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ARTICLE INFO ABSTRACT
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Understanding atomic hydrogen (H) diffusion in multi-principal element alloys (MPEAs) is crucial for enhancing
hydrogen transport and storage technologies. However, the vast compositional space and complex chemical
environments of MPEAs pose significant challenges. We develop highly accurate machine learning force field and
neural network-driven kinetic Monte Carlo simulations to investigate H diffusion in body-centered cubic (BCC)
MoNbTaW MPEAs. H diffusion exhibits super-Arrhenius behavior in MPEAs, dominated by the low percentile of
the H solution energy spectrum. Robust analytical models are derived via machine learning symbolic regression
to predict H diffusivity across general BCC MPEAs. Additionally, it is revealed that chemical short-range order
(SRO) generally does not impact H diffusion in MoNbTaW MPEAs, except it enhances diffusion when H-favoring
elements are present in low concentrations. These insights not only deepen our understanding of H diffusion
dynamics in MPEAs but also guide the strategic development of advanced MPEAs for hydrogen-related appli-
cations by manipulating element type, composition, and SRO.

1. Introduction

Green energy is the cornerstone of a seismic shift toward sustainable
future, dismantling fossil fuel dependencies and spearheading the battle
against climate change while revolutionizing eco-friendly energy sys-
tems [1,2]. Within this paradigm, metals and alloys stand as pivotal
catalysts for hydrogen (H) production and guardians of storage system
integrity [3]. The burgeoning frontier of multi-principal element alloys
(MPEA), including high-entropy alloys (HEAs) and medium-entropy
alloys (MEAs), marks an unparalleled leap in materials science [4-6].
Offering an expansive compositional realm, MPEAs harbor unprece-
dented potential for innovation in H-related applications [6]. For
instance, recent breakthroughs have illuminated the exceptional resis-
tance of specific MPEAs, such as face-centered cubic (FCC) equimolar
CoCrFeMnNi [7-9], and CoNiV [10], against H embrittlement. A crucial
factor contributing to this exceptional resistance is the intricate chemi-
cal environments at the atomic scale within these alloys, which act as
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highly efficient hydrogen trapping sites, leading to significantly reduced
hydrogen diffusivity. On the other hand, nuclear fusion power systems
stand out as another promising solution for sustainable clean energy
[11]. The exceptionally harsh operational conditions of fusion reactors,
including exposure to deuterium-tritium plasma and enduring severe
fluxes of particles and heat, coupled with the radiation damage induced
by high-energy neutrons, however, pose a substantial challenge for the
use of the existing structural materials [12]. Fortunately, recent exper-
iments have unveiled that body-centered cubic (BCC) W-based re-
fractory MPEAs such as WTaCrV [13] and WTaCrVHf [14] demonstrate
remarkable radiation resistance and thermal stability, offering a prom-
ising solution to address these challenges. The critical but unclear issue
for MPEAs in nuclear fusion applications pertains to the retention and
recycling of H isotopes, where the solubility and diffusivity of H isotopes
play a crucial role [15]. Therefore, unraveling the mechanisms gov-
erning H diffusion dynamics within MPEAs’ diverse compositional
spectrum is paramount, heralding a new era in material engineering for
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sustainable energy solutions.

In the quest for accurate H diffusion examination, challenges persist
due to lattice defects such as grain boundaries, vacancies, impurities,
and intricate surface complexities [16]. Consequently, experimental
assessments often inadequately capture the correct diffusion coefficients
within the lattice. Notably, the experimentally reported diffusion coef-
ficient variations spanning several orders of magnitude for BCC Fe and
W at room temperature highlight the considerable hurdles in accurately
characterizing this fundamental property [17-19]. Nevertheless, inten-
sive experimental endeavors have aimed to directly gauge or estimate H
diffusivity through permeation tests conducted in MPEAs [20-23].
However, exploring diffusion mechanisms at the atomic scale and
quantitatively analyzing the influence of chemical environments on H
diffusion remain challenging due to the limitations in experimental
resolution. Another extensively utilized approach involves integrating
density functional theory (DFT)-based first-principles calculations with
kinetic Monte Carlo (KMC) simulations. This method is commonly
employed to explore H diffusion processes within lattices and defects in
conventional metals and alloys [24-27]. However, the comprehensive
calculation of every diffusion barrier within the myriad chemical envi-
ronments of MPEAs across all compositions remains unattainable.

The advent of machine learning (ML) and machine learning force
field (MLFF) have empowered insightful studies of H diffusion in pure
metals, alloys, and MPEAs [28,29]. For example, several ML models
have been trained to predict H solution energies at critical sites within
FCC CoCrFeMnNi and its subsystems, while KMC simulations were uti-
lized to compute H diffusion coefficients [30]. Yet, these ML models
solely provide estimates of critical energies with substantial errors,
falling short of an accurate force field necessary for reliable investiga-
tion of H diffusion. Another interesting study utilized reinforcement
learning to guide long-timescale simulations of H diffusion in a
medium-entropy CrCoNi alloy [29], employing a universal neural
network-based interatomic potential [31] to calculate the energy land-
scape. The use of this universal potential raises concerns about the ac-
curacy of the energy calculations, as its broad applicability may not
capture the specific interactions unique to this alloy system. Recently,
quantum-accurate MLFFs have emerged for investigating H diffusion in
BCC Fe, Nb, and W [16,32]. However, developing a reliable MLFF for H
diffusion in MPEAs faces substantial challenges when applying a similar
approach. Examining a simple configuration with four alloying elements
ina5A range (comprising about 30 neighboring atoms) suggests up to
439 distinct H-metal environments. Furthermore, the small size of H
atom enables its occupation across numerous sites within the metallic
matrix. Moreover, atomic size mismatch and thermal fluctuations
induce substantial lattice distortions among metallic atoms, further
complicating the H-metal environments. While advanced active learning
strategies have facilitated the development of various MLFFs [33,34],
performing long-timescale simulations (lasting hundreds of nanosec-
onds) in ab initio molecular dynamics (AIMD) still remains challenging.
The integration of MLFF-based MD with DFT calculations, essential for
on-the-fly active learning, also encounters significant obstacles. These
challenges are even more pronounced in diffusion studies at low tem-
peratures, where the limitations of MD simulations in covering extended
timescales are most apparent [35].

In this study, we present an advanced machine learning computa-
tional framework to investigate the complex dynamics of H diffusion in
MoNbTaW MPEAs. While the mechanical properties of these MPEAs
have been extensively studied [36-38], their H diffusivity and solubility
remain unexplored. To address this gap, we have developed a highly
accurate MLFF for MoNbTaW-H systems. This MLFF is constructed using
a D-optimality-based Pre-Selection (DPS) approach to identify repre-
sentative configurations before performing DFT calculations, offering a
significant departure from traditional active learning methods.
Furthermore, we introduce a neural network model that predicts diffu-
sion barriers using lattice distortion-corrected atomic descriptors. This
model forms the foundation of our scalable Neural Network-driven
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Kinetic Monte Carlo (NN-KMC) framework, which facilitates an in-depth
exploration of H diffusion dynamics across the entire compositional
range of MoNbTaW. Another key innovation in our work is the use of a
constrained KMC method, allowing us to isolate the effects of the com-
plex energy landscape from those of temperature on H diffusion, thus
providing a detailed analysis of the super-Arrhenius behavior observed
in MPEAs. We also employ machine-learning symbolic regression
(MLSR) to develop interpretable models that provide physical insights
into H diffusion dynamics. Additionally, we utilize the NN-KMC to
examine the impact of chemical short-range order (SRO) on H diffu-
sivity, revealing the specific mechanisms that govern H diffusion.

2. Methods
2.1. D-optimality-based pre-selection

We employ the D-optimality-based Pre-Selection (DPS) to select
representative H-MPEA configurations for MLFF development [34]. In

the framework of moment tensor-based MLFF, the energy of a configu-
ration can be expressed as:

E™P(cfgi&) =D > &Ba(m) = Y& | D _Ba(m) €]
i a=1 a=1 lb —
a(CIg,

where n; is the atomic environment of atom i, £, are the parameters to be
fitted, B, are the basis functions, “cfg” is the abbreviation of configu-
ration. When fitting to the energy values, an overdetermined system of K
linear equations on ¢ is needed to solve with the matrix:

bl(gfgl) bm(éfgl)

by (cfgy) b (cfgy)

Following the D-optimality criterion, we strategically choose m
configurations to generate the most linearly independent equations,
ensuring that the corresponding m x m submatrix A achieves the
maximum modulus of determinant, denoted as |det(A)|. The m selected
configurations are called as the representative configurations which
corresponds to the most extreme and diverse ones. The DPS operations
are conducted by the MLIP-2 package [34].

B= (2)

2.2. DFT calculations

We perform DFT calculations using the Vienna Ab initio Simulation
Package (VASP) [39] with the Perdew-Burke-Ernzerhof (PBE) [40]
exchange-correlation functional and projector-augmented plane wave
[41] potentials with a plane-wave cutoff energy of 520 eV. A consistent
K-point density of 0.03 x 2n/A using the Monkhorst-Pack Scheme is
maintained using the Python tool VASPKIT [42]. The energy threshold
for self-consistency and the force threshold for structure relaxation are
107 eV and 0.01 eV/A, respectively.

2.3. Machine-learning force field training database generation

Fig. S1 shows the schematic of our database generation for the MLFF.
Our starting point is the established DFT database for BCC MoNbTaW
MPEAs [43]. We intentionally exclude configurations with exposed
surfaces, as our study concentrates exclusively on investigating H
diffusion within defect-free bulk systems. On investigating the in-
teractions of H with individual unary systems (Mo, Nb, Ta, and W), we
leverage configurations derived from recent studies probing H-W and
H-Nb interactions [16]. These configurations are adjusted through
rescaling lattice constant to acquire configurations specific to H-Mo and
H-Ta. The database comprises of H configurations at stable tetrahedral
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(T) sites, minimum energy paths obtained using the climbing-image
Nudged Elastic Band (CI-NEB) under various strain levels for H diffu-
sion, and non-equilibrium configurations obtained by active learning
throughout classical MD and path integral molecular dynamics (PIMD)
simulations [16]. This comprehensive dataset guarantees reliable sim-
ulations of H diffusion within elemental systems across a diverse tem-
perature range. In the context of H-binary systems (MoNb, MoTa, MoW,
NbTa, NbW, and TaW), we consider scenarios where H occupies all T
sites, Octahedral (O) sites, and intermediary positions between T sites
within a 36-atom equimolar special quasi-random structure (SQS) [44].
We specifically select configurations from the initial four ionic relaxa-
tion steps in the conjugate gradient relaxation for each scenario. In
exploring H-ternary systems (MoNbTa, MoNbW, MoTaW, NbTaW) and
the H-quaternary system (MoNbTaW), we consider the configurations
involving the full relaxation process, encompassing scenarios where H
occupies all T sites within a 36-atom equimolar SQS. More importantly,
we select representative configurations using DPS at 300 K, 700 K and
1200 K for all equimolar ternary and quaternary systems. A total of 85,
762 configurations are used for training, with an additional 9530 con-
figurations allocated for testing. Moreover, the validation task in Fig. S2
involves an extensive dataset of over 40,000 configurations. Altogether,
our database comprises approximately 140,000 configurations.

2.4. Machine-learning force field framework

The moment tensor-based MLFF [34] and its formalism have been
extensively studied and applied in the MPEAs [37] and H-metal systems
[16], which essentially constructs contracted rotationally invariant local
environment descriptors for each atom in the system and builds a
polynomial regressed correlation between the potential energy surface
(PES) and these descriptors. The descriptors, named moment tensors, are
devised as follows:

v times

M,.,(R) = Ryl.zz) — @)
uv(R) ; £i(|Ry, 2, ;) Rj® -~ ®R;
—_———

radial ‘angula

r

where the function f,, are the radial distributions of the local atomic
environment around atom i, specified to the neighboring atom j. The
term R; ® -+ ® Ry are tensors of rank v, encoding the angular informa-
tion about the local environment. There are two key parameters that
determine the accuracy and computational cost of the trained MLFF: the
cutoff radius (Rqyt) and the maximum level (levygy). In this work, we
choose Reys = 5 A and levimax = 20. The energy, force and stress data are
assigned weights of 1, 0.01, and 0.001.

2.5. Feature extraction based on the SOAP descriptor and neural network
models

Smooth Overlap of Atomic Positions (SOAP) is a descriptor that en-
codes regions of atomic geometries by using a local expansion of a
Gaussian smeared atomic density with orthonormal functions based on
spherical harmonics and radial basis functions [45]. We employ the
DScribe package [46] to extract all the SOAP vectors at distorted
tetrahedral (T) sites and saddle (S) points. The parameters reys = 7 10\,
Nmax = 8, and . = 6 are considered, resulting in the SOAP vector with
the dimension of 1 x 1536 for each H atom. We use Pytorch [47] to train
neural network models for predicting diffusion barriers from input
features. The input feature is the SOAP difference between the con-
nected T sites and S points. The network is constructed as a sequence of
modules, starting with an input layer that takes data of specified size,
followed by the several hidden layers. Each hidden layer is a combina-
tion of a fully connected (nn.Linear) layer and a non-linear activation
function (ReLU). The output of the final hidden layer is passed to a linear
output layer that matches the desired output size. The neural network
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model architectures examined in this study are detailed in Figs. S4 and
S5.

2.6. Kinetic Monte Carlo simulation

KMC simulations are conducted to study the long timescale H
diffusion in elemental metals and MPEAs. In BCC lattice, H diffusion
occurs through a T site jumping to its nearest neighboring T sites, each of
which with a rate defined as k; = ko-exp[— (DB; /(kg-T))], where ko, kg
and T denote the attempt frequency (1.5 x 10*3s!), Boltzmann constant
(8.61733326 x 10~ eV/K), and simulation temperature, respectively. It
should be noted that the attempt frequency here, 1.5 x 10'% s, is
different from the default value of 1.0 x 103 s typically employed in
traditional KMC simulations. We obtain 1.5 x 10'% s by minimizing the
difference of diffusion coefficients (D) between KMC and MD for four
pure elements. As a result, our KMC simulations consider the tempera-
ture effect to some extent. DB; represents the local diffusion barrier
along the jump path i, obtained by the neural network model. The total
jump rate is the sum of all individual rates, R = Z?Zl ki, where 4 denotes
the four connected T-T paths. To simulate atomic H jump, we generate a
uniform random number u within the interval (0,1]. We then select a

diffusion path p that meets the following condition:
b1 % <u<?, %. The diffusion of H along path is simulated as the H

atom progresses towards the next T site at the end of this path. The time
scale for such jump is estimated by t = —In(p)/R with a random number
0 < p < 1. This trajectory of H is analyzed to determine the mean
squared displacement (MSD) and diffusion coefficients for each
composition. The reliability of our KMC settings is demonstrated by the
close agreement between the diffusion coefficients obtained from KMC
and MD simulations across 969 compositions, as shown in Fig. S11. The
comprehensive explanation of determining reliable diffusion co-
efficients from KMC is provided in the Supplementary Note 3. It is
important to note the significant challenges in obtaining reliable diffu-
sion coefficients for certain compositions at low temperatures, such as
TagoWgp at 300 K and 400 K, using KMC methods. These challenges arise
primarily due to the “small-barrier problem”, where H becomes trapped
in superbasins [48]. On the other hand, nuclear quantum effects play a
non-negligible role at these relatively low temperatures [16], rendering
regular KMC or MD simulations inadequate. PIMD simulations are
necessary to accurately capture these effects and will be the focus of our
future work.

2.7. Machine-learning symbolic regression using SISSO

We apply the Sure Independence Screening and Sparsifying Operator
(SISSO) method [49] in our machine-learning symbolic regression
analysis. This method targets the effective activation energy (Qygr) and
the Vogel temperature (Tp) within the Vogel-Fulcher-Tammann (VFT)
model [50]. Our analysis includes fifteen statistical features that char-
acterize the intrinsic diffusion barrier (DB) and solution energy (SE).
These are represented across eight features for DB: average (DBaye),
standard deviation (DByq), skewness (DBgk), kurtosis (DBy), range
(DBrange), interquartile range (DBjqr, defined as Q3-Q; where Q; and Qs
correspond to the 25th and 75th percentiles, respectively), 5th percen-
tile (DByg.05), and 95th percentile (DBg 95). Additionally, seven features
are used for SE: standard deviation (SEgq), skewness (SEg), kurtosis
(SEk), range (SErange), interquartile range (SEjgr), Sth percentile
(SEg.05), and 95th percentile (SEq gs5). The feature construction is con-
ducted by applying the operator set [+, -, X, /, 1 to the fifteen features.
The cross validation of the SISSO approach is shown in Supplementary
Note 4 and Fig. S13.

2.8. MC/MD simulation

The MC/MD simulations are conducted to generate chemical short
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range order (SRO) at 300 K by LAMMPS [51]. The existing MLFF is used
to describe the atomic interactions in MoNbTaW systems [37]. The
samples are initially relaxed and equilibrated at 300 K and zero pressure
under the isothermal-isobaric (NPT) ensemble through MD. After that,
MC steps consisting of attempted atom swaps are conducted, hybrid with
the MD. In each MC step, a swap of one random atom with another
random atom of a different type is conducted based on the Metropolis
algorithm in the canonical ensemble. 100 MC swaps are conducted at
every 1000 MD steps with a time step of 0.001 ps during the simulation.
3 x 10° steps are conducted in MC/MD simulations for all compositions.
OVITO is used to visualize atomistic structures [52].

2.9. Hydrogen diffusion MD simulation

We perform direct MD simulations for H diffusion using LAMMPS
[51]. Due to the high computational cost of MLFF, we employ 128-atom
configurations for MPEAs and limit the simulation to a single H atom.
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The simulations are carried out in the canonical (NVT) ensemble with a
timestep of 1 fs. To assess the impact of timestep size, we also conduct
simulations with a timestep of 0.5 fs for comparison. As shown in
Fig. S14, the choice of timestep has no significant effect on H diffusion. It
is important to emphasize that these MD simulations are not used to
draw conclusions in this study; their sole purpose is to validate the re-
sults of our KMC simulations and to confirm that free energy contribu-
tions have a negligible influence on our findings (Fig. S11).

3. Results

3.1. Machine learning-driven H diffusion simulations at DFT-Level
accuracy

We have developed a comprehensive machine learning computa-
tional framework to explore H diffusion dynamics in MPEAs with an
accuracy comparable to DFT. This framework consists of three pivotal

1. Machine learning force field development for H-MoNbTaW system

a b c
DPS £ )
MoNbTaW __q4oi000. C"°'%Y  &BP WOr | F¥y - 600
_DFT__ Force N )
MoNbTaWH _Dataset 500
Q ~ Stress | N o
MLFF-MTP ~20000°N | = 409 ~-10 K
w CSRO+H < —=-300 K
\ 2 "DPS 300 —-700 K
Ta . —£-1200 K
! 2 nrep1 N - : :
N - B (1,051~300) 0 5 10 15 20
N
d 2. Neural network-driven kinetic Monte Carlo
ice distortion SOAP(S)— SOAP(T\)\‘ ‘/Input Hldden Output ( Diffusion Barrier\

'1/
\' 'l’
\ ‘» 4' /
A\ IA

3 DWZ
T,

T

) S ) .
Q | Solution Energy |
el 0 ) -
20%20x20 (16,000 atoms) L | KMC
3. Validation and Application
° 05 ~ T 022 : : ~ 9
3 0.06 110,208,000 0.1 Mo,sNb,eTa W,
= 04} 10x10x10 B < DBs <
c 7 TagW. 0.05
2 (2000 atoms) L 02} 004 L’ N .
2 03} 8 oW 95%% 50 | £ L=t
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2 02} (686 atoms) 2 018 sp A w8
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g 0.1 g /‘z’ﬂ.. @0%" ’ TagoWo
& MAE=3.0mev | & 0.16] . o @oﬁ 0.1}
o 4 ’
[a] 0 - + 0 L .
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DB from MLFF (eV)

DB (eV)
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Fig. 1. Machine learning-driven exploration of H diffusion at DFT-Level Accuracy. a Flowchart of MLFF development. b Schematic of DPS at various temperatures.
TNrep1 and neepp indicate the chosen configurations following the initial and subsequent DPS operations, while N signifies the number of distorted MPEA configurations
at a temperature T. Large spheres with different colors represent metallic atoms, and small yellow spheres represents H atoms. ¢ The progression of representative
configurations (nyep2) following a two-level DPS process with the count of distorted MPEA configurations (N) at varying temperatures. d Flowchart of neural network-
driven kinetic Monte Carlo (NN-KMC). e Validation of neural network model scalability for barrier predictions in 7 x 7 x 7 and 10 x 10 x 10 supercells. f Mean
diffusion barriers (DB,y.) for each composition compared against rule of mixing (ROM)-based predictions, with standard deviations (DBgq) illustrated by different
colors for each composition. g Statistical distribution of diffusion barriers for Mo,sNbosTassWos and TagoWio.
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components, each detailed in Fig. 1. First, we craft a highly accurate
MLFF for MoNbTaW-H system, as shown in Fig. la-c. Second, we
establish a scalable neural network model capable of predicting H
diffusion barriers and solution energies (hereafter abbreviated as DB and
SE, respectively), which will be used in KMC simulations for H diffusion
(Fig. 1d). Third, we perform scalability validation and utilize the neural
network model to predict a substantial set of 110,208,000 DBs, subse-
quently analyzing the statistical distribution of these barriers
(Fig. 1le-g).

In developing the MLFF for the MoNbTaW-H system, we construct an
extensive database encompassing approximately 140,000 configura-
tions with diverse metal-metal and H-metal interactions across the full
compositional range of MoNbTaW MPEAs, as illustrated in Fig. la. A
crucial aspect of our MLFF development is the database construction
employing a DPS strategy prior to any DFT calculations (see “Methods”
for the technical details of DPS). Fig. 1b illustrates the workflow of the
DPS method on a 36-atom MoysNbysTassWoys special quasi-random
structure (SQS, generated by the Alloy Theoretic Automated Toolkit
[53]). To consider the effects of lattice thermal vibrations of MPEAs
during DPS, we sample N distorted configurations at 10 ps intervals from
MD simulations conducted at temperature T. For each configuration, we
identify approximately 20,000 potential H occupation sites using a grid
spacing of 0.2 A, selecting sites where the H-to-metal distance is greater
than 1.5 A. The initial DPS operation selects approximately ngep; = 300
representative configurations from a pool of 20,000. A subsequent DPS
operation further reduces the number of required DFT calculations from
Trep1 X N tO Mpepa. Fig. 1c illustrates that nyepz demonstrates an upward
trend with both the number of distorted configuration (N) and temper-
ature (T). Remarkably, np, saturates when N > 10, indicating a
threshold in data requirements. Specifically, DFT calculations for just
629 configurations at a temperature of 1200 K are found to be sufficient
to encompass all H-metal interactions for a specific SQS at this tem-
perature. Four different temperatures, 10 K, 300 K, 700 K and 1200 K,
are considered in DPS for each SQS. The construction process of the
complete database is detailed in Fig. S1 and “Methods”.

The energies, forces, and stresses of all configurations obtained from
DFT calculations are utilized to train a MLFF using the framework of the
moment tensor potential (MTP) [34]. The training/test mean absolute
errors (MAEs) for energy, force, and stress are obtained as 1.21/1.20
meV/atom, 22.78/22.85 eV/;\, and 47.45/47.53 MPa (Fig. S2a-c),
respectively, surpassing the performance of most existing MLFFs [54].
The rigorous validation results in Fig. S2d-g confirm the broad appli-
cability of our developed MLFF for accurately modeling H-MPEA in-
teractions across the entire compositional space (Fig. S2d) and the SRO
effect (Fig. S2e). Furthermore, our MLFF has been demonstrated to
accurately calculate DBs in climbing image nudged elastic band
(CI-NEB) calculations (Fig. S2f and S2g) and is applicable to H diffusion
simulations at the high temperatures of 1500 K and 2000 K (Fig. S3).

Although the MLFF introduced herein offers a significant speed
advantage over DFT, it faces substantial challenges in probing H diffu-
sion across extended time scales within the intricate energy landscapes
of MPEAs [29]. To address these challenges, we develop a scalable
NN-KMC method that enhances the efficiency and reliability of H
diffusion simulations. Fig. 1d delineates the NN-KMC framework,
showecasing the input data, neural network architecture and outputs. For
DB prediction, we utilize our MLFF to conduct high-throughput CI-NEB
calculations for all H diffusion paths in MPEA SQSs, covering 500
random compositions of the entire compositional space (969 composi-
tions in total with a concentration interval of 6.25%). Each SQS has a
size of 4 x 4 x 4, totaling 128 metallic atoms and 1536 unique diffusion
paths. This yielded a total of 768,000 minimum energy paths. The SOAP
descriptor [45] is utilized to quantify the metallic environment sur-
rounding one H atom. We represent the diffusion paths using the dif-
ference in SOAP vectors between the initial T site and saddle (S) point,
denoted as ASOAP = SOAP(S) — SOAP(T). It should be noted that the
exact initial T site and saddle point are unknown due to the significant
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lattice distortion in MPEAs. To tackle this issue, we integrate lattice
distortion effects into the SOAP features (see Supplementary Note 2).
Figs. S4 and S5 compare the performance of our neural network models
with and without lattice distortion correction. The correction signifi-
cantly enhances accuracy of the neural network model, reducing the
MAE from 3.8 meV (without distortion) to 2.1 meV (with distortion).

Through experimentation with different configurations of layers and
neuron number (Fig. S4), we ascertain that a neural network model with
four hidden layers, each containing 32 neurons, is optimal, achieving a
MAE of 2.2 meV. To validate the scalability of the developed NN model,
we utilize the MLFF and CI-NEB to calculate DB across the full compo-
sitions using larger supercells of sizes 7 x 7 x 7 and 10 x 10 x 10, which
comprise 686 and 2000 atoms, respectively. Fig. 1e demonstrates that
our neural network model accurately predicts all forward and backward
DBs with a MAE of 3.0 meV, showcasing the high scalability of our
neural network model for DB predictions. Additionally, our convergence
tests confirm that the size 20 x 20 x 20 adequately captures the required
complexity for random MPEAs (Fig. S6). Utilizing the neural network
model, we compute DB spectra for 287 compositions, including all
compositions with a concentration interval of 10% and all equimolar
compositions, using large supercells of size 20 x 20 x 20 (16,000
atoms). This yields a total of 110,208,000 DBs (Fig. 1f) obtained within
approximately 1500 CPU hours. This staggering number of calculations
demonstrates the remarkable efficiency of our neural network model,
significantly accelerating the process compared to traditional CI-NEB,
which would require prohibitively long computational time for such a
number. Fig. 1f clearly indicates that the rule of mixing fails to accu-
rately predict DB, with deviations increasing in correlation with the
standard deviation of DBs. Additionally, we analyze the DB distributions
for specific compositions, such as MogsNbosTassWas and TaggWig (see
Fig. 1g). The former exhibits a Gaussian-like distribution, whereas the
latter is notably concentrated around lower barriers, reflecting the
diverse random energy landscapes inherent to different compositions.
This diversity underscores the critical need for developing a highly ac-
curate MLFF to effectively capture these intricate variations. It is
important to highlight that our model is also capable of predicting the
relative SE for all T sites within the supercell by analyzing the forward
and backward DBs. Here, “relative” refers to the comparison against a
reference T site with an SE of zero. Specifically, we initialize the SE for
the first T site as SE; = 0, then the SE for any connected T sites can be
determined using the difference in DB, expressed as SE; = DB; — DBy,
where DB; and DBy are the backward and forward DBs, respectively. It
should be noted that incorporating zero-point energy for all
110,208,000 diffusion paths in this study was computationally prohib-
itive. While we acknowledge its potential impact, the scale of our cal-
culations rendered it impractical to include zero-point energy in our
analysis.

3.2. Super-Arrhenius H diffusion dynamics in MPEAs

We apply the developed NN-KMC to compute H diffusion coefficients
across the entire compositional space of MoNbTaW systems. In order to
disentangle the temperature effect from chemical heterogeneity in
MPEASs on H diffusion, we introduce a constrained kinetic Monte Carlo
(cKMC) method, building upon the regular kinetic Monte Carlo (rKMC)
framework. At a selected temperature, rKMC is initially executed to
record the H trajectory, which is sufficient to calculate a reliable diffu-
sion coefficient. Subsequently, cKMC is employed, forcing H to follow
the pre-established trajectory from rKMC, but using varying tempera-
tures to calculate time scale for all jumps. The time histories required for
this consistent H trajectory at different temperatures constitute the
outcomes of the cKMC method. For pure metals, results from rKMC and
cKMC are identical because temperature is the only influencing factor
(Fig. S7), which however are not the case in MPEAs due to the intricate
chemical environments. H diffusion simulations for all 287 compositions
are conducted using both rKMC and ¢cKMC at a wide temperature range
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from 500 K to 5000 K. Temperatures above 3000 K are employed to
theoretically investigate diffusion dynamics under extreme conditions,
even though such temperatures may surpass the melting points of
MPEAs. These extreme conditions are critical for exploring the under-
lying physics of super-Arrhenius behaviors. We calculate the diffusion
coefficients by using:

MSD
D— S

- &)

where MSD is the mean squared displacement for one single H atom, and
t is the elapsed time. To ensure consistent accuracy of diffusion coeffi-
cient (D) calculations across various compositions and temperatures, we
require all KMC simulations to continue until MSD reaches 1 x 10° A% It
should be noted that determining diffusion coefficients in MPEAs pre-
sents a challenging task, due to the complex chemical environments that
result in non-uniform diffusion. To obtain reliable and consistent
diffusion coefficients across various compositions, we propose a
distance-based criterion to extract the accurate MSD of a H diffusion
trajectory, as discussed in Supplementary Note 3. This approach en-
hances the accuracy of our diffusion coefficient calculations and pro-
vides deeper insight into the H mechanisms within MPEAs.

We first focus on the compositions MoysNbosTazsWos and TaggWgo,
which represent equimolar and non-equimolar cases characterized by
high and low mixing entropy levels, respectively. In Fig. 2a and 2d, the
diffusion curves obtained from cKMC are depicted as straight lines for
both the compositions. This linear representation is indicative of the
diffusion behavior solely influenced by temperature effects, which
aligns well with the traditional Arrhenius equation. In contrast, the
diffusion curves from rKMC are influenced by both the complex energy
landscapes and temperature variations, resulting in a distinctly
nonlinear trend, particularly at lower temperatures. This deviation from
Arrhenius behavior towards super-Arrhenius behavior at low tempera-
tures parallels the relaxation dynamics observed in glassy materials [55,
56], where relaxation times increase disproportionately as temperatures
decrease due to the emergence of cooperative atomic rearrangements
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and an increasingly complex energy landscape. Such super-Arrhenius
behavior has also been captured in H diffusion in amorphous metals
with deep trapping sites by simplified energy landscape [57]. The VFT
model [50] provides an appropriate framework to describe the
nonlinear temperature dependencies in Fig. 2a and 2d:

QVFT
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where T is the Vogel temperature, indicating a theoretical temperature
below which diffusion ceases, and Qyr represents the effective activa-
tion energy. Dy represents the pre-exponential factor, indicating the
diffusion coefficient at infinite temperature. kg is the Boltzmann con-
stant. Fitting the diffusion curves obtained from rKMC, we determine the
values of Ty as 62.11 K and 163.5 K for MoysNbysTassWos and TagsgWgg,
respectively. This indicates a more pronounced non-linearity in the
super-Arrhenius H diffusion behavior for the latter compared to the
former. Moreover, the VFT model predicts D = 4.09 x 10718 m?/s for
TagoWgp at room temperature, which is significantly lower than D =
1.44 x 10712 m?/s for MoysNbasTassWoas at the same temperature. The
discrepancy in six orders of magnitude highlights the considerable po-
tential of non-equimolar compositions in H embrittlement mitigation by
making H less diffusive.

To investigate the mechanisms underlying such unique diffusion
behavior, we analyze the accessible DB and SE spectra during rKMC
simulations for the two compositions, as shown in Fig. 2(b, c, e, f)
alongside the intrinsic DB and SE spectra. It is observed that at low
temperatures, H diffusion predominantly occurs by the jumps between T
sites favoring paths with low SE and DB, as shown by a high probability
of low-DB and low-SE regime. This indicates that low-SE T sites are
related to the low-DB paths during H diffusion. With increasing tem-
perature, the accessible spectra converge towards the intrinsic spectra,
corresponding to the convergence of straight lines from cKMC towards
the curve from rKMC in Fig. 2a and 2d. This is due to the increased ki-
netic energy of H atom at higher temperatures, which enables it to
overcome the high energy barriers more readily, thus facilitating faster
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Fig. 2. Super-Arrhenius H diffusion in MogsNbasTazsWas and TagxgWgo. a, d H diffusion coefficients at different temperatures using regular KMC (rKMC) and
constrained KMC (cKMC), and VFT model fitting for Mo,sNbysTassWas and TazoWgo, respectively. b, e Accessible diffusion barrier (DB) spectra at different tem-
peratures and intrinsic DB for Mo,sNbysTassWos and TazoWgo, respectively. ¢, f Accessible solution energy (SE) spectra at different temperatures and