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Abstract
For offshore wind turbines (OWTs), effective maintenance decision-making depends on the timely and in-
telligent anticipation of developing faults. Without requiring the installation of additional sensors, failure-
related information can be extracted from the widely available Supervisory Control and Data Acquisition
(SCADA) system. This thesis presents an integrated deep learning framework designed to interpret high-
dimensional, unlabeled, and often low-quality SCADA data for fault diagnosis and Remaining Useful Life
(RUL) estimation, as illustrated in Figure 1.

The framework identifies historical failure events through reconstruction-based anomaly detection and
the construction of a health indicator. By clustering detected anomalies, associated failure modes are in-
ferred, allowing classification of future fault types. Using the estimated moments of failure as guidance, it
then learns degradation trends in the reconstruction feature space and performs RUL prediction.

Given the complexity of offshore environments and the unpredictable nature of wind turbine faults, the
framework is first validated in a controlled setting using NASA’s C-MAPSS simulated aircraft engine dataset.
The results are competitive and align well with those reported in related studies. Subsequent application to
real-world OWT SCADA data demonstrates the practical feasibility of the approach. However, challenges such
as data imbalance, obscured features due to SCADA data quality issues, and propagation of errors between
model components complicate implementation and reduce prediction reliability.

Despite these challenges, the proposed framework successfully extracts health-relevant insights, enabling
predictive maintenance optimization and contributing to more informed data-driven decision-making in
offshore wind operations.

Figure 1: Key steps to achieving diagnosis and prognosis of unlabeled data.
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1
Wind Turbine Predictive Maintenance

Introduction

As global demand for renewable electricity accelerates, offshore wind energy plays an increasingly critical
role in the transition towards sustainable energy [1]. To increase the effectiveness of energy generation, pro-
gressively larger turbines are installed in deeper waters and farther out to sea, where higher loads, increased
failure rates, and challenging, expensive repairs contribute to the increased cost of Operations and Mainte-
nance (O&M) [2, 3].

Due to decreased reliability and increased expenses due to unexpected failures, O&M comprises 25%-50%
of the total energy generation cost of Offshore Wind Turbines (OWTs) [4]. In turn, this accounts for a signif-
icant 20-35% of the total investment, making maintenance optimization crucial for cost-effective operation
[5–7].

This is achieved through the application of intelligent maintenance strategies that aim to minimize the
frequency of costly on-site visits (Figure 1.1), and increase the reliability of critical components such as the
electrical and control systems, gearbox, generator, and blades, collectively responsible for 90% of repair and
replacement costs over a turbine’s lifetime [8, 9]. When detected early, flaws can be repaired without complex
maintenance operations, before they cause significant losses to the yielded power [10]. Undetected fault
development, on the other hand, can cause irreversible structural damage, potentially propagating to other
systems. In such cases, repair requires large lifting vessels and the manufacturing of new components, further
driving up maintenance expenses [11, 12].

Figure 1.1: Wind turbine blade inspection, from [13].

1



2 1. Wind Turbine Predictive Maintenance

1.1. Wind Turbine Maintenance Optimization
The optimization of OWT maintenance involves the intelligent management of resources, risks, and costs
[14–17]. If done right, this can lead to substantial reductions in O&M costs [18–21]. Scheduling optimization
in offshore maintenance must account for constraints such as weather, equipment availability, and time. Key
strategies in this field include: (1) Minimizing production losses by scheduling maintenance during periods
of low energy yield, as indicated by weather forecasts or market prices [22]; (2) Reducing excessive spare stock
[23]; (3) Optimizing routing for service vessels and technicians [24, 25]; (4) Consolidating maintenance and
repair tasks to reduce downtime and costs [26]; and (5) Enhancing fleet management [27].

O&M decisions typically rely on traditional rule-based scheduling approaches, often based on fixed age,
usage, or power generation thresholds. Lacking the flexibility required to model real-time operational vari-
ability, these indicators fail to accurately reflect the actual system condition, resulting in poorly timed main-
tenance tasks and complicating effective scheduling decision-making [28, 29].

1.2. Wind Turbine Condition Monitoring
Instead, maintenance optimization is facilitated by the timely and intelligent anticipation of developing faults
[30]. Through the application of online sensing measurements, generalized by a Health Indicator (HI), Con-
dition Monitoring (CM) provides a remote assessment of the current system health [31].

Abnormal changes in the collected data indicate developing faults, further analyzed to provide additional
fault information related to failure mode and location [32, 33]. Advanced interpretation of data collected by
CM methods can identify early indicators of faults and predict future degradation trends to estimate Remain-
ing Useful Life (RUL) [34, 35]. As illustrated in Figure 1.2, the RUL is the difference between the current time
and the point of failure, which occurs when the predicted health trajectory intersects a predefined failure
threshold.

Figure 1.2: RUL defined as current time t0 to its point of failure t1, from [36].

The complex operational conditions of wind turbines complicate the use of traditional approaches and
necessitate specifically designed health monitoring methods [37]. These either consider the installation of
additional sensors for obtaining high-quality information, or analyze operational data provided by Supervi-
sory Control And Data Acquisition (SCADA) systems of the turbine [38–40].

1.2.1. Sensor-based CM
Initial limitations of the SCADA system have encouraged the use of dedicated sensors explicitly designed for
health monitoring. These standalone, condition-specific devices measure key variables such as vibration,
oil quality, temperature, strain, and acoustic emissions [41]. Unlike SCADA systems, they can provide high-
frequency measurements with greater precision, offering a more detailed and responsive view of component
health [39, 42–46].

Such systems are particularly valuable in detecting rapid or subtle changes that precede faults. However,
complex loads, varying rotational speeds, and harsh environmental conditions make accurate sensing a chal-
lenging and expensive task [21, 47, 48]. For OWTs, whose energy yield is relatively low compared to fossil or
nuclear plants, the long payback period further limits the economic appeal of large-scale sensor deployment.
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1.2.2. SCADA-based CM
Mainly for monitoring the overall performance of wind turbines and their major components, most wind
turbines use SCADA systems [49]. Due to its widespread availability, avoiding the financial and logistical
burdens associated with dedicated sensor systems, SCADA data poses an attractive alternative for CM.

A standard SCADA system provides critical information at both the wind turbine and wind farm levels.
This includes operational data, such as the produced power, wind speeds, electrical parameters, component
temperatures, and occasionally vibration or oil debris monitoring data. SCADA systems also typically log
availability, status changes, error codes, and component activations, along with extra wind measurements
from a meteorological tower.

Newly developed data-driven methods enable the extraction of health-related information through in-
telligent analysis of SCADA sensor trends. Most component-specific cases demonstrate that indicators for
developing faults are visible at least two months before a failure turns critical [50–54]. Some studies highlight
the potential of using the alarm system for CM, but data errors and alarm inaccuracies complicate the reliable
detection of faults [55, 56].

1.2.3. Challenges of SCADA Data
The success of data-driven condition monitoring depends heavily on data quality. Although SCADA systems
offer a cost-effective and capable solution for CM, they present several limitations that hinder reliable fault
detection and maintenance optimization [57, 58]. Commonly acknowledged limitations include: (1) Low-
frequency 10-minute sampling, which may miss short-duration events crucial for early fault detection; (2)
Data acquisition errors occurring as as NaNs, zeros, and outliers; (3) Lack of data structure standardization
[59]; and (4) Unreliability of written maintenance records and alarm data [60–63].

Additionally, the definition of a “normal” operating state, to which anomalies can be compared, is highly
variable, influenced by changing environmental and operational conditions. This variability complicates the
distinction between genuine faults and harmless internal or external influences. As a result, reliable fault
detection requires both a sufficient amount and quality of failure samples—yet SCADA datasets are typically
scarce in such samples and exhibit a strong class imbalance, with healthy operating data vastly outnumbering
abnormal or faulty cases. [63–65].

Given these quality issues, SCADA-based CM approaches benefit from considering unsupervised data
interpretation that avoids reliance on frequently absent, imbalanced, and unreliable anomaly labels.

1.3. Related Work & Research Gap
The intelligent anticipation of faults allows for the cost-effective scheduling of maintenance activities, while
increasing turbine availability and lifespan, offering a more cost-effective maintenance solution [66–68]. As a
result, predictive maintenance (PdM) has become a significant research focus in wind turbine O&M [43, 57].

While significant advances have been made on both CM and O&M optimization aspects, these areas have
been primarily studied in isolation, where integration between CM methodologies and the execution of main-
tenance actions is underdeveloped [69]. Therefore, implementation of an integrated framework, that trans-
lates sensor signals into a communicative output through data-driven inferences (Figure 1.3), is an essential
step for streamlining O&M.

Figure 1.3: Schematic overview of an intelligent predictive maintenance optimization process.
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This is also recognized in other fields, such as aircraft maintenance, where Camci et al. formulated an
integrated O&M planning approach using current and forecast health information [70]. Similarly, Vianna
et al. initialize maintenance optimization based on data trends and future wear values [71]. Nguyen et al.
propose a dynamic predictive maintenance framework that provides failure probabilities of different time
intervals based on sensor measurements [72]. In addition, Chen et al. and Mitici et al. utilize data-driven
RUL prediction for O&M scheduling [73, 74], while Zhuang et al. and Lee & Mitici formulate a Deep Learning
problem that considers prognosis as a basis for maintenance optimization decisions [75, 76].

Taken together, these studies highlight the potential of combining data-driven diagnosis, prognosis, and
scheduling to improve O&M planning. Building on these advances, early wind turbine-specific works have
also emerged. Table 1.1 summarizes their contributions to the diagnosis and prognosis of OWTs, illustrating
how these methods can translate into actionable scheduling optimization strategies [77, 78].

Source Labels Data Type Diagnosis Prognosis

Bogoevska et al. [79] Labeled SCADA Yes No
Lei et al. [80] Labeled SCADA Yes No

Santolamazza et al. [81] Unlabeled SCADA No Yes
Udo & Muhammad [82] Unlabeled SCADA No Yes

Gomes et al. [83] Labeled SCADA No Yes
Lutzen et al. [84] Unlabeled Sensor No Yes

Li et al. [85] Labeled Sensor Yes No
Nuvvula et al. [86] Labeled SCADA No Yes

Rajaoarisoa et al. [87] Unlabeled SCADA Manual Yes
Shah et al. [88] Labeled SCADA No Yes

He et al. [89] Partially Labeled Sensor Manual Yes
Qin et al. [90] Labeled Sensor Manual Yes

Table 1.1: Related Data-driven Studies supporting Maintenance Optimization. Sorted by year.

By reviewing Table 1.1, several shortcomings of the current state of research can be identified: (1) studies
are typically component-specific, especially sensor-based studies; (2) most focus only on fault identification
rather than full data-driven diagnosis; (3) diagnosis generally relies on labeled failure examples; and (4) prog-
nosis is often limited to early alarms, without a predicted RUL trajectory.

1.4. Scope of this Thesis
To address these gaps, this thesis develops and evaluates an integrated framework for fault detection, diagno-
sis, and RUL prediction. The framework is deliberately designed to operate on cost-effective and widely avail-
able SCADA data, making it more practical for large-scale deployment in offshore wind farms. Unlike most
existing approaches, it follows an unsupervised learning strategy, enabling fault identification and degra-
dation tracking without reliance on extensive labeled failure examples. This allows for the identification of
failures across multiple turbine components while predicting their future degradation curve.

Given the complexity of offshore environments and the unpredictable nature of wind turbine faults, the
proposed framework is first validated using a controlled environment. NASA’s C-MAPSS simulated aircraft
engine dataset provides a suitable testbed for evaluating fault diagnosis and RUL prediction techniques under
known conditions. Additionally, as the dataset is widely used in health monitoring research, it offers a strong
baseline for comparison against other studies.

Insights gained from this controlled environment are then applied to a real-world SCADA dataset. This
case study demonstrates the identification, diagnosis, and prediction of Gearbox, Generator, Transformer,
Bearing, and Hydraulic faults. In doing so, this work contributes to the ongoing transition toward intelligent,
cost-effective O&M planning in the renewable energy sector.
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1.4.1. Thesis Structure & Research Questions
To achieve the fault diagnosis and prognosis of WT failures based on SCADA data, a main research question is
formulated as follows: How can an Offshore Wind Turbine SCADA dataset be interpreted to detect and diagnose
developing failures and evaluate Remaining Useful Life?.

Several sub-questions are formulated, starting with a literature study in chapter 2. Here, the strengths and
weaknesses of available approaches are evaluated before making a selection:

• What data-driven methods are available for health monitoring and prognostics?

• Which method or collection of methods is most suitable for the interpretation of unlabeled OWT SCADA
data?

A direction is chosen from these methods, which is further described by illustrations and mathematical ex-
pressions, to reach the final design of the selected model in chapter 3:

• How can the selected methods be applied to OWT PdM?

• What is the architecture of the chosen approach?

In chapter 4, a benchmark case-study, NASA’s widely known C-MAPSS dataset, is implemented to verify the
results and compare with related studies:

• How does the performance of the proposed Predictive Maintenance framework compare to state-of-the-
art methods on a benchmark dataset in terms of reliability and accuracy?

Considering a real-world offshore wind turbine SCADA dataset, model functionality is demonstrated in chap-
ter 5:

• How does the proposed framework perform when tested on offshore wind turbine SCADA data?

Finally, this work concludes with chapter 6, covering the main findings and considerations for future work.

A shortened academic paper version of this thesis is included in Appendix A. Then, supporting the con-
tents of this thesis, additional information, explanations, justifications, or figures are given in Appendix B
and Appendix C, for the simulated and real-life case-study, respectively. An overview of all relevant model
parameters with a short description is given in Table C.4.



2
Data-driven Methods for Health

Monitoring and Prognosis
Literature Study

Anticipating developing faults is crucial for initiating effective maintenance decision-making. Based on a
detected anomalous state, data-interpretation methods can be applied to determine the most likely fault
source and estimate the remaining useful lifetime (RUL) of the machine.

In complex systems such as OWTs, modeling system behavior in physical system descriptions or manually
extracted features is challenging [91, 92]. Therefore, data-driven approaches are applied to utilize historical
and real-time data for the identification of patterns, trends, and relationships to make health-based assess-
ments [93, 94]. This chapter discusses how such methods have been applied in offshore and other industrial
contexts. It poses the research question: "What data-driven methods are available for health monitoring and
prognostics?". In light of the unbalanced, dynamic nature of offshore wind operations and the complexities
of SCADA-based inference, this chapter explores a second research question: "Which method or collection of
methods is most suitable for the interpretation of unlabeled OWT SCADA data?".

Conventional approaches to data-driven health evaluation often rely on predefined models or statistical
assumptions. These include methods that presume linear relationships and known data distributions, lim-
iting their effectiveness in capturing the complex and dynamic behavior of mechanical systems. Therefore,
systems like OWTs require techniques capable of extracting high-level features—capturing relationships be-
tween sensor signals, failure modes, and varying operational conditions.

Increasingly flexible to operational variations and disturbances prevalent in offshore data, Machine Learn-
ing (ML) offers a powerful approach to analyzing signal relationships in large datasets of complex systems [65,
95–100]. Widely discussed in academics, ML methods are typically categorized into supervised approaches
(regression and classification) and unsupervised approaches (clustering), as illustrated in Figure 2.1 [101].

Figure 2.1: Three most common ML techniques [102].

Numerous traditional machine learning methods have been developed for supervised ML tasks, including
decision trees, k-nearest neighbors, random forest, linear regression, and Support Vector Machines (SVMs)
[34, 103–105]. However, their effectiveness depends heavily on the quality of the manually engineered input
features.

To overcome this limitation, more advanced neural network (NN)-based deep learning models have been
developed. These models typically outperform traditional machine learning, statistical, and physics-based
approaches by handling high-dimensional, nonlinear problems without relying heavily on expert knowledge
or manual feature extraction [106–108]. As a result, they excel at learning complex patterns from sensor data,
making them particularly effective for the fault diagnosis [109–111] and prognosis [112–114] of mechanical
systems.

6



7

Method selection largely depends on the application. For PdM and time series analysis, the availability
of labels primarily influences this process, as they can serve as failure examples. Based on failure examples,
the model learns to recognize data based on learned historical patterns, which is a supervised, classification
operation [115]. In the absence of labels, other approaches are applied to solve the task, including unsuper-
vised clustering or reconstruction tasks, learning an intended purpose through comparative methods [116].
An overview of various NN categories and their typical supervised or unsupervised applications is given in
Figure 2.2.

This chapter reviews the functionality of these methods and their implementation in offshore wind and
other industrial fields to highlight their respective opportunities and challenges. The state-of-the-art reveals
the differences in the suitable purpose of studied methods, revealing a trend towards a collective implemen-
tation of methods, where each selected approach can be optimized explicitly for an intended purpose, setting
the foundation for the proposed framework for anomaly detection, diagnosis, and prognosis.

Figure 2.2: Flowchart of ML Types and their typically associated task.
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2.1. Neural Networks & Deep Learning
The flexibility and adaptability of Neural Network (NN) architectures have made them increasingly popular
for data interpretation tasks in predictive maintenance and health monitoring. An NN comprises intercon-
nected layers of computational units (neurons) that transform input signals through learnable parameters to
extract patterns or generate predictions [117].

The representational capacity of an NN can be enhanced by increasing the depth of the network, result-
ing in deep neural networks (DNNs). Such architectures learn hierarchical representations from raw data,
where earlier layers typically extract low-level features and deeper layers capture progressively more abstract
concepts [118]. This hierarchical feature learning reduces reliance on domain-specific, manually engineered
features, thereby streamlining the development of robust Remaining Useful Life (RUL) prediction models
[34].

As a result, there has been a clear shift towards deep learning (DL) methods, which have demonstrated
strong performance in fault detection and prognostics tasks across many engineering domains [97, 119].

Figure 2.3: Overview of a single neuron, from [120].

2.1.1. Feed-Forward Neural Networks
The feed-forward neural network (FFNN) is the most fundamental NN architecture, in which information
flows in a single direction from input to output. As illustrated in Figure 2.3, each neuron applies a weighted
linear transformation to its inputs, adds a bias term, and passes the result through a nonlinear activation
function. These parameters are iteratively updated during training to minimize a predefined loss function,
thereby allowing the model to capture patterns present in the data.

FFNNs can effectively model simple relationships without requiring domain-specific feature knowledge,
allowing for detecting and predicting WT component failures based on SCADA data [65, 121, 122]. However,
they are limited in handling temporal dependencies, complex data sources, or dynamic systems involving
multiple operating conditions.

Therefore, more advanced NN structures are employed for improved analytical power or time series tasks,
such as in condition monitoring and RUL prediction. These include recurrent structures, convolutional lay-
ers, and transformer-based models. The following sections elaborate on the fundamental architectures most
relevant for modeling SCADA data in the context of offshore wind turbine health monitoring. A visual sum-
mary of these methods is adapted from [123] and given in Figure 2.4.

2.1.2. Auto-Encoders
Autoencoders (AEs) are unsupervised neural architectures designed to learn compact, informative repre-
sentations of input data during reconstruction. The encoder maps the input into a lower-dimensional la-
tent space, while the decoder reconstructs the original input from this representation. This compression
forces the network to retain only the most salient features, making AEs valuable for dimensionality reduc-
tion, anomaly detection, and feature extraction from complex sensor datasets [34, 124].

By comparing the reconstructed output with the original input, reconstruction errors can be used as a
Health Indicator (HI), demonstrated by Wang et al. and Zhao et al. for blade, bearing, and gearbox failure
[125, 126]. Renström demonstrates this AE-based HI allows for fault detection in many different components
of a WT [127].
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Figure 2.4: Illustrative interpretations of the neural network structures mentioned in this chapter. Adapted from F. van Veen of the
Azimov institute [123]. Backfed input cell indicates a bidirectional connection to the input nodes. Recurrent Cells can be both memory
and gated memory cells. The width and depth of these structures can be varied based on the application.

AE variants incorporate more elaborate layers, such as Long Short-Term Memory (LSTM) networks. These
recurrent layers allow for the modeling of sequential data, capturing temporal dependencies critical for de-
tecting anomalous trends [128–130], and RUL prediction [119, 131].

At the same time, the rich health-related signals in the latent space or reconstruction signal can serve as
an intelligent feature extraction step [132, 133]. For instance, Wu et al. predict WT blade damage based on
the reconstruction error of the original unlabeled SCADA signal [134]. Similarly, Chen et al. propose applying
an AE for interpretation of unlabeled data, which is used to train a BiLSTM to predict RUL [135].

2.1.3. Belief Networks
Restricted Boltzmann Machines (RBMs) are probabilistic, generative models that learn a joint distribution
over input features. RBMs have been employed for feature extraction and dimensionality reduction, partic-
ularly in settings with noisy sensor data, due to their capacity to model uncertainty [124, 136]. Applied to
bearings, Deutsch et al. demonstrate regression analysis of these features allows for RUL predictions [137].

Stacking multiple RBMs yields a Deep Belief Network (DBN), which captures increasingly abstract fea-
ture representations across layers. This makes DBNs well suited for modeling or learning normal behavior of
WTs from SCADA data, enabling the fault detection of, for example, bearing, gearbox, and generator, demon-
strated by [138–140].

For explicitly temporal modeling, Hidden Markov Models (HMMs) remain widely used. As a form of dy-
namic Bayesian network, HMMs are adept at modeling transitions between discrete health states, thereby
offering interpretable probabilistic insights into system degradation trajectories [141].

While Belief networks are capable models that can be used for health monitoring tasks, they require elab-
orate training, struggle with long-term dependencies, and are vulnerable to disturbances and noise [114]. For
this reason, RBMs are more commonly applied in generative or transfer learning tasks. Auto-encoders tend
to be the more popular approach in time series analysis.

2.1.4. Convolutional Neural Networks
Convolutional Neural Networks (CNNs) extend the feed-forward architecture with convolutional and pool-
ing layers that enable local feature extraction across spatial or temporal dimensions [142–144]. Convolu-
tional layers apply learnable kernels in a sliding-window manner, detecting patterns such as shapes, trends,
or anomalies in time series signals. Pooling layers reduce the dimensionality of intermediate representations
while retaining salient features, which are subsequently passed to fully connected layers for task-specific pro-
cessing. Stacking multiple convolutional–pooling blocks enables hierarchical feature extraction.

Indicators that relate to failure mechanisms can occur as short-term spikes or changes in the signal, or as
gradual permanent variation from a normal state. By varying the kernel-based operation of the CNN across
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layers, we can obtain equal responsiveness to short- and medium-term features, which makes CNNs an ef-
fective tool for time series tasks.

While considering smaller samples of the dataset at a time, CNNs struggle to fully capture the long-term
temporal relationships that characterize slow fatigue-based failure mechanisms. That is why Xiang et al.,
Kong et al., as well as Sun et al. propose a combination of machine learning methods that applies the analyz-
ing capability of CNNs to LSTM-based temporal modeling for effectively learning health-based representa-
tions in WT SCADA data [51, 145, 146].

2.1.5. Recurrent Neural Networks
To effectively model time-dependent behavior in sequential data, Recurrent Neural Networks (RNNs) deploy
connections between nodes to form cycles. This allows the network to maintain an internal state or memory,
enabling it to consider not only the current input but also the historical context provided by previous time
steps, making LSTMs well-suited for RUL estimation using sensor data [147]. Sequential approaches are ca-
pable of extracting long-term data relationships, showing promising results in SCADA data-driven regression
[148] and anomaly detection [82].

To mitigate difficulties in learning long-range dependencies, architectures such as Long Short-Term Mem-
ory (LSTM) networks and Gated Recurrent Units (GRUs) have been developed. These models use gating
mechanisms to control the flow of information, selectively retaining or discarding past information during
training [149–151]. LSTMs use distinct input, output, and forget gates, whereas GRUs adopt a streamlined
gating structure, often achieving comparable performance with reduced computational cost.

Sequential reasoning capacity can be improved by implementing Bidirectional LSTMs to capture context
from both past and future observations [152–154], or increasing the number of layers [149, 155, 156].

2.1.6. Attention-based Models
Attention mechanisms were developed to allow neural networks to dynamically focus on the most relevant
parts of the input when making predictions. By computing relevance scores, the model can selectively focus
on the most informative elements, improving the model’s ability to handle missing or noisy data, increasing
flexibility, and reducing computational complexity [157–161].

Through increased computational efficiency of attention, Transformers have been designed to leverage
an intricate structure of multiple network layers and self-attention mechanisms that enable the identification
of relevant interactions between distant elements in a sequence [162]. This capability allows for the model
to focus on both short- and long-term features, without relying on recurrence or convolution, making trans-
formers highly adaptable [163–165].

In health monitoring, Transformers are used to analyze long-term dependencies from multiple sensor
inputs, often combining them with an AE for denoising and feature extraction in RUL prediction tasks [166–
169].

Although transformer networks have shown promise in power forecasting [170–172], the development of
transformers for Wind PdM remains behind. As of this writing, only a few studies have applied transformers
for wind turbine CM. Zhao et al. utilized transformers for gearbox fault detection through predicted temper-
ature [173], while Zheng et al. implemented a semi-supervised anomaly detection method using only a small
amount of labeled data [174]. Results show the transformer-based prediction model can effectively extract
the temporal dependence among multivariate time series for an unsupervised failure warning system.

2.2. Method Selection
Given the high-dimensional nature of SCADA data, the absence of anomaly labels, and the unpredictable
nature of OWT conditions, fault detection, diagnosis, and prognosis tasks are designed step-by-step to be able
to verify and optimize each result specifically. This allows for a deeper understanding of system capabilities,
reduced complexity of the task, optimal matching of methods, and increased solution precision [175].

While summarizing the findings of this literature study, suitable data-driven methods are selected. The
selection process considers method capability, involving accuracy and resilience to OWT PdM challenges,
such as robustness to noise, operational conditions, and unknown failure modes, but also the feasibility of
implementation and effectiveness of methods across fields.

Combining the identified suitable methods in a framework allows for effective extraction of failure infor-
mation required for informed maintenance decision-making, providing a promising approach for addressing
OWT challenges without relying on domain-specific expertise.
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2.2.1. Anomaly detection
Detection of an anomaly is described as recognizing a pattern that deviates from expected behavior. In health
monitoring, this can include a broad spectrum of irregularities that indicate defects and require maintenance
action.

Separately designing a model that is trained to recognize faulty behavior can serve as an automated fea-
ture extraction step, responsive to deviations from a healthy state. To avoid the necessity of labeled anomaly
samples, and increase robustness to varying and possibly unprecedented conditions and failure mechanisms,
fault detection and health monitoring studies typically consider the application of unsupervised anomaly de-
tection methods [176]. Even in the presence of labeled SCADA data, label reliability is not a guarantee, where
unsupervised methods are more robust to possible uncatalogued anomalies or label inaccuracies [177].

Based on both wind and other studies, different variants of the AE structure pose a promising solution
for the interpretation of unlabeled data. AEs enable unsupervised extraction of latent features from high-
dimensional condition monitoring data, making them highly valuable for degradation tracking and health
monitoring of mechanical systems. By integrating LSTM nodes into the encoder-decoder architecture, re-
sponsiveness to time-based features is improved, further increasing its capability in PdM applications [131,
134].

2.2.2. Diagnosis
Involving the further localization of a fault, data-driven fault diagnosis consists of the classification of an in-
put dataset. Learning the characteristics of a set of historic failure examples allows for the supervised recog-
nition of future defects if the data shows similar degradation patterns.

However, in offshore wind SCADA data, incomplete or missing labels, dataset imbalances, and sensors
with limited responsiveness to early-stage fault developments argue for the implementation of additional
unsupervised or semi-supervised clustering techniques into the fault diagnosis problem [178, 179]. These
approaches improve the ability to identify faults when faced with limited or no fault examples, reducing the
influence of dataset imbalances, enabling improved system reliability.

Fault Clustering
Dataset augmentations can improve the classification performance of unbalanced SCADA data. However,
singular transformations risk inducing overfitting or amplifying existing imbalances, ultimately reducing the
accuracy of fault diagnosis results [180, 181]. This highlights the need for more advanced strategies to en-
hance the discriminative power of the diagnosis model.

In computer vision and natural language processing fields, a proven solution is the learning of an in-
put’s alternate feature representation. To improve class distinctions, the raw input is mapped into an en-
coded space where samples of the same class are pulled closer together, while samples of different classes
are pushed apart [182]. Early applications of such contrastive learning methods show improvements in the
accuracy of fault diagnosis results of unbalanced and unlabeled SCADA data, and are beneficial to the ac-
complishment of classification and scheduling tasks [122, 183, 184].

For time-series data, a particularly effective extension of contrastive learning is Deep Embedded Clus-
tering (DEC). Unlike traditional clustering methods that rely solely on distance or dissimilarity metrics, DEC
leverages deep neural encoders to construct latent feature spaces that are more robust to high-dimensionality,
noise, and imbalance [185, 186]. By optimizing a discriminative loss, the encoder learns representations that
enhance cluster coherence [187–189].

Convolutional Neural Networks (CNNs) are frequently employed as the encoder in DEC due to their abil-
ity to capture both spatial features of different failure mechanisms and temporal patterns within the signal.
CNN filters sliding over the input can detect gradual degradation trends as well as sudden changes, while pre-
serving temporal relationships in the latent space. This makes CNNs highly effective for contrastive learning
in the fault clustering domain.

When applied to SCADA data, each time step corresponds to a multivariate one-dimensional signal. In
this context, 1D Convolutional Neural Networks (1D CNNs) provide a compact and efficient solution. They
reduce computational cost while maintaining strong performance in multivariate applications with limited
labeled data and high signal variability [190].
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Classification
The classification task involves learning the relationship between the features embedded by the DEC model
and the labels it has assigned. Then, when new samples are introduced in the future and embedded by the
trained encoder, they are assigned the most likely class.

The contrastive encoding may produce cluster soft assignments that correctly capture fault labels on its
own. However, when future data is introduced sequentially, the outputs can become unstable in cases such
as: (1) limited data availability; (2) testing inputs containing only a single fault category; (3) the introduction
of an unseen testing turbine; or (4) uncertain or overlapping failure mechanisms. In such situations, the
addition of a final classification layer improves class separation and model robustness, while also enabling
clearer reasoning and interpretation of the diagnosis.

Because of the relatively low complexity of this classification task, a standard feed-forward NN is applied.
NNs provide a computationally efficient solution able to learn the characteristic differences between different
clusters in the embedding, while minimizing the loss of information [105].

2.2.3. Prognosis
The prediction of future values is greatly supported by inherent mechanisms to model temporal dependen-
cies. Commonly, RUL prediction methods follow supervised reasoning. By analyzing the similarity between
current and historical run-to-failure data profiles, the degradation trend and corresponding point of failure
can be estimated. By interpreting the output of the fault detection model for historic data and future values,
degradation features can be linked to the inferred moments of failure. This data can be used to inform a
time-sensitive model to obtain RUL prediction.

While Transformers are relatively new and unexplored for time series analysis, comparison of benchmark
tests performed by Vollert et al. [97] with Transformer applications on the same dataset [163, 164, 167], show
transformer-based methods consistently demonstrate improvements in terms of training speed, predictive
performance, and reduced data requirements, enhancing temporal pattern recognition and improving RUL
prediction accuracy.

2.3. Discussion: Uncertainty Quantification
While out of scope for this thesis, properly managing the inevitable uncertainty that arises when making
predictions is crucial for effective risk management and maintenance decision-making [191–195]. In the
face of disturbances and a lack of knowledge originating from the multitude of complex loads and external
influences on a turbine, Uncertainty Quantification methods serve as a heuristic to produce a prediction,
along with an indication of the reliability of their outcome. This assessment provides upper and lower bounds
of a confidence interval that can serve as crucial decision values in the optimal scheduling of maintenance,
providing a significant benefit in the scheduling of future maintenance tasks [73, 74].

By far the most popular approach to modeling uncertainty considers the application of Bayesian meth-
ods [194, 196, 197]. Bayesian deep learning has become the primary solution for uncertainty estimation in
applications, where safety and robustness are crucial, providing a versatile tool for integrating stochastic rea-
soning into DL structures, increasing accuracy and robustness to over-fitting [198–200]. These advantages
effectively overcome drawbacks originating from signal disturbances and data quality issues, increasing ap-
plication frequency in a variety of WT PdM studies [119, 201–203].



3
Designing A Predictive Health Monitoring

Framework
Methodology & Model Design

Informed proactive scheduling of maintenance activities improves resource management and equipment
reliability, requiring the extraction of high-level features and relationships between sensor signals, failure
modes, and varying operational conditions. In the absence of labeled anomalies and with the presence of
noisy or incomplete data, a challenging learning process is created, necessitating specialized data interpreta-
tion steps to achieve effective outcomes.

Excelling at extracting the complex patterns hidden in sensor data, indicative of degradation, deep learn-
ing methods specifically optimized for their respective tasks are combined to create a unified framework for
anomaly detection, fault diagnosis, and Remaining Useful Life (RUL) estimation. Alongside essential prepro-
cessing measures, the four key steps illustrated in Figure 3.1 form the foundation of the proposed methodol-
ogy, guiding the transition from input to actionable health-related predictions.

Figure 3.1: Four characteristic steps of obtaining a fault diagnosis and RUL prediction.

This chapter specifies the design and mathematical formulation of the proposed architecture, outlining
the tools required for case-study implementation in the following chapters. Specifically, it addresses the re-
search questions: How can the selected methods be applied to OWT PdM? and What is the architecture of the
chosen approach?.

Following the sequence shown in Figure 3.1, preprocessing steps are discussed first, ensuring the input
dataset is conditioned correctly for further interpretation. Then, the chapter continues by providing in-depth
descriptions of the selected methods. Each section covers the architecture and training process of a method,
followed by implementation guidance on generating and evaluating its outputs. After defining the structure
and functionality of each step, the chapter concludes with an overview of the complete architecture of the
proposed solution.

13
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3.1. Dataset Preprocessing
Model input is considered as a multivariate SCADA dataset of an OWT at timestep t ≤ T , at number of vari-
ables k, xt = {x(1)

t , x(2)
t , ..., x(k)

t }, t = 1,2, ...,T .
In data-driven applications, proper conditioning of the input signal is a critical step in ensuring optimal

model performance and reliable results, including dataset normalization, removal of outliers, selection of
informative sensors, and sequence generation.

3.1.1. Normalization
Neural Network operation is, in essence, generalizable as a series of multiplications. For this reason, they are
susceptible to input signals with greatly varying ranges, distributions, and outliers. To ensure stable and effi-
cient training of machine learning models, data inputs should be normalized to reduce these variations and
reduce the risk of scaling and gradient-exploding problems. The choice of normalization method depends
on the nature of the data and can significantly impact model performance. Three methods are illustrated in
Figure 3.2 to demonstrate the effect of different scaling techniques.

1. Z-score normalization, also known as standardization, transforms data to have a mean of zero and a
standard deviation of one. Beneficial in combining values of multiple ranges, this method preserves
data distributions, making it suitable for algorithms assuming normally distributed inputs [135]. Given
a data value x, data points can be normalized by subtracting the dataset mean µ and dividing by stan-
dard deviation σ, as follows:

x ′ = x −µ

σ
(3.1)

2. Standardization assumes features are normally distributed, and possibly distorts feature relationships
if the data distribution is asymmetrical. In this case, Min-max normalization offers a more robust
normalization technique [204, 205], popular in deep learning models [74, 134, 206, 207]). Datapoints
are converted from their natural range into a standard range using minima and maxima as follows:

x ′ = x −min(x)

max(x)−min(x)
(3.2)

3. Because both scalers maintain the data structure, they are susceptible to outliers, which typically orig-
inate from data acquisition errors. To mitigate the impact of outliers, without distorting feature re-
lationships during normalization, Sklearn’s "RobustScaler" centers on the median and scales by the
interquartile range (IQR) [208], as follows:

x ′ = x −median(x)

IQR(x)
(3.3)

To improve the interpretability of expressions, a normalized dataset x = x ′ is used in the following sections.

(a) Before scaling (b) After Robust Scaling (c) After Standard Scaling (d) After Min-Max Scaling

Figure 3.2: Comparison of Normalization Techniques.
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3.1.2. Sequence Generation
Due to the computational complexity of large datasets, such as in time series analysis, DL methods are typ-
ically designed to consider a set of fixed-length samples of the input at the same time. A popular approach
to generating these sequences is the application of a sliding window technique, which breaks the data into
smaller pieces of fixed length [209, 210]. By transforming a continuous time series into sequences, the time
complexity is reduced, allowing for more detailed analysis and improved accuracy.

By introducing overlap in the time windows, a diverse range of samples can be generated, mitigating over-
fitting. As illustrated in Figure 3.3, given a multivariate time series, the sliding window technique generates
overlapping sequences of length m using a stride or step size s. These sequences are collected in training,
testing, and validation datasets and inserted into the model.

Figure 3.3: Visualization of the sliding window approach [210].

3.2. Anomaly Detection
Anomalies that occur in sensor data can be indicative of a deteriorating health condition of mechanical sys-
tems. Given a training input, an unseen test time series T = {x1, ..., xT } is fed into the model, tasked to output
a series y = {y1, ..., yT }, where yt ∈ {0,1} is used to denote healthy or unhealthy data at a timestep t ∈ T .

This section introduces the structure and training of AEs, followed by the construction of a Health Indi-
cator (HI) from the AE Reconstruction Error (RE). After explaining how this signal is used for the detection of
faults, HI evaluation metrics are introduced.

3.2.1. Long-Short-Term-Memory Auto-encoder
Operation of an AE involves compressing an input signal x by the encoder into a smaller latent representation.
Then, this lower-dimensional dataset is converted by the decoder into an attempted reconstruction of the
original x̂ . During training, a training objective can be defined that minimizes the difference between the
input time series and the reconstructed output, so that the encoder is forced to extract the most essential
patterns in the data.

Both the encoder and decoder are built using other LSTM nodes, influencing the functionality and char-
acteristics of the AE. Figure 3.4a shows how LSTM cells are used to construct AE layers, each with specified
height and depth. Multiple sequences, corresponding to the number of selected features, with a length cor-
responding to our sliding window size, are fed into the model.

The LSTM cells manage the flow of information by gating mechanisms that allow it to retain important
information for longer, while discarding irrelevant data [148, 207, 212]. The core of an LSTM cell, or otherwise
known as a memory block, involves three key steps that determine the cell state or ’memory’, illustrated in
Figure 3.4:

1. Starting at the top, the forget gate learns to decide what information is filtered out from the cell state of
the previous timestep, based on learned weight matrix WC and bias bi :

ft =σ(W f · [ht−1, xt ]+b f )
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(a) Architecture of a LSTM Auto-Encoder, from [211] (b) LSTM Cell, from [212]

Figure 3.4: Overview of LSTM cells in an AE structure.

2. The input Gate controls which new information is added to the cell state. This involves generating
a candidate for the new cell state first, represented by C̃t , containing potential information from the
current input xt and the previous hidden state ht−1, which the cell might want to add to its memory.
Then, the input gate vector it controls to what extent this candidate will be added:

C̃t = tanh(WC · [ht−1, xt ]+bC )

it =σ(Wi · [ht−1, xt ]+bi )

where, Wi , WC , bi , bC are learnable weight matrices and bias terms.

3. The output gate decides what to output at the current time step, based on the current cell state.

ot =σ(Wo · [ht−1, xt ]+bo)

ht = ot · tanh(Ct )

4. Finally, updating of the cell state is achieved by adding the element-wise multiplication of it and C̃t to
the previous cell-state Ct−1, scaled by the forget gate ft :

Ct = ft ·Ct−1 + it · C̃t (3.4)

These equations ensure that each LSTM cell can control which information to retain, discard, and pass along,
making it possible to model complex temporal dependencies.

3.2.2. Training AEs
An AE takes an observed sequence as an input vector x and then maps it to the hidden or latent representation
y, through mapping y = fθ(x) = s f (W x +b) [213]. Here, W is a weight matrix, b a bias vector, and s f the
encoder activation function that calculates the node output values. This representation is then mapped back
into a reconstruction vector x̂ , by a similar mapping x̂ = gθ(x) = sg (W ′′′y +b′′′) [214].

When training the model, the collection of tunable parameters θ = {W ,b,W ′′′,b′′′} is adjusted such that
x ≈ x̂ . This can be achieved by minimizing a chosen loss function L. The choice of activation functions and
L depends largely on the input domain range and nature and is usually chosen so that L is related to the RE,
such as with a Mean Squared Error (MSE):

Lr(x , x̂) = 1

n

∑
i

(xi − x̂i )2 (3.5)
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To learn the optimal weights and biases of the encoder and decoder in θ, backpropagation is applied. The
derivative of the loss function is calculated with respect to the output ( δL

δx̂i
), which defines how much the RE

changes when the output value changes. This is the gradient, which, in the case of MSE, is characterized by:

L(θ; x) = δL

δx̂i
= 2(x̂i −xi )

Having obtained the gradients of the loss for the decoder’s final layer, the error is propagated backwards,
layer by layer, using the chain rule to compute how much each neuron’s weight w has contributed to the final
error ( δL

δw ) to update the weights with learning rate η:

w ′ = w −η∗ δL

δw

3.2.3. Health Indicator Construction
By training the AE on healthy data, the model weights and biases are adjusted to reproduce any new healthy
data input accurately. If the input sequence contains unusual features, the model will not be able to recon-
struct the sequence, resulting in a larger RE, serving as an indicator for data anomalies and health deteriora-
tion.

The RE can be interpreted as a quantified difference between the input and output of the AE, measured
by methods such as Euclidean distance [128, 130, 215, 216]. Another measure for dissimilarity is the Maha-
lanobis distance (MD), which considers the covariance structure of the data, ensuring that highly correlated
signals do not dominate the results [127, 217, 218].

Given a model input x i , j , i ∈ [1,k], j ∈ [1,m], where k is the number of features and m is the size of the
sliding window, the RE can be calculated per feature to obtain a reconstruction residual vector ri = xi − x̂i .
Now, if Cx is the covariance matrix of the residuals, the MD for each feature i can be calculated as:

MDi =
√

r T
i C−1

x ri (3.6)

Scaling & Normalization
To improve the stability of the HI, scaling and normalization are applied. These measures help ensure that dif-
ferent failure cases exhibit consistent degradation trends, while mitigating the influence of early-life anoma-
lies, and enhancing the reliability of the fault detection threshold.

To reduce the influence of outliers in the LSTM-AE output, the Robust Scaler is used to scale the MSE
and MD according to Equation 3. This improves the HI’s relationship to a developing defect as illustrated in
Figure 3.5.

To further increase the HI consistency, MinMax Normalization is applied as introduced in Equation 2.
The validation dataset is passed through the model to identify normal reconstruction values that can be used
to inform both scaling and normalization.

(a) No Scaling & Normalization (b) With Scaling & Normalization

Figure 3.5: Constructed HIs without Robust-Scaler and Min-Max normalization fitted on the validation dataset.

To reduce the impact of rarely occurring spikes, while limiting the amount of lost information of smaller
deviations, the signal is smoothed [215]. An exponentially weighted moving average (EWMA) smooths the
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input data while still accumulating a history of previous inputs [125, 127]. For a single feature, the EWMA is
calculated as follows:

zt =λMD t + (1−λ)zt−1 (3.7)

Here, z is a smoothed projection of the MD, and λ is a constant, defining the weight of newly introduced
values. A higher weight increases the responsiveness to short-term variations, at the cost of reduced smooth-
ing. In the interpretation of SCADA data, changes that indicate system degradation commonly occur in the
form of data peaks, instead of a more gradual and permanent change in state, necessitating more aggressive
smoothing, as illustrated in Figure 3.6 [219].

Excessive smoothing can be detrimental, however, as an overly smoothed HI may lose its responsiveness
to sudden faults and become more dependent on time progression rather than actual system behavior. This
results in reduced sensitivity to new anomalies and a slower recovery from deviations unrelated to faults,
ultimately undermining the reliability of the HI.

(a) λ = 0.01 (b) λ = 0.001 (c) λ = 0.0001

Figure 3.6: Three HI trends at varying EWMA smoothing factors.

3.2.4. Fault Detection
Finally, to decide between acceptable levels of deviations and failure, a fault threshold can be defined, func-
tioning as an alarm decision criterion. Depending on the similarity in range of different deterioration profiles,
a controllable fixed threshold might offer consistent generation of alarms at the right time. When facing fluc-
tuations in failure profile due to factors such as imperfect maintenance, varying failure modes, or a lack of
monotonicity, the health indicator might not be sufficiently similar between life-cycles, requiring an intelli-
gent thresholding approach based on local data properties.

Fixed Threshold
A fixed threshold is defined by a constant, which is defined by an acceptable level of deviation, given by the
root mean square of the average AE RE during normal operating conditions [126]. Given a scaling factor L
that determines the sensitivity of fault detections, the alarm threshold T is defined as:

T = L ·RMS(
1

k

k∑
i=1

(MDi
val)) (3.8)

Adaptive Threshold
To address the limitations of traditional constant thresholds, an adaptive thresholding approach is proposed.
Inspired by Liu et al., this adaptive threshold dynamically adjusts based on recent data trends, captured by
the statistical properties of recent observations [220]. The adaptive nature of this threshold makes it par-
ticularly suitable for SCADA-based HIs that exhibit complex degradation trajectories due to turbine start-up,
newly placed components, maintenance action, and varying fault severity. This ensures that failure detection
is sensitive to gradual degradation trends while minimizing the occurrence of false alarms due to transient
variations, as made visible in Figure 3.7.

At a certain time t , the threshold accounts for variations by computing a mean of the HI values µt−w and
standard deviation σt−w over a predefined window of size w . Combined with a sensitivity parameter κ that
controls the threshold’s responsiveness to variations, the threshold value is determined as:

Ti =µt−w +κ ·σt−w (3.9)
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Alarm Generation
An alarm system can be used to communicate a detected fault. This requires formulating a decision-criterion
based on the smoothed HI value z and the determined fault threshold T , where an alarm is raised if:

Alert =
{

1 if zt ≥ T,

0 otherwise.
(3.10)

(a) Fixed Threshold (b) Adaptive Threshold

Figure 3.7: Comparison of fixed and adaptive threshold for a complex health profile

3.2.5. Evaluation: Health Indicator Performance Metrics
Ideally, a HI used to inform CM and prognostic systems should display three key qualities: monotonicity,
prognosability, and trendability, which have been widely adopted in health monitoring studies (e.g. [97, 221,
222]). These metrics, each in the range [0, 1], describe the quality of the model output in prognostic applica-
tions and allow for comparable parameters across different studies. Formulations are proposed by Coble et
al. and discussed below [223].

• Monotonicity represents the condition of being unchanging or unvarying in the increasing or decreas-
ing trend of a feature. An accurate HI for a system that does not undergo maintenance should display
a high monotonicity. In contrast, a low monotonicity means the feature is usually a non-desirable pre-
dictor for PdM applications. Calculating the level of monotonicity is defined as Equation 3.2.5, where
the sign (sgn) function is applied to evaluate the degree of variation, M being the number of HIs corre-
sponding to the amount of tested cycles, N j the length of the jth HI, x j (k+1) and x j (k) the HI values of
timesteps k +1 and k, respectively.

Monotonicity = 1

M

M∑
j=1

∣∣∣∣∣ 1

N j −1

N j −1∑
k=1

sgn(x j (k +1)−x j (k))

∣∣∣∣∣ (3.11)

• Trendability measures the similarity of the HI trajectory between multiple run-to-failure data cycles.
Trend similarity is typically described by the Pearson correlation, calculated by Equation 3.2.5, where
x j and xk are the values of compared HIs, indexed by j and k. Studies typically calculate the mini-
mum value of this correlation to determine the worst case. To compare general performance, a mean
trendability value is also calculated in this work.

Trendability = min
j ,k

∣∣corr(x j , xk )
∣∣ , j ,k = 1,2, . . . , M (3.12)

• Prognosability characterizes the dispersion of HIs between faults and normal states, where closeness
to 1 means failure measurements at the EoL are similar. The prognosability of the prediction method is
calculated by Equation 3.2.5, where the standard deviation of the each cycle j ∈ M its last value x j (N j )
is divided by the mean of the absolute differences between initial and final HI values x j (1) and x j (N j ),
respectively.

Prognosability = exp

(
− std j (x j (N j ))

mean j
∣∣x j (1)−x j (N j )

∣∣
)

, j = 1,2, . . . , M (3.13)
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3.3. Fault Diagnosis
As information on historic failure examples is often unavailable, the identification of a fault type introduces
an unsupervised clustering problem. Correlation in failure behavior, reflected by similarity in LSTM-AE out-
put, is key to identifying historically occurred failure modes. Then, diagnosis involves matching historical
data characteristics with the inferred fault label for the identification of future values.

Given the the LSTM-AE reconstruction signal as input, the model for fault diagnosis should produce an
output ŷ = {y1, ..., yT̂ }, where yt ∈ {0,1}m is used to denote the occurrence of a failure mode m at a timestep t .
This section describes how fault labels are obtained through Deep Embedded Clustering and, after optional
post-processing of this output, how newly input data can be classified.

3.3.1. 1D-CNN for Deep Embedded Clustering
Without labels to inform failure modes, the model should be designed to capture relevant features while si-
multaneously solving this fault-based clustering objective. Therefore, an encoder-like structure is defined to
obtain a latent space of the input data that only contains features relevant to failure characteristics. Defining
clusters based on this embedding is referred to as Deep Embedded Clustering (DEC). As concluded in the lit-
erature review, a time series-specific 1D Convolutional Neural Network (1D-CNN) is applied for DEC, capable
of equally analyzing multiple SCADA variables for short or long-term failure mode-related features.

Figure 3.8: Architecture of a 1D-CNN, adapted from [224].

Figure 3.8 illustrates a 1D-CNN consisting of a single layer (whereas multi-layer CNNs have additional
repetitions of convolutional and pooling layers), which applies convolutional filters along a single spatial
dimension. Its process involves three elemental mathematical operations [225, 226]:

1. Before sliding over other parts of the input, a single operation of a Convolutional Layer is highlighted
in red in Figure 3.8. This is the core operation of a CNN, where given an input sequence x, bias b, and
kernel w of kernel size k, an output z at position j can be computed as:

z j =
k−1∑
i=0

wi x j+i +b

2. To reduce dimensionality of the output, while retaining important features, a Pooling Layer uses a
sliding window across the input, transforming the values into representative ones by taking the average
or the maximum value from the input values within the window. With a sliding window of stride s, a
new array p j is computed as:

p j = max
i∈[ j , j+s]

zi

3. After Flattening, which transforms the pooling output into a 1D vector f , the final embedding is ob-
tained by a Fully Connected Layer. Similar to a standard feedforward NN, using an activation function
σ, weight matrix W , and bias vector b, each element of the output vector y can be calculated as:

y =σ(W p +b)
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3.3.2. Contrastive Learning
To encourage the formation of distinct and meaningful clusters when mapping input data to a lower-dimensional
space, the model is iteratively trained using a self-supervised clustering objective based on two contrastive
loss functions [186, 227–229]. This process is illustrated in Figure 3.9, where similar data samples are encour-
aged to be closer, while separating data samples with significant differences.

(a) Input data before contrastive learning (b) Output data after contrastive learning

Figure 3.9: Visualization of contrastive learning of arbitrary clusters indicated by color in a 2D t-SNE space, from [230].

A "Non-Parametric loss" (Lseq ) is calculated between sequences, refining the global structure of the latent
space. In contrast, a "Pair loss" (Lpai r ) acts at a finer granularity, ensuring small clusters form around data
points that share common characteristics. Considering an optional gain g to balance out the difference in
loss range at a certain training epoch eentry, the coefficient is shifted from the global structure to the local

optimizations during η epochs at a rate α(e) = min(1,
e−eentry

η ):

Lc(e) =
{
Lseq if e < eentry

(1−α)g ·Lpair +α ·Lseq if e ≥ eentry

Pairwise Contrastive Loss
A traditional similarity metric, introduced in [231], involves comparing pairwise distances in both the latent
and input space [186, 232].

Here, the Euclidean distance D(i , j ) = ||i − j ||2 is applied between pairs i and j as the scoring function
in the embedding space. To enforce structure in the local relationships between a number of samples N ,
the distance between similar pairs masked by a binary value Si j is minimized while the distance between
negative pairs is encouraged to be larger than a given margin m:

Lpar = 1

N

∑
i , j

Si j D2
i j + (1−Si j )max(0,m −Di j )2 (3.14)

Instead of using a fixed margin m for all dissimilar pairs, an adaptive margin can be calculated, helping
the model distinguish similar and dissimilar pairs more effectively based on the characteristics of the data,
for instance, based on the softmax-based model confidence [233].

Non-Parametric Classification Loss
In contrast to explicit margin-based constraints, non-parametric approaches compare each latent sequence
against all others within a batch using Softmax-normalized similarity scores [186, 234]. This allows the model
to flexibly learn meaningful representations without needing categorical labels. Cosine similarity, computed
as the dot product of normalized latent representations Si , j = zi ·z j

||zi ||||z j || , is applied between positive (similar

pairs) zi and z j , scaled by a temperature parameter T , encouraging each sequence to be closer to its most
similar counterpart:

Lseq =− 1

N

N∑
j=1

log
exp(S j ,i∗/T )∑N
i=1 exp(S j i /T )

(3.15)

In the unsupervised implementation of this approach, more commonly known in image processing as
Normalized Temperature-scaled Cross Entropy (NT-Xent) loss, the model defines a positive pair heuristically,
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by matching a sample to its closest nearest neighbor. In the case of limited label availability, positive pairs
can be defined as samples sharing the same label, allowing for increased understanding of sequence relations,
guiding the formation of meaningful clusters.

3.3.3. Embedded Clustering
By calculating the backward gradients of the 1D-CNN, each epoch should reduce the contrastive losses and
therefore improve fault class distinctions. Clusters are initialized with k-means clustering on the encoded
features, ensuring dense, spherical clusters, suitable for refinement. Based on the updated parameters of the
1D-CNN, these cluster soft-assignments are iteratively updated at each epoch, ensuring smooth clustering
behavior and robust adaptation of cluster centers to the data distribution [185, 188, 235].

For a latent representation zi and cluster centroid µk , cluster updating is guided by its soft assignment
qi k , which can be interpreted as the probability of assigning a sample i to cluster k. Soft assignments are
calculated by a Student’s t-distribution, and used to update centroids as follows:

qi k = (1+||zi −µk ||2)−1∑
j (1+||zi −µk ||2)−1 , µk =

∑
i qi k zi∑

i qi k

Once centroids are updated after the final training epoch, each sample is assigned to the cluster with the
highest probability ci = argmax

k
qi k , where ci is the assigned cluster label for sample zi .

Serving as validation loss, ensuring the learned clustering assignments become more confident and better
separated, a Kullback-Leibler (KL) divergence is calculated between the predicted soft assignments and their
sharpened high-confidence distribution pi k [185]. Sharpening refines cluster boundaries by pulling samples
closer to the most likely cluster center. When the model output distribution is becoming very similar to the
target distribution, and the KL-loss approaches zero, this indicates more confident and distinct cluster cen-
ters. Continued training after this point increases the risk of overfitting and cluster collapse. KL-divergence
is computed as follows:

LKL =∑
i

∑
k

pi k log
pi k

qi k

3.3.4. Cluster Post-processing
After DEC, the inferred clusters in the encoded space are derived from their initial k-means estimate. For
simple data structures that show clear distinctions between classes of interest, this distance-based clustering
algorithm is sufficient. However, initial SCADA-based results in this thesis have shown that this operation is
prone to result in overlapping, distributed, or collapsed clusters.

The problem originates from limitations imposed by the rigid structure of k-means, which requires a
given number of clusters, is limited to spherical clusters, and relies on a statistical operation, possibly leading
to unstable clustering results [236]. Faced with irregular clusters, imbalanced data, or an unknown number
of true clusters, clustering results benefit from re-evaluation or post-processing of the DEC outcome.

Density-based clustering does not require a number of clusters and can locate clusters with arbitrary
shapes. For this reason, a frequently considered alternative to distance-based clustering is Density-Based
Spatial Clustering of Applications with Noise (DBSCAN). Typically applied to increase image and data-mining
performance [236, 237], sparse applications of WT SCADA clustering for power forecasting [238] and used for
anomaly detection [218, 239].

DBSCAN collects a minimum number of similar points dscan in a radius of size ϵscan for each sample, cre-
ating clusters around high-density regions. Low-density regions are marked as noise and can be excluded as
they are considered uncorrelated to the problem. For complex structures or varying densities, a hierarchical
version of DBSCAN (HDBSCAN) is applied to evaluate clusters at varying levels of ϵscan .

3.3.5. Fault classification
At this point, critical fault-related features have been extracted by data compression of either the LSTM-AE
or 1D-CNN. Learning the relationship between the extracted features of historic data and their failure modes
to identify future inputs necessitates a final classification step. By learning the relationship between encoded
clusters and their inferred fault categories with a Fully Connected Neural Network (FCNN), unseen testing
data can be encoded and classified.
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The FCNN is trained to describe the relationship between fault category and input data by minimizing a
Cross-Entropy loss function [174, 240]. This loss encourages confidence in correct answers, while implicitly
penalizing mistakes. This loss expresses the error between the predicted labels ĉ and learned clusters c as
follows:

Lcl =−
C∑

i=1
ci log ĉi (3.16)

Having obtained trained clustering and classification models, a test sample xtest is encoded by a 1D-
CNN f with learned parameters θ to obtain an encoded representation ztest = fθ(xtest ). When passing this
embedding through the FCNN with learned weight matrix W and bias vector b, we obtain htest = W ztest +
b. To introduce limited flexibility to uncertainty, a Softmax activation layer can be applied to obtain class
probabilities p [241]. Taking an argmax of p delivers the class of highest probability as the final predicted
class at that timestep ŷt .

3.3.6. Evaluation: Diagnostic accuracy & Clustering Visualization
Calculated as the percentage of correctly assigned fault labels, diagnostic accuracy is straightforward. How-
ever, evaluating the quality of contrastive learning and embedded clustering can be more complex and is best
understood by visualization of data structures.

Visualization of a high-dimensional dataset requires reducing dimensionality to two or three dimensions.
Unlike typical machine learning methods for regression, classification, or clustering, dimensionality reduc-
tion techniques can be used for this task, while preserving key structures.

While some traditional ML methods, such as SVM and k-means, or encoder-like DL methods mentioned
in the literature study can be applied for dimensionality reduction, various specialized linear and non-linear
methods have been developed to fit this purpose [242, 243]. A frequently used technique for dimensionality
reduction is Principal Component Analysis (PCA). Because of its linear transformation, PCA is computation-
ally efficient, easy to implement, and provides an intuitive and reproducible interpretation of data variance
and relationships, making it preferred for global comparisons across datasets.

When facing non-linear data, PCA requires transformation, potentially altering data interpretation [244].
Therefore, t-Distributed Stochastic Neighbor Embedding (t-SNE) is a capable solution for preserving both the
local and global data structure during visualization of complex clusters and patterns prevalent in the obtained
embedded clusters [235].

3.4. Fault Prognosis
Efficient scheduling of maintenance action requires an estimate of remaining lifetime. By applying the anomaly
detection model to the historical measurements, detected failures provide certain end-of-life labels T̂ < T .
Based on these training labels, a supervised classification problem is obtained, requiring identifying the rela-
tionship between an input sample and corresponding RUL values, as visualized in Figure 3.10.

Specifically, given an input sequence xk = {xk,1, . . . ,xk,m} of m time steps, a transformer aims to predict
a corresponding sequence of RUL values yk = {yk,1, . . . , yk,m}. This section outlines Transformer operation,
training, and performance evaluation.

Figure 3.10: Sequence-based RUL prediction, from [245].
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3.4.1. Transformer-based RUL prediction

Key long-term dependencies and inter-variable correlations are captured by the attention mechanisms (AMs)
of the Transformer. Similar to AEs and some other DL applications, the Transformer follows an encoder-
decoder structure, as illustrated in the left and right halves of Figure 3.11. In case of multiple layers, a Trans-
former consists of a stack of N identical encoder and decoder units that do not share weights.

Figure 3.11: Transformer Architecture for sequence-to-sequence operation, adapted from [162].

First, a linear embedding layer maps the input data to the model dimension. Then, after positional en-
coding, the embedded input data passes through a self-attention layer of multiple heads, where all the other
input data points are taken into context [162, 163]. The principles of positional encoding and multi-head
attention are further discussed in the sections below.

Each operational sub-layer is wrapped in a residual connection. This provides an additional path for data
to reach deeper layers of the model, improving the stability of backpropagation and preserving important
information. These blocks then apply layer normalization to reduce statistical differences between features
and stabilize learning.

Each sequence passes through a fully connected feedforward network to obtain the encoded input. This
network consists of two linear transformations with a non-linear activation, projecting information into a
higher-dimensional space, enabling the handling of more complex representations.

Before decoding and generating the output, an encoded version of the previously generated output is
included as an additional input. This enables auto-regression, where predicted timesteps consider the previ-
ously made predictions as well. The decoder then follows the same operations as the encoder. To project the
model calculation to the desired output, the output from the final feedforward layer passes through a single
linear transformation.

Because the sliding window’s multiple overlapping sequences produce an equal amount of overlapping
outputs, its average defines the predicted RUL value for each timestep. Large deviations in the output serve
as an indicator for model uncertainty, so a confidence interval can be constructed by calculating the standard
deviations of these overlapping predictions at a single timestep.
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3.4.2. Positional Encoding
Without recurrence or convolution mechanisms in the model, like in LSTMs or CNNs, information on the
order of a time series should be manually introduced into the model to properly capture temporal context
[246]. Traditionally, self-attention considers a fixed positional embedding (PE) P = (p1, ...pL), which is added
to the input embedding as xi = xi +pi [162, 163, 166]. Here, transformers apply a combination of sine and
cosine functions at different frequencies to obtain a numeric description of the position of a sequence.

Foumani et al. and Liu et al. conclude that the existing absolute PE method is ineffective for time series
data, advocating for a learnable position vector instead [246, 247], such as applied in [167, 248]. In this case,
the learnable vector is initialized as a tensor of zeros of size sequence length m and model width d , tweaked
during training to obtain a position vector P ∈ℜ1×m×d .

3.4.3. Multi-Head Attention
The Multi-Head Attention modules of the transformers deploy a parallelization of multiple self-attention
blocks. Self-attention computes the dependencies of different sequence elements by passing a time step’s
feature vector through three learnable weight matrices Wq ,Wk ,Wv . This returns variables query (Q) describ-
ing which past sensor readings are related to the RUL, key (K ) representing past sensor readings, and (V )
representing the newly added information. Then, if dk is the key dimension, the attention scores are com-
puted according to the scaled dot-product attention as illustrated in Figure 3.12a:

Attention(Q,K ,V ) = Softmax

(
Q ·K T√

dk

)
·V (3.17)

Figure 3.12b describes how multiple of these self-attention blocks can be used side-by-side to achieve
Multi-Head Attention. By repeating the mechanism multiple times with linear projections of Q, K, and V,
each of these ’heads’ learns different attention patterns, allowing the model to capture diverse dependencies
in the input.

(a) Scaled Dot-Product Attention.
(b) Multi-Head Attention consists of several attention layers running
in parallel.

Figure 3.12: Attention mechanisms in the transformer, from [162].

3.4.4. Transformer Training
Based on the large collection of input sensor sequences and associated RUL labels provided by the fault detec-
tion model, the Transformer should be trained to match a given input to a target RUL value. This is achieved
by minimizing the loss function Lp, which describes the difference between the model output and the true
target RUL value as the Mean Squared Error (MSE), defined in Equation 3.2.2.

To enforce auto-regression during training, instead of its own predictions, the decoder is fed true RUL
targets of the previous timestep. However, facing complex representations or imbalanced datasets, training
with this ’teacher forcing’ approach might introduce an exposure bias. To avoid becoming overdependent on
the training targets, their influence should be gradually reduced during training, increasing resilience to the
absence of input targets during testing [249].
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3.4.5. Evaluation: RUL Prediction Metrics
To assess the performance of the Remaining Useful Life (RUL) prediction model, popular metrics are used
in many other C-MAPSS RUL studies [75, 143, 250]. This involves an asymmetric scoring function as well as
the Root Mean Square Error (RMSE), which provides insight into both the accuracy and the practical impact
of prediction errors. The scoring based on different error values of both evaluation metrics is visualized in
Figure 3.13.

1. The asymmetric scoring function is designed to penalize late predictions more heavily than early pre-
dictions, as late maintenance actions can have more severe consequences and costs. Given weights
a1 = 13 and a2 = 10 ([74, 251]), and a difference between the estimated and true RUL values d , the total
score S =∑n

i=1 si can be calculated as the sum of the scoring metric s:

s =
{

e−
d
13 −1, if d < 0

e
d
10 −1, if d ≥ 0

(3.18)

2. The model is also evaluated using Root Mean Square Error (RMSE). As a commonly used metric in
regression tasks, with equal weights for early and late predictions, RMSE provides an overall measure
of prediction accuracy by averaging the squared differences between predicted and actual RUL values,
defined as:

RMSE =
√

1

n

n∑
i=1

d 2. (3.19)

Figure 3.13: different error values and their influence based on the Scoring function and RMSE, from [143].

3.5. Conclusion
Unsupervised deep learning techniques integrate fault detection, diagnosis, and prognosis to enable compre-
hensive OWT health monitoring using unlabeled SCADA data. This model is implemented in the C-MAPSS
and EDP case studies in the next chapters. Certain additional functions1 were defined specifically considering
limitations and challenges associated with SCADA data and will only be used there to reduce implementation
complexity and improve comparability of C-MAPSS results.

3.5.1. Anomaly Detection
After preprocessing and appropriately segregating train-, validation-, and testing datasets, an AE with LSTM
nodes (Figure 4.11(a)) is trained to reconstruct healthy data with reconstruction loss Lr . A higher reconstruc-
tion error (RE) during testing indicates deviations from the learned healthy state, directly implying condi-
tional anomalies.
1The adaptive threshold of the fault detection criterion (subsection 3.2.4), Cluster post-processing using (H)DBSCAN in diagnosis sub-

section 3.3.4, and teacher forcing decay for the Transformer subsection 3.4.4
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During training, the AE is forced to select only features relevant to the health of the system. This way,
the compressed latent space also provides rich health-related information. Further deciding between RE- or
latent-space-based input should be determined in each case study.

After smoothing the RE signal using a moving average, a HI is derived and illustrated in Figure 4.11(b).
By considering a fixed or adaptive fault threshold for this curve, an unsupervised means for fault detection is
achieved, enabling the extraction of historical RUL labels for training.

3.5.2. Fault Diagnosis
To determine the most likely fault source, the failure-related LSTM-AE output features are clustered based
on their degradation behavior in Figure 4.11(c). This ability is enhanced by a contrastive learning approach,
where a 1D Convolutional Neural Network (1D-CNN) is trained with a contrastive loss function Lc , to obtain
an embedding where samples with similar degradation behavior are encouraged to be closer, while separat-
ing different degradation behaviors.

Clusters are assigned based on their proximity in this latent space, and are redefined by DBSCAN to ac-
count for complex cluster shapes. These clusters provide fault labels of the historic dataset used to train the
Neural Network (NN) in Figure 4.11(d) with respect to classification loss function Lcl . After encoding by the
CNN, new and unseen data points can be properly assigned to their respective cluster, identifying the most
likely failure mode.

3.5.3. Fault Prognosis
Finally, trained on the RUL labels extracted by the LSTM-AE, while using the prediction loss function Lp ,
a Transformer leveraging a combination of attention mechanisms and feed-forward NNs, auto-regressively
identifies the RUL values corresponding to an input sequence (Figure 4.11(e)).

Figure 3.14: Key steps in the framework: (a) anomaly detection, (b) health indicator construction, (c) fault clustering, (d) classification,
and (e) RUL estimation.
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Simulated Engine Case Study

Model Verification

Deep learning offers an advanced approach to extracting health-related information for complex systems
involving multiple failure modes and sensor signals, without labor-intensive and non-generalizable signal
conditioning steps. However, numerous layers of mathematical operations that capture system behavior
introduce a ’black-box’ challenge: the intermittent steps between input and output are unknown, making it
difficult to interpret predictions or diagnose unexpected model behavior—especially in uncertain, unlabeled
environments like wind turbine SCADA data.

To address this, the current chapter applies the proposed data-driven Predictive Maintenance framework
to a widely used, simulated benchmark dataset for health monitoring and RUL prediction. This controlled
and more predictable environment allows for a focused investigation into the sensitivity and challenges of the
proposed model. Moreover, the availability of a large collection of comparable studies allows for verification
of the model by comparing results through broadly acknowledged performance metrics. Consequently, this
chapter addresses the research question: How does the performance of the proposed Predictive Maintenance
framework compare to state-of-the-art methods on a benchmark dataset in terms of reliability and accuracy?.

This chapter first introduces the synthetic NASA C-MAPSS engine dataset. After elaborating on prepro-
cessing, the implementation of anomaly detection, diagnosis, and RUL prediction is considered in separate
sections. These sections elaborate on training and hyperparameter optimization, which is performed em-
pirically to obtain increased insight into each parameter’s behavior and sensitivity. Then, results are demon-
strated in the form of figures and relevant evaluation metrics, enabling the quantified comparison of results
with related studies. The computational resources used for this case study are given in section B.1.

4.1. NASA C-Mapss Dataset
The simulated turbofan C-MAPSS (Commercial Modular Aero-Propulsion System Simulation) dataset used
in this chapter is made available by the NASA Ames Prognostics Center [252]. The dataset includes collec-
tions of simulated run-to-failure time series of 4 different simulations. Defined by different settings regarding
operating conditions and failure modes, each configuration comprises partial and complete run-to-failure
sub-datasets. The complete run-to-failure curves of the datasets that operate at a single operating condition,
named ’FD001’ and ’FD003’, are used in this chapter. Their characteristics are given in Table 4.1.

Dataset FD001 FD003

Number of engines 100 100
Number of measurements 20,631 24,270

Shortest Lifespan 128 145
Longest Lifespan 362 525

Failure mode HPC single fault HPC & Fan mixed fault

Table 4.1: NASA C-MAPSS dataset description, where measurements refer to timesteps across features.

The dataset includes 21 unspecified sensors, whose readings can be interpreted as metrics such as fan
speed, pressure, temperature, and fuel flow, given per engine cycle. Additionally, the dataset contains three
metrics that describe engine operational settings, such as altitude and temperature, that demonstrate limited
variation for a single operating condition.

As each engine runs until failure, the true End-of-Life (EoL) matches the final measurement of each engine
dataset, as shown in Figure 4.1. The failure type depends on the simulation. In the subset FD001, High-
Pressure Compressor (HPC) degradation is simulated, while FD003 features an unknown combination of HPC

28
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& Fan degradation. By combining both datasets, fault diagnosis involves identifying differences between class
labels categorized as HPC single fault and HPC&Fan mixed fault.

Figure 4.1: Normalized sensor readings of engine #52.

4.2. Preprocessing
The run-to-failure curves of the 200 total engines, numbered as 1-200, are separated per engine, randomized,
and divided into a split of 70%, 10%, and 20% for training, validation, and testing data, respectively. The en-
gines in these splits remain the same throughout the different model phases, ensuring that the collection of
’historic’ data is consistent for every inference task. The depicted results in this chapter originate from the
testing dataset, which is unknown to the model during training and can be seen as ’real-time’ operation. Dur-
ing training, the validation dataset is introduced as unseen data to verify that additional training iterations
are contributing to the improvement of the model task.

Following the steps introduced in section 3.1, input sensor readings are normalized according to sklearn’s
"RobustScaler" and plotted for a single engine in Figure 4.1. After normalization, each engine dataset is trans-
formed into sequences according to the sliding-window algorithm, where the window and step sizes are spe-
cific to the application and determined per step in their respective sections below.

4.3. Anomaly Detection
To detect faulty behavior without requiring labels, an Auto-Encoder, fitted with LSTM nodes for improved
time-specific reasoning, is trained to reconstruct healthy operation. An increasing reconstruction error (RE)
will then serve as an indication of system deterioration.

4.3.1. LSTM-AE Hyperparameter Configuration
Healthy cycles are fed into the LSTM-AE during training, while adjusting network weights and biases to mini-
mize training loss. This section explores the effect of various changes to important hyperparameters, includ-
ing the size and stride of the sliding window, layout or configuration of the hidden nodes, and the size of the
latent space. Listed in Table 4.2a, these parameters are changed from their default values, which are high-
lighted in bold. To enhance readability in the figures, different network configurations are assigned a letter,
as shown in Table 4.2b.

Parameter Values

Window size 18, 24, 36, 44
Step Size 1, 2, 4, 6, 8

Hidden Nodes A, B, C, D, E
Latent Size 8, 16, 32, 64

Training Settings n = 25, lr = 0.01, γ = 0.94, dropout = 0.5

(a) Studied Model Parameter Values

Option Node Layout

A [96,64,32,16,32,64,96]
B [128, 64, 32, 16, 32, 64, 128]
C [128, 128, 64,16,64,128,128]
D [256,144,64,16,64,144,256]
E [256,256,144,16,144,256,256]

(b) Studied Hidden Node Layouts

Table 4.2: LSTM-AE hyperparameters, where n = n.o. epochs, lr = learning rate, and γ = rate of exponential lr decay.
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While parameters such as the duration of training in epochs n, learning rate, learning rate decay γ, and
dropout typically provide the best results at their default, they are occasionally adjusted in small increments
to improve training robustness. For instance, a smaller model configuration may converge more quickly,
making it beneficial to stop training early at an optimal loss. Conversely, larger models are more susceptible
to overfitting, which can be mitigated by lowering the learning rate and extending the training duration.

Model hyperparameters are adjusted one at a time, while the others keep their default value. To capture
stability, each configuration is tested multiple times to obtain box plots visualizing the sensitivity to LSTM-AE
adjustments. These are given in Figure 4.2, displaying the effect of adjusting its value on the validation loss
and health indicator performance, defined as the average of the three introduced metrics of subsection 3.2.5.

(a) (b)

(c) (d)

Figure 4.2: Box-plots depicting the sensitivity of validation loss and health indicator performance to differently adjusted LSTM-AE con-
figurations.

Sliding Window
As the number of data points in each engine’s life cycle is relatively low, increasing the overlap of windows
to increase the density of the training data improves the sensitivity to subtle fault signs. Increased overlap
requires more computational resources, possibly leading to redundant information that reduces the effective
diversity of the training data. Based on the sensitivity study, Figure 4.2a suggests an optimal window size
around 24 or 36, while Figure 4.2b shows that a step size of 1 achieves the best model performance. With this
step size, a window size of 24 outperforms 36.

Hidden Layer Size and Distribution
Choosing the layout and size of the hidden layers should avoid overfitting issues due to an overly extensive
network, resulting in memorization of the training data instead of learning data relationships. On the other
hand, the size should be large enough to capture sufficient information. Figure 4.2c shows that configuration
B leads to the best result, where larger configurations impact the ability to generalize, leading to declining
validation loss.



4.3. Anomaly Detection 31

Latent Size
A smaller latent size encourages dimensionality reduction, filtering out more information deemed unrelated
to describing the engine operation, increasing the observability of deviations from nominal patterns. A too
small latent space can also reduce the ability to reconstruct healthy data, thereby impacting the robustness
of the relationship between RE and system health. Choosing a larger latent space leaves room for less specific
features, but risks weakening the specificity of the reconstruction. Figure 4.2d suggests an optimal latent
space size of 16 nodes.

Health indicator Construction
The construction of a reconstruction-error-based health indicator and fault detection follows the smoothing
and fault detection algorithms proposed in section 3.2. Based on section B.2, a smoothing factor λ = 0.05 is
applied as well as an arbitrary threshold scaling factor of 0.3, influencing the height of the detection threshold.

4.3.2. Fault Detection Results
Training should be stopped if both training and validation losses have reached a stable minimum, before
the validation loss starts to increase, indicative of overfitting. Stable training behavior based on the chosen
combination of hyperparameters is shown in Figure 4.3.

Figure 4.3: Converging training and validation losses.

Then, the model is applied to the testing data to obtain the final performance and results. The model con-
siders each engine separately, giving a RE for every timestep. Figure 4.4a depicts the calculated Mahalanobis
Distance (MD) from this LSTM-AE RE of a single testing engine, showing an increasing trend as the engine
approaches the EoL.

After smoothing and scaling, Figure 4.4b demonstrates the health indicator of the same engine, where the
red markers show successful detection of a defect after crossing the failure threshold.

(a) Mahalanobis distance of the RE (b) HI-based fault detection, with healthy operation (blue) and detected fail-
ure (red)

Figure 4.4: LSTM-AE output of engine #52, until engine EoL indicated by the gray stripes.
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The model performance is evaluated using the metrics proposed in subsection 3.2.5, averaged across
engines, and listed in Table 4.3. Results are compared with studies that have applied the same dataset and
metrics, and an experiment where the RE is calculated in the compressed latent space, as proposed by [133].
As a verification of the model, performance values are also reported for a health indicator directly based on
the raw sensor data.

Results show similar performance compared to other AE-based approaches. However, improvements
could be made, particularly in monotonicity, through more extensive signal preprocessing and specialized
learning methods [222, 253], integration of a more advanced DL approach [131, 254], or improved condition-
ing of the constructed health indicator [255]. That said, excessive signal conditioning in pursuit of a smooth
deterioration curve may lead to the loss of crucial information needed for downstream fault diagnosis and
prediction, requiring a careful balance across the entire solution.

Source Method Mono. Trend. Prog.

This work Raw sensors data avg. 0.60 0.60 0.40
This work LSTM-AE 0.33 0.94 0.90
This work LSTM-AE w/ Latent Space HI 0.37 0.78 0.75

Guo et al. (2018) [255] CNN w/ trend burr 0.41 0.90 -
Xiao et al. (2021) [256] LSTM w/ noisy prediction 0.12 0.85 0.72
Yan et al. (2022) [254] PCA-LSTM-VAE 0.57 0.91 -
Yan et al. (2022) [254] LSTM 0.26 0.88 -
Yan et al. (2022) [254] SVM 0.18 0.89 -

González-Muñiz et al. (2022) [133] deep AE Latent Space 0.46 - 0.99
González-Muñiz et al. (2022) [133] VAE Latent Space 0.56 - 0.96

Koutroulis et al. (2022) [257] LSTM-AE - 0.67 -
Depater & Mitici (2023) [131] LSTM-AE w/ attention 0.40 0.95 0.90

Huang et al. (2023) [222] AE 0.25 0.80 0.82
Huang et al. (2023) [222] LSTM-AE 0.45 0.89 0.84
Jiang et al. (2023) [253] Hybrid stacked AE 0.88 0.91 -

Table 4.3: Monotonocity (Mono.), Trendability (Trend.), and Prognosability (Prog.) of comparable HI studies on C-MAPSS engine FD001,
sorted by year, then name.

4.4. Fault Diagnosis
Fault diagnosis involves inferring the failure category of a sample. Unfortunately, evaluating the results is
complicated by the fact that engine failure labels are unknown. All engines in the FD001 dataset only demon-
strate HPC error, while FD003 contains a mixture of failure modes, so the clustering task is defined as identi-
fying the original dataset of an engine. This way, the performance of the clustering model is expressed as the
number of engines of the FD001 dataset (numbered 1-100) assigned to the same cluster, as it is certain these
have the same failure mechanism.

Both AE RE and latent space are rich sources of failure-related information suitable for diagnosis tasks.
To select the most suitable data source, a visual comparison is made by reduction of the data dimensionality
with a Principal Component Analysis (PCA) [181]. Figure 4.5 shows the MD and latent space data structures
of the full dataset used in this chapter, which is a combination of NASA’s FD001 and FD003 C-MAPSS datasets,
in comparison with the raw input features.

Given that both datasets display different degradation mechanisms, a PCA should show differences be-
tween the datasets in the reduced spaces. Increased distance between samples in their PCA visualization
generally improves the ability to analyze failure-related distinctions. The reduced PCA visualization of the
raw data in Figure 4.5a shows no observable difference between datasets FD001 and FD003, while Figure 4.5b
shows a more ordered structure with less overlap between datasets. The latent space in Figure 4.5c has sig-
nificantly reduced the diversity of the dataset, increasing the similarity between datasets, having filtered out
most failure-mode-specific features. Further extraction of failure-related information is therefore performed
based on the MD of the reconstruction model.
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(a) Raw Input Features (b) Mahalanobis Distance (c) Latent space

Figure 4.5: Principal component analyses of three different data sources.

4.4.1. 1D-CNN & FCNN Hyperparameter configuration
DEC parameters should be chosen to avoid under- and overfitting problems. For this clustering problem, un-
derfitting issues result in insufficient separation of clusters. Monitoring of this issue is performed by verifying
the proper grouping of FD001 engines. Overfitting overly separates the dataset, leading to cluster fragmenta-
tion.

Following subsection 3.3.2, DEC training involves the optimization of Non-Parametric loss first, for global
structure organization, followed by incrementally increasing the influence of the pairwise loss, while mon-
itoring the Kullback-Leibler (KL) divergence as validation loss. A stably reducing KL-divergence indicates
proper cluster segmentation. As an additional check, the model is initialized with more clusters than the
number of failure modes. If the model successfully finds the smaller true number of clusters, this indicates
proper class separation.

The configurations used to obtain the experimental results demonstrating functionality of the concept
for both the DEC model and the classification network are given in Table 4.4. Included are parameters that
define the size and operation of the CNN, where padding, stride, and dilution of the convolutional layers are
set to maintain the input length. Also included are the entry point of local contrastive loss (pair-loss) ce , the
introduction rate in epochs η, as well as margin and temperature parameters. The calculation of accuracy is
unstable due to the lack of true fault labels, so the sensitivity of diagnosis hyperparameters is considered in
the next chapter.

Parameter Values

CNN Layers 2
Convolution Kernel Size 3

Pooling Kernel Size 2
Encoder Latent Size 8

Training Settings n = 15, lr = 0.005, γ = 0.7
Loss function Settings eentry = 10, η = 5, m=1, T =0.7

(a) DEC 1d-CNN

Parameter Values

NN Layers 1
NN Size 32

Training Settings n = 50, lr = 0.001

(b) Classification FCNN

Table 4.4: Fault diagnosis hyperparameters.

4.4.2. Clustering Results
The DEC model uses the training engines to learn how it can best identify and separate fault classes. The
initial layout of the data is given in Figure 4.6a, which depicts a t-SNE view of the data, mapping data-points
on a reduced dimensionality in such a way that minimizes the KL-divergence. Engine numbers are visualized
by the color gradient, so that blue tones match FD001, and cyan to red match FD003. After DEC, Figure 4.6b
shows the improved structure and assigned clusters indicated by the blue or brown outlines.

The proposed model configuration groups 90% of the engines, numbered 1-100, in the same cluster. As
these are assumed to have the same failure mode, the clustering accuracy is approximated as 90%.
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(a) Initial clusters (b) Clusters after contrastive learning

Figure 4.6: t-SNE graphs before and after application of the contrastive approach. Data samples are colored according to their engine
number and outlined with the assigned label.

4.4.3. Classification Results
With data labels determined by the DEC model, the testing data can be directed through the model, which
maps the data to its clustered embedding. Lacking ground truth labels of failure modes, the classification
model is trained based on embeddings and their inferred class labels. Now, engines can be classified sequen-
tially to find their class probability and find out how that probability changes over time. In this case study, the
single-layer NN with parameters of Table 4.4b is sufficient for real-time interpretation of DEC output into a
fault category that aligns with the learned clusters at least 98% of the time. For the C-MAPSS engine case, the
combined accuracy of clustering and classification comes out to 88%.

4.5. Fault Prognosis
The LSTM-AE output signal quantifies the distance of input features from the normal state. By incorporating a
fault detection criterion, the moment of failure can be inferred without requiring expert knowledge or labeled
data. The transformer model leverages this information to predict RUL.

The number of cycles remaining until the inferred failure point establishes a linear relationship, which
serves as the RUL. This process is illustrated in Figure 4.7, where the RUL labels for a test engine are derived
based on a detected fault. Measurements recorded after the detected failure are excluded from the analysis,
as the RUL has already reached its minimum value.

Following [75, 142, 250, 251], RUL labels undergo preprocessing to enhance training stability. First, the
RUL is capped at a maximum of 125 using a piece-wise linear RUL target function. This prevents the model
from overestimating RUL, while aligning with a common assumption that system degradation begins after a
certain threshold [142]. Next, the RUL values are normalized to the range [0, 1] using min-max normalization
(Equation 2), where ymi n = 0 and ymax = 125. By ensuring that all values fall within a standardized range,
the sensitivity to the scale of the data is reduced, improving numerical stability and helping the model to
converge faster. After testing, predicted RUL values are rescaled to their original range.

(a) Faulty state according to the extracted health indicator (b) Inferred RUL label compared to true EoL

Figure 4.7: Labeling process based on the constructed Health Indicator.
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4.5.1. Transformer Hyperparameter Configuration
For prognosis, a transformer takes an input sequence and produces a series of output RUL values. During
training, the cross-entropy loss is minimized using backpropagation, with a learning rate of 0.0005 over 120
epochs, providing the most stable learning outcomes. Sequences are generated using a sliding window of a
specific size and step, where shuffling is avoided, ensuring sequential information is preserved.

The model characteristics are defined by transformer-specific hyperparameters, given in Table 4.5. Opti-
mal model settings are determined by varying one parameter while keeping the others at their default values,
highlighted in bold. Performance is measured using RMSE, with the best outcome highlighted in bold. De-
fault values and the range of variations are based on sensitivity studies on Transformer hyperparameters for
C-MAPSS RUL prediction in [163, 251, 258]. Boxplots illustrating the validation loss distribution across hy-
perparameter settings are shown in Figure B.3 in the Appendix.

Parameter Values RMSE

Window Size 16, 24, 32 30, 25, 24
Dropout 0.1, 0.25, 0.4, 0.8 30, 29, 30, 36

Layers 1,2, 3 25, 30, 45
Model Dim. 6,10,20,32 28, 27, 28, 30

Heads 1,2,4,8 32, 30, 25, 24
FFNN Dim. 6, 10, 20 34, 30, 32

Table 4.5: Model parameter configurations, with default in bold.

Sliding Window
Because of the sequence-to-sequence nature of the model, the sliding window characteristics directly affect
the resolution of the output and overall model performance. A larger window size improves the model’s ability
to capture long-term degradation trends but significantly increases computational cost. Additionally, larger
windows reduce responsiveness to sudden changes in the engine health, considerably increasing the risk of
late predictions. A smaller step size increases data overlap, improving model responsiveness and enhanc-
ing the volume of available data for training. However, this also raises computational complexity, as more
overlapping sequences must be processed.

Dropout
Dropout can reduce the risk of overfitting to specific degradation patterns. By randomly masking attention
weights of the self-attention mechanism, or neurons in the fully connected layers, dropout helps prevent the
model from relying too heavily on specific temporal dependencies. This encourages a more robust feature
extraction process, enhancing the model’s ability to generalize across different degradation characteristics.
However, excessive dropout may hinder learning by preventing the model from capturing critical long-term
dependencies necessary for accurate failure prognosis.

Transformer Dimensions
The depth and width of the transformer architecture significantly influence its learning capacity. Additional
encoder or decoder layers allow for deeper feature extraction and improve modeling of complex dependen-
cies. Similarly, a larger FFNN layer or size of the embedding vectors can improve generalization and enhance
the model’s ability to learn abstract features. However, after a certain point, additional layers or increased
size may lead to issues such as overfitting or vanishing gradients, decreasing performance.

An increased number of attention heads enables the model to focus on an increased number of different
aspects of the input simultaneously, potentially capturing more diverse patterns in the data. However, too
many heads can dilute attention focus, as too many elements are emphasized simultaneously.

4.5.2. RUL Prediction Results
Taking the combination of the best parameters, Figure 4.8 shows the predicted RUL curves for two engines
of the testing dataset. Results of eight more engines are included in Figure B.4. The two most inaccurate
testing engines are provided in Figure B.5. Figures depict the predicted RUL at each cycle, along with the 95%
confidence based on the standard deviation between multiple overlapping windows. Included in the figure
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(a) Engine #65 (b) Engine #123

Figure 4.8: The predicted RULs at each cycle as it approaches EoL.

are also the inferred RUL based on the fault detection, together with the true RUL defined by the actual engine
EoL. A complete overview of the detection and prognosis process for a single engine is given in Figure 5.17.

The RMSE and score values for the test engines are computed relative to the inferred RUL targets pro-
duced by the fault detection model, and given in Table 4.6. For comparison, the same metrics are calculated
for a basic LSTM model inspired by Zheng et al. [147], serving as a baseline. Additionally, an experiment is
conducted where the transformer is trained and tested directly on raw C-MAPSS input features, bypassing
the LSTM-AE.

While literature generally acknowledges the merit of preprocessing data via reconstruction-based meth-
ods such as the AE proposed in this thesis, performing RUL inference on the DEC output subjected to con-
trastive learning methods should be considered. Therefore, an experiment is included in Table 4.6, where the
embedded clusters of the 1D CNN form the input for RUL prediction with an LSTM. The LSTM is chosen over
the transformer for ease of implementation, better suitability to the smaller embedded dataset, as well as the
ability to compare it to [147] and [75].

The performance of these experiments is compared to similar studies on RUL prediction using the C-
MAPSS dataset. If separate scores are reported for FD001 and FD003 in these studies, their average is dis-
played for consistency.

As expected, RMSE and score exhibit a strong correlation, as both metrics quantify deviations between
predictions and targets. The RMSE and score of the LSTM method based on raw sensor inputs verify the cor-
rectness of the preprocessing and implementation technique, as results are roughly comparable to those of
studies with similar methods. Transformer applications display better results overall compared to the LSTM,

Source Method RMSE Score

This work Transformer w/ LSTM-AE data 13.2 * 835.4 *
This work LSTM w/ LSTM-AE data 17.1 * 1269 *
This work Transformer w/ Raw sensor data 16.3 686.8
This work LSTM w/ Raw sensor data 17.5 1641
This work LSTM w/ DEC output data 22.9 1949

Babu et al. (2016) [142] CNN 18.9 1396
Yu et al. (2019) [259] BiLSTM-AE 16.1 423.5

Zheng et al. (2017) [147] LSTM 16.2 595
Kim et al. (2020) [250] Bayesian DNN 13.0 338

Chadha et al. (2022) [163] STAT-Transformer 11.4 186
Liu et al. (2022) [258] Double Attention 12.5 244
Fan et al. (2023) [167] BiLSTM-AE Transformer 11.1 219

Ogunfowora et al. (2023) [251] Transformer 14.9 333.8
Zhuang et al. (2023) [75] LSTM 18.5 1226
Zhuang et al. (2023) [75] Bayesian DNN 12.7 234.9

Table 4.6: RSMEs and scores of other C-MAPSS RUL predictive implementations, sorted by year. * = Calculated relative to inferred RUL
labels.
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confirming the findings of the literature study that suggest a transformer-based approach allows for a strong
interpretation of time-based features.

Notably, prediction accuracy tends to improve when incorporating the LSTM-AE RE. However, the recons-
truction-based RUL predictions demonstrate higher score-based errors, which suggests the overall prediction
might be more accurate, but at the same time more unstable, as shorter deviations of larger magnitude are
penalized exponentially by the scoring function.

It is important to recognize that the performance metrics for methods that have been trained using the
LSTM-AE are computed with respect to the inferred RUL (orange line), rather than the ground truth failure
time. Since the ground truth failure time is unknown to the model during training and testing, evaluating a
supervised model against an unobservable target would artificially inflate the error. This discrepancy arises
because failure detection occurs before the true EoL, depending on the sensitivity of the fault detection cri-
terion. Adjusting the failure threshold can fine-tune this detection timing, impacting both prediction quality
and error metrics.

4.6. Concluding Remarks
This chapter has demonstrated the feasibility of the proposed unsupervised methodology for fault detection,
diagnosis, and RUL prediction using the C-MAPSS dataset. The results demonstrate that the approach ef-
fectively identifies anomalies through LSTM-AE-based reconstruction, where the derived HI showed a clear
correlation with degradation trends, confirming its validity as a failure-sensitive metric.

The model distinguishes fault patterns using deep embedded clustering, indicating distinct separability
between different failure modes, suggesting that the learned latent space captures meaningful fault charac-
teristics, which were easily learned by the classification layer. Solid evaluation of the diagnosis results has
proven to be difficult, however, and should receive additional attention in the following chapter.

RUL is successfully predicted with a Transformer-based model, where results exhibited a consistent trend
with expected degradation, though variations in accuracy were observed across different engines. Compari-
son of results with similar studies on the same dataset has demonstrated that the approach provides a com-
petitive means of data-based health monitoring, allowing further implementation on Wind Turbines.

(a) Normalized Input Features (b) Reconstruction Mahalanobis Distances per sensor of the model

(c) A detected fault based on the Health Indicator (d) Estimated RULs at every cycle

Figure 4.9: The steps taken to achieve fault detection and an RUL estimate of engine #32.
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4.6.1. Discussion & Future Work
The model design proposed in this thesis is primarily based on a review of wind turbine methods, chosen for
suitability while considering the scope and workload constraints of this research. Additional health moni-
toring studies were introduced in this chapter to compare performance, highlighting potential areas for im-
provement.

Anomaly Detection
Figure 4.9b demonstrates the reconstruction model’s susceptibility to early-life anomalies in sensor measure-
ments, which appear in the initial cycles of the raw data. Due to the way the HI is constructed, these early
deviations have long-lasting effects, see Figure 4.9c. This reduces fault detection responsiveness, negatively
impacting RUL inference—especially for engines with shorter lifetimes. Moreover, noise and inaccuracies in
the reconstruction model affect RUL prediction. A comparison between the timing of disturbances in Fig-
ure 4.9b and the increased RUL prediction errors in Figure 4.9d suggests a possible correlation between these
uncertainties.

So, as the reconstruction model used for HI construction forms the basis for any following inferences,
improving its stability and reasoning capacity is expected to yield the most significant overall improvements.
Differences in performance compared to related studies can inform areas of improvement: De Pater & Mitici
[131] enhance an LSTM autoencoder by incorporating Luong attention and explicitly modeling operating
conditions. These modifications improve the model’s ability to correctly interpret data structures, leading to
more effective learning. Additionally, their study applies a more informed sensor selection process, further
enhancing inference effectiveness. Huang et al. [222] improve performance through extensive sensor selec-
tion and t-SNE clustering as a preprocessing step. Similarly, Yan et al. [254] apply PCA as a preprocessing
step for dimensionality reduction. Jiang et al. [253] employ advanced layer-by-layer training to selectively
capture essential state features while suppressing irrelevant variations. By intelligently merging the extracted
features, their method produces highly stable outputs.

Diagnosis
As the current approach to diagnosis verification relies on several assumptions, alternative applications of
time-series clustering for health monitoring can be explored for this dataset. The proposed DEC method
could be extended to datasets with multiple operating conditions, allowing for an evaluation of the 1D CNN’s
contrastive-learning capability. This aligns with prior studies that have applied clustering techniques to the
C-MAPSS dataset [222, 260].

At present, basing RUL prediction on DEC output data yields unstable results, as the 1D CNN signifi-
cantly reduces the time-series dimensions, which contributes to this instability. Redesigning the CNN with a
stronger focus on RUL prediction could provide a means to improve prediction performance, provided that
it does not compromise the model’s diagnostic capabilities.

Prognosis
While an improved reconstruction will contribute to enhancing the stability of the prognosis, further im-
provements can be identified between differences in performance as shown in Table 4.6.

Similar to this work, Chadha et al. [163] apply a transformer consisting of both encoder and decoder.
Their transformer-based RUL prediction model introduces specialized attention blocks, however, that focus
on detecting local degradation patterns. By splitting input features into multiple smaller heads with shared
weights, the model significantly reduces the number of trainable parameters. This leads to notable perfor-
mance improvements, suggesting that structural adaptations that simplify learning complexity can enhance
the effectiveness of transformer-based RUL prediction.

This idea is reinforced by reviewing transformer RUL approaches by Ogunfowora et al. [251] based on raw
data, and Fan et al. [167] adopting an additional denoising LSTM-AE for preprocessing. Both studies employ
an encoder-only transformer structure that outputs a single RUL value per input sequence. This simplified
model structure reduces computational complexity, streamlines training, and possibly produces improved
results.

As a baseline method, the LSTM experiment of this work should perform similarly to Zheng et al. [147]
and Zhuang et al. [75], who applied LSTM networks for RUL prediction using a similar methodology. This
difference is explained by dataset usage. Zheng et al. tested on a separate "FD001_test" dataset, where their
model estimated RUL using partial ground truth, providing an improved prediction starting point and a re-
duced prediction horizon. This also frees up the entire "train" dataset as additional training data.
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Application to Offshore Wind Turbine

SCADA data
Results

Implementation of a SCADA-based Predictive Maintenance (PdM) approach provides OWT operators with a
tool for maintenance decision-making. SCADA data challenges complicate direct derivation of health-related
features, leading to the proposed deep learning framework in chapter 3.

After verifying framework feasibility and studying its sensitivity and limitations on the simulated engine
dataset in chapter 4, the model is now is now applied to real-world OWT SCADA data. This transition intro-
duces new challenges and practical considerations. Accordingly, this chapter addresses the research ques-
tion: How does the proposed framework perform when tested on offshore wind turbine SCADA data?.

The chapter begins with an introduction of the dataset, followed by the definition of test cases designed
to maximize the utility of available data. The approach to hyperparameter optimization is then presented,
with a complete overview of all investigated hyperparameters, their descriptions, and ranges provided in
section C.3.

After SCADA-specific preprocessing steps prepare the dataset, the implementation of each model func-
tion is described in dedicated sections, covering training, hyperparameter sensitivity, implementation details,
results, and discussion. The chapter concludes with a summary and reflection on the key findings.

5.1. EDP Offshore Wind Turbine Case Study
After comparing multiple open-source datasets in section C.1, Portuguese EDP data is selected for its ex-
tensive range of SCADA parameters and detailed descriptions of performed maintenance actions [261]. It
includes status and error codes, anemometer and turbine SCADA sensor signals from four 2 MW turbines,
spanning 2016 and 2017. Maintenance actions given in the dataset are illustrated in Figure 5.1 and detailed
in section C.2.

Anemometer readings primarily reflect farm-level environmental conditions, while status and error codes
are often inconsistent and incomplete, creating a complex expert systems problem [64, 262]. Therefore, the
81 SCADA sensor signals that provide continuous operational data directly related to turbine performance
and condition are used.

Figure 5.1: Overview of fault occurrences per turbine, according to the failure logbook provided in Table C.2 & Table C.3.

39
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5.1.1. Data splits & Test Cases
To maximize the use of available data while enabling comprehensive testing across all turbines, four differ-
ent experimental configurations are defined, specifying how the turbines are distributed into training and
validation cases.

For testing, the unseen dataset is split into segments corresponding to individual failure events marked
by timestamps in the maintenance logs. Logged maintenance actions are assumed as failure occurrences,
marking the targets of model inference.

Overlapping or closely spaced failures are grouped into a single testing segment. This applies to three
specific scenarios: (1) For the five generator maintenance actions in 2016 on T06, the first and last involve
component replacement. Segments are defined leading up to the first replacement, and from the first to the
last failure in the group. (2) In T07, the transformer faults from July and August 2016 are grouped together as
the first is a temperature alarm, and the second involves replacement. (3) Also in T07, overlapping alarms in
August 2017, indicating both generator and generator bearing damage, are treated as a single failure event.

After these adjustments, Table 5.1 details how the data is distributed in each case, specifying the number
of failure modes and segments present in the testing dataset.

Case 1 Case 2 Case 3 Case 4

Training T01, T06 T06, T07 T07, T11 T01, T11
Validation T07 T11 T01 T06

Testing T11 T01 T06 T07
Failure modes 2 2 3 4
Test segments 4 2 5 5

Table 5.1: Test cases for the implementation of the EDP SCADA dataset. The number of faults and fault types is given for the testing
subset.

5.1.2. Comparability of C-MAPSS and EDP Datasets
To justify the generalizability of the C-MAPSS findings and highlight the additional challenges posed by
SCADA data, similarities and differences between the datasets are analyzed.

Lifespans in the EDP dataset typically range between 9000-30000 measurements (9-30 weeks at 10-minute
SCADA intervals), compared to 30–200 cycles for C-MAPSS engines. After resampling to comparable lengths
and normalizing input features, the mean and standard deviation of randomly selected engine cycles and
wind turbine segments are compared.

Figure 5.2 and Figure 5.3 display individual feature trends, their mean, and variability across features.
Both datasets exhibit substantial short-term fluctuations, reflecting sensor noise and operational variability.
In Figure 5.2, the mean trends show an upward drift towards End-of-Life (EoL), particularly subtle in turbines,
while the standard deviation increases more clearly with cycle progression towards EoL. The OWT data in
Figure 5.3 shows no clear indicators for approaching EoL in the mean and standard deviation curves.

Comparison of both datasets suggests fault features are much more hidden in SCADA data, requiring
more advanced model configuration, posing an increasingly difficult hyperparameter optimization problem.

(a) OWT Features and mean (b) C-MAPSS Features and mean (c) Standard deviations

Figure 5.2: Comparison of segment 1 of T01 and engine 60.
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(a) OWT Features and mean (b) C-MAPSS Features and mean (c) Standard deviations

Figure 5.3: Comparison of segment 1 of T11 and engine 53.

5.1.3. Automated Hyperparameter Optimization
In the previous chapter, the relatively small size of the C-MAPSS dataset and the existence of a search space
constrained by the consultation of similar studies allowed for manual hyperparameter optimization based
on small adjustments. Facing new conditions and data specifications, this chapter requires a new evaluation
of the ideal hyperparameter configuration.

Due to longer computing times and an increasingly complex hyperparameter optimization problem, this
task is performed by the Optuna Python package [263]. Optuna is designed to automate the search for op-
timal model parameters, more efficiently and systematically compared to manual grid or random searches.
Leveraging Bayesian Optimization and Tree-structured Parzen Estimators (TPE), optimization involves re-
peated retraining of the model during a certain number of trials, while aiming for a specified objective, like
minimizing validation loss.

For every optimization, a pruning algorithm is included that identifies unpromising trials at the early
stages of training and applies early-stopping. Pruner sensitivity is controlled by a number of warmup trials
and a number of warmup steps (epochs).

Due to the computational demands of repeated retraining, hyperparameter optimization is conducted
exclusively on Case 1. As this case offers a diverse range of fault types in its training and validation data,
tuning hyperparameters on this case is expected to yield results that generalize well to other cases. This
assumption is tested in section C.7.

5.1.4. Optimizer Configuration
Hyperparameter searches are performed per sub-function of the model, each with its own search space, elab-
orated upon in the sections below. To achieve the best balance between computing time and optimal solu-
tion, the optimization algorithm involves running the optuna optimizer for 100 trials, with 10 warm-up trials
and 20 warm-up steps.

The increased data size requires more extensive computational resources, especially when performing
repeated model retraining. Therefore, hyperparameter optimization is performed on the DelftBlue super-
computer, provided by the Delft High Performance Computing Centre [264].

DelftBlue consists of multiple compute nodes, including GPU nodes, which are preferable for machine
learning tasks. The author’s education account provides access to up to 2 GPUs (NVIDIA Tesla V100S 32GB)
and 64 CPU (AMD EPYC 7402 24C 2.80 GHz) cores, across a maximum of 2 nodes. These resources are al-
located through the SLURM job scheduler, enabling efficient parallel processing of deep learning workloads.
The process of setting up DelftBlue for this thesis is outlined in section C.4. To reduce the queue time required
before starting a job due to resource allocation on the supercomputer, while allocating sufficient resources, 4
CPU cores of 4GB each, with a single GPU are used in this chapter.
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5.2. Preprocessing
Effective preprocessing of the input dataset, including the selection of relevant signals and appropriate signal
conditioning, is essential to ensure robust model performance and stable training. Then, datasets are con-
verted into sequences using the sliding window approach introduced in subsection 3.1.2. To properly capture
temporal dependencies, the chronological order is preserved when loading the sequences as recommended
by [265].

5.2.1. Sensor Selection
Different sensor signals contribute at varying levels of relevance to specific degradation processes in multi-
sensor prognostics. Irrelevant sensors may add noise, reducing prediction accuracy and increasing compu-
tational burden [134, 266, 267].

Identification of these redundant features is achieved through the application of a correlation analysis,
revealing variables with similar temporal effects [206]. Parameters that show high correlation in each tur-
bine dataset are dropped from the dataframe. In this study, this criterion is set as an absolute correlation
larger than 95%, removing variables such as minima, maxima, and averages of the same measurements, or
comparable temperature measurements. Figure 5.2 lists the remaining 31 SCADA parameters selected for
implementation, and Figure 5.4 displays a correlation heat map of these final parameters.

No. Parameter Description No. Parameter Description

0 Gen_RPM_Max 16 Gen_SlipRing_Temp_Avg
1 Gen_RPM_Min 17 Blds_PitchAngle_Avg
2 Gen_RPM_Std 18 Cont_VCP_ChokcoilTemp_Avg
3 Gen_Bear_Temp_Avg 19 Grd_Prod_CosPhi_Avg
4 Hyd_Oil_Temp_Avg 20 Grd_Prod_VoltPhse1_Avg
5 Gear_Oil_Temp_Avg 21 Grd_Prod_VoltPhse2_Avg
6 Nac_Temp_Avg 22 Grd_Prod_VoltPhse3_Avg
7 Amb_WindSpeed_Max 23 Grd_Prod_Pwr_Min
8 Amb_WindSpeed_Avg 24 Grd_Prod_Pwr_Std
9 Amb_WindDir_Relative_Avg 25 Grd_Prod_ReactPwr_Max

10 Amb_Temp_Avg 26 Grd_Prod_ReactPwr_Min
11 HVTrafo_Phase1_Temp_Avg 27 Grd_Prod_ReactPwr_Std
12 HVTrafo_Phase3_Temp_Avg 28 Grd_Prod_PsblePwr_Std
13 Grd_InverterPhase1_Temp_Avg 29 Gen_Bear2_Temp_Avg
14 Cont_Top_Temp_Avg 30 Nac_Direction_Avg
15 Cont_Hub_Temp_Avg

Table 5.2: The remaining 31 SCADA parameters Figure 5.4: Correlation heat map of the parameters

5.2.2. Signal Conditioning
The properties of the EDP dataset bring up some additional data handling steps required for implementation.
Missing values should be imputed for the continuity of the time series. Because the missing values in the
dataset appear individually or in a small number of consecutive occurrences, linear interpolation is applied
to fill in these gaps. An overview of missing value occurrences is given in section C.5.

Initial testing revealed inconsistent model performance across turbines for test segments spanning both
years of operation. To mitigate misalignment between years, the first failure segments of 2017 are truncated
to begin on January 1st.

To ensure inputs of different ranges are considered equally, "Robust-Scaler", introduced in subsection 3.1.1,
reshapes the data structure while preserving essential data characteristics, with minimal influence of outliers.
Fitting of the scaler must be performed on either training or validation data to avoid data leakage, involving
improper sharing of unseen future data. The final time-series and power curves of the selected parameters
are given in section C.6.
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5.3. Anomaly Detection
Essential patterns and trends in the time series data collected from OWT SCADA systems are captured through
compressing and decompressing the input by an LSTM-AE (Long Short-Term Memory Auto-Encoder). This
section covers the selection and sensitivity of LSTM-AE hyperparameters, the construction of the Health In-
dicator (HI) based on the reconstruction error output, and the application of an adaptive threshold for ob-
taining fault detection.

5.3.1. LSTM-AE Hyperparameter Configuration
Repeated training iterations determine a configuration that offers the lowest validation loss. To guide this
process, parameters are given a suggested search space, bounded by a higher- and lower bound, and, if ap-
plicable, a step size to consider when making adjustments given in Table 5.3. Parameter ranges are inspired
by the experimental findings of the previous chapter, and supported by [128, 134, 268, 269].

Parameter Min Max Step

Window Size 16 128 16
Step Size 2 24 2

Hidden Size 1 32 256 32
Hidden Size 2 32 256 32
Hidden Size 3 16 126 16

Latent Size 8 64 8
Number of Layers 1 5 1

Dropout 0.1 0.5 0.1
Learning Rate 0.001 0.05 -

Number of Epochs 20 160 20
Gamma (lr decay) 0.8 0.99 -

Gamma Stop 1 101 20

Table 5.3: Tunable LSTM-AE Hyperparameters with the suggested ranges for the optimization algorithm, indicated by upper- and lower
bounds, as well as the step size.

By plotting the validation loss of each trial against its corresponding hyperparameter configuration, the
boxplots in Figure 5.5 provide insight into both the potential performance of different parameter settings and
the stability of their outcomes.

Figure 5.5: Box Plots for LSTM-AE sensitivity after 100 Optuna parameter optimization trials, showing the Validation Loss (MSE) per
hyperparameter.
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Figure 5.5: Box Plots for LSTM-AE sensitivity after 100 Optuna parameter optimization trials, showing the Validation Loss (MSE) per
hyperparameter (continued).

The results indicate that larger autoencoder node sizes yield better performance by reducing compression
severity and preserving more information. Similarly, higher latent sizes improve stability by retaining more
of the original feature space. Based on these findings, the selected node sizes are 224, 224, 64, and 48 for sizes
1, 2, 3, and the latent size, respectively.

Optimal validation loss is achieved with a single-layer architecture, avoiding overfitting issues and overall
intractability of the model. Dropout is ignored as a consequence, as for recurrent networks, dropout must be
applied to connections between layers instead of within the same layer, because this risks disrupting tempo-
ral dependencies.

For the sliding window, the best results are obtained with a relatively small window size of 48. A step size
of 12 provides increased stability and reduces computational time compared to smaller step sizes.

Finding ideal training-related parameters through optimization can be challenging due to strong inter-
dependencies between parameters. Nevertheless, effective results are achieved by training for 40 epochs
with a learning rate of 0.005, while disabling learning rate decay.

5.3.2. Health Indicator Configuration
The HI is derived by post-processing of the LSTM-AE output, following the steps introduced in subsec-
tion 3.2.3. For SCADA, the most reliably performing HI was found by combining two expressions of the
LSTM-AE reconstruction error: Mean Squared Error (MSE) and Mahalanobis Distance (MD), both given in
Figure 5.6. As both signals are sensitive to noise in a slightly different way, their average improves the stability
of the HI signal.

(a) MSE (b) MD

Figure 5.6: LSTM-AE Reconstruction Error per input feature expressed as Mean Squared Error (MSE) and Mahalanobis Distance (MD).
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After applying scaling and normalization, the HI is obtained by smoothing, using λ= 0.0001. At a certain
moment in time, the adaptive failure threshold is based on the mean and standard deviation of a window
of historical data. Optimal fault detection behavior is achieved by properly tuning the window size w and
responsiveness to the standard deviation k. For this case study, w = 3000 and k = 3.5 are selected based on
tests discussed in section C.8. These measures produce the final HI, as visualized in Figure 5.7.

(a) Health signal after Scaling and Normalization (b) Fault Signal Averaged across Features (c) HI after EWMA smoothing

Figure 5.7: Three Steps for obtaining the HI with a health signal defined by the average of the LSTM-AE MSE and MD signals.

5.3.3. Fault Detection Results
After proper configuration of the model, two health indicators and their detected faults are shown in Fig-
ure 5.8. All other HI plots with detected faults are given for each case in section C.9 for additional review.

Figure 5.8a demonstrates how a fault is detected using the adaptive threshold. As the EoL approaches,
system deterioration drives up the health indicator faster than the threshold is configured to allow, causing
a generated alarm. Figure 5.8b shows how varying slopes in the health indicator influence the threshold,
causing the generation of alarms at multiple points in the segment. These alarms match two gray dashed
lines that indicate two faults contained in this segment: high transformer temperature in July and August,
leading to the repair of the Transformer refrigeration.

(a) Case 1, segment 1: T11 Generator Fault (b) Case 4, segment 2: T07 Transformer Fault

Figure 5.8: Health-Indicator-based fault detection. The red markers are generated alarms, the red line indicates the adaptive fault thresh-
old, and the gray dashed line marks segment EoL.

For each case, the HI performance metrics introduced in subsection 3.2.5 are calculated and given in
Table 3, along with the share of detected faults. Anomalous behavior is detected thirteen out of sixteen times.
Temperature errors and larger replacements score best, while hydraulic group errors, such as oil leakage and
brake circuit errors, are sometimes missed if their influence on turbine operation is too subtle for capture.

Fault detection is also implemented based on the full collection of raw input features in section C.10,
showing reduced HI performance and fault detection robustness, verifying the sensor selection and prepro-
cessing approach.

Test Case Mono. Trend. Prog. Detected Faults

Case 1 0.63 0.36 0.87 2/4
Case 2 0.77 0.86 0.94 2/2
Case 3 0.65 0.88 0.84 4/5
Case 4 0.66 0.83 0.82 5/5

Table 5.4: Monotonocity (Mono.), Trendability (Trend.), and Prognosability (Prog.) of the EDP test cases, as well as their share of detected
faults.
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5.3.4. Discussion
The performance of the HI generation compares well to various C-MAPSS studies in the previous chapter.
However, variability in health indicator trajectories causes significant inconsistencies between generated
alarms and the actual moment of failure. Improvements can be considered for the AE as well as the fault
detection system.

The first generated alarm of some segments is significantly earlier than the actual failure, ranging from a
week to 2 months. Improved processing and smoothing of the HI, combined with improving the fault thresh-
old, could be considered to reduce this distance. Additionally, incorporating an extra computational step to
interpret alarm severity could enhance alarm informativeness.

Fault detection responsiveness benefits from increasingly reliable health indicators, obtained by improv-
ing the reconstruction model. More advanced data interpretation by the AE, increasing its reasoning and
resilience to noise, increases HI performance metrics and enhances fault detection reliability.

Various improved AE architectures are available in the literature [213], and their effectiveness in health in-
dicator construction should be researched. For example, Jia et al. demonstrate that a denoising autoencoder
can be applied to enhance RE robustness, as the AE captures more stable relationships in the OWT signal
during training [270].

5.4. Fault Diagnosis
By analyzing the reconstruction-based health signal, the degradation nature can be related to the faulty com-
ponent. Differences in failure behavior are reflected in the data structure and strengthened by contrastive
learning to obtain distinct clusters for each fault.

This section discusses how the reconstruction data is prepared for Deep Embedded Clustering (DEC),
before discussing the configurable hyperparameters of the 1D-CNN encoder and clustering results. Then the
implementation and results of the classification model are discussed based on these clusters.

5.4.1. Conditioning the AE reconstruction error
While a mixed signal combining MSE and MD provided the best foundation for constructing a stable HI, this
signal proved complex for clustering. Figure 5.9a shows how different failure mechanisms are highly over-
lapping and heavily dispersed, while Figure 5.9b shows more distinct clusters, more suitable for contrastive
learning. Differences between clusters remain subtle, however, related to the increased data imbalance of the
SCADA dataset and short-lived indicators for faults.

Irrelevant features, unrelated to faults, should be removed to emphasize class distinctions, as shown in
Figure 5.9c. First, data related to turbine ambiance is excluded as different turbine operational states have
little relation to the location of developing defects. Then, other insensitive features are excluded by calcu-
lating a sensitivity metric based on the average value of a feature during failure regions. Of the remaining
features, only the sequences that contain alarms are considered to ensure data clusters are learned based on
fault-related data.

(a) Mixed Fault Signal (b) AE Latent Space (c) Conditioned AE Latent Space

Figure 5.9: PCA’s for three different data sources of Case 1; Blue = Gearbox, Orange = Transformer, Green = Generator, Red = Hydraulics.
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5.4.2. 1D-CNN Hyperparameter Configuration
The encoder is configured to maximize clustering accuracy. This involves properly assigning fault types ac-
cording to the maintenance logs, while avoiding cluster collapse due to loss imbalance, poor initialization, or
unstable training dynamics.

A selection of the most influential DEC parameters is presented in Table 5.5, and discussed in this section.
Parameter ranges were informed by preliminary testing, insights from the previous chapter, and comparable
studies [122, 183]. Boxplots in Figure C.13 validate several design decisions, including the preference for
HDBSCAN over DBSCAN, prioritizing optimization of the global (sequence-based) contrastive loss first, and
removing sequences that lack alarm events.

Parameter Min Max Step

Number of CNN Layers 1 6 1
Hidden Size 16 256 8
Latent Size 8 64 8

Max Dilation 1 10 2
Convolution Kernel Size 1 12 1

Pooling Kernel Size 1 2 1
Convolution Stride 1 2 1
Loss Temperature 0.2 10 -

Loss Margin 0.2 10 -
Window Size 12 252 12

Step Size 2 24 2
Number of Epochs 5 155 25

Learning Rate 0.0001 0.01 -
Gamma (lr decay) 0.7 0.99 -

Gamma Stop 1 26 5

Table 5.5: Tunable 1D-CNN Hyperparameters with suggested ranges for the optimization algorithm, indicated by upper- and lower
bounds, as well as the step size.

Although clustering performance varies only moderately across CNN configurations, the best outcomes
were achieved with a relatively large network starting at 184 channels, compressing the input over six layers
to a latent dimension of 16. A kernel size of 1 was found to be optimal, as it projects features individually. A
dilated convolution rate of 4 allows the network to capture broader temporal dependencies, enhancing the

Figure 5.10: Box Plots for 1D-CNN sensitivity after 100 Optuna parameter optimization trials, showing the clustering accuracy per hy-
perparameter.
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Figure 5.10: Box Plots for 1D-CNN sensitivity after 100 Optuna parameter optimization trials, showing the clustering accuracy per hy-
perparameter (continued).

modeling of both local and semi-global patterns. A stride of 4 is used to aggressively downsample the input
sequence, reducing temporal resolution and yielding more distinct embeddings. To preserve the sequence
length and ensure equal attention to edge features, padding is dynamically set to half the kernel size. Fi-
nally, flattening operations are adjusted to align with the chosen kernel and stride configurations. Cluster
refinement using density-based algorithms (DBSCAN or HDBSCAN) is analyzed in Figure C.11.

Training settings for the optimizer and learning rate scheduler are shown in Figure C.12, where training
with a learning rate of 0.5e-3 for 70 epochs, introducing the local contrastive loss at epoch 62, provides ro-
bust results. High values for the temperature and margin parameters of the sequence-based and pairwise
contrastive losses ensure significant transformations of the data structure, ensuring increased separation of
dissimilar pairs.

Based on the encoded input, repeated training of the FCNN used for classification suggests the optimal
balance between interpretation capacity and generalizability is obtained with a single layer of 164 nodes.

5.4.3. Clustering & Classification Results
The LSTM-AE signal is directly related to system health. Contrastive learning of this signal is therefore pre-
dominantly based on similarity in degradation characteristics and failure mode. Using t-SNE dimensionality
reduction, Figure 5.11 demonstrates how samples, marked by their true fault category according to the failure
logs, are moved during training epochs to suit the training loss functions. Samples that belong to the different
failure modes can be observed to form increasingly well-defined groups over time, first in a global aspect, and
then refined locally.

While this shows the model is capable of identifying failure similarity, final label assignment is still re-
quired. Due to data nonlinearity, initial k-means-based clusters are recalculated, providing the final cluster

(a) Epoch = 1 (b) Epoch = 10 (c) Epoch = 20 (d) Epoch = 40 (e) Epoch = 60 (f) Epoch = 70

Figure 5.11: t-SNE visualization of 1D-CNN latent space during training of Case 1, using eentry = 60. Blue = Gearbox, Green = Generator,
Gray = Hydraulics, Cyan = Transformer.
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(a) Fully unsupervised clustering results (b) Fully supervised clustering results

Figure 5.12: t-SNE visualization of the encoded true clusters compared to the clusters assigned by the model. 1 = Gear., 2 = Gen., 3 = Gen.
Bear., 4 = Hydr., 5 = Trans.

assignments. Figure 5.12a compares assigned clusters with their ground-truth, showing cluster separations
roughly match true labels. The transformer fault is best defined, as its influence on SCADA sensors varies the
most compared to drive-train components that tend to overlap.

Model accuracy, calculated by comparing the inferred label of each sequence to the assumed ground
truth, is given in Table 5.6. Both unsupervised and supervised cases are considered. For the latter, data labels
are visible to the encoder during training, so that the label guides pair similarity. Naturally, this gives the
model much more control over cluster refinement. As shown in Figure 5.12b, if all true cluster labels are
known, cluster separation and assignment in the encoder output are close to perfect.

Classification accuracy is given in Table 5.6 for both supervised and unsupervised clustering cases, as
well as the accuracy of performing classification directly on the LSTM-AE output, bypassing the 1D-CNN.
This shows contrastive learning improves the accuracy of classification, and label availability improves the
result.

Clustering Accuracy Classification Accuracy
Case Unsupervised Supervised Unsupervised DEC Supervised DEC Bypassed DEC

Case 1 55-61% 92-97% 0-40% 30-42% 10-25%
Case 2 56% 97.9% 39% 48% 31 %
Case 3 60.5% 93.7% 40% 46% 33%
Case 4 68.3% 90% 33% 36% 31%

Table 5.6: Percentage of correctly categorized sequences and the number of inferred clusters, for supervised or unsupervised approaches
to each case. The accuracy of case 1 gives the range following n=5 tests.

This relationship between label availability and clustering accuracy is visualized in Figure 5.13, where the
outcomes of different hyperparameter optimization studies are plotted and interpolated, indicating a positive
relationship between the share of visible labels and clustering accuracy.

Figure 5.13: Scatterplot of trial accuracy at varying levels of observable labels during training of case 1. Jitter is added to the scatter
markers for clarity.
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5.4.4. Discussion
While results indicate that DEC of LSTM-AE features leads to a higher proportion of correctly classified test
samples, the current application is not yet fully reliable. In particular, the absence of prior knowledge re-
garding the number of failure modes introduces the risk of cluster collapse and misclassification across large
portions of the dataset during encoder training. While these unaligned clusters contribute to the error, they
may represent early indicators of novel fault types or alternative degradation paths within the same compo-
nent, requiring careful consideration.

To improve clustering robustness, adding temporal reasoning in the encoder can introduce increased
responsiveness to the dynamic nature of degradation processes. This motivates the use of hybrid architec-
tures—such as CNN-LSTM models—as proposed in studies like [145, 146].

In this work, contrastive losses originally developed for image data have been repurposed for time-series
applications. These losses typically rely on distance-based similarity, which might overlook the temporal and
contextual complexity of SCADA data. Developing a loss function that accounts for these specific character-
istics could enhance the discriminative power of the encoder.

Although encoder improvements enhance classification performance, the current results suggest the clas-
sification approach should undergo additional improvements as well. A broader investigation into model
architectures or alternative classification strategies may yield more effective solutions for the intended appli-
cation. Since class distinctions in the latent space are inherently distance-based, a classifier that leverages
spatial relationships would be appropriate.

Likely to influence the classification accuracy, the classifier should be sensitive to the confidence of clus-
ter assignments. Due to fault progression and the soft boundaries of similarity-based latent space, many
sequences will lie in transitional states that don’t clearly belong to a single class, and are often misassigned.
Furthermore, an uncertainty-aware system improves resilience to samples with low classification confidence,
such as underrepresented failure modes or novel faults not captured by existing clusters.

5.5. Fault Prognosis
RUL prediction involves learning the relationship between historical features and the corresponding time to
failure. This section covers the selection and sensitivity of Transformer hyperparameters and the RUL results.

5.5.1. Transformer Hyperparameter Configuration
Properly specifying Transformer parameters, detailed in Table 5.7, involves minimizing the validation loss,
ensuring relevant features can be extracted and translated to RUL values, while ensuring it generalizes to
unseen inputs.

Due to the quadratic relationship between Transformer complexity and sequence length, longer lifespans
in this dataset significantly increase computational demands. During hyperparameter optimization, 30% of
the generated sequences are randomly sampled to ensure realizable computation times.

Parameter Min Max Step

Number of Encoder Layers 1 4 1
Number of Decoder Layers 1 4 1

Model Dimension 16 48 8
Number of Heads 6 14 2

Feedforward NN Dim 16 64 8
Window Size 50 140 30

Step Size 40 64 8
Max Rul 14e3 20e3 1e3

Number of Epochs 125 250 25
Learning Rate 1e-4 1e-3 -

Gamma (lr decay) 0.8 0.99 -
Gamma Stop 5 40 5

Dropout 0.01 0.5 -

Table 5.7: Tunable Transformer Hyperparameters with suggested ranges for the optimization algorithm, indicated by upper- and lower
bounds, as well as the step size.



5.5. Fault Prognosis 51

Figure 5.14: Box Plots for Transformer sensitivity after 100 Optuna parameter optimization trials, showing validation loss per hyperpa-
rameter.

Due to the subtle nature of degradation in SCADA data, the model is prone to overfitting and exposure
bias, limiting the possible size of the optimal transformer architecture. Figure C.14 shows an optimal model
width of 32 nodes, comparable to the number of input features. This indicates that the LSTM-AE signal is
already informative and normalized, and input data does not benefit from compressing or expanding. Eight
attention heads are selected, each operating in a small 4-dimensional subspace (32/8).

Three encoder layers ensure the model is capable of interpreting data relationships without over-complicating
training. Two decoder layers suffice for prediction, which involves generating the RUL signal. The optimal
feed-forward layer size of 24 further reflects the task’s low nonlinearity and suggests that the attention layers
extract clear, well-defined EoL indicators.

After studying model sensitivity to training parameters, boxplots in section C.12 confirm that precise tun-
ing of the narrow transformer is required to avoid over-dependency on the training case and its input targets.
A low learning rate with fast decay and 150 training epochs is optimal to balance convergence and general-
ization while mitigating overfitting and exposure bias.

While larger windows increase the amount of data for training, they limit batch sizes to fit GPU memory.
This reduces the amount of processed data per epoch, which in turn reduces the learning rate. Smaller step
sizes increase overlap and prediction confidence, at a higher computational cost. Balancing both capacity
and computational limitations, a window size of 136 and a step size of 40 are selected.

RUL labels derived from detected faults, as described in the previous chapter, are capped and normalized
to stabilize training. The optimal cap is expected to lie between 14,000 and 20,000 cycles, scaled relative to
the increased lifetime lengths of this case study.

5.5.2. RUL Prediction Results
The Transformer is trained and evaluated across the four fault categories using the LSTM-AE-based health
signal as input. Figure 5.15 visualizes predicted RUL—expressed in remaining operational days—for faults
in the gearbox, generator, generator bearing, and transformer. A detailed example of the full RUL prediction
pipeline is shown in Figure 5.17, highlighting input signals, reconstruction-error-based health estimation,
fault detection, and RUL prediction for a hydraulic system failure.

Additional results are provided in section C.12. These suggest hydraulic- and generator faults yield the
most consistent predictions. This likely relates to the higher number of fault examples for these components,
emphasizing the importance of data availability for effective training.

In contrast, gearbox faults show the least reliable results. This is partly due to data imbalance, as only one
gearbox failure remains after exclusion of the undetected T06 gearbox fault, which reduces model sensitivity
to gearbox-specific features. This results in a poor prediction illustrated in Figure 5.15b.

Prediction accuracy is quantified using RMSE across timesteps per case and given in Table 5.8. Next to
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(a) Case 3, segment 2: T06 Generator Fault (b) Case 2, segment 1: T01 Gearbox Fault

(c) Case 4, segment 1: T07 Generator Bearing Fault (d) Case 4, segment 2: T07 Transformer Fault

Figure 5.15: Four RUL prediction examples, showing predicted RUL values (blue), RUL targets based on detected faults (orange), and
true segment RUL (red).

the RE-based signal, results are compared across raw input features and LSTM-AE latent space input as well.
Each is evaluated both in an unsupervised setting, using RUL labels based on LSTM-AE fault detection, and in
a supervised setting based on ground truth annotations from the maintenance logs. A comparative overview
is visualized in Figure 5.16.

Case 1 achieves the highest prediction accuracy, likely because the test turbine (T11) contains generator
and hydraulic faults, which are better represented in the training data. The combination of LSTM-AE-derived
input and labels performs best, while RE-based inputs generally outperform latent space inputs.

The best RMSE values observed in this chapter are comparable to those in the C-MAPSS case study in
Table 5.81. This alignment supports the feasibility of SCADA-based RUL prediction.

Interestingly, the raw data performs better when trained on inferred labels than on the maintenance-
based ones. This suggests that, in some cases, the fault detection model may identify degradation earlier
than the actual intervention by the maintenance team.

Raw Data LSTM-AE RE LSTM-AE Latent Space
Unsupervised Supervised Unsupervised Supervised Unsupervised Supervised

Case 1 20.99 36.74 18.57 30.90 22.31 38.94
Case 2 35.02 41.76 33.01 46.83 35.01 44.57
Case 3 44.22 35.02 31.87 27.15 28.44 37.64
Case 4 28.24 36.49 25.64 29.32 26.63 22.84

Table 5.8: RUL prediction RMSE in days, for RUL prediction based on raw data and LSTM-AE based RE and Latent Space datasets.

1Given that RMSE is reported in days, it can be rescaled to RMSE per measurement and scaled to the C-MAPSS RUL target range using
the cutoff RUL values: eEDP ∗144/18000 = eN AS A /125
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Figure 5.16: Histogram of Transformer Results for each testing case and input dataset.

5.5.3. Discussion
While the proposed approach to RUL prediction achieves the highest accuracy, there are still challenges in
ensuring reliability. As shown in Figure 5.17b and Figure 5.17d, RUL prediction is highly sensitive to the
quality of the RE signal and inferred RUL labels. Inaccurate labels misguide the model, while spikes caused
by unrelated disturbances are misinterpreted as early degradation. Insensitivity of the LSTM-AE to actual
defects, as in Figure 5.15b, hinders fault detection entirely as no informative features are communicated to
the prediction model.

Improved data quality and additional failure examples contribute to achieving competitive results. With
an increasingly rich and reliable dataset, more complex Transformer architectures can be considered for im-
proved modeling of features and their temporal relationships.

Alternative architectures, such as CNNs or LSTMs, could also be explored within each feed-forward block
to enhance representational power. Here, the implementation of uncertainty quantification models can also
be considered to ensure reliable model output for risk evaluation and maintenance scheduling.

Post-processing of the RUL signal can reduce output variability as well. For instance, applying a weighted
moving average reduces fluctuations, improving stability and avoiding premature predictions, such as ob-
served in Figure 5.15d.

(a) Normalized average of raw inputs (b) Health Signal based on the LSTM-AE Reconstruction Error

(c) A detected fault based on the Health Indicator (d) Estimated RULs at every cycle

Figure 5.17: The steps taken to achieve fault detection and an RUL estimate of Case 1, segment 3: Hydraulic Fault
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5.6. Concluding Remarks
This chapter has demonstrated the implementation of the proposed framework for anomaly detection, fault
diagnosis, and prognosis of real-world OWT SCADA data. Results confirm that the framework is feasibly
applicable to such data and capable of generating interpretable outputs.

Compared to the simulated dataset in the previous chapter, the SCADA data presents unique challenges.
Short-lived, noisy features that occur in brief peaks create an intricate and unbalanced problem. This causes
reduced reliability of the HI, opposing responsiveness of the fault detection, and obscures failure-specific
features during early stages of fault development, reducing the accuracy of diagnosis and RUL prediction.

5.6.1. Discussion
The preceding sections identified several directions for potential model improvements, which are summa-
rized here. Then, insights gained from both case studies further inform recommendations for future research.

Opportunities for Model Improvements
Challenges of data imbalance could be mitigated through additional feature extraction or conditioning steps,
as well as employing more advanced autoencoder architectures to improve reconstruction accuracy. Refine-
ment of the fault decision criterion should also be considered, as well as the intelligent interpretation of
generated alarms.

For the DEC model, incorporating temporal sensitivity would enhance cluster reliability, enable distinc-
tion between early and late fault stages, and improve responsiveness to subtle degradation patterns. Further
improvement of classification accuracy involves improving the model’s responsiveness to spatial features.

Although improvements in the reconstruction error signal and fault detection appear to provide the great-
est contribution to RUL performance, larger datasets and advances in Transformer architectures will further
increase the stability and practical applicability of prognostic outputs.

Directions for Future Research
Unavailable or unreliable fault labels in SCADA datasets argue for an unsupervised approach. Still, partial
label availability can significantly improve diagnostic and prognostic accuracy. Therefore, future work could
investigate semi-supervised methods that leverage partial labels, derived from alarms or maintenance logs.

While deep learning models typically reduce data processing demands, intermediate preprocessing be-
tween framework stages is essential to ensure the informativeness of each signal. This thesis has shown that
even in deep learning pipelines, context-aware data handling can greatly contribute to improved experimen-
tal results.

Treating hyperparameter configuration, training, and testing of each sub-model independently improves
transparency but increases the risk of information loss and the propagation of uncertainty between stages.
For real-world deployment, it is essential to quantify uncertainty both locally and across the full framework,
thereby supporting robust O&M decision-making.

In addition, current optimization of individual models may lead to overspecification, limiting generaliza-
tion to other tasks. Future work could therefore investigate collective or end-to-end training strategies based
on global optimization objectives, enabling better coordination across tasks.

This also applies to the present case study, where model design might be overly specified on the EDP
dataset, and confirmation bias may occur during post-processing. Future research should validate the frame-
work on diverse case studies to ensure generalizability and account for dataset-specific inaccuracies such
as imperfect maintenance records, unreported faults, cross-turbine data transfer issues, and sensor errors.
Broader validation would also mitigate the stochastic variability of deep learning training and hyperparame-
ter optimization, thereby increasing confidence in both the results and the underlying design choices.



6
Conclusion

Effective maintenance decision-making requires condition monitoring methods that accurately reflect wind
turbine health. Unlike vibration or acoustic emission monitoring, which often requires additional hardware
and incurs higher costs, a turbine’s SCADA system offers a cost-effective and readily available alternative.
However, challenges such as poor data quality and the absence of labeled fault data complicate its direct
application. To address this, a data-driven framework for the unsupervised interpretation of Offshore Wind
Turbine (OWT) SCADA data has been developed.

The literature review highlights how deep learning methods, capable of capturing the interrelationships
in high-dimensional SCADA data, can be combined to achieve anomaly detection, fault diagnosis, and Re-
maining Useful Life (RUL) estimation.

An Auto-Encoder (AE) with time-sensitive LSTM nodes interprets the raw signal to obtain a refined signal
directly related to the health of the system. This signal can be interpreted as a Health Indicator that indicates
failure timesteps by applying a fault criterion.

To obtain a diagnosis, contrastive learning is applied with a 1D-Convolutional Neural Network to obtain
failure-mode-specific clusters. The relationship between formed clusters and their embedding is learned
by a classification neural network, so that the most likely failure mode of newly input data samples can be
identified.

Historic faults, detected by the LSTM-AE, are used to determine the RUL values of preceding timesteps
to inform a Transformer, which determines the associated RUL values of input sequences to evaluate the
maximum available time for maintenance.

To validate the framework under controlled conditions, NASA’s C-MAPSS simulated engine dataset was
used first. These results indicate the approach provides a competitive and sufficiently reliable means of data-
based health monitoring, achieving performance levels comparable to an extensive collection of similar stud-
ies.

Application to real-world OWT SCADA data demonstrates the framework’s feasibility in practical settings.
Compared to the simulated case, SCADA-based challenges introduced an increased data imbalance and less
clearly defined features, complicating the training of each model. This results in decreased reliability of the
health indicator, reduced responsiveness of the fault detection, and obscuring of failure-specific features dur-
ing early stages of fault development, which reduces the accuracy of diagnosis and RUL prediction.

Despite these limitations, this study shows that deep learning techniques can extract valuable health in-
formation from SCADA data. The proposed framework enables predictive maintenance optimization, with
the potential to reduce costs and enhance system reliability in offshore wind operations.
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Abstract
Effective maintenance decision-making depends on
the timely and intelligent anticipation of develop-
ing faults. Without requiring the installation of ad-
ditional sensors, failure-related information can be
extracted from the widely available Supervisory Con-
trol and Data Acquisition (SCADA) system. This work
presents an integrated deep learning framework de-
signed to interpret high-dimensional, unlabeled, and
often low-quality SCADA data for anomaly detection,
fault diagnosis, and Remaining Useful Life (RUL) es-
timation.

Its application to real-world offshore wind tur-
bine (OWT) SCADA data demonstrates its practical
feasibility. Despite challenges such as data imbal-
ance and obscured features due to SCADA data qual-
ity issues, the framework effectively extracts health-
related insights, enabling predictive maintenance
optimization.

1. Introduction
Wind energy plays a vital role in meeting the ris-
ing demand for renewable energy. With Operation
& Maintenance (O&M) costs comprising 25%–50% of
total energy generation costs, reducing expenses due
to equipment failures is critical [4]. Unexpected fail-
ures lead to downtime, costs, and safety risks, while
physically inspecting wind turbines introduces sig-
nificant costs [20, 21].

To mitigate these challenges, the wind indus-
try is moving toward data-driven, predictive mainte-
nance (PdM) strategies—where Condition Monitor-
ing (CM) remotely informs the optimization of ser-
vicing schedules, ultimately offering a more cost-
effective maintenance solution [66, 67].

Without requiring additional hardware, incurring
costs and complexity, a turbine’s Supervisory Control
And Data Acquisition (SCADA) system can provide
a cost-effective and readily available means for real-
time fault detection and prognosis [57]. A common
approach to capture the relationships in these sensor
signals is Machine Learning (ML). However, as tradi-
tional ML method effectiveness relies heavily on the
user’s capability of supplying informative and reliable
features, deep learning models have seen increased
use [104]. Without relying heavily on expert knowl-
edge or manual feature extraction, they excel at ex-

tracting high-dimensional and nonlinear patterns for
regression, classification, and clustering tasks, out-
performing traditional ML, statistical, and physical
models, particularly for datasets with minimal or no
labels [106–108]. As a result, Deep Learning is in-
creasingly applied in fault diagnosis [109–111] and
prognosis [112–114] of mechanical systems.

1.1. Scope of this Thesis
Significant advances have been made on both fronts
of offshore wind PdM: A wide range of models, meth-
ods, and strategies that are developed to optimize
offshore wind O&M decisions [18–21]. At the same
time, sensor- or SCADA-based WT CM is a widely dis-
cussed topic on the other [40, 43, 57]. However, these
areas are often studied in isolation, with limited in-
tegration between CM methodologies and the execu-
tion of maintenance actions.

Therefore, this thesis contributes to the develop-
ment of an integrated framework that allows for in-
formed data-driven maintenance decision-making.
It bridges the gap between CM and maintenance
planning by proposing a data-driven methodology
for fault detection, diagnosis, and Remaining Useful
Life (RUL) prediction.

Given the complexity of offshore environments
and the unpredictable nature of wind turbine faults,
the proposed framework is first validated using
NASA’s C-MAPSS simulated aircraft engine dataset in
the full version of this thesis. Results indicate that the
approach provides a competitive and sufficiently reli-
able means of data-based health monitoring, achiev-
ing performance levels comparable to an extensive
collection of similar studies.

2. Method Selection
Data-driven inference is primarily influenced by the
availability of labels, which can serve as failure exam-
ples that the model learns to recognize [115]. Incom-
plete or missing labels, dataset imbalances, and sen-
sors with limited responsiveness to early-stage fault
developments necessitate alternative approaches to
solve the task, such as unsupervised clustering or re-
construction tasks, or learning an intended purpose
through comparative methods [116].

For this reason, the fault or anomaly detection
model serves as a feature extraction step. Application
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Figure 1: Four characteristic steps of obtaining a fault diagnosis and RUL prediction.

of the fault detection model to historic data provides
RUL labels available for prognosis, while feature ex-
traction enriches the signal for diagnosis and progno-
sis tasks. Lacking fault labels, fault diagnosis requires
a clustering step as well, which is used to obtain fault-
specific training labels for classification. This way,
these tasks are combined as illustrated in Figure 1,
allowing for a deeper understanding of system capa-
bilities, reduced complexity of the task, and optimal
matching of methods [175].

2.1. Anomaly detection
As an automated feature extraction step, responsive
to deviations from a healthy state, implementation
of an unsupervised anomaly detection method in-
creases robustness to varying and possibly unprece-
dented conditions and failure mechanisms [176].
Even in the presence of labeled SCADA data, label
reliability is not a guarantee, where unsupervised
methods are more robust to possible uncatalogued
anomalies or label inaccuracies [177].

Schlechtingen and Santos, as well as Correa et al.,
demonstrate that multiple variations of a standard
neural network can be applied to monitor a variety of
WT component failures from SCADA data [65, 121].
Increasing the number of layers of an NN can im-
prove the understanding of representations of exten-
sive SCADA data sets [122]. However, they are limited
in handling temporal dependencies or complex, dy-
namic systems.

Belief networks learn the probability density of
a healthy state, capable of automatically extracting
degradation features [136]. This makes DBNs well-
suited for fault detection through modeling or learn-
ing normal behavior of WTs from SCADA data [138–
140]. However, belief networks are difficult to imple-
ment in multi-variate systems, struggle in evaluating
long-term dependencies, and are vulnerable to dis-
turbances and noise [114].

Auto-Encoder
An Auto-encoder (AE) encodes and decodes input
data, learning essential parts of the data in the pro-

cess. By comparing the reconstructed output with
the original input, Wang et al., as well as Zhao et
al., track this reconstruction error (RE) to derive an
indicator for turbine component failure [125, 126].
Renström demonstrates that a single model compris-
ing multiple AE layers is capable of automatically de-
tecting faults in many different components of a WT
[127].

One approach is to include LSTM nodes in the
structure, improving the extraction of temporal rela-
tions as demonstrated by de Pater & Mitici [131]. The
LSTM cells allow the retention of important informa-
tion while discarding irrelevant data [148, 207, 212].

Predictions based on these features often require
the integration with time-sensitive approaches [119].
Therefore, AEs are frequently considered as a fea-
ture extraction step, improving predictions based on
SCADA data for WT blade damage [134] and WT RUL
prediction [135]. Through the unsupervised extrac-
tion of features from high-dimensional data, AEs are
highly valuable for degradation tracking and health
monitoring of mechanical systems.

2.2. Fault Clustering
As information on historic failure examples is often
unavailable, the degradation behavior of an input sig-
nal should be interpreted. Originating from com-
puter vision [182], contrastive learning methods are
promising for fault diagnosis of unbalanced and un-
labeled SCADA data, beneficial to the accomplish-
ment of classification and scheduling tasks [122, 183,
184].

In time series, an advanced application of con-
trastive learning is deep embedded clustering (DEC).
Through an encoder, data is mapped into a latent
space where clustering is more effective by satisfying
a discriminative loss function [187–189]

Convolutional Neural Networks
DEC is often performed by Convolutional Neural Net-
works (CNNs), as the encoder should be adequately
capable of the spatial features of each failure mech-
anism in both long- and local term [144]. Cluster
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coherence is improved because the filters (convolu-
tions) can capture both subtle, gradual degradation
patterns and sudden changes in the input data, while
preserving temporal relationships.

Excelling in feature extraction and spatial pattern
recognition, CNNs are highly capable for contrastive
learning, while Xiang et al., Kong et al., and Sun et al.
demonstrate CNN effectiveness in WT SCADA feature
extraction [51, 145, 146].

A set of data points at the same time forms a one-
dimensional signal, so a compact 1D-CNN is applied.
These offer reduced complexity and computational
cost, while demonstrating capable performance on
multi-variate applications with limited labeled data
and high signal variations [190].

2.3. Fault Classification
As a comparative method, data clustering is compli-
cated by low data quantities, prone to transfer issues
when comparing multiple turbines, and sensitive to
uncertain or overlapping failure mechanisms. There-
fore, inclusion of a final classification layer improves
class separation and model robustness by allowing
for improved reasoning and interpretation of clusters
during real-time implementation.

When the trained encoder embeds future sam-
ples, the classification task involves assigning them
to the most likely class. Because of the relatively low
complexity of this task, a standard feed-forward, fully
connected, NN is applied, able to learn the charac-
teristic differences between different clusters in the
embedding, and update its training based on new in-
formation for diagnosis of new problems [105].

2.4. Prognosis
Prediction of future RUL values involves extracting
a relationship between distinctive features and time.
Commonly, RUL prediction methods follow super-
vised learning. By analyzing current and histori-
cal run-to-failure data profiles, the degradation trend
and corresponding point of failure can be estimated.

Sequential Networks
To model time-dependent behavior in sequential
data, Recurrent Neural Networks (RNNs), Long
Short-Term Memory (LSTM), and Gated Recurrent
Unit (GRU) networks have been developed, effective
in capturing medium-term dependencies [149–151].

Especially LSTMs are considered well-suited for
RUL estimation using sensor data [147], while Hsu
et al. demonstrate promising results in SCADA data-
driven regression [148]. Combining multiple layers
increases the reasoning for advanced time-based fea-
ture extraction in RUL prediction [149, 153, 155, 156].

While LSTMs and other recurrent networks are
popular for tasks that require temporal sensitivity, se-

quential processing of data can be slow, limit truly
long modeling, and increase sensitivity to data imbal-
ance and overfitting.

Attention-based Models
The concept of attention allows the model to focus
on the most relevant parts of the input, proven to en-
hance model reasoning [157–161].

Through increased computational efficiency of
attention, Transformers can handle large computa-
tional tasks. Although the primary focus of trans-
formers has been in natural language processing and
image recognition, their potential in PdM has re-
cently gained attention [163, 164, 166]. Several stud-
ies have explored combining the Transformer with an
AE to extract fault information and predict RUL [167–
169].

While Transformers have shown promise in
power forecasting [170–172], the development of
transformers for Wind PdM remains behind. Zhao et
al. utilized transformers for gearbox fault detection
through predicted temperature [173], while Zheng et
al. implemented a semi-supervised anomaly detec-
tion method using only a small amount of labeled
data [174].

The true potential of Transformers for SCADA
analysis still requires research. Still, comparison
of initial results shows consistent improvements in
terms of training speed, predictive performance,
and data requirements, enhancing temporal pattern
recognition and improving RUL prediction accuracy.

3. Model Design
Following the sequence of Figure 1, after discussing
preprocessing, in-depth descriptions are provided for
the selected methods, covering model architecture,
training, and implementation to obtain the complete
framework architecture depicted in Figure 2.

3.1. Dataset Preprocessing
In data-driven applications, proper conditioning of
the multivariate SCADA input signal is a critical step
in ensuring optimal model performance and reliable
results. After conditioning, the sliding window tech-
nique generates overlapping sequences of length m
using a stride or step size s, which can be divided into
training, testing, and validation datasets [209, 210].

Normalization
To ensure stable and efficient training of machine
learning models, data inputs should be normalized to
reduce these variations and reduce the risk of scaling
and gradient-exploding problems. The choice of nor-
malization method depends on the nature of the data
and can significantly impact model performance.
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Sklearn’s "RobustScaler" centers on the median
and scales by the interquartile range (IQR), ensuring
that outliers, prevalent in SCADA data, have less in-
fluence on the scaling process, while preserving es-
sential data characteristics [208], as follows:

x ′ = x −median(x)

IQR(x)

3.2. LSTM-AE for Anomaly Detection
To identify behavior that deviates from normal, an
Auto-Encoder (AEs) with LSTM nodes ( Figure 2(a))
is trained to reconstruct healthy data, such that the
reconstruction x̂ , matches the input signal x . When
training, model parameters are adjusted by calculat-
ing their derivative with respect to the output, which
propagates backward throughout the model. Model
weights and biases are adjusted to minimize a loss
function based on the Mean Squared Error (MSE):

Lr(x , x̂) = 1

n

∑
i

(xi − x̂i )2

Health Indicator Construction
For an AE trained to reconstruct healthy data, the
RE is directly linked to defects or other operational
anomalies. It can be interpreted as a quantified dif-
ference between the in- and output of the AE, mea-
sured by methods such as Euclidean distance [128,
130, 215, 216]. Another measure for dissimilarity is
the Mahalanobis distance (MD), which considers the
covariance structure of the data, ensuring that highly
correlated signals do not dominate the results [127,
217, 218].

If Cx is the covariance matrix of the AE recon-
struction error ri = xi − x̂i , the MD for each feature
i can be calculated as:

MDi =
√

r T
i C−1

x ri

To improve the stability and fault responsiveness
of the HI, additional smoothing and normalization is
applied, fitted on normal bounds identified by vali-
dation data passed through LSTM-AE.

Then an exponentially weighted moving average
(EWMA) produces the HI (Figure 2(b)) [125, 127, 215].
Given the weight of newly introduced values λ, a
smoothed projection of the MD z is obtained as fol-
lows:

zt =λMD t + (1−λ)zt−1

Fault Detection
Finally, to decide between acceptable levels of de-
viations and failure, a fixed fault threshold can be

defined, functioning as an alarm decision criterion
[126].
To address limitations of traditional constant thresh-
olds, an adaptive thresholding approach is proposed.
Inspired by Liu et al., this threshold dynamically ad-
justs based on recent data trends, captured by the
statistical properties of recent observations [220]. At
a specific time t , the threshold analyzes a prede-
fined window of historical HI values of size w to find
a mean µt−w and standard deviation σt−w . Com-
bined with a sensitivity parameter κ that controls the
threshold’s responsiveness to variations, the thresh-
old value is determined as:

Ti =µt−w +κ ·σt−w

Fault detection is determined by a decision-
criterion based on the smoothed HI value z and
the determined fault threshold T , where an alarm is
raised if:

Alert =
{

1 if zt ≥ T,

0 otherwise.

3.3. 1D-CNN for Fault Clustering
While the RE is very suitable for HI construction,
SCADA data imbalance and short-lived fault indica-
tors result in highly overlapping and dispersed fault
clusters. Therefore, DEC-based diagnosis of SCADA
data involves clustering of the LSTM-AE latent space,
which provides rich health-related information [132,
133]. A 1D-CNN-based encoder is defined to obtain
a latent interpretation of the input data, where dif-
ferences in failure characteristics are amplified (Fig-
ure 2(c)) [186, 227, 229].

In the process of mapping input data to a lower-
dimensional space, the model is trained to iteratively
optimize a self-supervised clustering objective of two
contrastive loss functions, which allows for the opti-
mization of larger and smaller data structures [228,
229].

A "Non-Parametric loss" (Lseq ) is calculated be-
tween sequences, refining the global structure of
the latent space using Softmax-normalized similarity
scores [186, 234]. To flexibly learn meaningful rep-
resentations without needing categorical labels, co-
sine similarity is computed as the dot product of nor-
malized latent representations Si , j = zi ·z j

||zi ||||z j || , applied

between pairs zi and z j , scaled by a temperature pa-
rameter T , encouraging each sequence to be closer to
its most similar counterpart:

Lseq =− 1

N

N∑
j=1

log
exp(S j ,i∗/T )∑N
i=1 exp(S j i /T )

A "Pair loss" (Lpai r ) acts at a finer granularity, en-
suring small clusters form around data points that
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Figure 2: Key steps in the framework: (a) anomaly detection, (b) health indicator construction, (c) fault clustering, (d) classification, and
(e) RUL estimation.

share common characteristics. Similarity is calcu-
lated by Euclidean distance D(i , j ) = ||i− j ||2 between
pairs i and j in the embedding space. Given a num-
ber of samples N , the distance between similar pairs
Si j is minimized while the distance between negative
pairs is encouraged to be larger than a given margin
m:

Lcontrast = 1

N

∑
i , j

Si j D2
i j + (1−Si j )max(0,m −Di j )2

During training, at a certain training epoch eentry,
the loss shifts from global to the local optimizations
during η epochs at a rate α(e) = min(1,

e−eentry

η ). Con-
sidering an optional gain g to balance out the differ-
ence in loss range, the contrastive loss is defined as:

Lc(e) =
{
Lseq if e < eentry

(1−α)g ·Lpair +α ·Lseq if e ≥ eentry

Embedded Clustering
By calculating the backward gradients of the 1D-
CNN, each epoch should reduce the contrastive
losses and therefore improve fault class distinctions.
Clusters are initialized with k-means clustering on
the encoded features, ensuring dense, spherical clus-
ters, suitable for refinement. Based on the up-
dated parameters of the 1D-CNN, these cluster soft-
assignments are iteratively updated at each epoch,
ensuring smooth clustering behavior and robust

adaptation of cluster centers to the data distribution
[185, 188, 235].

For a latent representation zi and cluster centroid
µk , cluster updating is guided by its soft assignment
qi k , which can be interpreted as the probability of as-
signing a sample i to cluster k. Soft assignments are
calculated by a Student’s t-distribution, and used to
update centroids as follows:

qi k = (1+||zi −µk ||2)−1∑
j (1+||zi −µk ||2)−1 , µk =

∑
i qi k zi∑

i qi k

Once centroids are updated after the final train-
ing epoch, each sample is assigned to the cluster with
the highest probability ci = argmax

k
qi k , where ci is

the assigned cluster label for sample zi .

Cluster Post-Processing
After DEC, the inferred clusters in the encoded
space are derived from their initial k-means estimate.
SCADA data can contain irregular, non-spherical
clusters of an unknown number after training, so
clusters should be recalculated using density-based
clustering. Density-Based Spatial Clustering of Ap-
plications with Noise (DBSCAN) has seen implemen-
tations for improving image and data-mining per-
formance [236, 237]. Sporadic applications of WT
SCADA clustering for power forecasting [238] and
anomaly detection [218, 239]. For complex struc-
tures or varying densities, a hierarchical version of
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DBSCAN (HDBSCAN) is applied to evaluate clusters
at varying comparison levels.

3.4. NN for Fault classification
To learn the relationship between the extracted fea-
tures of historic data and their failure modes, a Fully
Connected Neural Network (FCNN) (Figure 2(d))
minimizes a Cross-Entropy loss function [174, 240].
This loss encourages confidence in correct answers,
while implicitly penalizing mistakes. This loss ex-
presses the error between the predicted labels ĉ and
learned clusters c as follows:

Lcl =−
C∑

i=1
ci log ĉi

3.5. Transformer for RUL prediction
To capture long-term dependencies and inter-
variable correlations in the attention mechanisms,
the Transformer follows an encoder-decoder struc-
ture Figure 2(e). First, a linear embedding layer maps
the input data to the model dimension. Then, af-
ter positional encoding, the embedded input data
passes through a self-attention layer of multiple
heads, where all the other input data points are taken
into context [162, 163].

Before decoding and generating the output, an
encoded version of the previously generated output
is included as an additional input, enabling auto-
regression. The decoder then follows the same opera-
tions as the encoder, followed by a single linear trans-
formation to project the model calculation to the de-
sired output.

Transformer Training
By analyzing measurements in the training dataset,
the fault detection model provides end-of-life labels
T̂ < T . To recognize the relationship between a given
input sequence and matching RUL values, the differ-
ence between model output and target RUL values
should be minimized. This difference is described
by the Mean Squared Error (MSE), given in subsec-
tion 3.2.

To train auto-regressive behavior, the decoder is
fed true RUL targets of the previous timestep through
teacher forcing. Facing complex representations
or imbalanced datasets, the model might become
overdependent on the training targets and develop
exposure bias. During training, the influence of the
targets should be gradually reduced to increase reli-
ability in the absence of input targets during testing
[249].

4. Case Study Implementation
This work considers the Energia De Portugal (EDP)
dataset, which provides detailed descriptions of

maintenance actions, which are essential for model
validation [261]. The dataset includes status and er-
ror codes, anemometer readings, and, most impor-
tantly, 81 SCADA sensor signals that provide data di-
rectly related to turbine performance and condition.

The dataset covers four 2 MW turbines, spanning
two years. To maximize the use of available data
and allow for comprehensive testing across all tur-
bines, four different experimental configurations de-
fine training, validation, and testing sets, given in Ta-
ble 1. For testing, the unseen dataset is split into
segments corresponding to individual failure events
marked by timestamps in the maintenance logs—
overlapping or closely spaced failures grouped into a
single segment, where final component replacement
is often leading.

Case 1 Case 2 Case 3 Case 4

Training T01, T06 T06, T07 T07, T11 T01, T11
Validation T07 T11 T01 T06

Testing T11 T01 T06 T07
Fail Modes 2 2 3 4
Fail Events 4 2 5 5

Table 1: Specified Test cases. Fail Modes and Fail Events refer to the
number of fault types and occurrences for the testing subset.

The implementation of each model function is
considered in its section. Hyperparameters that con-
trol the behavior of each model task are optimized
per task, ensuring optimal performance and reveal-
ing parameter sensitivity. Optimization is performed
by repeated retraining of the model based on Case 1,
while aiming for a specified objective, using the opti-
mization package ’Optuna’ [263]. Detailed results of
the optimization study are available in the full version
of this work, including parameter search spaces, sen-
sitivity, and discussion.

4.1. Preprocessing
A series of SCADA-specific preprocessing steps pre-
pares the dataset, conditioning the time series for
model interpretation. First, irrelevant measure-
ments, such as minima, maxima, and averages of the
same sensor, should be dropped, as they add noise,
reducing prediction accuracy and increasing compu-
tational burden [134, 266, 267]. Variables with similar
temporal effects are identified by a correlation anal-
ysis, where parameters with an absolute correlation
larger than 95% are dropped, resulting in 31 remain-
ing sensors [206].

Further conditioning involves handling duplicate
measurements and linear interpolation of missing
values. Normalization is applied as introduced in
subsection 3.1, fitted on only training and valida-
tion data to avoid data-leakage. After processing, se-
quences can be generated using the sliding window



4. Case Study Implementation 63

approach.

4.2. Anomaly Detection
Essential patterns and trends in the time-series data
collected from OWT SCADA systems are captured
through compressing and decompressing the input
by an LSTM-AE.

LSTM-AE Hyperparameter Configuration
Optimal configuration of the LSTM-AE should cor-
rectly capture the most important features indicative
of healthy operation, so that the RE closely matches
developing defects during testing. Therefore, a pa-
rameter configuration is selected that offers the low-
est validation loss, given by Table 2.

Parameter Setting

Window Size 48
Step Size 12

Hidden Size 1 224
Hidden Size 2 224
Hidden Size 3 64

Latent Size 48
Number of Layers 1

Learning Rate 0.005
Number of Epochs 40

Table 2: LSTM-AE Hyperparameter settings

Larger autoencoder node sizes are selected as
they yield better performance by reducing compres-
sion severity and preserving more information. Simi-
larly, higher latent sizes improve stability by retaining
more of the original feature space.

A single-layer architecture avoids overfitting is-
sues and the overall intractability of the model. As
a consequence, dropout is disabled, which is applied
to connections between layers, instead of within the
same layer, because this risks disrupting temporal
dependencies.

A small window and step size are selected to
increase stability and reduce computational time,
while learning was best performed at a high rate.

By averaging Mean Squared Error (MSE) and Ma-
halanobis Distance (MD) expressions of the LSTM-
AE reconstruction error, their varied responses to
noise are canceled out. Smoothing with λ = 0.0001
then gives the HI, while the adaptive failure threshold
is properly tuned by selecting window size w = 3000
and responsiveness to the standard deviation k = 3.5.

Fault Detection Results
After proper configuration of the model, Figure 3a
demonstrates how system deterioration drives up the
health indicator, causing a generated alarm. Fig-
ure 3b illustrates how varying health indicator trends

affect the threshold, resulting in alarms at multiple
timesteps that match transformer faults in the main-
tenance logs, as indicated by gray dashed lines.

For each case, frequently used HI performance
metrics are calculated and given in Table 3, along
with the share of detected faults. Anomalous behav-
ior is detected thirteen out of sixteen times. Temper-
ature errors and larger replacements score best, while
hydraulic group errors, such as oil leakage and brake
circuit errors, are sometimes missed if their influence
on turbine operation is too subtle for capture.

Test Case Mono. Trend. Prog. Detected

Case 1 0.63 0.36 0.87 2/4
Case 2 0.77 0.86 0.94 2/2
Case 3 0.65 0.88 0.84 4/5
Case 4 0.66 0.83 0.82 5/5

Table 3: Monotonocity (Mono.), Trendability (Trend.), and Prog-
nosability (Prog.) and share of detected faults

4.3. Fault Diagnosis
Due to the compression of the data, health-specific
information is stored in the LSTM-AE latent space.
Contrastive learning aims to amplify differences in
failure behavior reflected in the data structure, which
the classification model can then learn.

Only the sequences that contain alarms are con-
sidered to emphasize class distinctions. Also, features
unrelated to faults should be removed, which can be
identified by analyzing their sensitivity during failure
regions.

1D-CNN Hyperparameter Configuration

Encoder settings, given in Table 4, are configured to
maximize clustering accuracy. This involves properly
assigning fault types according to the maintenance
logs, while avoiding cluster collapse due to loss im-
balance, poor initialization, or unstable training dy-
namics.

Clustering performance increases with network
size. A kernel size of 1 was found to be optimal, as
it projects features individually. Dilated convolutions
allow the network to capture broader temporal de-
pendencies, enhancing the modeling of both local
and semi-global patterns.

The extensive collection of generated input se-
quences is downsampled by introducing a convolu-
tion stride, reducing temporal resolution to improve
cluster distinction. Padding is dynamically set to half
the kernel size to preserve sequence length.
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Parameter Setting

CNN Layers 6
Hidden Size 184
Latent Size 16

Max Dilation 4
Convolution Kernel Size 1

Pooling Kernel Size 1
Convolution Stride 4
Loss Temperature 4

Loss Margin 9
Window Size 6

Step Size 1
Number of Epochs 70

Learning Rate 0.0005
Gamma (lr decay) 0.85

Table 4: 1D-CNN Hyperparameter settings

During training, high values for the temperature
and margin parameters of the sequence-based and
pairwise contrastive losses ensure significant trans-
formations of the data structure, ensuring increased
separation of dissimilar pairs.

After encoding, cluster assignments are refined
using HDBSCAN at a distance value of 12. Train-
ing setting results vary since various combinations
and timings of loss functions can influence cluster-
ing quality. Robust is slow training for 70 epochs,
while starting the shift towards local contrastive loss
at epoch 62, with a shift rate of 15 epochs.

Based on the encoded input, repeated training of
the FCNN used for classification suggests the optimal
balance between interpretation capacity and gener-
alizability is obtained with a single layer of 164 nodes.

Clustering Results
Using t-SNE dimensionality reduction, Figure 4
demonstrates how samples, marked by their true
fault category according to the failure logs, are moved
during training epochs to suit the training loss func-
tions. Samples that belong to the different failure

modes can be observed to form increasingly well-
defined groups over time, first in a global aspect, and
then refined locally in the last epoch.

By comparing the inferred label of each sequence
to the assumed ground truth, model accuracy is given
for supervised and unsupervised contrastive learn-
ing in Table 5. Formed clusters, with or without la-
bel availability, are visualized in Figure 5a. Inferred
or ground-truth clusters marked by color, showing
the transformer fault is best defined, likely as its in-
fluence on SCADA sensors varies compared to drive-
train components. The generator bearing fault is ob-
scured mainly by the generator and gearbox clusters.

Clustering Accuracy
Case Unsupervised Supervised

Case 1 55-61% 92-97%
Case 2 56% 97.9%
Case 3 60.5% 93.7%
Case 4 68.3% 90%

Table 5: Clustering accuracy, for supervised or unsupervised ap-
proaches to each case. The accuracy of case 1 gives the range fol-
lowing n=5 tests.

(a) Fully unsupervised clustering results

Figure 5: t-SNE visualization of inferred cluster labels vs. their true
label. 1 = Gear., 2 = Gen., 3 = Gen. Bear., 4 = Hydr., 5 = Trans.

Classification Results
The trained encoder compresses unseen testing data
before the classification model classifies it. To ver-
ify improved accuracy of fault classification based

(a) T11 Generator Fault (b) T07 Transformer Fault

Figure 3: Health-Indicator and generated alarms (red markers), through adaptive fault threshold (red line), compared to maintenance
action (Gray)
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on learned contrastive embeddings, the accuracy of
classification is given in Table 6 for both supervised
and unsupervised clustering cases. Additionally, the
table includes the accuracy of performing classifica-
tion directly on the LSTM-AE output, bypassing the
1D-CNN.

Classification Accuracy
Case Uns. DEC Sup. DEC No DEC

Case 1 0-40% 30-42% 10-25%
Case 2 39% 48% 31 %
Case 3 40% 46% 33%
Case 4 33% 36% 31%

Table 6: Classification accuracy following unsupervised DEC
(Uns.), Supervised (Sup.), or without DEC (No DEC). The accuracy
of case 1 gives the range following n=5 tests.

4.4. Fault Prognosis
RUL prediction involves learning the relationship be-
tween the LSTM-AE output and the corresponding
time to failure. RUL labels derived from historically
detected faults are capped and normalized to stabi-
lize training [75, 142, 250, 251].

Transformer Hyperparameter Configuration
Correctly specifying Transformer parameters in-
volves minimizing the validation loss, ensuring rele-
vant features can be extracted and translated to RUL
values, while ensuring it generalizes to unseen in-
puts. Short-lived fault features in SCADA data quickly
infer overfitting and exposure bias, limiting the size of
the optimal transformer architecture, defined by hy-
perparameters given in Table 7.

The model width is comparable to the number
of input features, indicating the LSTM-AE signal is
already informative and does not benefit from large
transformations. Three encoder layers ensure the
model is capable of interpreting data relationships
without over-complicating training, while two de-
coder layers perform the simpler task of generating
the RUL signal. The optimal feed-forward layer size
of 24 further reflects the task’s low nonlinearity and

suggests that the attention layers extract clear, well-
defined end-of-life indicators.

The narrow transformer requires precise train-
ing to balance convergence and generalization.
Dropout randomly masks attention weights of the
self-attention mechanism, or neurons in the fully
connected layers, preventing overfitting. Larger win-
dows improve the model’s ability to learn temporal
dependencies, while smaller step sizes increase over-
lap and prediction confidence. Both benefits are bal-
anced against computational limitations, however.

Parameter Setting

Number of Encoder Layers 3
Number of Decoder Layers 2

Model Dimension 32
Number of Heads 8

Feedforward NN Dim 24
Window Size 136

Step Size 40
Number of Epochs 150

Learning Rate 2e-4
Gamma (lr decay) 0.8

Gamma Stop 5
Dropout 0.25

Table 7: Transformer Hyperparameter settings

RUL Prediction Results

Figure 7 visualizes predicted RUL—expressed in re-
maining operational days—for faults in the gearbox,
generator, generator bearing, and transformer. A de-
tailed example of the full RUL prediction pipeline
is shown in Figure 8, highlighting input signals,
reconstruction-error-based health estimation, fault
detection, and RUL prediction for a hydraulic system
failure.

Prediction accuracy is quantified using RMSE
across timesteps per case and given in Table 8. It
shows Hydraulic- and generator faults yield the most
consistent predictions due to the higher number of

(a) Epoch = 1 (b) Epoch = 10 (c) Epoch = 20 (d) Epoch = 40 (e) Epoch = 60 (f) Epoch = 70

Figure 4: t-SNE visualization of 1D-CNN latent space during training of Case 1, using eentry = 60. Blue = Gearbox, Green = Generator,
Gray = Hydraulics, Cyan = Transformer
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(a) T06 Generator Fault (b) T01 Gearbox Fault (c) T07 Generator Bearing Fault (d) T07 Transformer Fault

Figure 7: RUL prediction (Blue) based on the LSTM-AE inferred RUL (orange), compared to true RUL (red)

fault examples for these components.

(a) Normalized average of raw inputs (b) Health Signal based on the LSTM-
AE Reconstruction Error

(c) A detected fault based on the
Health Indicator (d) Estimated RULs at every cycle

Figure 8: Fault detection and an RUL estimate of T11 Hydraulic
Fault

Unsupervised Supervised

Case 1 22.31 38.94
Case 2 35.01 44.57
Case 3 28.44 37.64
Case 4 26.63 22.84

Table 8: RUL prediction RMSE in days, for RUL prediction based
on LSTM-AE Latent Space data.

5. Conclusion
An integrated framework of deep learning methods
enables the unsupervised interpretation of Offshore
Wind Turbine (OWT) SCADA data for anomaly de-
tection, fault diagnosis, and Remaining Useful Life
(RUL) estimation.

To validate the framework under controlled con-
ditions, a simulated case engine dataset is stud-
ied. These results indicate the approach provides a
competitive and sufficiently reliable means of data-
based health monitoring, achieving performance lev-
els comparable to an extensive collection of similar

studies.
Application to real-world OWT SCADA data

demonstrates the framework’s feasibility in practical
settings. Compared to the simulated case, SCADA-
based challenges introduced increasing data imbal-
ance and less clearly defined features, complicating
the training of each model and impacting reliability.
This results in decreased reliability of the health indi-
cator, reduced responsiveness of the fault detection,
and obscuring of failure-specific features during early
stages of fault development, which reduces the accu-
racy of diagnosis and RUL prediction.

By assessing these limitations, several model im-
provements and directions for future work are pro-
posed. First, the Autoencoder (AE) could benefit from
incorporating Attention Mechanisms, as suggested in
recent literature, to better focus on relevant input re-
gions and mitigate the effects of data imbalance. Ad-
ditionally, intelligent compression of the input could
improve anomaly detection by emphasizing key pat-
terns.

To enhance fault diagnosis, the DEC model
should account for temporal context. This would al-
low for distinguishing between early and late fault
stages and increase sensitivity to subtle degrada-
tion. Further improvement of the diagnosis involves
increasing the responsiveness of the classification
model to spatial features.

While improvements to the reconstruction error
signal and fault detection are likely to have the most
significant impact on RUL prediction, further steps
such as post-processing and uncertainty quantifica-
tion are recommended to ensure the stability and
real-world viability of the RUL output.

Finally, future work should focus on validating the
framework across additional case studies to ensure
generalizability and reduce the risk of confirmation
bias introduced during post-processing.

Despite these challenges, this study shows that
deep learning methods can extract meaningful
health information from SCADA data, supporting the
predictive optimization of maintenance.
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C-MAPSS Case Study - Supplementary

Material
B.1. C-MAPSS Computational Configuration
The proposed machine learning architecture is implemented in Python’s PyTorch library. This package pro-
vides neural network building blocks, including layers and activation functions, whose dimensions and be-
havior are specified by user-specified hyperparameters. Network operation is defined by writing a ’forward’
function, specifying the flow of information. During training, backward inference is automatically calculated
based on this forward structure.

Adaptive moment estimation method (Adam) is one of the most popular optimizers offering high compu-
tational efficiency and requiring little tuning (Liu et al., 2021 [271]). When mentioned, learning is supported
by an exponential learning decay scheduler, improving the fine-tuning of the model. When computation-
ally possible, model operation runs with a batch size of 256. Construction is performed in Pytorch (2.5.0), in
the environment Python (3.13). The computer configuration for training was Intel Core i7-8750H (CPU) @
2.20GHz, 16 GB 2666 MHz DDR4 (RAM), NVIDIA GeForce GTX 1050 Ti (GPU).

B.2. Elaboration on the selection of EWMA smoothing factor
Figure B.1 demonstrates the effect of different settings of the parameter λ, which influences the weight of
newly added values to the weighted moving average, where a higher weight means new values are more in-
fluential and the curve responds more quickly. HI performance metrics based on different values of λ are
given in Table B.1. While a low weight results in a smoother curve, and thus higher monotonicity, the respon-
siveness is too low to properly reflect the current health state, and the effect of irrelevant early life deviations
is stored in the average for too long, at the cost of trendability.

(a) λ= 0.005 (b) λ= 0.05 (c) λ= 0.5

Figure B.1: Comparison of the effect of different values of λ on engine #35

λ= Monotonicity Trendability Prognosability

0.005 0.4 0.64 0.88
0.05 0.33 0.94 0.9
0.5 0.08 0.83 0.95

Table B.1: Health Indicator performance metrics based on different values of λ
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B.3. Additional Implementation Figures

Figure B.2: Multiple constructed health indicators of a randomized test configuration, normalized for generating this plot.
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B.4. Transformer hyperparameter sensitivity

(a) Neuron Dropout (b) Feed Forward NN Layer Width in Neurons

(c) Model Width in Neurons (d) Number of attention heads

(e) Number of Encoder Layers (f) Number of Encoder Layers

(g) Sliding Window Size (h) Sliding Window Step Size

Figure B.3: Box Plots for transformer sensitivity after 50 optima parameter optimization trials, showing the Validation Loss (MSE) per
hyperparameter.
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B.5. Additional C-Mapss RUL figures

(a) Engine #9 (b) Engine #41

(c) Engine #101 (d) Engine #114

(e) Engine #124 (f) Engine #140

(g) Engine #182 (h) Engine #184

Figure B.4: Figures depicted the predicted RUL values of eight random testing engines with 95% confidence, their targets, the engine’s
true RUL, and the engine’s eol.
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B.6. Greatest C-Mapss RUL Error Contributors

(a) Engine #142 (b) Engine #196

Figure B.5: Predicted RUL values of two engines that contributed the most out of the testing set, with 95% confidence, targets, the engine’s
true RUL, and the engine’s eol.
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C.1. Overview of Available SCADA Datasets
Overview of available SCADA datasets for investigating data challenges and selecting a suitable case for study.

[59], [272], but most recently [273] and [206], include reviews or overviews on available open-source
SCADA datasets. A short overview is given in Table C.1, showing some characteristics of currently accessi-
ble datasets relevant for WT CM.

Datasets Number of WT Type Time span Reported information # of Parameters

Beberibe [274] 32 Onshore 1 year SCADA 43
EDP [261] 4 Offshore 2 years SCADA, metmast, (failure) logs 121

DSWE I1 [275] 4 Onshore 1 year SCADA (Wind), metmast 7
DSWE I2 [275] 2 Onshore 1 year SCADA (Wind), metmast 8
DSWE O1 [275] 2 Offshore 1 year SCADA (Wind), metmast 9
DSWE O2 [275] 2 Offshore 1 year SCADA (Wind), metmast 8

PCWG [276] 3 - 8, 6, 2 months SCADA (Wind) metmast 17
Kelmarsh [277] 6 Onshore 5 years Static, SCADA, metmast, logs 303

Penmanshiel [278] 14 Onshore 5 years Static, SCADA, metmast, logs 303
Ørsted [279] Unknown Offshore 2 years SCADA 5

USP [280] 1 Onshore 5 years SCADA 40
Vestas [281] 1 Onshore 14 years SCADA 22
Yakova [282] 1 Onshore 1 year Wind-, power parameters 4

Table C.1: Available open-source SCADA datasets. Sampling rate of 10 min. SCADA data: i.e., temperatures, power parameters, and
speeds. Metmast: meteorological tower measured Wind Speed, Direction, and other ambient measurements. Logs: status descriptions,
such as component activations and failure descriptions. Static: Hub Height, Rated Power, etc.
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C.2. Wind turbine failures of EDP dataset
Failure logs as provided by the dataset.

Turbine ID Component Timestamp Remarks
T01 Gearbox 18.07.2016 Gearbox pump damaged
T06 Generator 11.07.2016 Generator replaced
T06 Generator 24.07.2016 Generator temperature sensor failure
T06 Generator 04.09.2016 High temperature generator error
T06 Generator 27.10.2016 Generator replaced
T06 Generator 02.10.2016 Refrigeration and temp. sensors in the generator replaced
T06 Hydraulics 04.04.2016 Error in pitch regulation
T07 Generator bearing 30.04.2016 High temperature in generator bearing (replaced sensor)
T07 Transformer 10.07.2016 High temperature transformer
T07 Transformer 23.08.2016 High temperature transformer. Transformer refrigeration repaired
T11 Generator 03.03.2016 Electric circuit error in generator
T11 Hydraulics 17.10.2016 Hydraulic group error in the brake circuit

Table C.2: EDP wind turbine failures 2016

Turbine ID Component Timestamp Remarks
T01 Gearbox 18.7.2016 Gearbox pump damaged
T01 Transformer 11.08.2017 Transformer fan damaged
T06 Gearbox 17.10.2017 Gearbox bearings damaged
T06 Hydraulics 19.08.2017 Oil leakage in Hub
T07 Generator bearing 20.08.2017 Generator bearings damaged
T07 Generator 21.08.2017 Generator damaged
T07 Hydraulics 17.06.2017 Oil leakage in Hub
T07 Hydraulics 19.10.2017 Oil leakage in Hub
T11 Hydraulics 26.04.2017 Brake circuit error
T11 Hydraulics 12.09.2017 Brake circuit error

Table C.3: EDP wind turbine failures 2017
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C.3. List of all studied hyperparameters

Model Parameter Description Research Scope

LSTM-AE

Window Size Length of input sequence 16–128 (step=16)
Step Size Step size of sliding window 2–24 (step=2)
Window Size Size of the sequence window input 12–24 (step=6)
Step Size Step between sequence windows 1–4 (step=1)

Size 1 Dimensionality of first LSTM layer 32–256 (step=32)
Size 2 Dimensionality of second LSTM layer 32–256 (step=32)
Size 3 Dimensionality of third LSTM layer 16–128 (step=16)
Latent Size Bottleneck dimension of encoder output 8–64 (step=8)
Num Layers Number of stacked LSTM layers 1–5
Window Size Size of the sequence window input 12–24 (step=6)
Step Size Step between sequence windows 1–4 (step=1)

Learning Rate Effect backpropagation has on Nodes with the optimizer 5e−4 to 1e−2 (log scale)
Epochs Number of training epochs 20–160 (step=20)
Dropout Probability that individual nodes might be excluded 0.1–0.5 (step=0.1)
Gamma Learning rate decay factor (l r = l r ∗e−(gamma∗epoch)) 0.8–0.99 (log scale)
Gamma Stop Epoch after which learning rate decay stops 1–101 (step=20)

1D CNN

Window Size Size of the sliding window 6–126 (step=12)
Step Size Stride of the sliding window 1–24

Conv Kernel Size Size of the convolutional kernel 1 - min(12, window_size/4)
Stride Step size of the convolution operation 1–4
Pool Kernel Size of pooling kernel (MaxPooling) 1, 2
Max Dilation Max dilation rate for dilated convolutions 1, 2, 4, 8, 16
Number of Layers Number of convolutional layers (combined Conv+Pooling) 1–6
Hidden Size Size of the intermediate dense layer after convolutions 24–280 (step=32)
Latent Dim Size of the latent feature space 8–64 (step=8)

Epochs Number of training epochs 5–155 (step=25)
Learning Rate Learning rate for optimizer 1e−5 to 1e−3 (log scale)
Gamma Exponential decay factor for learning rate 0.7–0.99
Stop Epoch after which LR decay is halted 1–26 (step=5)

Drop Threshold Minimum feature sensitivity threshold -0.3 to 0.5 (step=0.1)
e Entry Epoch after which second loss function starts (seq or pair loss) 5–155 (step=15)
Seq Loss Ratio Weight factor of the Seq Loss as it is often higher than the pair loss 0.1–1.0 (step=0.1)
New Clusters Ratio Weight of new cluster assignments after a training epoch 0.1–1.0 (step=0.1)
Loss Grad Epochs needed to shift from one loss to another after eentry calculate

loss gradient
5–25 (step=5)

Margin Margin parameter used in contrastive loss 0.1–10.0
Temperature Temperature scaling for sequence loss 0.1–8.0
Drop Healthy Whether to exclude healthy sequences during clustering True, False
First Global Whether to apply global- (Seq) before local (Pair) refinement True, False
Adaptive Margin Whether the adaptive margin used in the pair loss during training True, False

DB Scaler Whether to scale DBSCAN input distances True, False
DB Type Type of density-based clustering used (DBSCAN or HDBSCAN) db, hdb
DB Dist Distance threshold for DBSCAN 2–30 (step=2)
Eps Percentile Percentile for selecting neighborhood distance for calculating DB-

SCAN eps
5–95 (step=10)

Transformer

Window Size Size of the sequence window input 50–140 (step=30)
Step Size Step between sequence windows 40–64 (step=8)

Num Heads Number of attention heads in multi-head attention 2–16 (step=2)
Model Dim Width of the transformer layers & Embedding dimension (adjusted to

multiple of num_heads)
16–96 (step=8)

Encoder Layers Number of Transformer encoder layers 1–4
Decoder Layers Number of Transformer decoder layers 1–4
Feedforward Dim Size of the feedforward network within each Transformer block 16–64 (step=8)

Learning Rate Learning rate for optimizer 5e−4 to 5e−3 (log scale)
Epochs Number of training epochs 125–250 (step=25)
Dropout Dropout rate applied to Transformer layers 0.01–0.5
Gamma Learning rate decay factor 0.8–0.99 (log scale)
Gamma Stop Epoch after which learning rate decay stops 5–40 (step=5)
Max Rul RUL value used for label clipping 14e3–20e3 (Step=1e3)

Table C.4: Hyperparameter tuning space across different model architectures.
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C.4. Delft Blue Workflow
This section outlines some of the steps taken to set up Delft Blue and run the files of this thesis. For a more
extensive outline, the reader is referred to the Delft Blue Documentation [283].

C.4.1. Delft Blue Access
With a direct or VPN connection to the TU Delft network, Delft Blue Access requires logging in with a user
account via SSH:

ssh jhes@login . del f tblue . t u d e l f t . nl

C.4.2. Setting Up the Environment.
Since DelftBlue uses module-based package management, load the required modules before running scripts:
Set up / load modules:

module load slurm
module load 2024r1
module load cuda/12.4 # 12.4 has compatibil i ty with PyTorch
module load miniconda3 # For s e t t i n g up conda environment

C.4.3. Creating a Conda Environment
Create Anaconda environment Set up PyTorch and Optuna in the accessible Anaconda environment. With a
compatible Python version:

conda create −p / scratch / jhes / torch_env python=3.10
conda a c t i v a t e / scratch / jhes / torch_env
pip i n s t a l l pytorch # Pip i s recommended to avoid compatibil i ty i s s u e s
pip i n s t a l l optuna
conda i n s t a l l pandas numpy # Ensure compatible versions

C.4.4. Job Submission
Upload the required files and create a SLURM batch script (.sh file) for submitting jobs. This file defines the
task and required resources, which are activated in the cmd via:

sbatch run_script . sh

Below is an example Slurm script:

# ! / bin/sh
#SBATCH −−job−name=example_test
#SBATCH −−output=test_output . t x t
#SBATCH −−error= t e s t _ e r r o r . t x t
#SBATCH −− p a r t i t i o n =gpu
#SBATCH −−account=education−me−msc−me
#SBATCH −−time =02:00:00
#SBATCH −−ntasks=1
#SBATCH −−cpus−per−task=1
#SBATCH −−gpus−per−task=1
#SBATCH −−mem−per−cpu=1GB

module load 2024r1
module load cuda/12.5
module load miniconda3

conda a c t i v a t e / scratch / jhes /my_env
srun python DelftBlue_example . py −−optuna_trials 50 > pi . log
conda deactivate
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C.5. EDP Missing Values

Occurrences of missing values in each turbine dataset.
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(a) T01

(b) T06

(c) T07

(d) T11

Figure C.1: Missing timestamps of EDP dataset, where 1 indicates a missing row and 0 indicates a present row
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C.6. Preprocessed EDP SCADA Inputs

This section depicts time series and power curves of the selected 31 sensors after preprocessing.
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Figure C.2: Time-series of the 31 normalized & conditioned input features, at a measurement frequency of 10 minutes
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Figure C.3: Power curves plotting Average active power against the 31 normalized & conditioned input features, at a measurement fre-
quency of 10 minutes
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C.7. Study of Optuna Robustness
Ideally, a robust optimization model would yield the same outcome for different study cases and when ap-
plied to the same case repeatedly. To verify the model’s robustness in this manner, the proposed method for
hyperparameter optimization is applied to each study case (Table 5.1) and an additional time to cases 1 and
2. The results are outlined in Table C.5 below.

It can be observed that increasing the number of trials improves the model outcome. This is only a rela-
tively small increase, however, so a further increase of the number of trials (and therefore a drastic increase
of the required computational time) is not considered. When reviewing the optimal hyperparameters, some
similarities can be seen, but also a lot of variations. To assess the differences and similarities across studies,
case 1 (R) and case 2 (R) are compared in Figure C.4.

Trials Pruned
Trials

Optimal
Val.
Loss

Proposed Hyperparameters

Case 1 50 27 3.305 size_1: 128, size_2: 128, size_3: 32, latent_size: 40,
num_layers: 1, lr: 0.0014, num_epochs: 140, window_size: 80,
step_size : 20, dropout: 0.30, gamma: 0.822, gamma_stop : 1

Case 1
(R)

100 52 3.24 size_1: 256, size_2: 224, size_3: 128, latent_size: 64,
num_layers: 1, lr: 0.001437707373457665,num_epochs: 140,
window_size: 128, step_size: 20, dropout: 0.4, gamma:
0.9326386759583164, gamma_stop: 1

Case 2 50 39 3.052 size_1: 224, size_2: 256, size_3: 48, latent_size : 64,
num_layers: 1, lr: 0.005, num_epochs: 120, window_size: 48,
step_size : 6, dropout: 0.4, gamma: 0.912, gamma_stop: 1

Case 2
(R)

100 54 2.985 size_1: 128, size_2: 96, size_3: 64, latent_size : 40, num_layers:
1, lr: 0.002, num_epochs: 100, window_size: 96, step_size : 18,
dropout: 0.2, gamma: 0.919, gamma_stop: 1

Case 3 50 10 3.581 size_1: 192, size_2: 224, size_3: 96, latent_size: 56,
num_layers: 1, lr: 0.0057, num_epochs: 160, window_size: 16,
step_size: 2, dropout: 0.30, gamma: 0.946, gamma_stop : 81

Case 4 50 42 3.607 size_1: 256, size_2: 192, size_3 : 128, latent_size: 8,
num_layers: 1, lr: 0.0015, num_epochs: 120, window_size: 16,
step_size: 2, dropout: 0.1, gamma: 0.90, gamma_stop: 1

Table C.5: Repeated optimization studies for each study case. Case 1 is run a second time for double the amount of time.

When comparing the two cases, several key differences emerge regarding the impact of hyperparameters:

• Validation Loss: Case 1 exhibits a higher validation loss overall, likely due to a greater presence of
failures in the validation dataset.

• Hidden Node Size: Case 2 requires a larger number of hidden nodes to effectively capture the increased
number of failure modes and occurrences in the training set.

• Latent Size: Higher latent sizes improve stability in both cases by reducing compression severity and
preserving more original feature information.

• Number of Layers: Optimal validation loss is achieved with a single-layer architecture.

• Both cases their optimal Learning Rate: Both cases converge best with a learning rate between 0.002
and 0.005, though this varies based on other factors such as the number of epochs and learning rate
decay settings.

• Epochs: Determining an optimal number of epochs is challenging, as additional epochs beyond con-
vergence do not impact validation loss but influence the variability seen in the results. However, a
minimum of 100 epochs is identified as sufficient for both cases.
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• Window Size: Similar for both cases, with not much variation, with the best validation loss stability
occurring at 128.

• Step Size: Optimal for both cases, around 16-20.

• Dropout: Since most trials were conducted with a single layer, PyTorch ignores dropout in such config-
urations, making dropout settings irrelevant in this context.

• Learning Rate Decay: The best performance in both cases is achieved by setting the stopping epoch
for LR decay at the first epoch, effectively disabling learning rate decay.

Figure C.4: Box Plots for LSTM-AE sensitivity after 100 optima parameter optimization trials for Case 1 (Blue) and 2 (Orange), showing
the Validation Loss (MSE) per hyperparameter.
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C.8. Adaptive Threshold
This section justifies the chosen adaptive threshold parameters. Two different case segments are selected for
their informativeness in this section. The same approach to parameter selection was applied to all the other
cases to find the eventual chosen values w = 3000 and k = 3.5.

Figure C.5 shows that for two different cases, the window size influences the height and smoothness of
the threshold. A short window increases the responsiveness to the current HI value, risking oversensitivity to
short and sudden HI increases like in Figure C.5a and Figure C.5d. A longer window size will leave more time
for deciding the initial threshold value, but waiting too long will underestimate slower deterioration behavior
like in Figure C.5f.

Figure C.6 demonstrates how k influences the responsiveness or sensitivity of the threshold to a chang-
ing standard deviation of the health indicator. More responsiveness to changes in the HI trend in this case
improves the timing of the detected fault, with an optimum of 3.5. Increasing k further will result in more
missed faults, as the HI curve will no longer intersect the threshold.

(a) Case 4, segment 2: w = 1500 (b) Case 4, segment 2: w = 3000 (c) Case 4, segment 2: w = 4500

(d) Case 4, segment 4: w = 1500 (e) Case 4, segment 4: w = 3000 (f) Case 4, segment 4: w = 4500

Figure C.5: Adaptive threshold sensitivity to window size, chosen value is w = 3000

(a) Case 4, segment 2: k = 1.5 (b) Case 4, segment 2: k = 2.5 (c) Case 4, segment 2: k = 3.5

(d) Case 4, segment 4: k = 1.5 (e) Case 4, segment 4: k = 2.5 (f) Case 4, segment 4: k = 3.5

Figure C.6: Adaptive threshold sensitivity to varying responsiveness to standard deviation, the chosen value is k=3.5
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C.9. Additional LSTM-AE Result Plots
Result figures are given for each case.

Case 1
Figures showing Case 1 output, where T11 is the testing turbine.

Figure C.7: Case 1

Case 2
Figures showing Case 2 output, where T01 is the testing turbine.

Figure C.8: Case 2
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Case 3

Figures showing Case 3 output, where T06 is the testing turbine.

Figure C.9: Case 3

Case 4

Figures showing Case 4 output, where T07 is the testing turbine.

Figure C.10: Case 4

C.10. Verification of sensor selection method

Test Case Mono. Trend. Prog. Detected Faults

Case 1 0.51 0.16 0.78 1/4
Case 2 0.74 0.44 0.82 0/2
Case 3 0.58 0.53 0.72 3/5
Case 4 0.52 0.80 0.91 3/5

Table C.6: Monotonocity (Mono.), Trendability (Trend.), and Prognosability (Prog.) of the EDP test cases, as well as their share of detected
faults, when the complete SCADA sensor dataset is used as input.
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C.11. Supplementary Boxplots for DEC
Additional Boxplots of configurable parameters switching certain model functions, training-related parame-
ters, or DSCAN parameters.

Figure C.11: DBSCAN Distance and Scaler decision

Figure C.12: CNN Training Parameter Sensitivity

Figure C.13: Method Decision Booleans
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C.12. Supplementary Boxplots for Transformer
Additional box plots of configurable parameters related to the training process of the Transformer.

Figure C.14: Box Plots for Transformer sensitivity after 100 Optuna parameter optimization trials, showing validation loss per hyperpa-
rameter.
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C.13. Additional Transformer Result Plots
Result figures are given for each case.

Case 1
Figures showing Case 1 output, where T11 is the testing turbine.

Figure C.15: Case 1

Case 2
Figures showing Case 2 output, where T01 is the testing turbine.

Figure C.16: Case 2
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Case 3
Figures showing Case 3 output, where T06 is the testing turbine.

Figure C.17: Case 3

Case 4
Figures showing Case 4 output, where T07 is the testing turbine.

Figure C.18: Case 4
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