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Abstract
This study investigates the hydroelastic response of very flexible, free floating structures in Faraday
waves, with a focus on the influence of sheet thickness. The motivation for this work arises from the
need to understand wave-structure interactions involving very flexible floating structures (VFFS), which
are relevant for applications such as (offshore) floating photovoltaic panels ((O)FPV).

Laboratory-scale experiments were conducted using vertically oscillated membranes of varying
thicknesses (20 µm to 200µm) floating on a water surface. To ensure a reliable comparison and es-
tablish baseline measurements, free-surface reference experiments were first performed using silicone
oil, which provided controlled conditions with minimal contamination effects. Additional experiments on
deionized water allowed for direct comparison between hydroelastic and purely fluid cases. The ex-
perimental setup combined imaging, digital image correlation (DIC), and synthetic Schlieren methods
to capture the coupled wave–membrane dynamics. These techniques provided quantitative measure-
ments of both membrane deformation and underlying wave fields, including amplitudes and wave-
lengths, across a range of excitation frequencies and acceleration amplitudes. This enabled precise
determination of the onset of Faraday-wave instabilities and a detailed characterization of the spatial
deformation patterns of the floating membranes.

The results demonstrate a strong dependence of hydroelastic behavior on sheet thickness. In-
creasing thickness enhances the bending stiffness and inertia of the membrane, resulting in longer
dominant wavelengths, higher critical accelerations, and modified wave amplitudes compared to very
thin membranes. For the thinnest membranes, classified as VFFS, localized wrinkles were observed
at low excitation frequencies. Their presence indicates dynamic stress variations and local in-plane
tensions induced by wave–membrane interactions, phenomena not captured by standard continuum
models. Furthermore, the onset of instabilities and wave amplitude behavior for thicker membranes
revealed the combined effects of increased mass and bending stiffness, highlighting the transition from
highly compliant to more rigid floating regimes.

Taken together, these findings provide experimental evidence for the critical role of sheet thickness
in governing hydroelastic response. The results clarify how very flexible floating structures interact
with surface waves and how this interaction evolves as thickness increases. Beyond fundamental fluid-
structure physics, this work offers practical insights for the design and modeling of VFFS in engineering
applications, such as optimizing the stability of floating photovoltaic modules, controlling wave-induced
motion of thin maritime membranes.
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Preface
The topic of this thesis emerged naturally from my strong interest in fluid-structure interactions. Within
the Marine Technology master’s program, I especially enjoyed the course Fluid-Structure Interaction
in Maritime Structures (MT44090), which offered a first look on the coupling between hydrodynamic
forces and structural responses. Although I originally planned to graduate within the fluid mechanics
track, I also developed a growing interest in structural engineering through several related courses.
The fluid-structure interaction provided the ideal middle ground, allowing me to combine both fields
that appealed to me the most.

This graduation project also connected to my earlier academic interests in sustainability. During my
bachelor’s degree, I completed the minor Climate Change Adaptation and Mitigation and participated in
the honors program, where I took interdisciplinary courses such as Can We Cool Down the Earth? and
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helped me refine both the scope and focus of my work.

The setup and conduct of the experiment came with its own set of challenges. Although I am usually
fairly realistic in planning, I experienced significant delays. Building the setup wasmore time-consuming
than expected; getting everything in the right place and ensuring it functioned properly involved many
trial-and-error moments. Since the setup had not been used before at the Department of Maritime
& Transport Technology (M&TT), I encountered issues that required creative and sometimes uncon-
ventional solutions. These setbacks turned out to be highly instructive: they taught me to pay close
attention to measurement accuracy and to focus on capturing the data I actually needed. I eventually
decided to run small tests and analyze the results immediately, rather than collecting everything first
and reviewing it only afterward. This iterative approach worked well for me. Over the course of several
weeks, I performed various preliminary tests and adjusted the setup based on what I learned. Looking
back, I am glad I approached it this way, as it allowed the experimental phase to evolve naturally with
the insights gained.
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Hanna Pot, for their invaluable guidance, encouragement, and support throughout this research. I
am also thankful to Professor Sebastian Schreier for his supervision and advice at the Department of
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to the staff and colleagues at the Ship Hydromechanics Lab, whose assistance was essential in setting
up and conducting the experiments. Finally, I would like to acknowledge the helpful role of AI tools
such as ChatGPT, which supported code development and language refinement, thereby facilitating
the writing process of this thesis.
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1
Introduction

The world urgently needs to scale up renewable energy solutions to address the growing impacts of
climate change. The decade leading up to 2023 has been the warmest in recorded history, with the
ten-year average global temperature (2014-2023) surpassing all previous records (World Meteorolog-
ical Organization, 2023). 2024 set a new record as the warmest year on record, with global mean
temperatures estimated at approximately 1.55 °C above pre-industrial levels (World Meteorological Or-
ganization, 2025b). Looking ahead, the World Meteorological Organization projects an 80% likelihood
that at least one year between 2025 and 2029 will exceed this 2024 record, underscoring the clear
upward trajectory of global temperatures (World Meteorological Organization, 2025a). These rising
temperatures emphasize the critical need for sustainable energy solutions to reduce greenhouse gas
emissions, which are primarily driven by fossil fuel combustion. Fossil fuels account for over 75% of
global greenhouse gas emissions, and their continued use contributes significantly to the devastating
impacts of climate change (Marouani, 2024).

Renewable energy offers a promising pathway to mitigate these impacts. Studies show a clear cor-
relation between the adoption of renewable energy and decreased temperature anomalies, indicating
that scaling up renewable energy could help limit global warming (Abidi & Nsaibi, 2024). Renewable
energy is defined as energy derived from natural sources that are replenished at a rate faster than they
are consumed, such as wind, solar, and hydropower (United Nations, 2024). Wind and sunlight, in
particular, are abundant, inexhaustible resources that offer vast potential for clean energy production.
However, a major challenge in harnessing these resources is intermittency, as fluctuations in energy
generation can make it difficult to maintain a stable and reliable electricity supply (Oliveira-Pinto &
Stokkermans, 2020; Trapani & Santafé, 2014; Wu & West, 2024).

One of the most widely adopted renewable technologies is solar photovoltaic (PV) energy. PV cells
harness the photovoltaic effect, first observed by Edmond Becquerel in 1839, and have since under-
gone significant improvements in efficiency and affordability (Chu & Tarazano, 2017). Traditionally, PV
panels are installed on rooftops or ground-mounted on large pieces of land for grid-scale electricity pro-
duction (Sahu et al., 2016). However, as land availability becomes increasingly constrained, attention
has shifted toward alternative deployment strategies.

Floating solar technology has emerged as a compelling solution. By placing PV panels on water
bodies, this approach maximizes surface area without competing for land and offers performance ben-
efits due to the natural cooling effect of water (Sahu et al., 2016). The first widely implemented floating
solar systems were pontoon-based arrays deployed in Japan in 2007 at the National Institute of Ad-
vanced Industrial Science and Technology (Claus & López, 2022; Oliveira-Pinto & Stokkermans, 2020;
Trapani & Santafé, 2014). These platforms are typically limited to calm inland waters, where the risk of
wave-induced damage is low. In addition to preserving land, pontoon-based floating solar systems can
reduce water evaporation from reservoirs and enhance energy efficiency (Sahu et al., 2016). Despite
these advantages, they are typically restricted to calm inland waters and can compete with existing
human uses or impact local ecosystems. Consequently, pontoon-based systems are not well-suited to
the open ocean, leaving vast marine areas untapped for solar deployment.

Addressing this limitation requires new structural concepts capable of withstanding dynamic water

1



2 1. Introduction

environments. One promising approach is the development of ultra-thin, flexible floating solar panels
made from amorphous silicon photovoltaic materials (Claus & López, 2022; Oliveira-Pinto & Stokker-
mans, 2020; Trapani et al., 2013). Unlike rigid, pontoon-supported systems, these panels are designed
to move passively with surface waves. Their natural buoyancy and compliant structure eliminate the
need for pontoons and allow scalable deployment on open ocean surfaces.

However, this flexibility introduces a new set of challenges. These structures behave fundamen-
tally differently from conventional very large floating structures (VLFS), whose hydroelastic responses
are relatively well characterized. Thin, compliant solar panels enter an underexplored regime of fluid-
structure interaction (FSI), where traditional models may no longer apply. Unlike wave energy convert-
ers, which are engineered to extract energy from wave motion, these floating panels aim to minimize
wave-induced stress and deformation (Trapani et al., 2013).

Understanding how very flexible floating structures (VFFS) interact with surface waves is essential,
both from a mechanical standpoint and from a fundamental FSI perspective. Ultra-thin, compliant
structures experience large deformations under wave forcing, and their energy absorption, damping
behavior, and internal stress distribution remain largely unexplored. The design of such structures
therefore, challenges existing FSI models and calls for new approaches to wave-structure coupling.

Historically, the behavior of floating structures under surface waves has been studied extensively
for rigid or semi-rigid platforms, such as pontoons and VLFS. For instance, the Megafloat project in
Japan examined hydroelastic responses of large, stiff platforms under wave forcing (Suzuki, 2005),
while floating ice sheets have served as natural analogues for large-scale hydroelastic analysis (Zeng
et al., 2021). Squire (2008) highlighted the similarities between floating ice dynamics and VLFS hy-
droelasticity, typically modeled using classical linear theories.

Conventional floating structures, such as pontoons and VLFS, have relatively high thickness-to-
length ratios and exhibit limited deformation. In contrast, the thin, flexible photovoltaic sheets proposed
for offshore deployment represent a distinct regime: extreme flexibility and low bending stiffness mean
that even moderate wave forcing can induce significant deformation. At offshore scales, the dominant
restoring forces are gravitational, and capillary effects are negligible. The relevant physics at this scale
are hydroelastic in nature, governed primarily by membrane tension, bending stiffness, and gravity-
driven fluid motion.

Studying these interactions directly at full scale is experimentally challenging due to infrastructure
requirements, environmental variability, and limited control over wave forcing. To gain mechanistic in-
sight, this study employs small-scale laboratory experiments using Faraday waves. These standing
waves, generated by vertical oscillation of a fluid layer above a critical threshold (Miles & Henderson,
1990), provide a controlled platform to probe fundamental mechanisms such as deformation, energy
dissipation, and wave-structure coupling in flexible membranes. Crucially, these Faraday wave exper-
iments are used as a tool to understand hydroelastic response, rather than as an end in themselves,
analogous to conventional wave flumes or large-scale wave tanks in hydrodynamics research.

The relevance of small-scale Faraday experiments to offshore structures lies in dimensionless scal-
ing and the relative balance of forces. While offshore-scale waves are dominated by gravity, small-scale
Faraday waves often operate in a capillary-gravity regime, where surface tension influences the wave
response. Despite this difference, the underlying hydroelastic mechanisms, bending, membrane ten-
sion, and wave-induced deformation, can still be probed in the laboratory by carefully selecting material
properties, fluid depth, and forcing parameters. A central concept in fluid-structure interaction (FSI)
modeling is the characteristic length scale,

𝜆𝑐 = 2𝜋 (
𝐵
𝜌𝑔)

1/4
, (1.1)

which relates bending stiffness 𝐵 to gravitational wave forcing 𝜌𝑔 and determines whether a floating
structure behaves more like a rigid plate or a deformable membrane (Suzuki & Yoshida, 1996; Suzuki
et al., 2007; Zhang & Schreier, 2022) (Figure 1.1). By matching the ratio of the sheet length (L) to 𝜆𝑐
in the laboratory to that of full-scale structures, experiments reproduce the relative balance of elastic
and hydrodynamic forces, allowing key deformation patterns, damping behavior, and wave-structure
interactions to be explored. In this way, Faraday experiments provide a tractable means to study
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extreme-flexibility regimes that would otherwise be difficult to isolate at full scale, despite the differ-
ences in absolute scales and capillary effects.

Building on the insights gained from dimensionless scaling and characteristic length considerations,
this study focuses on how the physical properties of floating flexible sheets govern their hydroelastic
response. In particular, sheet thickness is chosen as the primary control parameter, as it governs bend-
ing stiffness (𝐵 ∼ ℎ3) and defines a characteristic length scale (𝜆𝑐). Varying thickness systematically
modifies the relative magnitude of elastic to hydrodynamic forces, allowing exploration of different hy-
droelastic regimes relevant to floating structures of various scales. Understanding the role of thickness
is therefore key to predicting deformation patterns, damping behavior, and wave–structure interactions
across different regimes of flexibility. This motivation leads naturally to the primary research question:

Primary research question: How does the thickness of a Very Flexible free Floating Structure
influence its hydroelastic response in Faraday waves?

To explore this question in detail, the following sub-questions are addressed:

• How does sheet thickness modify the dispersion relation of surface waves, and how can the
relative contributions of gravity, inertia, and tension be identified?

• How does sheet thickness influence the critical acceleration threshold for wave excitation, and
what role do inertia and bending rigidity play in setting this threshold?

To investigate these questions, lab-scale Faraday-wave experiments provide a controlled platform
to isolate the effects of sheet thickness on hydroelastic response. Unlike full-scale ocean experiments
or rotating tank experiments, Faraday setups allow precise control over wave amplitude, frequency, and
fluid properties, enabling systematic exploration of the coupling between fluid motion and membrane
flexibility. By matching dimensionless parameters such as the ratio sheet length (L) to the characteristic
length scale (𝜆𝑐), these experiments reproduce the relevant force balance and deformation regimes
observed in full-scale floating photovoltaic structures. Lab-scale experiments using vertically oscillated
floating films of varying thicknesses are conducted to isolate the influence of structural flexibility on
hydroelastic response.

It is hypothesized that increasing sheet thickness will modify the wave dispersion characteristics,
leading to a longer critical wavelength at onset, consistent with observations by (Schreier & Jacobi,
2021). Second, thicker sheets are expected to exhibit a higher critical acceleration threshold for wave
excitation due to added bending stiffness and inertia, which enhances hydroelastic damping and in-
creases the energy required for the sheet to respond to wave forcing. Finally, because the wave ampli-
tude is measured at onset and different sheets require different forcing, it is anticipated that increasing
thickness will also lead to larger wave amplitudes in the coupled sheet-fluid system.

The remainder of this thesis is organized as follows. Chapter 2 reviews the literature on fluid–
structure interactions, Faraday waves, and hydroelastic wave phenomena. Chapter 3 presents the
methodology, including the experimental setup, instrumentation, data acquisition and processing tech-
niques, as well as a discussion of measurement accuracy. Chapter 4 reports the experimental results,
focusing on wavelength measurements and their repeatability, acceleration thresholds and repeatabil-
ity, and amplitude responses. Chapter 5 interprets the findings, and compares them to other studies
and existing literature. Finally, Chapter 6 summarizes the main conclusions, and Chapter 7 provides
recommendations based on the study.
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(a)

(b)

Figure 1.1: Comparison of response diagrams of floating structures using non-dimensional parameters: (a) (Suzuki et al., 2007),
(b) (Zhang & Schreier, 2022).
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Literature review and theoretical

background
Understanding the interaction between thin, flexible structures and fluid surface waves requires insights
from multiple overlapping domains, including hydroelastic theory, fluid-structure interactions (FSI), and
nonlinear wavemechanics. This chapter also reviews studies on very flexible floating structures (VFFS)
and on Faraday wave dynamics, providing a foundation for exploring their combined behavior.

2.1. Motivation from floating photovoltaic systems
Very flexible floating structures have been explored in applied contexts such as floating photovoltaic
(FPV) systems, where lightweight sheets or mats are deployed on water surfaces (Acharya & Devraj,
2019; Ramanan et al., 2024). While most FPV systems in practice use stiff, pontoon-based platforms
in calm inland waters, thin-membrane designs remain largely experimental.

These extremely flexible sheets experience strong fluid–structure interaction (FSI) under wave forc-
ing, with large deformations and nonlinear responses that are not captured by traditional linear hydroe-
lastic models (Suzuki & Yoshida, 1996). The scarcity of fundamental experimental studies on such
systems motivates laboratory investigations into the hydroelastic behavior of thin floating sheets, iso-
lating the effects of structural flexibility, inertia, and tension on wave response.

2.2. Fluid-Structure Interactions with Very Flexible Floating Struc-
tures

The interaction between floating structures and surface waves is inherently coupled, involving both fluid
dynamics and structural mechanics. At a basic level, surface gravity waves over a uniform water depth
ℎ are described by linear wave theory, or Airy waves, with the dispersion relation

𝜔2 = 𝑔𝑘 tanh(𝑘ℎ), (2.1)

where 𝜔 is the angular frequency, 𝑘 the wavenumber, and 𝑔 gravitational acceleration. A complete
derivation can be found in Appendix A. This relation provides a reference for understanding how waves
behave in the absence of floating structures.

When an elastic structure floats on the water surface, the classical dispersion relation is modified to
account for the additional restoring force from the bending stiffness of the material. For instance, Părău
and Dias (2001) derived a dispersion relation for waves beneath a floating ice sheet using Kirchhoff-
Love plate theory:

𝜔2 = (𝑔𝑘 + 𝐵𝑘
5

𝜌 ) tanh(𝑘ℎ), (2.2)

where 𝐵 is the bending stiffness of the plate and 𝜌 is the density of the fluid. This form describes
flexural-gravity waves, where wave propagation results from the combined effects of gravity and plate
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elasticity, and highlights that for thin floating plates, the wavelength depends not only on frequency and
water depth but also on mechanical properties. The complete derivation can be found in Appendix E.

For thin, highly flexible membranes, such as those used in floating photovoltaic systems, nonlinear
geometric effects can become significant. The Föppl–von Kármán (FvK) plate theory extends classical
plate models to account for large deflections, yielding a modified dispersion relation for thin floating
films:

𝜔2 = (𝑔𝑘 + 𝜎𝑘
3

𝜌 + 𝐵𝑘
5

𝜌 ) tanh(𝑘ℎ), (2.3)

where 𝜎 represents an effective surface tension arising from in-plane stresses of the floating layer. This
relation captures the combined effects of bending, tension, and gravity, providing a more complete
description of wave propagation for thin, flexible membranes. Importantly, it provides a theoretical
framework to interpret how variations in sheet thickness and in-plane stress influence the wave patterns
observed in the Faraday-wave experiments, linking membrane elasticity and tension to measurable
wave properties such as wavelength and propagation characteristics. The full derivation can be found
in Appendix F.

This dispersion relation has been employed in previous experimental studies, for example by Ono-
dit-Biot et al. (2019) and Deike et al. (2013). Deike et al. (2013) extended the model to include both a
static pre-tension term and a dynamic contribution, which depends on the sheet geometry, thickness,
material properties, and wave steepness. Their work focused on a pinned membrane with a single
thickness, leaving the case of freely floating membranes and the influence of thickness unexplored.
This motivates the present study, which systematically investigates how sheet thickness affects the
hydroelastic response and dispersion behavior in freely floating membranes.

Similarly, Ono-dit-Biot et al. (2019) compared experimental results for freely floating sheets over a
range of thicknesses, but their setup relied on a rotating tank and external airflow to generate waves.
This leaves open the question of how freely floating sheets behave under stationary, vertically vibrated
conditions, highlighting the need for experiments in a controlled Faraday-wave framework.

More general approaches to fluid-structure interaction, such as two-way coupled simulations com-
bining finite element methods (FEM) for the structure with boundary element methods (BEM) or Navier-
Stokes solvers for the fluid, can capture complex behaviors including wave scattering, nonlinear defor-
mation modes, and energy exchange (e.g., Luo et al., 2017; Meylan & Squire, 2002; Scolan & Korobkin,
2001; Zhao et al., 2007). While these methods are powerful, they are computationally intensive and
often provide more detail than required when the primary interest is in wavelength shifts and wave
selection. In this context, dispersion relation approaches offer a tractable and physically transparent
method to predict the influence of structural properties on wave propagation.

While the relations above are well established for steady or linear waves, their extension to systems
under time-periodic forcing, such as Faraday waves, is not well established. Understanding these
dispersion relations provides a framework to interpret the hydroelastic behavior of thin, flexible floating
sheets in the experiments.

2.3. Experimental investigations of Fluid-Structure Interactions
Experimental studies are essential for understanding fluid–structure interaction (FSI), especially for
highly deformable floating bodies under unsteady wave forcing. In systems where analytical solutions
are difficult or numerical models are not fully validated, physical modeling provides a direct way to
capture coupled fluid and structural responses. This section reviews key developments in experimental
investigations, grouped by the type of system studied and the measurement techniques employed.

2.3.1. Large-scale hydroelastic models
A key early effort in large-scale hydroelastic modeling was the Mega-Float project, which constructed
a 9.75m long scaled model of a 300m floating runway to examine elastic responses in waves (Yago
& Endo, 1996). Strain gauges and potentiometers were used to track bending and motion, focusing
on vertical displacements and structural loads. This study demonstrated how distributed sensing can
capture mode shapes and dynamic responses for relatively stiff, long platforms.
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2.3.2. Simplified elastic sheets
Simplified elastic sheets have been widely used to study wave propagation and wave-structure cou-
pling, often to mimic ice-wave interactions. Meylan (1994) used pressure probes beneath polypropy-
lene sheets to measure pressure distributions in front of, beneath, and behind the sheet, showing how
structural compliance and wave parameters affect the hydrodynamic field. Similarly, Kagemoto et al.
(1998) tracked displacements and bending strains along floating elastic strips with optical tracking and
strain gauges, demonstrating how low-inertia, high-compliance systems exhibit well-defined modal dy-
namics under wave loading.

2.3.3. Thin and compliant membranes
For thinner, more compliant structures, inertial effects become secondary to surface tension and vis-
cous damping, requiring high-resolution measurement techniques. Experiments with thin polymeric
or elastomeric sheets, such as those by Ono-dit-Biot et al. (2019), used synthetic schlieren imaging
to capture full-field deformation without disturbing the sheet itself. Viscous effects are further empha-
sized in setups using ultra-soft materials like foam or viscoelastic polymers; for instance, Sree et al.
(2017) used ultrasound sensors to record vertical displacements of floating PDMS and polypropylene
covers, showing significant damping due to viscoelasticity and the role of surface barriers in controlling
overwash.

2.3.4. Modern optical measurement techniques
Digital Image Correlation (DIC) has become a popular method for tracking 3D deformations of flexible
floating systems. Schreier and Jacobi (2021) applied DIC with stereo cameras and surface dot patterns
to reconstruct out-of-plane motion of long, flexible strips with high spatial and temporal fidelity. This
approach is particularly effective for capturing subtle local deformations.

2.3.5. Summary and link to present work
Taken together, these studies illustrate the progression of FSI experiments from rigid-body dynamics
to ultra-flexible sheets and increasingly precise measurement techniques. Building on this history, the
present work employs in-plane Digital Image Correlation combined with synthetic schlieren imaging to
capture full-field deformations of highly flexible floating membranes. This combined, non-intrusive ap-
proach provides the spatial and temporal resolution required to systematically investigate the influence
of sheet thickness, bending, and in-plane tension on hydroelastic wave responses.

2.4. Fundamentals of Faraday waves
Faraday waves, first observed by Michael Faraday in 1831, are standing waves that form on a liquid
surface subjected to vertical oscillations. They arise through parametric resonance, where the flat
state of the interface becomes unstable beyond a critical forcing amplitude. The onset and properties
of these waves depend sensitively on fluid parameters such as viscosity and surface tension, making
them a versatile probe of small-scale fluid-structure interactions.

2.4.1. Classical description
The early theoretical description by Benjamin and Ursell (1954) reduces the problem to a Mathieu
equation,

𝜕2𝜁
𝜕𝑇2 + (𝑝 − 2𝑞 cos 2𝑇)𝜁 = 0, (2.4)

where 𝜁 represents the surface elevation of the fluid at a given wavenumber, 𝑝 and 𝑞 are system-
dependent parameters, and 𝑇 = 𝜔𝑡/2 is the dimensionless time based on the driving frequency 𝜔.
This formulation captures the essence of parametric instability: harmonic and subharmonic resonances
arise depending on how the forcing frequency couples to the natural wave frequency.

2.4.2. Viscous effects and dispersion relation
Real fluids exhibit viscosity, which significantly influences the onset and growth of Faraday instabili-
ties. Kumar and Tuckerman (1994) developed a linear theory using Floquet analysis for two viscous,
immiscible fluid layers. In addition to the full Floquet framework, a simpler hydrodynamic model yields
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the following approximate dispersion relation for small-amplitude surface waves:

𝜔2(𝑘) = (𝜌1 − 𝜌2)𝑔𝑘
𝜌1 + 𝜌2

+ 𝜎𝑘3
𝜌1 + 𝜌2

− 2𝑘
2(𝜂1 + 𝜂2)
𝜌1 + 𝜌2

, (2.5)

where 𝜌𝑖 and 𝜂𝑖 are the density and dynamic viscosity of fluid 𝑖 (𝑖 = 1, 2), and 𝜎 is the interfacial surface
tension. This relation gives the natural frequency of small-amplitude waves in a viscous fluid, reducing
to the classical inviscid dispersion relation when 𝜂𝑖 = 0. For the most commonly observed subharmonic
Faraday instability, the parametric resonance condition can be expressed as

𝜔𝑠(𝑘)
2 ≃ 𝜔(𝑘), (2.6)

where 𝜔𝑠 is the angular frequency of the shaker.
The critical acceleration amplitude 𝑎𝑐𝑟𝑖𝑡 for Faraday instability can then be derived via Floquet anal-

ysis. Physically, 𝑎𝑐𝑟𝑖𝑡 represents the minimum vertical forcing amplitude required to destabilize a flat
fluid surface at a given wavenumber 𝑘. In the forcing-wavenumber plane, this gives rise to stability
tongues: alternating regions of harmonic and subharmonic instability. Subharmonic waves, which os-
cillate at half the driving frequency, usually dominate the onset of instability. These tongue diagrams
provide both the critical acceleration 𝑎𝑐𝑟𝑖𝑡 and the preferred wavenumber 𝑘𝑐𝑟𝑖𝑡 at instability onset.

Figures 2.1 and 2.2 illustrate examples of these stability tongues. Figure 2.1 shows the classical
tongue structure predicted by linear theory for a glycerine-water mixture, while Figure 2.2 compares the-
oretical predictions with experimental measurements, highlighting the correspondence between critical
accelerations and the selected harmonic (H) and subharmonic (SH) wavenumbers.

Figure 2.1: Stability boundaries of glycerine–water mixture. Subharmonic (SH) and harmonic (H) tongues alternate (Kumar,
1996).

2.4.3. Elastic sheet extensions
When a thin elastic sheet floats on a fluid surface, the classical Faraday-wave problem is extended
to account for the sheet’s elasticity and inertia. The governing equations now include the bending
stiffness 𝐵 and the mass per unit area 𝑚𝐴 of the sheet, in addition to the usual fluid properties. This
formulation, established using Hamiltonian methods and linear stability analysis, allows prediction of
modified critical accelerations and wavenumbers in fluid-structure systems.
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Figure 2.2: Critical acceleration amplitude 𝑎𝑐𝑟𝑖𝑡 and critical wavenumbers 𝑘𝐻 and 𝑘𝑆𝐻 for harmonic (circles) and subharmonic
(squares) Faraday instability. Symbols: experimental data; lines: theoretical computation (Wagner et al., 1998).

Sardari et al. (2023) derived threshold and dispersion relations of the form

𝑎0 = (𝑘 tanh(𝑘𝑑))
−1 [𝛿2 + (

(1 + 2𝛾𝑘 coth(2𝑘𝑑))𝜔2 − 𝜔20
2𝜔2 − 𝑘

4𝐵
2𝜌𝑔)

2

]
1/2

, (2.7)

(𝜔2 )
2
= 𝜌𝑔𝑘 + 𝜎𝑘3 + 𝐵𝑘5

𝜌 tanh(𝑘ℎ) + 2𝑚𝐴𝑘(1+𝑒4𝑘ℎ)
(1+𝑒2𝑘ℎ)2

. (2.8)

Here, 𝛿 represents dissipation, and 𝛾 = 𝑚𝐴/𝜌 is an effective hydrodynamic thickness, combining
the sheet mass per unit area and fluid density. Physically, 𝛾 scales with the sheet thickness and density
relative to the fluid, with units of length.

2.4.4. Summary and relevance
The theoretical developments reviewed above establish the key ingredients needed to interpret Faraday
instabilities in fluids with and without floating elastic sheets. At the classical level, the instability is
characterized by a critical acceleration amplitude, 𝑎𝑐𝑟𝑖𝑡, and a selected wavelength, 𝜆𝑐𝑟𝑖𝑡, both of which
follow from the balance between gravity, surface tension, and viscous damping. Extensions to include
elastic sheets demonstrate that bending stiffness and sheet inertia further modify these thresholds.

For the present work, Faraday waves are not investigated as a phenomenon in their own right, but
rather employed as a diagnostic tool to probe hydroelastic effects in thin, compliant sheets. System-
atic variation of sheet thickness allows assessment of how elasticity and inertia influence the onset of
instability and the corresponding wave selection.

2.5. Challenges of scaling in laboratory studies
Although Faraday-wave-based setups provide a convenient and controllable environment to study
wave-structure interactions at small scales, it is essential to acknowledge the limitations and challenges
associated with experimental scaling, particularly when extrapolating results to full-scale floating pho-
tovoltaic (FPV) systems.

Conventional model testing in offshore engineering relies on similitude theory to ensure that scaled
prototypes replicate the behavior of real systems (Casaburo et al., 2019). Geometric, kinematic, and
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dynamic similarities are central to this approach, but their application becomes non-trivial when flexible
materials and surface effects are involved.

Froude scaling is commonly employed in wave-structure experiments, as it preserves the balance
between gravity and inertial forces. However, for highly flexible systems such as FPV membranes, this
approach neglects the influence of elastic and capillary forces, which become increasingly significant at
small scales. In particular, surface tension, negligible at full scale, plays a dominant role in the dynamics
of small-scale water waves, affecting both wave dispersion and damping characteristics (Stagonas et
al., 2011).

The elastic behavior of the floating sheet introduces further complexity. Dynamic similarity for flex-
ible systems requires additional dimensionless parameters beyond the Froude number, such as the
Cauchy number, which characterizes the ratio between inertial and elastic forces (Vassalos, 1998).
These considerations complicate direct downscaling of FPV systems, especially when attempting to
preserve both fluid and structural dynamics.

Geometric scaling of the floating sheet, based on existing full-scale prototypes, provides a first step
to maintain realistic aspect ratios. This is complemented by a characteristic length scale associated
with the sheet, which is used to ensure that the laboratory model lies within the very flexible floating
structures (VFFS) regime. Figure 1.1 illustrates this regime, plotting the structure length normalized by
the characteristic length on the vertical axis and the structure length normalized by the wavelength on
the horizontal axis. Recent work by Schreier and Jacobi (2021) demonstrated the feasibility of modeling
flexible floating structures in wave tanks, highlighting the importance of these non-dimensionalised
parameters. Their methodology emphasizes the need for careful scaling of elastic effects. Together,
these strategies ensure that the laboratory model captures the dominant physical mechanisms relevant
to these thin membrane fluid-structure interactions.

2.6. Summary and knowledge gaps
The reviewed studies collectively demonstrate that hydroelastic interactions of thin sheets with waves
have received increasing attention, but each existing approach addresses only part of the problem rel-
evant to very flexible floating structures (VFFS). For instance, Deike et al. (2013) investigated pinned
membranes and provided valuable insight into how sheet geometry, thickness, and tension affect wave
dynamics. However, their boundary conditions prevent the free-floating behavior that is central to
VFFS. In contrast, Ono-dit-Biot et al. (2019) examined freely floating membranes with multiple thick-
nesses gathering inside on how different thicknesses behave, but their experiments relied on a rotating
tank with air-jet-driven forcing needed to create waves. On the other hand, Sardari et al. (2023) studied
controlled Faraday-wave forcing on a free floating film, but considered only a single sheet thickness,
and the film used is not in the very flexible regime.

Taken together, these studies highlight that no experimental work has yet combined all three es-
sential ingredients: freely floating boundary conditions, controlled Faraday forcing, and systematic
variation of sheet thickness deep into the VFFS regime. By systematically varying sheet thickness,
the study is able to traverse different hydroelastic regimes, from highly compliant (VFFS) to more rigid
behaviour (VLFS). The present study addresses this gap by employing Faraday waves as a diagnostic
tool, because they offer well-defined frequency and wavelength characteristics.
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Methodology

The objective of this study is to determine how the thickness of a floating flexible sheet influences its
hydroelastic response to vertical wave forcing. In particular, the study focuses on two aspects. First,
how sheet thickness alters the dispersion relation, that is, the relationship between forcing frequency
and the observed wavelengths. Second, how it modifies the critical acceleration required for the onset
of Faraday waves.

To investigate these aspects, controlled laboratory experiments were performed in which Faraday
waves were generated by vertical sinusoidal excitation in a finite-depth fluid layer. Tests were carried
out both with and without a floating sheet to isolate the influence of the structure. Sheet thickness
was systematically varied to adjust the flexural rigidity and associated characteristic length scale. This
enabled comparison across configurations ranging from very flexible floating structures (VFFS) to more
rigid systems resembling very large floating structures (VLFS) (See Chapter 5 Figure 5.1 b).

Wave fields were measured using imaging combined with synthetic schlieren, a non-intrusive optical
technique that infers surface slopes from refractive distortions of a background dot pattern. This method
was selected because it enables full-field reconstruction of wave profiles without physically disturbing
the fluid–structure system, unlike intrusive probes or markers that could alter the response of the flexible
sheet. The recorded images were processed with digital image correlation and Fourier analysis, which
provide quantitative displacement fields and wavelength information with high spatial resolution, making
them particularly suitable for capturing subtle variations across different sheet thicknesses.

The excitation conditions were quantified by recording shaker acceleration and displacement using
calibrated sensors. Accurate measurement of acceleration is essential, since the onset of Faraday
waves is characterized by a critical acceleration threshold, while displacement measurements were
essential for calibration purposes.

For reference, the theoretical model of Kumar and Tuckerman (1994), describing Faraday instability
between two viscous fluid layers bounded by rigid walls, was used to predict onset thresholds and
wavenumbers for the free surface case.

The following sections describe the measurement objectives and target ranges, experimental setup,
optical measurement method (synthetic schlieren), analysis techniques, experimental procedure and
data treatment, and an assessment of measurement accuracy.

3.1. Measurement Objectives and Target Ranges
To design meaningful experiments, it is essential to define target measurement ranges and accuracies
based on theoretical predictions. For this purpose, the linear stability analysis of Kumar and Tuckerman
(Kumar & Tuckerman, 1994) is adopted, applied here to a fluid–air configuration where the air layer is
treated as infinite and only the fluid depth is varied. Specific fluid choices are detailed in Section 3.2.4.

11
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The model provides the expected critical wavenumber 𝑘𝑐𝑟𝑖𝑡, from which the corresponding critical
wavelength 𝜆𝑐𝑟𝑖𝑡 follows, as well as the critical acceleration amplitude 𝑎𝑐𝑟𝑖𝑡 at the onset of Faraday
instabilities. By evaluating the model across excitation frequencies of 0Hz to 100Hz and fluid depths
of 5mm to 25mm, we obtain the predicted ranges of measurable wave characteristics:

• Wavelengths: 4mm to 161mm, depending on frequency and fluid depth.

• Critical accelerations: approximately 0.03–1.83 𝑔.
• Excitation frequencies: Excitation frequencies were chosen to generate wavelengths that could
be reliably captured and analyzed within the measurement domain, avoiding cases that would be
either too long or too short to provide useful information.

Figure 3.1: Predicted stability characteristics for the silicone oil–air system based on the linear stability analysis of Kumar and
Tuckerman (Kumar & Tuckerman, 1994). Shown are the critical wavenumber 𝑘𝑐𝑟𝑖𝑡, wavelength 𝜆𝑐𝑟𝑖𝑡, and normalized accelera-
tion amplitude 𝑎𝑐𝑟𝑖𝑡/𝑔 as functions of excitation frequency, evaluated for fluid depths between 5mm and 25mm.

Based on these predictions, the following measurement goals are established:

Spatial resolution To resolve wave patterns within approximately 10% of the predicted wavelength, a
target effective spatial resolution of roughly 0.4mm is desired for the shortest expected waves. Achiev-
ing this resolution depends not only on the raw imaging system (camera sensor, lens, and pixel size)
but also on processing parameters such as DIC subset size, grid spacing, and subsequent analysis
(e.g., Fourier transforms). Consequently, the effective resolution after data analysis may differ from
the raw pixel scale. These factors are taken into account in the accuracy assessment presented in
Section 3.6.

Temporal resolution Since the study focuses on the spatial characteristics of the standing waves
rather than the full temporal evolution within a cycle, it is sufficient to capture images at specific, repro-
ducible phases of the excitation. To capture at least one image per oscillation period of the fluid surface
at the maximum excitation frequency of 100Hz, the camera must acquire images at a minimum rate of
100 fps. Acceleration measurements, however, must resolve the sinusoidal variation within each cycle.
To capture at least 5–10 samples per excitation period, the acceleration signal should be acquired at a
minimum rate of approximately 500Hz, with higher rates (up to 1000Hz) providing improved temporal
resolution
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Field of view Wave patterns should span at least 2–3 wavelengths across the imaging area to allow
robust characterization of the spatial structure.

These targets establish the baseline measurement requirements, providing quantitative criteria for
selecting and evaluating the experimental setup. In the following sections, the chosen equipment and
data analysis methods are described, with explicit justification of how theymeet the spatial and temporal
resolution targets, as well as the accuracy needed to resolve wavelengths and critical accelerations.

3.2. Experimental setup
Experiments are conducted using a vertically vibrated fluid system. The core of the setup consists of
a cylindrical glass container (130mm inner diameter, 30mm height; Figure 3.2 (ii)), securely mounted
on a Brüel & Kjær Vibration Exciter Type 4808 (Figure 3.2 (i)). The shaker is driven by a Brüel &
Kjær Power Amplifier Type 2719 and controlled via an NF Electronic Instruments 1930A multifunction
synthesizer (frequency accuracy ±5ppm), producing sinusoidal vertical oscillations described by

𝑧(𝑡) = 𝑧𝑎 sin(2𝜋𝑓𝑠𝑡),

where 𝑧𝑎 denotes the vertical displacement amplitude and 𝑓𝑠 the excitation frequency. The correspond-
ing vertical acceleration is

𝑎(𝑡) = −𝑎𝑎 sin(2𝜋𝑓𝑠𝑡),
with the vertical acceleration amplitude 𝑎𝑎 = (2𝜋𝑓𝑠)2𝑧𝑎. The operating range of the shaker spans 5Hz
to 10 kHz, with a maximum peak-to-peak displacement of 12.7mm and accelerations up to 71 g.

(a) (b)

Figure 3.2: Visual representations of the experimental setup: (a) perspective view and (b) right-side view. Key components are
labeled as follows: (i) shaker, (ii) cylindrical glass tank, (iii) laser distance meter, and (iv) Basler camera with lens.

3.2.1. Motion control and data acquisition
Shaker motion is continuously monitored in real time using an accelerometer (calibration factor 956 ±
16 mV/g), affixed to the shaker and connected to a PCB Model 482B11 ICP signal conditioner. This
arrangement enables precise measurement of the vertical acceleration applied to the fluid system,
ensuring accurate control and validation of the excitation amplitude within ±1% of the setpoint.

Complementary measurements of vertical displacement are obtained with an optoNCDT ILD 1420-
200 laser distance sensor (Figure 3.2 (iii)), which offers a 200mm measurement range, linearity better
than 0.08% full-scale output (≤ 160µm), and repeatability of ±8µm.

No specific sampling rate can be set directly on the accelerometer or laser sensor; instead, temporal
resolution is controlled via the LabVIEW data acquisition configuration. The acquisition is chosen to
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provide roughly 10 samples per excitation cycle, ensuring accurate reconstruction of the excitation
waveform and reliable extraction of displacement and acceleration signals across all tested frequencies
(see Appendices N and O for validation).

3.2.2. Imaging system
Surface deformation is recorded using a Basler a2A1920-150µm camera (2.3 MP, 1920 × 1200 pixels,
up to 150 fps) equipped with a Nikon AF-S NIKKOR 24–85 mm f/3.5–4.5G ED VR lens. The camera is
mounted in a fixed top-down orientation, 800mm above the tank base, covering the full fluid domain.
Image acquisition is synchronized with the excitation signal via the sync-out of the multifunction synthe-
sizer routed through a frequency divider, ensuring phase-locked recording. Camera gain and exposure
are fixed at 12 and 2000µs, respectively. The frame rate capability exceeds the minimum requirement
of 90 fps, capturing at least one image per cycle at the maximum forcing frequency of 90Hz.

A speckle pattern (dot diameter 0.25mm) is printed on transparent sketch paper and affixed to the
underside of the tank as an optical reference. Illumination is provided from below by a collimated LED
(70mm diameter) powered by a digitally controlled DC supply (0–30 V, 3 A). Images and videos are
acquired using Pylon Viewer (Basler, Germany), with the field of view cropped to 1536 × 1200 pixels
to match the illuminated area.

3.2.3. Floating structure preparation, deployment and characterization
To investigate the effects of floating structures, a compliant thin sheet is gently placed on the fluid
surface. ELASTOSIL® Film 2030 (Wacker Chemie AG), a transparent, highly elastic silicone elastomer,
is used (Figure 3.4a (vii)). Circular samples with a radius of 6 cm (diameter 12 cm) are laser-cut to
ensure uniform geometry and to prevent contact with the container walls.

Four nominal thicknesses are tested: 20 ± 1µm, 50.0 ± 2.5 µm, 100 ± 5µm, and 200 ± 10µm, con-
sistent with the ±5% manufacturer tolerance. To minimize wrinkling during deployment, films are care-
fully submerged and released from their carrier sheets underwater, allowing them to settle smoothly
onto the fluid interface. Trapped air and surface water are removed prior to measurements.

The material density is 𝜌 = 1.075± 0.025g/cm3, and a Poisson ratio of 𝜈 = 0.5 is assumed, con-
sistent with the nearly incompressible behavior of silicone elastomers. The manufacturer-reported
Young’s modulus, 𝐸 = 0.58± 0.02MPa, based on tensile tests of the 20µm films (Appendix G.8), is
independently verified using a mechanical test based on static wrinkles.

Young’s modulus check
To validate the material stiffness and assess the impact of laser cutting, a static wrinkling test is per-
formed. Thin rectangular specimens of ELASTOSIL® Film 2030 are gently compressed on a deionized
water layer to induce a wrinkled state. The resulting wrinkle wavelength, governed by the balance of
film bending and hydrostatic forces, provides a direct measurement of bending stiffness. According to
marginal stability theory Vella et al. (2004), the wavelength 𝜆𝑐 scales as

𝜆𝑐 ∼ 2𝜋 (
𝐸𝑑3

12(1 − 𝜈2)𝜌𝑔)
1/4

, 1 (3.1)

allowing extraction of the Young’s modulus 𝐸 from measured wrinkle wavelengths.
Tests are conducted for both hand-cut and laser-cut films across four thicknesses (𝑑). For each

case, wrinkle wavelengths are extracted using the same image-based method later applied to dynamic
tests (see Section 3.4.2). The results show good agreement with theoretical predictions using the
supplier’s reported modulus of 𝐸 = 0.58± 0.02MPa (Figure 3.3).

No systematic differences are observed between hand-cut and laser-cut samples, confirming that
laser cutting does not alter the mechanical properties. This validates the use of laser cutting as a uni-
form sample preparation method. Based on this, the supplier-provided modulus is used in subsequent
calculations of plate bending stiffness 𝐵:

𝐵 = 𝐸𝑑3
12(1 − 𝜈2) .

1This equation resembles the one from the Introduction 1, Equation 1.1.



3.2. Experimental setup 15

Figure 3.3: Measured wrinkle wavelengths as a function of film thickness for ELASTOSIL® Film 2030. Circles: hand-cut samples;
squares: laser-cut samples; triangles: theoretical predictions from Equation 3.1.

3.2.4. Working fluids and tank configuration
Two working fluids are considered in this study: silicone oil (Silicones and More, 5 cSt) and deionized
water (Sigma-Aldrich, Product No. 8.48333.9010). Silicone oil is initially chosen because its viscosity
and surface tension are stable and relatively insensitive to contamination, making it suitable for repro-
ducible Faraday-type experiments. However, the ELASTOSIL® films sink in silicone oil, preventing
floating-structure tests. Consequently, silicone oil is used only in preliminary baseline experiments to
validate the experimental setup and analysis procedure. All subsequent floating-sheet experiments are
conducted in deionized water, which reliably supports the films.

The laboratory ambient temperature is maintained at 20 ± 2 °C, and the fluid properties are sum-
marized in Table 3.1. Air properties are also included in the table for reference in theoretical models
discussed in Section 3.4.1.

Table 3.1: Physical properties of the working fluids used in the experiments, measured or reported at 20 °C. The table lists the
density 𝜌, dynamic viscosity 𝜂, kinematic viscosity 𝜈̃, surface tension 𝜎, and refractive index 𝑛 for each fluid. These parameters
were used for theoretical predictions and data analysis in the study.

Fluid 𝜌 [kg/m3] 𝜂 [mPa s] 𝜈̃ [mm2/s] 𝜎 [mN/m] 𝑛 [-]
Water 1000 1.00 1.00 72.75 1.33
Silicone oil 5 cSt 910 4.55 5.00 19.70 1.40
Air 1.204 0.0181 15.0 0.00 1.00

The fluid depth is fixed at ℎ = 10mm for all tests, as discussed in Section 3.4.1.
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3.3. Optical method: Synthetic Schlieren
The response of both the bare fluid interface and the fluid–sheet system is characterized using a
background-oriented imaging technique, commonly known as synthetic schlieren (Moisy et al., 2009).
This method monitors the apparent displacement of a background dot pattern as viewed through the
refracting fluid interface. Surface waves distort the optical path, producing measurable in-plane dis-
placements of the background pattern, as illustrated schematically in Figure 3.4.

(a)

(b)

Figure 3.4: Synthetic Schlieren setup used to visualize surface deformation and refraction. (a) Overview of the optical setup,
showing key components: (ii) cylindrical glass tank, (iv) Basler camera with lens, (v) dot pattern, (vi) LED, and (vii) floating
ELASTOSIL® Film 2030. (b) Magnified view of the region marked in (a), showing the four layers: glass, fluid (deionized water is
presented), ELASTOSIL® Film 2030, and air. Dot displacement is used to quantify surface deformation.

In classical synthetic schlieren, these measured displacements can be integrated to reconstruct the
full interface elevation field. In this study, however, the primary goal is to determine the dominant surface
wavelengths. Since wavelength information is directly encoded in the periodicity of the displacement
field, full surface reconstruction is unnecessary. This approach avoids detailed modeling of refractive
index gradients and reduces sensitivity to noise. The key assumption is that the observed wave field is
stationary and periodic, such that the displacement pattern preserves the wavelength of the underlying
surface deformation.

3.3.1. Principle
Each measurement requires at minimum two images: an undisturbed reference image of the back-
ground dot pattern and a disturbed image captured during excitation. The displacement field between
the two is obtained via digital image correlation (DIC), which divides the images into interrogation win-
dows and tracks the apparent motion of the dot features. These displacements primarily reflect local
slope variations of the fluid interface, which are proportional to both the amplitude and spatial charac-
teristics of the surface waves.

3.3.2. Implementation
Image correlation is performedwith the open-source packages Ncorr (Matlab, version 1.14.0.0) (Blaber
et al., 2015) and OpenPIV (Python) (Liberzon et al., 2021). Both packages use an interrogation win-
dow size of 24 pixels with a 20-pixel overlap, ensuring consistent displacement analysis. Ncorr is
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applied to free-surface cases (both silicone oil and deionized water), where large dot deformations and
occasional dot stretching occur, proving to be more robust under these conditions. OpenPIV is used
for surfaces covered with ELASTOSIL® films, offering faster processing while producing comparable
results.

Digital image correlation (DIC) tracks the apparent motion of the speckle pattern by correlating inter-
rogation windows between reference and disturbed images. The chosen window size balances spatial
resolution and measurement noise: smaller windows capture finer details but increase noise sensitiv-
ity, while larger windows provide smoother fields at the expense of resolving small-scale variations.
The 20-pixel overlap ensures continuity between windows; although higher than typical literature rec-
ommendations, it produces reliable displacement fields for the chosen pattern density and contrast. A
more systematic study of window size and overlap could further optimize accuracy and is suggested
as a future recommendation.

Pixel displacements are converted into physical units using calibration factors obtained from refer-
ence objects, yielding a scale of 0.06 mm/pixel (see Appendix H).

To ensure well-defined periodicity in the displacement fields, image acquisition is phase-locked to
the forcing cycle. The function generator provides two outputs: a sine wave that drives the shaker,
producing vertical oscillations of the fluid surface, and a TTL (digital) output that triggers the camera
through a frequency divider. The TTL pulse centers determine the instants of camera exposure, and
the frequency divider selects every 𝑛th excitation cycle. In MATLAB plots, gray rectangles indicate
camera exposure windows, and black dots mark the center of each capture.

The vertical motion of the surface is visualized in the Surface disp plots, which show the upward
and downward displacement of the fluid at each instant. This does not represent the full surface shape
but corresponds to the displacement captured via phase-locked acquisition.

Two illustrative examples of subharmonic surface motion (oscillation at half the shaker frequency)
are shown in Figures 3.5 and 3.6. In the first example (Figure 3.5), an even frequency divider captures
the same phase of the surface oscillation each cycle, indicated by the black dots. In the second example
(Figure 3.6), an odd frequency divider results in successive captures at opposite phases (180° apart),
alternating between peaks and troughs, which highlights the onset of subharmonic behavior.

This approach demonstrates how the combination of the function generator sine, TTL output, fre-
quency divider, and camera exposure timing enables precise phase-locked acquisition, which is critical
for measuring reproducible displacements and analyzing both harmonic and subharmonic wave behav-
ior. Validation of the phase-locking is provided in Appendix I.
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Figure 3.5: Example of phase-locked acquisition of subharmonic surface motion using an even frequency divider value of 2
(simulation). Top graph: function generator output at 40Hz (dotted line) and TTL trigger signal (solid black line). Second graph:
shaker displacement replicating the 40Hz signal. Third graph: subharmonic surface displacement at 20Hz. Black dots indicate
camera trigger times. Fourth graph: camera trigger signal and camera exposure windows of 2ms (gray rectangles). This
illustrates how an even frequency divider synchronizes image acquisition to the same phase of the surface oscillation.
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Figure 3.6: Example of phase-locked acquisition of subharmonic surface motion using an odd frequency divider value of 15
(simulation). Top graph: function generator output at 60Hz (dotted line) and TTL trigger signal (solid black line). Second graph:
shaker displacement replicating the 60Hz signal. Third graph: subharmonic surface displacement at 30Hz, with successive
camera captures occurring at opposite phases (180° apart), alternating between peaks and troughs. Fourth graph: camera
trigger signal and camera exposure windows of 2ms (gray rectangles). This illustrates how an odd frequency divider synchronizes
image acquisition to alternate phases of the surface oscillation.
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3.4. Analysis methods
3.4.1. Analytical fluid-fluid Faraday instability model
To design and interpret the experiments, reference predictions of wave characteristics were established
using a Python implementation of the linear stability analysis developed by Kumar and Tuckerman
(Kumar & Tuckerman, 1994). This approach applies Floquet theory to a fluid–fluid system, in the
present study, a fluid–air interface, to compute the stability of a flat interface under vertical oscillations.
The model provides theoretical estimates of the critical wavenumber 𝑘crit, the corresponding critical
wavelength 𝜆crit, and the critical acceleration amplitude 𝑎crit at the onset of Faraday instabilities.

The implementation requires, for each fluid, the density, dynamic viscosity, fluid layer height, and
surface tension (Table 3.1), as well as the excitation frequency of the vertical oscillations. The air layer
is treated as effectively infinite. These parameters enable accurate prediction of instability thresholds
under the experimental conditions used here.

The model was evaluated over excitation frequencies in the range 0Hz to 100Hz and fluid depths
between 5mm to 25mm. Figure 3.7 shows a representative stability diagram for the deionized water–
air system at 30Hz and 10mm depth. Red regions indicate subharmonic instability tongues, blue
regions indicate harmonic instability, and the black cross marks the critical point of instability.

Figure 3.7: Representative stability diagram for the deionized water–air system at 30Hz excitation frequency and 10mm fluid
depth. Acceleration normalized by 𝑔 is plotted against wavenumber. Red regions indicate harmonic instability, blue regions
indicate subharmonic instability, and the black cross marks the critical point of instability. For this case, the critical values are
𝑎crit = 0.0301𝑔 and 𝑘crit = 0.4071/mm.

Silicone oil, described in Section 3.2.4, was initially used in preliminary tests due to its well-defined
rheological properties. Predictions for silicone oil were employed to define measurement targets, in-
cluding wavelength and acceleration ranges (Section 3.1), and also served as validation for free-surface
experiments (dashed lines in Section 4, Figures 4.4–4.6). Although silicone oil could not support float-
ing sheets, these analyses provided a reliable benchmark. The silicone oil predictions are shown in
Figure 3.1.

Subsequently, the model was evaluated using deionized water properties to provide validation for
free-surface measurements in the main experiments (dashed lines in Section 4, Figures 4.5–4.7), with
results shown in Figure 3.8.

Based on Figures 3.8 and 3.1, the fluid depth was fixed at ℎ = 10mm for all tests. Variations in
depth have a minor effect on both wavelength and acceleration, and this choice ensures that waves
remain within the tank while maintaining consistency across experiments.
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Figure 3.8: Predicted stability characteristics for the silicone oil–air system based on the linear stability analysis of Kumar and
Tuckerman (Kumar & Tuckerman, 1994). Shown are the critical wavenumber 𝑘𝑐𝑟𝑖𝑡, wavelength 𝜆𝑐𝑟𝑖𝑡, and normalized accelera-
tion amplitude 𝑎𝑐𝑟𝑖𝑡/𝑔 as functions of excitation frequency, evaluated for fluid depths between 5mm and 25mm.

3.4.2. Wavelength derivation
The analysis aims to determine the dominant wavelength of the standing surface waves from image
sequences. Several approaches were tested, but only the one described below proved robust and was
adopted for all subsequent analyses. The method proceeds in three steps: displacement fields are first
extracted from the surface motion, then transformed into an orientation-independent representation,
and finally subjected to spectral analysis to identify the dominant wavelength. To make the procedure
transparent, it is illustrated step by step using synthetic data, which provide clearer visual examples
than experimental images where patterns are less ideal.

Step 1: Displacement extraction The first step is to obtain surface displacements from the image
data. Each recording contains a reference image of the quiescent (undeformed) surface (Figure 3.9a)
and a frame of the surface under oscillatory forcing (Figure 3.9b). Digital Image Correlation (DIC) is
applied frame-by-frame, using the reference image as the baseline. This produces two displacement
fields, 𝑑𝑥 (Figure 3.9c) and 𝑑𝑦 (Figure 3.9d), corresponding to in-plane motion along the 𝑥- and 𝑦-
directions, respectively.

In practice, evaluating multiple frames is important, as a single snapshot may not fully capture the
dominant wavelength due to phase-dependent variations in the surface deformation. By analyzing
a sequence of frames, the method accounts for temporal fluctuations and ensures a more reliable
estimation of the standing wave characteristics.

To illustrate the method more transparently, a synthetic wave field is constructed. An idealized
surface height field 𝜁(𝑥, 𝑦) is prescribed (Figure 3.10) as

𝜁(𝑥, 𝑦) = 𝜁𝑎 sin(
2𝜋𝑥
𝜆 ) sin(2𝜋𝑦𝜆 ),

where 𝜁𝑎 is the wave amplitude (0.2mm in the example) and 𝜆 is the prescribed wavelength (10mm
in the example). From this known surface, the corresponding displacements 𝑑𝑥 and 𝑑𝑦 are generated
by taking spatial derivatives in the 𝑥- and 𝑦-directions. The resulting synthetic displacement fields are
shown in Figure 3.11. This approach provides clean, noise-free examples that clearly demonstrate the
link between a wavy surface and the displacement fields that DIC produces in an experiment.
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(a) (b)

(c) (d)

Figure 3.9: Example of DIC workflow for silicone oil at 80Hz. (a) Reference image, (b) deformed image under oscillation, (c)
displacement in 𝑥-direction (𝑑𝑥), (d) displacement in 𝑦-direction (𝑑𝑦). In (c–d), red indicates displacements up to 7 px and blue
down to −7 px.
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Figure 3.10: Example of a prescribed synthetic surface 𝜁(𝑥, 𝑦) used for validation. Parameters: wavelength 10mm, amplitude
0.2mm, orientation 30∘. Color map indicates local surface height.

(a) (b)

Figure 3.11: Example of synthetic displacement fields derived from the prescribed surface of Figure 3.10. (a) Displacement in
the 𝑥-direction (𝑑𝑥), (b) displacement in the 𝑦-direction (𝑑𝑦). These clean, noise-free fields illustrate how the surface height
relates to DIC-measured displacements in experiments.
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Step 2: Orientation-independent representation Because the wave field inside the circular con-
tainer does not have a fixed orientation, the two displacement components are combined into a single
complex field

̃𝜁(𝑥, 𝑦) = 𝜕𝜁(𝑥, 𝑦)
𝜕𝑥 + 𝑖𝜕𝜁(𝑥, 𝑦)𝜕𝑦 = 𝑑𝑥(𝑥, 𝑦) + 𝑖𝑑𝑦(𝑥, 𝑦),

where 𝜁(𝑥, 𝑦) is the local surface height. This representation preserves both gradient directions simul-
taneously and enables orientation-agnostic spectral analysis.

The mathematical motivation is that the Fourier transform of the complex gradient field can be
expressed as

ℱ{ ̃𝜁(𝑥, 𝑦)} = 𝑓𝑥 ℱ{𝜁(𝑥, 𝑦)} + 𝑖𝑓𝑦 ℱ{𝜁(𝑥, 𝑦)} = (𝑓𝑥 + 𝑖𝑓𝑦) ⋅ ℱ{𝜁(𝑥, 𝑦)}.
Taking the modulus yields

|ℱ{ ̃𝜁}| = √𝑓2𝑥 + 𝑓2𝑦 ⋅ |ℱ{𝜁(𝑥, 𝑦)}| = 𝑓𝑟 ⋅ |ℱ{𝜁(𝑥, 𝑦)}|,

where 𝑓𝑟 = √𝑓2𝑥 + 𝑓2𝑦 is the radial spatial frequency. This operation makes concentric ring structures
more prominent in the Fourier domain, which directly correspond to the dominant wavelength.

Step 3: Spectral analysis The final step is to determine the dominant wavelength via spectral anal-
ysis. For each frame, the 2D Fourier spectrum of the complex gradient field ̃𝜁(𝑥, 𝑦) is computed. In the
case of experimental data, multiple frames from the same excitation condition are processed and their
spectra are summed. This averaging ensures that transient orientation effects do not bias the result.
The resulting 2D spectrum of the silicone oil at 80Hz is shown in Figure 3.12a. Because only the pos-
itive quadrant of the Fourier space is plotted (𝑓𝑥 ≥ 0, 𝑓𝑦 ≥ 0), the isotropic ring structure appears as a
bright quarter ring near the center of the plot, indicating that the largest Fourier magnitude occurs at a
well-defined radial frequency. Taking the radially averaged spectrum (Figure 3.12b) collapses the 2D
Fourier information onto a single axis. The peak in this radial spectrum corresponds to the dominant ra-
dial spatial frequency 𝑓𝑟, from which the wavelength of the standing wave can be inferred as 𝜆 = 1/𝑓𝑟.
For the silicone oil at 80Hz, the peak occurs at 𝑓𝑟 = 0.213/mm, corresponding to a wavelength of
𝜆 = 4.7mm.

For the synthetic tests, the prescribed surface was rotated (e.g., Figure 3.10) and the spectra from
multiple rotations were summed to produce an isotropic distribution that mimics the random orientations
encountered in practice. The summed 2D spectrum is shown in Figure 3.12c, and the corresponding
radially averaged spectrum in Figure 3.12d. Interestingly, the spectrum exhibits two prominent peaks:
the highest peak occurs at 𝑓𝑟 = 0.202/mm (wavelength 𝜆 = 4.95mm), while the secondary peak is
located at 𝑓𝑟 = 0.283/mm.

A possible explanation is that the analysis detects the most frequently recurring spatial pattern in
the displacement fields. In the synthetic surface case, the regions of zero slope (white regions in
the displacement maps) occur more regularly than the maxima or minima (red or blue regions), so
the Fourier transform emphasizes these repeating intervals. Both crests and troughs correspond to
zero slope, meaning that the highest peak effectively measures the distance from crest to trough, i.e.,
half a wavelength. The second peak, by contrast, occurs at a frequency larger by a factor of √2,
which most likely corresponds to the diagonal distance between consecutive crests (or troughs) in the
checkerboard-like pattern of the rotated synthetic surface. While these features arise in the synthetic
case due to its idealized, noise-free structure, they do not appear in experimental data, which lack
perfectly square, regular patterns.

This three-step procedure, from displacement extraction via DIC to orientation-independent repre-
sentation to spectral analysis, provides a robust and reproducible means of determining the governing
wavelength. Convergence studies (Appendix J and Appendix K) demonstrate that stable wavelength
estimates are obtained after analyzing 180 frames per test, beyond which additional frames do not alter
the results. Similarly, a radial binning of 1200 bins is adopted to generate the 2D Fourier spectrum,
providing sufficient resolution for identifying the dominant wavelength. These parameters are used
consistently for all subsequent analyses. Finally, Section 3.6 discusses the accuracy and limitations
of this approach, ensuring transparent and reliable wavelength determination across all experimental
cases.
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(a) (b)

(c) (d)

Figure 3.12: (a) Summed 2D Fourier spectrum of silicone oil at 80Hz. (b) Radial average spectrum of (a), indicating a peak
radial spatial frequency 𝑓𝑟 = 0.213/mm (wavelength 𝜆 = 4.7mm). (c) Summed 2D Fourier spectrum of the synthetic surface.
(d) Radial average spectrum of (c), indicating peaks at 𝑓𝑟 = 0.202/mm (𝜆 = 4.95mm) and 𝑓𝑟 = 0.283/mm (diagonal spacing).
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3.4.3. Critical acceleration derivation
The goal of this subsection is to determine the critical acceleration, 𝑎𝑐𝑟𝑖𝑡, required to initiate the subhar-
monic instability in the floating layer. While the original approach aims to infer 𝑎𝑐𝑟𝑖𝑡 from the temporal
growth of surface displacements at different excitation amplitudes, practical limitations of the method
lead to a more direct measurement of the lowest acceleration at which standing waves clearly appear.

Onset time and initial method for critical acceleration The original plan to determine the critical
acceleration relies on identifying the time it takes for subharmonic wave motion to appear at a given
excitation amplitude. By performing tests at multiple acceleration amplitudes and plotting the inverse of
the onset time (1/𝑡0) against acceleration, a linear extrapolation to 1/𝑡0 = 0 indicates the acceleration
at which the instability would take infinite time to appear, i.e., the critical acceleration.

To detect the onset of the instability, the temporal evolution of the surface displacement is tracked
using Digital Image Correlation (DIC). For each frame, the maximum in-plane displacement is extracted
from the displacement fields, yielding a time series of displacement magnitudes. These data are then
fitted with a logistic growth function

𝑓(𝑡) = Δ𝑑
1 + 𝑒−𝐾(𝑡−𝑡0) + 𝑑0,

where Δ𝑑 is the total displacement change between the plateaus, 𝐾 is the growth rate, 𝑡0 is the inflection
point, and 𝑑0 is the initial displacement. The inflection point 𝑡0, corresponding to the time of steepest
growth in displacement, is taken as the objective onset time of the subharmonic instability.

The derivative of the logistic function,

𝑑𝑓(𝑡)
𝑑𝑡 = Δ𝑑 𝐾 𝑒−𝐾(𝑡−𝑡0)

(1 + 𝑒−𝐾(𝑡−𝑡0))2
,

reaches its maximum at 𝑡 = 𝑡0,
𝑑𝑓(𝑡)
𝑑𝑡 |

𝑡=𝑡0
= Δ𝑑𝐾

4 .

Figure 3.13 illustrates a simulated example of surface displacement fitted with a logistic curve. In this
case, the fitted parameters are Δ𝑑 = 5.07px, 𝐾 = 0.24/s, 𝑡0 = 24.93 s, and 𝑑0 = 1.95px.

However, the logistic growth approach has both theoretical and practical limitations for describing
the onset of subharmonic Faraday waves. The standard logistic differential equation,

𝑑𝑓
𝑑𝑡 = 𝐾𝑓 −

𝐾
Δ𝑑𝑓

2,

assumes monotonic growth toward a positive saturation plateau and does not preserve the odd sym-
metry of the wave amplitude: negative excursions are treated the same as positive ones, whereas the
physical standing-wave system oscillates around zero. A cubic nonlinearity,

𝑑𝑓
𝑑𝑡 = 𝐾𝑓 −

𝐾
Δ𝑑2 𝑓

3,

restores this symmetry andmore accurately reflects the subharmonic dynamics. Because the quadratic
logistic model cannot represent negative displacements, the displacement magnitude |𝑓(𝑡)| is used
for fitting. Even so, experiments with the floating material reveal that the logistic fit is unreliable: it
assumes a well-defined initial plateau and a clear saturation plateau, but the initial plateau is often
negligible. Moreover, the inferred onset time 𝑡0 depends strongly on the number of frames included
in the fit. Figure 3.14 illustrates this sensitivity for a 100µm film at 70Hz (test 3). As the number of
frames in the fitting window increases, the resulting onset time changes, demonstrating that a consistent
determination of 𝑡0 is not possible. For these reasons, the logistic method is ultimately not used to
quantify the onset of subharmonic motion.
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Figure 3.13: Example of simulated surface displacement over time (in pixels) fitted with a logistic growth curve. Displacement
data are shown as circles, and the fitted logistic curve is shown as a solid black line. Fitted parameters: total displacement
change Δ𝑑 = 5.07px, growth rate 𝐾 = 0.24/s, inflection point 𝑡0 = 24.93 s, and initial displacement 𝑑0 = 1.95px. This illustrates
how the onset time of subharmonic instability is determined from the steepest growth in displacement.

(a) (b)

Figure 3.14: Maximum displacement magnitude (px) from in-plane DIC for deionized water covered with a 100µm floating sheet
at 60Hz. Each time step corresponds to a recorded frame. Green markers indicate the data included in the logistic fit, red
markers show all measured points, and the solid red line is the resulting fit. (a) uses 50 frames (𝑡0 = 1.71 s), (b) uses 150 frames
(𝑡0 = 1.59 s), showing that when the initial plateau is not clearly present, the estimated onset time depends on the chosen frame
range.
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Acceleration measurement and practical determination of critical acceleration Instead, the crit-
ical acceleration is determined experimentally by observing the appearance of standing waves at suf-
ficiently high excitation amplitudes and performing multiple tests while gradually lowering the acceler-
ation. The lowest acceleration at which waves appear is taken as the critical acceleration.

Acceleration data are recorded using an accelerometer mounted on the shaker. The accelerometer
calibration factor, determined in-house, is 956 ± 15mV/g (Appendix L). For each test, three short time
windows are extracted at randomly selected moments in the video to verify the stability of the excitation.
The peak-to-peak voltage from each window is converted to acceleration using the calibrated sensitivity,
and the final acceleration amplitude assigned to the test is the average of these three measurements.

Preliminary tests (Appendices N and O) confirm that the laser distance meter reliably captures
both amplitude and frequency of the shaker’s oscillatory motion. Amplitude estimates are consistent
across different sampling rates, and a sampling rate approximately ten times higher than the excitation
frequency provides the most accurate and stable measurements. These results directly support the
temporal resolution requirement outlined in Section 3.1, which specifies capturing at least 5–10 sam-
ples per excitation period. The convergence of the experimental tests with this requirement indicates
that measuring around ten points per period is sufficient to accurately and reproducibly resolve both
displacement and acceleration data.

3.4.4. Surface reconstruction and amplitude estimation
The vertical surface displacement 𝜁(𝑥, 𝑦) is reconstructed from the in-plane dot-pattern displacements
𝑑𝑥(𝑥, 𝑦) and 𝑑𝑦(𝑥, 𝑦) obtained via synthetic schlieren measurements described in Section 3.3 (Moisy
et al., 2009). Following the small-slope approximation, the apparent in-plane displacements are pro-
portional to the surface gradient:

𝜕𝜁
𝜕𝑥 ≈ 𝛼 𝑑𝑥 ,

𝜕𝜁
𝜕𝑦 ≈ 𝛼 𝑑𝑦 ,

where
𝛼 = 𝑛air

𝑛water 𝐿air
is an optical calibration factor depending on the refractive indices and the effective air path length 𝐿air
(Moisy et al., 2009). In the present setup, the camera–pattern distance is measured as 0.81m, while
the combined water and glass thickness between the pattern and the free surface is approximately
0.02m, yielding an air path length of

𝐿air = 0.81 − 0.02 = 0.79m, and thus 𝛼 ≈ 0.95 for 𝑛air = 1.00, 𝑛water = 1.333.

Moisy et al. (Moisy et al., 2009) reconstructed the surface by minimizing the difference between
the measured slope field 𝜅 = (𝛼𝑑𝑥 , 𝛼𝑑𝑦) and the gradient of a reconstructed surface. This can be
expressed mathematically as a least-squares problem:

min
𝜁(𝑥,𝑦)

∬[(𝜕𝜁𝜕𝑥 − 𝛼𝑑𝑥)
2
+ (𝜕𝜁𝜕𝑦 − 𝛼𝑑𝑦)

2
] 𝑑𝑥 𝑑𝑦,

where the integral is taken over themeasurement domain. The functional above represents the squared
error between the measured slopes and the gradient of the reconstructed surface.

To solve this minimization problem, one can use the Euler-Lagrange equation. For a functional of
the form

𝐽[𝜁] = ∬𝑓(𝜕𝑥𝜁, 𝜕𝑦𝜁) 𝑑𝑥 𝑑𝑦,

the Euler-Lagrange equation is

𝜕
𝜕𝑥

𝜕𝑓
𝜕(𝜕𝑥𝜁)

+ 𝜕
𝜕𝑦

𝜕𝑓
𝜕(𝜕𝑦𝜁)

− 𝜕𝑓𝜕𝑧 = 0.

In our case, 𝑓 = (𝜕𝑥𝜁 − 𝛼𝑑𝑥)2 + (𝜕𝑦𝜁 − 𝛼𝑑𝑦)2, so that
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𝜕𝑓
𝜕(𝜕𝑥𝜁)

= 2(𝜕𝑥𝜁 − 𝛼𝑑𝑥),
𝜕𝑓

𝜕(𝜕𝑦𝜁)
= 2(𝜕𝑦𝜁 − 𝛼𝑑𝑦).

𝜕𝑓
𝜕𝑧 = 0

Substituting into the Euler-Lagrange equation and dividing through by 2 gives

𝜕
𝜕𝑥 (𝜕𝑥𝜁 − 𝛼𝑑𝑥) +

𝜕
𝜕𝑦(𝜕𝑦𝜁 − 𝛼𝑑𝑦) = 0.

Expanding the derivatives leads to

𝜕2𝜁
𝜕𝑥2 +

𝜕2𝜁
𝜕𝑦2 =

𝜕(𝛼𝑑𝑥)
𝜕𝑥 +

𝜕(𝛼𝑑𝑦)
𝜕𝑦 .

This can be compactly written using the Laplace operator as

∇2𝜁(𝑥, 𝑦) = 𝜕(𝛼𝑑𝑥)
𝜕𝑥 +

𝜕(𝛼𝑑𝑦)
𝜕𝑦 ,

which is the Poisson equation that we solve numerically to reconstruct the surface elevation 𝜁(𝑥, 𝑦)
from the measured slope field.

In this study, the Poisson equation is solved numerically in Fourier space. This approach ensures
that the reconstructed surface is consistent with both 𝑥- and 𝑦-gradients simultaneously and provides
a smooth, least-squares-optimal reconstruction. The Fourier-based solver is naturally suited for a rect-
angular computational grid, but in this study the measured data are restricted to a circular field of view.
Grid points outside this circular region are masked during reconstruction, which does not affect the
accuracy of the reconstructed surface inside the measurement region.

To remove systematic slope artefacts (also noted by Moisy et al. (2009)), a best-fit tilted plane is
subtracted from 𝜁(𝑥, 𝑦). Wave amplitudes are then estimated as half the peak-to-trough difference.
However this method is sensitive to outliers: a single corrupted displacement vector can introduce
spurious maxima or minima, which may dominate the amplitude estimate even if the rest of the field is
reconstructed correctly.

For amplitude estimation, this reconstruction is performed on a single representative image rather
than a full time series. This contrasts with the wavelength analysis, where the full temporal sequence
of surface displacements is used and Fourier-based methods are applied to determine the dominant
wavelengths. The single-image approach suffices for order-of-magnitude amplitude estimates but does
not capture temporal variations or provide the statistical robustness afforded by time-series analysis.

The objective of this reconstruction is not to provide highly accurate hydroelastic amplitude mea-
surements, but to obtain the correct order of magnitude for wave steepness estimation and wavelength
cross-checking. Because the theoretical calibration factor relies on small-angle assumptions and ne-
glects higher-order refraction effects, these amplitudes should be considered approximate; quantitative
measurements require direct calibration against a known surface profile.

3.5. Experimental procedure and data treatment
Measurement procedure Before each measurement, the fluid surface is allowed to come to appar-
ent rest, such that no visible surface motion remains. No quantitative verification of this rest condition is
performed (see Chapter 7 Section 7.2 for recommendations on how this could be improved). While the
surface is settling, the desired excitation frequency and amplitude are set using the multifunction syn-
thesizer. The frequency divider value is adjusted to provide an image acquisition rate of approximately
4 frames per second. This rate is not intended to resolve every oscillation period; instead, taking one
image every few excitation cycles makes it possible to record a longer time span with the same total
number of frames, while still providing sufficient information to detect the onset of wave motion. Using
an odd divider setting ensures that successive images correspond to alternating wave phases, which
makes the onset of motion especially visible in the displacement of the dot pattern. For example, a
divider value of 15 is used for an excitation frequency of 60Hz (Figure 3.6).

Once these parameters are established, a reference image of the static surface and the underlying
dot pattern is captured. This reference frame serves as a baseline for subsequent displacement cal-
culations. Next, the multifunction synthesizer and video recording system are initiated simultaneously,
capturing the surface response over a sequence of 380 frames. The sequence length of 380 frames
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is chosen as a practical compromise: long enough to ensure capture of the instability onset and sub-
sequent steady oscillations, while avoiding excessive data storage demands. No dedicated analysis is
performed in advance to determine the optimal number of frames. However, a posteriori convergence
tests on the wavelength analysis (Appendix J) confirm that stable estimates can be obtained with sig-
nificantly fewer frames. For onset detection, the exact onset time is not known a priori, so a sufficiently
long sequence is necessary to ensure that the instability is reliably captured.

At the end of each run, five additional images are captured at half the excitation frequency (frequency
divider value of 2; see Figure 3.5 for an example at 40Hz). These were initially intended for alternative
methods of wavelength determination, but are ultimately excluded from the final analysis because such
sparse image sets prove insufficient for a robust spectral estimate. Finally, the shaker acceleration is
recorded with an accelerometer. The sampling interval is chosen so that approximately 10 samples
are taken per excitation cycle. The complete image–acceleration sequence is repeated three times
at random intervals to assess temporal stability and reproducibility without requiring a full time-series
analysis. An overview of the acquisition settings, including frequency divider values and sampling
intervals, is given in Table 3.2.

Table 3.2: Acquisition settings used in the experiments. For each shaker frequency 𝑓𝑠, the frequency divider value was selected
such that the image acquisition rate was close to 4 frames per second. Odd divider values ensure that successive frames
correspond to alternating wave phases. The accelerometer sampling interval was adjusted to provide about 10 samples per
excitation cycle, as validated in Appendix O.

Shaker frequency 𝑓𝑠 [Hz] Frequency divider value [-] Accelerometer sampling interval [ms]

20 5 5
30 7 3
40 11 3
50 13 2
60 15 2
70 17 1
80 21 1
90 23 1

Frequency and amplitude variation Systematic variations of excitation frequency and amplitude are
carried out for all fluids and material samples. In the silicone oil reference tests (without floating films),
frequencies in the range of 20Hz to 80Hz are explored in 10Hz increments, with five discrete amplitude
settings tested per frequency. At each frequency, the acceleration is decreased stepwise, starting from
high amplitude and progressing toward lower values. The chosen frequency range is guided by the
predictions of the linear stability model (Figure 3.1). Frequencies below 20Hz produce wavelengths
exceeding the tank dimensions and the limited field of view imposed by the LED illumination, making
reliable measurement impractical. To assess repeatability, each frequency–amplitude combination is
repeated three times (see Chapter 4 for a quantitative demonstration of reproducibility).

For deionized water, both reference tests (without floating films) and material tests (with floating
films) are performed. Reference tests follow a similar protocol, but here a range of frequencies from
30Hz to 90Hz is used, with six amplitude settings per frequency. The lower bound is set higher than
for silicone oil to ensure the wavelengths remain fully visible within the field of view, consistent with
model predictions (Figure 3.8), while the upper bound is chosen to remain within a range where sig-
nificant wavelength variation can still be observed. Material samples with thicknesses of 20 ± 1µm,
50.0 ± 2.5 µm, 100 ± 5µm, and 200 ± 10µm are examined over the entire frequency range. To balance
testing time with data reliability, only the measurements at 30Hz, 60Hz, and 90Hz are repeated three
times. These frequencies are selected to represent the lower, middle, and upper bounds of the op-
erational range, corresponding to wavelengths and critical accelerations predicted by the model. As
discussed in Chapter 4, the high consistency observed in these repeated measurements supports the
assumption that the system’s behavior at intermediate frequencies and thicknesses is similarly stable.

Data processing and statistical treatment After wavelength extraction (Section 3.4.2), the results
are combined and presented as follows. For each excitation frequency, several amplitude tests are
conducted. Since Faraday theory predicts that the wavelength depends only on frequency (and not on
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forcing amplitude, once the instability is established), the mean wavelength across all amplitude tests
at that frequency is calculated. The standard error of the mean (SEM) is used to indicate uncertainty
and is plotted together with the mean values. For repeated runs at the same frequency, no additional
averaging is performed. Instead, the repetitions are shown side-by-side in the plots to allow a direct
visual assessment of reproducibility.

For accelerations, the results of all tests are reported together with their measurement uncertainties,
as determined from the accelerometer calibration procedure (see Section 3.6.4). The lowest acceler-
ation at which waves are observed is taken as the critical value, in line with what is defined in Sec-
tion 3.4.3. Repeatability in acceleration thresholds is likewise assessed by displaying repeated runs
next to each other, rather than by statistical averaging.

For amplitude, only the order of magnitude is considered; therefore, the surface profile from a single
representative test at 60Hz is presented for both the free-surface and covered cases.

3.6. Accuracy assessment
The aim of this section is to evaluate whether the experimental setup and data analysis methods meet
the measurement goals established in Section 3.1. Specifically, the assessment concerns whether the
achieved accuracy is sufficient to reliably determine the onset acceleration and dominant wavelength.

For some components, such as the laser distance meter and accelerometer, the required precision
could be anticipated in advance, which allowed the selection of appropriate sensors. For other as-
pects, particularly the extraction of wavelengths from evolving wave fields, the analysis methods were
developed in parallel with the experiments. In these cases, accuracy could only be assessed once the
complete processing workflow had been carried out.

The following discussion addresses the main sources of uncertainty in the final setup, with emphasis
on liquid depth consistency, sensor performance, and the wavelength extraction procedure. Where
possible, uncertainties are quantified and propagated to the derived quantities, enabling an evaluation
of whether the measurement goals are satisfied and supporting a robust interpretation of the results.

3.6.1. Liquid depth uncertainty
Each day, a series of tests is performed using fresh liquid, which introduces a degree of uncertainty and
non-uniformity in the measurements. Throughout all tests, a target liquid depth of 10mm is maintained.
The required volume 𝑉 is calculated based on the container dimensions, where the diameter 𝐷 is
130mm and the desired liquid height ℎ is 10mm. The volume is given by

𝑉 = 𝐴 ⋅ ℎ = 𝜋 ⋅ (𝐷2 )
2
⋅ ℎ = 𝜋 ⋅ (6.5 cm)2 ⋅ 1 cm ≈ 132.73 cm3 = 0.133L.

This volume is measured using a graduated cylinder with an indicated accuracy of ±10mL. The
liquid height is verified using a ruler with a stated precision of 1mm. The presence of the meniscus
may introduce additional offsets that affect the exact liquid depth. Although both the graduated cylinder
and the ruler have specified accuracy limits, measurement precision up to roughly half of the indicated
uncertainty is often achievable in practice.

Considering the volume uncertainty as ±5mL, the corresponding uncertainty in liquid height 𝛿ℎ can
be estimated by dividing the volume uncertainty 𝛿𝑉 by the cross-sectional area 𝐴:

𝛿ℎ = 𝛿𝑉
𝐴 = 5 cm3

132.73 cm2 ≈ 0.0377 cm = 0.38mm.

This indicates that the uncertainty in volumemeasurement contributes up to approximately 0.38mm
variation in the liquid height. Based on the preliminary analysis in Section 3.4.1, variations of this
magnitude are not expected to significantly affect the measured wavelength or critical acceleration
values during the experiments.

3.6.2. Multifunction synthesizer uncertainty
Themultifunction synthesizer that is used to drive the shaker has a frequency accuracy of±5ppm (man-
ufacturer specifications, Appendix G.1), ensuring highly stable and precise excitation across all tested
frequencies. This level of accuracy guarantees negligible deviation over the experimental timescales
and is more than sufficient for the frequency ranges considered in this study.
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3.6.3. Laser distance meter uncertainty
The laser distance meter used in this study is specified with two important accuracy parameters: re-
peatability and linearity (manufacturer specifications, Appendix G.5). The repeatability, defined as
±8µm, represents the device’s ability to consistently reproduce the same measurement under iden-
tical conditions and is an indicator of its short-term precision or noise level. Linearity, specified as
≤ 160µm, denotes the maximum deviation of the sensor’s output from an ideal linear response over
the entire measurement range, representing the maximum systematic error or bias.

Since the focus of this study is on tracking the vertical motion of the shaker platform continuously
over time, repeatability is the more relevant parameter. This is because the experiment requires resolv-
ing small changes and oscillations in displacement with high temporal resolution, where measurement
noise and consistency dominate the accuracy requirements. In contrast, linearity affects the absolute
accuracy of displacement measurements over the full range, which is less critical in this context where
relative motion and dynamic changes are of primary interest. Therefore, the repeatability value is used
to characterize the effective measurement resolution in the analysis.

3.6.4. Accelerometer and acceleration measurement uncertainty
The accelerometer output was recorded through the LabVIEW interface with sampling intervals chosen
to yield approximately ten samples per excitation period (Table 3.2). This sampling density provides
sufficient temporal resolution for accurate reconstruction of the acceleration waveform, in accordance
with the Nyquist–Shannon sampling theorem, which states that a continuous signal can be exactly
reconstructed if the sampling rate exceeds twice the highest frequency present in the signal (Shannon,
1949). The sampling strategy was applied consistently across all excitation frequencies to ensure
reliable signal acquisition (see Appendices N and O).

The accelerometer is connected to the shaker via a dedicated sensor line integrated into the ex-
perimental setup. According to the manufacturer’s specifications (Appendix G.6), the device exhibits
a maximum DC offset of ±30 mV and a gain accuracy of ±1%. Since no calibration factor was pro-
vided by the manufacturer, a dedicated calibration procedure was performed using known excitation
parameters, yielding

𝐶 = (956 ± 15) mV/g,
which is applied consistently to all subsequent measurements (see Appendix L for details). Measured
voltage amplitude 𝑉𝑎 is converted to acceleration amplitude 𝑎𝑎 in units of 𝑔 via

𝑎𝑎 =
𝑉𝑎
𝐶 ,

with combined standard uncertainty

𝛿𝑎𝑎 = 𝑎𝑎 √(
𝛿𝑉𝑎
𝑉𝑎
)
2
+ (𝛿𝐶𝐶 )

2
2.

Here, 𝛿𝑉𝑎 accounts for the ±1% gain accuracy, and 𝛿𝐶 = 15 mV/g represents the calibration uncer-
tainty.

This framework ensures that reported accelerations include both instrumental and calibration uncer-
tainties, providing realistic confidence bounds consistent with GUM and established error propagation
approaches.

3.6.5. Uncertainty propagation from images to wavelength
Section 3.4.2 describes the extraction of the dominant wavelength from image sequences via displace-
ment estimation, complex-field representation, and Fourier-domain analysis. The uncertainty at each
stage is quantified to determine the resulting wavelength uncertainty in millimetres. This analysis fol-
lows theGuide to the Expression of Uncertainty in Measurement (GUM) (Joint Committee for Guides in
Metrology (JCGM), 2008) and standard error propagation techniques (Bevington & Robinson, D. Keith,
2003; Taylor, 1997), using first-order (linearized) propagation throughout.

2First-order propagation for independent variables 𝑉𝑎 and 𝐶: 𝛿𝑎𝑎 = √(𝜕𝑎𝑎/𝜕𝑉𝑎 𝛿𝑉𝑎)2 + (𝜕𝑎𝑎/𝜕𝐶 𝛿𝐶)2 with 𝜕𝑎𝑎/𝜕𝑉𝑎 = 1/𝐶,
𝜕𝑎𝑎/𝜕𝐶 = −𝑉𝑎/𝐶2.
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The processing chain comprises five steps: (i) extraction of displacement fields from the DIC, (ii)
formation of the complex displacement amplitude, (iii) Fourier analysis with finite resolution and mea-
surement noise, (iv) radial averaging into bins, and (v) conversion from pixels to physical units.

Uncertainty sources are identified at each stage and, when independent, are combined using the
Root-Sum-Square (RSS) rule.

1) DIC displacement fields Digital Image Correlation (DIC) provides the in-plane displacement fields
𝑑𝑥(𝑥, 𝑦) and 𝑑𝑦(𝑥, 𝑦) on a sampling grid. Each component is subject to Type A uncertainty arising
from factors such as image noise, subset size, interpolation, and correlation quality. Several studies
have systematically quantified these contributions; in particular, Pan et al. (2010) provide a detailed
error budget for two-dimensional DIC, including effects from optics and pattern quality, with typical
precisions ranging from 0.01 px–0.05 px under static conditions. A broader review of DIC error sources
is also given by Pan (2018).

Type A uncertainties can, in principle, be estimated by comparing repeatedmeasurements of a static
target. True static image pairs were not acquired in these experiments; instead, a posteriori “static”
tests were attempted using sequences from the oscillating Faraday-wave data. Although these phase-
locked image pairs could ideally capture the surface at identical instances, slight rotations and surface
evolution introduce apparent displacements of 0.5 px to 1 px, overestimating the Type A uncertainty
and not reflecting the intrinsic DIC precision. Details of these attempted static tests are provided in
Appendix M.

Given the absence of true static repeats, a literature-based baseline for the DIC uncertainty is
adopted. General principles of DIC, including the effects of image quality, subset (window) size, step
size, and correlation algorithms on measurement accuracy, are discussed by Sutton et al. (2010). The
present study does not systematically investigate the influence of subset or step size on DIC preci-
sion due to the lack of dedicated static images. Instead, a representative value from the literature is
assumed. Quantitative guidance from Pan (2018) and Pan et al. (2010) reports sub-pixel precisions
in the range of 0.01 px to 0.05 px under well-controlled static conditions, with typical values around
𝜎DIC = 0.02px. While no direct benchmarking against other DIC implementations is performed, Ncorr
is expected to achieve sub-pixel precision consistent with these ranges. Accordingly, 𝜎DIC = 0.02px
is retained as a conservative baseline uncertainty.

2) Complex displacement amplitude The two displacement components are combined into the
complex field

̃𝜁(𝑥, 𝑦) = 𝑑𝑥(𝑥, 𝑦) + 𝑖 𝑑𝑦(𝑥, 𝑦).

Uncertainty in the magnitude | ̃𝜁(𝑥, 𝑦)| follows from first-order propagation of independent variables 𝑑𝑥
and 𝑑𝑦3:

𝛿| ̃𝜁(𝑥, 𝑦)| = 1
| ̃𝜁(𝑥, 𝑦)| √(𝑑𝑥 𝛿𝑑𝑥)

2 + (𝑑𝑦 𝛿𝑑𝑦)2.

In practice, this random variability manifests in the Fourier spectrum as jitter of the spectral peak.
Instead of propagating analytically through the Fourier transform, it is represented as a frequency-
domain uncertainty, 𝛿𝑓noise, directly linked to 𝜎DIC (see below).

3) Fourier analysis and discretisation The Discrete Fourier Transform (DFT), computed here using
MATLAB’s Fast Fourier Transform (FFT) algorithm, introduces a frequency-grid spacing of

𝛿𝑓FFT =
1
𝑁 𝑠 ,

where 𝑁 is the number of DIC points per direction and 𝑠 is the subset step in pixels (Oppenheim &
Schafer, 2010). For the adopted parameters (𝑁 = 295, 𝑠 = 4px), this yields 𝛿𝑓FFT = 8.5 × 10−4 px−1.

3First-order propagation for independent variables 𝑑𝑥 and 𝑑𝑦: 𝛿𝑓 = √(𝜕𝑓/𝜕𝑑𝑥 𝛿𝑑𝑥)2 + (𝜕𝑓/𝜕𝑑𝑦 𝛿𝑑𝑦)2, with 𝜕|𝜁̃|/𝜕𝑑𝑥 =
𝑑𝑥/|𝜁̃|, 𝜕|𝜁̃|/𝜕𝑑𝑦 = 𝑑𝑦/|𝜁̃|.
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Noise in the displacement field, quantified by the baseline DIC precision 𝜎DIC, produces variance
in the Fourier spectrum. Propagating the sub-pixel displacement uncertainty through the FFT, the
corresponding contribution to the peak frequency can be estimated as

𝛿𝑓DIC ≈
𝜎DIC
𝑁 𝑠 ,

giving 𝛿𝑓DIC = 1.7 × 10−5 px−1 for the parameters above. This relation follows from linearized propa-
gation of uncertainty onto the discrete frequency grid defined by the DFT.

4) Radial averaging (binning) To obtain an isotropic spectrum, magnitudes are averaged into 𝑁bin
concentric annuli between 𝑘min and 𝑘max. With bin width Δ𝑓bin, the assignment of each sample to the
bin centre introduces a quantisation uncertainty. Adopting the GUM standard uncertainty for a uniform
distribution,

𝛿𝑓rad =
Δ𝑓bin
√12

.

For 𝑁bin = 1200, 𝑘min = 0.00066px−1, and 𝑘max = 0.176px−1, this gives 𝛿𝑓rad = 4.2 × 10−5 px−1.

5) Conversion to wavelength in millimetres The dominant wavelength in pixels is

𝜆px =
1

𝑓peak
,

where 𝑓peak is the peak spatial frequency obtained from the Fourier spectrum.4
The uncertainty in 𝜆px is derived from the total frequency uncertainty, combining contributions from

FFT discretisation, DIC noise, and radial-bin quantisation as independent sources:

𝛿𝑓px = √𝛿𝑓2FFT + 𝛿𝑓2DIC + 𝛿𝑓2rad.

Applying first-order propagation for the inverse relation 𝑦 = 1/𝑥 yields

𝛿𝜆px =
𝛿𝑓px
𝑓2peak

, 5

Conversion to physical units is obtained using the pixel size 𝑝 (in mm/px):

𝜆mm = 𝜆px 𝑝.

The pixel size calibration sets the physical scale of themeasurements. In Ncorr, a line corresponding
to a controlled displacement stroke of 5mm was drawn. Ncorr then calculated the pixel-to-millimetre
calibration factor as

𝑝 ≈ 0.060mm/px.
From this factor, the stroke length in pixels can be inferred as

stroke in pixels = 5mm
𝑝 ≈ 83.3px.

Figures illustrating the calibration procedure are provided in Appendix H.
Each endpoint of the stroke can be located within ±1 px, resulting in a total positional uncertainty

of
Δpx,total = 1 px (start)+ 1 px (end) = 2 px.

This uncertainty propagates to the pixel size as

𝛿𝑝 =
Δpx,total

stroke in pixels 𝑝 =
2 px

83.3px ⋅ 0.060mm/px ≈ 0.0014mm/px.

4Some report the wavenumber 𝑘 = 2𝜋𝑓 in radians per pixel. Here, 𝑓peak is in cycles per pixel, so the inverse directly gives the
wavelength in pixels.

5First-order propagation for a single variable 𝑥: 𝛿𝑦 = |𝜕𝑦/𝜕𝑥| 𝛿𝑥 = 𝛿𝑥/𝑥2, with 𝑥 = 𝑓peak, 𝛿𝑥 = 𝛿𝑓px.
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Combining this calibration uncertainty with the wavelength uncertainty in pixels, 𝛿𝜆px, the total uncer-
tainty in millimetres follows from first-order propagation for the product of independent quantities (Bev-
ington & Robinson, D. Keith, 2003; Joint Committee for Guides in Metrology (JCGM), 2008; Taylor,
1997):

𝛿𝜆mm = √(𝑝 𝛿𝜆px)2 + (𝜆px 𝛿𝑝)2.
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To assess how uncertainty propagates across the evaluated wavelength range, Figure 3.15 present
a quantitative analysis of wavelength estimation errors. Figure 3.15a shows the measured dominant
wavelengths with corresponding absolute uncertainties in millimetres, while Figure 3.15b illustrates the
relative error as a percentage of each wavelength.

As expected from the applied uncertainty propagation model, the absolute error increases with
wavelength. For instance, the longest wavelength considered, 25mm, exhibits an uncertainty of ap-
proximately±8.88mm, corresponding to a relative error of about 35.5%. In contrast, the shortest wave-
length, 4mm, shows a much smaller uncertainty of ±0.25mm, or roughly 6.1%. This trend arises from
the inverse relationship between spatial frequency and wavelength, where small errors in frequency
space, due to FFT resolution and radial binning, become amplified at long wavelengths.

A target accuracy of better than 10% was set for the shortest resolvable wavelength, 4mm, which
is comfortably met, validating the robustness of the approach for detecting fine-scale periodic features.
However, the analysis also highlights an intrinsic limitation: precision degrades for low-frequency com-
ponents, where spatial resolution and calibration uncertainties have a greater effect.

While the plots illustrate these trends, the full numerical data used to generate them is tabulated in
Appendix R. The same uncertainty estimation procedure is directly applicable to the experimental re-
sults presented in later chapters, providing a consistent framework for reporting both measured values
and their associated confidence.
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(a)

(b)

Figure 3.15: Assessment of measurement accuracy for dominant wavelengths. (a) Absolute uncertainty bars for each wave-
length. (b) Relative uncertainty expressed as a percentage. Both illustrate how measurement precision depends on the wave-
length, with larger wavelengths showing increased uncertainty.





4
Results

This chapter presents the experimental results from two investigations. The first examines the wave-
length and dispersion behavior of Faraday surface waves, with particular attention to the influence of
floating thin films. To illustrate how the wavelengths are obtained, representative digital image correla-
tion (DIC) outputs are shown at the beginning of the chapter. The second investigation concerns the
onset of the Faraday instability, quantifying the minimum vertical acceleration, commonly referred to
as the critical acceleration, required to initiate standing waves across a range of excitation frequencies.
Finally, DIC output is briefly used again to provide order-of-magnitude estimates of wave amplitudes
through surface reconstructions.

4.1. DIC observations
Representative DIC displacement fields at 60Hz are shown in Figure 4.1 for deionized water and sili-
cone oil, both with a free surface. These fields correspond to the in-plane displacements in the 𝑥- and
𝑦-directions (orthogonal to each other and lying within the imaging plane). Both the coordinate axes
and the displacement magnitudes are expressed in pixels (px), consistent with the image-based nature
of the DIC measurements. Maximum displacements of up to nearly 10 px are observed for water and
up to 7.5 px for silicone oil. The patterns are largely regular, and it is already apparent that a wavelength
or repeating structure can be extracted from these outputs. Throughout this chapter, red corresponds
to positive displacements and blue to negative displacements. The in-plane displacements indicate
the local slope: strong color intensities correspond to large slopes, while values near zero occur at
wave crests and troughs. Although in principle wavelengths could be estimated by measuring the
distance between consecutive crests, the patterns are not always perfectly regular (see, for exam-
ple, Figure 4.3a). To quantify the wavelength systematically, the method described in Section 3.4.2 is
applied.

When elastic membranes cover the surface of deionized water, the displacement fields change
noticeably with thickness (Figure 4.3). Thinner membranes exhibit more frequent repetitions of white
regions (corresponding to crests and troughs), which is consistent with shorter wavelengths. Thicker
membranes, by contrast, display broader colored regions with fewer crests and troughs, consistent
with longer wavelengths. Again, the precise wavelengths are determined using the systematic method
outlined in Section 3.4.2.

At lower excitation frequencies, additional features appear. In tests at 30Hz with the thinnest mem-
branes (20 µm and 50µm), small-scale wrinkles can be observed in the DIC displacement fields (Fig-
ure 4.2). For the 20µm membrane, displacements of up to approximately 10 px are reported, while for
the 50µm case, the maximum displacements reach about 7.5 px. The wrinkles are most pronounced
for the thinnest membrane, though some irregularities remain visible in the thicker case.
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(a) (b)

(c) (d)

Figure 4.1: Representative DIC displacement fields at 60Hz, showing deionized water with a free surface (top row) and silicone
oil with a free surface (bottom row). (a, c) Displacement in the 𝑥-direction (𝑑𝑥) and (b, d) displacement in the 𝑦-direction (𝑑𝑦).

(a) (b)

(c) (d)

Figure 4.2: Representative DIC displacement fields for deionized water at 30Hz, covered with elastic membranes of thickness
20µm (top row) and 50µm (bottom row). (a, c) Displacement in the 𝑥-direction (𝑑𝑥) and (b, d) displacement in the 𝑦-direction
(𝑑𝑦), highlighting localized wrinkle features in the membrane.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.3: Representative displacement fields from DIC measurements for deionized water at 60Hz, covered by elastic mem-
branes of varying thicknesses: 20 µm, 50µm, 100µm, and 200µm. (a, c, e, g) Displacement in the 𝑥-direction (𝑑𝑥), and (b, d, f,
h) displacement in the 𝑦-direction (𝑑𝑦).
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4.2. Wavelength measurements
4.2.1. Silicone oil
The wavelengths of Faraday waves in bare (free-surface) silicone oil were measured across a range of
excitation frequencies. Figure 4.4 presents themeasured values, with error bars indicating the standard
error of the mean within each repetition. Each repetition is plotted separately with slight horizontal
offsets for clarity. As expected, the wavelength decreases with increasing excitation frequency. Overall,
the measurements are highly reproducible: most repetitions at 20Hz, 50Hz, and 80Hz overlap within
the reported standard error.

Some larger error bars (specifically for repetitions 1 and 2 at 20Hz and repetition 1 at 50Hz) arise
from outliers in individual measurements. For instance, in repetition 1 at 20Hz, the measured wave-
lengths were 19.5mm, 18.6mm, 19.5mm, 18.6mm, and 8.2mm, indicating a clear failure in the wave-
length derivation for that single point. Such outliers shift the mean and increase the standard error for
the affected repetitions, but they do not change the overall trend. Excluding these anomalous values
would bring the repetition means into closer agreement.

Despite these isolated deviations, the data remain in excellent agreement with the theoretical dis-
persion relation. The theoretical curve, shown as black dashed line in Figure 4.4, is obtained from the
linear stability model of Equation 2.5. In this model, the subscripts 1 and 2 denote the two fluids, with
medium 1 corresponding to the liquid layer and medium 2 to the overlying air; the associated material
properties are listed in Table 3.1.

4.2.2. Deionized water
The wavelengths of Faraday waves in deionized water were measured across a range of excitation
frequencies, both for the free surface and for surfaces covered with floating films of varying thicknesses
20µm, 50µm, 100µm, and 200µm. Figure 4.5 shows the measured values, with error bars indicating
the standard error of the mean over amplitude measurements within each repetition. Each repetition
is shown separately with slight horizontal offsets to illustrate reproducibility.

As observed for silicone oil, the wavelength decreases with increasing excitation frequency for all
cases. The free surface measurements show consistent deviations from the theoretical dispersion
relation, although the overall trend remains. For floating films, the measured wavelengths generally
increase with increasing thickness. In particular, the 20µm films align closely with the free surface
measurements, while thicker films (50 µm–200µm) exhibit progressively longer wavelengths. Repeat
measurements at 30Hz, 60Hz, and 90Hz show good reproducibility, with most values overlapping
within the reported standard error.
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Figure 4.4: Measured wavelengths in bare (free surface) silicone oil as a function of excitation frequency. Error bars indicate
the standard error of the mean across amplitude measurements within each repetition. Each repetition is shown separately with
slight horizontal offsets. The dashed line shows the theoretical dispersion relation of the free surface case: Equation 2.5.

Figure 4.5: Measured wavelengths on deionized water for the free surface and surfaces covered with floating films of various
thicknesses. Error bars indicate the standard error of the mean across amplitude measurements within each repetition. Each
repetition is shown separately with slight horizontal offsets. Markers are color-coded by film thickness. The dashed line shows
the theoretical dispersion relation of the free surface case: Equation 2.5.
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4.3. Critical acceleration measurements
4.3.1. Silicone oil
Critical acceleration values for the onset of Faraday waves in silicone oil were measured over a range
of excitation frequencies. Figure 4.6 shows the vertical accelerations tested in each run. For each
excitation frequency, several acceleration levels were investigated as described in the test matrix, and
the lowest acceleration at which subharmonic standing waves were observed was taken as the critical
acceleration. Each repetition is displayed with slight horizontal offsets to illustrate reproducibility. Error
bars indicate the measurement accuracy of the accelerometer-based determination of acceleration.

The measured critical accelerations are generally close to the theoretical predictions, with values
consistently lying slightly above the model curve. A clear trend of increasing critical acceleration with
excitation frequency is visible. Repeat measurements at selected frequencies (20Hz, 50Hz, and 80Hz)
show good reproducibility.

4.3.2. Deionized water
Critical acceleration values for the onset of Faraday waves in deionized water were measured for the
free surface and for surfaces covered with floating films of thicknesses 20µm, 50µm, 100µm, and
200µm. Figure 4.7 shows the lowest acceleration at which subharmonic standing waves appeared for
each frequency, which is taken as the critical acceleration. At each frequency, several acceleration
levels were tested, but only the lowest value is presented. Each repetition is displayed with slight
horizontal offsets to illustrate reproducibility.

The general trend of increasing critical acceleration with excitation frequency is observed for all
cases. Across the different film thicknesses, the critical acceleration generally increases with thick-
ness. Some deviations are notable: the free surface critical acceleration is not consistently lower than
that of the thinnest film, lying between the 20µm and 50µm film values for frequencies above 60Hz,
and between the 50µm and 100µm values for lower frequencies. Additionally, the free surface mea-
surements show large deviations from the theoretical predictions.

Figure 4.6: Measured accelerations for silicone oil as a function of excitation frequency. Error bars indicate the measurement
accuracy. At each frequency, several acceleration levels were tested, with the lowest value at which subharmonic standing
waves appeared taken as the critical acceleration. Each repetition is shown separately with slight horizontal offsets to illustrate
reproducibility. The dashed line connects the theoretical critical acceleration values obtained with the model discussed in Section
3.4.1.
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Figure 4.7: Measured critical accelerations for deionized water, both for the free surface and for surfaces covered with floating
films of different thicknesses, as a function of excitation frequency. Error bars indicate themeasurement accuracy. Each repetition
is displayed with slight horizontal offsets to illustrate reproducibility. The dashed line connects the theoretical critical acceleration
values obtained with the model discussed in Section 3.4.1.

4.4. Wave amplitude estimates
Figure 4.8 presents representative reconstructed surfaces at 60Hz for deionized water and silicone oil
with free surfaces. The wave amplitudes are approximately 0.25mm for deionized water and 0.2mm for
silicone oil. These reconstructed surfaces capture the overall vertical displacement of the fluid interface
and provide a direct estimate of the wave amplitude.

For deionized water covered with elastic membranes of varying thicknesses, the reconstructed sur-
faces at 60Hz (Figure 4.10) indicate that wave amplitude increases with membrane thickness. Specifi-
cally, the approximate amplitudes are 0.06mm for the 20µmmembrane (Figure 4.10a), 0.07mm for the
50µm membrane (Figure 4.10b), 0.12mm for the 100µm membrane (Figure 4.10c), and 0.21mm for
the 200µm membrane (Figure 4.10d). These values confirm the trend observed in the DIC displace-
ment fields: thicker membranes produce larger vertical displacements, while the free surface case
consistently exhibits the largest amplitudes.

In low-frequency tests at 30Hz with the thinnest membranes, small-scale wrinkles are visible in
the reconstructed surfaces (Figure 4.9), although they are more pronounced in the DIC displacement
fields. For the 20µm membrane (Figure 4.9a), the wrinkle amplitude is approximately 0.25mm, while
for the 50µm membrane (Figure 4.9b), the wrinkles are less pronounced, with an amplitude of roughly
0.15mm. These observations highlight that localized surface features may be partially smoothed in the
reconstruction process, but the overall amplitude trends remain consistent.
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(a) (b)

Figure 4.8: Reconstructed surfaces from DIC measurements at 60Hz for (a) deionized water and (b) silicone oil, both with free
surfaces. The figures highlight the overall wave amplitudes of approximately 0.25mm and 0.2mm, respectively.

(a) (b)

Figure 4.9: Reconstructed surfaces from DIC measurements for deionized water at 30Hz, covered with elastic membranes of
thickness (a) 20 µm and (b) 50 µm. Localized wrinkle features are most pronounced for the thinner membrane.
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(a) (b)

(c) (d)

Figure 4.10: Reconstructed surfaces from DIC measurements for deionized water at 60Hz, covered by elastic membranes of
varying thicknesses: (a) 20 µm, (b) 50 µm, (c) 100 µm, and (d) 200µm.





5
Discussion and Analysis of the Results

The experimental results presented in Chapter 4 reveal how floating sheet thickness influences key as-
pects of hydroelastic response, including wave dispersion, onset acceleration, and motion amplitude.
To interpret these findings, it is useful to situate the observed behaviors within established frameworks
of floating-structure dynamics. One such framework, proposed by Zhang and Schreier (2022), classi-
fies floating structures based on their hydroelastic response using the ratios of structure length to the
characteristic hydroelastic wavelength, 𝜆𝑐, and to the excitation wavelength, 𝜆.

Figure 5.1 illustrates this mapping. The vertical axis represents the structure length normalized by
𝜆𝑐, while the horizontal axis shows the structure length normalized by 𝜆. These dimensionless ratios
distinguish regimes dominated by elastic deformations from those where rigid-body motion prevails.
By placing the tested films within this framework, the current study highlights that the thinnest sheets
(20 µm, 50µm, and 100µm) operate in the Very Flexible Floating Structure (VFFS) regime, exhibiting
large deformations relative to thickness. In contrast, the thicker sheets (200µm) approach the tran-
sitional regime toward Very Large Floating Structure (VLFS) behavior, with moderate deformations
comparable to sheet thickness.

This classification provides a systematic basis for interpreting the measured trends in wavelength,
critical acceleration, and displacement amplitude, enabling a more comprehensive discussion of how
sheet thickness governs hydroelastic response and nonlinear wave–structure interactions in the flexible-
sheet regime.

(a) (b)

Figure 5.1: Comparison of hydroelastic regime classification: (a) Reference classification from prior work (Zhang & Schreier,
2022), distinguishing Very Flexible Floating Structures (VFFS) and Very Large Floating Structures (VLFS), and (b) classification
of tested thin films and films used in papers we refer to using the same framework.
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5.1. Validation with silicone oil
Silicone oil was used to validate the experimental methodology due to its well-characterized and stable
properties. Wavelength measurements for repetition 3 were compared against the theoretical disper-
sion relation for a viscous fluid-air interface (Equation 2.5). By fitting the surface tension, 𝜎, as a
free parameter, the best-fit curve yielded 𝜎 = 19.47mN/m, in excellent agreement with the value of
19.7mN/m reported by the manufacturer. Figure 5.2 shows the mean wavelengths: the solid red line
corresponds to the best-fitted curve using dispersion relation 2.5 with variable surface tension 𝜎, while
the dashed line represents the theoretical prediction. The close match confirms the accuracy of the
setup and the reliability of the analysis methods.

Critical acceleration measurements provide further confirmation of the validity of the experimental
methodology. Across the tested frequency range, the measured critical accelerations were consistently
higher than the theoretical predictions. This systematic overestimation originates from the applied mea-
surement protocol: instead of maintaining the system at acceleration levels extremely close to the onset
for long or indefinite periods, the experiments were conducted at values that reliably produced subhar-
monic surface patterns within a practical observation time. As a result, the recorded critical acceler-
ations represent slight overestimations of the true onset values. This behavior was anticipated and,
importantly, demonstrates that the methodology correctly captures the onset of hydroelastic waves,
confirming the reliability of the experimental approach.

Together, the wavelength and critical acceleration results demonstrate that the experimental setup
is robust, accurate, and reliable under controlled conditions. The low sensitivity of silicone oil to envi-
ronmental contaminants such as dust, humidity, and surfactants further enhances the reproducibility of
the measurements. Although material-covered experiments could not be performed with silicone oil,
these baseline measurements establish confidence in both the experimental setup and the data anal-
ysis procedures, thereby providing a solid foundation for the subsequent floating-film investigations.

Figure 5.2: Mean wavelengths in free-surface silicone oil and water as a function of excitation frequency. Black circles indicate
silicone oil measurements, and the solid red line represents the best-fit dispersion relation for free-surface silicone oil using
Equation 2.5 with variable surface tension (𝜎 = 19.47mN/m). The black dashed line corresponds to the theoretical dispersion
relation for silicone oil with the manufacturer’s value of 𝜎 = 19.7mN/m. Gray triangles denote deionized water measurements;
the solid red line shows the fitted dispersion relation for free-surface deionized water with 𝜎 = 29.22mN/m, and the gray dotted
line represents the theoretical water curve using 𝜎 = 72.75mN/m.
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5.2. Deviation from theory for free surface deionized water
In contrast to the silicone oil experiments, the measurements conducted with water exhibit more pro-
nounced deviations from theoretical predictions. Given the close agreement observed for silicone oil, a
similar level of correspondence was initially expected for water. However, the experimental data reveal
significant departures from the theoretical curves.

The experimentally inferred surface tension for the water samples (𝜎 = 29.22mN/m) is substan-
tially lower than the intrinsic value of clean water (𝜎 = 72.75mN/m), obtained by fitting Equation 2.5
with 𝜎 as a free parameter. By fitting Equation 2.5 with surface tension as a free parameter, the best-fit
value for the water samples was found to be 𝜎 = 29.22mN/m. This is substantially lower than the
intrinsic surface tension of clean water, 𝜎 = 72.75mN/m. As illustrated in Figure 5.2, this discrepancy
suggests that the interfacial behavior of the experimental water differs from that of ideal, uncontami-
nated water. Similar observations have been reported in other studies; for example, Ono-dit-Biot et al.
(2019) measured an effective surface tension of approximately 50 ± 10mN/m in experimental water
samples. A likely contributing factor is the presence of surface-active contaminants introduced through
environmental exposure or handling during the experiments.

Local variations in surface tension generate fluid motion along the interface, a phenomenon known
as the Marangoni effect (Rengasamy, 2006). Such flows can stabilize the interface and enhance damp-
ing by redistributing momentum and energy. Even trace amounts of surfactants can induce these sur-
face tension gradients, thereby increasing effective viscous damping. In the context of Faraday waves,
Daniel et al. (2004) demonstrated that minute surfactant concentrations significantly alter the onset
conditions of the instability by modifying both interfacial tension and damping. These effects provide a
consistent explanation for the elevated critical accelerations observed in water, which resemble theo-
retical predictions for a fluid with substantially higher effective viscosity, potentially up to four times that
of pure water (Figure 5.3 dotted lines). The increased damping raises the energy threshold required to
trigger the Faraday instability, accounting for the experimental observations.

Figure 5.3: Critical acceleration for free-surface deionized water as a function of excitation frequency. Black circles indicate the
experimental measurements (lowest acceleration per frequency), and the black dashed line represents the theoretical prediction
using the literature water properties (𝜎 = 72.75mN/m, 𝜂 = 0.89mPas). The solid black line shows the theory curve with the
fitted surface tension (𝜎 = 29.22mN/m) while keeping the viscosity at the water value. Gray dotted lines indicate reference
calculations with the fitted surface tension and different viscosities (𝜂 = 3.0mPas, 𝜂 = 3.3mPas, 𝜂 = 3.6mPas) to illustrate the
influence of viscous damping on the critical acceleration.
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Although direct, simultaneous measurements of surface tension and viscosity were not performed
during the wave experiments, the results point toward a complex interplay between surface contamina-
tion, Marangoni-induced flows, interfacial rheology, and wave-damping mechanisms. These findings
underscore the high sensitivity of water-based Faraday wave experiments to environmental conditions
and emphasize the importance of maintaining rigorous control over surface cleanliness in future stud-
ies.

5.3. Dispersion relation deionized water with floating films
Experimental observations show that the dominant wavelength increases with sheet thickness. This
behavior is consistent with the theoretical framework of Ono-dit-Biot et al. (2019), which shows that
bending stiffness tends to lengthen hydroelastic waves, while inertia tends to shorten them. In our sys-
tem, the effect of bending stiffness dominates, particularly for the thicker membranes, explaining the
observed wavelength increase with thickness.

For a quantitative comparison, the measured wavelength data were first tested against the non-
dissipative dispersion relation for floating sheets on Faraday waves (Equation 2.8) (Sardari et al., 2023).
While the relation captures the overall trend, systematic deviations between measured and theoretical
wavelengths are evident (Figure 5.4), suggesting the presence of additional physical effects beyond
the original model. In their study, Sardari et al. (2023) introduced a damping factor 𝛿 to account for
discrepancies between experimental and theoretical wavelengths, expressed as 𝜔′ = 𝜔(1−𝛿), where
𝜔′ is the dissipative angular frequency. Applying this approach to our data results in a negative 𝛿 (Figure
5.5), which would imply negative damping. Such a correction is unphysical, as it would suggest the
experimental waves propagate faster than the theoretical prediction in the absence of dissipation. This
observation indicates that the discrepancies are not caused by energy loss, but rather by additional
physical effects intrinsic to the floating sheet system.

To capture these effects, the analysis was extended to the Föppl–von Kármán (FvK) framework for
elastic membranes. The FvK dispersion relation (Equation 2.3) accounts for contributions from gravity,
surface tension, and bending stiffness. In the present system, the bending and gravitational terms are
determined by material properties and fluid depth and are not adjustable. The effective in-plane tension
in the sheet remains the only practically tunable parameter. The theoretical FvK FSI curves are shown
in Figure 5.5 (dashed lines), and, as with the simpler non-dissipative model, measured wavelengths
are systematically larger than predicted.

Following the framework proposed by Deike et al. (2013) for membranes with pinned boundaries,
the effective tension can be decomposed into a static and a dynamic component that depends on
wave steepness, 𝜖 = 𝜁𝑎𝑘. Applying this framework to freely floating sheets, the total effective tension
is expressed as:

𝜎tot = 𝜎 + 𝜎add = 𝜎 + 𝑐𝐸𝑑(𝜁𝑎𝑘)2, (5.1)

where 𝜎add represents an additional, dynamic tension component and 𝑐 is a geometry-dependent fac-
tor. By fitting the measured wavelengths using 𝜎tot as a variable, the additional tension required to
reconcile the data with the FvK predictions can be inferred. The fitted values are of the expected order
of magnitude, though they differ numerically from those reported by Deike et al. (2013) due to differ-
ences in sheet geometry and boundary conditions. Table 5.1 highlights this difference: the geometry
factor 𝑐 ranges from 3 to 6 in their study and 0.239–0.369 in the present work. This discrepancy arises
primarily from the difference in units (N/m vs. mN/m) and the pinned versus freely floating boundary
conditions. Despite this, the ratio of static to dynamic tension and the wave steepness values are
comparable, indicating that while absolute values differ, the scaling of dynamic effects is consistent.
These results demonstrate that the geometry factor is influenced not only by sheet geometry but also
by boundary conditions. Overall, the introduction of an additional tension term provides a plausible
explanation for the observed deviations.

To validate this conclusion, the additional tension term was also incorporated as a variable into
the non-dissipative Faraday wave dispersion relation. Using this approach instead of the 𝛿 correction
factor, the fitted 𝜎add values remain consistent with those obtained from the FvK analysis (Figure 5.6),
further supporting the robustness of the methodology.
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The close agreement between the fitted additional tension values across both the FvK and Fara-
day FSI frameworks confirms that introducing a dynamic tension component provides a consistent and
physically plausible explanation for the observed deviations between theory and experiment. The in-
troduction of 𝜎add accounts for the systematic increase in measured wavelengths relative to the base
theoretical model, highlighting the influence of wave-induced tension in the floating sheet.

Table 5.1: Overview of material properties (Young’s modulus 𝐸 [MPa] and film thickness 𝑑 [mm]), wave properties (wave steep-
ness 𝜁𝑎𝑘), tensions (static 𝜎𝑠 [N/m] and additional 𝜎add [N/m]), tension ratio (𝜎add/𝜎𝑠), and fitted geometry factor 𝑐 for both the
present study and study by Deike et al. (2013).

Case 𝐸 [MPa] 𝑑 [mm] 𝜁𝑎𝑘 𝜎𝑠 [N/m] 𝜎add [N/m] 𝜎add/𝜎𝑠 𝑐
Deike et al. 1.05 0.350 0.074 4.00 12.0 3.00 6.00
Deike et al. 1.50 0.500 0.074 4.00 12.0 3.00 3.00
Present 0.60 0.020 0.053 0.0289 0.0122 0.42 0.369
Present 0.60 0.050 0.053 0.0289 0.0302 1.05 0.365
Present 0.60 0.100 0.073 0.0289 0.0869 3.01 0.275
Present 0.60 0.200 0.093 0.0289 0.2489 8.62 0.239

Figure 5.4: Comparison of measured Faraday wave wavelengths with theoretical predictions of the Faraday wave dispersion
relation for a fluid–structure interaction (FSI) system (Sardari et al., 2023). Wavenumber 𝑘 is plotted on the vertical axis and
angular excitation frequency 𝜔 on the horizontal axis. The dashed line represents the non-dissipative prediction, while the
solid line shows the fitted curve including a damping factor 𝛿 as a free parameter. Negative fitted values of 𝛿 indicate that the
discrepancy cannot be explained by dissipation alone, suggesting the presence of additional physical effects beyond simple
damping.
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Figure 5.5: Measured wavelengths of free-floating water films as a function of excitation frequency (𝜔 on the horizontal axis,
𝑘 on the vertical axis). Dashed lines show the theoretical FvK–linear wave dispersion relation with fixed material properties
(Equation 2.3), while solid lines correspond to the FvK prediction including the fitted dynamic tension term 𝜎add.

Figure 5.6: Measured wavelengths of free-floating water films as a function of excitation frequency (𝜔 on the horizontal axis,
𝑘 on the vertical axis), compared with the non-dissipative Faraday FSI dispersion relation (Sardari et al., 2023). Dashed lines
represent the theoretical model with surface tension only, while solid lines include the fitted dynamic tension term 𝜎add.
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5.4. Wrinkle formation in thin membranes
In the low-frequency excitation regime (30Hz), the thinnest membranes (20 µm and 50µm) exhibit lo-
calized wrinkling instabilities that break the otherwise smooth fluid-following motion. These wrinkles
are clearly visible in the displacement fields of the 20µm membrane (Figure 5.7), where circular mark-
ers highlight the regions of interest. Both the 𝑑𝑥 and 𝑑𝑦 components reveal the same wrinkle patterns,
confirming that the effect is not an artifact of directional measurement.

To quantify the wrinkle scale, a simple line overlay was used to measure the spacing between adja-
cent crests, with the length calibrated against a known distance in the field of view. This analysis yields
a wrinkle wavelength of approximately 3mm, which aligns well with the theoretical wrinkle wavelength
predicted from the static buckling analysis for a 20 µm sheet (Figure 3.3). This agreement provides
further evidence that the observed patterns represent genuine mechanical wrinkling rather than exper-
imental noise.

(a) (b)

Figure 5.7: Localized wrinkles observed in a 20µm thick floating membrane under low-frequency excitation (30Hz). (a) Displace-
ment in the 𝑥-direction and (b) displacement in the 𝑦-direction highlight localized wrinkle features with measured wavelengths
from 2.5mm to 3.2mm, consistent with static buckling predictions (Figure 3.3).

This correspondence indicates that, even in a dynamic environment, thin membranes are suscepti-
ble to local compressive instabilities similar to those that produce static wrinkles under an applied force.
These wrinkles arise from forces not accounted for by the standard FvK or Faraday wave dispersion re-
lations, which assume a smooth, tensioned membrane responding elastically to the fluid motion. While
the dynamic tension term 𝜎add = 𝑐𝐸𝑑(𝜁𝑎𝑘)2 successfully describes the sheet-wide increase in in-plane
tension and the resulting overall wavelength, it does not suppress localized buckling.

The spatially selective nature of the wrinkles may be influenced by the flow structure of standing
Faraday waves. Following Saddier et al. (2024), standing waves create stagnation points at antinodes
where viscous shear is maximal, producing local compressive stresses that can trigger buckling in thin
regions. This mechanism provides a plausible explanation for why wrinkles appear only in specific
locations, despite 𝜎add acting across the entire sheet.

Overall, the measured wavelengths follow the trends predicted by FvK and Faraday FSI models,
but the occurrence of localized wrinkles highlights a subscale mechanical effect that influences local
deformation without dominating the overall wave behavior. This distinction reinforces the interpreta-
tion that 𝜎add governs large-scale wavelength selection, whereas localized buckling reveals residual
compressive instabilities superimposed on the global, tensioned response of the floating membrane.





6
Conclusion

This study aimed to investigate the influence of sheet thickness on the hydroelastic response of very
flexible, free-floating membranes under Faraday-wave excitation. Laboratory-scale experiments were
conducted using vertically oscillated membranes of varying thicknesses (20 µm to 200µm) on a water
surface. Wavelength, critical acceleration, and wave amplitude were measured and compared to theo-
retical predictions from established hydroelastic and Faraday-wave models. Free-surface experiments
without any floating membranes were first performed using silicone oil to validate the methodology
and establish accurate baseline measurements, which were successful. Additional free-surface exper-
iments on deionized water provided a reference for comparison with hydroelastic cases; however, these
results deviated from theoretical predictions, likely due to surface contamination and Marangoni effects.

Sheets of thickness 20µm, 50µm, and 100µm were classified as Very Flexible Floating Structures
(VFFS). The 200µm sheet approached the Very Large Floating Structure (VLFS) regime. Analysis
showed that increasing thickness leads to longer wavelengths, as expected from the increasing bending
stiffness. An additional global tension effect was observed for all thicknesses, likely due to the dynamic
behavior of the membranes. For the thinnest sheets at low excitation frequencies, localized wrinkles
appeared. These wrinkles were not visible across the entire field of view, but they were fairly repetitive,
with wavelengths comparable to those observed in static wrinkle tests used to estimate the Young’s
modulus. This suggests that the local in-plane tension reachesmagnitudes sufficient to induce buckling,
reflecting regions of temporary compression induced by the underlying Faraday waves, which locally
exceed the buckling threshold of the thin membrane. Such behaviors highlight instabilities not captured
by conventional continuum models.

Critical accelerations were observed to increase with sheet thickness. The 100µm and 200µm
sheets showed significant increases in onset acceleration, whereas the 20µm and 50µm sheets ex-
hibited values close to the free surface case. This suggests that thicker sheets, due to their greater
mass and bending stiffness, exhibit smaller response amplitudes under the same excitation, while very
thin membranes remain highly flexible and easily deformed.

In conclusion, this research demonstrates that sheet thickness is a primary determinant of hydroe-
lastic response in free-floating membranes. Thicker sheets exhibit increased bending stiffness and
mass. The growth in bending stiffness dominates over the added inertia, leading to longer wavelengths
compared to very thin membranes, while the combined effect of stiffness andmass also results in higher
onset accelerations and altered wave amplitudes, reflecting their greater resistance to Faraday-wave
excitation. In contrast, very thin sheets remain highly flexible, prone to local instabilities, and influenced
by dynamic tension effects. These findings provide experimental evidence for the role of thickness in
governing hydroelastic behavior and offer practical insights for the design and modeling of very flexible
floating structures, such as offshore floating photovoltaic systems or other thin maritime membranes.
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7
Recommendations

Building on the experience gained during this study, several recommendations can bemade to enhance
the experimental setup and data quality in future investigations. These are especially relevant for
research involving the Faraday instability and floating flexible structures.

7.1. Fluid selection and material compatibility
The results obtained with silicone oil highlight the benefits of using a well-characterized and chemically
stable fluid. The high resistance to surface contamination of silicone oil and its predictable interfa-
cial properties contributed to highly reliable results. For future experiments, especially those involving
surface-sensitive wave phenomena, it is strongly recommended to use a primary working fluid with
similar stability and low susceptibility to airborne contaminants or particulate matter.

However, since silicone oil is not compatible with all floating materials due to buoyancy constraints,
a suitable alternative material that remains afloat in such fluids must be identified while retaining trans-
parency and mechanical flexibility. This is especially important if the structure is intended to remain in
the very flexible floating structure (VFFS) regime. Finding an appropriate film-fluid combination will be
critical for reproducibility and consistency in future studies.

7.2. Imaging methodology and optical setup
In this work, the rest condition of the fluid surface was established visually, which may not exclude small
residual motions. Future experiments could implement objective verification methods, such as analyz-
ing pre-run displacement fields from DIC, monitoring accelerometer signals for residual vibrations, or
quantifying damping times.

In this work, a major limitation arose from the use of video recordings rather than direct frame
capture. While convenient, the video compression process reduced image contrast and resolution,
degrading the quality of the Digital Image Correlation (DIC) analysis. For future work, it is strongly
recommended to capture individual high-resolution frames directly, which are still triggered in syn-
chronization with the excitation signal and the connected frequency divider. This avoids the pitfalls of
decomposing lower-quality video files and maintains full control over both timing and image fidelity.

In this study, phase-locked imaging was employed to ensure consistent displacement measure-
ments across oscillation cycles. The specific phase of image capture in the standing wave was not
explicitly controlled beyond avoiding the equilibrium position, which was sufficient for accurate wave-
length analysis. For studies interested in specific wave amplitude effects, however, it is recommended
to capture images at well-defined phases, such as the absolute peaks or troughs, to determine the true
maximum displacement.

A related consideration is the motion of the dot pattern attached to the bottom of the tank, which
oscillates vertically along with the shaker. In the present study, this effect was not explicitly accounted
for; as it was assumed that the resulting vertical displacements, ranging from approximately 10−5m at
high frequencies and low accelerations to 1.5 × 10−4m at lower frequencies and higher accelerations,
are negligible compared to the camera distance of 0.81m, including the 0.01m tank thickness. For
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similar experiments, it is recommended to estimate or measure this motion at least to ensure that it
does not significantly affect the displacement analysis, particularly if the imaging setup or measurement
precision differs from the present study.

Illumination should be improved. Although bottom-lighting was used, it was insufficient, requiring
adjustments in gain and exposure time in the imaging software (Pylon Viewer), which in theory reduces
image quality and introduces noise. Using a stronger light source beneath the tank and/or a camera
with an adjustable aperture is recommended to achieve high-contrast, low-noise imaging without the
need for excessive gain or long exposure times.

Finally, the appearance of a persistent tilt in reconstructed surfaces highlights potential issues with
mechanical and optical alignment. Although the exact cause is not conclusively identified, it is recom-
mended to carefully level both the camera and the experimental table before each set of measurements.
Misalignment can affect the accuracy of surface reconstruction and, consequently, the interpretation of
wave profiles. Particular attention should be paid to centering the optical axis of the camera above the
tank. In the current setup, the camera is not positioned exactly above the center of the cylindrical tank
because the field of view is cropped. To ensure the region of interest is correctly captured, the cam-
era must be adjusted, which can potentially introduce a small tilt. Additionally, care should be taken
to avoid exciting the eigenfrequencies of the setup, as this can lead to a global displacement of the
recorded images relative to the reference frame, introducing artificial displacements that do not reflect
actual surface motion.

7.3. Trigger synchronization and measurement procedure
One practical limitation encountered during this study was related to the manual coordination of the
experimental start between the shaker and the image acquisition system. Although the camera was
reliably triggered via a frequency divider connected to the multifunction synthesizer, this triggering
began as soon as the synthesizer was powered on. However, the shaker did not start oscillating im-
mediately. The sinusoidal output to the amplifier had to be manually activated by pressing a separate
button. Thus, to start a test, both the shaker activation and the recording trigger in the imaging soft-
ware (Pylon Viewer) had to be manually synchronized. This procedure introduced some uncertainty in
identifying the exact onset time of oscillation. However, since the onset time was not ultimately used
in the analysis, this source of uncertainty did not significantly affect the results.

Future experiments would greatly benefit from a dedicated triggering system that simultaneously
initiates both the shaker oscillation and the image acquisition. Such synchronization would eliminate
timing ambiguities and improve the accuracy of identifying wave onset.

Regarding the determination of the critical acceleration, the procedure described in Chapter 3 was
tested and validated on free-surface experiments using silicone oil and water, where it performed sat-
isfactorily. However, when applied to experiments involving floating material films, the same method
became unreliable. The fitting approach could not be used effectively, and instead, the smallest mea-
sured value was chosen as the critical acceleration. In hindsight, this approach likely underestimated
the uncertainty. A more robust protocol would involve measuring the wave response at multiple exci-
tation amplitudes, both above and below the instability threshold. For example, one can incrementally
lower the amplitude from a level where standing waves clearly form to a level where no waves are de-
tected, thereby bracketing the critical acceleration between two values. The critical value could then be
reported as the midpoint between these amplitudes, with uncertainty estimated as half their difference.

Alternative techniques also exist, such as the method presented by Sardari et al. (2023), which
estimates the critical acceleration based on the measured damping rate of the standing waves. Incor-
porating such approaches would provide more reliable and reproducible threshold measurements in
future studies.

7.4. Experimental scope and coverage
The number of frequencies tested (seven) and the repetitions performed were adequate for fitting dis-
persion relations and assessing repeatability. However, if resources permit, expanding the frequency
range could help further validate the theoretical models and capture the transition between different
wave regimes. More data points would also reduce uncertainty in fitted parameters.
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7.5. Future outlook
The experimental setup used in this study, based on Faraday-wave excitation of floating membranes,
provides a versatile tool for probing hydroelastic behavior under controlled conditions. In this study, the
focus was on the dispersion relation and critical acceleration, and experiments were conducted to en-
sure the onset of Faraday waves for each membrane thickness. As a result, different thicknesses were
subjected to different shaker amplitudes, and the response at the same excitation amplitude or wave
steepness was not directly compared. Future studies could explore how membranes of varying thick-
ness respond under the same forcing conditions, which would provide additional insight into amplitude-
dependent hydroelastic behavior. Additionally, low-frequency, high-amplitude excitation could generate
steep waves, offering the opportunity to investigate extreme deformations, localized wrinkling, or even
wave breaking in very flexible floating structures. Such investigations could further enhance the fun-
damental understanding of hydroelastic interactions and provide practical guidance for the design and
optimization of thin, flexible floating structures, including offshore floating photovoltaic systems.
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A
Derivation of the linear gravity wave

dispersion relation

A.1. Finite depth
The derivation of the linear wave theory presented in this section follows the material from the course
MT2433 Scheepsbewegingen (2021-2022) (Gerritsma, n.d.). The analysis considers cylindrical waves
propagating in the 𝑥-direction over a fluid layer of finite depth. The fluid is assumed to be non-viscous,
incompressible, and homogeneous. In linear wave theory, it is further assumed that the wave amplitude
is small compared to the wavelength, resulting in a small steepness parameter. Under this condition,
nonlinear terms in the governing equations, which are of the same order as the square of the steepness,
can be neglected. This allows for a linearized treatment of the governing equations and boundary
conditions. A typical wave profile for such cylindrical waves is shown in Figure A.1.

Figure A.1: Cylindrical waves.

A.1.1. Wave velocity potential
The velocity potential 𝜙(𝑥, 𝑧, 𝑡) of the wave must satisfy the Laplace equation:

𝜕2𝜙
𝜕𝑥2 +

𝜕2𝜙
𝜕𝑦2 +

𝜕2𝜙
𝜕𝑧2 = 0. (A.1)

The water velocity in the 𝑥, 𝑦, and 𝑧-directions is defined as follows, respectively:

𝑢 = 𝜕𝜙
𝜕𝑥 (A.2)
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68 A. Derivation of the linear gravity wave dispersion relation

𝑣 = 𝜕𝜙
𝜕𝑦 = 0 (A.3)

𝑤 = 𝜕𝜙
𝜕𝑧 . (A.4)

Since 𝜕2𝜙
𝜕𝑦2 = 0, the Laplace equation A.1 simplifies to:

𝜕2𝜙
𝜕𝑥2 +

𝜕2𝜙
𝜕𝑧2 = 0. (A.5)

For a simple wave with small steepness, the wave profile resembles a sine or cosine. In this context,
the wave potential is written as follows:

𝜙(𝑥, 𝑧, 𝑡) = 𝜉(𝑧) sin(𝑘𝑥 − 𝜔𝑡), (A.6)

where 𝜉(𝑧) is an unknown function of variable z, as it is known from experience that the water motion
in a wave is also a function of the vertical distance from the water surface. The minus sign in the sine
indicates that a displacement of the wave surface with velocity 𝑐𝑤 =

𝜔
𝑘 is considered in the direction of

the positive 𝑥-axis. The choice of this propagation direction is arbitrary. Substituting the expression for
the wave velocity potential A.6 into the simplified Laplace equation A.5 yields:

𝑑2𝜉(𝑧)
𝑑𝑧2 − 𝑘2𝜉(𝑧) = 0. (A.7)

With the solution:
𝜉(𝑧) = 𝐶1𝑒𝑘𝑧 + 𝐶2𝑒−𝑘𝑧 . (A.8)

Thus, the velocity potential is written as:

𝜙 = (𝐶1𝑒𝑘𝑧 + 𝐶2𝑒−𝑘𝑧) sin(𝑘𝑥 − 𝜔𝑡). (A.9)

To determine the constants 𝐶1 and 𝐶2, as well as the ratio 𝜔
𝑘 , the following boundary conditions are

considered.

Seabed boundary condition The vertical velocity at the seabed is zero, as shown in Figure A.2.
From 𝜕𝜙

𝜕𝑧 = 0 for 𝑧 = −ℎ, it follows from equation A.9 that

(𝑘𝐶1𝑒−𝑘ℎ − 𝑘𝐶2𝑒𝑘ℎ) sin(𝑘𝑥 − 𝜔𝑡) = 0 (A.10)
𝐶′1𝑒−𝑘ℎ − 𝐶′2𝑒𝑘ℎ = 0 (A.11)

With a mathematical trick, we can write:

𝐶′1𝑒−𝑘ℎ = 𝐶′2𝑒𝑘ℎ =
𝐶
2 . (A.12)

Then:
𝐶′1 =

𝐶
2𝑒

𝑘ℎ and 𝐶′2 =
𝐶
2𝑒

−𝑘ℎ . (A.13)

Substituting these into the general expression for 𝜉(𝑧) (A.8), we get:

𝜉(𝑧) = 𝐶
2 (𝑒

𝑘(ℎ+𝑧) + 𝑒−𝑘(ℎ+𝑧)) = 𝐶 cosh 𝑘(ℎ + 𝑧). (A.14)

Thus, the velocity potential becomes:

𝜙(𝑥, 𝑧, 𝑡) = 𝐶 cosh 𝑘(ℎ + 𝑧) sin(𝑘𝑥 − 𝜔𝑡). (A.15)
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Figure A.2: Seabed boundary condition.

Dynamic free surface boundary condition The pressure at the perturbed fluid surface, located at
𝑧 = 𝜁(𝑥, 𝑦, 𝑡), is equal to the atmospheric pressure 𝑃0. This requirement defines the dynamic boundary
condition at the free surface (see Figure A.3). The Bernoulli equation for unsteady flow is given by:

𝜕𝜙
𝜕𝑡 +

1
2(𝑢

2 + 𝑣2 +𝑤2) + 𝑃𝜌 + 𝑔𝑧 = 𝐶, (A.16)

where u, v, and w are defined in equations A.2-A.4. In the case where wave crests are parallel to the
𝑦-axis, we have 𝑣 = 0. For waves with small steepness, the quadratic terms 𝑢2 + 𝑣2 + 𝑤2 represent
a nonlinear contribution to the Bernoulli equation. Since the wave steepness 𝜖 is small (𝜖 ≪ 1), the
effects of these nonlinear terms are also small (proportional to 𝜖2) and can be neglected in first-order
theory. This simplification is part of the linearization process used in small-amplitude wave theory. With
these assumptions, the linearized Bernoulli equation becomes:

𝜕𝜙
𝜕𝑡 +

𝑃
𝜌 + 𝑔𝑧 = 𝐶. (A.17)

The constant 𝐶 can be found by assuming that when the wave is not yet generated (i.e., the fluid is at
rest), the constant can be determined by substituting 𝜕𝜙

𝜕𝑡 = 0 and 𝑧 = 𝜁 = 0, yielding 𝐶 =
𝑃0
𝜌 . For the

free fluid surface, the following condition applies:

𝜕𝜙
𝜕𝑡 +

𝑃0
𝜌 + 𝑔𝜁 = 𝑝0

𝜌 , for 𝑧 = 𝜁. (A.18)

Since the term 𝑝0
𝜌 appears on both sides, it can be eliminated, resulting in:

𝜕𝜙
𝜕𝑡 + 𝑔𝜁 = 0, for 𝑧 = 𝜁. (A.19)

The potential at the free surface 𝑧 = 𝜁 can be developed using a Taylor series expansion. It is important
to note that the vertical displacement 𝜁 is small compared to the depth of the fluid (i.e., 𝜁 ≪ ℎ). This
assumption means that the same approximation for the potential at 𝑧 = 𝜁 applies for 𝑧 = 0, as the
displacement is small relative to the depth. The Taylor series expansion for 𝜙(𝑥, 𝑧, 𝑡) about 𝑧 = 0 (the
undisturbed surface) is written as:

𝜙(𝑥, 𝑧, 𝑡) = 𝜙(𝑥, 0, 𝑡) + 𝜁 (𝜕𝜙(𝑥, 0, 𝑡)𝜕𝑧 )
𝑧=0

+ 𝑂(𝜁2). (A.20)

This is based on the fact that 𝜁 is small, so higher-order terms are negligible. The time derivative of 𝜙
is:

𝜕𝜙
𝜕𝑡 = (

𝜕𝜙(𝑥, 0, 𝑡)
𝜕𝑧 )

𝑧=0
+ 𝑂(𝜁2). (A.21)

Thus, in the linearized form, the equation A.18 becomes:

𝜕𝜙
𝜕𝑡 + 𝑔𝜁 = 0 at 𝑧 = 0. (A.22)
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From this, the wave displacement 𝜁 can be derived in terms of 𝜙.

𝜁 = −1𝑔
𝜕𝜙
𝜕𝑡 at 𝑧 = 0. (A.23)

With 𝜙 (A.15), we get:

𝜁 = 𝜔𝐶
𝑔 cosh(𝑘ℎ) cos(𝑘𝑥 − 𝜔𝑡) = 𝜁𝑎 cos(𝑘𝑥 − 𝜔𝑡). (A.24)

Finally, using this expression for 𝜁, we obtain the potential 𝜙 as:

𝜙 = 𝜁𝑎𝑔
𝜔

cosh(𝑘(ℎ + 𝑧))
cosh(𝑘ℎ) sin(𝑘𝑥 − 𝜔𝑡). (A.25)

Figure A.3: Dynamic free surface boundary condition.

Kinematic boundary condition The relationship between the wave number 𝑘 and the angular fre-
quency 𝜔 follows from the boundary condition that the vertical velocity of a water particle at the free
surface must be equal to the vertical velocity of the surface itself. This is a kinematic boundary condi-
tion. From the equation of the free surface 𝑧 = 𝜁(𝑥, 𝑡), we have:

𝑑𝑧
𝑑𝑡 =

𝜕𝜁
𝜕𝑡 + 𝑢

𝜕𝜁
𝜕𝑥 . (A.26)

The second term in this expression is of second-order smallness because both the velocity 𝑢 and the
slope of the water surface are small due to the assumption that the wave steepness is small, as shown
in Figure A.4. Therefore, after linearization, we get:

𝑑𝑧
𝑑𝑡 =

𝜕𝜁
𝜕𝑡 at the free surface 𝑧 = 𝜁. (A.27)

Now, the vertical velocity of a water particle is given by 𝜕𝜙
𝜕𝑧 , so at the surface 𝑧 = 0, we have:

𝜕𝜙
𝜕𝑧 =

𝜕𝜁
𝜕𝑡 for 𝑧 = 0. (A.28)

Hereby, we assumed that 𝑧 = 0 is similar to 𝑧 = 𝜁 based on the linearization that we formulated before
in Equation A.21. By differentiating the dynamic boundary condition (A.22) with respect to time, we
obtain:

𝜕2𝜙
𝜕𝑡2 + 𝑔

𝜕𝜁
𝜕𝑡 for 𝑧 = 0. (A.29)

Using expression (A.28) and some rearranging of the terms leads to:

𝜕𝜙
𝜕𝑧 +

1
𝑔
𝜕2𝜙
𝜕𝑡2 for 𝑧 = 0. (A.30)
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This equation is called the Cauchy-Poisson condition. It is a linear equation in only one variable, 𝜙.
Substituting the wave velocity potential expression (A.25) into this boundary condition at the free surface
(the Cauchy-Poisson condition) gives the dispersion relation:

𝜕𝜙(𝑧 = 0)
𝜕𝑧 = 𝐶𝑘 sinh(𝑘ℎ) sin(𝑘𝑥 − 𝜔𝑡) (A.31)

𝜕2𝜙(𝑧 = 0)
𝜕𝑡2 = 𝐶𝜔2 cosh(𝑘ℎ) sin(𝑘𝑥 − 𝜔𝑡) (A.32)

𝜔2 = 𝑘𝑔 tanh(𝑘ℎ). (A.33)

Figure A.4: Kinematic free surface boundary condition.





B
Derivation of the linear capillary wave

dispersion relation

B.1. Finite depth
The derivation of the linear capillary wave theory presented here has been established with the help
of Lamb (1932) and Lamb (1945). The same velocity potential as derived in the dispersion relation for
finite-depth linear gravity waves (see Appendix A) is used. The fluid is assumed to be incompressible,
inviscid, and homogeneous. To apply linear theory, the wave steepness, defined as the ratio of wave
height to wavelength, is considered small. This allows for the neglect of higher-order nonlinear terms
in the governing equations. In the Bernoulli pressure formulation, gravity effects are neglected since
surface tension primarily governs the dynamics of capillary waves.

Dynamic free surface boundary condition The fluid pressure 𝑃(𝑟, 𝑡) acting on the sheet is calcu-
lated by assuming an incompressible and irrotational flow. In the region above the sheet, the fluid
velocity is described by the potential 𝜙(𝑟, 𝑧, 𝑡), which satisfies Laplace’s equation:

∇2𝜙 = 0, (B.1)

where 𝑟 = (𝑥, 𝑦) denotes the horizontal in-plane coordinates. The pressure on the sheet is given by a
derivation of the linearized Bernoulli equation A.17:

𝜕𝜙
𝜕𝑡 +

𝑃0
𝜌 + 𝑔𝑧 = −

(𝑃 + 𝑃0)
𝜌 . (B.2)

Solving this for P leaves us:

𝑃 = −𝜌𝜕𝜙𝜕𝑡 |𝑧=0 − 𝜌𝑔𝜁, (B.3)

where 𝜌 is the density of the fluid and 𝑔 is the acceleration due to gravity. But for capillary waves the
assumption is made that gravity can be neglected. Thus this simplifies to

𝑃 = −𝜌𝜕𝜙𝜕𝑡 |𝑧=0. (B.4)

Kinematic boundary condition The kinematic boundary condition relates the vertical displacement
of the beam to the fluid velocity at the surface. The kinematic boundary condition is:

𝜕𝜁
𝜕𝑡 =

𝜕𝜙
𝜕𝑧 |𝑧=0. (B.5)

We assume a solution for the velocity potential 𝜙(𝑟, 𝑧, 𝑡), which satisfies Laplace’s equation:
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𝜙 = 𝜁𝑎𝑔
𝜔

cosh(𝑘(ℎ + 𝑧))
cosh(𝑘ℎ) sin(𝑘𝑥 − 𝜔𝑡). (B.6)

Taking the derivative of 𝜙 with respect to 𝑧 and evaluating at 𝑧 = 0:

𝜕𝜙
𝜕𝑧 |𝑧=0 =

𝜁𝑎𝑔
𝜔
𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) sin(𝑘𝑥 − 𝜔𝑡). (B.7)

Thus, the kinematic boundary condition becomes:

𝜕𝜁
𝜕𝑡 =

𝜁𝑎
𝜔
𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) sin(𝑘𝑥 − 𝜔𝑡). (B.8)

To find the expression for 𝜁, we integrate with respect to time 𝑡:

𝜁(𝑟, 𝑡) = ∫ 𝜁𝑎𝑔𝜔
𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) sin(𝑘𝑥 − 𝜔𝑡)𝑑𝑡. (B.9)

This integration gives:

𝜁(𝑟, 𝑡) = −𝜁𝑎𝑔𝜔2
𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) cos(𝑘𝑥 − 𝜔𝑡) + 𝑓(𝑟), (B.10)

where 𝑓(𝑟) is an arbitrary function of the spatial coordinates 𝑟 representing the initial condition. To
satisfy the initial condition 𝜁(𝑟, 𝑡 = 0) = 0, we set 𝑓(𝑟) = 0. Thus, the displacement becomes:

𝜁(𝑟, 𝑡) = −𝜁𝑎𝑔𝜔2
𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) cos(𝑘𝑥 − 𝜔𝑡). (B.11)

Pressure condition at the common surface The fluid pressure is now discontinuous at a surface
of separation, so we have

𝑃 = 𝜎 ( 1𝑅1
+ 1
𝑅2
) , (B.12)

where 𝑅1 and 𝑅2 are the principal radii of curvature and 𝜎 is the surface tension. In our case, there
is only one principal radius of curvature, as a monochromatic wave is considered, so 𝑅2 = 0. The
radius of curvature 𝑅1 is approximated by the inverse of the second derivative of the surface elevation
𝜁. Setting this equal to the pressure formulation obtained from the dynamic free surface boundary
condition gives

𝜎 (𝜕
2𝜁
𝜕𝑥2) = −𝜌

𝜕𝜙
𝜕𝑡 |𝑧=0. (B.13)

First, calculate the time derivative of 𝜙:

𝜕𝜙
𝜕𝑡 = −

𝜁𝑎𝑔
𝜔

cosh(𝑘(ℎ + 𝑧))
cosh(𝑘ℎ) 𝜔 cos(𝑘𝑥 − 𝜔𝑡). (B.14)

Evaluating at 𝑧 = 0, this becomes:

𝜕𝜙
𝜕𝑡 |𝑧=0 = −𝜁𝑎𝑔 cos(𝑘𝑥 − 𝜔𝑡). (B.15)

The second space derivative of 𝜁(𝑟, 𝑡):

𝜕2𝜁(𝑟, 𝑡)
𝜕𝑥2 = 𝜁𝑎𝑔

𝜔2
𝑘3 sinh(𝑘ℎ)
cosh(𝑘ℎ) cos(𝑘𝑥 − 𝜔𝑡). (B.16)

This leaves us to

𝜎𝜁𝑎𝑔𝜔2
𝑘3 sinh(𝑘ℎ)
cosh(𝑘ℎ) cos(𝑘𝑥 − 𝜔𝑡) = 𝜌𝜁𝑎𝑔 cos(𝑘𝑥 − 𝜔𝑡). (B.17)
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Multiplying both terms with 𝜔2 and dividing by cos(𝑘𝑥 − 𝜔𝑡), g, and 𝜁𝑎

𝜎𝑘3 tanh(𝑘ℎ) = 𝜌𝜔2 (B.18)

𝜔2 = 𝜎𝑘3
𝜌 tanh(𝑘ℎ). (B.19)





C
Derivation of the linear gravity-capillary

wave dispersion relation

C.1. Finite depth
The derivation of the linear gravity-capillary wave theory presented here has been established with
the help of Lamb (1932) and Lamb (1945). The fluid is assumed to be incompressible, inviscid, and
homogeneous, and the wave motion is analyzed under the assumption of small wave steepness, allow-
ing linearization of the governing equations. The velocity potential used in this derivation is the same
as the one derived for the dispersion relation of finite-depth linear gravity waves (see Appendix A).
In contrast to the capillary wave dispersion derivation, gravity effects are not neglected in the case of
gravity-capillary waves, as both surface tension and gravity contribute to the wave dynamics.

Dynamic free surface boundary condition The fluid pressure 𝑃(𝑟, 𝑡) acting on the sheet is calcu-
lated by assuming an incompressible and irrotational flow. In the region above the sheet, the fluid
velocity is described by the potential 𝜙(𝑟, 𝑧, 𝑡), which satisfies Laplace’s equation:

∇2𝜙 = 0, (C.1)

where 𝑟 = (𝑥, 𝑦) denotes the horizontal in-plane coordinates. The pressure on the sheet is given by a
derivation of the linearized Bernoulli equation A.17:

𝜕𝜙
𝜕𝑡 +

𝑃0
𝜌 + 𝑔𝑧 = −

(𝑃 + 𝑃0)
𝜌 . (C.2)

Solving this for P leaves us:

𝑃 = −𝜌𝜕𝜙𝜕𝑡 |𝑧=0 − 𝜌𝑔𝜁, (C.3)

where 𝜌 is the density of the fluid and 𝑔 is the acceleration due to gravity. Now for gravity-capillary
waves it is not allowed to neglect the gravity effects.

Kinematic boundary condition The kinematic boundary condition relates the vertical displacement
of the beam to the fluid velocity at the surface. The kinematic boundary condition is:

𝜕𝜁
𝜕𝑡 =

𝜕𝜙
𝜕𝑧 |𝑧=0. (C.4)

We assume a solution for the velocity potential 𝜙(𝑟, 𝑧, 𝑡), which satisfies Laplace’s equation:

𝜙 = 𝜁𝑎𝑔
𝜔

cosh(𝑘(ℎ + 𝑧))
cosh(𝑘ℎ) sin(𝑘𝑥 − 𝜔𝑡). (C.5)

Taking the derivative of 𝜙 with respect to 𝑧 and evaluating at 𝑧 = 0:

77



78 C. Derivation of the linear gravity-capillary wave dispersion relation

𝜕𝜙
𝜕𝑧 |𝑧=0 =

𝜁𝑎𝑔
𝜔
𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) sin(𝑘𝑥 − 𝜔𝑡). (C.6)

Thus, the kinematic boundary condition becomes:

𝜕𝜁
𝜕𝑡 =

𝜁𝑎
𝜔
𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) sin(𝑘𝑥 − 𝜔𝑡). (C.7)

To find the expression for 𝜁, we integrate with respect to time 𝑡:

𝜁(𝑟, 𝑡) = ∫ 𝜁𝑎𝑔𝜔
𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) sin(𝑘𝑥 − 𝜔𝑡)𝑑𝑡. (C.8)

This integration gives:

𝜁(𝑟, 𝑡) = −𝜁𝑎𝑔𝜔2
𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) cos(𝑘𝑥 − 𝜔𝑡) + 𝑓(𝑟), (C.9)

where 𝑓(𝑟) is an arbitrary function of the spatial coordinates 𝑟 representing the initial condition. To
satisfy the initial condition 𝜁(𝑟, 𝑡 = 0) = 0, we set 𝑓(𝑟) = 0. Thus, the displacement becomes:

𝜁(𝑟, 𝑡) = −𝜁𝑎𝑔𝜔2
𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) cos(𝑘𝑥 − 𝜔𝑡). (C.10)

Pressure condition at the common surface The fluid pressure is now discontinuous at a surface
of separation so we have

𝑃 = 𝜎 ( 1𝑅1
+ 1
𝑅2
) , (C.11)

where, 𝑅1 and 𝑅2 are the principle radii of curvature and 𝜎 the surface tension. In our case there is
only one principle radius of curvature as a monochromatic wave is considered so 𝑅2 = 0. The radius of
curvature 𝑅1 is approximated with the inverse of the second derivative of surface elevation 𝜁. Setting
this equal to the pressure formulation obtained from the dynamics boundary condition gives

𝜎 (𝜕
2𝜁
𝜕𝑥2) = −𝜌

𝜕𝜙
𝜕𝑡 |𝑧=0 − 𝜌𝑔𝜁. (C.12)

First, calculate the time derivative of 𝜙:

𝜕𝜙
𝜕𝑡 = −

𝜁𝑎𝑔
𝜔

cosh(𝑘(ℎ + 𝑧))
cosh(𝑘ℎ) 𝜔 cos(𝑘𝑥 − 𝜔𝑡). (C.13)

Evaluating at 𝑧 = 0, this becomes:

𝜕𝜙
𝜕𝑡 |𝑧=0 = −𝜁𝑎𝑔 cos(𝑘𝑥 − 𝜔𝑡). (C.14)

The second space derivative of 𝜁(𝑟, 𝑡):

𝜕2𝜁(𝑟, 𝑡)
𝜕𝑥2 = 𝜁𝑎𝑔

𝜔2
𝑘3 sinh(𝑘ℎ)
cosh(𝑘ℎ) cos(𝑘𝑥 − 𝜔𝑡). (C.15)

This leaves us to

𝜎𝜁𝑎𝑔𝜔2
𝑘3 sinh(𝑘ℎ)
cosh(𝑘ℎ) cos(𝑘𝑥 − 𝜔𝑡) = 𝜌𝜁𝑎𝑔 cos(𝑘𝑥 − 𝜔𝑡) − 𝜌𝑔

𝜁𝑎𝑔
𝜔2

𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) cos(𝑘𝑥 − 𝜔𝑡). (C.16)

Multiplying both terms with 𝜔2 and dividing by cos(𝑘𝑥 − 𝜔𝑡), g, and 𝜁𝑎 results in

𝜎𝑘3 tanh(𝑘ℎ) + 𝜌𝑘𝑔 tanh(𝑘ℎ) = 𝜌𝜔2 (C.17)
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𝜔2 = 𝜎𝑘3
𝜌 tanh(𝑘ℎ) + 𝑘𝑔 tanh(𝑘ℎ) (C.18)

𝜔2 = (𝜎𝑘
3

𝜌 + 𝑘𝑔) tanh(𝑘ℎ). (C.19)





D
Derivation of the fluid–structure

dispersion relation based on
Euler-Bernoulli beam theory and linear

gravity wave theory

D.1. Finite depth
The derivation of the fluid–structure interaction presented here combines Euler–Bernoulli beam theory
with the velocity potential derived for finite-depth linear gravity waves (see Appendix A). The veloc-
ity potential satisfies Laplace’s equation and includes depth dependence, which alters the resulting
dispersion relation compared to the infinite-depth approximations.

The Euler–Bernoulli beam theory is applied to model the bending behavior of slender elastic beams
subjected to fluid loading. This theory assumes that the beam is homogeneous, isotropic, and linearly
elastic, with small deflections such that geometric nonlinearities can be neglected. The beam is also
considered slender, meaning its length is much greater than its cross-sectional dimensions, which
allows the deformation to be governed primarily by bending. Shear deformation and axial stretching
are ignored.

Furthermore, the cross-sections of the beam are assumed to remain plane and perpendicular to
the neutral axis during deformation, implying no twisting or warping. The material’s Young’s modulus 𝐸
and the second moment of area 𝐼 are taken as constant along the beam’s length. These assumptions
make the Euler–Bernoulli model suitable for analyzing long, thin structures where bending dominates
the response to dynamic fluid forces.

D.1.1. Governing equation
The mechanical behavior of an Euler-Bernoulli beam is governed by the following fourth-order partial
differential equation:

𝐸𝐼∇4𝑟𝜁 − 𝜌𝑒𝑑
𝜕2𝜁
𝜕𝑡2 = 𝑃 + 𝑃ext, (D.1)

where 𝐸 is the Young’s modulus of the beam, 𝐼 is the second moment of area of the beam’s cross-
section, 𝜌𝑒 is the density of the beam material, and 𝑑 is the thickness of the beam. The pressures 𝑃
and 𝑃ext are exerted on the sheet, with 𝑃 representing the hydrodynamic pressure from the fluid and 𝑃ext
representing an external perturbation (e.g. an air jet), which is assumed to be zero here. The operator

∇4𝑟 denotes the biharmonic operator in the in-plane coordinates 𝑟 = (𝑥, 𝑦), i.e. ∇4𝑟 = (
𝜕2
𝜕𝑥2 +

𝜕2
𝜕𝑦2 )

2
.

Dynamic free surface Boundary Condition The external pressure 𝑃(𝑟, 𝑡) acting on the sheet is
calculated using the dynamic boundary condition, assuming incompressible and irrotational flow. The
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fluid velocity is described by the potential 𝜙(𝑟, 𝑧, 𝑡), which satisfies Laplace’s equation:

∇2𝜙 = 0. (D.2)

Using the linearized Bernoulli equation for the pressure acting on the sheet:

𝜕𝜙
𝜕𝑡 +

𝑃0
𝜌 + 𝑔𝑧 =

(𝑃 + 𝑃0)
𝜌 . (D.3)

Solving for 𝑃, we get:

𝑃 = 𝜌𝜕𝜙𝜕𝑡 |𝑧=0 + 𝜌𝑔𝜁, (D.4)

where 𝜌 is the fluid density, and 𝑔 is the acceleration due to gravity.

Kinematic boundary condition The kinematic boundary condition relates the vertical displacement
of the beam to the fluid velocity at the surface. The kinematic boundary condition is:

𝜕𝜁
𝜕𝑡 =

𝜕𝜙
𝜕𝑧 |𝑧=0. (D.5)

We assume a solution for the velocity potential 𝜙(𝑟, 𝑧, 𝑡), which satisfies Laplace’s equation:

𝜙 = 𝜁𝑎𝑔
𝜔

cosh(𝑘(ℎ + 𝑧))
cosh(𝑘ℎ) sin(𝑘𝑥 − 𝜔𝑡). (D.6)

Taking the derivative of 𝜙 with respect to 𝑧 and evaluating at 𝑧 = 0:

𝜕𝜙
𝜕𝑧 |𝑧=0 =

𝜁𝑎𝑔
𝜔
𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) sin(𝑘𝑥 − 𝜔𝑡). (D.7)

Thus, the kinematic boundary condition becomes:

𝜕𝜁
𝜕𝑡 =

𝜁𝑎
𝜔
𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) sin(𝑘𝑥 − 𝜔𝑡). (D.8)

To find the expression for 𝜁, we integrate with respect to time 𝑡:

𝜁(𝑟, 𝑡) = ∫ 𝜁𝑎𝑔𝜔
𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) sin(𝑘𝑥 − 𝜔𝑡)𝑑𝑡. (D.9)

This integration gives:

𝜁(𝑟, 𝑡) = −𝜁𝑎𝑔𝜔2
𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) cos(𝑘𝑥 − 𝜔𝑡) + 𝑓(𝑟), (D.10)

where 𝑓(𝑟) is an arbitrary function of the spatial coordinates 𝑟 representing the initial condition. To
satisfy the initial condition 𝜁(𝑟, 𝑡 = 0) = 0, we set 𝑓(𝑟) = 0. Thus, the displacement becomes:

𝜁(𝑟, 𝑡) = −𝜁𝑎𝑔𝜔2
𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) cos(𝑘𝑥 − 𝜔𝑡). (D.11)

Pressure acting on the Beam The fluid pressure 𝑃(𝑟, 𝑡) acting on the beam can be determined using
the dynamic boundary condition. From the linearized Bernoulli equation:

𝜕𝜙
𝜕𝑡 +

𝑃0
𝜌 + 𝑔𝑧 = (𝑃 + 𝑃0)

𝜌 , (D.12)

where 𝑃0 is the ambient pressure, 𝜌 is the fluid density, and 𝑔 is the acceleration due to gravity. Solving
for 𝑃, we find:

𝑃 = 𝜌𝜕𝜙𝜕𝑡 |𝑧=0 + 𝜌𝑔𝜁. (D.13)
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First, calculate the time derivative of 𝜙:

𝜕𝜙
𝜕𝑡 = −

𝜁𝑎𝑔
𝜔

cosh(𝑘(ℎ + 𝑧))
cosh(𝑘ℎ) 𝜔 cos(𝑘𝑥 − 𝜔𝑡). (D.14)

Evaluating at 𝑧 = 0, this becomes:

𝜕𝜙
𝜕𝑡 |𝑧=0 = −𝜁𝑎𝑔 cos(𝑘𝑥 − 𝜔𝑡). (D.15)

Substituting this result and the expression for 𝜁(𝑟, 𝑡) into the pressure equation, gives:

𝑃 = 𝜌 (−𝜁𝑎𝑔 cos(𝑘𝑥 − 𝜔𝑡)) + 𝜌𝑔 (−
𝜁𝑎𝑔
𝜔2

𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) cos(𝑘𝑥 − 𝜔𝑡)) . (D.16)

Simplifying the terms:

𝑃 = −𝜌𝑔𝜁𝑎 cos(𝑘𝑥 − 𝜔𝑡) − 𝜌𝑔
𝜁𝑎𝑔
𝜔2

𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) cos(𝑘𝑥 − 𝜔𝑡). (D.17)

D.1.2. Dispersion relation
We now calculate the terms in the Euler-Bernoulli beam equation D.1 and derive the dispersion relation.

Bending term: 𝐸𝐼∇4𝑟𝜁 The fourth spatial derivative of 𝜁 is:

𝜕4𝜁
𝜕𝑥4 = −

𝜁𝑎𝑔
𝜔2

𝑘5 sinh(𝑘ℎ)
cosh(𝑘ℎ) cos(𝑘𝑥 − 𝜔𝑡). (D.18)

Thus, the bending term is:

𝐸𝐼∇4𝑟𝜁 = −𝐸𝐼𝑘5
𝜁𝑎𝑔
𝜔2

sinh(𝑘ℎ)
cosh(𝑘ℎ) cos(𝑘𝑥 − 𝜔𝑡). (D.19)

Inertia term: 𝜌𝑒𝑑
𝜕2𝜁
𝜕𝑡2 The second time derivative of 𝜁 is:

𝜕2𝜁
𝜕𝑡2 = −

𝜁𝑎𝑔
𝜔2

𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) 𝜔

2 cos(𝑘𝑥 − 𝜔𝑡). (D.20)

Thus, the inertia term becomes:

𝜌𝑒ℎ
𝜕2𝜁
𝜕𝑡2 = −𝜌𝑒𝑑𝜁𝑎𝑔𝑘

sinh(𝑘ℎ)
cosh(𝑘ℎ) cos(𝑘𝑥 − 𝜔𝑡). (D.21)

Pressure term: 𝑃 The external pressure 𝑃 acting on the beam is:

𝑃 = −(𝜌𝑔𝜁𝑎 + 𝜌𝑔
𝜁𝑎𝑔
𝜔2

𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) ) cos(𝑘𝑥 − 𝜔𝑡). (D.22)

Substituting the bending, inertia, and pressure terms into the Euler-Bernoulli equation D.1:

−𝐸𝐼𝑘5 𝜁𝑎𝑔𝜔2
sinh(𝑘ℎ)
cosh(𝑘ℎ) cos(𝑘𝑥−𝜔𝑡)+𝜌𝑒ℎ𝜁𝑎𝑔𝑘

sinh(𝑘ℎ)
cosh(𝑘ℎ) cos(𝑘𝑥−𝜔𝑡) = −(𝜌𝑔𝜁𝑎 + 𝜌𝑔

𝜁𝑎𝑔
𝜔2

𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) ) cos(𝑘𝑥−𝜔𝑡).

(D.23)
Simplifying, multiplying each term with 𝜔2, and dividing each term by g, 𝜁𝑎, cos(𝑘𝑥 − 𝜔𝑡) gives

−𝐸𝐼𝑘5 sinh(𝑘ℎ)
cosh(𝑘ℎ) + 𝜌𝑒𝑑𝑘𝜔

2 sinh(𝑘ℎ)
cosh(𝑘ℎ) = −(𝜌𝜔

2 + 𝜌𝑔𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ)) . (D.24)

Further simplifying results to
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−𝐸𝐼𝑘5 tanh (𝑘ℎ) + 𝜌𝑒𝑑𝑘𝜔2 tanh (𝑘ℎ) − 𝜌𝑔𝑘 tanh (𝑘ℎ) = −𝜌𝜔2 (D.25)

even further simplifying to

𝜔2 = (𝐸𝐼𝑘
5

𝜌 − 𝜌𝑒𝑑𝑘𝜔
2

𝜌 + 𝑔𝑘) tanh (𝑘ℎ). (D.26)

By multiplying each term by kg
kg
, we are effectively multiplying by 1, which does not change the outcome.

This makes the expression more intuitive:

𝜔2 = (𝐸𝐼𝑘
5

𝜌𝑔𝑘 −
𝜌𝑒𝑑𝑘𝜔2
𝜌𝑔𝑘 + 𝑔𝑘𝑔𝑘)𝑘𝑔 tanh(𝑘ℎ) (D.27)

where

𝑘𝑝 = (
𝜌𝑔
𝐸𝐼 )

1
4

(D.28)

𝜔0 = √
𝜌𝑔
𝜌𝑒𝑑

. (D.29)

Using these definitions, the dispersion relation simplifies to

𝜔2 = (1 − ( 𝜔𝜔0
)
2
+ ( 𝑘𝑘𝑝

)
4
)𝑘𝑔 tanh(𝑘ℎ). (D.30)
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E.1. Finite depth
The derivation of the fluid–structure interaction presented here combines Kirchhoff–Love plate theory
with the velocity potential derived for finite-depth linear gravity waves (see Appendix A). The plate is
assumed to be thin, homogeneous, isotropic, and linearly elastic, with small vertical deflections allowing
for linearization. Shear deformation and rotary inertia are neglected, consistent with the assumptions
of Kirchhoff–Love theory. The fluid is modeled as incompressible, inviscid, and irrotational, and the
wave steepness is assumed small enough to ignore nonlinear terms. The use of the depth-dependent
velocity potential modifies the resulting dispersion relation by explicitly incorporating the effect of finite
fluid depth.

E.1.1. Governing equation
The mechanical system of the elastic sheet is governed by the Kirchoff-love plate equation, which
simplifies to the following form:

𝐵∇4𝑟𝜁 + 𝜌𝑒𝑑
𝜕2𝜁
𝜕𝑡2 = 𝑃 + 𝑃ext, (E.1)

where 𝐵 is the bending stiffness of the sheet, and 𝜌𝑒 is the sheet’s density. The first term accounts for
the bending and the second term represents the solid inertia. The pressures 𝑃 and 𝑃ext are exerted
on the sheet, with 𝑃 representing a hydrostatic pressure and 𝑃ext representing an external perturbation
(e.g. an air jet), assumed to be zero here.

Dynamic free surface boundary condition The fluid pressure 𝑃(𝑟, 𝑡) acting on the sheet is calcu-
lated by assuming an incompressible and irrotational flow. In the region above the sheet, the fluid
velocity is described by the potential 𝜙(𝑟, 𝑧, 𝑡), which satisfies Laplace’s equation:

∇2𝜙 = 0. (E.2)

The pressure on the sheet is given by a derivation of the linearized Bernoulli equation A.17:

𝜕𝜙
𝜕𝑡 +

𝑃0
𝜌 + 𝑔𝑧 = −

(𝑃 + 𝑃0)
𝜌 . (E.3)
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Solving this for P leaves us:

𝑃 = −𝜌𝜕𝜙𝜕𝑡 |𝑧=0 − 𝜌𝑔𝜁, (E.4)

where 𝜌 is the density of the fluid and 𝑔 is the acceleration due to gravity.

Kinematic boundary condition The kinematic boundary condition relates the vertical displacement
of the beam to the fluid velocity at the surface. The kinematic boundary condition is:

𝜕𝜁
𝜕𝑡 =

𝜕𝜙
𝜕𝑧 |𝑧=0. (E.5)

We assume a solution for the velocity potential 𝜙(𝑟, 𝑧, 𝑡), which satisfies Laplace’s equation:

𝜙 = 𝜁𝑎𝑔
𝜔

cosh(𝑘(ℎ + 𝑧))
cosh(𝑘ℎ) sin(𝑘𝑥 − 𝜔𝑡). (E.6)

Taking the derivative of 𝜙 with respect to 𝑧 and evaluating at 𝑧 = 0:

𝜕𝜙
𝜕𝑧 |𝑧=0 =

𝜁𝑎𝑔
𝜔
𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) sin(𝑘𝑥 − 𝜔𝑡). (E.7)

Thus, the kinematic boundary condition becomes:

𝜕𝜁
𝜕𝑡 =

𝜁𝑎
𝜔
𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) sin(𝑘𝑥 − 𝜔𝑡). (E.8)

To find the expression for 𝜁, we integrate with respect to time 𝑡:

𝜁(𝑟, 𝑡) = ∫ 𝜁𝑎𝑔𝜔
𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) sin(𝑘𝑥 − 𝜔𝑡)𝑑𝑡. (E.9)

This integration gives:

𝜁(𝑟, 𝑡) = −𝜁𝑎𝑔𝜔2
𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) cos(𝑘𝑥 − 𝜔𝑡) + 𝑓(𝑟), (E.10)

where 𝑓(𝑟) is an arbitrary function of the spatial coordinates 𝑟 representing the initial condition. To
satisfy the initial condition 𝜁(𝑟, 𝑡 = 0) = 0, we set 𝑓(𝑟) = 0. Thus, the displacement becomes:

𝜁(𝑟, 𝑡) = −𝜁𝑎𝑔𝜔2
𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) cos(𝑘𝑥 − 𝜔𝑡). (E.11)

Pressure acting on the beam The fluid pressure 𝑃(𝑟, 𝑡) acting on the beam can be determined using
the dynamic boundary condition. From the linearized Bernoulli equation:

𝜕𝜙
𝜕𝑡 +

𝑃0
𝜌 + 𝑔𝑧 = (𝑃 + 𝑃0)

𝜌 , (E.12)

where 𝑃0 is the ambient pressure, 𝜌 is the fluid density, and 𝑔 is the acceleration due to gravity. Solving
for 𝑃, we find:

𝑃 = 𝜌𝜕𝜙𝜕𝑡 |𝑧=0 + 𝜌𝑔𝜁. (E.13)

First, calculate the time derivative of 𝜙:

𝜕𝜙
𝜕𝑡 = −

𝜁𝑎𝑔
𝜔

cosh(𝑘(ℎ + 𝑧))
cosh(𝑘ℎ) 𝜔 cos(𝑘𝑥 − 𝜔𝑡). (E.14)

Evaluating at 𝑧 = 0, this becomes:

𝜕𝜙
𝜕𝑡 |𝑧=0 = −𝜁𝑎𝑔 cos(𝑘𝑥 − 𝜔𝑡). (E.15)
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Substituting this result and the expression for 𝜁(𝑟, 𝑡) into the pressure equation, gives:

𝑃 = 𝜌 (−𝜁𝑎𝑔 cos(𝑘𝑥 − 𝜔𝑡)) + 𝜌𝑔 (−
𝜁𝑎𝑔
𝜔2

𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) cos(𝑘𝑥 − 𝜔𝑡)) . (E.16)

Simplifying the terms:

𝑃 = −𝜌𝑔𝜁𝑎 cos(𝑘𝑥 − 𝜔𝑡) − 𝜌𝑔
𝜁𝑎𝑔
𝜔2

𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) cos(𝑘𝑥 − 𝜔𝑡). (E.17)

E.1.2. Dispersion relation
We now calculate the terms in the Kirchoff-Love plate equation E.1 and derive the dispersion relation.

Bending term: 𝐸𝐼∇4𝑟𝜁 The fourth spatial derivative of 𝜁 is:

𝜕4𝜁
𝜕𝑥4 = −

𝜁𝑎𝑔
𝜔2

𝑘5 sinh(𝑘ℎ)
cosh(𝑘ℎ) cos(𝑘𝑥 − 𝜔𝑡). (E.18)

Thus, the bending term is:

𝐵∇4𝑟𝜁 = −𝐵𝑘5
𝜁𝑎𝑔
𝜔2

sinh(𝑘ℎ)
cosh(𝑘ℎ) cos(𝑘𝑥 − 𝜔𝑡). (E.19)

Inertia term: 𝜌𝑒𝑑
𝜕2𝜁
𝜕𝑡2 The second time derivative of 𝜁 is:

𝜕2𝜁
𝜕𝑡2 = −

𝜁𝑎𝑔
𝜔2

𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) 𝜔

2 cos(𝑘𝑥 − 𝜔𝑡). (E.20)

Thus, the inertia term becomes:

𝜌𝑒𝑑
𝜕2𝜁
𝜕𝑡2 = −𝜌𝑒𝑑𝜁𝑎𝑔𝑘

sinh(𝑘ℎ)
cosh(𝑘ℎ) cos(𝑘𝑥 − 𝜔𝑡). (E.21)

But as explained in the assumptions this term will be omitted.

Pressure term: 𝑃 The external pressure 𝑃 acting on the beam is:

𝑃 = −(𝜌𝑔𝜁𝑎 + 𝜌𝑔
𝜁𝑎𝑔
𝜔2

𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) ) cos(𝑘𝑥 − 𝜔𝑡). (E.22)

Substituting the bending, inertia, and pressure terms into the Kirchoff-Love equation E.1:

−𝐵𝑘5 𝜁𝑎𝑔𝜔2
sinh(𝑘ℎ)
cosh(𝑘ℎ) cos(𝑘𝑥 − 𝜔𝑡) = −(𝜌𝑔𝜁𝑎 + 𝜌𝑔

𝜁𝑎𝑔
𝜔2

𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) ) cos(𝑘𝑥 − 𝜔𝑡). (E.23)

Simplifying, multiplying each term by 𝜔2, and dividing each term by 𝑔, 𝜁𝑎, and cos(𝑘𝑥 − 𝜔𝑡) gives

−𝐵𝑘5 sinh(𝑘ℎ)
cosh(𝑘ℎ) = −(𝜌𝜔

2 + 𝜌𝑔𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ)) , (E.24)

which can be further simplified to

−𝐵𝑘5 tanh(𝑘ℎ) − 𝜌𝑔𝑘 tanh(𝑘ℎ) = −𝜌𝜔2, (E.25)

and even further to

𝜔2 = (𝐸𝐼𝑘
5

𝜌 + 𝑔𝑘) tanh(𝑘ℎ). (E.26)
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wave theory

F.1. Finite depth
This derivation follows the approach outlined by Ono-dit-Biot et al. (2019). The system consists of a
thin elastic sheet floating on an incompressible, inviscid, and irrotational fluid of finite depth. The wave
amplitudes are assumed to be small relative to the wavelength, allowing linearization of the governing
equations. The vertical displacement of the sheet is described by 𝑧 = 𝜁(𝑟, 𝑡), where 𝑟 = (𝑥, 𝑦) are
the horizontal coordinates and 𝑡 denotes time. The membrane is assumed to be a thin film, such that
mass-related inertia can be neglected. Furthermore, the Cauchy stress tensor 𝜎𝐶 is treated as a scalar
that represents a uniform surface tension 𝜎. The velocity potential used for the fluid motion is the one
derived in the dispersion relation for finite-depth linear gravity waves (see Appendix A).

F.1.1. Governing equation
The mechanical system of the elastic sheet is governed by the Föppl–von Kármán equation, which
simplifies to the following form:

𝐵∇4𝑟𝜁 − 𝜎∇2𝑟𝜁 + 𝜌𝑒𝑑
𝜕2𝜁
𝜕𝑡2 = 𝑃 + 𝑃ext, (F.1)

where 𝐵 is the bending stiffness of the sheet, 𝜎 is the surface tension, and 𝜌𝑒 is the density of the sheet.
The first term accounts for the bending, the second term for the tension, and the third term represents
the solid inertia. The pressures 𝑃 and 𝑃ext are exerted on the sheet, with 𝑃 representing a hydrostatic
pressure and 𝑃ext representing an external perturbation (e.g. an air jet), assumed to be zero here.

Dynamic free surface boundary condition The fluid pressure 𝑃(𝑟, 𝑡) acting on the sheet is calcu-
lated by assuming an incompressible and irrotational flow. In the region above the sheet, the fluid
velocity is described by the potential 𝜙(𝑟, 𝑧, 𝑡), which satisfies Laplace’s equation:

∇2𝜙 = 0. (F.2)

The pressure on the sheet is given by a derivation of the linearized Bernoulli equation A.17:

𝜕𝜙
𝜕𝑡 +

𝑃0
𝜌 + 𝑔𝑧 = −

(𝑃 + 𝑃0)
𝜌 . (F.3)
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Solving this for P leaves us:

𝑃 = −𝜌𝜕𝜙𝜕𝑡 |𝑧=0 − 𝜌𝑔𝜁, (F.4)

where 𝜌 is the density of the fluid and 𝑔 is the acceleration due to gravity.

Kinematic boundary condition The kinematic boundary condition relates the vertical displacement
of the beam to the fluid velocity at the surface. The kinematic boundary condition is:

𝜕𝜁
𝜕𝑡 =

𝜕𝜙
𝜕𝑧 |𝑧=0. (F.5)

We assume a solution for the velocity potential 𝜙(𝑟, 𝑧, 𝑡), which satisfies Laplace’s equation:

𝜙 = 𝜁𝑎𝑔
𝜔

cosh(𝑘(ℎ + 𝑧))
cosh(𝑘ℎ) sin(𝑘𝑥 − 𝜔𝑡). (F.6)

Taking the derivative of 𝜙 with respect to 𝑧 and evaluating at 𝑧 = 0:

𝜕𝜙
𝜕𝑧 |𝑧=0 =

𝜁𝑎𝑔
𝜔
𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) sin(𝑘𝑥 − 𝜔𝑡). (F.7)

Thus, the kinematic boundary condition becomes:

𝜕𝜁
𝜕𝑡 =

𝜁𝑎
𝜔
𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) sin(𝑘𝑥 − 𝜔𝑡). (F.8)

To find the expression for 𝜁, we integrate with respect to time 𝑡:

𝜁(𝑟, 𝑡) = ∫ 𝜁𝑎𝑔𝜔
𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) sin(𝑘𝑥 − 𝜔𝑡)𝑑𝑡. (F.9)

This integration gives:

𝜁(𝑟, 𝑡) = −𝜁𝑎𝑔𝜔2
𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) cos(𝑘𝑥 − 𝜔𝑡) + 𝑓(𝑟), (F.10)

where 𝑓(𝑟) is an arbitrary function of the spatial coordinates 𝑟 representing the initial condition. To
satisfy the initial condition 𝜁(𝑟, 𝑡 = 0) = 0, we set 𝑓(𝑟) = 0. Thus, the displacement becomes:

𝜁(𝑟, 𝑡) = −𝜁𝑎𝑔𝜔2
𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) cos(𝑘𝑥 − 𝜔𝑡). (F.11)

Pressure acting on the beam The fluid pressure 𝑃(𝑟, 𝑡) acting on the beam can be determined using
the dynamic boundary condition. From the linearized Bernoulli equation:

𝜕𝜙
𝜕𝑡 +

𝑃0
𝜌 + 𝑔𝑧 = (𝑃 + 𝑃0)

𝜌 , (F.12)

where 𝑃0 is the ambient pressure, 𝜌 is the fluid density, and 𝑔 is the acceleration due to gravity. Solving
for 𝑃, we find:

𝑃 = 𝜌𝜕𝜙𝜕𝑡 |𝑧=0 + 𝜌𝑔𝜁. (F.13)

First, calculate the time derivative of 𝜙:

𝜕𝜙
𝜕𝑡 = −

𝜁𝑎𝑔
𝜔

cosh(𝑘(ℎ + 𝑧))
cosh(𝑘ℎ) 𝜔 cos(𝑘𝑥 − 𝜔𝑡). (F.14)

Evaluating at 𝑧 = 0, this becomes:

𝜕𝜙
𝜕𝑡 |𝑧=0 = −𝜁𝑎𝑔 cos(𝑘𝑥 − 𝜔𝑡). (F.15)
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Substituting this result and the expression for 𝜁(𝑟, 𝑡) into the pressure equation, gives:

𝑃 = 𝜌 (−𝜁𝑎𝑔 cos(𝑘𝑥 − 𝜔𝑡)) + 𝜌𝑔 (−
𝜁𝑎𝑔
𝜔2

𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) cos(𝑘𝑥 − 𝜔𝑡)) . (F.16)

Simplifying the terms:

𝑃 = −𝜌𝑔𝜁𝑎 cos(𝑘𝑥 − 𝜔𝑡) − 𝜌𝑔
𝜁𝑎𝑔
𝜔2

𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) cos(𝑘𝑥 − 𝜔𝑡). (F.17)

F.1.2. Dispersion relation
We now calculate the terms in the Föppl–von Kármán plate equation F.1 and derive the dispersion
relation.

Bending term: 𝐵∇4𝑟𝜁 The fourth spatial derivative of 𝜁 is:

𝜕4𝜁
𝜕𝑥4 = −

𝜁𝑎𝑔
𝜔2

𝑘5 sinh(𝑘ℎ)
cosh(𝑘ℎ) cos(𝑘𝑥 − 𝜔𝑡). (F.18)

Thus, the bending term is:

𝐵∇4𝑟𝜁 = −𝐵𝑘5
𝜁𝑎𝑔
𝜔2

sinh(𝑘ℎ)
cosh(𝑘ℎ) cos(𝑘𝑥 − 𝜔𝑡). (F.19)

Stress term: −𝜎∇2𝑟𝜁 The second spatial derivative of 𝜁(𝑟, 𝑡) is:

𝜕2𝜁
𝜕𝑥2 =

𝜁𝑎𝑔
𝜔2

𝑘3 sinh(𝑘ℎ)
cosh(𝑘ℎ) cos(𝑘𝑥 − 𝜔𝑡), (F.20)

which gives the tension term:

−𝜎∇2𝑟𝜁 = −𝜎
𝜁𝑎𝑔
𝜔2

𝑘3 sinh(𝑘ℎ)
cosh(𝑘ℎ) cos(𝑘𝑥 − 𝜔𝑡). (F.21)

Inertia term: 𝜌𝑒𝑑
𝜕2𝜁
𝜕𝑡2 The second time derivative of 𝜁 is:

𝜕2𝜁
𝜕𝑡2 = −

𝜁𝑎𝑔
𝜔2

𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) 𝜔

2 cos(𝑘𝑥 − 𝜔𝑡). (F.22)

Thus, the inertia term becomes:

𝜌𝑒ℎ
𝜕2𝜁
𝜕𝑡2 = −𝜌𝑒𝑑𝜁𝑎𝑔𝑘

sinh(𝑘ℎ)
cosh(𝑘ℎ) cos(𝑘𝑥 − 𝜔𝑡). (F.23)

But as explained in the assumptions this term will be omitted.

Pressure term: 𝑃 The external pressure 𝑃 acting on the beam is:

𝑃 = −(𝜌𝑔𝜁𝑎 + 𝜌𝑔
𝜁𝑎𝑔
𝜔2

𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) ) cos(𝑘𝑥 − 𝜔𝑡). (F.24)

Substituting the bending, inertia, and pressure terms into the Föppl–von Kármán plate equation F.1:

−𝐵𝑘5 𝜁𝑎𝑔𝜔2
sinh(𝑘ℎ)
cosh(𝑘ℎ) cos(𝑘𝑥−𝜔𝑡)−𝜎

𝜁𝑎𝑔
𝜔2

𝑘3 sinh(𝑘ℎ)
cosh(𝑘ℎ) cos(𝑘𝑥−𝜔𝑡) = −(𝜌𝑔𝜁𝑎 + 𝜌𝑔

𝜁𝑎𝑔
𝜔2

𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) ) cos(𝑘𝑥−𝜔𝑡).

(F.25)
Simplifying, multiplying each term by 𝜔2, and dividing each term by 𝑔, 𝜁𝑎, and cos(𝑘𝑥 − 𝜔𝑡) gives
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−𝐵𝑘5 sinh(𝑘ℎ)
cosh(𝑘ℎ) − 𝜎𝑘

3 sinh(𝑘ℎ)
cosh(𝑘ℎ) = −(𝜌𝜔

2 + 𝜌𝑔𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ)) , (F.26)

which can be further simplified to

−𝐵𝑘5 tanh(𝑘ℎ) − 𝜎𝑘3 tanh(𝑘ℎ) − 𝜌𝑔𝑘 tanh(𝑘ℎ) = −𝜌𝜔2, (F.27)

and finally to

𝜔2 = (𝐵𝑘
5

𝜌 + 𝜎𝑘
3

𝜌 + 𝑔𝑘) tanh(𝑘ℎ). (F.28)
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F.2. Full Cauchy stress tensor
This section presents an extended derivation of the fluid-structure dispersion relation by incorporating
the full two-dimensional Cauchy stress tensor, 𝜎𝑖𝑗, in the thin elastic sheet model. Unlike previous
derivations where the stress tensor was simplified as a scalar surface tension, here all in-plane stress
components are included. Specifically, this means that both normal stresses 𝜎𝑥𝑥 and 𝜎𝑦𝑦, which act
along the 𝑥- and 𝑦-directions respectively, as well as the shear stress 𝜎𝑥𝑦 (and by symmetry 𝜎𝑦𝑥), are
retained in the formulation. It is important to note that the general Cauchy stress tensor, denoted 𝜎𝐶
elsewhere in this report, is a three-dimensional tensor describing stresses in all spatial directions. For
the thin plate approximation considered here, 𝜎𝑖𝑗 represents the full 2D in-plane Cauchy stress tensor.

The underlying assumptions remain consistent with earlier sections: the system consists of a thin
elastic sheet floating on an incompressible, inviscid, and irrotational fluid with small-amplitude waves,
allowing for linearization. This approach considers the fluid to have finite depth, and the velocity po-
tential is explicitly dependent on this finite depth, which modifies the resulting dispersion relation and
fluid-structure interaction behavior.

F.2.1. Governing equation
The mechanical system of the elastic sheet is governed by the Föppl–von Kármán equation, which
simplifies to the following form:

𝐵∇4𝑟𝜁 − ∇𝑟 ⋅ (𝜎𝑖𝑗 ⋅ ∇𝑟𝜁) + 𝜌𝑒𝑑
𝜕2𝜁
𝜕𝑡2 = 𝑃 + 𝑃ext, (F.29)

where 𝐵 is the bending stiffness of the sheet, 𝜎𝑖𝑗 is the 2D stress tensor of the sheet, and 𝜌𝑒 is the
density of the sheet. The first term accounts for the bending, the second term for the internal stress,
and the third term represents the solid inertia. The pressures 𝑃 and 𝑃ext are exerted on the sheet, with
𝑃 representing a hydrostatic pressure and 𝑃ext representing an external perturbation (e.g. an air jet),
assumed to be zero here.

Kinematic boundary condition The kinematic boundary condition relates the vertical displacement
of the beam to the fluid velocity at the surface. The kinematic boundary condition is:

𝜕𝜁
𝜕𝑡 =

𝜕𝜙
𝜕𝑧 |𝑧=0. (F.30)

We assume a solution for the velocity potential 𝜙(𝑟, 𝑧, 𝑡), which satisfies Laplace’s equation:

𝜙 = 𝜁𝑎𝑔
𝜔

cosh(𝑘(ℎ + 𝑧))
cosh(𝑘ℎ) sin(𝑘𝑥 − 𝜔𝑡). (F.31)

Taking the derivative of 𝜙 with respect to 𝑧 and evaluating at 𝑧 = 0:

𝜕𝜙
𝜕𝑧 |𝑧=0 =

𝜁𝑎𝑔
𝜔
𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) sin(𝑘𝑥 − 𝜔𝑡). (F.32)

Thus, the kinematic boundary condition becomes:

𝜕𝜁
𝜕𝑡 =

𝜁𝑎
𝜔
𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) sin(𝑘𝑥 − 𝜔𝑡). (F.33)

To find the expression for 𝜁, we integrate with respect to time 𝑡:

𝜁(𝑟, 𝑡) = ∫ 𝜁𝑎𝑔𝜔
𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) sin(𝑘𝑥 − 𝜔𝑡)𝑑𝑡. (F.34)

This integration gives:

𝜁(𝑟, 𝑡) = −𝜁𝑎𝑔𝜔2
𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) cos(𝑘𝑥 − 𝜔𝑡) + 𝑓(𝑟), (F.35)

where 𝑓(𝑟) is an arbitrary function of the spatial coordinates 𝑟 representing the initial condition. To
satisfy the initial condition 𝜁(𝑟, 𝑡 = 0) = 0, we set 𝑓(𝑟) = 0. Thus, the displacement becomes:
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𝜁(𝑟, 𝑡) = −𝜁𝑎𝑔𝜔2
𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) cos(𝑘𝑥 − 𝜔𝑡). (F.36)

Pressure acting on the beam The fluid pressure 𝑃(𝑟, 𝑡) acting on the beam can be determined using
the dynamic boundary condition. From the linearized Bernoulli equation:

𝜕𝜙
𝜕𝑡 +

𝑃0
𝜌 + 𝑔𝑧 = (𝑃 + 𝑃0)

𝜌 , (F.37)

where 𝑃0 is the ambient pressure, 𝜌 is the fluid density, and 𝑔 is the acceleration due to gravity. Solving
for 𝑃, we find:

𝑃 = 𝜌𝜕𝜙𝜕𝑡 |𝑧=0 + 𝜌𝑔𝜁. (F.38)

First, calculate the time derivative of 𝜙:

𝜕𝜙
𝜕𝑡 = −

𝜁𝑎𝑔
𝜔

cosh(𝑘(ℎ + 𝑧))
cosh(𝑘ℎ) 𝜔 cos(𝑘𝑥 − 𝜔𝑡). (F.39)

Evaluating at 𝑧 = 0, this becomes:

𝜕𝜙
𝜕𝑡 |𝑧=0 = −𝜁𝑎𝑔 cos(𝑘𝑥 − 𝜔𝑡). (F.40)

Substituting this result and the expression for 𝜁(𝑟, 𝑡) into the pressure equation, gives:

𝑃 = 𝜌 (−𝜁𝑎𝑔 cos(𝑘𝑥 − 𝜔𝑡)) + 𝜌𝑔 (−
𝜁𝑎𝑔
𝜔2

𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) cos(𝑘𝑥 − 𝜔𝑡)) . (F.41)

Simplifying the terms:

𝑃 = −𝜌𝑔𝜁𝑎 cos(𝑘𝑥 − 𝜔𝑡) − 𝜌𝑔
𝜁𝑎𝑔
𝜔2

𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) cos(𝑘𝑥 − 𝜔𝑡). (F.42)

F.2.2. Dispersion relation
We now calculate the terms in the Föppl–von Kármán plate equation F.29 and derive the dispersion
relation.

Bending term: 𝐵∇4𝑟𝜁 The fourth spatial derivative of 𝜁 is:

𝜕4𝜁
𝜕𝑥4 = −

𝜁𝑎𝑔
𝜔2

𝑘5 sinh(𝑘ℎ)
cosh(𝑘ℎ) cos(𝑘𝑥 − 𝜔𝑡). (F.43)

Thus, the bending term is:

𝐵∇4𝑟𝜁 = −𝐵𝑘5
𝜁𝑎𝑔
𝜔2

sinh(𝑘ℎ)
cosh(𝑘ℎ) cos(𝑘𝑥 − 𝜔𝑡). (F.44)

Stress term: −∇𝑟 ⋅ (𝜎𝑖𝑗 ⋅ ∇𝑟𝜁) The stress 𝜎𝑖𝑗 tensor has a general form:

𝜎𝑖𝑗 = (
𝜎𝑥𝑥 𝜎𝑥𝑦
𝜎𝑥𝑦 𝜎𝑦𝑦) . (F.45)

First, compute the gradient of 𝜁:

∇𝑟𝜁 = (
𝜕𝜁
𝜕𝑥𝜕𝜁
𝜕𝑦
) . (F.46)

Next, apply the stress tensor to the gradient:
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𝜎𝑖𝑗 ⋅ ∇𝑟𝜁 = (
𝜎𝑥𝑥 𝜎𝑥𝑦
𝜎𝑥𝑦 𝜎𝑦𝑦) ⋅ (

𝜕𝜁
𝜕𝑥𝜕𝜁
𝜕𝑦
) = (

𝜎𝑥𝑥
𝜕𝜁
𝜕𝑥 + 𝜎𝑥𝑦

𝜕𝜁
𝜕𝑦

𝜎𝑥𝑦
𝜕𝜁
𝜕𝑥 + 𝜎𝑦𝑦

𝜕𝜁
𝜕𝑦
) . (F.47)

Now, take the divergence of this vector:

∇𝑟 ⋅ (𝜎𝑖𝑗 ⋅ ∇𝑟𝜁) =
𝜕
𝜕𝑥 (𝜎𝑥𝑥

𝜕𝜁
𝜕𝑥 + 𝜎𝑥𝑦

𝜕𝜁
𝜕𝑦) +

𝜕
𝜕𝑦 (𝜎𝑥𝑦

𝜕𝜁
𝜕𝑥 + 𝜎𝑦𝑦

𝜕𝜁
𝜕𝑦) . (F.48)

Expanding the derivatives:

∇𝑟 ⋅ (𝜎𝑖𝑗 ⋅ ∇𝑟𝜁) = 𝜎𝑥𝑥
𝜕2𝜁
𝜕𝑥2 + 𝜎𝑥𝑦

𝜕2𝜁
𝜕𝑥𝜕𝑦 + 𝜎𝑥𝑦

𝜕2𝜁
𝜕𝑦𝜕𝑥 + 𝜎𝑦𝑦

𝜕2𝜁
𝜕𝑦2 . (F.49)

Since the mixed derivatives are equal, we combine them:

∇𝑟 ⋅ (𝜎𝑖𝑗 ⋅ ∇𝑟𝜁) = 𝜎𝑥𝑥
𝜕2𝜁
𝜕𝑥2 + 2𝜎𝑥𝑦

𝜕2𝜁
𝜕𝑥𝜕𝑦 + 𝜎𝑦𝑦

𝜕2𝜁
𝜕𝑦2 . (F.50)

Thus, the stress term is:

−∇𝑟 ⋅ (𝜎𝑖𝑗 ⋅ ∇𝑟𝜁) = −(𝜎𝑥𝑥
𝜕2𝜁
𝜕𝑥2 + 2𝜎𝑥𝑦

𝜕2𝜁
𝜕𝑥𝜕𝑦 + 𝜎𝑦𝑦

𝜕2𝜁
𝜕𝑦2) . (F.51)

The second spatial derivatives of 𝜁(𝑟, 𝑡) are:

𝜕2𝜁
𝜕𝑥2 =

𝜁𝑎𝑔
𝜔2

𝑘3 sinh(𝑘ℎ)
cosh(𝑘ℎ) cos(𝑘𝑥 − 𝜔𝑡) (F.52)

𝜕2𝜁
𝜕𝑥𝜕𝑦 = 0 (F.53)

𝜕2𝜁
𝜕𝑦2 = 0 (F.54)

leaving us with a stress term

−∇𝑟 ⋅ (𝜎𝑖𝑗 ⋅ ∇𝑟𝜁) = −𝜎𝑥𝑥
𝜁𝑎𝑔
𝜔2

𝑘3 sinh(𝑘ℎ)
cosh(𝑘ℎ) cos(𝑘𝑥 − 𝜔𝑡). (F.55)

Inertia term: 𝜌𝑒𝑑
𝜕2𝜁
𝜕𝑡2 The second time derivative of 𝜁 is:

𝜕2𝜁
𝜕𝑡2 = −

𝜁𝑎𝑔
𝜔2

𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) 𝜔

2 cos(𝑘𝑥 − 𝜔𝑡). (F.56)

Thus, the inertia term becomes:

𝜌𝑒ℎ
𝜕2𝜁
𝜕𝑡2 = −𝜌𝑒𝑑𝜁𝑎𝑔𝑘

sinh(𝑘ℎ)
cosh(𝑘ℎ) cos(𝑘𝑥 − 𝜔𝑡). (F.57)

But as explained in the assumptions this term will be omitted.

Pressure term: 𝑃 The external pressure 𝑃 acting on the beam is:

𝑃 = −(𝜌𝑔𝜁𝑎 + 𝜌𝑔
𝜁𝑎𝑔
𝜔2

𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) ) cos(𝑘𝑥 − 𝜔𝑡). (F.58)

Substituting the bending, inertia, and pressure terms into the Föppl–von Kármán plate equation F.29:
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−𝐵𝑘5 𝜁𝑎𝑔𝜔2
sinh(𝑘ℎ)
cosh(𝑘ℎ) cos(𝑘𝑥−𝜔𝑡)−𝜎𝑥𝑥

𝜁𝑎𝑔
𝜔2

𝑘3 sinh(𝑘ℎ)
cosh(𝑘ℎ) cos(𝑘𝑥−𝜔𝑡) = −(𝜌𝑔𝜁𝑎 + 𝜌𝑔

𝜁𝑎𝑔
𝜔2

𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) ) cos(𝑘𝑥−𝜔𝑡).

(F.59)
Simplifying, multiplying each term by 𝜔2, and dividing each term by 𝑔, 𝜁𝑎, and cos(𝑘𝑥 − 𝜔𝑡) gives

−𝐵𝑘5 sinh(𝑘ℎ)
cosh(𝑘ℎ) − 𝜎𝑥𝑥𝑘

3 sinh(𝑘ℎ)
cosh(𝑘ℎ) = −(𝜌𝜔

2 + 𝜌𝑔𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ)) , (F.60)

which can be further simplified to

−𝐵𝑘5 tanh(𝑘ℎ) − 𝜎𝑥𝑥𝑘3 tanh(𝑘ℎ) − 𝜌𝑔𝑘 tanh(𝑘ℎ) = −𝜌𝜔2, (F.61)

and finally to

𝜔2 = (𝐵𝑘
5

𝜌 + 𝜎𝑥𝑥𝑘
3

𝜌 + 𝑔𝑘) tanh(𝑘ℎ). (F.62)
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F.3. Oblique waves incidence
This section extends the previous formulation by considering oblique wave incidence. Instead of as-
suming a monochromatic linear wave traveling parallel to the 𝑥-axis, we now consider a plane wave
impinging on the floating structure at an angle. The same fluid–structure interaction framework is used,
with the elastic sheet modeled by Föppl–von Kármán plate theory and the fluid assumed to be incom-
pressible, inviscid, and irrotational. The wave remains of small amplitude, allowing for linearization, but
the direction of wave propagation introduces anisotropy in the response and modifies the dispersion
relation accordingly.

F.3.1. Governing equation
The mechanical system of the elastic sheet is governed by the Föppl–von Kármán equation, which
simplifies to the following form:

𝐵∇4𝑟𝜁 − ∇𝑟 ⋅ (𝜎𝑖𝑗 ⋅ ∇𝑟𝜁) + 𝜌𝑒ℎ
𝜕2𝜁
𝜕𝑡2 = 𝑃 + 𝑃ext, (F.63)

where 𝐵 is the bending stiffness of the sheet, 𝜎𝑖𝑗 is the 2D stress tensor of the sheet, and 𝜌𝑒 is the
density of the sheet. The first term accounts for the bending, the second term for the internal stress,
and the third term represents the solid inertia. The pressures 𝑃 and 𝑃ext are exerted on the sheet, with
𝑃 representing a hydrostatic pressure and 𝑃ext representing an external perturbation (e.g. an air jet),
assumed to be zero here.

Kinematic boundary condition The kinematic boundary condition relates the vertical displacement
of the beam to the fluid velocity at the surface. The kinematic boundary condition is:

𝜕𝜁
𝜕𝑡 =

𝜕𝜙
𝜕𝑧 |𝑧=0. (F.64)

We assume a solution for the velocity potential 𝜙(𝑟, 𝑧, 𝑡), which satisfies Laplace’s equation:

𝜙 = 𝜁𝑎𝑔
𝜔

cosh(𝑘(ℎ + 𝑧))
cosh(𝑘ℎ) sin(𝑘𝑥𝑥 + 𝑘𝑦𝑦 − 𝜔𝑡). (F.65)

with 𝑘2 = 𝑘𝑥2 + 𝑘𝑦2. Taking the derivative of 𝜙 with respect to 𝑧 and evaluating at 𝑧 = 0:

𝜕𝜙
𝜕𝑧 |𝑧=0 =

𝜁𝑎𝑔
𝜔
𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) sin(𝑘𝑥𝑥 + 𝑘𝑦𝑦 − 𝜔𝑡). (F.66)

Thus, the kinematic boundary condition becomes:

𝜕𝜁
𝜕𝑡 =

𝜁𝑎
𝜔
𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) sin(𝑘𝑥𝑥 + 𝑘𝑦𝑦 − 𝜔𝑡). (F.67)

To find the expression for 𝜁, we integrate with respect to time 𝑡:

𝜁(𝑟, 𝑡) = ∫ 𝜁𝑎𝑔𝜔
𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) sin(𝑘𝑥𝑥 + 𝑘𝑦𝑦 − 𝜔𝑡)𝑑𝑡. (F.68)

This integration gives:

𝜁(𝑟, 𝑡) = −𝜁𝑎𝑔𝜔2
𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) cos(𝑘𝑥𝑥 + 𝑘𝑦𝑦 − 𝜔𝑡) + 𝑓(𝑟), (F.69)

where 𝑓(𝑟) is an arbitrary function of the spatial coordinates 𝑟 representing the initial condition. To
satisfy the initial condition 𝜁(𝑟, 𝑡 = 0) = 0, we set 𝑓(𝑟) = 0. Thus, the displacement becomes:

𝜁(𝑟, 𝑡) = −𝜁𝑎𝑔𝜔2
𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) cos(𝑘𝑥𝑥 + 𝑘𝑦𝑦 − 𝜔𝑡). (F.70)
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Pressure acting on the beam The fluid pressure 𝑃(𝑟, 𝑡) acting on the beam can be determined using
the dynamic boundary condition. From the linearized Bernoulli equation:

𝜕𝜙
𝜕𝑡 +

𝑃0
𝜌 + 𝑔𝑧 = (𝑃 + 𝑃0)

𝜌 , (F.71)

where 𝑃0 is the ambient pressure, 𝜌 is the fluid density, and 𝑔 is the acceleration due to gravity. Solving
for 𝑃, we find:

𝑃 = 𝜌𝜕𝜙𝜕𝑡 |𝑧=0 + 𝜌𝑔𝜁. (F.72)

First, calculate the time derivative of 𝜙:

𝜕𝜙
𝜕𝑡 = −

𝜁𝑎𝑔
𝜔

cosh(𝑘(ℎ + 𝑧))
cosh(𝑘ℎ) 𝜔 cos(𝑘𝑥𝑥 + 𝑘𝑦𝑦 − 𝜔𝑡). (F.73)

Evaluating at 𝑧 = 0, this becomes:

𝜕𝜙
𝜕𝑡 |𝑧=0 = −𝜁𝑎𝑔 cos(𝑘𝑥𝑥 + 𝑘𝑦𝑦 − 𝜔𝑡). (F.74)

Substituting this result and the expression for 𝜁(𝑟, 𝑡) into the pressure equation, gives:

𝑃 = 𝜌 (−𝜁𝑎𝑔 cos(𝑘𝑥𝑥 + 𝑘𝑦𝑦 − 𝜔𝑡)) + 𝜌𝑔 (−
𝜁𝑎𝑔
𝜔2

𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) cos(𝑘𝑥𝑥 + 𝑘𝑦𝑦 − 𝜔𝑡)) . (F.75)

Simplifying the terms:

𝑃 = −𝜌𝑔𝜁𝑎 cos(𝑘𝑥𝑥 + 𝑘𝑦𝑦 − 𝜔𝑡) − 𝜌𝑔
𝜁𝑎𝑔
𝜔2

𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) cos(𝑘𝑥𝑥 + 𝑘𝑦𝑦 − 𝜔𝑡). (F.76)

F.3.2. Dispersion relation
We now calculate the terms in the Föppl–von Kármán plate equation F.63 and derive the dispersion
relation.

Bending term: 𝐵∇4𝑟𝜁 The fourth derivative of 𝜁 in the horizontal plane is:

∇4𝑟𝜁 =
𝜕4𝜁
𝜕𝑥4 +

𝜕4𝜁
𝜕𝑦4 . (F.77)

The fourth spatial derivatives of 𝜁 with respect to 𝑥 and 𝑦 are:

𝜕4𝜁
𝜕𝑥4 = −

𝜁𝑎𝑔
𝜔2 𝑘

4
𝑥
𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) cos(𝑘𝑥𝑥 + 𝑘𝑦𝑦 − 𝜔𝑡) (F.78)

𝜕4𝜁
𝜕𝑦4 = −

𝜁𝑎𝑔
𝜔2 𝑘

4
𝑦
𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) cos(𝑘𝑥𝑥 + 𝑘𝑦𝑦 − 𝜔𝑡) (F.79)

Combining these results gives

∇4𝑟𝜁 = −
𝜁𝑎𝑔
𝜔2

𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) cos(𝑘𝑥𝑥 + 𝑘𝑦𝑦 − 𝜔𝑡) (𝑘4𝑥 + 𝑘4𝑦) (F.80)

Assuming 𝑘2 = 𝑘2𝑥 + 𝑘2𝑦, the bending term becomes:

𝐵∇4𝑟𝜁 = −𝐵𝑘5
𝜁𝑎𝑔
𝜔2

sinh(𝑘ℎ)
cosh(𝑘ℎ) cos(𝑘𝑥𝑥 + 𝑘𝑦𝑦 − 𝜔𝑡). (F.81)
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Stress term: −∇𝑟 ⋅ (𝜎𝑖𝑗 ⋅ ∇𝑟𝜁) The stress 𝜎𝑖𝑗 tensor has a general form:

𝜎𝑖𝑗 = (
𝜎𝑥𝑥 𝜎𝑥𝑦
𝜎𝑥𝑦 𝜎𝑦𝑦) . (F.82)

First, compute the gradient of 𝜁:

∇𝑟𝜁 = (
𝜕𝜁
𝜕𝑥𝜕𝜁
𝜕𝑦
) . (F.83)

Next, apply the stress tensor to the gradient:

𝜎𝑖𝑗 ⋅ ∇𝑟𝜁 = (
𝜎𝑥𝑥 𝜎𝑥𝑦
𝜎𝑥𝑦 𝜎𝑦𝑦) ⋅ (

𝜕𝜁
𝜕𝑥𝜕𝜁
𝜕𝑦
) = (

𝜎𝑥𝑥
𝜕𝜁
𝜕𝑥 + 𝜎𝑥𝑦

𝜕𝜁
𝜕𝑦

𝜎𝑥𝑦
𝜕𝜁
𝜕𝑥 + 𝜎𝑦𝑦

𝜕𝜁
𝜕𝑦
) . (F.84)

Now, take the divergence of this vector:

∇𝑟 ⋅ (𝜎𝑖𝑗 ⋅ ∇𝑟𝜁) =
𝜕
𝜕𝑥 (𝜎𝑥𝑥

𝜕𝜁
𝜕𝑥 + 𝜎𝑥𝑦

𝜕𝜁
𝜕𝑦) +

𝜕
𝜕𝑦 (𝜎𝑥𝑦

𝜕𝜁
𝜕𝑥 + 𝜎𝑦𝑦

𝜕𝜁
𝜕𝑦) . (F.85)

Expanding the derivatives:

∇𝑟 ⋅ (𝜎𝑖𝑗 ⋅ ∇𝑟𝜁) = 𝜎𝑥𝑥
𝜕2𝜁
𝜕𝑥2 + 𝜎𝑥𝑦

𝜕2𝜁
𝜕𝑥𝜕𝑦 + 𝜎𝑥𝑦

𝜕2𝜁
𝜕𝑦𝜕𝑥 + 𝜎𝑦𝑦

𝜕2𝜁
𝜕𝑦2 . (F.86)

Since the mixed derivatives are equal, we combine them:

∇𝑟 ⋅ (𝜎𝑖𝑗 ⋅ ∇𝑟𝜁) = 𝜎𝑥𝑥
𝜕2𝜁
𝜕𝑥2 + 2𝜎𝑥𝑦

𝜕2𝜁
𝜕𝑥𝜕𝑦 + 𝜎𝑦𝑦

𝜕2𝜁
𝜕𝑦2 . (F.87)

Thus, the stress term is:

−∇𝑟 ⋅ (𝜎𝑖𝑗 ⋅ ∇𝑟𝜁) = −(𝜎𝑥𝑥
𝜕2𝜁
𝜕𝑥2 + 2𝜎𝑥𝑦

𝜕2𝜁
𝜕𝑥𝜕𝑦 + 𝜎𝑦𝑦

𝜕2𝜁
𝜕𝑦2) . (F.88)

The second spatial derivatives of 𝜁(𝑟, 𝑡) are:

𝜕2𝜁
𝜕𝑥2 =

𝜁𝑎𝑔
𝜔2 𝑘𝑥

2 𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) cos(𝑘𝑥𝑥 + 𝑘𝑦𝑦 − 𝜔𝑡) (F.89)

𝜕2𝜁
𝜕𝑥𝜕𝑦 =

𝜁𝑎𝑔
𝜔2 𝑘𝑥𝑘𝑦

𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) cos(𝑘𝑥𝑥 + 𝑘𝑦𝑦 − 𝜔𝑡) (F.90)

𝜕2𝜁
𝜕𝑦2 =

𝜁𝑎𝑔
𝜔2 𝑘𝑦

2 𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) cos(𝑘𝑥𝑥 + 𝑘𝑦𝑦 − 𝜔𝑡) (F.91)

leaving us with a stress term

−∇𝑟 ⋅ (𝜎𝑖𝑗 ⋅ ∇𝑟𝜁) = −(𝜎𝑥𝑥
𝜁𝑎𝑔
𝜔2 𝑘

2
𝑥
𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) cos(𝑘𝑥𝑥 + 𝑘𝑦𝑦 − 𝜔𝑡)

+2𝜎𝑥𝑦
𝜁𝑎𝑔
𝜔2 𝑘𝑥𝑘𝑦

𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) cos(𝑘𝑥𝑥 + 𝑘𝑦𝑦 − 𝜔𝑡)

+𝜎𝑦𝑦
𝜁𝑎𝑔
𝜔2 𝑘

2
𝑦
𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) cos(𝑘𝑥𝑥 + 𝑘𝑦𝑦 − 𝜔𝑡))

(F.92)

−∇𝑟 ⋅ (𝜎𝑥𝑦 ⋅ ∇𝑟𝜁) = −
𝜁𝑎𝑔
𝜔2

𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) cos(𝑘𝑥𝑥 + 𝑘𝑦𝑦 − 𝜔𝑡) (𝜎𝑥𝑥𝑘𝑥2 + 2𝜎𝑥𝑦𝑘𝑥𝑘𝑦 + 𝜎𝑦𝑦𝑘𝑦2) . (F.93)
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Inertia term: 𝜌𝑒ℎ
𝜕2𝜁
𝜕𝑡2 The second time derivative of 𝜁 is:

𝜕2𝜁
𝜕𝑡2 = −

𝜁𝑎𝑔
𝜔2

𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) 𝜔

2 cos(𝑘𝑥𝑥 + 𝑘𝑦𝑦 − 𝜔𝑡). (F.94)

Thus, the inertia term becomes:

𝜌𝑒ℎ
𝜕2𝜁
𝜕𝑡2 = −𝜌𝑒ℎ𝜁𝑎𝑔𝑘

sinh(𝑘ℎ)
cosh(𝑘ℎ) cos(𝑘𝑥𝑥 + 𝑘𝑦𝑦 − 𝜔𝑡). (F.95)

But, as explained in the assumptions, this term will be omitted.

Pressure term: 𝑃 The external pressure 𝑃 acting on the beam is:

𝑃 = −(𝜌𝑔𝜁𝑎 + 𝜌𝑔
𝜁𝑎𝑔
𝜔2

𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) ) cos(𝑘𝑥𝑥 + 𝑘𝑦𝑦 − 𝜔𝑡). (F.96)

Substituting the bending, inertia, and pressure terms into the Föppl–von Kármán plate equation F.63:

− 𝐵𝑘5 𝜁𝑎𝑔𝜔2
sinh(𝑘ℎ)
cosh(𝑘ℎ) cos(𝑘𝑥𝑥 + 𝑘𝑦𝑦 − 𝜔𝑡)

− 𝜁𝑎𝑔𝜔2
𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) cos(𝑘𝑥𝑥 + 𝑘𝑦𝑦 − 𝜔𝑡) (𝜎𝑥𝑥𝑘2𝑥 + 2𝜎𝑥𝑦𝑘𝑥𝑘𝑦 + 𝜎𝑦𝑦𝑘2𝑦)

= −(𝜌𝑔𝜁𝑎 + 𝜌𝑔
𝜁𝑎𝑔
𝜔2

𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) ) cos(𝑘𝑥𝑥 + 𝑘𝑦𝑦 − 𝜔𝑡)

. (F.97)

Simplifying, multiplying each term with 𝜔2, and dividing each term by g, 𝜁𝑎, cos(𝑘𝑥𝑥 + 𝑘𝑦𝑦 −𝜔𝑡) gives

−𝐵𝑘5 sinh(𝑘ℎ)
cosh(𝑘ℎ) −

𝑘 sinh(𝑘ℎ)
cosh(𝑘ℎ) (𝜎𝑥𝑥𝑘𝑥

2 + 2𝜎𝑥𝑦𝑘𝑥𝑘𝑦 + 𝜎𝑦𝑦𝑘𝑦2) = −(𝜌𝜔2 + 𝜌𝑔𝑘
sinh(𝑘ℎ)
cosh(𝑘ℎ)) . (F.98)

Further simplifying results to

−𝐵𝑘5 tanh (𝑘ℎ) − 𝑘 tanh (𝑘ℎ) (𝜎𝑥𝑥𝑘𝑥2 + 2𝜎𝑥𝑦𝑘𝑥𝑘𝑦 + 𝜎𝑦𝑦𝑘𝑦2) − 𝜌𝑔𝑘 tanh (𝑘ℎ) = −𝜌𝜔2. (F.99)

even further simplifying to

𝜔2 = (𝐵𝑘
5

𝜌 +
𝑘 (𝜎𝑥𝑥𝑘𝑥2 + 2𝜎𝑥𝑦𝑘𝑥𝑘𝑦 + 𝜎𝑦𝑦𝑘𝑦2)

𝜌 + 𝑔𝑘) tanh (𝑘ℎ). (F.100)

F.3.3. Special cases
Wave propagating along the x-Axis (𝑘𝑦 = 0): When the wave propagates only along the 𝑥-axis, the
wave vector in the 𝑦-direction, 𝑘𝑦, is zero. In this case, the stress terms involving 𝑘𝑥 and 𝑘𝑦 simplify,
and the dispersion relation becomes:

𝜔2 = (𝐵𝑘
5

𝜌 + 𝜎𝑥𝑥𝑘
3
𝑥

𝜌 + 𝑔𝑘) tanh(𝑘ℎ). (F.101)

This represents the frequency of the wave propagation along the 𝑥-axis and corresponds to the formu-
lation that was derived earlier.
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Isotropic Stress Behavior: 𝜎𝑥𝑦 = 0 and 𝜎𝑥𝑥 = 𝜎𝑦𝑦 = 𝜎 When the shear stress 𝜎𝑥𝑦 is zero and the
normal stresses in the 𝑥- and 𝑦-directions are equal, the material exhibits isotropic stress behavior. In
this case, the normal stresses are identical in both directions, leading to a symmetric distribution of
stress. This simplification implies that the wave propagation is influenced equally by the normal stress
in both the 𝑥- and 𝑦-directions. The equation becomes:

𝜔2 = (𝐵𝑘
5

𝜌 + 𝜎𝑘
3

𝜌 + 𝑔𝑘) tanh(𝑘ℎ). (F.102)





G
Device and Material Specifications

Table G.1: Overview of equipment and materials used

Item Manufacturer Model Appendix Ref.
Function generator NF Electronic Instruments 1930A G.1
Frequency divider – Custom (0–10 kHz, 8–10 V in) –
DC power supply Tenma 72-10480 (0–30 V, 3 A) G.2
Vibration exciter Brüel & Kjær Type 4808 G.3
Power amplifier Brüel & Kjær Type 2719 G.4
Camera Basler aoA1920-150 µm –
Camera lens Nikon AF-S NIKKOR 24–85 mm f/3.5–

4.5G ED VR
–

Laser distance sensor Micro-Epsilon optoNCDT ILD 1420-200 G.5
DAQ interface National Instruments USB-6211 -
ICP signal conditioner PCB Piezotronics Model 482B11 G.6
Silicone oil Silicones and More 5 cSt G.7
Deionized water Sigma-Aldrich 8.48333 -
ELASTOSIL® Film 2030 Wacker Chemie (AG) 20, 50, 100, 200 µm thickness G.8
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G.1. Function generator NF Electronics Instruments 1930A
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G.2. DC power supply Tenma 72-10480 (0–30 V, 3 A)
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Single Bench DC Power Supply

Features:
•  Complete digital control
•  10mV / 1mA resolution
•  Low noise and ripple
•  CV / CC constant voltage and constant current mode
•  OCP and OVP settings, constant protection mode
•  5 sets of parameters can be stored and recalled
•  Output switch control
•  Power-off memory function
•  Keyboard lock function

Specifications:
Voltage Range / Current Range 0 - 30V / 0 - 3A
Load Regulation Voltage : ≤0.01% +2mV / Current : ≤0.1% +5mA
Line Regulation Voltage : ≤0.01% +3mV / Current : ≤0.1% +3mA
Setup Resolution Voltage : 10mV / Current : 1mA
Setup Accuracy (25°C ±5°C) Voltage : ≤0.5% +20mV / Current : ≤0.5% +5mA
Ripple (20Hz - 20MHz) Voltage : ≤1mVrms / Current : ≤3mArms
Temp. Coefficient Voltage : ≤100ppm +10mV / Current : ≤100ppm +5mA
Read Back Accuracy Voltage : 10mV / Current : 1mA
Read Back Temp. Coefficient Voltage : ≤100ppm +10mV / Current : ≤100ppm +5mA
Reaction Time (10% Rated load) Voltage : ≤100mS / Current : ≤100mS

Operation Environment

Indoor use
Altitude : ≤ 2,000m
Ambient temperature : 0ºC ~ 40°C
Relative humidity : ≤80%

Weight and Dimension 3.5kg / 110mm(W) × 156mm(H) × 260mm(D)

Storage Environment Ambient temperature : -10 ºC to +70 ºC
Relative humidity : ≤70%

Accessories User manual, UK Power cord (1.2m), Euro Power cord (1.2m)

Part Number Table

Description Part Number
DC Power Supply, Bench, Single, 3A, 30V 72-10480

Note: Input Voltage : 230V ±10%

Important Notice : This data sheet and its contents (the “Information”) belong to the members of the Premier Farnell group of companies (the “Group”) or are licensed to it. No licence is granted 
for the use of it other than for information purposes in connection with the products to which it relates. No licence of any intellectual property rights is granted. The Information is subject to change 
without notice and replaces all data sheets previously supplied. The Information supplied is believed to be accurate but the Group assumes no responsibility for its accuracy or completeness, any 
error in or omission from it or for any use made of it. Users of this data sheet should check for themselves the Information and the suitability of the products for their purpose and not make any  
assumptions based on information included or omitted. Liability for loss or damage resulting from any reliance on the Information or use of it (including liability resulting from negligence or where the 
Group was aware of the possibility of such loss or damage arising) is excluded. This will not operate to limit or restrict the Group’s liability for death or personal injury resulting from its negligence. 
Tenma is the registered trademark of the Group. © Premier Farnell Limited 2016.
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G.3. Vibration exciter Brüel & Kjær Type 4808
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BRÜEL & KJÆR® Modal and Measurement Exciters 

Product Data  BP 0230 – 18

Uses 
• General vibration testing
• Mechanical impedance and mobility measurements
• Experimental modal analysis
• Accelerometer calibration

Features
• Force rating: 112 N (25 lbf) sine peak, 187 N (42 lbf) with cooling 
• Frequency range: 5 Hz to 10 kHz
• First axial resonance frequency: 10 kHz
• Maximum displacement: 12.7 mm (0.5 in) peak-to-peak with 

over-travel stops

• Maximum bare table acceleration: 700 m/s2 (71 g)
• Rugged construction
• Robust rectilinear guidance system
• Low cross motion and low distortion
• Highly damped axial, transverse and flexural resonances
• Replaceable inserts for moving element protection
• Optimized performance using Power Amplifier Type 2719

• High-quality cable with 4-pin Neutrik® speakON® connectors included for connection to Type 2719

Description
Vibration Exciter Type 4808 is a high-quality, compact exciter 
with a permanent magnetic field. It is designed for long, trouble-
free operation and has a force rating of 112 N (25 lbf), enabling 
relatively heavy loads to be excited to high g levels. Power 
Amplifier Type 2719 (180 VA) has been designed specifically to 
drive Type 4808, but Type 4808 can also be driven by any 
amplifier up to a maximum input current of 15 A RMS without 
assisted cooling.

The moving element is supported by a robust rectilinear 
guidance system consisting of grouped radial and transverse 
flexures in a unique construction. The flexures are made from a 
bonded sandwich of spring steel and a damping elastomer, 
providing a clean acceleration waveform with low cross motion 
and low distortion characteristics.

Fig. 1  Sine performance curves for Vibration Exciter Type 4808 for operation 
without assisted cooling
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Local representatives and service organizations worldwide

To learn more about all HBK offerings, please visit hbkworld.com 

Although reasonable care has been taken to ensure the information in 
this document is accurate, nothing herein can be construed to imply 
representation or warranty as to its accuracy, currency or 
completeness, nor is it intended to form the basis of any contract. 
Content is subject to change without notice – contact HBK for the 
latest version of this document.

Brüel & Kjær and all other trademarks, service marks, trade names, 
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or a third-party company.

Ë
B
P
-
0
2
3
0
-
-
-
l
Î

B
P

02
30

–
18

20
21

-0
6

©
 H

ot
tin

ge
r 

B
rü

el
&

K
jæ

r A
/S

. A
ll 

rig
ht

s 
re

se
rv

ed
.

Specifications – Vibration Exciter Type 4808

COMPLIANCE WITH STANDARDS

Temperature: According to IEC 60068–2–1 & IEC 60068–2–2
Operating Temperature: 5 to 40 °C (41 to 104 °F)
Storage Temperature: –25 to +70 °C (–13 to +158 °F)
Humidity: According to IEC 60068–2–3
Damp Heat: 93% RH (non-condensing at 40 °C (104 °F))

SPECIFICATIONS
Rated Force: 
• Without assisted air cooling: 112 N (25 lbf) sine peak 
• With assisted air cooling: 187 N (42 lbf) sine peak
Frequency Range: 5 Hz to 10 kHz bare table
Axial Resonant Frequency: 10 kHz bare table
Max. Bare Table Acceleration: 700 m/s2 (71 g)
Max. Displacement: 12.7 mm (0.5 in) peak-to-peak 
Max. Velocity: 1.4 m/s (55 in/s)
Dynamic Weight of Moving Element: 160 grams (0.35 lb)
Static Flexure Stiffness: 5.6 N/mm (32 lbf/in)
Maximum Input Current: 15 A RMS (with assisted air cooling 25 A RMS)
Current-to-Force Ratio: 
• Coils in Parallel: approximately 0.16 A/F (sine peak)
• Coils in Series: approximately 0.08 A/F (sine peak)
Stray Magnetic Field: 
• 20 × 10–3 Tesla at table face
• 8 × 10–3 Tesla at 12.7 mm (0.5 in) above table face
Coil Impedance: Approximately 0.8 Ω at 500 Hz with bare table and 
coils in parallel
Table Diameter: 62.5 mm (2.45 in)
Fastening Thread: 5 × 5/16–18 UNC for M5 and 10–32 UNF inserts. 1 
central insert plus 4 equi-spaced on circle of  50.8 mm

WEIGHT AND DIMENSIONS
Weight: 35 kg (77.1 lb)
Diameter: 215 mm (8.46 in)
Height: 200 mm (7.87 in)

Ordering Information

Type 4808 Vibration Exciter
Includes the following accessories:
• AQ-0649-D-050: Cable with two 4-pin Neutrik speakON connectors, 

length 5 m (16.4 ft), for connection to Type 2719
• 10 × YS-0810: Thread inserts (M5)
• 10 × YS-0811: Thread inserts (10–32 UNF)
• 1 × QA-0061: Insert Mounting Tool
• 2 × YM-2002: Blanking Plugs

Optional Accessories

TRUNNION
WA-0309 Trunnion

POWER AMPLIFIER
Type 2719 Power Amplifier (180 VA)

STINGERS

Note: Other stingers are available, please ask your sales representative.

WZ-0066 Nylon Stinger Kit
• 10 × stingers, length 50 mm 
• 10 × stingers, length 120 mm 

UA-1596 Five 2.5 mm Push/Pull Steel Stingers, including: 
• 10 × adaptors, diameter 2.5 mm to 10–32 UNF 
• 5 × steel rods, length 200 mm, diameter 2.5 mm 
• 10 × fastening screws

UA-1597 Five 3.0 mm Push/Pull Steel Stingers, including:
• 10 × adaptors, diameter 3.0 mm to 10–32 UNF
• 5 × steel rods, length 200 mm, diameter 3.0 mm
• 10 × fastening screws

FORCE TRANSDUCERS AND IMPEDANCE HEAD
Type 8230 CCLD Force Transducer (+44/– 44 N range)
Type 8230-001 CCLD Force Transducer (+220/–220 N range)
Type 8230-002 CCLD Force Transducer (+2200/–2200 N range)
Type 8230-003 CCLD Force Transducer (+22000/–2200 N range)
Type 8230-C-003 Charge Force Transducer (+22200/–2200 N range)
Type 8231-C Charge Force Transducer (+110000/–2200 N range)
Type 8001 Impedance Head

STUD AND BUSHING ADAPTORS
UA-0125 Mounting Equipment (including isolated studs 

YP-0150 and non-isolated studs YQ-2960)
UA-2052 Set of 10 Stud Adaptors, 10–32 UNF to ¼–28 UNF
UA-2054 Set of 20 Bushing Adaptors, 10–32 UNF to 

¼–28 UNF

CABLES
AQ-0649 Cable with two 4-pin Neutrik speakON connectors, 

available in different lengths from 5 m (16.4 ft) to 
40 m (131.2 ft) 

The CE marking is the manufacturer's declaration that the product 
meets the requirements of the applicable EU directives

RCM mark indicates compliance with applicable ACMA technical 
standards – that is, for telecommunications, radio communications, 
EMC and EME
China RoHS mark indicates compliance with administrative measures 
on the control of pollution caused by electronic information products 
according to the Ministry of Information Industries of the People’s 
Republic of China
WEEE mark indicates compliance with the EU WEEE Directive
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G.4. Power amplifier Brüel & Kjær Type 2719
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BRÜEL & KJÆR® Power Amplifiers 

Product Data  BP 1929 – 13

Power Amplifier Type 2719

Power Amplifier Type 2719 has been designed to drive small vibration 
exciters, particularly Vibration Exciter Type 4808, which has a force 
rating of 112 N (25 lbf) sine peak, and Vibration Exciter Type 4809, 
which has a force rating of 45 N (10 lbf) sine peak.

Type 2719 provides a flat frequency response and low harmonic 
distortion over a wide frequency range and has extensive control and 
monitoring capabilities.

The power amplifier can operate in voltage or current mode with low 
and high output impedance, respectively.

Uses
• Drives Vibration Exciter Type 4808
• Drives Vibration Exciter Type 4809 safely to full rating
• General purpose power amplifier for small vibration exciters 

requiring up to 180 VA in 0.8 Ω 

Features
• 180 VA power output capacity in 0.8 Ω 
• Adjustable RMS output-current limit

• Low or high output impedance (voltage/current mode)
• Low distortion over wide frequency range
• Extensive built-in protection, including interlock 
• LEDs on front panel showing distortion (clipped output signal), 

temperature overload, current overload, output signal phase 
(0° or 180°), operating mode (current or voltage), interlock and 
power status 

• Liquid crystal display (LCD) showing output current and voltage
• Monitor output connectors (voltage and current) on back panel 

Description
Power Amplifier Type 2719 has a usable frequency range from 
DC to 100 kHz. The power output capacity is 180 VA into a 0.8 Ω 
exciter or resistive load, in the frequency range DC to 15 kHz 
(±0.5 dB). The maximum voltage gain is 14 dB. The harmonic 
content of the output is very small as heavy negative feedback is 
used. The instrument can tolerate temperature and supply-line 
variations while maintaining excellent stability. Two output 
modes are selectable via the front panel. The power output stage 
is directly coupled to the output, and hence to the connected 
vibration exciter. A current-limiting circuit prevents excessive 
instantaneous output current peaks. During operation, the 
voltage, current levels and waveforms can be inspected at the 
monitor outputs on the back panel or RMS readings can be 
obtained from the LCD.

Type 2719 consists of an input stage (both AC-coupled and 
direct), a preamplifier, a power amplifier and various warning and 
safety circuits with indication lights (LEDs). The LCD shows 
output current and output voltage. The amplifier can be used as a 
voltage generator with low output impedance and a flat voltage 
frequency response, or as a current generator with high output 
impedance and a flat current frequency response.

Protection
Power Amplifier Type 2719 features extensive protection circuits 
for itself and the connected vibration exciter. When triggered, the 
protection circuits disconnect the input signal and light an LED, 
indicating the reason for instrument shutdown. 

Overload protection against excessive coil current is provided by 
setting the RMS output current between 1 A and 15 A. This 
feature enables Type 2719 to safely drive vibration exciters with 
different maximum current ratings. The signal to the exciter is 
switched off if the preset current limit is exceeded. 

The power output stage is protected by a temperature sensing 
safety device to prevent output transistor temperatures that 
exceed design limits and lead to transistor failure. When 
triggered, the temperature protection circuit blocks the amplifier 
input signal. 

Further protection is provided by an interlock relay that 
disconnects the input if the operator switches between voltage 
mode and current mode during operation of Type 2719. Resetting 
is performed by simply turning the amplifier gain control fully 
anticlockwise. Dedicated LED indicators advise you of the current 
operating mode and any distortion when excessive signal levels 
saturate the preamplifier and cause distortion of the output 
waveform. The instrument remains operative in this condition.



Skodsborgvej 307 · DK-2850 Nærum · Denmark
Telephone: +45 77 41 20 00 · Fax: +45 45 80 14 05
www.bksv.com · info@hbkworld.com
Local representatives and service organizations worldwide

To learn more about all HBK offerings, please visit hbkworld.com 

Although reasonable care has been taken to ensure the information in 
this document is accurate, nothing herein can be construed to imply 
representation or warranty as to its accuracy, currency or 
completeness, nor is it intended to form the basis of any contract. 
Content is subject to change without notice – contact HBK for the 
latest version of this document.

Brüel & Kjær and all other trademarks, service marks, trade names, 
logos and product names are the property of Hottinger Brüel & Kjær A/S 
or a third-party company.
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Specifications – Power Amplifier Type 2719

COMPLIANCE WITH STANDARDS

Safety, EMC Emission and Immunity: According to relevant standards:
• EN/IEC 61010–1, ANSI/UL 61010–1
• EN/IEC 61000–6–2
• EN/IEC 61000–6–4
• CISPR32 Class A limit
• FCC Rules Part 15
• EN/IEC 61326
Temperature: According to IEC 60068–2–1 and IEC 60068–2–2
• Operating temperature: +5 to +40 °C (41 to 104 °F)
• Storage temperature: –25 to +70 °C (–13 to 158 °F)
Humidity: According to IEC 60068–2–78, Damp Heat: 93% RH (non-condensing 
at 40°C (104°F))
Mechanical: Non-operating according to:
• IEC 60068–2–6
• IEC 60068–2–27
• IEC 60068–2–29
Reliability: According to MIL–HDBK 217 F, GB (Part-stress)
Enclosure: According to IEC 60529

POWER OUTPUT CAPACITY 
• 180 VA into a 0.8 Ω exciter or resistive load, at 25 °C and nominal mains voltage
• 144 VA into a 1 Ω exciter or resistive load, at 40 °C or at 10% above nominal 

mains voltage
Connector: 4-pin Neutrik® speakON® (back panel) 

OUTPUT VOLTAGE CAPACITY 
12 V RMS, DC to 15 kHz 

OUTPUT CURRENT CAPACITY 
7.5 A RMS at or below 5 Hz
15 A RMS, 40 Hz to 10 kHz
12 A RMS at 15 kHz

FREQUENCY RANGE
Full Capacity: 40 Hz to 10 kHz
Reduced Capacity: DC to 100 kHz

FREQUENCY RESPONSE
Typical small signal response in low impedance mode:
• DC Input: DC to 15 kHz ±0.5 dB; DC to 100 kHz ±3 dB
• AC Input: 15 Hz to 15 kHz ±0.5 dB

INPUT IMPEDANCE
>10 kΩ 

DC STABILITY
Less than 50 mV drift from 0 V for ±10% variation of mains supply from nominal, 
and for 10 to 40 °C (50 to 104 °F) variation in ambient temperature

CONTROLS
Power on/off
Continuously variable gain control, 0 to Cal. (14 dB) with integral reset
Continuously variable current limit control 1 to 15 A (RMS)
Switch for voltage mode or current mode operation
Switch for phase inversion (0° or 180°) between input and output

INDICATOR LAMPS (LEDs)
Power on
Distortion
Temperature overload
Current overload
Phase shift (0° or 180°)
Mode (Voltage or Current)
Interlock

MULTIFUNCTION DISPLAY (LCD)
Voltage (RMS) read-out accuracy ±2% 
Current (RMS) read-out accuracy ±2% 

PROTECTION
Input signal is removed and an indicator lamp is lit when the following parameters 
exceed preset limits:
• Driver Coil Current – true RMS adjustable limit 1 to 15 A (RMS)
• Power Transistor Temperature
• Heat Sink Temperature
• Output Signal Distortion – no shutdown 

OTHER FEATURES
Electronic peak current limiting

MONITOR OUTPUT
Voltage: 0.1 V/V ±2% 
Current: 0.1 V/A ±2% 
Connectors: 2 separate BNC sockets (back panel)

POWER REQUIREMENTS
Single phase 100, 120, 230 V RMS, ±10%. Approx. 400 VA at full load
Appliance inlet with fuse holder and voltage selector (back panel) 

FUSES
100 V or 120 V: T 8 A slow blow
230 V: T 4 A slow blow

DIMENSIONS
Height: 88 mm (3.5 in), equivalent to 2 RU (rack unit) 
Width: 482.6 mm (19 in) with flanges for standard 19 inch rack mounting
Depth: 450 mm (17.7 in)

WEIGHT
15.9 kg (35.0 lb)

Ordering Information

Type 2719 Power Amplifier
Includes the following:
• Mains cable

OPTIONAL ACCESSORIES
AQ-0649-D-050 Cable, two 4-pin Neutrik speakON connectors, length 5 m 

(16.4 ft), for driving Vibration Exciter Type 4808 (included with 
Type 4808) 

WL-1325-D-050 Cable, 4-pin Neutrik SpeakON connector to two banana plugs, 
length 5 m (16.4 ft), for driving Vibration Exciter Type 4809 
(included with Type 4809)

Note: Cables are available in different lengths. 

The CE marking is the manufacturer's declaration that the product 
meets the requirements of the applicable EU directives

RCM mark indicates compliance with applicable ACMA technical 
standards – that is, for telecommunications, radio 
communications, EMC and EME

China RoHS mark indicates compliance with administrative 
measures on the control of pollution caused by electronic 
information products according to the Ministry of Information 
Industries of the People’s Republic of China

WEEE mark indicates compliance with the EU WEEE Directive
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G.5. Micro-Epsilon optoNCDT ILD 1420-200 laser distance sensor
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Functional Principle, Technical Data

optoNCDT 1420

3.3	 Technical Data ILD1420

Model ILD1420-10 ILD1420-25 ILD1420-50 ILD1420-100 ILD1420-200 ILD1420-500

Measuring range 10 mm 25 mm 50 mm 100 mm 200 mm 500 mm

Start of measuring range 20 mm 25 mm 35 mm 50 mm 60 mm 100 mm

Mid of measuring range 25 mm 37.5 mm 60 mm 100 mm 160 mm 350 mm

End of measuring range 30 mm 50 mm 85 mm 150 mm 260 mm 600 mm

Measuring rate 1 6 adjustable stages: 8 kHz / 4 kHz / 2 kHz / 1 kHz / 0.5 kHz / 0.25 kHz

Linearity 2
≤ ±8 µm ≤ ±20 µm ≤ ±40 µm ≤ ±80 µm ≤ ±160 µm ≤±500 µm ... ≤±1000 µm

≤ ±0.08 % FSO ≤ ±0,1 ... 0,2 % FSO

Repeatability 3 0.5 µm 1 µm 2 µm 4 µm 8 µm 20 ... 40 µm

Temperature stability 4 ±0.015 % FSO/K ±0.01 % FSO/K

Light spot  
diameter 5 (±10 %)

SMR 90 x 120 µm 100 x 140 µm 90 x 120 µm

750 x 1100 µmMMR 45 x 40 µm 120 x 130 µm 230 x 240 µm

EMR 140 x 160 µm 390 x 500 µm 630 x 820 µm

smallest ø
45 x 40 µm  
with 24 mm

55 x 50 µm  
with 31 mm

70 x 65 µm  
with 42 mm

-

Light source Semiconductor laser < 1 mW, 670 nm (red)

Laser class Class 2 in accordance with IEC 60825-1: 2014

Permissible ambient light 6 50,000 lx 30,000 lx 10,000 lx

Supply voltage 11 ... 30 VDC

Power consumption < 2 W (24 V)

Signal input
1 x HTL laser on/off; 

1 x HTL multifunction input: trigger in, zero setting, mastering, teach

Digital interface 7 RS422 (16 bit) / EtherCAT  / PROFINET  / EtherNet/IP 

Analog output 8
4 … 20 mA / 1 … 5 V with cable PCF1420-3/U  

(16 bit; freely scalable within the measuring range)
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Functional Principle, Technical Data

optoNCDT 1420

Model ILD1420-10 ILD1420-25 ILD1420-50 ILD1420-100 ILD1420-200 ILD1420-500

Switching output 1 x error output: npn, pnp, push pull

Connection
integrated cable 3 m, open ends, minimum bending radius 30 mm (fixed installation) or integrated 

pigtail 0.3 m with 12-pin M12 connector (see accessories for suitable connection cable)

Mounting Screw connection via two mounting holes

Temperature range
Operation 0 ... +50 °C (+32 ... +122 °F) (non-condensing)

Storage -20 ... +70 °C (-4 ... +158 °) (non-condensing)

Shock (DIN EN 60068-2-27) 15 g / 6 ms in 3 axes, 1000 shocks each

Vibration (DIN EN 60068-2-6) 20 g / 20 ... 500 Hz in 3 axes, 2 directions and 10 cycles each

Protection class  
(DIN EN 60529) 9 IP67

Material Aluminium housing

Weight approx. 60 g (incl. pigtail), approx. 145 g (incl. cable)

Control and display elements 10

Select button: zero, teach, factory setting;  
web interface for setup: selectable presets, peak selection, video signal,  

freely selectable averaging possibilities, data reduction, setup management;  
2 x color LEDs for power/status

[1] Factory setting 2 kHz, modifying the factory setting requires the IF2001/USB converter (see accessories); for models with laser class 1 the maximum 
measuring rate is 4 kHz
[2] FSO = Full Scale Output; the specified data apply to white, diffuse reflecting surfaces (Micro-Epsilon reference ceramic for ILD sensors)
[3] Measuring rate 2 kHz, median 9
[4] The specified value is only achieved by mounting on a metallic sensor holder. Good heat dissipation from the sensor to the holder must be ensured.
[5] ±10 %; SMR = Start of measuring range; MMR = Mid of measuring range; EMR = End of measuring range
[6] Illuminant: light bulb
[7] For EtherCAT, PROFINET and EtherNet/IP, connection via interface module is required (see accessories)
[8] For models with laser class 1 the D/A conversion is done with 12 bit
[9] Models with laser class 1 have the protection class IP65

[10] Access to web interface requires connection to PC via IF2001/USB (see accessories)
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G.6. PCB Piezotronics Model 482B11 ICP signal conditioner



 Model Number 
482B11 LINE POWERED SIGNAL CONDITIONER FOR ICP® SENSORS  

Revision: E 

ECN #: 40512 

 Performance  ENGLISH SI 
Channels 1 1  
Voltage Gain(± 1 %) x1 x10 x100 x1 x10 x100  
High Frequency Response(-5 %)(Gain x1) 85 kHz 85 kHz  
High Frequency Response(-5 %)(Gain x10) 85 kHz 85 kHz  
High Frequency Response(-5 %)(Gain x100) 60 kHz 60 kHz  
Fault/Bias Monitor/Meter(meter) 24 VDC FS 24 VDC FS  
Environmental  
Temperature Range +30 to +130 °F -1.1 to +54.4 °C  
Electrical  
AC Power(50-400Hz) 105 to 125 VAC 105 to 125 VAC [1]
AC Power 0.25 amps 0.25 amps  
Excitation Voltage(To Sensor) +24 VDC +24 VDC  
DC Offset(Maximum) ± 30 mV ± 30 mV  
Constant Current Excitation(To Sensor) 2 to 20 mA 2 to 20 mA [2]
Discharge Time Constant 3 sec 3 sec  
Spectral Noise(1 Hz) 4.3 µV/√Hz -107 dB  
Spectral Noise(10 Hz) 1.3 µV/√Hz -118 dB  
Spectral Noise(100 Hz) 0.37 µV/√Hz -129 dB  
Spectral Noise(1 kHz) 0.16 µV/√Hz -136 dB  
Spectral Noise(10 kHz) 0.12 µV/√Hz -138 dB  
Broadband Electrical Noise(1 to 10,000 Hz)(Gain x1) 29 µV -91 dB  
Spectral Noise(1 Hz) 31 µV/√Hz -90 dB  
Spectral Noise(10 Hz) 13 µV/√Hz -98 dB  
Spectral Noise(100 Hz) 3.7 µV/√Hz -109 dB  
Spectral Noise(1 kHz) 1.8 µV/√Hz -115 dB  
Spectral Noise(10 kHz) 0.80 µV/√Hz -122 dB  
Broadband Electrical Noise(1 to 10,000 Hz)(Gain x10) 198 µV -74 dB  
Spectral Noise(1 Hz) 274 µV/√Hz -78 dB  
Spectral Noise(10 Hz) 126 µV/√Hz -88 dB  
Spectral Noise(100 Hz) 39 µV/√Hz -96 dB  
Spectral Noise(1 kHz) 15 µV/√Hz -104 dB  
Spectral Noise(10 kHz) 6.6 µV/√Hz -113 dB  
Broadband Electrical Noise(1 to 10,000 Hz)(Gain x100) 2.2 mV -71 dB  
Physical  
Electrical Connector(Input, sensor) BNC Jack BNC Jack  
Electrical Connector(Output) BNC Jack BNC Jack  
Size (Height x Width x Depth) 4.3 in x 1.8 in x 6.0 

in 
109.2 mm x 45.7 mm x 152.4 

mm 
 

Weight 2 lb 907.2 gm  
All specifications are at room temperature unless otherwise specified. 
In the interest of constant product improvement, we reserve the right to change specifications without notice. 

ICP® is a registered trademark of PCB Group, Inc. 

 

OPTIONAL VERSIONS  
Optional versions have identical specifications and accessories as listed for the standard model 

except where noted below. More than one option may be used. 
 
 
 
 

 

 

NOTES:
[1] Unit set to 230 VAC when ordered as model F482B11.
[2] User adjustable, factory set at 4 mA (± 0.5 mA).

 
 

 

SUPPLIED ACCESSORIES:  
Model 017AXX Power Cord (1) 

Entered: AP Engineer: AK Sales: JJM Approved: JWH Spec Number: 
Date: 2/5/2013 Date: 2/5/2013 Date: 2/5/2013 Date: 2/5/2013 482-2110-80 

 
3425 Walden Avenue, Depew, NY 14043

Phone: 716-684-0001 
Fax: 716-684-0987 
E-Mail: info@pcb.com
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G.7. Silicone oil 5 cSt



Warranty: The information given in this product data sheet are believed to be fully accurate. However, Nedform BV shall not
be liable for its content and make no warranty with respect thereto. For additional information we request you to contact 
Nedform BV visit our web-site: www.nedform.com

issue date: 
21.07.2010 
page 1 

TDS - Silicone Oil

Description  

 Silicone oils are polydimethylsiloxanes available in different viscosities. 

Application 

 Release agent.
Used purely or as a part of a compounded formula Silicone Oil provides a non-
toxic,
non-carbonising mould release for rubber, plastics and metal die-castings.

 Anti-foam agent.
Very small quantities of the fluid are very effective as a foam control agent,
especially in non aqueous systems.

 Mechanical fluid.
The very high viscosity-index, the thermal and chemical stability, shear-
breakdown resistance and the rubber compatibility as well as the compressibility
make this fluid outstanding for mechanical and hydraulic uses.

 Lubricant.
The fluid provides excellent lubricating properties for most plastic and
elastomeric surfaces.
Lubricity with metals depends upon the possible combinations such as P.T.F.E.,
MoS2 and other lubricity improvers.

 In polishes and chemical specialties.
Silicone oil is used in most automobile and furniture polishes for its ease of
application, high gloss with a minimum rubbing and durable water repellent film.

 In electrical and electronic equipment. Because of the excellent dielectric
properties silicone oil is widely used as an insulating and damping fluid.

Features 

 Little change in physical properties over a wide temperature range.

 The fluids are thermally stable at 150°C for extended time intervals.

 Excellent water repellency.

 Low surface tension. The fluid readily wets clean surfaces to impart water
repellency and release characteristics.

 Low toxicity.

Benefits 

 Good foam builder

 Imparts soft silky feel to the hair

 Ensures smooth wet shaving foams

 Nonirritant to skin
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Typical Data 

Shelf life and storage 

 ATTENTION: Before handling, read product information, Product Safety Data Sheets 
and container labels for safe use, and any physical and/or health hazard information. 

Viscosity, Cst Flashpoint, 
°C COC 

Freezing 
point, °C 

Specific 
gravity, 25 °C 

Surface tension, 
mN/m 

Refrac. index at 
25 °C 

0,65 -4 -67 0,760 15,9 1,375 

1 40 -85 0,816 17,4 1,382 

2 48 -90 0,830 18,1 1,387 

3 62 -100 0,900 18,9 1,392 

5 136 -65 0,910 19,7 1,397 

10 162 -65 0,930 20,1 1,399 

20 230 -60 0,950 20,6 1,400 

50 280 -55 0,959 20,7 1,402 

100 >300 -55 0,965 20,9 1,403 

200 >300 -50 0,970 21,0 1,403 

300 >300 -50 0,970 21,1 1,403 

350 >300 -50 0,970 21,1 1,403 

500 >300 -50 0,970 21,1 1,403 

1000 >300 -50 0,970 21,2 1,403 

5000 >300 -50 0,975 21,4 1,403 

10000 >300 -50 0,975 21,5 1,403 

12500 >300 -50 0,975 21,5 1,403 

30000 >320 -50 0,975 21,5 1,403 

60000 >300 -50 0,975 21,5 1,403 

100000 >300 -50 0,976 21,5 1,404 

300000 >300 -45 0,976 21,5 1,404 

500000 >300 -40 0,976 21,5 1,404 



122 G. Device and Material Specifications

G.8. ELASTOSIL® Film 2030



ELASTOSIL® and SILPURAN® are registered trademarks  
of Wacker Chemie AG.

ULTRATHIN SILICONE FILM  
FOR HIGH-PRECISION SOLUTIONS

A New Product Form for Silicone 
Elastomers
ELASTOSIL® Film from WACKER is an  
ultrathin, high-precision film of crosslinked 
silicone rubber that is available in various  
layer thicknesses from 20 µm to > 400 µm 
and is manufactured under clean-room 
conditions entirely without solvents. The 
unique patent-registered manufacturing 
process produces immaculate, high- 
precision silicone film with a defined 
thickness that is impossible by other 
production processes. The maximum 
thickness variation across the film width 
is ±5%. This precision, combined with 
the proven properties of silicone rubber 
opens up potential applications that were 
hardly conceivable until now, and could 
certainly not be realized on an industrial 
scale. 

ELASTOSIL® Film is especially impressive  
for its durability. Its outstanding dielectric  
properties, Young’s modulus and rebound  
resilience remain constant over a wide 
range of temperatures and frequencies, 
as well as over millions of load cycles. 
Moreover, ELASTOSIL® Film is chemically  
inert and suitable for food contact. Like 
all silicone elastomers, ELASTOSIL® Film  
is characterized by selective permeability 
for gases and water vapor.

Diverse Applications
ELASTOSIL® Film is ideal for use as   
a dielectric precision layer in innovative,  
future-oriented electronics applications: 
so-called EAPs (electroactive polymers),  
especially in:
•	Actuator technology  

(“artificial muscles”)
•	Electricity generation  

(“energy harvesting”)
•	Smart sensors

With its typical silicone properties,  
ELASTOSIL® Film can also be used in 
food packaging, technical textiles and  
an extremely wide variety of industrial  
applications. 

Permanently elastic

Selective gas-permeable

Heat-resistant and flexible 
at low temperatures

High-precision 
(±5%)

Good dielectric  
properties

High stretch recovery

For applications in the medical sector  
and for wound dressing, ask about our 
biocompatible SILPURAN® Film. 

Form of Delivery and Processing
ELASTOSIL® Film 
•	Produced under cleanroom  

conditions, currently on a pilot scale,  
at a width of 250 mm

•	Available as sheet or roll stock on a 
support film, from which it can be easily 
stripped off for further processing

•	Can be processed by conventional 
die-cutting or laser techniques

•	Can be permanently and reliably  
bonded using silicone adhesive.  
Different grades are available for  
different applications. Ask us, and we 
will recommend one that is optimum  
for your application.

ELASTOSIL® 
Film

ELASTOSIL® Film 2030 Product Data
Starting material Addition-curing  

silicone rubber
Layer thickness 20 µm – 400 µm
Shore A 
(DIN ISO 7619-1)

27

Elongation at break 
(ISO 527-3)

450%

Tear strength  
(ASTM D624 B)

10 N/mm

Glass transition  
temperature (Tg)

-126 °C

Operating range -45 °C to 200 °C
Gas permeability 
(selectivity)

CO2/N2 10:1

Water vapor  
permeability 
(JIS 1099 A1)

3,000 g/m2/24 h
at 20 µm
1,200 g/m²/24 h 
at 50 μm
800 g/m²/24 h  
at 100 μm

Compression set, 22 h, 
100 °C 
(ISO 815-B)

5%

Permittivity εr 2.8
Dielectric strength  
(VDE 0303)

80 – 100 V/µm

Volume resistivity 
(IEC 60093)

1014 Ω·cm

Suitable for  
food contact 
(BfR/FDA)1

Yes

1 BfR recommendation:
„XV. Silicones“ / FDA CFR 21 § 177.2600
„Rubber articles intended f. repeated use“

These figures are only intended as a guide and should  
not be used in preparing specifications.

Properties of ELASTOSIL® Film



Water-Vapor Permeability
The water-vapor permeability of ELASTOSIL® film depends  
on the layer thickness.

Gas Permeability and Selectivity
ELASTOSIL® Film is water repellent but selectively permeable  
to gases. This permeability is significantly higher than that of 
other polymers. 
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Elongation at Break
Silicones high elongation at break remains practically constant  
over a wide temperature range. 

Stretch Recovery
Compared to other materials, silicone, and therefore  
ELASTOSIL® Film, has excellent elastic recovery. 

Elasticity and Resilience
ELASTOSIL® Film is highly elastic – permanently.

Thickness Precision
The ELASTOSIL® Film process produces films that are a fraction 
of the thickness of a human hair with state-of-art film thickness 
uniformity.
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H
Camera calibration

H.1. Silicon oil setup

Figure H.1: General view of the scaling calibration over 1mm
horizontally for the silicon oil setup.

Figure H.2: Zoomed-in view of the scaling calibration over
1mm horizontally for the silicon oil setup.

Figure H.3: General view of the scaling calibration over 3mm
vertically for the silicon oil setup.

Figure H.4: Zoomed-in view of the scaling calibration over
3mm vertically for the silicon oil setup.
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126 H. Camera calibration

H.2. Deionized water setup

Figure H.5: General view of the scaling calibration over 1mm
horizontally for the deionized water setup.

Figure H.6: Zoomed-in view of the scaling calibration over
1mm horizontally for the deionized water setup.

Figure H.7: General view of the scaling calibration over 5mm
vertically for the deionized water setup.

Figure H.8: Zoomed-in view of the scaling calibration over
5mm vertically for the deionized water setup.



I
Validation of phase-locked imaging

Preliminary tests were conducted to verify both the digital image correlation (DIC) workflow and the
phase-locked camera triggering. A small test case was considered, with the shaker operating at 80Hz
and a frequency divider set to 2, such that the camera captured only the peak surface displacements.

First, the reference image of the dot pattern (Figure I.1a) was correlated with itself. As expected, the
resulting displacement fields showed near-zero in-plane motion (Figure I.3a, b 6), confirming correct
DIC operation.

Next, five consecutive peak images (Figure I.1b–f) were correlated against the reference. The re-
sulting 𝑥- and 𝑦-displacement fields (Figure I.2a–j 6) were highly consistent, indicating stable oscillatory
behavior at reproducible phases.

To explicitly test phase-locking, the first peak frame was used as the reference and the subsequent
peak frame as the current image. The maximum displacement difference between these two frames
remained below 1px (Figure I.4a–d 6), and the majority of displacements were near zero. For context,
the displacements relative to the reference image ranged from −6px to 6 px, so a variation of 0.6 px
demonstrates excellent synchronization between camera triggering and surface oscillation.

These results confirm that the imaging system captures images at reproducible phases of the os-
cillatory motion, ensuring that the measured in-plane displacements accurately reflect the underlying
surface wave pattern.

6Displacement values are reported in pixels; the calibration factor is 0.06mm/px.
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128 I. Validation of phase-locked imaging

(a) (b)

(c) (d)

(e) (f)

Figure I.1: Example images for silicone oil at 80Hz showing (a) reference, (b, c, d, e, f) deformed image.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure I.2: Examples of DIC output for silicone oil at 80Hz showing the displacement fields in (a, c, e, g, i) 𝑥-direction and (b, d,
f, h, j) 𝑦-direction.
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(i) (j)

(a) (b)

Figure I.3: DIC output showing zero displacement when correlating the reference image with itself for silicone oil at 80Hz.
Subfigures (a) show 𝑑𝑥, and (b) show 𝑑𝑦.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure I.4: DIC output showing displacement differences between consecutive peak frames for silicone oil at 80Hz. Subfigures
(a, c, e, g) show 𝑑𝑥, and (b, d, f, h) show 𝑑𝑦.





J
Convergence study: wavelength

stabilization

A convergence study was conducted to determine the minimum number of video frames required to
reliably extract the dominant wavelength. The motivation is to reduce computational effort during Digital
Image Correlation (DIC) analysis by avoiding unnecessary processing of the full video length.

J.1. Test setup

Experiments were carried out for five configurations: deionized water without a surface film, and film-
covered configurations with nominal thicknesses of 20, 50, 100, and 200µm. For each case, the
excitation frequency was fixed at 60Hz, and the lowest amplitude setting was selected, as it typically
results in the slowest development of the instability and thus represents the most challenging scenario
for early wavelength determination.

DIC analysis was performed over the entire duration of each video. The dominant wavelength was
then calculated using the procedure described in Section 3.4.2. To assess the effect of frame count on
the stability of the wavelength estimation, the analysis was repeated for increasing numbers of frames,
using subsets of the video in increments of 5 frames (i.e., using the first 5, 10, 15 frames, and so on).

J.2. Results

Figure J.1 shows how the derived dominant wavelength evolves as a function of the number of frames
included in the analysis for the 200µmm case. Initially, the wavelength fluctuates due to transient wave
patterns excited during the early stages of instability, such as concentric waves that differ from the final
governing pattern. As more frames are included, the calculated wavelength stabilizes and converges
toward a consistent value, indicating that the system has reached its characteristic behavior. Similar
convergence behavior is observed for the other configurations, which are presented in Section J.4.
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Figure J.1: Convergence of the dominant wavelength as a function of frame count for the 200µm film-covered configuration at
60Hz excitation.

J.3. Discussion and conclusion

The study shows that in most cases, the dominant wavelength can be accurately determined using
fewer frames than the full video length. Therefore, to improve efficiency without compromising accu-
racy, it was decided to limit the DIC analysis to the first 180 frames in all experiments. This frame
count ensures that the governing wavelength is captured while avoiding the influence of early transient
effects and minimizing computational cost.
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J.4. Figures

J.4.1. Deionized water at 60Hz

Figure J.2: Convergence of the dominant wavelength as a function of frame count for the uncovered configuration at 60Hz
excitation.
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J.4.2. Deionized water with 20µm floating film at 60Hz

Figure J.3: Convergence of the dominant wavelength as a function of frame count for the 20µm film-covered configuration at
60Hz excitation.

J.4.3. Deionized water with 50µm floating film at 60Hz

Figure J.4: Convergence of the dominant wavelength as a function of frame count for the 50µm film-covered configuration at
60Hz excitation.
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J.4.4. Deionized water with 100µm floating film at 60Hz

Figure J.5: Convergence of the dominant wavelength as a function of frame count for the 100µm film-covered configuration at
60Hz excitation.





K
Convergence study: radial bin size

A convergence study was conducted to assess the influence of the number of radial bins used during
the radial averaging of the two-dimensional Fourier spectrum. This evaluation is essential to identify
an optimal bin count that provides accurate wavelength estimation without introducing artifacts or un-
necessary computational burden. The trade-off lies in avoiding undersampling (too few bins, leading to
poor spectral resolution) and oversampling (too many bins, leading to noise amplification and spurious
peaks).

K.1. Test setup

The study was performed across the same experimental conditions as those used in the wavelength
stabilization analysis. For each test case, the dominant wavelength was computed by sweeping the
number of radial bins from 25 to 3000 in increments of 25.

K.2. Results

Figure K.1 illustrates the behavior of the dominant wavelength as a function of the number of radial bins
for the test case involving a 200µm film at 60Hz excitation frequency (lowest amplitude setting). The
plot reveals a distinct trend: the estimated wavelength decreases with increasing bin number, gradually
approaching a stable value. This asymptotic behavior suggests that higher radial resolution enables
more precise detection of the dominant spatial frequency component.

However, beyond approximately 1300 bins, a discontinuous shift is observed in the dominant wave-
length. This likely indicates the emergence of secondary spectral peaks, which may correspond to
nearby frequency components or numerical noise being misidentified as dominant due to oversam-
pling. Thus, using excessively high bin counts can lead to erroneous identification of the governing
wavelength. Comparable convergence trends were observed for the other test cases, and the corre-
sponding results are presented in Section K.4.
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Figure K.1: Convergence of the dominant wavelength as a function of radial bin count for the 200µm film-covered configuration
at 60Hz excitation.

K.3. Discussion and Conclusion

This convergence analysis demonstrates that a radial bin count of approximately 1200 offers a rea-
sonable balance between spectral resolution and computational efficiency. Beyond this threshold,
improvements in resolution become marginal, while the risk of misidentifying the dominant wavelength
increases.

Moreover, this study highlights the importance of bin size selection in spectral averaging proce-
dures. While increasing bin counts improves spectral localization, it also introduces sensitivity to minor
variations and side-lobes in the power spectrum, which can lead to the erroneous attribution of non-
dominant features as governing.

Therefore, for subsequent analyses, a bin count of 1200 is recommended as a robust and conser-
vative choice, ensuring both computational practicality and accurate wavelength estimation across the
tested conditions.
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K.4. Figures
K.4.1. Deionized water at 60Hz

Figure K.2: Convergence of the dominant wavelength as a function of radial bin count for the uncovered configuration at 60Hz
excitation.

K.4.2. Deionized water with 20µm floating film at 60Hz

Figure K.3: Convergence of the dominant wavelength as a function of radial bin count for the 20µm film-covered configuration
at 60Hz excitation.
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K.4.3. Deionized water with 50µm floating film at 60Hz

Figure K.4: Convergence of the dominant wavelength as a function of radial bin count for the 50µm film-covered configuration
at 60Hz excitation.

K.4.4. Deionized water with 100µm floating film at 60Hz

Figure K.5: Convergence of the dominant wavelength as a function of radial bin count for the 100µm film-covered configuration
at 60Hz excitation.



L
Accelerometer calibration

To accurately determine the shaker acceleration in units of g, a short calibration test was conducted.
The goal was to establish the relationship between the accelerometer’s voltage output and actual accel-
eration, expressed in mV/g. Since no factory calibration data were available, this in-house calibration
allowed a direct mapping based on controlled sinusoidal motion.

L.1. Test setup
Calibration was performed at excitation frequencies of 5, 25, and 50 Hz, each with several displacement
amplitudes. A signal generator and amplifier drove the shaker with an empty glass tankmounted on top.
The displacement of the tank edge was measured using a laser distance meter (repeatability: ± 8 µm),
while the acceleration was recorded using an accelerometer mounted to the shaker’s internal structure
(accuracy: ± 1%). Data acquisition was done via a National Instruments DAQ and LabVIEW script,
recording around 2000 points per run with approximately 10 samples per oscillation cycle. Each run was
performed three times to ensure repeatability and assess consistency across repeated measurements.

The vertical displacement amplitude 𝑧𝑎 was extracted via Fourier analysis. Assuming sinusoidal
motion, the theoretical vertical acceleration amplitude 𝑎𝑎 was computed as:

𝑎𝑎 = 𝜔2𝑧𝑎 = (2𝜋𝑓)2𝑧𝑎 ,

where 𝑓 is the excitation frequency. This calculated acceleration in m/s2 was compared to the
accelerometer amplitude output voltage 𝑉𝑎, and the calibration factor 𝐶 in mV/g was then obtained as:

𝐶 = 𝑉𝑎
𝑎𝑎/𝑔

= 𝑉𝑎 ⋅ 𝑔
𝑎𝑎

,

with 𝑔 = 9.81m/s2.

L.2. Calibration accuracy
To evaluate the accuracy of the acceleration and the resulting calibration factor, uncertainties in all rel-
evant quantities were taken into account. Acceleration amplitude 𝑎𝑎 in units of g is calculated using the
vertical displacement amplitude 𝑧𝑎 (in m), excitation frequency 𝑓 (in Hz), and gravitational acceleration
𝑔 = 9.81m/s2, via

𝑎𝑎 =
𝑧𝑎 ⋅ (2𝜋𝑓)2

𝑔 .

The uncertainty in acceleration, 𝛿𝑎𝑎, is determined using first-order (linearized) error propagation,
following the Guide to the Expression of Uncertainty in Measurement (GUM) (Joint Committee for
Guides in Metrology (JCGM), 2008) and standard error propagation methods (Bevington & Robinson,
D. Keith, 2003; Taylor, 1997).
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For a function 𝑎𝑎(𝑧𝑎 , 𝑓) of independent variables 𝑧𝑎 and 𝑓, the linearized uncertainty is given by:

𝛿𝑎𝑎 = √(
𝜕𝑎𝑎
𝜕𝑧𝑎

𝛿𝑧𝑎)
2
+ (𝜕𝑎𝑎𝜕𝑓 𝛿𝑓)

2
.

The partial derivatives with respect to 𝑧𝑎 and 𝑓 are

𝜕𝑎𝑎
𝜕𝑧𝑎

= (2𝜋𝑓)2
𝑔 , 𝜕𝑎𝑎

𝜕𝑓 = 8𝜋2𝑧𝑎𝑓
𝑔 .

Substituting these into the general formula yields the explicit expression:

𝛿𝑎𝑎 = √(
(2𝜋𝑓)2 𝛿𝑧𝑎

𝑔 )
2
+ (8𝜋

2𝑧𝑎𝑓 𝛿𝑓
𝑔 )

2
.

Here, 𝛿𝑧𝑎 = 8µm reflects the repeatability of the laser displacement sensor, and 𝛿𝑓 = 5ppm×𝑓 is
based on the frequency synthesizer’s specified accuracy.

The calibration factor 𝐶 in mV/g is computed as

𝐶 = 𝑉𝑎
𝑎𝑎
,

where 𝑉𝑎 is the measured voltage amplitude output from the accelerometer.
For a function 𝐶(𝑉𝑎 , 𝑎𝑎) of independent variables 𝑉𝑎 and 𝑎𝑎, the uncertainty is given by

𝛿𝐶 = √( 𝜕𝐶𝜕𝑉𝑎
𝛿𝑉𝑎)

2
+ ( 𝜕𝐶𝜕𝑎𝑎

𝛿𝑎𝑎)
2
.

The partial derivatives are
𝜕𝐶
𝜕𝑉𝑎

= 1
𝑎𝑎
, 𝜕𝐶
𝜕𝑎𝑎

= −𝑉𝑎𝑎2𝑎
,

leading to the explicit expression

𝛿𝐶 = √(𝛿𝑉𝑎𝑎𝑎
)
2
+ (𝑉𝑎 𝛿𝑎𝑎𝑎2𝑎

)
2
.

The voltage uncertainty 𝛿𝑉𝑎 was estimated based on the specified accuracy of 1% of the measured
accelerometer value (manufacturer specifications, Appendix ??). Combining these contributions pro-
vides an upper bound for the accuracy of the calibration factor, consistent with GUM principles (Joint
Committee for Guides in Metrology (JCGM), 2008).

L.3. Results
The collected data can be visualized by plotting the voltage amplitude on the 𝑦-axis against the vertical
displacement on the 𝑥-axis. As shown in Figure L.1, a clear linear trend is observed among the data
points corresponding to the same excitation frequency. Using the previously established relationship,
the acceleration values were computed, allowing for a second representation where voltage is plotted
against acceleration, as illustrated in Figure L.2. The data from both 25Hz and 50Hz exhibit similar
trends, though they are not perfectly identical. This discrepancy is further analyzed in Figure L.3,
where the mV/g calibration factor is calculated for each frequency case and presented in a scatter
plot. The plot reveals some dispersion between points within similar frequency ranges. According
to the datasheet of the accelerometer (manufacturer specifications, Appendix G.6), the accuracy of
the voltage gain is specified as ± 1%, yet this alone cannot fully account for the observed variance.
The datasheet also details spectral noise and broadband electrical noise, but their magnitudes are
significantly smaller than the measured variance, suggesting that they are unlikely to be the primary
cause. Additionally, the datasheet indicates the presence of a DC offset of up to ± 30mV, which was
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particularly noticeable in the 5Hz data. Since the peak voltage values at this frequency were relatively
small, the offset introduces a potential source of error, raising concerns about the significance and
reliability of the 5Hz measurements.

Figure L.1: Trendline analysis of voltage amplitude vs. displacement. Experimental data points are shown with distinct markers,
and fitted trendlines indicate the voltage response across different frequency groups.

Figure L.2: Trendline analysis of voltage amplitude vs. acceleration. Experimental data points are shown with distinct markers,
and fitted trendlines indicate the voltage response across different frequency groups.
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Figure L.3: Scatter plot of accelerometer calibration: mV/g vs. frequency. Distinct markers indicate different frequency groups
(5, 25, and 50 Hz).

Figure L.4: Repetition 1 (5, 25, and 50 Hz). Figure L.5: Repetition 1 (25 and 50 Hz).

Figure L.4 shows that at low frequencies the values clearly deviate from the trend shown by higher
frequencies. The measured voltages are below the DC offset, as specified in the specs sheet of the
accelerometer. At each frequency, the different tests were presented in a boxplot for repetition one.
The data from both 25Hz and 50Hz seem to correspond pretty well. So we can combine the data into
one boxplot as presented in Figure L.5.

L.3.1. Check repeatability
As outlined in the test setup, each test scenario was repeated three times to assess repeatability.
The boxplots shown in Figures L.6, L.7, and L.8 illustrate the results of these repetitions for excita-
tion frequencies of 25Hz and 50Hz. The consistency across all three repetitions confirms the high
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repeatability of the measurements. Consequently, the derived calibration factor of 956 ± 15mV/g can
be considered reliable.

Figure L.6: Repetition 1 Figure L.7: Repetition 2 Figure L.8: Repetition 3

L.4. Accelerometer calibration data
L.4.1. Overview measured data repetition 1

Table L.1: Measurement results at 5Hz, including displacement, voltage, and calibration with associated uncertainties and
relative percentage errors.

Displacement (mm) Error (%) Voltage (V) Error (%) Calibration (mV/g) Error (%)
0.267 20 2.99 0.013 64 1.00 507.40 3.16
0.560 67 1.43 0.025 40 1.00 450.20 1.74
0.871 67 0.92 0.038 46 1.00 438.61 1.36
1.136 70 0.70 0.050 96 1.00 445.61 1.22
1.428 00 0.56 0.066 24 1.00 461.10 1.15
1.717 10 0.47 0.082 19 1.00 475.75 1.10
2.014 90 0.40 0.098 30 1.00 484.92 1.08
2.269 00 0.35 0.115 22 1.00 504.73 1.06

Table L.2: Measurement results at 25Hz, including displacement, voltage, and calibration with associated uncertainties and
relative percentage errors.

Displacement (mm) Error (%) Voltage (V) Error (%) Calibration (mV/g) Error (%)
0.350 42 2.28 0.850 00 1.00 964.40 2.49
0.551 91 1.45 1.283 30 1.00 924.46 1.76
0.700 84 1.14 1.713 30 1.00 971.95 1.52
0.911 09 0.88 2.141 00 1.00 934.30 1.33
1.073 20 0.75 2.577 00 1.00 954.69 1.25
1.270 30 0.63 3.009 60 1.00 941.96 1.18
1.419 20 0.56 3.438 60 1.00 963.31 1.15
1.620 70 0.49 3.856 20 1.00 945.99 1.12
1.791 50 0.45 4.289 00 1.00 951.85 1.10
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Table L.3: Measurement results at 50Hz, including displacement, voltage, and calibration with associated uncertainties and
relative percentage errors.

Displacement (mm) Error (%) Voltage (V) Error (%) Calibration (mV/g) Error (%)
0.122 64 6.52 1.103 80 1.00 894.60 6.60
0.227 77 3.51 2.205 30 1.00 962.37 3.65
0.341 66 2.34 3.297 60 1.00 959.34 2.55
0.442 40 1.81 4.363 80 1.00 980.44 2.07
0.551 91 1.45 5.444 40 1.00 980.51 1.76



M
DIC noise

M.1. Uncertainty in DIC Measurements
Part of the uncertainty in the wavelength determination arises from the accuracy of the DIC measure-
ments. The DIC algorithm inherently introduces noise, and it is desirable to quantify this contribution in
order to include it in the overall uncertainty budget. A common approach is to acquire multiple images
under static conditions, compare the resulting displacement fields, and derive an associated standard
deviation, 𝜎DIC. In the present study, no true static images are acquired, so alternative approaches are
explored. However, all attempts are complicated by the dynamic nature of the surface, and no perfectly
static comparisons are obtained.

An initial approach focuses on the direct influence of DIC on the peak in the complex two-dimensional
frequency domain. This is investigated by analyzing the last 50 frames of a test in which the Faraday-
wave onset occurs very early. In principle, each phase-locked frame should capture the same wave-
length (independent of capturing alternating positions of the standing wave; odd frequency divider
setting), allowing the comparison of the dominant spatial frequency. For each of these frames, the
complex Fourier-domain representation is computed, and the peaks are compared (Figure M.1). This
analysis yields an estimated uncertainty in the frequency peak of

𝛿𝑓DIC ≈ 1.4 × 10−4 px−1,

corresponding to an approximate

𝜎DIC ∼ 0.2 px.

Another approach involves comparing consecutive images that are phase-locked at the same phase
(this can be either consecutive images captured with even frequency divider settings or by skipping one
image each time when using odd frequency divider settings). This comparison can be performed in
two ways: (i) by running DIC on both the first and second images relative to a common static reference
image, and then subtracting the resulting displacement fields, or (ii) by directly comparing the first and
second consecutive images using the DIC software.

As an example of the first method, Figure M.3 shows the 𝑑𝑥 and 𝑑𝑦 displacement fields obtained
by referencing the first two consecutive phase-locked images to the same static reference, as well as
the difference fields derived from their subtraction. The standard deviations between the frames are

𝜎Δ𝑑𝑥 = 0.189 px, 𝜎Δ𝑑𝑦 = 0.185 px.

However, inspection of the difference plots (Figure M.3e and f) reveals that large deviations are asso-
ciated with regions where DIC fails, for instance due to air bubbles trapped beneath the sheet. Con-
sequently, this approach does not provide a reliable representation of the intrinsic DIC noise, and it is
difficult to filter such artifacts consistently across all image sequences.
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Figure M.1: Dominant spatial frequency 𝑓 extracted from the complex 2D frequency domain for each frame (dots). Mean
frequency across all frames (dashed line) and one standard deviation (shaded area) are also shown.

Finally, an example of the second approach, in which the first and second consecutive phase-
locked images are directly compared, is considered. Figure M.2 shows the 𝑑𝑥 and 𝑑𝑦 displacement
fields obtained from this direct comparison, reflecting the intrinsic standard deviation of displacements
between consecutive images more directly. The standard deviations between the frames are

𝜎Δ𝑑𝑥 = 0.092 px, 𝜎Δ𝑑𝑦 = 0.094 px.

While these results provide a more representative estimate of the intrinsic DIC noise, the absence
of truly static image sequences prevents a definitive separation of algorithmic noise from physical mo-
tion of the free surface. Consequently, these analyses illustrate the scale of DIC-related variability
in the present experiments, whereas the uncertainty adopted in the main text is based on literature
benchmarks (Pan, 2018; Pan et al., 2010).

(a) (b)

Figure M.2: Example of consecutive-frame DIC comparison, where the first dynamic frame serves as the reference and the
second phase-locked frame is compared to it. Panel (a) shows the 𝑑𝑥 displacement field and panel (b) the 𝑑𝑦 displacement
field.7
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(a) (b)

(c) (d)

(e) (f)

Figure M.3: Example of consecutive-frame DIC comparison using a static reference image. Panels (a–b) show the 𝑑𝑥 and 𝑑𝑦
displacement fields for the first phase-locked frame, panels (c–d) show the corresponding fields for the second frame, and panels
(e–f) present the difference fields Δ𝑑𝑥 and Δ𝑑𝑦 obtained by subtraction. 8





N
Signal extraction from laser distance

measurements

The aim of this test is to evaluate whether the analog displacement signal from the laser distance meter
can be accurately digitized and analyzed. Specifically, we seek to determine if the dominant frequency
and amplitude of the shaker motion can be extracted using Fourier analysis. Additionally, we assess
which sampling interval provides the most accurate estimation of the excitation frequency.

N.1. Test setup

The multifunction synthesizer and amplifier were used to excite the shaker at a constant frequency of
5Hz with a large displacement amplitude to ensure clear motion. The laser distance meter captured
displacement over time, and data acquisition was performed using a LabVIEW script.

Measurements were taken at various sampling intervals: 1, 2, 5, 10, 20, and 40 ms. To demonstrate
the analysis process, the 20ms case is discussed in detail. First, the raw displacement data was
centered around zero. Because the time steps between measurements were not exactly uniform, the
average time step was calculated and used for the Fourier transform. Amplitudes were estimated by
taking half the difference between the maximum and minimum displacement within each oscillation
cycle, and then averaging across all cycles.

N.2. Results

Figure N.1 shows the centered displacement data and its Fourier transform at a 20ms sampling interval.
A clear spectral peak at approximately 5Hz confirms that the laser system successfully captured the
excitation frequency.
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Figure N.1: Measured displacement, centered signal, and Fourier transform at 20ms sampling interval.

Table N.1 summarizes the derived fundamental frequency and estimated amplitude for each sam-
pling interval.

Table N.1: Derived fundamental frequency and estimated amplitude from laser distancemeter measurements at various sampling
intervals for a 5Hz signal. A sampling interval of 20ms (sampling frequency 50Hz) provides the best accuracy in capturing the
signal frequency, corresponding to 10 samples per cycle.

Sampling interval (ms) Fundamental frequency (Hz) Estimated amplitude (mm)
1 4.853 1.045
2 4.915 1.034
5 4.960 1.029
10 5.028 1.008
20 4.991 0.999
40 4.990 0.951

N.3. Discussion and conclusion
The results indicate that the laser distance meter can reliably capture both the amplitude and frequency
of the oscillatory motion of the shaker. A pronounced peak at 5Hz in the Fourier spectrum validates
the accuracy of the frequency extraction. Furthermore, amplitude estimates remain consistent across
different sampling intervals, though slight variations are present.

The sampling interval plays a significant role in frequency resolution. Sampling at a rate approx-
imately ten times higher than the excitation frequency yields the most accurate and stable results.
Sampling rates lower than this threshold may introduce artifacts or reduce accuracy, while significantly
higher rates do not noticeably improve precision in this case.

Overall, the test confirms that the laser sensor is suitable for digitizing analog displacement signals
and allows accurate extraction of key signal parameters.



O
Signal Extraction from Accelerometer

Measurements

The objective of this test is to confirm whether analog voltage output from the accelerometer can be
digitized correctly, and whether the excitation frequency and corresponding voltage amplitude can be
reliably extracted using Fourier analysis. Furthermore, the test evaluates the impact of sampling interval
on the accuracy of the frequency estimation.

O.1. Test setup

The accelerometer was mounted on the shaker, which was again excited at 5Hz using the same syn-
thesizer. Data acquisition was carried out via a self-developed LabVIEW script at multiple sampling
intervals: 1, 2, 5, 10, 20, and 40 ms.

The acquired voltage data was centered around zero to enhance oscillatory visualization. A Fourier
transform was applied using the average time step (due to slight timing inconsistencies in acquisition).
Voltage amplitudes were estimated by calculating half of the peak-to-peak value for each oscillation
cycle, and then averaging over all cycles.

O.2. Results

Figure O.1 presents the centered accelerometer data and its frequency spectrum for a sampling interval
of 20ms. As expected, a peak around 5Hz confirms that the accelerometer signal correctly reflects
the excitation frequency.
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Figure O.1: Measured voltage, centered signal, and Fourier transform at 20ms sampling interval.

Table O.1 provides the derived frequency and voltage amplitude across all tested sampling intervals.

Table O.1: Derived fundamental frequency and estimated amplitude from accelerometer measurements at various sampling
intervals for a 5Hz signal. A sampling interval of 20ms (sampling frequency 50Hz) provides the best accuracy in capturing the
signal frequency, corresponding to 10 samples per cycle.

Sampling interval (ms) Fundamental frequency (Hz) Estimated amplitude (V)
1 4.969 0.052
2 4.948 0.055
5 4.966 0.051
10 5.017 0.049
20 5.006 0.044
40 4.984 0.040

O.3. Discussion and Conclusion
The results demonstrate that the accelerometer effectively captures the voltage variations associated
with the oscillations of the shaker. The frequency content extracted via Fourier transform closely
matches the known excitation frequency, validating the integrity of the analog-to-digital conversion
process.

As with the laser measurements, sampling interval significantly affects accuracy. Sampling at or
above ten times the excitation frequency ensures minimal distortion and accurate parameter extraction.
Below this threshold, small deviations become more pronounced. Voltage amplitude estimates also
decrease slightly at lower sampling rates, likely due to under-sampling and loss of waveform detail.

In conclusion, the accelerometer setup performs reliably for extracting dynamic properties of oscil-
latory motion, provided that an adequate sampling rate is maintained.



P
Measured displacement at different

sample intervals

Sample interval 1ms

Figure P.1: Measured displacement, centered signal, and Fourier transform at 1ms sampling interval..
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Sample interval 2ms

Figure P.2: Measured displacement, centered signal, and Fourier transform at 2ms sampling interval.

Sample interval 5ms

Figure P.3: Measured displacement, centered signal, and Fourier transform at 5ms sampling interval.
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Sample interval 10ms

Figure P.4: Measured displacement, centered signal, and Fourier transform at 10ms sampling interval.

Sample interval 20ms

Figure P.5: Measured displacement, centered signal, and Fourier transform at 20ms sampling interval.
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Sample interval 40ms

Figure P.6: Measured displacement, centered signal, and Fourier transform at 40ms sampling interval.



Q
Measured voltage at different sample

intervals

Sample interval 1ms

Figure Q.1: Measured voltage, centered signal, and Fourier transform at 1ms sampling interval.
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Sample interval 2ms

Figure Q.2: Measured voltage, centered signal, and Fourier transform at 2ms sampling interval.

Sample interval 5ms

Figure Q.3: Measured voltage, centered signal, and Fourier transform at 5ms sampling interval.
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Sample interval 10ms

Figure Q.4: Measured voltage, centered signal, and Fourier transform at 10ms sampling interval.

Sample interval 20ms

Figure Q.5: Measured voltage, centered signal, and Fourier transform at 20ms sampling interval.



164 Q. Measured voltage at different sample intervals

Sample interval 40ms

Figure Q.6: Measured voltage, centered signal, and Fourier transform at 40ms sampling interval.



R
Wavelength uncertainty data

This appendix presents the dataset used to evaluate propagated uncertainty in dominant wavelength
estimation from a DIC-derived in-plane displacement vector field. Table R.1 reports:

• Theoretical wavelength 𝜆mm in millimeters (Column 1) and theoretical wavelength 𝜆px in pixels
(Column 2).

• Uncertainties in spatial frequency resolution on wavelength 𝛿𝜆FFT (Column 3), uncertainty in ra-
dial spatial binning on wavelength 𝛿𝜆rad (Column 4), and uncertainty due to DIC noise 𝛿𝜆DIC
(Column 5), all in pixels.

• Combined uncertainty on wavelength 𝛿𝜆px in pixels (Column 6) and combined uncertainty on
wavelength 𝛿𝜆mm in millimeters (Column 7).

• Relative uncertainty as a percentage of 𝜆 (Column 8).

The following parameters were used in the uncertainty calculation:

• Calibrated pixel size: 𝑝 = 0.0600± 0.0014mm/px

• Subset spacing (grid spacing): 𝑠 = 4px

• Grid size: 𝑁 = 295

• Spatial frequency resolution: 𝛿𝑓FFT =
1
𝑁⋅𝑠

• Number of radial bins: 1200

• DIC noise standard deviation: 𝜎DIC = 0.02px
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166 R. Wavelength uncertainty data

Table R.1: Overview of expected Faraday wave wavelengths with associated uncertainty contributions. The table lists the
wavelength in millimeters (𝜆mm) and pixels (𝜆px), together with the uncertainty contributions from the Fourier transform (𝛿𝜆FFT),
radial averaging (𝛿𝜆radial), and Digital Image Correlation (DIC, 𝛿𝜆DIC) in pixels. The total uncertainty in pixels (𝛿𝜆total, px) and
millimeters (𝛿𝜆mm), as well as the relative error (%), are also provided.

𝜆mm (mm) 𝜆px (px) 𝛿𝜆FFT (px) 𝛿𝜆radial (px) 𝛿𝜆DIC (px) 𝛿𝜆total, px (px) 𝛿𝜆mm (mm) Error (%)
4.000 66.667 3.7665 0.1875 0.0753 3.7719 0.2448 6.12
4.429 73.810 4.6168 0.2298 0.0923 4.6235 0.2960 6.68
4.857 80.952 5.5536 0.2764 0.1111 5.5616 0.3524 7.26
5.286 88.095 6.5769 0.3274 0.1315 6.5864 0.4140 7.83
5.714 95.238 7.6867 0.3826 0.1537 7.6977 0.4807 8.41
6.143 102.381 8.8829 0.4421 0.1777 8.8957 0.5527 9.00
6.571 109.524 10.1656 0.5060 0.2033 10.1803 0.6298 9.58
7.000 116.667 11.5348 0.5741 0.2307 11.5514 0.7121 10.17
7.429 123.810 12.9905 0.6466 0.2598 13.0092 0.7996 10.76
7.857 130.952 14.5326 0.7233 0.2907 14.5535 0.8923 11.36
8.286 138.095 16.1613 0.8044 0.3232 16.1845 0.9901 11.95
8.714 145.238 17.8764 0.8898 0.3575 17.9021 1.0932 12.54
9.143 152.381 19.6779 0.9794 0.3936 19.7062 1.2015 13.14
9.571 159.524 21.5660 1.0734 0.4313 21.5970 1.3149 13.74
10.000 166.667 23.5405 1.1717 0.4708 23.5743 1.4336 14.34
10.429 173.810 25.6015 1.2743 0.5120 25.6383 1.5574 14.93
10.857 180.952 27.7490 1.3811 0.5550 27.7888 1.6865 15.53
11.286 188.095 29.9829 1.4923 0.5997 30.0260 1.8207 16.13
11.714 195.238 32.3033 1.6078 0.6461 32.3498 1.9601 16.73
12.143 202.381 34.7102 1.7276 0.6942 34.7601 2.1048 17.33
12.571 209.524 37.2036 1.8517 0.7441 37.2571 2.2546 17.93
13.000 216.667 39.7834 1.9801 0.7957 39.8406 2.4096 18.54
13.429 223.810 42.4497 2.1128 0.8490 42.5108 2.5698 19.14
13.857 230.952 45.2025 2.2499 0.9041 45.2675 2.7352 19.74
14.286 238.095 48.0418 2.3912 0.9608 48.1109 2.9058 20.34
14.714 245.238 50.9676 2.5368 1.0194 51.0408 3.0816 20.94
15.143 252.381 53.9798 2.6867 1.0796 54.0574 3.2626 21.55
15.571 259.524 57.0785 2.8409 1.1416 57.1605 3.4488 22.15
16.000 266.667 60.2637 2.9995 1.2053 60.3503 3.6402 22.75
16.429 273.810 63.5353 3.1623 1.2707 63.6266 3.8368 23.35
16.857 280.952 66.8934 3.3295 1.3379 66.9896 4.0386 23.96
17.286 288.095 70.3380 3.5009 1.4068 70.4391 4.2456 24.56
17.714 295.238 73.8691 3.6767 1.4774 73.9753 4.4577 25.16
18.143 302.381 77.4866 3.8567 1.5497 77.5980 4.6751 25.77
18.571 309.524 81.1907 4.0411 1.6238 81.3074 4.8977 26.37
19.000 316.667 84.9812 4.2297 1.6996 85.1033 5.1254 26.98
19.429 323.810 88.8581 4.4227 1.7772 88.9859 5.3584 27.58
19.857 330.952 92.8216 4.6200 1.8564 92.9550 5.5965 28.18
20.286 338.095 96.8715 4.8216 1.9374 97.0108 5.8399 28.79
20.714 345.238 101.0079 5.0274 2.0202 101.1531 6.0884 29.39
21.143 352.381 105.2308 5.2376 2.1046 105.3821 6.3421 30.00
21.571 359.524 109.5401 5.4521 2.1908 109.6976 6.6011 30.60
22.000 366.667 113.9360 5.6709 2.2787 114.0998 6.8652 31.21
22.429 373.810 118.4183 5.8940 2.3684 118.5885 7.1345 31.81
22.857 380.952 122.9870 6.1214 2.4597 123.1639 7.4091 32.41
23.286 388.095 127.6423 6.3531 2.5528 127.8258 7.6888 33.02
23.714 395.238 132.3840 6.5891 2.6477 132.5743 7.9737 33.62
24.143 402.381 137.2122 6.8294 2.7442 137.4095 8.2638 34.23
24.571 409.524 142.1269 7.0740 2.8425 142.3312 8.5591 34.83
25.000 416.667 147.1281 7.3230 2.9426 147.3396 8.8596 35.44
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