ8024p G910 0

JJ8101-JJ8024d G509 0

JJ8101-JJ8024a G507 24 G601 G602 G509 G603

JJ8161-JJ8140p G902 0

JJ8161-JJ8140d G604 0

JJ8161-JJ8140a G509 0

JJ8085-JJ8070p G907 0

JJ8085-JJ8070d G507 4 G601

JJ8085-JJ8070a G605 16 G601 G602 G511 G509 G603

JJ8081-JJ8102p G909 0

JJ8081-JJ8102d G605 0

JJ8081-JJ8102a G603 0

JJ8113-JJ8140 G602 0

4C3505-4C3506p G511 0

4C3505-4C3506d G507 0

4C3505-4C3506a G508 5 G601 G611 G605

LH0506-LH0507p G901 0

LH0506-LH0507d G507 0

LH0506-LH0507a G604 5 G605 G611 G601

BA0247-BA0246p G912 0

BA0247-BA0246d G509 0

BA0247-BA0246a G507 2 G601 G611

AA0929-AA0950p G906 0

AA0929-AA0950d G604 0

AA0929-AA0950a G601 0

TP0087-TP0082p G606 0

TP0087-TP0082d G605 0

TP0087-TP0082a G605 0

PZ0712-JJ8116 G508R 0

AZ0674-AZ0675p G903 0

AZ0674-AZ0675d G507 0

AZ0674-AZ0675a G603 1 G611

LP2765-LA0757 G508L 0

LX0092-LX0093p G911 0

LX0092-LX0093d G605 19 G505

LX0092-LX0093a G510 2 G611 G610

AF0454-AF0457p G607 0

AF0454-AF0457d G507 0

AF0454-AF0457a G507 12 G611 G510 G603

IB6827-IB6824p G601 2 X003

IB6827-IB6824d G604 0

IB6827-IB6824a G604 3 G611 G610 G507

JJ8103-JJ8114p G905 0

JJ8103-JJ8114d G602 0

JJ8103-JJ8114a G605 15 G611 G601 G610 G604 G507

TAM8129-JJ8144p G504R 0

TAM8129-JJ8144d G605L 0

TAM8129-JJ8144a G508R 23 G610R G611R G609R G510R
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Table D.2: Allocation and Alternative Stands 19/11 Part 2
Name Allocation Changes Alternative Stands

AA0995-AA0906p G904 0

AA0995-AA0906d G604 0

AA0995-AA0906a G507 3 G602

JJ8031-JJ8010 G605R 0

4M4540-4M4541 G507L 0

UA0861-UA0860p G610 1 G502L

UA0861-UA0860d G510 0

UA0861-UA0860a G604 0

UA0148-UA0149p G609 0

UA0148-UA0149d G502 0

UA0148-UA0149a G508 2 G509 G503

UA0105-UA0104p G504 0

UA0105-UA0104d G504 0

UA0105-UA0104a G602 0

AA0951-AA0930p G611 0

AA0951-AA0930d G508 0

AA0951-AA0930a G509 0

UA0845-UA0844p G908 0

UA0845-UA0844d G609 0

UA0845-UA0844a G510 0

KE0061-KE0062 G603 0

JJ8029-JJ8072 G507R 0

AC0090-AC0091p G503 0

AC0090-AC0091d G511 0

AC0090-AC0091a G604 4 G505 G502 G508 G611

AA0963-AA0962p G502 0

AA0963-AA0962d G510 0

AA0963-AA0962a G508 6 G509 G602 G503 G505

LA0750-LA0751 G604 15 G509 G602

AA0215-AA0216p G910 0

AA0215-AA0216d G604 0

AA0215-AA0216a G507 0

JJ3558-TAM9770p G506 0

JJ3558-TAM9770d G508R 0

JJ3558-TAM9770a G605L 0

LA0760-LA0753 G508L 0

JJ8009-JJ8096p G501 0

JJ8009-JJ8096d G601L 0

JJ8009-JJ8096a G605R 0

CA0907-CA0908p G912 23 X003

CA0907-CA0908d G508 0

CA0907-CA0908a G605 0

SA0222-SA0223 G510 0

LP2767-LP2766p G903 0

LP2767-LP2766d G509 0

LP2767-LP2766a G603 0

SQ0068-SQ0067 G602 0

LA0752-LA0761 G601R 0

QR0773-QR0773 G604 15 G511

JJ8145-TAM8008 G509L 0

EY0191-EY0190p G901 0

EY0191-EY0190d G509 0

EY0191-EY0190a G605 0

JJ8005-JJ8014p G506 0

JJ8005-JJ8014d G507L 0

JJ8005-JJ8014a G603L 0

JJ3357-JJ8028 G603R 0

TK0015-TK0015 G511 0

KL0791-KL0792 G510 0

AF0456-AF0459 G508 4 G608 G505

EK0261-EK0262p G911 0

EK0261-EK0262d G508 0

EK0261-EK0262a G601 0

JJ8095-JJ8084p G912 0

JJ8095-JJ8084d G508 0

JJ8095-JJ8084a G604 1 G606

JJ8027-JJ8108 G602 0

JJ8141-JJ8112p G607 0

JJ8141-JJ8112d G601 0

JJ8141-JJ8112a G607 0

IB6821-IB6820p G903 0

IB6821-IB6820d G507 0

IB6821-IB6820a G507 13 G505 G508 G606 G608 G601

TAM8117-JJ8018p G501 0

TAM8117-JJ8018d G507R 0

TAM8117-JJ8018a G603L 0

LA0700-LA0700 G606 0

JJ8019-JJ8030 G604R 0
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Table D.3: Allocation and Alternative Stands 19/11 Part 3
Name Allocation Changes Alternative Stands

JJ8045-JJ8128 G604L 0

JJ8067-JJ8110p G907 14 X003

JJ8067-JJ8110d G605 0

JJ8067-JJ8110a G605 15 G507 G505 G601 G608 G508

JJ3409-JJ8066p G611 7 X003 X002

JJ3409-JJ8066d G508 0

JJ3409-JJ8066a G509 0

JJ8111-JJ8080 G603 0

JJ8097-JJ8116p G505R 0

JJ8097-JJ8116d G603L 0

JJ8097-JJ8116a G503 11 G601R G610 G505 G608 G608R G509R

JJ8073-JJ8044p G511R 0

JJ8073-JJ8044d G605L 0

JJ8073-JJ8044a G603L 0
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Appendix E: Comparison Objectives
Table E.1: Relative Differences in Affinity, Walking Distance (WD), Towing Operations and

Percentage of passengers allocated to a Contact-Stand (PC) for four Objectives for November

19th
Case & Objective ∆ Affinity [%] ∆ WD [%] ∆ Tow [%] PC AVG [%]

19/11 Max Aff - - - 93.9

19/11 Min WD -1.33 -6.58 0.00 94.3

19/11 Min Tow -5.30 38.79 -33.72 92.4

19/11 Max PC -4.22 41.25 0.00 94.6

Figure E.1: Variation in Walking Distance and Affinity for the Four Objectives in the Scenarios

for November 19th

Table E.2: Relative Differences in Affinity, Walking Distance (WD), Towing Operations and

Percentage of passengers allocated to a Contact-Stand (PC) for four Objectives for November

20th
Case & Objective ∆ Affinity [%] ∆ AVG WD [%] ∆ Tow [%] Contact [%]

20/11 Max Aff - - - 90.1

20/11 Min WD -1.20 -5.43 0.00 90.8

20/11 Min Tow -5.98 28.65 -38.82 87.8

20/11 Max PC -4.06 39.27 1.18 91.1
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Figure E.2: Variation in Walking Distance and Affinity for the Four Objectives in the Scenarios

for November 20th

Table E.3: Relative Differences in Affinity, Walking Distance (WD), Towing Operations and

Percentage of passengers allocated to a Contact-Stand (PC) for four Objectivesfor November

23th
Case & Objective ∆ Affinity [%] ∆ WD [%] ∆ Tow [%] AVG PC [%]

23/11 Max Aff - - - 93.0

23/11 Min WD 0.055 -5.88 0.00 93.9

23/11 Min Tow -3.36 31.07 -22.62 92.7

23/11 Max PC -2.36 34.74 0.00 94.3

Figure E.3: Variation in Walking Distance and Affinity for the Four Objectives in the Scenarios

for November 23th
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Table E.4: Relative Differences in Affinity, Walking Distance (WD), Towing Operations and

Percentage of passengers allocated to a Contact-Stand (PC) for four Objectives for November

25th
Case & Objective ∆ Affinity [%] ∆ WD [%] ∆ Tow [%] AVG PC [%]

25/11 Max Aff - - - 91.4

25/11 Min WD 0.20 -5.13 0.00 92.2

25/11 Min Tow -3.53 34.20 -31.65 91.4

25/11 Max PC -2.92 41.09 0.00 92.7

Figure E.4: Variation in Walking Distance and Affinity for the Four Objectives in the Scenarios

for November 25th

Table E.5: Relative Differences in Affinity, Walking Distance (WD), Towing Operations and

Percentage of passengers allocated to a Contact-Stand (PC) for four Objectives for November

26th
Case & Objective ∆ Affinity [%] ∆ WD [%] ∆ Tow [%] AVG PC [%]

26/11 Max Aff - - - 92.0

26/11 Min WD -2.04 -5.37 -1.15 92.2

26/11 Min Tow -10.30 37.33 -40.23 87.2

26/11 Max PC -4.39 32.20 0.00 92.8
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Figure E.5: Variation in Walking Distance and Affinity for the Four Objectives in the Scenarios

for November 26th

Table E.6: Relative Differences in Affinity, Walking Distance (WD), Towing Operations and

Percentage of passengers allocated to a Contact-Stand (PC) for four Objectives for November

27th
Case & Objective ∆ Affinity [%] ∆ WD [%] ∆ Tow [%] AVG PC [%]

27/11 Max Aff - - - 89.8

27/11 Min WD -0.89 -7.72 0.00 91.3

27/11 Min Tow -8.23 35.72 -39.74 87.0

27/11 Max PC -3.36 36.21 1.28 91.7

Figure E.6: Variation in Walking Distance and Affinity for the Four Objectives in the Scenarios

for November 27th
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Appendix F: Recovery per Stand
Table F.1: Required Recovery Actions per Stand Part 1

Stand 19/11 20/11 23/11 25/11 26/11 27/11

G501 0 0 0 0 20 0

G502 0 9 1 0 0 0

G502L 0 0 0 0 0 0

G502R 0 0 0 0 0 0

G503 11 0 8 0 29 6

G504 0 0 0 0 0 0

G504L 0 0 0 0 0 0

G504R 0 0 0 0 0 0

G505 32 0 0 0 0 4

G505R 0 0 0 0 0 0

G506 0 0 0 0 0 0

G507 58 52 34 72 83 51

G507L 0 0 0 0 0 0

G507R 0 0 0 0 0 0

G508 17 18 25 36 42 45

G508L 0 22 0 0 0 0

G508R 23 0 0 0 0 0

G509 0 2 43 0 5 9

G509L 0 0 0 1 0 0

G509R 0 0 0 0 0 0

G510 2 12 9 21 2 0

G510L 0 0 0 0 0 0

G510R 0 0 0 0 0 0

G511 0 0 0 0 0 0

G511L 0 0 0 0 0 0

G511R 0 0 0 0 0 0

G601 2 0 0 29 0 0

G601L 0 0 0 0 0 0

G601R 0 0 0 0 0 0
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Table F.2: Required Recovery Actions per Stand Part 2

Stand 19/11 20/11 23/11 25/11 26/11 27/11

G602 0 3 8 4 23 25

G602L 0 0 0 0 0 0

G602R 0 0 0 0 0 0

G603 1 0 0 0 15 0

G603L 0 0 0 0 0 0

G603R 0 0 0 0 0 0

G604 43 81 29 12 27 60

G604L 0 0 0 0 0 6

G604R 0 0 17 0 0 0

G605 71 74 64 73 45 64

G605L 0 0 0 0 0 0

G605R 0 0 0 0 0 0

G606 0 25 0 2 4 0

G606L 0 0 0 0 0 0

G606R 0 0 0 0 0 0

G607 0 1 0 0 1 0

G607L 0 0 0 0 0 0

G607R 0 0 0 0 0 0

G608 11 0 0 0 4 28

G608L 0 0 0 0 0 0

G608R 0 0 0 0 0 0

G609 0 0 2 0 0 2

G609L 0 0 0 0 0 0

G609R 0 0 0 0 0 0

G610 1 0 26 0 0 0

G610L 0 0 0 0 0 0

G610R 0 0 0 0 0 0

G611 7 0 0 27 0 3

G611L 0 0 0 0 0 0

G611R 0 0 0 0 0 0

G901 0 21 3 0 0 0

G902 0 0 0 0 0 0

G903 0 20 0 0 0 0

G904 0 0 0 7 0 0
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Table F.3: Required Recovery Actions per Stand Part 3

Stand 19/11 20/11 23/11 25/11 26/11 27/11

G905 0 0 0 0 0 0

G906 0 0 0 0 0 0

G907 14 0 0 4 0 0

G908 0 0 0 0 0 0

G909 0 0 1 0 18 0

G910 0 0 0 0 0 0

G911 0 16 15 0 0 0

G912 23 0 0 0 9 28

G913 0 0 0 0 2 0

X001 0 0 0 0 0 0

X002 0 0 0 0 0 0

X003 0 0 0 0 0 0
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