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A B S T R A C T

Understanding atomic hydrogen (H) diffusion in multi-principal element alloys (MPEAs) is crucial for enhancing 
hydrogen transport and storage technologies. However, the vast compositional space and complex chemical 
environments of MPEAs pose significant challenges. We develop highly accurate machine learning force field and 
neural network-driven kinetic Monte Carlo simulations to investigate H diffusion in body-centered cubic (BCC) 
MoNbTaW MPEAs. H diffusion exhibits super-Arrhenius behavior in MPEAs, dominated by the low percentile of 
the H solution energy spectrum. Robust analytical models are derived via machine learning symbolic regression 
to predict H diffusivity across general BCC MPEAs. Additionally, it is revealed that chemical short-range order 
(SRO) generally does not impact H diffusion in MoNbTaW MPEAs, except it enhances diffusion when H-favoring 
elements are present in low concentrations. These insights not only deepen our understanding of H diffusion 
dynamics in MPEAs but also guide the strategic development of advanced MPEAs for hydrogen-related appli
cations by manipulating element type, composition, and SRO.

1. Introduction

Green energy is the cornerstone of a seismic shift toward sustainable 
future, dismantling fossil fuel dependencies and spearheading the battle 
against climate change while revolutionizing eco-friendly energy sys
tems [1,2]. Within this paradigm, metals and alloys stand as pivotal 
catalysts for hydrogen (H) production and guardians of storage system 
integrity [3]. The burgeoning frontier of multi-principal element alloys 
(MPEA), including high-entropy alloys (HEAs) and medium-entropy 
alloys (MEAs), marks an unparalleled leap in materials science [4–6]. 
Offering an expansive compositional realm, MPEAs harbor unprece
dented potential for innovation in H-related applications [6]. For 
instance, recent breakthroughs have illuminated the exceptional resis
tance of specific MPEAs, such as face-centered cubic (FCC) equimolar 
CoCrFeMnNi [7–9], and CoNiV [10], against H embrittlement. A crucial 
factor contributing to this exceptional resistance is the intricate chemi
cal environments at the atomic scale within these alloys, which act as 

highly efficient hydrogen trapping sites, leading to significantly reduced 
hydrogen diffusivity. On the other hand, nuclear fusion power systems 
stand out as another promising solution for sustainable clean energy 
[11]. The exceptionally harsh operational conditions of fusion reactors, 
including exposure to deuterium-tritium plasma and enduring severe 
fluxes of particles and heat, coupled with the radiation damage induced 
by high-energy neutrons, however, pose a substantial challenge for the 
use of the existing structural materials [12]. Fortunately, recent exper
iments have unveiled that body-centered cubic (BCC) W-based re
fractory MPEAs such as WTaCrV [13] and WTaCrVHf [14] demonstrate 
remarkable radiation resistance and thermal stability, offering a prom
ising solution to address these challenges. The critical but unclear issue 
for MPEAs in nuclear fusion applications pertains to the retention and 
recycling of H isotopes, where the solubility and diffusivity of H isotopes 
play a crucial role [15]. Therefore, unraveling the mechanisms gov
erning H diffusion dynamics within MPEAs’ diverse compositional 
spectrum is paramount, heralding a new era in material engineering for 
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sustainable energy solutions.
In the quest for accurate H diffusion examination, challenges persist 

due to lattice defects such as grain boundaries, vacancies, impurities, 
and intricate surface complexities [16]. Consequently, experimental 
assessments often inadequately capture the correct diffusion coefficients 
within the lattice. Notably, the experimentally reported diffusion coef
ficient variations spanning several orders of magnitude for BCC Fe and 
W at room temperature highlight the considerable hurdles in accurately 
characterizing this fundamental property [17–19]. Nevertheless, inten
sive experimental endeavors have aimed to directly gauge or estimate H 
diffusivity through permeation tests conducted in MPEAs [20–23]. 
However, exploring diffusion mechanisms at the atomic scale and 
quantitatively analyzing the influence of chemical environments on H 
diffusion remain challenging due to the limitations in experimental 
resolution. Another extensively utilized approach involves integrating 
density functional theory (DFT)-based first-principles calculations with 
kinetic Monte Carlo (KMC) simulations. This method is commonly 
employed to explore H diffusion processes within lattices and defects in 
conventional metals and alloys [24–27]. However, the comprehensive 
calculation of every diffusion barrier within the myriad chemical envi
ronments of MPEAs across all compositions remains unattainable.

The advent of machine learning (ML) and machine learning force 
field (MLFF) have empowered insightful studies of H diffusion in pure 
metals, alloys, and MPEAs [28,29]. For example, several ML models 
have been trained to predict H solution energies at critical sites within 
FCC CoCrFeMnNi and its subsystems, while KMC simulations were uti
lized to compute H diffusion coefficients [30]. Yet, these ML models 
solely provide estimates of critical energies with substantial errors, 
falling short of an accurate force field necessary for reliable investiga
tion of H diffusion. Another interesting study utilized reinforcement 
learning to guide long-timescale simulations of H diffusion in a 
medium-entropy CrCoNi alloy [29], employing a universal neural 
network-based interatomic potential [31] to calculate the energy land
scape. The use of this universal potential raises concerns about the ac
curacy of the energy calculations, as its broad applicability may not 
capture the specific interactions unique to this alloy system. Recently, 
quantum-accurate MLFFs have emerged for investigating H diffusion in 
BCC Fe, Nb, and W [16,32]. However, developing a reliable MLFF for H 
diffusion in MPEAs faces substantial challenges when applying a similar 
approach. Examining a simple configuration with four alloying elements 
in a 5 Å range (comprising about 30 neighboring atoms) suggests up to 
430 distinct H-metal environments. Furthermore, the small size of H 
atom enables its occupation across numerous sites within the metallic 
matrix. Moreover, atomic size mismatch and thermal fluctuations 
induce substantial lattice distortions among metallic atoms, further 
complicating the H-metal environments. While advanced active learning 
strategies have facilitated the development of various MLFFs [33,34], 
performing long-timescale simulations (lasting hundreds of nanosec
onds) in ab initio molecular dynamics (AIMD) still remains challenging. 
The integration of MLFF-based MD with DFT calculations, essential for 
on-the-fly active learning, also encounters significant obstacles. These 
challenges are even more pronounced in diffusion studies at low tem
peratures, where the limitations of MD simulations in covering extended 
timescales are most apparent [35].

In this study, we present an advanced machine learning computa
tional framework to investigate the complex dynamics of H diffusion in 
MoNbTaW MPEAs. While the mechanical properties of these MPEAs 
have been extensively studied [36–38], their H diffusivity and solubility 
remain unexplored. To address this gap, we have developed a highly 
accurate MLFF for MoNbTaW-H systems. This MLFF is constructed using 
a D-optimality-based Pre-Selection (DPS) approach to identify repre
sentative configurations before performing DFT calculations, offering a 
significant departure from traditional active learning methods. 
Furthermore, we introduce a neural network model that predicts diffu
sion barriers using lattice distortion-corrected atomic descriptors. This 
model forms the foundation of our scalable Neural Network-driven 

Kinetic Monte Carlo (NN-KMC) framework, which facilitates an in-depth 
exploration of H diffusion dynamics across the entire compositional 
range of MoNbTaW. Another key innovation in our work is the use of a 
constrained KMC method, allowing us to isolate the effects of the com
plex energy landscape from those of temperature on H diffusion, thus 
providing a detailed analysis of the super-Arrhenius behavior observed 
in MPEAs. We also employ machine-learning symbolic regression 
(MLSR) to develop interpretable models that provide physical insights 
into H diffusion dynamics. Additionally, we utilize the NN-KMC to 
examine the impact of chemical short-range order (SRO) on H diffu
sivity, revealing the specific mechanisms that govern H diffusion.

2. Methods

2.1. D-optimality-based pre-selection

We employ the D-optimality-based Pre-Selection (DPS) to select 
representative H-MPEA configurations for MLFF development [34]. In 
the framework of moment tensor-based MLFF, the energy of a configu
ration can be expressed as: 

Emtp(cfg; ξ) =
∑

i

∑m

α=1
ξαBα(ni) =

∑m

α=1
ξα

⎛

⎜
⎜
⎜
⎜
⎝

∑

i
Bα(ni)

⏟̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅⏟
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⎞

⎟
⎟
⎟
⎟
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(1) 

where ni is the atomic environment of atom i, ξα are the parameters to be 
fitted, Bα are the basis functions, “cfg” is the abbreviation of configu
ration. When fitting to the energy values, an overdetermined system of K 
linear equations on ξ is needed to solve with the matrix: 

B =

⎡

⎣
b1(cfg1) ⋯ bm(cfg1)

⋮ ⋱ ⋮
b1
(
cfgK

)
⋯ bm

(
cfgK

)

⎤

⎦ (2) 

Following the D-optimality criterion, we strategically choose m 
configurations to generate the most linearly independent equations, 
ensuring that the corresponding m × m submatrix A achieves the 
maximum modulus of determinant, denoted as |det(A)|. The m selected 
configurations are called as the representative configurations which 
corresponds to the most extreme and diverse ones. The DPS operations 
are conducted by the MLIP-2 package [34].

2.2. DFT calculations

We perform DFT calculations using the Vienna Ab initio Simulation 
Package (VASP) [39] with the Perdew-Burke-Ernzerhof (PBE) [40] 
exchange-correlation functional and projector-augmented plane wave 
[41] potentials with a plane-wave cutoff energy of 520 eV. A consistent 
K-point density of 0.03 × 2π/Å using the Monkhorst-Pack Scheme is 
maintained using the Python tool VASPKIT [42]. The energy threshold 
for self-consistency and the force threshold for structure relaxation are 
10–6 eV and 0.01 eV/Å, respectively.

2.3. Machine-learning force field training database generation

Fig. S1 shows the schematic of our database generation for the MLFF. 
Our starting point is the established DFT database for BCC MoNbTaW 
MPEAs [43]. We intentionally exclude configurations with exposed 
surfaces, as our study concentrates exclusively on investigating H 
diffusion within defect-free bulk systems. On investigating the in
teractions of H with individual unary systems (Mo, Nb, Ta, and W), we 
leverage configurations derived from recent studies probing H-W and 
H-Nb interactions [16]. These configurations are adjusted through 
rescaling lattice constant to acquire configurations specific to H-Mo and 
H-Ta. The database comprises of H configurations at stable tetrahedral 
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(T) sites, minimum energy paths obtained using the climbing-image 
Nudged Elastic Band (CI-NEB) under various strain levels for H diffu
sion, and non-equilibrium configurations obtained by active learning 
throughout classical MD and path integral molecular dynamics (PIMD) 
simulations [16]. This comprehensive dataset guarantees reliable sim
ulations of H diffusion within elemental systems across a diverse tem
perature range. In the context of H-binary systems (MoNb, MoTa, MoW, 
NbTa, NbW, and TaW), we consider scenarios where H occupies all T 
sites, Octahedral (O) sites, and intermediary positions between T sites 
within a 36-atom equimolar special quasi-random structure (SQS) [44]. 
We specifically select configurations from the initial four ionic relaxa
tion steps in the conjugate gradient relaxation for each scenario. In 
exploring H-ternary systems (MoNbTa, MoNbW, MoTaW, NbTaW) and 
the H-quaternary system (MoNbTaW), we consider the configurations 
involving the full relaxation process, encompassing scenarios where H 
occupies all T sites within a 36-atom equimolar SQS. More importantly, 
we select representative configurations using DPS at 300 K, 700 K and 
1200 K for all equimolar ternary and quaternary systems. A total of 85, 
762 configurations are used for training, with an additional 9530 con
figurations allocated for testing. Moreover, the validation task in Fig. S2 
involves an extensive dataset of over 40,000 configurations. Altogether, 
our database comprises approximately 140,000 configurations.

2.4. Machine-learning force field framework

The moment tensor-based MLFF [34] and its formalism have been 
extensively studied and applied in the MPEAs [37] and H-metal systems 
[16], which essentially constructs contracted rotationally invariant local 
environment descriptors for each atom in the system and builds a 
polynomial regressed correlation between the potential energy surface 
(PES) and these descriptors. The descriptors, named moment tensors, are 
devised as follows: 

Mμ,v(R) =
∑

j

⎡

⎢
⎢
⎢
⎣

fμ
( ⃒
⃒Rij
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where the function fμ are the radial distributions of the local atomic 
environment around atom i, specified to the neighboring atom j. The 
term Rij ⊗ ⋯ ⊗ Rij are tensors of rank ν, encoding the angular informa
tion about the local environment. There are two key parameters that 
determine the accuracy and computational cost of the trained MLFF: the 
cutoff radius (Rcut) and the maximum level (levmax). In this work, we 
choose Rcut = 5 Å and levmax = 20. The energy, force and stress data are 
assigned weights of 1, 0.01, and 0.001.

2.5. Feature extraction based on the SOAP descriptor and neural network 
models

Smooth Overlap of Atomic Positions (SOAP) is a descriptor that en
codes regions of atomic geometries by using a local expansion of a 
Gaussian smeared atomic density with orthonormal functions based on 
spherical harmonics and radial basis functions [45]. We employ the 
DScribe package [46] to extract all the SOAP vectors at distorted 
tetrahedral (T) sites and saddle (S) points. The parameters rcut = 7 Å, 
nmax = 8, and lmax = 6 are considered, resulting in the SOAP vector with 
the dimension of 1 × 1536 for each H atom. We use Pytorch [47] to train 
neural network models for predicting diffusion barriers from input 
features. The input feature is the SOAP difference between the con
nected T sites and S points. The network is constructed as a sequence of 
modules, starting with an input layer that takes data of specified size, 
followed by the several hidden layers. Each hidden layer is a combina
tion of a fully connected (nn.Linear) layer and a non-linear activation 
function (ReLU). The output of the final hidden layer is passed to a linear 
output layer that matches the desired output size. The neural network 

model architectures examined in this study are detailed in Figs. S4 and 
S5.

2.6. Kinetic Monte Carlo simulation

KMC simulations are conducted to study the long timescale H 
diffusion in elemental metals and MPEAs. In BCC lattice, H diffusion 
occurs through a T site jumping to its nearest neighboring T sites, each of 
which with a rate defined as ki = k0⋅exp[ − (DBi /(kB⋅T))], where k0, kB 
and T denote the attempt frequency (1.5 × 1013 s-1), Boltzmann constant 
(8.61733326 × 10–5 eV/K), and simulation temperature, respectively. It 
should be noted that the attempt frequency here, 1.5 × 1013 s-1, is 
different from the default value of 1.0 × 1013 s-1 typically employed in 
traditional KMC simulations. We obtain 1.5 × 1013 s-1 by minimizing the 
difference of diffusion coefficients (D) between KMC and MD for four 
pure elements. As a result, our KMC simulations consider the tempera
ture effect to some extent. DBi represents the local diffusion barrier 
along the jump path i, obtained by the neural network model. The total 
jump rate is the sum of all individual rates, R =

∑4
i=1 ki, where 4 denotes 

the four connected T-T paths. To simulate atomic H jump, we generate a 
uniform random number u within the interval (0,1]. We then select a 
diffusion path p that meets the following condition: 
∑p− 1

i=1
ki
R ≤ u ≤

∑p
i=1

ki
R. The diffusion of H along path is simulated as the H 

atom progresses towards the next T site at the end of this path. The time 
scale for such jump is estimated by t = − ln(ρ)/R with a random number 
0 < ρ < 1. This trajectory of H is analyzed to determine the mean 
squared displacement (MSD) and diffusion coefficients for each 
composition. The reliability of our KMC settings is demonstrated by the 
close agreement between the diffusion coefficients obtained from KMC 
and MD simulations across 969 compositions, as shown in Fig. S11. The 
comprehensive explanation of determining reliable diffusion co
efficients from KMC is provided in the Supplementary Note 3. It is 
important to note the significant challenges in obtaining reliable diffu
sion coefficients for certain compositions at low temperatures, such as 
Ta20W80 at 300 K and 400 K, using KMC methods. These challenges arise 
primarily due to the “small-barrier problem”, where H becomes trapped 
in superbasins [48]. On the other hand, nuclear quantum effects play a 
non-negligible role at these relatively low temperatures [16], rendering 
regular KMC or MD simulations inadequate. PIMD simulations are 
necessary to accurately capture these effects and will be the focus of our 
future work.

2.7. Machine-learning symbolic regression using SISSO

We apply the Sure Independence Screening and Sparsifying Operator 
(SISSO) method [49] in our machine-learning symbolic regression 
analysis. This method targets the effective activation energy (QVFT) and 
the Vogel temperature (T0) within the Vogel-Fulcher-Tammann (VFT) 
model [50]. Our analysis includes fifteen statistical features that char
acterize the intrinsic diffusion barrier (DB) and solution energy (SE). 
These are represented across eight features for DB: average (DBave), 
standard deviation (DBsd), skewness (DBsk), kurtosis (DBkt), range 
(DBrange), interquartile range (DBIQR, defined as Q3-Q1 where Q1 and Q3 
correspond to the 25th and 75th percentiles, respectively), 5th percen
tile (DB0.05), and 95th percentile (DB0.95). Additionally, seven features 
are used for SE: standard deviation (SEsd), skewness (SEsk), kurtosis 
(SEkt), range (SErange), interquartile range (SEIQR), 5th percentile 
(SE0.05), and 95th percentile (SE0.95). The feature construction is con
ducted by applying the operator set [+, -, ×, /, − 1] to the fifteen features. 
The cross validation of the SISSO approach is shown in Supplementary 
Note 4 and Fig. S13.

2.8. MC/MD simulation

The MC/MD simulations are conducted to generate chemical short 
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range order (SRO) at 300 K by LAMMPS [51]. The existing MLFF is used 
to describe the atomic interactions in MoNbTaW systems [37]. The 
samples are initially relaxed and equilibrated at 300 K and zero pressure 
under the isothermal-isobaric (NPT) ensemble through MD. After that, 
MC steps consisting of attempted atom swaps are conducted, hybrid with 
the MD. In each MC step, a swap of one random atom with another 
random atom of a different type is conducted based on the Metropolis 
algorithm in the canonical ensemble. 100 MC swaps are conducted at 
every 1000 MD steps with a time step of 0.001 ps during the simulation. 
3 × 106 steps are conducted in MC/MD simulations for all compositions. 
OVITO is used to visualize atomistic structures [52].

2.9. Hydrogen diffusion MD simulation

We perform direct MD simulations for H diffusion using LAMMPS 
[51]. Due to the high computational cost of MLFF, we employ 128-atom 
configurations for MPEAs and limit the simulation to a single H atom. 

The simulations are carried out in the canonical (NVT) ensemble with a 
timestep of 1 fs. To assess the impact of timestep size, we also conduct 
simulations with a timestep of 0.5 fs for comparison. As shown in 
Fig. S14, the choice of timestep has no significant effect on H diffusion. It 
is important to emphasize that these MD simulations are not used to 
draw conclusions in this study; their sole purpose is to validate the re
sults of our KMC simulations and to confirm that free energy contribu
tions have a negligible influence on our findings (Fig. S11).

3. Results

3.1. Machine learning-driven H diffusion simulations at DFT-Level 
accuracy

We have developed a comprehensive machine learning computa
tional framework to explore H diffusion dynamics in MPEAs with an 
accuracy comparable to DFT. This framework consists of three pivotal 

Fig. 1. Machine learning-driven exploration of H diffusion at DFT-Level Accuracy. a Flowchart of MLFF development. b Schematic of DPS at various temperatures. 
nrep1 and nrep2 indicate the chosen configurations following the initial and subsequent DPS operations, while N signifies the number of distorted MPEA configurations 
at a temperature T. Large spheres with different colors represent metallic atoms, and small yellow spheres represents H atoms. c The progression of representative 
configurations (nrep2) following a two-level DPS process with the count of distorted MPEA configurations (N) at varying temperatures. d Flowchart of neural network- 
driven kinetic Monte Carlo (NN-KMC). e Validation of neural network model scalability for barrier predictions in 7 × 7 × 7 and 10 × 10 × 10 supercells. f Mean 
diffusion barriers (DBave) for each composition compared against rule of mixing (ROM)-based predictions, with standard deviations (DBsd) illustrated by different 
colors for each composition. g Statistical distribution of diffusion barriers for Mo25Nb25Ta25W25 and Ta90W10.
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components, each detailed in Fig. 1. First, we craft a highly accurate 
MLFF for MoNbTaW-H system, as shown in Fig. 1a–c. Second, we 
establish a scalable neural network model capable of predicting H 
diffusion barriers and solution energies (hereafter abbreviated as DB and 
SE, respectively), which will be used in KMC simulations for H diffusion 
(Fig. 1d). Third, we perform scalability validation and utilize the neural 
network model to predict a substantial set of 110,208,000 DBs, subse
quently analyzing the statistical distribution of these barriers 
(Fig. 1e–g).

In developing the MLFF for the MoNbTaW-H system, we construct an 
extensive database encompassing approximately 140,000 configura
tions with diverse metal-metal and H-metal interactions across the full 
compositional range of MoNbTaW MPEAs, as illustrated in Fig. 1a. A 
crucial aspect of our MLFF development is the database construction 
employing a DPS strategy prior to any DFT calculations (see “Methods” 
for the technical details of DPS). Fig. 1b illustrates the workflow of the 
DPS method on a 36-atom Mo25Nb25Ta25W25 special quasi-random 
structure (SQS, generated by the Alloy Theoretic Automated Toolkit 
[53]). To consider the effects of lattice thermal vibrations of MPEAs 
during DPS, we sample N distorted configurations at 10 ps intervals from 
MD simulations conducted at temperature T. For each configuration, we 
identify approximately 20,000 potential H occupation sites using a grid 
spacing of 0.2 Å, selecting sites where the H-to-metal distance is greater 
than 1.5 Å. The initial DPS operation selects approximately nrep1 = 300 
representative configurations from a pool of 20,000. A subsequent DPS 
operation further reduces the number of required DFT calculations from 
nrep1 × N to nrep2. Fig. 1c illustrates that nrep2 demonstrates an upward 
trend with both the number of distorted configuration (N) and temper
ature (T). Remarkably, nrep2 saturates when N > 10, indicating a 
threshold in data requirements. Specifically, DFT calculations for just 
629 configurations at a temperature of 1200 K are found to be sufficient 
to encompass all H-metal interactions for a specific SQS at this tem
perature. Four different temperatures, 10 K, 300 K, 700 K and 1200 K, 
are considered in DPS for each SQS. The construction process of the 
complete database is detailed in Fig. S1 and “Methods”.

The energies, forces, and stresses of all configurations obtained from 
DFT calculations are utilized to train a MLFF using the framework of the 
moment tensor potential (MTP) [34]. The training/test mean absolute 
errors (MAEs) for energy, force, and stress are obtained as 1.21/1.20 
meV/atom, 22.78/22.85 eV/Å, and 47.45/47.53 MPa (Fig. S2a–c), 
respectively, surpassing the performance of most existing MLFFs [54]. 
The rigorous validation results in Fig. S2d–g confirm the broad appli
cability of our developed MLFF for accurately modeling H-MPEA in
teractions across the entire compositional space (Fig. S2d) and the SRO 
effect (Fig. S2e). Furthermore, our MLFF has been demonstrated to 
accurately calculate DBs in climbing image nudged elastic band 
(CI-NEB) calculations (Fig. S2f and S2g) and is applicable to H diffusion 
simulations at the high temperatures of 1500 K and 2000 K (Fig. S3).

Although the MLFF introduced herein offers a significant speed 
advantage over DFT, it faces substantial challenges in probing H diffu
sion across extended time scales within the intricate energy landscapes 
of MPEAs [29]. To address these challenges, we develop a scalable 
NN-KMC method that enhances the efficiency and reliability of H 
diffusion simulations. Fig. 1d delineates the NN-KMC framework, 
showcasing the input data, neural network architecture and outputs. For 
DB prediction, we utilize our MLFF to conduct high-throughput CI-NEB 
calculations for all H diffusion paths in MPEA SQSs, covering 500 
random compositions of the entire compositional space (969 composi
tions in total with a concentration interval of 6.25%). Each SQS has a 
size of 4 × 4 × 4, totaling 128 metallic atoms and 1536 unique diffusion 
paths. This yielded a total of 768,000 minimum energy paths. The SOAP 
descriptor [45] is utilized to quantify the metallic environment sur
rounding one H atom. We represent the diffusion paths using the dif
ference in SOAP vectors between the initial T site and saddle (S) point, 
denoted as ΔSOAP = SOAP(S) − SOAP(T). It should be noted that the 
exact initial T site and saddle point are unknown due to the significant 

lattice distortion in MPEAs. To tackle this issue, we integrate lattice 
distortion effects into the SOAP features (see Supplementary Note 2). 
Figs. S4 and S5 compare the performance of our neural network models 
with and without lattice distortion correction. The correction signifi
cantly enhances accuracy of the neural network model, reducing the 
MAE from 3.8 meV (without distortion) to 2.1 meV (with distortion).

Through experimentation with different configurations of layers and 
neuron number (Fig. S4), we ascertain that a neural network model with 
four hidden layers, each containing 32 neurons, is optimal, achieving a 
MAE of 2.2 meV. To validate the scalability of the developed NN model, 
we utilize the MLFF and CI-NEB to calculate DB across the full compo
sitions using larger supercells of sizes 7 × 7 × 7 and 10 × 10 × 10, which 
comprise 686 and 2000 atoms, respectively. Fig. 1e demonstrates that 
our neural network model accurately predicts all forward and backward 
DBs with a MAE of 3.0 meV, showcasing the high scalability of our 
neural network model for DB predictions. Additionally, our convergence 
tests confirm that the size 20 × 20 × 20 adequately captures the required 
complexity for random MPEAs (Fig. S6). Utilizing the neural network 
model, we compute DB spectra for 287 compositions, including all 
compositions with a concentration interval of 10% and all equimolar 
compositions, using large supercells of size 20 × 20 × 20 (16,000 
atoms). This yields a total of 110,208,000 DBs (Fig. 1f) obtained within 
approximately 1500 CPU hours. This staggering number of calculations 
demonstrates the remarkable efficiency of our neural network model, 
significantly accelerating the process compared to traditional CI-NEB, 
which would require prohibitively long computational time for such a 
number. Fig. 1f clearly indicates that the rule of mixing fails to accu
rately predict DB, with deviations increasing in correlation with the 
standard deviation of DBs. Additionally, we analyze the DB distributions 
for specific compositions, such as Mo25Nb25Ta25W25 and Ta90W10 (see 
Fig. 1g). The former exhibits a Gaussian-like distribution, whereas the 
latter is notably concentrated around lower barriers, reflecting the 
diverse random energy landscapes inherent to different compositions. 
This diversity underscores the critical need for developing a highly ac
curate MLFF to effectively capture these intricate variations. It is 
important to highlight that our model is also capable of predicting the 
relative SE for all T sites within the supercell by analyzing the forward 
and backward DBs. Here, “relative” refers to the comparison against a 
reference T site with an SE of zero. Specifically, we initialize the SE for 
the first T site as SE1 = 0, then the SE for any connected T sites can be 
determined using the difference in DB, expressed as SE2 = DB1 − DB2, 
where DB1 and DB2 are the backward and forward DBs, respectively. It 
should be noted that incorporating zero-point energy for all 
110,208,000 diffusion paths in this study was computationally prohib
itive. While we acknowledge its potential impact, the scale of our cal
culations rendered it impractical to include zero-point energy in our 
analysis.

3.2. Super-Arrhenius H diffusion dynamics in MPEAs

We apply the developed NN-KMC to compute H diffusion coefficients 
across the entire compositional space of MoNbTaW systems. In order to 
disentangle the temperature effect from chemical heterogeneity in 
MPEAs on H diffusion, we introduce a constrained kinetic Monte Carlo 
(cKMC) method, building upon the regular kinetic Monte Carlo (rKMC) 
framework. At a selected temperature, rKMC is initially executed to 
record the H trajectory, which is sufficient to calculate a reliable diffu
sion coefficient. Subsequently, cKMC is employed, forcing H to follow 
the pre-established trajectory from rKMC, but using varying tempera
tures to calculate time scale for all jumps. The time histories required for 
this consistent H trajectory at different temperatures constitute the 
outcomes of the cKMC method. For pure metals, results from rKMC and 
cKMC are identical because temperature is the only influencing factor 
(Fig. S7), which however are not the case in MPEAs due to the intricate 
chemical environments. H diffusion simulations for all 287 compositions 
are conducted using both rKMC and cKMC at a wide temperature range 
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from 500 K to 5000 K. Temperatures above 3000 K are employed to 
theoretically investigate diffusion dynamics under extreme conditions, 
even though such temperatures may surpass the melting points of 
MPEAs. These extreme conditions are critical for exploring the under
lying physics of super-Arrhenius behaviors. We calculate the diffusion 
coefficients by using: 

D =
MSD

6t
(4) 

where MSD is the mean squared displacement for one single H atom, and 
t is the elapsed time. To ensure consistent accuracy of diffusion coeffi
cient (D) calculations across various compositions and temperatures, we 
require all KMC simulations to continue until MSD reaches 1 × 105 Å2. It 
should be noted that determining diffusion coefficients in MPEAs pre
sents a challenging task, due to the complex chemical environments that 
result in non-uniform diffusion. To obtain reliable and consistent 
diffusion coefficients across various compositions, we propose a 
distance-based criterion to extract the accurate MSD of a H diffusion 
trajectory, as discussed in Supplementary Note 3. This approach en
hances the accuracy of our diffusion coefficient calculations and pro
vides deeper insight into the H mechanisms within MPEAs.

We first focus on the compositions Mo25Nb25Ta25W25 and Ta20W80, 
which represent equimolar and non-equimolar cases characterized by 
high and low mixing entropy levels, respectively. In Fig. 2a and 2d, the 
diffusion curves obtained from cKMC are depicted as straight lines for 
both the compositions. This linear representation is indicative of the 
diffusion behavior solely influenced by temperature effects, which 
aligns well with the traditional Arrhenius equation. In contrast, the 
diffusion curves from rKMC are influenced by both the complex energy 
landscapes and temperature variations, resulting in a distinctly 
nonlinear trend, particularly at lower temperatures. This deviation from 
Arrhenius behavior towards super-Arrhenius behavior at low tempera
tures parallels the relaxation dynamics observed in glassy materials [55,
56], where relaxation times increase disproportionately as temperatures 
decrease due to the emergence of cooperative atomic rearrangements 

and an increasingly complex energy landscape. Such super-Arrhenius 
behavior has also been captured in H diffusion in amorphous metals 
with deep trapping sites by simplified energy landscape [57]. The VFT 
model [50] provides an appropriate framework to describe the 
nonlinear temperature dependencies in Fig. 2a and 2d: 

D = D0exp
(

−
QVFT

kB(T − T0)

)

(5) 

where T0 is the Vogel temperature, indicating a theoretical temperature 
below which diffusion ceases, and QVFT represents the effective activa
tion energy. D0 represents the pre-exponential factor, indicating the 
diffusion coefficient at infinite temperature. kB is the Boltzmann con
stant. Fitting the diffusion curves obtained from rKMC, we determine the 
values of T0 as 62.11 K and 163.5 K for Mo25Nb25Ta25W25 and Ta20W80, 
respectively. This indicates a more pronounced non-linearity in the 
super-Arrhenius H diffusion behavior for the latter compared to the 
former. Moreover, the VFT model predicts D = 4.09 × 10–18 m2/s for 
Ta20W80 at room temperature, which is significantly lower than D =
1.44 × 10–12 m2/s for Mo25Nb25Ta25W25 at the same temperature. The 
discrepancy in six orders of magnitude highlights the considerable po
tential of non-equimolar compositions in H embrittlement mitigation by 
making H less diffusive.

To investigate the mechanisms underlying such unique diffusion 
behavior, we analyze the accessible DB and SE spectra during rKMC 
simulations for the two compositions, as shown in Fig. 2(b, c, e, f) 
alongside the intrinsic DB and SE spectra. It is observed that at low 
temperatures, H diffusion predominantly occurs by the jumps between T 
sites favoring paths with low SE and DB, as shown by a high probability 
of low-DB and low-SE regime. This indicates that low-SE T sites are 
related to the low-DB paths during H diffusion. With increasing tem
perature, the accessible spectra converge towards the intrinsic spectra, 
corresponding to the convergence of straight lines from cKMC towards 
the curve from rKMC in Fig. 2a and 2d. This is due to the increased ki
netic energy of H atom at higher temperatures, which enables it to 
overcome the high energy barriers more readily, thus facilitating faster 

Fig. 2. Super-Arrhenius H diffusion in Mo25Nb25Ta25W25 and Ta20W80. a, d H diffusion coefficients at different temperatures using regular KMC (rKMC) and 
constrained KMC (cKMC), and VFT model fitting for Mo25Nb25Ta25W25 and Ta20W80, respectively. b, e Accessible diffusion barrier (DB) spectra at different tem
peratures and intrinsic DB for Mo25Nb25Ta25W25 and Ta20W80, respectively. c, f Accessible solution energy (SE) spectra at different temperatures and intrinsic SE for 
Mo25Nb25Ta25W25 and Ta20W80, respectively. The temperature-dependent evolution of the accessible DB and SE spectra corresponds to the diffusion curves produced 
by the cKMC method at the same temperatures.
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diffusion within the MPEAs. The significant difference in the super- 
Arrhenius behaviors between Mo25Nb25Ta25W25 and Ta20W80 can be 
attributed to the disparities in their intrinsic DB and SE spectra. For 
Mo25Nb25Ta25W25, both the DB and SE exhibit a Gaussian-like distri
bution (Fig. 2b and 2c), indicating that the majority of DBs and SEs 
concentrate around a central value, with fewer occurrences of extreme 
high or low values. Conversely, for Ta20W80, the distribution of intrinsic 
SE is positively skewed, displaying a long tail at the low SE end. This 
indicates a significant presence of extremely low-SE sites, which could 
act as deep trapping sites for H, thereby impeding its diffusion.

To further explore the atomistic mechanisms behind the pronounced 
super-Arrhenius behavior of H diffusion in Ta20W80, we present the H 
diffusion trajectories at 500 K, color-coded by visitation frequency, as 
depicted in Fig. 3a. The visitation frequency for each T site is calculated 
by dividing the visitation count of each site by the total number of jumps 
in the KMC simulations. Observations reveal that H is confined to spe
cific regions of the Ta20W80 matrix, with most regions exhibiting very 
low visitation frequencies, while a few isolated regions show very high 
frequencies, indicating that H is predominantly trapped in these regions. 
Fig. 3b illustrates the distribution of visitation frequencies across all 
accessible T sites, spanning four orders of magnitude and heavily 
skewed towards lower frequencies (10–6 to 10–4). Only a minimal 
number of T sites display very high frequencies (10–4 to 10–2), acting as 

effective trapping sites. Consequently, H diffusion in Ta20W80 is highly 
non-uniform, attributable to the heterogeneous chemical environment. 
The right two panels of Fig. 3a highlight the metallic environments 
surrounding a deep trapping site (right top panel), and near a rarely 
visited site (right bottom panel). It is noted that a small cluster of Ta 
surrounds the deep trapping sites, while W-rich regions are areas that H 
cannot penetrate. This behavior can be rationalized by the distinct H 
solubility associated with different elements. Fig. 3c presents the SEs of 
H in various metallic environments, calculated by varying the number of 
each element surrounding the central H atom (see Fig. S8 for the 
calculation details and the results with different lattice constants). Nb 
and Ta exhibit negative SEs, indicating their affinity for H and catego
rizing them as “H-favoring” elements. Consequently, Nb- or Ta-rich re
gions have the potential to act as effective trapping sites for H. In 
contrast, Mo and W display positive SEs, indicating their role as “H- 
repelling” elements; thus, Mo- and W-rich regions inhibit H access. 
Furthermore, Fig. 3d illustrates that the rule of mixing can approxi
mately predict the SE of MPEAs across 287 compositions based on the 
individual elemental SEs, suggesting that combinations of Nb or Ta with 
Mo or W result in a moderate SE.

Considering the insights from Fig. 3c and 3d, it becomes evident that 
isolated Nb/Ta atoms establish a metallic environment characterized by 
a favorable negative SE, while Mo/W-rich regions correspond to 

Fig. 3. Atomistic mechanisms of strong super-Arrhenius H diffusion in non-equimolar Ta20W80. a Visualization of H visitation frequencies at all accessible tetrahedral 
(T) interstitial sites at 500 K in Ta20W80. The visitation frequency for each T site is calculated by dividing the visitation count of each site by the total number of jumps 
in the KMC simulations. The right top and bottom panels show the metallic environments near trapping sites and inaccessible sites, respectively. The H diffusion 
paths between two T sites are depicted as atomic bonds. b Probability distribution of visitation frequencies at 500 K for Ta20W80. c The general effects of metallic 
environments on H solution energy. The numbers 1–3 displayed at the top denote the number of shells corresponding to the nearest neighbors. d Prediction of H 
solution energy based on the rule of mixing (ROM).
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environments with very high SEs. Mixed Nb/Ta-Mo/W regions, on the 
other hand, exhibit moderate SEs with random values. This creates a 
roughened energy landscape for H diffusion in general MPEAs. The 
relatively low concentration of Ta in the Ta20W80 composition inevi
tably leads to the formation of isolated small Ta clusters surrounded by 
W atoms, which consequently results in the prominent long tail at the 
low SE end observed in Fig. 2f. These isolated small Ta clusters act as 
strong trapping sites for H (Fig. 3a), significantly suppressing its diffu
sion. Conversely, Mo25Nb25Ta25W25 contains equal concentrations of 
“H-favoring” elements (Nb and Ta) and “H-repelling” elements (Mo and 
W). Random mixing creates a relatively uniform energy landscape 
because each Nb or Ta neighbor is likely accompanied by a Mo or W 
neighbor, preventing the formation of very deep trapping sites and 
leading to the weak super-Arrhenius behavior.

3.3. Compositional space study and symbolic machine learning regression

In the investigation of H diffusion dynamics across 287 composi
tions, we first examine the diffusion coefficients at 500 K for all com
positions, alongside four pure elements, as depicted in Fig. 4a. At this 

relatively low temperature, we observe that most compositions exhibit 
lower diffusivity compared to the pure metals, indicative of a pro
nounced sluggish diffusion effect. Notably, Mo25Nb25Ta25W25 demon
strates moderate diffusivity, while non-equimolar compositions display 
extremes in diffusivity. For instance, Nb10Ta90 shows diffusivity sur
passing that of pure Ta and W, suggesting that the inclusion of a minor 
amount of Nb enhances the H diffusivity in Ta. In contrast, compositions 
such as Ta20W80 and Nb10Ta10W80 exhibit markedly low diffusivity, 
with the diffusivity in Ta10W90 being 118 times higher than that of 
Nb10Ta10W80. At the elevated temperature of 1200 K, as shown in 
Fig. 4b, the diffusivity of all compositions falls within the range of 8.62 
× 10–9 to 2.68 × 10–8 m2/s, aligning closely with the range observed for 
pure metals, which is between 1.96 × 10–8 to 2.8 × 10–8 m2/s. This 
observation suggests that the sluggish diffusion effect is substantially 
diminished at high temperatures.

We next utilize the VFT model to fit the diffusion coefficients of 287 
compositions, from which we extract the key parameters: the pre- 
exponential factor (D0), the effective activation energy (QVFT), and the 
Vogel temperature (T0). One notable finding is the discernible correla
tion between D0 and QVFT, as illustrated in Fig. 4c. This relationship can 

Fig. 4. H diffusion dynamics across the entire compositional spectrum in MoNbTaW systems, encompassing 287 compositions. a, b Diffusion coefficients D vs. mixing 
entropy Smix for 287 compositions at 500 K and 1200 K. c Correlation between the prefactor D0 and the effective activation energy QVFT. d Predicted T0 from Eq. (7)
in the main text versus actual T0 determined by KMC simulations. e Correlations between QVFT and the average of the intrinsic diffusion barrier (DBave). f Correlation 
between the Vogel temperature T0 and the lower 5% percentile of solution energy (SE0.05). All data points in figures a-c are color-coded by the combined con
centrations of Nb and Ta (cNb+cTa). The results depicted in figures a-c demonstrate that cNb+cTa is a crucial factor influencing H diffusion. g-i Machine-learning 
symbolic regression (MLSR) for predicting QVFT, T0 and H diffusion coefficients in the full compositional space across a wide temperature range from 300 K to 
5000 K.
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be understood through the lens of the Meyer-Neldel rule [58]. Based on 
this correlation, we proceed to fit a linear expression for the logarithm of 
D0 in terms of QVFT: 

log(D0) = 1.634QVFT − 16.13 (6) 

which can be used to predict D0 based on QVFT. Moreover, the narrow 
range of D0 distribution across 287 compositions suggests comparable H 
diffusivity at higher temperatures among different MPEAs. For the Vogel 
temperature T0, we also fit a concentration-dependent linear expression: 

T0 = 130.00cMo − 10.08cNb − 10.82cTa + 175.43cW (7) 

where c is the element concentration. The correlation between predicted 
and the actual values of T0 fitted by KMC results is depicted in Fig. 4d. 
Our analysis demonstrates that, aside from MoW binary alloys, T0 ad
heres closely to a concentration-dependent linear model. Notably, T0 
exhibits a general decline as the cumulative concentrations of Nb and Ta 
(cNb+cTa) increase. Further exploration into the correlations between 
QVFT and T0 with different statistical measurements of DB and SE 
spectra, has yielded intriguing results. Specifically, we find that QVFT is 
positively correlated with the average value of intrinsic DB (DBave), and 
T0 is positively correlated with the 5th percentile of SE (SE0.05), as 
illustrated in Fig. 4e and 4f, respectively. Another interesting observa
tion is that cNb+cTa plays a dominant role in H diffusion. This is indicated 
by the varying marker colors in Fig. 4a–4f. To enhance the accuracy of 
our models for predicting QVFT and T0, we have employed an advanced 
machine-learning symbolic regression (MLSR) technique, known as the 
sure independence screening and sparsifying operator (SISSO) method 
[49], to perform symbolic regression. The details of data preparation 
and SISSO training process are provided in “Methods”. The 5-fold and 
10-fold cross-validation results shown in the Supplementary Note 4 
demonstrate that the SISSO method does not suffer from overfitting in 
predicting QVFT and T0. Therefore, we employ all available data to derive 
analytical expressions based on the statistical properties of intrinsic DB 
and SE spectra: 

QVFT(eV) = 0.4875
[

(2DBave +DBIQR − DBsd)+ (SEsd + SEIQR)
SEIQR

SErange

]

(8) 

T0(K) = 834.46(SE0.05 − 2SEsd +DBsd)

⃒
⃒
⃒
⃒
DBsd

DBave
−

SEsk

SEkt

⃒
⃒
⃒
⃒ (9) 

where DBave, DBIQR, and DBsd represent the average, interquartile range, 
and standard deviation of DB spectrum, respectively and SEsd, SEIQR, 
SErange, SE0.05, SEsk, SEkt are the standard deviation, interquartile range, 
range, 5th percentile, skewness and kurtosis of SE, respectively. Eq. (8)
shows that the effective activation energy (QVFT) is primarily deter
mined by the average of the DB spectrum and is influenced by the sta
tistical dispersion of DB. Additionally, the dispersion of the SE also plays 
a role. On the other hand, Eq. (9) indicates that the Vogel temperature 
(T0) is primarily influenced by SE0.05. Both SE0.05 and DBsd show a 
positive correlation with T0, whereas the SEsd is negatively correlated 
with T0. Additionally, T0 is influenced by the relative dispersion of DB 
and the distribution shape of SE. One of the most important findings of 
this work is the pivotal role of SE0.05 in determining the Vogel temper
ature (T0), as evidenced by Fig. 4f and Eq. (9). Physically, SE0.05 reflects 
the relative strength of trapping H in a system, with a high SE0.05 indi
cating a small number of deep trapping sites. Given that T0 is a key 
parameter influencing the non-linear behavior of super-Arrhenius 
diffusion, a high T0 is crucial to potentially suppress or even halt H 
diffusion at room temperature. This finding is particularly significant for 
mitigating H embrittlement, as MPEAs hold the potential to effectively 
prevent H diffusion at room temperature. This could be the underlying 
reason for the experimentally reported exceptional H embrittlement 
resistance in FCC MPEAs such as CrCoFeMnNi, CrCoNi and CoNiV 

[7–10].
Fig. 4g and 4h illustrate that our SISSO models proficiently predict 

the parameters QVFT and T0 across the entire compositions. By 
combining Eqs. (5), (6), (8), (9), we can accurately predict diffusion 
coefficients for BCC MPEAs at any temperature, using only the statistical 
features of DB and SE spectra as inputs. The effectiveness of our model is 
demonstrated in Fig. 4i, where we compare diffusion coefficients from 
KMC and SISSO models across 287 compositions at various tempera
tures. The low prediction errors underscore the accuracy of our SISSO 
models. It is important to highlight that the model, derived from SISSO- 
generated expressions, is analytical and exhibits high transferability, 
enabling it to predict H diffusivity in other BCC MPEAs at diverse 
temperatures.

3.4. Chemical short-range order effect on the super-Arrhenius behavior

Chemical short-range order (SRO) is a ubiquitous phenomenon in 
MPEAs [59] and significantly influences various properties such as 
strength [60], ductility [61], and vacancy diffusion [62]. This highlights 
the critical need to examine its effects on H diffusion. Fig. 3 underscores 
the essential role of small Ta clusters in modulating H diffusivity within 
the Ta20W80 alloy. Given the pronounced impact of SRO on elemental 
distribution, it is anticipated that the formation of SRO markedly in
fluences the super-Arrhenius diffusion dynamics of H in MPEAs. We 
employ our NN-KMC approach to compute H diffusivity across 287 alloy 
compositions, using configurations derived from hybrid Monte Carlo/
molecular dynamics (MC/MD) simulations (see “Methods”), which 
facilitate the emergence of SRO. As a specific case study, we present the 
Vogel temperatures (T0) fitted by KMC simulations corresponding to the 
various degrees of SRO in Ta20W80, measured by the Warren-Cowley 
(WC) parameter of Ta atoms (αTa,Ta), as shown in Fig. 5a. It is 
observed that T0 decreases with increasing (αTa,Ta), indicating that SRO 
significantly suppresses super-Arrhenius dynamics. The left inset Fig. 5a 
illustrates these isolated small Ta clusters (identified as 1–4 with blue 
dashed lines) within a random solid solution (RSS) of the Ta20W80 alloy 
with αTa,Ta = 0, serving as effective trapping sites for H, based on the 
observations in Fig. 3. Post-hybrid MC/MD, the Ta atoms are depicted as 
being sparsely distributed throughout the Ta20W80 alloy, as demon
strated in the right inset of Fig. 5a. The WC parameters, αTa,Ta = 0.60 and 
αTa,W = − 0.15, reflect the strong repulsion between Ta atoms and the 
attraction between Ta and W atoms. This altered atomic arrangement 
leads to the formation of a local B2 structure with Ta-W pairs (the right 
inset in Fig. 5a), increasing H solution energies near the Ta atoms, which 
diminishes the effectiveness of the deep trapping sites formed by small 
Ta clusters, thereby contributing to the observed reduction in T0.

To elucidate the general effects of SRO on H diffusion, we compute 
the diffusion coefficients for 287 alloy compositions at 500 K with 
established SRO in MC/MD simulations, comparing them to their RSS 
counterparts, as shown in Fig. 5b. Additionally, a detailed analysis of the 
SRO effect across all equimolar compositions is presented in Fig. S9. 
Interestingly, while SRO does not significantly affect H diffusivity in 
compositions with high coefficients in RSS, it does enhance diffusivity in 
compositions with initially low diffusion coefficients as indicated by the 
dashed circle in Fig. 5b. One notable composition is Nb10W90, which 
exhibits a significant increase in the diffusion coefficient from 2.40 ×
10–11 m2/s to 2.68 × 10–10 m2/s after introducing SRO, as indicated by 
the red arrow in Fig. 5b. This differential impact of SRO on H diffusivity 
correlates strongly with cNb+cTa. Specifically, significant effects of SRO 
are observed predominantly in compositions with low cNb+cTa, as 
illustrated by the varying marker colors in Fig. 5b. This pattern suggests 
that the interactions between H and the metal elements, as well as the 
interactions among the metal elements themselves that contribute to 
SRO formation, play critical roles. As previously demonstrated in Fig. 4, 
alloys with low cNb+cTa typically exhibit reduced H diffusivity. This 
reduction is attributed to the H-favoring characteristics of Nb and Ta, 
wherein isolated atomic clusters of these elements function as potent 
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trapping sites, thereby impeding H diffusion. The formation of SRO 
modifies the distribution and presence of these clusters, influencing H 
mobility. In exploring how SRO influences elemental distribution, we 
focused on alloys where cNb, cTa, and their combined concentrations do 
not exceed 0.4. The corresponding WC parameters for Nb-Nb, Ta-Ta, and 
Nb-Ta interactions (αNb,Nb, αTa,Ta, and αNb,Ta) are detailed in Fig. 5c–e. 
Analysis of Nb-Nb interactions (Fig. 5c) reveals a dominance of either 
strong attraction or repulsion for low cNb+cTa. Strong repulsion leads to 
the dispersion of Nb atoms and disruption of small clusters, analogous to 
the behavior of Ta as observed in the left inset of Fig. 5a. On the other 
hand, strong attraction results in the formation of connected Nb regions, 
potentially creating fast H diffusion pathways. Fig. S9f provides an 
example of this phenomenon in an equimolar NbTaW alloy, where Nb 
atoms segregate into a distinct layer and as a result, H diffusion in 
NbTaW degenerates into H diffusion within the pure Nb layer. In the 
case of Ta-Ta interactions shown in Fig. 5d, strong repulsion is pre
dominantly observed, whereas weak interactions mainly occur in com
positions with a high cNb+cTa. Nb-Ta interactions consistently exhibit 
strong repulsion across all examined compositions (Fig. 5e). Thus, the 
formation of SRO in low cNb+cTa compositions, characterized by strong 
elemental interactions, disrupts the deep trapping sites typically present 
in RSS, facilitating H diffusion.

4. Discussion

Exploring the complex mechanisms of H diffusion in MPEAs is crucial 
not only for advancing our fundamental understanding of dynamics in 
disordered systems but also for driving innovations in materials engi
neering that address critical societal needs [1]. Insights into H in
teractions within these alloys could revolutionize industries by 
developing more durable, efficient, and environmentally friendly ma
terials, thus offering significant benefits in fields ranging from renew
able energy to nuclear fusion engineering [2,13,14]. Traditional 
experimental techniques often prove cost-prohibitive and lack the 
necessary resolution for effective detection of H within materials [63]. 
Computationally, the investigation of H diffusion in MPEAs presents a 
formidable challenge due to its inherent multiscale characteristics across 
both spatial and temporal dimensions. In terms of time scales, our 
findings (illustrated in Fig. 3) reveal a clear difference in the dynamics of 
H diffusion: rapid within trapping sites yet markedly slow between 
them. This contrasting diffusion behavior underscores the limitation of 
studying H diffusion at lower temperatures using MD, where the slower 
jumps between deep trapping sites are particularly difficult to capture 
accurately due to the limited timescale in MD. Spatially, H diffusion 
represents a multi-length scale phenomenon. As evidenced by our ana
lyses in Fig. S6, employing a smaller supercell containing fewer atoms 
leads to significant fluctuations in the DB spectrum and correspondingly, 
the H diffusion behavior. This variability can be intuitively understood 

Fig. 5. The effect of chemical short-rang order on the H super-Arrhenius diffusion behaviors in MoNbTaW systems. a Variation of the Vogel temperature (T0) with 
respect to the WC parameter of Ta-Ta (αTa,Ta). The left inset shows the small Ta cluster in random solid solution (RSS) of Ta20W80, and the right inset shows the 
dispersed Ta atoms in Ta20W80 with SRO. b Comparation of H diffusion coefficients at 500 K for RSS and SRO across 287 compositions. c-e Distribution of αNb,Nb, αTa, 

Ta, and αNb,Ta in MoNbTaW alloys with respect to Nb concentration (cNb), Ta concentration (cTa) and the combined concentration of Nb and Ta (cNb+cTa), respec
tively. The shaded regions in c-e represent areas of weak SRO, where the WC parameters satisfy the condition |α| < 0.1.
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through statistical principles, where the chemical heterogeneity of a 
random MPEA necessitates a substantial atoms to correctly represent 
macroscopic diffusion behaviors. Collectively, these multiscale attri
butes of H diffusion in MPEAs pose substantial challenges to conven
tional simulation methodologies such as MD and KMC, highlighting the 
need for innovative approaches in accurately capturing these complex 
diffusion dynamics.

To address these multiscale challenges, this work introduces a multi- 
faceted machine learning computational framework designed to effec
tively capture the complex dynamics of H diffusion in MPEAs. The 
framework comprises several innovative components: machine-learning 
force fields (MLFF), neural network-driven Kinetic Monte Carlo (NN- 
KMC), and machine-learning symbolic regression (MLSR). Each 
component is tailored to tackle specific facets of the H diffusion process, 
enabling accurate simulation and analysis. MLFF is utilized to generate 
accurate DB database within a diverse alloy composition, significantly 
enhancing the simulation fidelity with DFT accuracy. NN-KMC is 
applied to efficiently process and predict the stochastic behavior of H 
atoms as they navigate through the complex energy landscape of 
MPEAs, thus speeding up the kinetic simulations without sacrificing 
accuracy. Meanwhile, MLSR techniques help in extracting meaningful 
physical insights from complex data patterns, facilitating a deeper un
derstanding of the underlying diffusion mechanisms. This significant 
advancement paves the way for investigations into H diffusion dynamics 
across various BCC and FCC MPEA systems, given the transferability of 
our method to all classes of MPEAs. Although our developed MLFF 
currently only considers four BCC refractory elements (Mo, Nb, Ta, and 
W) and their interactions, it serves as a valuable tool for probing H 
diffusion mechanisms in complex systems with rugged energy land
scapes. The analytical expressions obtained by MLSR, along with the 
VFT model, provide a complete model for predicting H diffusion in BCC 
MPEAs in general. Future work will expand our framework to incorpo
rate the effects of defects such as vacancies, dislocations, and grain 
boundaries, as well as the influence of varying H concentrations.

The DPS strategy introduced in this study demonstrates significant 
improvements over previous active learning strategies for the MLFF 
development. Traditionally, active learning strategies progressively 
learn unpredictable configurations either from ab initio MD or from 
MLFF-based MD simulations by an on-the-fly manner [33,34]. However, 
our KMC results presented in Fig. 3 suggest that H diffusion in MPEAs 
can be extremely slow, and many environments remain inaccessible 
even after prolonged periods. Therefore, the extended period required 
for diffusion at low temperatures presents a primary challenge. Conse
quently, the resultant MLFF cannot be applied to arbitrary compositions 
of MPEAs, making it impossible to accurately determine the intrinsic DB 
and SE spectra. The proposed DPS strategy addresses these issues by 
leveraging the fact that a single H atom does not alter the lattice 
structure of MPEA matrix. This insight allows us to circumvent the need 
for computationally expensive active learning-based ab initio MD tra
jectories or on-the-fly methods. Instead, DPS efficiently and effectively 
captures all representative configurations across diverse metallic envi
ronments by accounting for lattice distortion and thermal vibration at 
different temperatures. This approach results in a highly accurate and 
comprehensive MLFF, as demonstrated by our extensive validation re
sults shown in Fig. S2.

It is important to note that the development of a new MLFF for the 
MoNbTaW-H system plays a crucial role in this study. Although uni
versal machine learning potentials such as CHGNet [64], and MACE 
[65] have been developed to model interactions across the periodic 
table, they often serve merely as foundation models and exhibit high 
errors; fine-tuned training is essential for specific studies. We have 
evaluated the performance of the latest MACE foundation model 
(mace-mp-0) against our MLFF in predicting the energy of MoNbTaW-H 
systems, as illustrated in Fig. S10. The results demonstrate that our 
MLFF offers significantly higher accuracy and efficiency than MACE. 
Additionally, we utilize KMC simulations to study H diffusion, 

employing energy barriers at 0 K to estimate event rates. To assess the 
thermal effects on diffusion dynamics, we compare the diffusion co
efficients obtained from direct MD simulations and KMC simulations 
across 969 compositions using a small 4 × 4 × 4 supercell in Fig. S11. 
The consistent results indicate that the thermal effects will not change 
the relative diffusivity of different compositions. Importantly, our new 
MLFF is also capable of investigating nuclear quantum effects at low 
temperatures using long-time path integral simulations such as PIMD for 
MPEAs [16], although this application is not explored in the current 
study. We anticipate that nuclear quantum effects may mitigate the 
super-Arrhenius behavior. This aspect could be explored in future work.

Our study offers profound insights into H diffusivity across a broad 
spectrum of MoNbTaW MPEAs. Our analysis from an energy landscape 
perspective indicates that the randomness of DB is not the primary 
determinant for H diffusion in these alloys. Instead, the randomness of 
SE plays a pivotal role. This is because, unlike DB, which only accounts 
for individual jump events, the SE distribution offers a comprehensive 
view of the entire energy landscape, thereby influencing H diffusivity on 
a macroscopic scale. Focusing on metallic environments, our findings 
underscore that the presence of “H-favoring” elements significantly 
governs H diffusivity in random MPEAs and affects SRO effects in or
dered MPEAs. Particularly, we spotlight Nb and Ta, the primary ele
ments discussed in our work, as critical to understanding these 
dynamics. Additionally, other transition metals like V, Ti, Zr, and Hf, 
known for their low H SE [66], also play a crucial role. Introducing these 
elements, especially in low concentrations, alongside “H-repelling” el
ements such as W and Mo can lead to the formation of deep trapping 
sites. This interaction culminates in marked super-Arrhenius diffusion 
behaviors, which are essential for tailoring the H diffusivity properties of 
next-generation MPEAs for H-related applications. Regarding the SRO 
effect, our findings suggest that SRO typically has no impact on H 
diffusion. It facilitates H diffusion only when “H-favoring” elements are 
present in low concentrations. Therefore, careful selection of elements 
an is crucial to mitigate the potential effects of SRO.

Our study highlights the significant potential of MPEAs in mitigating 
H embrittlement, a long-standing issue in traditional alloys like 
aluminum alloys and steel [67]. In these conventional alloys, H rapidly 
diffuses through the lattice, accumulating at defects such as vacancies 
and grain boundaries that act as deep trapping sites, leading to material 
degradation and failure [68]. In contrast, our findings suggest a different 
mechanism in MPEAs. As demonstrated in Figs. 2 and 3, the lattice of 
MPEAs, characterized by random chemical environments, intrinsically 
forms deep trapping sites. These sites, created by small clusters of 
“H-favoring” elements, are not only comparable but potentially more 
effective in trapping H than the conventional defects in MPEAs [69], 
providing enhanced resistance to H embrittlement. Traditional alloys 
often incorporate second phases or nano-precipitates to trap H, which 
slows its diffusion and prevents accumulation at critical sites [70,71]. 
MPEAs, however, benefit from a diverse arrangement of elements that 
intrinsically create a complex chemical environment, which enables the 
distribution of the trapping sites more uniformly throughout the alloys, 
eliminating the need for additional phases to trap H. This inherent 
feature of MPEAs promises a more robust and effective mitigation of H 
embrittlement. Furthermore, the specific arrangement and concentra
tion of elements in MPEAs can be tailored to optimize other properties 
such as mechanical strength, ductility and radiation resistance, offering 
a customizable approach for various industrial applications.

Lastly, while this study focuses on the effects of complex chemical 
environments in pristine lattices on H solubility and diffusivity, the role 
of defects such as vacancies, dislocations, and grain boundaries in H 
behavior remains an important consideration. In conventional alloys, 
defects are well-known to act as H trapping sites, contributing to 
embrittlement. However, in MPEAs, the random and complex chemical 
environments of pristine lattices themselves create strong trapping sites, 
significantly reducing H diffusivity. The effect of defects on H trapping 
in MPEAs remains unclear and warrants further investigation. While the 
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exploration of defect effects is beyond the scope of this work, it repre
sents a critical direction for future research to fully elucidate the 
mechanisms of H behavior in MPEAs.

5. Conclusion

To summarize, we develop an advanced machine-learning compu
tational framework to reveal the hidden dynamics of super-Arrhenius H 
diffusion in BCC MPEAs. Our comprehensive high-throughput screening 
has unveiled the fundamental mechanisms governing super-Arrhenius H 
diffusion in random MPEAs and the effect of SRO, along with shedding 
light on how metallic environments affect H trapping. These findings 
emphasize the vital role of machine learning methodologies and their 
profound impact on steering the development of new materials to 
address the challenges in H-related applications.
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