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Summary
We consider energy systems in the built environment. With the transition to
a more sustainable, distributed, and ‘smart’ energy system, such local grids
are undergoing significant changes. Among other developments, the new role
of end-users as ‘prosumers’ – users that can either produce or consume power
depending on the situation – is turning energy systems in the built environment
into autonomous microgrids with complex internal interactions.

One of the primary challenges for these local grids is maintaining grid
stability, which requires constant balancing of supply and demand. Because
local grids were not designed for distributed energy generation and large loads
such as electric vehicle charging, their limited capacity is now leading to
congestion. Since the responsibility for resolving congestion falls increasingly
on the individual prosumers and their flexibility, the concept of fairness must
take a central role in congestion management.

In this dissertation we present our research on supply-demand matching
mechanisms for fair congestion management. The local networks populated by
users can be represented by radial multi-agent commodity flow systems. For
the resource allocation problems in this setting we draw on the fields of mech-
anism design and fair division to design provably fair congestion management
mechanisms. We evaluate the merit of different notions of fairness and present
algorithmic mechanisms that align agent incentives with fair allocations.

We find that notions of fairness regarding congested commodity flow net-
works can either focus on local or global fairness. Agents can have differing
opinions on the two, depending on how wide they draw the circle of peers that
they compare themselves to. We find that the mix of producers and consumers
requires slight adaptation of notions of fairness, with agents envying one group
while welcoming the other. Furthermore, we find that it is possible to combine
notions of fairness with welfare optimization by letting individual agents de-
cide which of the two is more important, and protecting their fair shares.

We are able to use the radial structure prevalent in energy systems in the
built environment to design algorithmic mechanisms of consistently low com-
putational complexity. The congestion solutions of these mechanisms satisfy
different local and global fairness criteria, for which we provide rigorous
proofs. We prove that our mechanisms are individually rational and, for varia-
tions of egalitarian fairness, also incentive compatible. Finally, we introduce a
congestion aftermarket where agents compensate their peers for flexibility.

vii





Samenvatting
We richten ons op energiesystemen in de bebouwde omgeving. Met de transitie
naar een duurzamer, gedistribueerd en ‘slimmer’ energiesysteem verandert er
veel voor zulke lokale netten. Dankzij ontwikkelingen zoals de nieuwe rol van
eindgebruikers als ‘prosumenten’ – gebruikers die zowel kunnen verbruiken
als opwekken – veranderen energiesystemen in de bebouwde omgeving in
autonome micronetten met complexe interne interacties.

Een van de belangrijkste uitdagingen voor deze lokale netten is het borgen
van netstabiliteit, wat vereist dat vraag en aanbod constant gebalanceerd wor-
den. Omdat lokale netten niet zijn ontworpen voor gedistribueerde energieop-
wekking en grote belasting zoals die van elektrische auto’s, leidt hun beperkte
capaciteit nu tot congestie. Omdat de verantwoordelijkheid voor het oplossen
van congestie steeds meer bij de individuele prosumenten en hun flexibiliteit
ligt, moet eerlijkheid een centrale rol krijgen in congestiemanagement.

In dit proefschrift presenteren we ons onderzoek naar eerlijke congestie-
managementmechanismen voor het koppelen van vraag en aanbod. De lokale
netwerken kunnen we modelleren als radiale multiagentsystemen met interne
stromen. Om bewijsbaar eerlijke mechanismen voor allocatie te ontwerpen,
putten we uit de vakgebieden van mechanismeontwerp en eerlijk verdelen. We
evalueren verschillende begrippen van eerlijkheid en presenten algoritmische
mechanismen die prikkels voor agenten in lijn brengen met eerlijke allocaties.

We zien dat eerlijkheid bij congestie in stroomnetwerken over lokale ofwel
globale eerlijkheid kan gaan. Agenten hebben hier wisselende meningen over,
afhankelijk van hoe groot ze de kring waarmee ze zich vergelijken trekken.
We zien dat de mix van producenten en consumenten een lichte aanpassing in
begrippen van eerlijkheid vraagt, omdat agenten jaloers zijn op de ene groep
terwijl ze de andere verwelkomen. Verder zien we dat het mogelijk is om
eerlijkheid te combineren met welzijnsoptimalisatie door individuele agenten
te laten beslissen wat belangrijker is, en hun eerlijke deel te beschermen.

We gebruiken de radiale structuur die veel voorkomt bij energiesystemen
in de bebouwde omgeving om algoritmische mechanismen van lage compu-
tationele complexiteit te ontwerpen. Hun congestieoplossingen voldoen aan
verschillende lokale en globale eerlijkheidscriteria, wat we rigoreus bewijzen.
We bewijzen dat voor onze mechanismen deelname rationeel is en, voor vari-
aties van egalitaire eerlijkheid, ook waarheidsgetrouw is. Tot slot introduceren
we een congestienamarkt waar agenten elkaar compenseren voor flexibiliteit.
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1 Introduction

The core of this dissertation is based on four research papers. This introductory
chapter lays out the necessary groundwork for the reader to both follow the
technical content of the scientific research as well as place it in its wider
context.

1.1 Context of the Research
Since the beginning of the 21st century, the ‘energy transition’ of our energy
system has been steadily gaining momentum. It entails a transition from tra-
ditional centralized demand-follows-supply systems that rely predominantly
on large ‘grey’ power plants (e.g coal), to distributed and ICT-connected en-
ergy systems that rely on ‘green’ power (e.g. solar) and the flexibility of their
users. This transition is for a large part enabled by the increasing deployment
of renewable energy sources (RES) such as wind and solar, together with new
types of appliances such as electric vehicles, heat pumps, battery storage and
other domestic electric usage technologies. Renewable energy sources are of-
ten intermittent and local in nature, while new electric usage technologies often
allow flexibility in their consumption patterns. Such developments are trans-
forming end-users into ‘prosumers’ that are able to switch between the role of
producer and consumer depending on the local situation of generation.

The distributed nature of the future energy system has already started to
become visible in society. After large windmills on the horizon and solar panels
on building rooftops, in recent years we have seen a surge in solar fields for
local communities and in electric vehicle ownership, sometimes coupled with
sizeable local energy storage. This goes to show how many aspects of the
energy transition have been picked up with enthusiasm and have made their
way to integration in the built environment.

However, the limitations of our energy system are also beginning to show.
Utilizing the full potential of flexible prosumers at all levels of the energy sys-
tem will require infrastructure to gather and share detailed grid use informa-
tion, as well as new ways to coordinate prosumers moment to moment using
this information. But more tangibly, our current grid is unable to accommodate

1



2 Chapter 1 Introduction

Figure 1.1 Capacity map for electricity demand in the Netherlands on August 8th, 2022
(Netbeheer Nederland, 2022). Color coding: Transparent: no congestion (yet).
Yellow: congestion imminent. Orange: advance notice of structural congestion.
Red: structural congestion, new applications for network use are denied.

all the new renewable energy initiatives. In the Netherlands, towards the end of
2018, new fully planned and funded local solar fields started being denied con-
nection to the grid by the grid operators (van den Berg, 2019). The current grid
capacity has proven insufficient to support new generation at the local level.

Figures 1.1 and 1.2 show grid capacity issues across the Netherlands in the
summer of 2022. Figure 1.1 shows congestion on the demand side, which is
mainly caused by electrification of industrial processes and transportation (e.g.
electric vehicles). Figure 1.2 shows the severe and widespread congestion on
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Figure 1.2 Capacity map for electricity supply in the Netherlands on August 8th, 2022
(Netbeheer Nederland, 2022). Color coding: Transparent: no congestion (yet).
Yellow: congestion imminent. Orange: advance notice of structural congestion.
Red: structural congestion, new applications for network use are denied.

the supply side, which is mainly caused by distributed and renewable energy
resources. Both are especially prevalent at the medium voltage level.

1.1.1 Topic of this dissertation

We consider the problem of electricity network congestion management in
the built environment within the context of the energy transition. Congestion
management, i.e. reducing or resolving grid congestion, is an aspect of supply-
demand matching which has always been fundamental to energy systems.
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Unlike other goods, electricity cannot easily be stored and its production and
consumption are continuously tied to each other. At each moment, supply and
demand must be closely matched. Preferably, matching supply and demand
should be done at the community level, to avoid transportation losses, decrease
network congestion, and simplify the complex task of global balancing.

Traditionally, system operators continuously predict demand and plan ap-
propriate supply from power plants. The generated power is sent through the
transmission grid to the distribution grid in the built environment where end-
users are located. With the energy transition, this situation is changing. End-
users adopt the role of prosumers; users that can act as both producers and
consumers, depending on the circumstances.

Moreover, the energy transition brings about a paradigm shift from ‘supply
follows demand’ to ‘demand follows supply’. Where in the traditional cen-
tralized system generation followed end-user demand, in future decentralized
systems the individual prosumers are tasked with so-called demand response
to follow the volatile production of renewable energy sources. This places the
consequences of resolving congestion increasingly on individual prosumers.

To adequately address this transition from a traditional centralized energy
system towards more active participation of end-users, we will consider the
future energy system as a multi-agent system: a system composed of multi-
ple interacting intelligent agents. The agents represent prosumers which are
autonomous decision-makers, and their decisions to take actions can be coor-
dinated by a mechanism: a payoff structure for actions in an interactive set-
ting. To replace the centralized system, we must thus design supply-demand
matching mechanisms that incentivize agents to align their actions with the
requirements of the grid.

More specifically, we must design such mechanisms to address the new
challenges that energy systems in the built environment face. Moving from
a centralized system to a prosumer-based one means that the direction and
magnitude of power flow is no longer trivial. Complex power flows may now
arise within the local grid, turning local grid topology into a significant and
constraining factor. Where network congestion used to be a concern at the
transmission level only, it is now also a concern within the local grid.

In recent years congestion management costs have soared (Nabe et al.,
2017), even at the local distribution level (Haque et al., 2016). Research
indicates that this congestion is not easily solved by storage (Härtel et al.,
2016). Another potential solution is to increase grid capacity through physical
grid reinforcement, i.e. putting larger power lines in the ground. However, this
solution is expensive and above all time-consuming. Research suggests that
coordinating network use to stay within existing capacity constraints is less
costly than grid reinforcement (Okur et al., 2018a).
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Therefore, we set out to design supply-demand matching mechanisms for
multi-agent energy systems that take distribution grid topology into account
and focus on local congestion management. Our multi-agent models should
thus have a topological component, which is then reflected in the mechanisms.
An agent’s location and desired prosumption relative to other agents will
determine the prosumption that they can realize within the grid constraints.

Immediately, this raises a question regarding fairness. When local conges-
tion occurs and desired prosumptions cannot be realized, which prosumers are
called upon to deviate from their desired prosumptions and by how much?
Congestion, i.e. prosumption exceeding line capacities, by definition causes a
conflict of interest. Traditionally, resolution of this conflict was the responsibil-
ity of grid operators, with ancillary cervices being called upon to accommodate
end-user consumption.

With individual prosumers now being called upon to provide the flexibil-
ity necessary to resolve congestion, it becomes essential to explicitly incorpo-
rate the concept of fairness in the mechanisms governing the energy system.
This requirement is highlighted by the European Commission, which states
that “energy is a critical good, absolutely essential for full participation in
modern society. The clean energy transition also needs to be fair for those sec-
tors, regions or vulnerable parts of society affected by the energy transition.”
(European Parliament, 2016).

Therefore, the topic we consider in this dissertation is that of fairness
in congestion management mechanisms for the built environment. With this
research we also contribute to the multidisciplinary Smart Energy Systems in
the Built Environment (SES-BE) research program, see Appendix A.

1.1.2 Formulating the research questions

With this topic we set out to define our research questions. To summarize, we
consider constrained systems populated by prosumers that are represented as
autonomous decision-making agents. We seek to meet the fairness and conges-
tion management requirements of energy systems in the built environment. We
can use supply-demand matching mechanisms to try to align the incentives of
the agents with these goals. Therefore, we formulate the following overarching
research question:

In a constrained multi-agent power flow system, how can we define fair-
ness and how can we subsequently design supply-demand matching mech-
anisms that manage congestion fairly?

To answer this question we must investigate which notions of fairness may
apply to our setting. There are some unique aspects to consider. First, our
setting has an important topological factor: an agent’s role in congestion and
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supply-demand matching is to a large degree affected by its predetermined
location. Second, the interaction between supply and demand divides agents’
dispositions towards each other into two categories: consumers compete with
other consumers while they are aided by producers, and vice versa. This leads
us to formulate the following research question:

Which factors determine how agents compare themselves to other agents,
and how can we duly define, measure, and compute fairness among them?

The two mentioned aspects also affect how we approach congestion man-
agement. The topological factor means that congestion may occur in specific
parts of the network and affect specific subsets of agents. Congestion may even
occur simultaneously in multiple subnetworks across the network. The inter-
action between supply and demand also provides opportunities for resolving
congestion. Local matching of supply and demand reduces interaction with
agents elsewhere in the system and may therefore reduce strain on intercon-
necting lines. With these factors in mind we formulate the following research
question:

How does local supply-demand matching affect congestion and how can
we incorporate local balancing into notions of fairness?

The question regarding locality can also be drawn wider than the network
under consideration. In electricity networks, different levels work together to
create an interlocking system of energy generation, matching, and distribution.
A local distribution grid, for example, acts in the transmission system with a
single prosumption that results from all its internal interactions. As we see,
the situation of a subnetwork as a whole may depend on its interaction with a
higher-level network. This then affects how the network can be fairly managed
internally. Hence we formulate the following research question:

How can we adapt fair congestion solutions within a subnetwork to its
collective interaction with a higher-level network?

Finally, we consider how fairness contrasts with welfare when congestion
occurs. Since congestion implies a collective limitation that affects individ-
ual agents, we emphasized the importance of fairness. However, congestion
also implies a market limitation that has consequences for welfare, both on
a collective and individual scale. Where fairness considers the agents’ rela-
tive prosumptions, welfare considers the agents’ total generated value. These
contrasting views make it so that optimizing a congestion solution for either
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one is unlikely to also optimize for the other. Consequently, we formulate the
following research question:

How do fairness and welfare relate to each other in the presence of limita-
tions imposed by congestion, and is there a way to reconcile them?

Before attempting to answer these research questions we will provide an
overview of the most important concepts in our research, specifically in power
networks, mechanism design, and fairness. With this basis the reader should
then be well prepared to grasp the research that follows.

1.2 Important Concepts in Power
Systems
Power networks have grown to become an indispensable cornerstone for our
modern lifestyle. Especially in the built environment, access to the power
system is never far away. Moreover, one can rely on the constant availability
of power provided by this power system. In fact, nearly all systems, both large
and small, among which many vital systems, are dependent on the omnipresent
availability of power systems and their continuous reliability. In many places
around the world power outages have become a rare phenomenon, with far-
reaching consequences when they do occur.

Nevertheless, the ubiquitous availability and reliability of power systems is
no small feat. In order to keep the system running, generation and consumption
of electricity must constantly be balanced over the entire grid. A plethora of
ancillary services and system operators constantly make sure that the balance
is preserved and system constraints such as line capacities and voltage and
frequency margins are satisfied. This all takes place within a volatile and
uncertain context that involves open, although heavily regulated, markets and
the constantly varying consumption by millions of power users.

1.2.1 Traditional power system operation: physical aspects

The electrical power system is made up of three primary components: produc-
tion (e.g. generators, power plants), consumers (e.g. domestic use, factories),
and the grid (e.g. electrical power lines). Production is traditionally associated
with a relatively small amount of large power plants. Consumption, on the
other hand, is associated with a large amount of small end-users (and some
larger ones). The contrasting transportation requirements of large and small
amounts of power are accommodated by a division of the grid into a transmis-
sion system and a distribution system.
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The transmission system comprises a large, often national or even inter-
national, grid of high-voltage cables that transport large amounts of power.
The high-voltage is to minimize energy loss across power lines due to resis-
tance. Since power is a product of current and voltage, and line-losses scale
quadratically with current, losses can be reduced by transforming the power to
low-current high-voltage.

The distribution system comprises small local grids of medium- and low-
voltage cables. The power from the transmission system is transformed to
medium-voltage at substations, which is then transported close to end-users
where it is further transformed to utilization voltage. Large power users may
be connected directly to the medium- or even high-voltage networks.

Energy systems in the built environment are part of the distribution system.
These local grids typically have a radial, i.e. non-cyclic, structure and are
connected to the higher-level power system through a substation transformer.
Due to the difference in scale, from the perspective of the local grid the
transmission system can be seen as both an infinite source and an infinite sink,
i.e. as a node capable of unlimited production and unlimited consumption.
Interesting to note is that physically, local grids usually are not radial. There are
cross-connections that can be opened in case of line failures in order to prevent
parts of the grid from being completely cut off. However, during operation,
whether normally or during an emergency, the active part of the grid will have
a radial structure (Sallam and Malik, 2018).

The different levels of the power system are operated by different parties.
The transmission and distribution systems are operated by a transmission sys-
tem operator (TSO) and a distribution system operator (DSO) respectively. The
TSO is often partly or wholly owned by the state or national government, and is
responsible for the real-time stability of the power system and for coordinating
supply and demand. The TSO is required to maintain a continuous (second-by-
second) balance between electricity supply from power generators and demand
from consumers. As part of this, the TSO procures ancillary services to sup-
port power system operation, e.g. generators that can quickly increase their
production when needed. The TSO also has long-term responsibilities such as
expanding the transmission network and planning new generation.

The DSO is responsible for the stability and maintenance of the distribution
grid. Traditionally, the DSO essentially just makes sure that the incoming
power from the transmission grid is properly distributed in the local grid.
The DSO determines a configuration of the distribution system that minimizes
power losses (Merlin and Back, 1975). Reconfiguration involves solving power
flow equations that describe how power flows between nodes in the system to
find an optimal power flow (OPF) (Peng and Low, 2014). Because our power
systems use alternating current (AC), both active and reactive power must be
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considered in an OPF. Active power actually transfers energy to the consumer,
while reactive power travels back and forth over the lines and thus transfers no
net energy to the consumer.

For further reading we recommend (Schavemaker and van der Sluis, 2017).

1.2.2 Traditional power system operation: market aspects

Operating on top of the physical power network we have the electricity market.
This market system actually consists of several different markets that fill
different roles. Closest to the end-user we have the retail market. Individual
end-users purchase power from a retailer, usually through a contract with either
a fixed or variable electricity price. These retailers are private parties who
themselves participate in a more complex electricity market system along with
large generators, large consumers, and ancillary service providers.

This electricity market system can be categorized roughly into three
timescales: long-, medium-, and short-term. The long term markets include
forward energy markets and capacity markets. These markets operate from
about four years to one month before delivery and are used for example in the
planning of new facility deployment and long-term contracts.

The medium term consists of the wholesale or spot markets, which include
a day-ahead market and an intraday market. In the day-ahead market, parties
purchase or sell power for time slots in the order of one hour for the 24 hours of
the next day. The day-ahead market thus represents the planned production and
consumption a day in advance. Its price is set by a classic supply and demand
equilibrium price. After the day-ahead market is cleared, power can be traded
in the intraday market up to in the order of one hour before delivery. In systems
that use locational marginal pricing (LMP) the price is set per region of the
network, based on the marginal cost of production in that region.

Since there is always uncertainty in the demand for, and consumption of,
power, the planned consumption and production traded in the wholesale market
is essentially never realised. To maintain supply demand balance and grid
stability, deviations from the power traded in the wholesale market must be
resolved in a short-term balancing market. The balancing market operates on
intervals in the order of fifteen minutes up to real-time, and its prices can
vary wildly. Designated balancing responsible parties (BRPs) use this market
to negate deviations from their planned consumption or production. Each
generator and consumer of electricity must have a contract with such a BRP, or
be a BRP itself. The required flexibility, i.e. quickly consuming or producing
on-demand for the balancing market, is provided by ancillary services.

Summarizing, three main types of participants in the wholesale and bal-
ancing markets can be discerned. Suppliers generate electricity from resources
and sell it for a profit. Retailers and large consumers seek to predict their con-
sumption for the next day as best they can, and profit from using or reselling



10 Chapter 1 Introduction

the purchased power. Ancillary service providers seek to take advantage of
the volatile balancing market prices that arise from the constraint of constant
supply demand balancing.

The TSO is tasked with maintaining grid stability across these markets,
which is done through appointed BRPs and reserve power for any remaining
system imbalance. The TSO also organizes the long-term markets to main-
tain long-term grid stability. In some countries, the TSO can use redispatch to
increase or decrease output of specific generators to avoid regional grid con-
gestion which is not taken into account in the wholesale market.

For further reading we recommend (Kirschen and Strbac, 2018).

1.2.3 Changes brought about by the energy transition

Since the beginning of the 21st century the so-called energy transition has
started to gain momentum. The three primary developments that push the tran-
sition within the electricity network are the increasing penetration of renewable
energy sources, the innovation of so-called smart grids, and the emergence
of the so-called prosumer. Renewable energy sources such as wind and solar
challenge the foundations of traditional power system management with their
intermittent and distributed nature, while smart grid ICT systems elevate inter-
connectivity between power system users to a new level. At the center of the
energy transition stands the flexible and digitally communicative end-user that
can switch roles between consuming and producing: the prosumer.

With these developments, the tasks of the TSO are rapidly becoming signif-
icantly more complex. The intermittent nature of renewable energy sources is
the cause of an increasing amount of uncertainty on the supply side. Where the
TSO could traditionally plan the procurement of generation in advance with
considerable accuracy, now unpredictable factors such as the weather intro-
duce larger and more frequent inaccuracies. In addition, the distributed nature
of many renewable energy sources means that the TSO can rely less on cen-
tralized control (Pepermans et al., 2005).

This movement from centralized to more decentralized control has a sig-
nificant impact on DSOs. Where the DSO would traditionally just distribute
the power coming in from the transmission network to its local users, it must
now manage its networks as complete grids with potentially complex inter-
nal interactions between prosumers. Luckily, smart grid technologies such as
smart meters and increased coordination through software communication can
facilitate microgrid management (Fang et al., 2012).

On the wholesale electricity market, participants are also faced with con-
sequences of the energy transition. Because large amounts of solar and wind
power are generated under certain conditions and their operational costs are
negligible, it can become difficult for traditional generators such as coal power
plants to compete. Even negative prices can already sporadically be observed.
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Retailers must adapt their predictive models to their customers’ increasingly
flexible demands that now at times even include production. Ancillary service
providers must address the increasingly frequent and severe imbalances that
result from uncertainty.

In general, there is an emphasis on the need for flexibility and on integra-
tion between levels of operation. The traditional centralized model cannot ad-
equately manage the new distributed elements of the energy system. This has
prompted the innovation of (market) mechanisms that coordinate between dif-
ferent system components such as local and national generation (Kok et al.,
2005) or even combine different resources such as heat with electricity mar-
kets (Saur et al., 2019).

With the primary feature of the traditional system being centralized control
of generation, we see that the energy transition is causing a paradigm shift
from “supply follows demand” to “demand follows supply”. In other words:
the flexibility of consumers is used to accommodate the intermittent supply of
renewable energy resources. This paradigm shift manifests in the introduction
of the concept of “demand-side management”. Demand-side management
calls for a new approach to system control and end-user market participation
(Methenitis et al., 2019a; Ramchurn et al., 2011).

1.2.4 Congestion management

With the energy transition, the nature of congestion in the electrical grid is
changing. Power systems are fundamentally physical systems consisting of,
among other components, metal cables called power lines. The amount of
power that can be transported over such a cable is limited; if too much power
flows over a cable it will heat up and eventually be damaged. In practice the
most dramatic damage is avoided because the security systems will disconnect
a cable before it passes its thermal threshold. The consequences of such an
event may still be grave, since disconnecting the line means the power is
diverted to other lines. This can lead to a cascade of disconnecting lines and
ultimately a complete black-out of the power system.

Traditionally, congestion only occurs at the transmission system level. Here
large amounts of power are transported over high-capacity power lines. The
transmission grid spans large regions and is internally cross-connected. This
grid structure allows the TSO to manage congestion by rerouting excessive
power through less-congested regions, as well as procure regional ancillary
services to mitigate congestion.

The ability of the TSO to manage congestion is the source of the so-called
“copper plate” analogy. If the entire power system were one giant copper plate,
power could flow unconstrained between producers and consumers regardless
of their locations. In reality, the cost of electricity depends on the generators
present in a region. In some countries the TSO’s congestion management
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efforts create the illusion of the copper plate. Other countries use for example
locational marginal pricing (LMP) which does take inter-regional transmission
system bottlenecks into account to arrive at regional electricity prices (Ma
et al., 2003).

At the distribution system level, however, congestion is a relatively recent
issue (Verzijlbergh et al., 2014). Renewable energy resources are being in-
stalled in increasing numbers near and even within the built environment. Dis-
tribution systems usually do not have the line capacity to support the relatively
large amounts of local peak generation. Moreover, their predominantly radial
structures do not provide the same rerouting opportunities found at the trans-
mission system level.

There are three main approaches to distribution system congestion man-
agement. The first is grid expansion. However, laying down more and larger
cables is a costly and above all time consuming process. At least on the short
to medium term, alternative solutions are more efficient (Spiliotis et al., 2016).
The second is increased control of when, where, and in what quantity power
flows, for example through power storage. However, the relatively small buffer
that storage provides can not easily resolve congestion (Härtel et al., 2016).
The third is demand response and flexibility.

For congestion management of this last type, i.e. coordinating prosumers
in the local network, the primary consideration should be active power curtail-
ment (Bach Andersen et al., 2012; Hu et al., 2014; Rivera et al., 2015; Tonkoski
et al., 2011; Verzijlbergh et al., 2014). Active power curtailment can take the
shape of incentives provided by mechanisms or, more directly, the shape of
quotas and direct control. In essence, active power curtailment is the allocation
of a limited amount of capacity to a number of prosumers whose unaltered
desired prosumptions would otherwise collectively cause congestion.

New solutions to distribution system congestion are being proposed
(Philipsen et al., 2016; Xue et al., 2009), often focusing on demand-side
management (Esmat and Usaola, 2016; Haque et al., 2017), electric vehicles
(Li et al., 2014; Rivera et al., 2015; Shao et al., 2017), and/or decentralized
multi-agent aspects of the problem (Ciavarella et al., 2019; Hu et al., 2015;
Vandael et al., 2011; Vytelingum et al., 2010). Solutions often try to utilize the
opportunities for local matching of supply and demand provided by the mix of
prosumers found in these distribution systems. Local matching can be used to
reduce strain on bottlenecks in the network.

With the paradigm shift from “supply follows demand” to “demand follows
supply” and accompanying demand-side management, the consequence of
resolving congestion lies increasingly with the prosumer; the individual end-
user. Resolving congestion always entails a choice between which prosumers
will sacrifice part of their desired prosumption. Since energy is a critical
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good required for full participation in society (European Parliament, 2016),
prosumer-based congestion management thus immediately raises an important
question regarding fairness: who gets what?

1.3 Important Concepts in Mechanism
Design
Secure and efficient operation of modern and future electricity distribution
systems relies increasingly on coordinating the prosumption of individual
prosumers present in the network. As opposed to the traditional centralized
optimization approach, demand-side management requires consideration of the
individual prosumers’ motives and constraints. In smart grid energy markets,
each prosumer can be represented as an autonomous decision-making agent.
An agent is an independent intelligent entity that observes the state of its
environment and subsequently takes actions in this environment based both
on what it observes and its internal valuation of states. An environment with a
number of agents acting and interacting within it is called a multi-agent system.
In practice, prosumers in smart grids are normally represented by software
agents: computer programs that act on behalf of a user.

Since prosumers are not directly controlled by the distribution system op-
erator, coordination in a distribution system calls for a multi-agent approach
(Vytelingum et al., 2010). Agents are at their core self-interested, and thus
if certain behaviour is required from a system operation perspective, this be-
haviour must be incentivized. The design of a system of rules and rewards that
incentivizes certain behaviour and leads to certain outcomes is called mech-
anism design. Mechanism design is sometimes referred to as “reverse game
theory” (Jackson, 2014; Nisan et al., 2007): where game theory is about find-
ing optimal agent strategies given the rules of a game, mechanism design is
about designing the rules of a game in such a way that optimal agent strate-
gies lead to a certain outcome for the system. A good mechanism aligns the
incentives of the agents with the requirements of the system.

For our application of congestion management we will in specific con-
sider resource allocation mechanisms. Markets are a form of resource allo-
cation mechanisms that use prices as incentives. Locational marginal pricing
(LMP) relies on such price incentives for congestion management; when con-
gestion occurs due to excessive consumption, the price is raised until agents
sufficiently reduce their consumption. This approach views the capacity at the
bottleneck(s) as a scarce good and applies scarcity pricing accordingly. How-
ever, resource allocation mechanisms need not be market- or price-based.
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In this work we will consider rational agents, i.e. agents that always take an
optimal action given their information, as is usual in such settings. This is not
necessarily the most accurate representation of reality; some agents, humans
for example, may instead exhibit bounded rational behaviour (Methenitis et al.,
2019b). Under the assumption of rationality, mechanisms can possess some
useful properties, the two most important of which we will highlight here.

For further reading we recommend (Weiss, 2013) and (Nisan et al., 2007).

1.3.1 Individual rationality

Arguably the most important aspect of a mechanism is whether any of the
agents that it was designed for actually want to participate in it. If, for example,
an agent sets out to purchase a good but by doing so risks being forced to pay
a price higher than it was prepared to, then that agent may think twice about
attempting to make a purchase. In other settings agents may have no alternative
to participating in the mechanism. Even then, it is important that agents are not
worse off than trying to minimize their participation in the mechanism.

We say that a mechanism is individually rational when each participating
agent is guaranteed to get a non-negative utility, where utility refers to the total
satisfaction of, or usefulness for, the agent (Nisan et al., 2007). In other words,
for each individual agent it is rational to participate in the mechanism. Individ-
ual rationality is also sometimes referred to as the participation constraint.

In our setting of energy systems and congestion management, individual
rationality refers to two aspects. On the one hand it refers to the level of
prosumption allocated to a prosumer. When a prosumer indicates a certain
production we do not want the mechanism to ask the prosumer to produce more
than they can nor do we want the mechanism to ask the prosumer to consume
instead, and vice versa. On the other hand individual rationality refers to the
monetary value for the prosumer. We do not want a prosumer to pay more than
the received power is worth to them, nor do we want a prosumer to receive less
for sold power than it cost them to generate it.

1.3.2 Incentive compatibility

Another crucial aspect of a mechanism is whether the participating agents are
actually playing by the rules. Since multi-agent mechanisms can constitute
strategic settings, and agents are self-interested, it may very well be that
agents attempt to strategically take actions that increase their own utility at
the expense of others. This is observed, for example, in traditional card games
where players are often incentivized to bluff or otherwise misrepresent the
information they hold in order to get an advantage over other players. Of
course, in such games this strategic interaction is a feature. However, in a
mechanism intended for social choice, i.e. aggregation of the preferences of
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the agents toward a single joint decision like division of limited capacity, such
strategic interactions can be detrimental.

We say that a mechanism is incentive compatible when each participating
agent cannot strategically improve their situation by intentionally misreport-
ing their preferences or other hidden information (Nisan et al., 2007). In other
words, the incentives that the mechanism provides for the agents are compat-
ible with the rules. An incentive compatible mechanism is also called truthful
or strategyproof, referring to the fact that it is in an agent’s best interest to
participate truthfully as opposed to acting strategically.

Different degrees of incentive compatibility can be discerned. From the
perspective of an agent, being truthful can either be a strongly dominant
strategy or a weakly dominant strategy. We say that being truthful is a strongly
dominant strategy if the agent will always be worse off when playing a strategy
that is not truthful. We say that being truthful is a weakly dominant strategy
if the agent is never better off when playing a strategy that is not truthful,
i.e. being truthful is at least as good as any other optimal strategy. Even
though these definitions subtly differ, they both define what we call dominant-
strategy incentive compatibility, which incentive compatibility usually refers
to. A weaker degree of incentive compatibility is Bayesian-Nash incentive-
compatibility, which only requires being truthful to be a best strategy given
that all other agents are also participating truthfully.

In our setting of energy systems and congestion management, incentive
compatibility can refer to two aspects. On the one hand it can refer to the
reported level of desired prosumption of a prosumer. We want prosumers to
report their actual desired prosumption, and not an artificially inflated one
aimed at receiving a larger share of available capacity when prosumptions are
curtailed (i.e. instructed to reduce). On the other hand incentive compatibility
can refer to the utility of the prosumer. We want prosumers to communicate
their actual valuations of consumed or produced power.

As a final note we emphasize the importance of incentive compatibility in
mechanisms for which fairness is a major factor. If such a mechanism is not
incentive compatible, agents can “game the system” in order to improve their
situation relative to other agents. Since the relative situations of agents are an
integral part of fairness, the existence of such strategies would significantly
undermine the mechanism’s claim of fairness.

1.4 Important Concepts in Fairness
The allocation of limited resources to different agents raises an important
question: what is a fair share for each agent? This problem of fairly dividing
limited resources is an active field of research in political science, economics,
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mathematics, and computer science (Procaccia, 2013). But the first question
we must ask is; what is fairness?

The concept of fairness is a fundamentally subjective one. At its core, it
relates to the opinion that agents have of their share relative to the share of other
agents. Without comparison of shares the concept of fairness is meaningless.
The study of such opinions on relative shares is known as social comparison
theory, which originates from the work of Leon Festinger (Festinger, 1954). In
the fields of psychology (Saxena et al., 2019) and behavioural economics (Fehr
and Gächter, 2000; Fehr and Schmidt, 1999), researchers observe the opinions
that humans inherently hold in different situations and attempt to distill from
them so-called notions of fairness.

In the fields of mathematics and computer science we take a more rigorous
approach. While it is futile to try to prove that any notion of fairness is
objectively fair, what we can do is prove that a specific notion of fairness holds
for a given allocation. Another thing we can do is, for a specific notion of
fairness, measure how fair a certain allocation is by assigning a score to it,
again without attempting to prove some objective fairness of the notion.

This rigorous study of fair division originates from the work of Hugo Stein-
haus. Steinhaus considered how to divide a heterogeneous resource among sev-
eral agents with different preferences such that every agent believes that they
received a proportional share, resulting in the notion of proportional fairness
also known as ‘simple fair division’ (Steinhaus, 1948). This work initiated
the research field of fair division of divisible goods that became known as
cake-cutting (Alon, 1987; Brams and Taylor, 1995; Dubins and Spanier, 1961;
Stromquist, 1980).

The modern field of fair division comprises many different aspects, rang-
ing from public decision making (Conitzer et al., 2017) to information and
communications systems (Gutman and Nisan, 2012), and from multi-resource
allocations (Parkes et al., 2012) to the interaction between global allocations
and locally perceived fairness (Abebe et al., 2017). A large body of work in the
fair division field has been developed on the topic of dividing indivisible goods
rather than divisible ones (Caragiannis et al., 2019; Lang and Rothe, 2016). In
our present work, however, we consider flow of electrical power which is a
commodity and hence a divisible good.

For further reading we recommend (Brams and Taylor, 1996), (Robertson
and Webb, 1998), and (Moulin, 2003).

1.4.1 Egalitarian fairness

Among all the different notions of fairness we want to highlight a particularly
intuitive and ubiquitous one: egalitarian fairness. The egalitarian notion of
fairness is captured by a few different definitions, the connections between
which we will touch upon. The central idea behind egalitarianism is that all
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individuals are equal and should be treated as such. This concept has varying
levels of usefulness across different situations, most often deriving from, for
better or worse, the fact that individual aspects and preferences of agents are
essentially ignored (Pazner and Schmeidler, 1978).

One of the first forms of egalitarian fairness appearing in the fields of
resource allocation and fair division is that of envy-freeness (Foley, 1967;
Gamow and Stern, 1958). An allocation is said to be envy-free if no agent
would prefer another agent’s allocated share over their own. In settings where
a homogeneous divisible good is divided over agents that all value the good
equally, e.g. money from an inheritance, an envy-free solution allocates an
equal share to each agent.

Envy-freeness can also be applied to situations where agents do not share
the same valuation of goods, for example when dividing sets of indivisible
goods that are valued differently by different agents. Since in these settings an
envy-free allocation does not always exist, the adjacent definition of “envy-free
up to one good” may be preferred there (Lipton et al., 2004).

Reaching an egalitarian (or envy-free, in homogeneous settings) allocation
may be thought of as taking any allocation and then equalizing the agent
shares, reducing envy. This approach takes from the Pigou-Dalton principle in
welfare economics (Dalton, 1920; Pigou, 1912). The Pigou-Dalton principle is
a condition on social welfare functions that is satisfied if the function prefers
allocations that are more equitable. In other words, a function (strictly) satisfies
the Pigou-Dalton principle if it (strictly) increases when a change of allocated
goods reduces the allocation of ‘rich’ agents (i.e. larger allocations) while
increasing the allocation of ‘poor’ agents (i.e. smaller allocations), as long as
this does not now make the rich agents poorer (i.e. allocated less) than the poor
agents.

This principle is implemented by the widely used notion of max-min fair-
ness (Jaffe, 1981). An allocation is said to be max-min fair (or, more specif-
ically, leximin fair) if an increase of the allocation of one agent necessarily
results in a decrease of the allocation of another agent with an equal or smaller
allocation. Max-min fairness can technically be taken to require only the name-
sake maximization of the minimum value, but the term is popularly used syn-
onymously with leximin fairness which is a formal extension of the same prin-
ciple. Leximin fairness is a very strict criterion that implies lexicographically
maximal vectors (Pióro and Medhi, 2004). In the lexicographic order, whether
a vector is larger than another is determined by comparing their first two ele-
ments, and then their second two and so on if necessary. If these vectors are
both sorted in ascending order, then the one vector is said to be leximin-larger
than the other.
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The leximin order of vectors can be used to compare different allocations
by comparing leximin vectors of the values allocated to agents. This defines
the leximin rule that selects the leximin-optimal vector among all possible
allocations. This rule is also called the egalitarian rule and defines the leximin
criterion or leximin fairness (Barbarà and Jackson, 1988). The leximin-optimal
allocation is always Pareto efficient, meaning that an increase of the allocation
of one agent necessarily results in a decrease of the allocation of another agent.

Finally, we have the Nash product of allocated values as a measure and
optimization goal for fairness (Nash, 1950). Aside from issues when at least
one value is zero, the Nash product can be shown to satisfy the Pigou-Dalton
principle. The well-known issue regarding values of zero, which collapse the
entire product to zero, set it apart from the leximin criterion which strictly
satisfies the Pigou-Dalton principle. The Nash product, however, is extremely
useful and versatile (Caragiannis et al., 2019), and a maximal nonzero Nash
product implies envy-freeness and Pareto optimality (Varian, 1974).

1.4.2 Fairness in practice

The study of fairness and fair division in social choice theory is highly relevant
in many domains of application such as allocation of natural resources, voting
mechanisms, network engineering, and more. Even though fairness is subjec-
tive in a larger context, provably fair solutions can help groups of agents agree
on solutions and provide tangible criteria on which decision-making can be
based. An example of such initiatives is presented by (Kurokawa et al., 2015).

Although the scientific developments in social choice theory have been
plentiful, adoption by society and the wider public seems to have lagged be-
hind. One initiative that aims to address the limited integration into practice
is the website www.spliddit.org (Goldman and Procaccia, 2015). This website
collects and offers provably fair mechanisms for everyday fair division prob-
lems, i.e. practical problems faced by the general public.

The most important application for our present work is in flow networks
(Kleinberg et al., 1999; Ogryczak et al., 2014; Pióro and Medhi, 2004). Classi-
cal flow problems reduce the model to a single source and sink with flow pass-
ing over a network of connections between the two. However, in order to be
able to consider fairness, we must look at and compare the individual sources
and sinks around the network (Megiddo, 1974). The fact that the topology of
the system plays such a defining role in the constraints and asymmetric situa-
tions of agents makes flow networks a unique type of fair division problem.

Fairness applications in flow networks can be roughly divided into two
categories: information flows and commodity flows. For both applications the
underlying flow network model is the same and in many cases the application
can be abstracted away. The primary difference is that local matching of supply
and demand is possible with commodity flows. With information flows each

www.spliddit.org
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piece of information has a designated sender-receiver pair associated with it,
preventing arbitrary re-matchings among the agents (Kleinberg et al., 1999).

For a survey on fair division in flow systems see (Fossati et al., 2018).

1.5 Structure of the Dissertation
In Chapter 1 we provided a brief context for the research presented in this
dissertation, as well as touched upon most of the important concepts. We then
took a deeper look into the three areas of interest most relevant to the scientific
research presented later on. Specifically, we highlighted important concepts
in power networks, in mechanism design, and in fairness. With this basis the
reader should be well prepared to follow the why and how of the research that
follows.

In Chapter 2 we explore notions of fairness in the context of topologically
constrained multi-agent commodity flow systems. We consider different ways
of adapting existing notions of fairness to the topologically constrained case.
Here we investigate how prosumers may regard the prosumption of other
agents when taking into account their relative locations and prosumptions.
When congestion occurs locally and negatively affects prosumers in an area, it
may still be considered fair by all prosumers that prosumers elsewhere in the
network are not negatively affected.

Moreover, we consider models from behavioural economics that de-
scribe the inherent sense of fairness observed in humans. We translate the
observation-based models into utility functions that are compatible with our
setting of agents in a topologically constrained network.

Finally, we design an algorithmic mechanism for fairly resolving congestion
in consumer-only energy systems modelled after the built environment. We
prove desirable properties of the mechanism and show a low computational
complexity.

In Chapter 3 we dive into the congestion-resolving opportunities that local
matching of supply and demand provides. When congestion occurs it is be-
cause a group of prosumers together exceeds one or more capacity constraints
of the network. However, there may be prosumers present in the area whose
prosumption contributes to resolving the congestion, i.e. producers amid an
excess of consumption or consumers amid an excess of production.

We design a congestion management mechanism that prioritizes local
matching in the radial networks that are typical for the built environment.
Our mechanism locally matches supply and demand from the outer edges of
the network towards its center. This outer matching approach locally resolves
congestion as much as possible and allows prosumers to benefit from the
counterbalance provided by those prosumers closest to them.
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We combine this outer matching mechanism with three interchangeable
principal notions of fair division: proportional, egalitarian, and nondiscrimi-
natory. Moreover, the mechanism is compatible with any well-defined division
rule. We prove that some properties of the mechanism depend on the chosen
notion of fair division, and again show a low computational complexity.

In Chapter 4 we investigate the impact of a local energy network’s hierar-
chical connection to a larger network. Issues in the larger network may lead it
to demand a certain power flow from the local network as a whole. Conversely,
the local network may want to realise a certain power flow between it and the
larger network in order to take advantage of opportunities in the larger energy
market.

We design a congestion management mechanism whose congestion solu-
tions are fully parameterized: for each possible power flow over the connec-
tion to the larger network that the local network can realize, a single parameter
suffices to fully determine the solution for all prosumers or any individual pro-
sumer. As a consequence, the mechanism can be executed once to parameter-
ize congestion solutions for all possible power flows of the local network as a
whole. Once a certain power flow is decided upon, the congestion solution can
then be computed in O(1) time for each agent.

We prove that the unique congestion solutions provided by our mecha-
nism are leximin fair, taking into account the topological constraints as well as
supply-demand matching. Unlike greedy matching of supply and demand be-
tween agents closest to each other, a leximin fair congestion solution matches
supply and demand such that no prosumer’s situation can be improved with-
out worsening the situation of a prosumer that is less well-off. In a way, such
a solution is the most equitable solution that is attainable within the capacity
constraints.

In Chapter 5 we consider the trade-off between fairness and welfare.
Where notions of fairness compare the allocated levels of prosumption be-
tween agents, welfare looks at the cumulative value generated for the agents
by the allocation. Since these are two different objectives, it is unlikely that a
fair congestion solution also maximizes the total welfare of the agents. Both
outcomes are desirable from different perspectives, and therefore it is not im-
mediately clear which one should be emphasized.

We design a congestion aftermarket that aims to reconcile the two objec-
tives: fairness and welfare. First, we compute a fair congestion solution which
determines each prosumer’s ‘fair share’. Then, we let each prosumer choose
whether to claim their fair share or participate in the congestion aftermar-
ket. Finally, we clear the congestion aftermarket using a welfare-maximizing
mechanism and determine the aftermarket prices for each agent.



1.6 List of Publications 21

Because prosumers get the option to claim their fair share at the original
market price, the mechanism can arguably be said to be fair. At the same time,
we prove that the aftermarket is such that it is economically optimal for each
agent to participate in it. Our combination of congestion management mech-
anism and congestion aftermarket allows both fairness-seeking and welfare-
seeking prosumers to exist in parallel without interfering in each other’s goals.

In Chapter 6 we summarize the results of the research carried out. Here we
evaluate our findings in the context of the research topic and look out to future
research. We return to the research questions and evaluate which answers we
found for them.

1.6 List of Publications
In this section we present an overview of the research papers that comprise
the dissertation. Chapters 2 to 5 are each based respectively on one of these
research papers.

• Brinn Hekkelman and Han La Poutré. 2019. Fairness in Smart Grid Con-
gestion Management. IEEE PES Innovative Smart Grid Technologies Eu-
rope (ISGT-EU). https://doi.org/10.1109/ISGTEurope.2019.8905496

• Brinn Hekkelman and Han La Poutré. 2020. Fairness in Power Flow Net-
work Congestion Management with Outer Matching and Principal No-
tions of Fair Division. ACM International Conference on Future Energy
Systems (e-Energy)1. https://doi.org/10.1145/3396851.3397701
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2Measures of Fairness in
CongestionManagement

In the previous chapter we provided a short overview of the study of fairness.
In this chapter we add to this field by proposing notions of fairness tailored
specifically to network congestion problems.

2.1 Introduction
The energy system is going through a transition. This energy transition is
brought about by an increasing penetration of renewable energy sources and
a push towards a more decentralized system. With these developments, con-
gestion on electrical grid lines is becoming a more widespread problem (Verz-
ijlbergh et al., 2014); one that is not easily solved using storage (Härtel et al.,
2016). The intermittent nature of renewable energy resources, the decentral-
ized nature of consumers and producers (often prosumers now), and the inten-
sive disruptive demand introduced by electric vehicles and heat pumps all con-
tribute to grid congestion issues. According to a study concerning the German
electrical grid; “over the past five years, the costs for congestion management
and curtailment have increased by a factor of ten, to about one billion euro per
year.” (Nabe et al., 2017).

Grid congestion management solutions appear in various forms and address
different aspects of grid congestion problems (Esmat and Usaola, 2016; Haque
et al., 2017; Li et al., 2014; Philipsen et al., 2016; Xue et al., 2009). However,
while grid constraints raise questions concerning priority when conflicts of
use arise, these studies on congestion management do not take into account
an explicit notion of fairness. A recent package of measures presented by
the European Commission states that “energy is a critical good, absolutely
essential for full participation in modern society. The clean energy transition
also needs to be fair for those sectors, regions or vulnerable parts of society
affected by the energy transition.” (European Parliament, 2016). In light of
this statement, the incorporation of fairness is left insufficiently covered by
grid congestion management research.

23
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The incorporation of fairness in grid congestion management is no straight-
forward task. Notions of fairness are fundamentally subjective, and accepted
notions of fairness do not necessarily translate from one setting to another.
Moreover, other goals such as efficiency may take precedence over fairness,
limiting the scope of fairness that can be implemented. Once a notion of fair-
ness has been accepted for a certain setting, it can serve one or more of the
following three main uses:

• As a binary descriptor; it is expressed qualitatively and its definition either
is or is not satisfied by a situation.

• As a tool for maximizing fairness; it is expressed quantitatively and may
be used as an optimization goal for fairness and other qualities.

• To compare and evaluate situations; it is expressed quantitatively, prefer-
ably normalized, and measures fairness independent of other qualities.

This chapter proposes two implementations of fairness suitable for conges-
tion management in electrical grids. Both of these implementations will be of
the quantitative type and may be used as an optimization goal or a measure of
fairness. The first implementation of fairness that this chapter proposes is based
on the Nash product that was introduced by Nash (Nash, 1950) and closely re-
sembles the notion of social welfare. The second implementation of fairness
that this chapter proposes is based on research in behavioral economics by
Fehr and Schmidt (Fehr and Schmidt, 1999), and mimics the inequity-based
comparative utility (inequality between agents negatively affects their utilities)
that is observed in humans.

Furthermore, this chapter presents a congestion management solution in
the form of an egalitarian allocation mechanism. Based on consumer data, this
mechanism allocates consumption limits to individual consumers in order to
resolve congestion in acyclic networks. Finally, this chapter proves that the
presented mechanism is truthful and maximizes both the social welfare and
Nash product.

2.2 Setting and Notation
Consider a network N , represented by a graph (V,E). Agents a ∈ A repre-
senting prosumers, i.e. agents that may either produce or consume at any given
time, are located at the vertices v ∈ V . The edges represent electrical grid
lines l ∈ E with positive capacity constraints Cl that constrain the power flow
over the line l. A connection to an external network may be represented by
an edge associated with only one vertex. Prosumption of an agent a is repre-
sented by an activity ya, with positive and negative activity corresponding to
consumption and production respectively. Let A denote the set of all agents in
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d1 : 10
y1 : 7

35

d2 : 10
y2 : 730

d3 : 10
y3 : 7

25

d4 : 10
y4 : 7∗20 d5 : 10

y5 : 7∗15

Figure 2.1 An example network of five agents named 1 through 5. Allocation 1 is as
shown, while allocation 2 differs by instead setting y4 = 9 and y5 = 5.

the network, and let A+ and A− denote the subsets of consumers and produc-
ers, respectively.

When congestion occurs, i.e. at least one of the line capacity constraints Cl

is exceeded by the power flow over that line, a congestion management mech-
anism resolves the congestion. It does so by finding an allocation Y : a set of
activities ya for the agents a ∈ A. As a result, for some agents a, there will
be a difference between the agent’s reported desired activity da, and its final
activity ya. A reported desired consumption, i.e. da > 0, must always result in
a final activity 0 ≤ ya ≤ da. Similarly for production.

Each agent a has a utility function ua that depends on the activity ya, the
valuation of the activity λa(ya), the price of the activity pa(ya), and the desired
prosumption da. This chapter assumes a setting in which, for a network of
limited size, the price function pa is identical for all agents a ∈ A and scales
linearly with the activity ya. Furthermore, the valuation function λa is identical
for all agents a ∈ A and scales linearly with the activity ya. Therefore, in this
setting, the utility function ua only depends on at most the activity ya and
desire da.

2.3 Fairness Optimization and
Measurement
A common way to optimize allocations of a divisible good to a set of agents,
is to maximize the social welfare (SW). This means maximizing the sum over
all agents’ utilities:

max
Y ∈S

∑
a∈A

ua(Y ). (2.1)

Here, S denotes the solution set: the set of allocations that resolve congestion
and assign consumption and production exclusively to consumers and produc-
ers respectively, bounded by their desires, as described in Section 2.2.
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Since fairness is an inter-agent concept, SW cannot take fairness into con-
sideration without explicitly incorporating it in the individual utility functions;
Section 2.4 further considers this option.

An alternative optimization goal is the Nash product (NP):

max
Y ∈S

∏
a∈A

ua(Y ). (2.2)

This optimization problem, like the SW optimization in (2.1), maximizes all
agents’ utilities, within S. However, unlike in (2.1), the NP optimization in
(2.2) also maximizes the minimal utility among agents, within S. The differ-
ences are illustrated with the help of a running example, shown in Figure 2.1.
Taking the simplest utility function for each agent a ∈ A, i.e.

ua = |ya|, (2.3)

the SW and NP values associated with the two allocations presented in Fig-
ure 2.1 are displayed in Table 2.1. Table 2.1 shows that the SW approach does
not differentiate between the two allocations, while the NP takes a higher value
when the allocated activities are closer to each other. Note that both allocations
yield the same total consumption.

In order to have the SW and NP not only serve as an optimization goal
but also as a measure, i.e. an indicator independent of irrelevant qualities, the
average is taken. This eliminates their dependency on the size of the system.
For the average Nash product (ANP), the optimization then takes the following
form:

max
Y ∈S

m
√∏

a∈A

ua(Y ), (2.4)

where m is the number of agents in A. Note that taking the average does not
affect the optimization problem. The values of the averaged social welfare
(ASW, see Table 2.1) and ANP on the two allocations presented in Figure 2.1
are also displayed in Table 2.1.

The ANP, however, still depends on the absolute level of prosumption. This
dependency can be removed by considering utility functions that reflect the
relative activity instead of the absolute activity, that is

ua = ya/da. (2.5)

This results in the normalized Nash product (NNP) that takes values between
0 and 1. Since the NNP is largely independent of qualities other than fairness,
it is well suited as a measure of fairness. The values that the NNP takes on the
two allocations presented in Figure 2.1 are displayed in Table 2.1 as well.
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Allocation 1 Allocation 2

SW
∑
|ya| 35 35

NP
∏
|ya| 16807 15435

ASW 1
m

∑
|ya| 7 7

ANP m
√∏

|ya| 7 6.88

NNP m
√∏

ya/da 0.7 0.69

Table 2.1 Social welfare and Nash product values for the two allocations presented in
Figure 2.1.

The downside of the relative utility function (2.5) is that its value is influ-
enced to a large extent by the desire of the agent. This means that an agent a
intentionally reporting a large desire da affects the value of the ANP signifi-
cantly. Moreover, it skews the optimization problem to allocate a potentially
disproportionate amount of activity to such an agent a. Thus, while the NNP
provides a fine measuring tool, the absolute utility function (2.3) is better suited
as an optimization goal.

2.4 Comparative Utility and Network
Topology
An alternative approach to incorporating fairness in congestion management,
is to explicitly include a notion of fairness in the individual utility functions
of the agents a ∈ A. Research in behavioral economics by Fehr and Schmidt
(Fehr and Schmidt, 1999) proposes a model aimed at capturing fairness-related
behaviour in humans, specifically inequity-aversion. Their findings can be used
to construct utility functions for software agents that closely resemble the
inherent human notions of fairness.
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d1 : 10
y1 : 8

35

d2 : 10
y2 : 930

d3 : 10
y3 : 7

25

d4 : 10
y4 : 820 d5 : 3

y5 : 315

Figure 2.2 The example network with the desire of one agent lowered.

Taking A = A+, the utility function presented in (Fehr and Schmidt, 1999)
takes the following form:

ua = ya −
α

m− 1

∑
b ̸=a

∆yb,a

− β

m− 1

∑
b ̸=a

∆ya,b,
(2.6)

where ∆ya,b = max(ya − yb, 0) is the positive difference between ya and
yb. The restriction A = A+, i.e. that all agents are consumers, will later be
extended to the case that includes both consumers and producers. The utility
function is similar when instead taking A = A−.

The utility function (2.6) takes into account comparative equity; it adds two
terms that compare the activity of the agent with the activity of all other agents
in the network. The first term measures the utility loss from envy, i.e. others
consuming more, while the second term measures the utility loss from pity, i.e.
others consuming less. The parameters α and β represent the levels of envy
and pity, leading to the reasonable assumptions that

0 ≤ α, 0 ≤ β ≤ 1, β ≤ α. (2.7)

Since the comparative equity utility (2.6) explicitly considers the relation of
agents to each other, it can simply be used with the SW optimization (2.1) to
find a fair allocation. There are, however, a number of aspects unique to the
congestion problem setting that demand adjustments to the comparative equity
utility function as presented in (2.6).

Figure 2.2 presents a slightly modified version of the example network. The
presented allocation includes inequalities among agents that are not clearly
detrimental to its fairness. Agent 5 is allocated a significantly lower activity,
but its activity y5 equals its desire d5. This means that agent 5 is perfectly
content, and is thus unlikely to envy other agents. Likewise, if the other agents
have knowledge of agent 5’s desire, it is unlikely that they will pity agent 5.
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Figure 2.3 NCSW corresponding to the allocation presented in Figure 2.2.

These situations can be taken into account by adding a factor that signifies
how discontent an agent a is with their allocated activity ya relative to their
desire da. Since it is unlikely that an agent a will pity another agent for not
being allocated an activity that agent a wanted but was not allocated itself, the
discontent factor applied to the pity term should take this matter of perspective
into account.

The result is comparative discontent equity (CDE) utility:

ua = ya −
α

m− 1

∑
b ̸=a

da − ya
da

·∆yb,a

− β

m− 1

∑
b ̸=a

min(db, ya)− ys
min(db, ya)

·∆ya,b.

(2.8)

If, in the situation under consideration, agents do not have (full) information
about other agents’ desires, then the pity term should be dropped altogether.

In order to normalize the SW when CDE utility is used, instead of taking the
ASW as suggested in Section 2.3, the SW is divided by the sum of activities.
This results in normalized comparative social welfare (NCSW):∑

a∈A ua∑
a∈A ya

(2.9)
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d1 : 10
y1 : 10

35

d2 : 10
y2 : 1030

d3 : 10
y3 : 10

25

d4 : 10
y4 : 24 d5 : 10

y5 : 215

Figure 2.4 The example network with only one side congested.

Figure 2.3 depicts the NCSW corresponding to the allocation presented in
Figure 2.2 for different values of α and β, showing how agents’ characteristics
determine perceived fairness. Note that when envy and pity do not play a role,
i.e. both α and β are zero, the NCSW takes its maximum value of 1.

NCSW is a suitable fairness measurement; normalized, independent of other
qualities, and customizable through the parameters α and β. However, it
applies only to groups of exclusively consumers (or producers) and does not
take network topology into account.

When agents in the network both consume and produce, an adjustment of
NCSW is required. Since consumers do not compete for network capacity with
producers and vice versa, neither envy nor pity between the two is expected.
Thus, for each consumer, the envy and pity terms in CDE utility should
sum over only all other consumers. Similarly, the producers only compare
themselves to all other producers. For a consumer, this exclusive comparative
discontent equity (ECDE) utility takes the form

ua = ya −
α

|A+| − 1

∑
b∈A+\{a}

da − ya
da

·∆yb,a

− β

|A+| − 1

∑
b∈A+\{a}

min(db, ya)− ys
min(db, ya)

·∆ya,b.

(2.10)

Besides the mode of prosumption, the network topology may also play
a role in determining the set of agents that any agent compares itself to.
Figure 2.4 presents a version of the example network that is only congested
on one side. This is an interesting situation: although all agents have the same
desire and agents 2 and 3 on the non-congested side have been allocated more
activity, a reduction of their activity cannot improve the situation for agents 4
and 5 on the congested side. In principle, agents 4 and 5 would not envy agents
2 and 3. This raises the question of the topological reach of comparative equity.

A possible approach to capturing this topological separation in the utility
is to define regions in the network with subsets of agents associated to them.
Agents from a certain subset could then have different α values depending on
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whether comparing to an agent from their own subset, or an agent from another
subset. For example, for the network depicted in Figure 2.4, the utility function
for agent 4 could be

u4 = y4 − α · d4 − y4
d4

·∆y5,4

−β · min(d5, y4)− y5
min(d5, y4)

·∆y4,5

−α′

3

∑
b∈{1,2,3}

d4 − y4
d4

·∆yb,4

−β′

3

∑
b∈{1,2,3}

min(ds, y4)− ys
min(ds, y4)

·∆y4,b,

(2.11)

with α > α′ and β > β′. This desire of specific comparative discontent equity
(SCDE) utility function that allows different α and β values when comparing
to different groups is adaptable to the distribution of population and capacity
constraints of the network under consideration. For instance, to distinguish
groups of agents by region or desire (e.g. hospitals).

In summary, ECDE utility makes a fair optimization goal with SW and
a fairness measure with NCSW that both mimic notions of fairness inherent
to humans. When required, SCDE utility may be used as a flexible way to
accommodate network constraints and other attributes.

2.5 Congestion Management
Mechanism
In this section, a congestion management mechanism is proposed in algorith-
mic form. Consider an acyclic network where all agents are consumers with
simple utility (2.3). The mechanism allocates activities ya to agents a ∈ A
based on the network topology and the agents’ desires da. The resulting allo-
cation Y is in the solution set S: it resolves congestion and allocated activities
are bounded by agent desires. Most real-world local energy networks can be
represented by such an acyclic model.

The acyclic network is interpreted as a rooted tree with its root connected to
an external network. Let Tv denote the subtree of vertex v and denote the line
from vertex v directed towards the root as line v. Thus, any vertex v ∈ V has a
capacity Cv associated with it that limits the flow from the subtree Tv towards
the root of the network (or, in case of the root vertex, towards the external
network).
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The allocation mechanism, presented in Algorithm 1, takes an egalitarian
approach: when congestion occurs at a line v, all consumers in the subtree Tv

have the upper bound for their activities reduced to the same level. As a con-
sequence, consumers with the lowest activity only have their activity reduced
when all other consumers in the subtree Tv have their activity reduced to that
same level.

Algorithm 1: Allocation Mechanism

1 Initialize ya = da for all agents a ∈ A

2 while not all vertices are marked do

3 Select unmarked vertex v with no unmarked children and mark it

4 if total consumption of the subtree Tv exceeds the capacity Cv then

5 Select value w such that
∑

a∈Tv
min(w, ya) = Cv

6 Set ya = min(w, ya) for all a in the subtree Tv

7 return Y = {ya}a∈A

Proposition 2.1. The set of activities ya allocated by the allocation mechanism
to the agents a ∈ A given their desires da maximizes the social welfare (SW)
on the solution set S.

Proof. Consider an agent a ∈ A and the final value ya. If ya = da, then the
utility of agent a is maximal within the solution set S and cannot be changed
to improve the SW.

If ya ̸= da, then, since all agents in the network are consumers, ya < da.
Let v be the last vertex where ya was reduced. This means that the agent a is
located in the subtree Tv for which, after executing lines 4 – 6, it holds that∑

b∈Tv

yb = Cv. (2.12)

Since the activity ya has not been reduced since vertex v and it was maximal
among activities of agents in Tv , it follows that none of the activities of agents
in Tv have changed since vertex v.

Now consider a nonempty set AI ⊂ A with ya < da ∀a ∈ AI and a
set I = {ϵa | a ∈ AI} of corresponding activity increases with 0 < ϵa ≤
da − ya ∀a ∈ AI . Let L denote the set of vertices where at least one of the
agents a ∈ AI had their activity ya last reduced. Since equation (2.12) holds
for all vertices v ∈ L, the activity increases I cause congestion at all those
vertices.
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Let AD = A \ AI and let D = {−δb | b ∈ AD} be a set of corresponding
activity decreases with 0 ≤ δb ≤ yb ∀b ∈ AD. For each vertex v ∈ L, to
resolve congestion caused by I , it must hold that

∑
b∈AD

v
δb ≥

∑
a∈AI

v
ϵa,

where AI
v and AD

v are the subsets of AI and AD in Tv . If such D does not
exist, then the set of activities increased by I is not in the solution set S.

Since AI is the disjoint union
⊎

v∈K AI
v for some K ⊂ L, it follows

that
∑

a∈AI ϵa −
∑

b∈AD δb ≤ 0. Therefore, the SW cannot be improved by
changing any number of activities.

As demonstrated in the proof of Proposition 2.1, for no single agent a ∈ A
can the utility ya be improved within the solution set S. This entails the
following corollary.

Corollary 2.1. The set of activities ya allocated by the allocation mechanism
to the agents a ∈ A given their desires da is pareto efficient on the solution
set S.

Proposition 2.2. The set of activities ya allocated by the allocation mechanism
to the agents a ∈ A given their desires da maximizes the Nash product (NP)
on the solution set S.

Proof. Using the notation and setting from the proof of Proposition 2.1, for
each v ∈ L, to solve the congestion caused by I at v, it must hold that∑

a∈AI
v
ϵa −

∑
b∈AD

v
δb ≤ 0.

First, note that maximizing the NP is equivalent to maximizing log(NP) =∑
a∈A log(ya). Then, consider the same expression including the increases I

and decreases D, i.e.:∑
a∈AI

log(ya + ϵa) +
∑
b∈AD

log(yb − δb). (2.13)

Since the derivative of log(x) is 1
x , and log(x) is a strictly concave function, it

holds that

log(ya + ϵa) < log(ya) +
ϵa
ya

∀a ∈ AI (2.14)

log(yb − δb) ≤ log(yb)−
δb
yb

∀b ∈ AD. (2.15)

It follows that expression (2.13) is strictly smaller than

log(NP) +
∑
a∈AI

ϵa
ya
−
∑
b∈AD

δb
yb

. (2.16)
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Now for all v ∈ L, let wv denote the value selected at line 5 so that, by line 6,
ya = wv for each a ∈ AI

v with activity ya last reduced at v, and yb ≤ wv for
each b ∈ AD

v . Consider the vertex v with the longest root path in L. Then the
right two terms in expression (2.16) together are smaller than∑

a∈AI\AI
v

ϵa
ya
−

∑
b∈AD\AD

v

δb
yb

+
∑
a∈AI

v

ϵa
wv
−
∑
b∈AD

v

δb
wv

(2.17)

=
∑

a∈AI\AI
v

ϵa
ya
−

∑
b∈AD\AD

v

δb
yb

+
1

wv

∑
a∈AI

v

ϵa −
∑
b∈AD

v

δb

 .

Now consider the vertex z with the longest root path in L for which v is in Tz .
Since the agents a ∈ AI

v had their activities last reduced at vertex v, it must be
that wz ≥ wv . Thus, since the expression between brackets in equation (2.17)
is known to be negative, it follows that expression (2.17) is smaller than

∑
a∈AI\AI

v

ϵa
ya
−

∑
b∈AD\AD

v

δb
yb

+
1

wz

∑
a∈AI

v

ϵa −
∑
b∈AD

v

δb

 (2.18)

which, by repeating the argument, is then smaller than

∑
a∈AI\AI

z

ϵa
ya
−

∑
b∈AD\AD

z

δb
yb

+
1

wz

∑
a∈AI

z

ϵa −
∑
b∈AD

z

δb

 .

These two arguments can be repeated for all vertices in L, ultimately showing
that the right two terms in (2.16) together are negative. From this it follows that
the logarithm including the increases I and necessary decreases D, as shown in
expression (2.13), is strictly smaller than log(NP), completing the proof.

Important to any mechanism incorporating fairness is that the mechanism
is truthful. This means that for the agents, reporting their true desire is a
weakly dominant strategy; i.e. agents cannot benefit from strategizing and
misreporting.

Proposition 2.3. The allocation mechanism is truthful.

Proof. Consider an agent a ∈ A and their true desired activity d∗a. If reporting
da = d∗a yields a final activity ya < d∗a, then there is a last vertex v where ya
was reduced to resolve congestion. Therefore, reporting any da > ya would
also cause congestion at vertex v and result in the same final activity ya.
Moreover, reporting any da ≤ ya would result in a final activity da since ya
had already been sufficiently reduced to resolve any congestion.
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Therefore, reporting da = d∗a is a weakly dominant strategy for maximizing
ya within S. This proves the proposition.

Propositions 2.1 to 2.3 provide a strong result concerning the allocation
mechanism: given the specific problem setting, it provides a truthful and pareto
efficient congestion management solution that optimizes egalitarian fairness
within the constraints of the network topology.

The worst case computational complexity occurs when the mechanism must
determine a value w at line 5 by sorting all m agents in O(m · log(m)) time,
and must do this at each of the n vertices. Hence, the worst case computational
complexity isO(n·m·log(m)), where n and m are the total number of vertices
and agents in the network, respectively.

2.6 Conclusions
This chapter proposed both the normalized Nash product and comparative dis-
content equity utilities combined with social welfare as fair optimization goals
and normalized fairness measuring tools. Furthermore, this chapter presented a
congestion management solution in the form of an egalitarian allocation mech-
anism. Finally, the allocation mechanism was proven to be truthful and maxi-
mize both social welfare and the Nash product.

Future work could provide a congestion management solution based on the
human-inspired concepts of fairness presented in Section 2.4, or extend the
allocation mechanism presented in Section 2.5 to more general settings.





3Principal Notions of Fair
Division andLocal, Outer
Matching

In the previous chapter we considered fairness expressed by comparative utility
functions. In this chapter we make local fairness explicit by proposing a notion
of fairness that promotes local supply-demand matching in allocations.

3.1 Introduction
With the increasing share of renewable energy sources comes an increase
in electrical grid congestion (Verzijlbergh et al., 2014). The consequences
of this rapid increase in congestion are already seen in soaring congestion
management costs (Nabe et al., 2017), even at the low- and medium-voltage
levels. Current grid congestion management is insufficiently prepared for the
changes in electrical grid operation brought about by the energy transition.
New solutions for congestion management come in various forms (Haque
et al., 2017; Philipsen et al., 2016; Xue et al., 2009), often focusing on the
introduction of electric vehicles (EVs) (Hu et al., 2015; Li et al., 2014; Rivera
et al., 2015; Shao et al., 2017) or the decentralized, multi-agent aspect of
distributed energy resources (DERs) (Ciavarella et al., 2019; Vandael et al.,
2011; Vytelingum et al., 2010).

However, these solutions typically do not explicitly take into account a con-
cept of fairness. Meanwhile, the energy transition is bringing about a paradigm
shift from ‘supply follows demand’ to ‘demand follows supply’ that, as a
consequence, places the responsibility for congestion increasingly on indi-
vidual prosumers. This development makes it crucial to explicitly incorpo-
rate concepts of fairness in congestion management solutions (Hekkelman and
La Poutré, 2019). The European Commission emphasizes the importance of
fairness in energy, stating that “energy is a critical good, absolutely essential
for full participation in modern society. The clean energy transition also needs

37
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to be fair for those sectors, regions or vulnerable parts of society affected by
the energy transition.” (European Parliament, 2016)

In this chapter we lay a theoretical foundation for fair congestion manage-
ment, using a congestion model similar to those used in (Bach Andersen et al.,
2012; Hu et al., 2014; Rivera et al., 2015; Verzijlbergh et al., 2014). We propose
an algorithmic mechanism of low computational complexity that combines a
locally oriented novel fairness concept with principal notions of fair division.
We prove that this algorithmic mechanism divides the available network ca-
pacity maximally over the prosumers.

Specifically, in this chapter we propose local, outer matching as a novel
concept of fairness for congestion management in low-voltage networks. This
concept of fairness requires that congestion is resolved with recursive matching
of supply and demand in localities outward from nodes in the network. Local,
outer matching thus prioritizes matching in the peripheral of the network,
reducing strain and losses on the network infrastructure.

Still, when congestion occurs, the available network capacity must be fairly
divided over the affected prosumers. The fair division of goods and fairness
in general are established and active fields of research in mathematics and
economics (Alon, 1987; Aziz and Mackenzie, 2016; Brams and Taylor, 1995;
Dubins and Spanier, 1961; Pazner and Schmeidler, 1978; Stromquist, 1980).
One application domain is that of communications networks, where network
capacity must be fairly divided over users (Gutman and Nisan, 2012). While
congestion management in power flow networks faces similar fair division
problems, power flow networks are concerned with a single-commodity flow
as opposed to peer-to-peer data transmission. In the energy domain currently,
fairness is considered mostly for EV charging (Danner et al., 2019) and DER
related pricing (Khodabakhsh et al., 2019).

In this chapter we discuss three principal notions of fair division that
may be combined with the novel fairness concept of local, outer matching
to perform its division. The principal notions of fair division we discuss here
are: proportional, first proposed by Steinhaus (Steinhaus, 1948) and sometimes
referred to as ‘simple fair division’; egalitarian, which is closely related to
the concept of envy-freeness first proposed by Gamow and Stern (Gamow
and Stern, 1958); and nondiscriminatory, which is a natural counterpart to the
egalitarian notion of fair division.

It is apparent that fairness in power flow networks has a combination of as-
pects. On the one hand, fair division of network capacity is required. On the
other hand, the single-commodity flow necessitates supply-demand matching
throughout the network. Matching supply and demand locally is a newly ac-
cepted paradigm for energy networks that stimulates the use of local infrastruc-
ture. This introduction of localities affects concepts of fairness (Abebe et al.,
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2017). Envisioned autarkic-like local communities and neighbourhoods thus
demand a local approach to congestion management and concepts of fairness.

To this end, we devise an algorithmic mechanism that computes the com-
bination of local, outer matching with the discussed principal notions of fair
division, resulting in locally oriented congestion solutions that make maximal
use of the network capacity. We then prove that the egalitarian notion of fair-
ness results in an incentive compatible mechanism, while the proportional and
nondiscriminatory notions of fairness do not result in an incentive compatible
mechanism. Finally, we show that the proposed algorithmic mechanism com-
putes congestion solutions in limited computational time, which is essential
for application in the energy domain.

The contributions of this chapter to the state of the art can be summarised
as follows:

• We propose a novel concept of fairness for congestion management called
local, outer matching.

• We discuss the principal notions of proportional, egalitarian, and nondis-
criminatory fair division that we combine with the concept of local, outer
matching.

• We devise an algorithmic mechanism that combines local, outer matching
with notions of fair division to compute maximal congestion solutions in
limited computational time.

• We prove that this mechanism is incentive compatible when using the
egalitarian notion of fair division, and is not incentive compatible when
using the proportional or nondiscriminatory notions of fair division.

The chapter is organized as follows. First, Sections 3.2 and 3.3 introduce the
setting, model, and useful concepts. Section 3.4 then formally defines division
and discusses the three principal notions of fair division. Section 3.5 defines
the novel fairness concept of local, outer matching and provides congestion
solutions that are proven to be local, outer matchings that make maximal use
of network capacity. Finally, Section 3.6 presents the algorithmic mechanism
that combines local, outer matching with the principal notions of fair division.
The incentive compatibility results follow in Section 3.7 and the computational
complexity results in Section 3.8. Section 3.9 concludes the chapter.

3.2 Setting
We consider an electrical power flow network that consists of prosumers con-
nected to each other by electrical grid lines. These grid lines have a maximum
reliable capacity (which is usually less than their physical or thermal limit).
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Grid congestion occurs when electrical power flow caused by the prosumers
exceeds some line capacities. This means that it is not always possible to re-
alise the desired prosumption of all prosumers within the network constraints.
Congestion management is the practice of reducing, resolving, or preventing
grid congestion by deviating from the desired prosumptions in order to accom-
modate the network constraints.

We follow a modelling approach similar to those in (Bach Andersen et al.,
2012; Hu et al., 2014; Rivera et al., 2015; Verzijlbergh et al., 2014) that lay
the theoretical foundations for congestion management, e.g. by focusing on
active power curtailment. As such, we model an electrical power flow network
as a tree (representing almost all real-world low-voltage networks), the line
capacities as edge weights, the prosumers as agents that are either consumers
or producers located at the vertices, and the desired prosumptions as agent
desires. Low-voltage networks are usually connected to larger electrical grids
through a substation. This connection to an external grid may be modelled as a
virtual edge, which will also have a line capacity modelled as an edge weight.

3.3 Model
Let T = (V,E) be a rooted weighted tree. Let a virtual edge at the root r
represent the connection to a virtual parent that represents an external network.
Let the edge weights be positive, representing flow capacities. Denote the
weight of an edge between vertex v ∈ V and its parent by Cv . In addition,
consider a set of agents A distributed over the vertices V . Finally, for each
agent a ∈ A, consider its desire da. A positive desire indicates a consumer
while a negative desire indicates a producer. Let A+, A− ⊂ A be the sets of
consumers and producers, respectively.

Definition 3.1 (Congestion Tree). Define a congestion tree T = (V,E,A) as
a tree T = (V,E) with root r, edge weights Cv for v ∈ V , and agents a ∈ A
with desires da located at the vertices v ∈ V .

The subtree of a congestion tree T = (V,E,A) is again a congestion tree,
and is denoted by Tv = (Vv, Ev, Av) where v is its root. A subtree Tv =
(Vv, Ev, Av) inherits the edge weights of T = (V,E,A), with its virtual edge
inheriting the weight of the edge between v and its parent in T = (V,E,A).
See Figure 3.1 for a representation.

3.3.1 Congestion Management

Congestion management is the practice of reducing, resolving, or preventing
congestion in a network, and can take various forms. In graph theory, flow
networks consider flow resulting from a single source and a single sink in a
graph with flow capacities on the edges. Power networks usually deal with a
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r
T = (V,E,A)

v

Cv

Fv Tv = (Vv, Ev, Av)

Figure 3.1 A representation of a congestion tree T = (V,E,A), highlighting the situation
around a vertex v.

more complex situation where many distributed prosumers are participating in
a market.

In the context of congestion trees, congestion management is performed
by allocating network access to agents based on their desires and the network
constraints. Such allocations could be strictly enforced or used as reference for
penalties or incentives.

Definition 3.2. An allocation Y on a congestion tree T = (V,E,A) is a
map Y : A→ R.

Notation 3.1. For B ⊆ A, abbreviate
∑

a∈B Y (a) as Y (B).
When agents that represent prosumers are subject to such an allocation, the
resulting prosumptions lead to (electrical power) flows in the network.

Definition 3.3 (Incoming and Locally Balanced Flows). Given an allocation Y
on a congestion tree T = (V,E,A), define the incoming flow Fv(Y ) and the
locally balanced flow LBFv(Y ) of a subtree Tv = (Vv, Ev, Av) as:

Fv(Y ) = Y (Av) =
∑
a∈Av

Y (a), (3.1)

LBFv(Y ) =
1

2

[ ∑
a∈Av

∣∣Y (a)
∣∣− ∣∣∣ ∑

a∈Av

Y (a)
∣∣∣ ] . (3.2)

The incoming flow Fr(Y ) of an allocation Y on a congestion tree T =
(V,E,A) with root r thus represents the total amount of electrical power
demanded of, or supplied to, the external grid. The incoming flow also gives
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the flow over each edge, with Fv(Y ) being the flow to vertex v from its parent.
See Figure 3.1 for a representation.

The locally balanced flow LBFr(Y ) represents the total amount of elec-
trical power that flows between the agents within the congestion tree T =
(V,E,A) with root r, including between agents that share a vertex. The lo-
cally balanced flow LBFr(Y ) is a measure for the matching of consumer and
producer desires within the congestion tree T = (V,E,A).

Definition 3.4 (Desire Compatible). An allocation Y on a congestion tree T =
(V,E,A) is desire compatible if

0 ≤ Y (a) ≤ da or 0 ≥ Y (a) ≥ da ∀ a ∈ A. (3.3)

Definition 3.5 (Congestion Free). An allocation Y on a congestion tree T =
(V,E,A) is congestion free if, for each vertex v ∈ V , the incoming
flow Fv(Y ) of the subtree Tv = (Vv, Ev, Av) does not exceed the flow capac-
ity Cv of its virtual edge:

|Fv(Y )| ≤ Cv ∀ v ∈ V. (3.4)

Definition 3.6 (Feasible). An allocation Y on a congestion tree is feasible if it
is both desire compatible and congestion free.

The set of feasible allocations forms the solution space for the problem of
congestion management. Within this solution space, some allocations are more
desirable than others because they make better use of the available network
capacity.

Definition 3.7 (Base Allocation). A feasible allocation Y on a congestion
tree T = (V,E,A) with root r is a base allocation if it maximizes the locally
balanced flow LBFr(Y ) and has incoming flow Fr(Y ) = 0.

A base allocation maximally matches consumer and producer desires in a
congestion tree, without interacting with the external grid it is connected to.

Definition 3.8 (Max Allocation). A feasible allocation Y on a congestion
tree T = (V,E,A) with root r is a max allocation if it maximizes |Fr(Y )|
under the condition that the locally balanced flow LBFr(Y ) is maximal.

A max allocation maximizes the use of the available network capacity by
making maximal use of the connection to the external grid after maximally
matching consumer and producer desires internally. A max allocation can be
viewed as a base allocation plus an allocation of the remaining unmatched
desires.
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3.4 Principal Notions of Fair Division
Congestion management leads directly to the question of fair division. The
limited available network capacity does not belong to any one agent, and thus
it must be fairly divided. The field of fair division of goods considers such
division problems. In this case a number of agents lay claim to a portion of
a divisible good, the network capacity, but the sum of their claims exceeds
the availability of the good. Since energy is a critical good, it is of great
importance that the division of capacity, which dictates network access, be
fair to all agents. However, the notion of which choice of division constitutes
a fair division is subjective.

Consider two agents a and b that have respective claims da and db to a
quantity k of a divisible good. This situation may be visualized as in Figure 3.2.
The point of the claims (da, db) represents the outcome desired by the agents,
while the line intersecting the axes represents the available quantity k of the
good.

k

k da

db
(da, db)

45◦

45◦

Figure 3.2 Three principal notions of fair division illustrated: proportional (green,
middle), egalitarian (red, left), and nondiscriminatory (blue, right).

The set of divisions is the set of points that exactly divide the quantity k and
do not allocate to agents more than their claims. In Figure 3.2 this is the set
of points on the dashed line segment inside the rectangle. If this set is empty
because the quantity k is larger than the sum of the claims, then there is no real
division problem and the point of claims (da, db) is taken as the division.

This representation of the division of a good over claims can be extended to
any number m of agents by an m-dimensional space with an m−1 dimensional
surface representing the quantity k. This leads to the following definition.



44 Chapter 3 PrincipalNotions of Fair Division andLocal, OuterMatching

Definition 3.9 (Division). The division Div(k, Y,A) of a positive value k over
an allocation Y (of claims) with positive values on a set of agents A, is an
allocation D on A with

D(A) = min(k, Y (A)) (3.5)

and

D(a) ∈ [0, Y (a)] ∀ a ∈ A. (3.6)

If k ≥ Y (A), then D is simply identical to the allocation Y on A.

A notion of fair division is the choice of a specific division from the set of
divisions. Visually, this means that a notion of fair division is the choice of a
specific point on the m − 1 dimensional plane that represents the quantity k,
inside the m-dimensional hyperrectangle drawn by the origin and the claims.
Figure 3.2 shows three principal notions of fair division:

• The proportional notion of fairness finds the point where the line from
the origin to the point of claims intersects the set of divisions. See the
green line in Figure 3.2. Each agent is allocated a portion of the good
that is proportional to the ratio of its claim to the sum of all claims.
This division treats all agents equally, preserving the relations between
the claims.

• The egalitarian notion of fairness finds the point in the set of divisions
that is closest to the origin. See the red line in Figure 3.2. Each agent is
allocated the same portion, unless its claim is smaller than that portion.
This division treats all agents equally, reducing all claims to the same
amount.

• The nondiscriminatory notion of fairness finds the point in the set of
divisions that is closest to the point of claims. See the blue line in
Figure 3.2. The portion of each agent is reduced by the same amount
regardless of its claim, to a minimum of zero. This division treats all
agents equally, reducing all claims by the same amount.

3.5 Local, Outer Matching and Fairness
The matching of consumer and producer desires is an important aspect of con-
gestion management in congestion trees. On the one hand, the distributed na-
ture of prosumers in electrical power flow networks is the cause of much con-
gestion. On the other hand, the presence of both consumers and producers pro-
vides opportunity for mitigating or resolving congestion by locally balancing
excessive production or consumption.
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Local matching of supply and demand is a newly accepted paradigm for fu-
ture energy networks. It stimulates the use of local infrastructure as a push to-
wards envisioned autarkic-like local communities and neighbourhoods, reduc-
ing strain and losses on the energy network in the process. This local matching
of supply and demand also, again, emphasizes the importance of fairness. Fac-
tors such as the relative locality of the prosumers will play an important role in
concepts of fairness regarding the energy domain.

We address this important problem by presenting local, outer matching as
an efficient and fair concept for matching consumer and producer desires.
A local, outer matching solution prioritizes local matching in the peripheral
where prosumers are furthest away from the substation.

Definition 3.10 (Local, Outer Matching). A feasible allocation Y on a con-
gestion tree T = (V,E,A) is a local, outer matching if the locally balanced
flow LBFv(Y ) is maximal for each subtree Tv = (Vv, Ev, Av).

To make maximal use of the available network capacity, a local, outer
matching solution is sought that is also a max allocation or a base allocation,
depending on the envisioned interaction with the external grid. A max alloca-
tion makes maximal use of the external grid as well as the network capacity,
while a base allocation is self-balanced and makes maximal use of the network

1

r1

Y (c) = 0

v1

Y (b) = 2
Y (a) = −1

Solution 1

1

r1

Y (c) = 1

v1

Y (b) = 1
Y (a) = −1

Solution 2

0

r1

Y (c) = 0

v1

Y (b) = 1
Y (a) = −1

Solution 3

1

r1

Y (c) = 2

v1

Y (b) = 0
Y (a) = −1

Solution 4

Figure 3.3 Example congestion solutions for a simple congestion tree T = (V,E,A)
consisting of a root r with Cr = 1 containing agent c with dc = 2, and a
second vertex v with Cv = 1 containing both agents b and a with db = 2 and
da = −1. Solutions 1, 2, and 3 are local, outer matchings. Solutions 1, 2, and
4 are max allocations. Solution 3 is a base allocation.
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capacity for internally balanced flows. See Figure 3.3 for some examples. The
FairMax and FairBase allocations from Definition 3.11 present such local,
outer matching solutions. Their maximal capacity use and local, outer match-
ing are proven by Theorem 3.1.

Let T = (V,E,A) be a congestion tree. Because of the priority given to
outer matching from the leaves towards the root, the definitions of local, outer
matching allocations are recursive. For a vertex v ∈ V , the consumer and
producer desires of all consumers and producers at vertices outward from the
vertex v are maximally matched. This results in a chain of matchings where
consumer and producer desires are partially already satisfied by local, outer
matching and partially remain unsatisfied. The remaining desires also resolve
congestion by dividing the available capacity.

Definition 3.11 (FairMax and FairBase Allocations). Consider a conges-
tion tree T = (V,E,A). Let c(r) be the set of child vertices of the root r. For
each child v ∈ c(r), let FairMaxv and FairBasev be the FairMax and
FairBase allocations on Tv = (Vv, Ev, Av). Let the remaining desire Rem
for agents a ∈ A be defined as

Rem(a) =

{
FairMaxv(a)− FairBasev(a) if a ∈ Av, v ∈ c(r)

da if a ∈ A is at r
(3.7)

In the case that Rem(A+) ≥ |Rem(A−)|, define the FairMax allocation on
the congestion tree T = (V,E,A) as follows:
For a producer a ∈ A−

v with v ∈ c(r),

FairMax(a) = Rem(a) + FairBasev(a)
(
= FairMaxv(a)

)
, (3.8)

for a producer a ∈ A− at r,

FairMax(a) = Rem(a)
(
= da

)
, (3.9)

for a consumer a ∈ A+
v with v ∈ c(r),

FairMax(a) = Div(Allowance,Rem,A+)(a) + FairBasev(a), (3.10)

for a consumer a ∈ A+ at r,

FairMax(a) = Div(Allowance,Rem,A+)(a), (3.11)

where Allowance = |Rem(A−)|+ Cr.
The definition of the FairBase allocation on the congestion tree T =

(V,E,A) is similar, taking instead Allowance = |Rem(A−)|.
In the case that Rem(A+) ≤ |Rem(A−)| the definitions are analogous,

only switching consumers and producers.
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Informally, the definition of the FairMax allocation is as follows. The
remaining desire Rem in Equation (3.7) represents the fact that some parts of
the desires of consumers and producers are already matched with each other
in the subtrees of the congestion tree T = (V,E,A). See also Figure 3.4 for a
visual aide. If the root r has no children, i.e. it is a leaf, then Equations (3.8)
and (3.10) do not apply; this is the base case of the recursion. When the
consumers outweigh the producers, the producer desires can be fully matched
with consumer desires as seen in Equations (3.8) and (3.9). The consumers,
however, have to divide the sum of producer desires: the Allowance. The
FairMax allocation also includes interaction with the external network up
to the capacity Cr in the Allowance, on top of matching with the producer
desires, as seen in Equations (3.10) and (3.11). Finally, of course, all agents
in subtrees also get the desires that were already satisfied in those subtrees as
seen in Equations (3.8) and (3.10).

r

Cr
Fr(FairMax)

v z

T = (V,E,A)

Tv = (Vv, Ev, Av)
Cv

Fv(FairBasev) = 0

Tz = (Vz, Ez, Az)

Figure 3.4 A representation of the recursive definition.

Proposition 3.1. The FairMax and FairBase allocations are, respectively,
a max allocation and a base allocation.

Proof. The proof is by induction. Let c(r), FairMaxv , FairBasev , Rem,
and Allowance be as in Definition 3.11.

For the induction basis, let T = (V,E,A) be a congestion tree with only
one vertex. Without loss of generality, assume that Rem(A+) ≥ |Rem(A−)|.
Note that Rem(a) = da for all agents a ∈ A. Since D(a) ∈ [0, Rem(a)] by
Definition 3.9, it follows from Equations (3.9) and (3.11) and their analogs
for FairBase that both FairMax and FairBase are desire compatible
allocations. Moreover, it follows from Equation (3.11) and its analog for
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FairBase, respectively, that

FairMax(S) ≤ −FairMax(A−) + Cr ⇒ FairMax(A) ≤ Cr (3.12)

FairBase(S) = −FairBase(A−) ⇒ FairBase(A) = 0 (3.13)

and thus that both FairMax and FairBase are congestion free allocations.
Consequently, both FairMax and FairBase are feasible allocations.

Since by Equation (3.9) and its analog for FairBase,

FairMax(A−) = FairBase(A−) =
∑

a∈A−

da, (3.14)

it follows from Equation (3.13) that FairBase is a base allocation, and from
the properties of the division in Equation (3.11) that FairMax is a max
allocation.

For the induction step, let T = (V,E,A) be a more general con-
gestion tree, and assume that the proposition holds for subtrees Tv =
(Vv, Ev, Av) with v children of r. The proof of the induction step is simi-
lar to that of the induction basis. Again, without loss of generality, assume
that Rem(A+) ≥ |Rem(A−)|. Since FairMaxv is a desire compatible al-
location for all children v of r, it follows in the same way as before from
Definition 3.9, Equations (3.8) to (3.11) and their analogs for FairBase that
both FairMax and FairBase are desire compatible allocations. Moreover,
since Fv(FairBasev) = 0 for all children v of r, it follows in the same way
as before from Equations (3.10) and (3.11) and their analogs for FairBase,
respectively, that

FairMax(S) ≤ −FairMax(A−) + Cr ⇒ FairMax(A) ≤ Cr (3.15)

FairBase(S) = −FairBase(A−) ⇒ FairBase(A) = 0 (3.16)

and thus, since FairMaxv and FairBasev are congestion free allocations
for all children v of r, that both FairMax and FairBase are congestion free
allocations. Consequently, both FairMax and FairBase are again feasible
allocations.

Since by Equations (3.8) and (3.9) and their analogs for FairBase,

FairMax(A−) = FairBase(A−)

=
∑

v child of r

∑
a∈A−

v

FairMaxv(a) +
∑

a∈A− at r

da, (3.17)

and FairMaxv is a max allocation for all children v of r, it follows from
Equation (3.16) that FairBase is a base allocation, and from the properties of
the division in Equations (3.10) and (3.11) that FairMax is a max allocation.
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Theorem 3.1. The FairMax and FairBase allocations are, respectively, a
max allocation and a base allocation that are local, outer matchings.

Proof. Let c(r) and FairBasev be as in Definition 3.11.
The theorem follows from Proposition 3.1 and the fact, as seen from Equa-

tions (3.8) and (3.10) and their analogs for FairBase, that the restrictions of
FairMax and FairBase to a subtree Tv = (Vv, Ev, Av) for a child v ∈ c(r)
fully contain the allocation FairBasev . Since FairBasev is a base allo-
cation and thus maximizes the locally balanced flow on the subtree Tv =
(Vv, Ev, Av), so do FairMax and FairBase.

Through induction on subtrees it then follows that the FairMax and
FairBase allocations maximize the locally balanced flow on all subtrees of
the congestion network T = (V,E,A).

3.6 Algorithm: Local, Outer Matching
combined with Fair Division
This section presents an algorithmic mechanism that combines local, outer
matching with notions of fair division to compute the FairMax and
FairBase allocations on a congestion tree T = (V,E,A). A sketch
of the approach is as follows. First compute these allocations on sub-
trees Tv = (Vv, Ev, Av) for vertices v ∈ V from the leaves towards the
root r. Each step considers one vertex v and the subtree Tv = (Vv, Ev, Av).
In this way, at each step, the FairMax and FairBase allocations for all sub-
trees with roots that are children of the current vertex will have been computed
already.

Algorithm 2 uses the divide function from Algorithm 3 to fairly divide
certain values over sets of agents. This is used for local, outer matching and for
resolving any potential congestion. The divide function depends on the notion
of fairness.

When the notion of fairness is egalitarian or nondiscriminatory, the divide
function in Algorithm 3 uses the water level function from Algorithm 4. The
water level function computes the level w that an allocation on a set of agents
must be reduced to, per agent, in order to divide a certain value equally over
the set of agents.

3.6.1 Algorithmic Local, Outer Matching

Algorithm 2 visits all vertices in V exactly once, moving from the leaves
towards the root r. At each step corresponding to a vertex v, for each agent
a ∈ Av , two variables are subject to change. The first variable, Fb(a), is from
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the FairBase allocation and can be thought of as the satisfied desire that has
already been allocated to agent a when considering only Tv = (Vv, Ev, Av).
The second variable, Fm(a), can be thought of as the remaining desire that
can still be allocated to agent a in addition to its already satisfied desire, when
considering only Tv = (Vv, Ev, Av).

Algorithm 2: Mechanism
Input: A congestion tree T = (V,E,A) and a fairness notion f
Output: The FairMax (Fm) and FairBase (Fb) allocations

1 Fb(a)← 0 ∀ a ∈ A
2 Fm(a)← da ∀ a ∈ A
3 while not all vertices in V are marked do

4
Select an unmarked vertex v ∈ V
with no unmarked children and mark
it

5 if Fm(A+
v ) ≥ |Fm(A−

v )| then
6 D ← Divide(|Fm(A−

v )|, Fm,A+
v , f)

7 E ← Divide(|Fm(A−
v )|+ Cv, Fm,A+

v , f)

8 Fb(a)← Fb(a) +D(a) ∀ a ∈ A+
v

9 Fm(a)← E(a)−D(a) ∀ a ∈ A+
v

10 Fb(a)← Fb(a) + Fm(a) ∀ a ∈ A−
v

11 Fm(a)← 0 ∀ a ∈ A−
v

12 else
13 Similarly
14 Fm(a)← Fm(a) + Fb(a) ∀ a ∈ A
15 return Fm,Fb

At each step, the remaining desires Fm of the consumers and producers
in Av are maximally matched with each other. This maximal matching is
performed, when the consumers outweigh the producers, by dividing the sum
of the remaining producer desires over the remaining consumer desires. The
matched amounts are moved from the remaining desires Fm to the satisfied
desires Fb. This leaves either only consumers or only producers in terms of
remaining desires Fm since either all consumers or all producers have their
entire remaining desires Fm moved to their satisfied desires Fb.

Simultaneously, at each step, any potential congestion is resolved by divid-
ing the available capacity over the agents. This is done, when the consumers
outweigh the producers, by dividing an amount equal to the sum of producer
desires plus the capacity Cv over the consumer desires. This amount can be
thought of as the allowance of the consumers.
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As noted before, the satisfied desires Fb will constitute the FairBase
allocation. However, the remaining desires Fm do not yet constitute the
FairMax allocation. In order to obtain the FairMax allocation, after all
vertices have been visited by the algorithm, the remaining desires Fm and
satisfied desires Fb are added together.

At this point it has become easy to see that Algorithm 2 indeed computes
the FairMax and FairBase allocations. This result will be formalized in
Section 3.6.4.

3.6.2 Division for Different Notions of Fairness

The division function in Algorithm 3 implements the division from Defini-
tion 3.9. If the value k to divide is not larger than Y (A), the function returns a
division D on A that exactly divides the value k over the agents a ∈ A while
not exceeding the claims Y (a) for agents a ∈ A.

Algorithm 3: Fair Division
1 Function Divide(k, Y,A, f)

Input: A positive value k, an allocation Y with positive values on
a set of agents A, and a fairness notion f

Output: A division D (i.e. D(A) = min(k, Y (A)) and
D(a) ∈ [0, Y (a)] for all a ∈ A)

2 if k ≥ Y (A) then
3 D(a)← Y (a) ∀ a ∈ A
4 else if f = proportional then
5 D(a)← Y (a)/Y (A) · k ∀ a ∈ A
6 else if f = egalitarian then
7 w ← WaterLevel(k, Y,A)
8 D(a)← min(Y (a), w) ∀ a ∈ A

9 else if f = nondiscriminatory then
10 w ← WaterLevel(Y (A)− k, Y,A)
11 D(a)← Y (a)−min(Y (a), w) ∀ a ∈ A

12 return D

The division function presented in Algorithm 3 supports the three principal
notions of fair division discussed in Section 3.4. However, it is of course
possible to add any other possible division.

The division for the proportional notion of fairness is computed with a
straightforward ratio multiplication, allocating to each agent a ∈ A a portion
of the value k that is proportional to the ratio of the claim Y (a) to the sum of
claims Y (A).
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To compute the divisions for the egalitarian and nondiscriminatory notions
of fairness, the concept of the water level is used by calling the water level
function from Algorithm 4. These two divisions are computed by respectively
reducing the claims Y (a) to a water level w and by reducing the claims Y (a)
by a water level w, to a minimum of zero.

For the proportional notion of fairness, the computed division D trivially
satisfies the output conditions. For the egalitarian notion of fairness, the com-
puted division D can directly been seen to satisfy the output conditions by
considering the output condition of the water level function from Algorithm 4.
To see that the computed division D also satisfies the output conditions for the
nondiscriminatory notion of fairness, consider that∑

a∈A

min(Y (a), w) = Y (A)− k (3.18)

and thus that

D(A) = Y (A)−
∑
a∈A

min(Y (a), w) = k. (3.19)

Informally, the part Y (A)− k that will not be allocated is divided evenly over
the agents A and subtracted from their claims Y (A).

3.6.3 Setting theWater Level

Setting the water level refers to uniformly dividing a good over claims by
computing a single value referred to as the water level. This water level value
is used by egalitarian and nondiscriminatory notions of fair division.

The water level function in Algorithm 4 takes a value k and an allocation Y
on a set of agents A. It then computes the unique level w that the values Y (a)
for agents a ∈ A must be reduced to in order to exactly divide the value k.
Simply setting a single value (k divided by the number of agents in A) for
all agents a ∈ A does not reach the intended goal as some agents may have
claims lower than that value. If that is the case, the unclaimed difference can
be divided over the other agents.

To do this, the water level function in Algorithm 4 starts by sorting the
claims Y (a) from lowest to highest. It then checks if it can allocate the lowest
claim to all agents a ∈ A. If yes, the lowest claim is removed. It then checks
if it can also allocate the next lowest claim to all remaining agents. Once the
next lowest claim cannot be allocated to all remaining agents, the rest of the
unallocated value k is evenly divided over the remaining agents.

The name of the function comes from this repeated raising of the allocation
from claim to claim that resembles the rising of a water level. Like water
poured into a series of connected containers, it divides the quantity equally
over the recipients. See also Figure 3.5.
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Algorithm 4: Setting the Water Level

1 Function WaterLevel(k, Y,A)
Input: A positive value k and an allocation Y with positive values

on a set of agents A with k ≤ Y (A)
Output: A value w such that

∑
a∈A min(Y (a), w) = k

2 i← 0
3 list← Sort(Y (a), a ∈ A)
4 total← k
5 size← |A|
6 level← 0
7 rise← list[i]
8 while total− size · rise > 0 do
9 total← total− size · rise

10 size← size− 1
11 level← list[i]
12 rise← list[i+ 1]− level
13 i← i+ 1

14 rest← total/size
15 w ← level+ rest
16 return w
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Figure 3.5 Steps of the water level function from Algorithm 4, dividing the value k = 24
(hatched surface area) over five agents a through e with respective claims 1, 3,
6, 8, and 9.
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3.6.4 Result of the Algorithm

Theorem 3.2. Algorithm 2 computes the combination of local, outer match-
ing with principal notions of fair division, resulting in the FairMax and
FairBase allocations that correspond to maximal or no interaction with the
external grid, respectively.

Proof. At each step of Algorithm 2, the remaining desire Fm is equal to the
remaining desire allocation Rem from Definition 3.11. Instead of adding the
Fb values and subtracting them again in the next step, they are saved and added
to the Fm values only at the end of the algorithm. The variable updates in the
algorithm are identical to those in Definition 3.11.

The division function used in Algorithm 2 is provided by Algorithm 3, and
allows for combination with any of the three discussed principal notions of fair
division.

3.6.5 Example Congestion Solutions

Figure 3.6 revisits the simple example congestion tree from Figure 3.3.

1
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v1

Y (b) = 4
3

Y (a) = −1
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Y (c) = 0

v1
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Figure 3.6 FairMax allocations with different notions of fair division for the simple
congestion network T = (V,E,A) from Figure 3.3. In this example, the
FairBase allocation is the same for all three principal notions of fair division.

Figure 3.7 shows a more complex congestion tree for which the FairMax
allocation is computed with the egalitarian notion of fair division. Figure 3.7
also shows the steps that Algorithm 2 takes during this computation. Once
the root r is reached, the FairMax allocation is computed by adding the Fb
values to the Fm values.
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Figure 3.7 Algorithm input (top left), output (top right), and steps from vertices u to r.
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3.7 Incentive Compatibility
One of the central concepts in the field of mechanism design is that of incentive
compatibility. A mechanism is designed with a certain outcome in mind, for
example a congestion free power flow network. The designer of a mechanism
lays out the rules in such a way that agents playing the game follow strategies
that together reach the intended outcome. This assumes that the agents want
to play the game, and that they will play it honestly. An incentive compatible
mechanism ensures that agents will participate truthfully.

The importance of truthful participation is emphasized when dealing with
fairness. Fairness often heavily depends on the outcomes for the agents relative
to each other. If agents can ‘game the system’, the agents that do will obtain
an unfair advantage over the other agents. A mechanism that allows such
strategies will require strong assumptions about the participating agents or
other means of enforcing fairness.

Proposition 3.2. The mechanism presented in Algorithm 2 is incentive com-
patible when the notion of fairness is egalitarian.

Proof. Consider the Fm output of the mechanism, the proof for the Fb output
is analogous. Let T = (V,E,A) be a congestion tree containing an agent a
with true desire d∗a. Without loss of generality, assume that agent a is a
consumer, i.e. d∗a > 0.

If agent a reports da = d∗a and the mechanism returns Fm(a) = d∗a, then
the agent cannot improve its situation by reporting another desire da because
it is already in its preferred situation.

If agent a reports da = d∗a and the mechanism returns Fm(a) < d∗a, then
the agent may try reporting another desire da ̸= d∗a to improve its situation.
Since the mechanism returned Fm(a) < da when reporting da = d∗a, it must
be that the value of Fm(a) + Fb(a) was reduced at at least one step of the
algorithm. Consider the first step at which this happened, and the vertex v
corresponding to that step. It must be that, initially, congestion occurred at
this vertex, i.e. |Fm(A−

v )| + Cv < Fm(A+
v ) at Algorithm 2 Line 7. Since

Fm(a) + Fb(a) was reduced at this vertex, it must have been true that
Fb(a) > w at Algorithm 3 Line 8. Note that the output w of the water level
function in Algorithm 4 does not depend on values Y (a) > w.

It now follows that reporting da > d∗a causes the same congestion at vertex
v, i.e. |Fm(A−

v )| + Cv < Fm(A+
v ) at Algorithm 2 Line 7, and produces

the same value w at Algorithm 3 Line 7, resulting in the same reduction of
Fm(a) + Fb(a) at this step as compared to reporting da = d∗a. Thus after this
step, there is no difference between reporting da = d∗a and reporting da > d∗a,
leading the mechanism to return the same value Fm(a) < d∗a in both cases.
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It is possible that reporting da > d∗a causes congestion at an earlier step
corresponding to a vertex z. This does not change the argument, since reporting
da = d∗a not causing congestion at vertex z implies that when reporting
da > d∗a, Fm(a) + Fb(a) can at most be reduced to d∗a at vertex z.

Alternatively, reporting da < d∗a may avoid the congestion at vertex v.
However, this is only the case when Fm(a) at Algorithm 2 Line 7 is equal
to or lower than the value w at Algorithm 3 Line 7 when reporting da = d∗a.
In other words, the reduction of Fm(a) + Fb(a) to w + Fb(a) at vertex v
is only avoided if it is already equal to or lower than w + Fb(a). The same
argument then applies to each following step corresponding to a vertex z with
a ∈ Az where congestion occurs when reporting da = d∗a. It follows that the
mechanism output Fm(a) when reporting da < d∗a is equal to or lower than
the output Fm(a) when reporting da = d∗a.

This shows that agent a cannot improve its situation by reporting anything
other than its true desire d∗a, i.e., being truthful is a weakly dominant strategy.

Proposition 3.3. The mechanism presented in Algorithm 2 is not incentive
compatible when the notion of fairness is proportional or nondiscriminatory.

Proof. The proof is by counterexample. Let T = (V,E,A) be a simple
congestion tree with only one vertex r, a capacity of Cr = 8 on its virtual
edge, and two agents a and b with true desires d∗a = 6 and d∗b = 6. If both
agents report their true desires, the mechanism would return Fm(a) = 4
and Fm(b) = 4 for both the proportional and the nondiscriminatory notions
of fairness. However, if agent a instead reports da = 10 while agent b still
reports its true desire db = 6, then the mechanism would return Fm(a) = 5
and Fm(b) = 3 for the proportional notion of fairness, or Fm(a) = 6
and Fm(b) = 2 for the nondiscriminatory notion of fairness. This shows
that agent a can improve its situation by reporting a desire designed for
participation in the mechanism, rather than its true desire.

The same counterexample can be used for the Fb output of the mechanism
by adding a third agent c with d∗c = −8.

Propositions 3.2 and 3.3 can be intuitively understood to hold true by
examining Figure 3.2. The three divisions corresponding to the three principal
notions of fair division are found at the intersection of their respective lines
with the line representing the quantity of the good to be divided.

Two of the three principal notions of fair division correspond to lines that
depend on the point of the claims, and thus the point of intersection depends
on the point of the claims as well. Evidently, for these two notions, the division
correlates directly with the claims reported by the agents. Indeed, for the



58 Chapter 3 PrincipalNotions of Fair Division andLocal, OuterMatching

proportional and nondiscriminatory notions of fairness, an agent can directly
influence the division.

Conversely, for the egalitarian notion of fairness, the point of intersection
only depends on claims to a limited extent. Only an agent that is allocated
its entire claim would potentially be allocated a larger amount by reporting a
higher claim. Agents with claims above a certain threshold cannot increase the
amount allocated to them by reporting a higher claim. The egalitarian division
therefore only correlates with the claims reported by the agents to the point
that each agent can claim their fair equal share and receive it.

3.8 Computational Complexity
The water level function in Algorithm 4 sorts the Y (a) values inO(m·log(m))
time, where m is the number of agents in the input set A. It then enters a while
loop which takes at most m− 1 iterations. Thus the computational complexity
of the water level function in Algorithm 4 is O(m · log(m)).

Algorithm 2 visits each vertex in V exactly once, and at each vertex calls
the divide function in Algorithm 3 two times. For the proportional notion of
fairness, the divide function assigns m values, where m is the number of agents
in the input set A. For the egalitarian and nondiscriminatory notions of fairness,
the divide function calls the water level function at most once.

Therefore, the worst case computational complexity of Algorithm 2 with
the proportional notion of fairness is O(n ·m), while with the egalitarian and
nondiscriminatory notions of fairness it is O(n · m · log(m)). Here n is the
number of vertices in V and m is the total number of agents in A.

3.9 Conclusion and Discussion
We presented local, outer matching, Definition 3.10, as a novel concept of fair-
ness for congestion management in low-voltage networks. Local, outer match-
ing addresses the important problem of fairness in matching by prioritizing
local matching in the peripheral where prosumers are furthest away from the
substation. We then presented congestion solutions in Definition 3.11 that were
proven by Theorem 3.1 to be local, outer matchings that make maximal use
of the available network capacity. These congestion solutions interchangeably
employ established notions of fair division for dividing quantities such as ca-
pacity. In Section 3.4 we discussed three distinct principal notions of fair divi-
sion: proportional, egalitarian, and nondiscriminatory division.

Subsequently, in Section 3.6, we presented an algorithmic mechanism that
combines local, outer matching with notions of fair division and computes
congestion solutions which fairly resolve congestion and make maximal use
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of available network capacity as proven by Theorem 3.2. In Section 3.6.2 we
showed that the mechanism is able to employ different notions of fair division,
and we then went on to prove that the egalitarian notion of fairness results in an
incentive compatible mechanism, Proposition 3.2, while the proportional and
nondiscriminatory notions of fairness do not, Proposition 3.3.

Finally, in Section 3.8, we showed that the presented congestion solutions
can be computed by an algorithm with low computational complexity. This
makes the notion of fairness and the algorithm suitable for sizeable and time
sensitive congestion problems such as those encountered in electrical grids.

The egalitarian notion of fair division resulting in an incentive compatible
mechanism is an obvious advantage over other notions of fair division, but does
not render other notions of fair division obsolete. Consensus on the accepted
notion of fair division should be a priority since fairness is fundamentally
subjective and dependent on setting. Additional penalties or incentives could
be implemented to make other notions of fair division feasible for use in this
setting if they are strongly preferred.

The algorithmic mechanism we presented in this chapter is limited to the
acyclic networks that are found in real-world low-voltage networks. It is likely
that a similar algorithmic mechanism for more general network structures
would have a higher computational complexity. Running in limited compu-
tational time is, however, essential for the application in this domain.

The theoretical foundation that this chapter lays may be extended to more
detailed models, for example including line losses by discounting flows per
line that is traversed. This raises the interesting question of whether fairness
lies with the sent quantity or the received quantity.

Another potential avenue of research would be to look at other fair ways
of matching consumer and producer desires, for example by changing the
hierarchical structure of matching or by introducing time-shiftable consumers
and producers.





4Parameterized Globally
Max-Min Fair Solutions

In the previous chapter we considered a local notion of fairness. In this chapter
we instead consider a global notion of fairness: max-min fairness.

4.1 Introduction
Network flow congestion is often considered in the context of information
systems (Bertsekas et al., 1992; Buchbinder and Naor, 2006). In these settings,
a connection may have a limited capacity. When a number of users try to send
too much data over the connection simultaneously, exceeding the capacity,
then congestion occurs. Congestion management solutions seek to mitigate or
resolve this congestion, while taking different aspects into account. One such
aspect is that of fairness or fair division of network capacity (Brandt et al.,
2012; Lang and Rothe, 2016; Moulin, 2003). Fairness is often considered in
flow congestion problems in general (Fossati et al., 2018; Ghodsi et al., 2011;
Kleinberg et al., 1999) (for a survey, see (Ogryczak et al., 2014)).

Similar network flow congestion issues arise in electricity networks (Bach
Andersen et al., 2012). There too does congestion occur when agents attempt to
exceed line capacity constraints. With the ongoing energy transition, moving
towards more decentralized and renewable energy sources, congestion prob-
lems have become more frequent and more severe (Nabe et al., 2017; Verzijl-
bergh et al., 2014). Since access to electricity networks is considered essential
for full participation in modern society (European Parliament, 2016), fairness
plays a vital role in electricity network congestion management.

Electricity networks, however, significantly differ from information systems
on a fundamental level. The flows in an electricity network are commodity
flows, and the agents that populate the network act as consumers or producers
of the commodity. The implication of this for congestion management is that
consumption and production can be locally balanced, avoiding strain on the
network elsewhere. The implication for fairness is that assigning each agent

61
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an equal fair share may be highly suboptimal due to unused local matching
opportunities. Previous work (Hekkelman and La Poutré, 2020) offers a greedy
method for local matching, resulting in an efficient allocation that satisfies a
specific form of local fairness. A solution for the nonlocal case is provided in
the seminal work by Megiddo (Megiddo, 1977).

Within the context of electricity networks we focus on the many hierarchical
interactions that play a role there. We mainly consider subnetworks, e.g. low-
voltage networks which are local networks that are connected to a larger
medium-voltage network through a substation. Within the subnetwork the
aforementioned issues of local matching and fairness play a primary role.
However, the resultant flow of the subnetwork into the higher-level network
can play a significant role at that higher level. In situations such as microgrids,
aggregation or virtual power plants, the local subnetwork acts in a higher-
level market with its flow. This may mean that the subnetwork has to adjust
itself internally to yield a certain resultant flow. In this chapter we investigate
how such higher-level interactions affect fair congestion solutions within the
subnetwork.

In this chapter we consider commodity flows between producers and con-
sumers in congested subtree networks with external connections at the root.
This models electricity distribution networks which in many cases have an ac-
tive radial structure (their graphs are trees (Sallam and Malik, 2018)) with their
root connected to a higher-level transmission network. The notion of fairness
that we consider is the widely used egalitarian notion of leximin fairness (Jaffe,
1981), which is closely related to envy-freeness and the Nash product (Berliant
et al., 1992; Varian, 1974). As pointed out by (Megiddo, 1974), applying fair-
ness to flow networks requires us to consider individual agents as opposed to
the usual single-source/sink models.

We extend leximin fairness to multi-agent commodity flow networks in
order to capture the unique local matching opportunities that arise between
producers and consumers. This natural extension implements leximin fairness,
but does so among producers and consumers separately while encouraging
local matching of supply and demand where possible. Resulting leximin fair
congestion solutions thus possibly feature relatively high consumption and
production locally, but only when a more even distribution to other parts of
the network is not feasible due to capacity constraints.

In this chapter we prove that for commodity flow in a subtree network with
external connection at the root, for every possible outward flow at the root,
there exists a unique leximin fair congestion solution, and when no outward
flow at the root is specified then there exists a unique global leximin fair
congestion solution. For the proof, and later algorithm, we use an insightful
method where we compute agent-specific intervals that capture local matching
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and prevent congestion. We then apply a water-filling algorithm to these
intervals in order to find leximin fair congestion solutions.

We then go on to fully parameterize the unique leximin fair congestion
solutions for all possible root flows. We establish a correspondence between
possible root flows and a parameter that, given the agent-specific intervals,
allows us to find the unique leximin fair allocation with the corresponding root
flow for any single agent inO(1) time. Increasing this parameter yields unique
leximin fair allocations with progressively higher root flow values.

We subsequently devise an algorithmic mechanism to compute the leximin
fair congestion solutions. Our algorithm closely follows the earlier proof,
recursively computing the agent-specific intervals in the same manner. After
just one run of the algorithm, we can then use the parameterization to compute
the unique leximin fair congestion solution for any possible root flow in
O(#agents) time. We show a low computational complexity of the algorithm,
which is essential for application in e.g. the energy domain.

Finally, we prove that our algorithmic mechanism is individually rational,
incentive compatible, and can operate as a distributed algorithm. Especially
this second property is of importance when considering fairness, since the
possibility of ‘gaming’ the mechanism would undermine any fairness as well.

Our contributions can be summarized as follows:

• We prove that for commodity flow subtrees with an external connection at the
root, for each possible root flow there exists a corresponding unique leximin
fair congestion solution, as well as a unique global leximin fair congestion
solution.

• We fully parameterize the unique leximin fair congestion solutions, finding
for any agent and any possible root flow its unique leximin fair allocation in
O(1) time.

• We present an algorithmic mechanism of low computational complexity
that computes this parameterization of all unique leximin fair congestion
solutions.

• We prove that our mechanism is individually rational, incentive compatible,
and can operate as a distributed algorithm.

4.2 Preliminaries
4.2.1 Agent-Based Commodity Flow on Trees

We start by modelling commodity flow in congested tree networks populated
by agents that act as prosumers of the commodity, meaning they can either
produce or consume. We concern ourselves with allocating prosumption values
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to agents so as to accommodate agent desires while ensuring fairness and
resolving congestion.

Let a congestion tree T = (V,E,A) be a rooted weighted tree (V,E) with
a set of agents A located at the vertices. Let a virtual edge at the root r represent
the connection to a virtual parent that represents an external network. Let the
edge weights be positive, representing flow capacities, and denote the weight
of an edge between vertex v ∈ V and its parent as the capacity Cv . Internal
flow capacities are strictly positive, while the flow capacity Cr at the root can
be zero (representing an isolated network).

Let each agent a ∈ A report a desired prosumption da. A prosumption
induces a flow between the external network and the agent. An agent’s desire
also indicates whether the agent acts as a consumer (da > 0) or a producer
(da < 0). Let A+ ⊆ A and A− ⊆ A denote the sets of consumers and
producers, respectively.

Congestion occurs when commodity flows induced by the agents’ prosump-
tions result in the tree’s edge capacities being exceeded. Congestion solutions
come in the form of allocations Y : A → R that allocate a prosumption
to each agent. An allocation Y completely defines the flow in a congestion
tree, with the root flow F (Y ) given by the sum of allocated prosumptions, i.e.
F (Y ) =

∑
a∈A Y (a).

An allocation Y on a congestion tree T = (V,E,A) is congestion free if
for each vertex v the root flow Fv(Y ) of the subtree Tv = (Vv, Ev, Av) with
root v does not exceed the capacity Cv , i.e. |Fv(Y )| ≤ Cv . An allocation Y is
desire compatible if each agent a is allocated a prosumption between zero and
its desire da. An allocation Y is feasible if it is both congestion free and desire
compatible. A root flow f for a congestion tree T is feasible if there exists a
feasible allocation Y on T with F (Y ) = f .

4.2.2 Leximin Fairness for Commodity Flows

A widely applied notion of fairness, especially in network flow congestion
settings, is that of leximin fairness. Leximin fairness is a very strong criterion
that corresponds to leximin-optimal allocations and implies a maximal Nash
product. With leximin fairness we are able to maximize the minimum amounts
allocated to agents, i.e. an egalitarian rule, while achieving Pareto optimality
within the constraints.

Our setting of prosumer commodity flows poses a unique challenge for find-
ing leximin fair allocations because the presence of both consumers and pro-
ducers allows for local matching to reduce outward flow and avoid congestion.
This local matching gives rise to situations where one agent is necessarily al-
located more than another, as demonstrated by the situation in Figure 4.1.

To reflect the possibility and desirability of local matching in our setting,
we simply extend the classic notion of leximin fairness to absolute values.
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Figure 4.1 An example congestion tree T with agents a, b, c, capacities and desires as
indicated. Also indicated are maximal and minimal feasible root flows for
subtrees of T . The dashed flow between z and u indicates local matching of
at least 6 units. The global leximin fair solution allocates 4, 6, -7 to a, b, c
respectively, rather than 4, 4, -5 which enforces strict consumer equality but is
not Pareto optimal.

This principle is similar to the two distinct lexicograpic orders for producers
and consumers used in (Megiddo, 1974).

Definition 4.1. A feasible allocation on a congestion tree is leximin fair if and
only if increasing, in absolute value, the allocation of any agent necessarily
results in the decrease, in absolute value, of the allocation of another agent
with an equal or smaller, in absolute value, allocation.

Note that for commodity flows, increasing the allocation of a consumer never
results in a necessary decrease in absolute value of the allocation of a producer
since both these changes reduce flow. Therefore, Definition 4.1 essentially ap-
plies classic leximin fairness separately to consumers and to producers. How-
ever, it also allows for matching between the two: increasing, in absolute value,
the allocations of both a consumer and a producer. Consequently, leximin fair
allocations by this definition are Pareto optimal.

Since we consider divisible goods, on nonzero allocations our extended
leximin fairness can be expressed by an optimal Nash product of the absolute
values of the allocated prosumptions. This relation, given by Lemma 4.1, is
analogous to that between classic leximin fairness and the (non-absolute) Nash
product (Segal-Halevi and Sziklai, 2019). The well-known association of the
Nash product with fair allocations makes it a fitting tool to use to find leximin
fair solutions later in certain cases.

Lemma 4.1. Given a congestion tree T = (V,E,A) and a root flow f , if the
maximal value of the Nash product

∏
a∈A |Yf (a)| on feasible allocations Yf

on T with root flow f is nonzero, then a feasible allocation Y ∗
f on T with root
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flow f is leximin fair among feasible allocations Yf on T with root flow f if
and only if it maximizes the Nash product among such allocations.

Proof. Suppose Yf maximizes the Nash product but is not leximin fair. Then
it is possible to increase, in absolute value, the allocation of an agent without
decreasing, in absolute value, the allocation of another agent with equal or
smaller, in absolute value, allocation while maintaining a root flow f . This
change would increase the Nash product, a contradiction. Similarly for the
converse.

4.3 Main Theorems
We now formulate one of the primary novel contributions of our work, which is
proving the existence of unique leximin fair congestion solutions on congestion
trees together with their parameterization.

Theorem 4.1. Given a congestion tree T = (V,E,A) and a feasible root
flow f , there exists a unique leximin fair allocation Y ∗

f with root flow f on T .
Moreover, if a root flow is not specified, there exists a unique global leximin
fair allocation Y ∗

opt on T .

Theorem 4.2. Let T = (V,E,A) be a congestion tree, let fmin and fmax

be the minimal and maximal feasible root flows, respectively, and let fopt =
F (Y ∗

opt). Then there exists a parameterization of unique leximin fair alloca-
tions Y ∗

f for all feasible root flows f that is described by two piecewise linear
increasing bijections

P+ : [fmin, fopt]→ I
P− : [fopt, fmax]→ J

(4.1)

with I,J ⊂ R closed intervals, such that for each agent a ∈ A and for each
feasible root flow f we can compute Y ∗

f (a) as a function of P±(f) and a in
O(1) time.

4.4 Proof of the Main Theorems
4.4.1 Outline of the proof

We first set out to prove Theorem 4.1. The core of the proof revolves around
finding unique leximin fair allocations for the maximum and minimum possi-
ble root flows of subtrees of a congestion tree. These provide for each agent
an upper and lower bound between which all leximin fair allocations lie. The
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bounds prevent congestion from occurring in the subtree, which then allows
us to find the bounds recursively on subtrees. Finally, with the bounds we can
find any unique leximin fair allocation. In Sections 4.5 and 4.6 we will show
that this method results in a low computational complexity.

First, in Section 4.4.2, we introduce a method for finding unique leximin fair
allocations for specific root flows by uniformly curtailing either consumers or
producers within their determined bounds.

Subsequently, in Section 4.4.3, we break down congestion trees into equiv-
alent (for congestion purposes) binary congestion trees. These facilitate the
proof by allowing examination of smaller steps.

We then present our proof by induction. In Section 4.4.4, we formulate the
induction hypothesis. This naturally includes Theorem 4.1, but also includes
a number of other properties that will facilitate the proof and, later on, the
mechanism. In Section 4.4.5 we verify the induction base, and in Section 4.4.6
we perform the induction step which takes up the majority of this section.

Finally, in Section 4.4.7, we prove Theorem 4.2 using Section 4.4.2 and the
agent-specific bounds computed in the proof of Theorem 4.1.

4.4.2 Curtailment Allocations and Root Flow

Consider a congestion (sub)tree populated by agents with associated desired
prosumption values. To adjust the root flow of this congestion tree, we can
curtail agents’ prosumptions by allocating new values to them that are smaller,
in absolute value, than their desired values. In light of leximin fairness, it is
never optimal to curtail both consumers and producers at the same time since
an equal change in consumption and production results in a root flow change
of zero. This is why we consider what we call positive and negative curtailment
allocations, which are allocations that respectively curtail only consumers or
producers. A positive curtailment solution results in a more negative root flow,
while a negative curtailment solution results in a more positive root flow.

Within the context of leximin fairness we further specify positive and neg-
ative curtailment allocations to be of a specific form. As the next sections will
show, we will look at intervals that specify not only the desired prosumption
value of an agent, but also the extent to which the agent may be curtailed. To
find leximin fair allocations, we curtail a set of agents by choosing a single
value w. Each agent is then allocated this value w, bounded by its interval.

Definition 4.2. Consider a set of agents A with for each agent a ∈ A a lower
bound la and upper bound ua on its prosumption, such that la ≤ ua and
0 /∈ (la, ua). Then a positive curtailment allocation for la, ua (a ∈ A) is
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an allocation Y , for some w ≥ 0, with

Y (a) =

{
min(max(w, la), ua) ∀a ∈ A+

la ∀a ∈ A− (4.2)

while a negative curtailment allocation for la, ua (a ∈ A) is an allocation Y ,
for some w ≤ 0, with

Y (a) =

{
ua ∀a ∈ A+

min(max(w, la), ua) ∀a ∈ A− (4.3)

We will refer to an allocation that is a positive or negative curtailment
allocation simply as a curtailment allocation.

The extreme cases of maximal curtailment and no curtailment result in
straightforward allocations, as the following lemma shows.

Lemma 4.2. Positive curtailment allocations Y with w ≤ min
a∈A+

la (including

w = 0) are given by Y (a) = la (a ∈ A), while negative curtailment
allocations Y with w ≥ max

a∈A−
ua (including w = 0) are given by Y (a) =

ua (a ∈ A). Moreover, positive curtailment allocations Y with w ≥ max
a∈A

ua

and negative curtailment allocations Y with w ≤ min
a∈A

la are all given by

Y (a) = min(0, la) + max(0, ua) (a ∈ A).

Proof. This follows directly from Definition 4.2.

When the root flow is increased or decreased using curtailment, then the
value allocated to each agent also respectively increases or decreases (possibly
by zero). The following lemma formalizes this.

Lemma 4.3. Given a set of agents A with lower and upper bounds la ≤
ua, 0 /∈ (la, ua) (a ∈ A), if Y and Y ′ are two curtailment allocations with
respective root flows f and f ′ such that f ≤ f ′, then Y (a) ≤ Y ′(a) for all
agents a ∈ A.

Proof. First, note that la ≤ min(max(w, la), ua) ≤ ua for any w. If Y
and Y ′ are positive and negative curtailment allocations respectively, then
Y (a) ≤ Y ′(a) (a ∈ A) follows directly from Definition 4.2. The converse
implies f = f ′ and thus Y (a) = Y ′(a) (a ∈ A).

If Y and Y ′ are both positive curtailment allocations, then it must be that
w ≤ w′. This implies Y (a) ≤ Y ′(a) (a ∈ A). Analogously when Y and Y ′

are both negative curtailment allocations.
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Finally, we show that curtailment allocations uniquely maximize the Nash
product for their specific root flow.

Lemma 4.4. Given a set of agents A with lower and upper bounds la, ua (a ∈
A) such that la ≤ ua, 0 /∈ (la, ua) ∀a ∈ A and a value f such that

∑
a∈A la ≤

f ≤
∑

a∈A ua, then there exists a unique solution s = {sa | a ∈ A} to the
optimization problem:

maximize
{xa | a∈A}

∏
a∈A

|xa|

subject to
∑
a∈A

xa = f,

xa ∈ [la, ua] ∀a ∈ A.

(4.4)

Furthermore, the unique solution s is a positive or negative curtailment alloca-
tion for la, ua (a ∈ A).

Proof. We start by considering the simplified problem where 0 ≤ la ≤ ua (a ∈
A). That a solution s = {sa | a ∈ A} exists follows from the given properties.
Assume there does not exist a w ≥ 0 such that sa = min(max(w, la), ua) for
all agents a ∈ A. For all w ≥ 0, if sa = ua for all agents a with sa < w and
sa = la for all agents a with sa > w, then sa = min(max(w, la), ua) for all
agents a. In particular, taking w = 0, this implies that there exists an agent a
with sa > la. Among such agents, let b be the agent with the highest value for
sb. Taking w = sb then implies that there exists an agent a with either sa > w
and sa > la, which would contradict the choice of agent b, or sa < w and
sa < ua. In summary, there exist two agents a, b with sa < sb, sa < ua, and
sb > lb.

Now let ϵ = min( sb−sa
2 , ua− sa, sb− lb). Because of the three inequalities

involving agents a and b we know that ϵ > 0, and that that {s′a | a ∈ A} with
s′a = sa + ϵ, s′b = sb − ϵ, and s′c = sc ∀c ̸= a, b satisfies the optimization
constraints. Then since

sasb = (s′a − ϵ)(s′b + ϵ)

= s′as
′
b + ϵ(s′a − s′b)− ϵ2

< s′as
′
b + ϵ(s′a − s′b)

= s′as
′
b + ϵ(sa − sb + 2ϵ)

≤ s′as
′
b + ϵ(sa − sb + sb − sa)

= s′as
′
b

(4.5)
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it follows that

∏
c∈A

sc =

 ∏
c ̸=a,b

sc

 · sasb <
 ∏

c̸=a,b

s′c

 · s′as′b = ∏
c∈A

s′c (4.6)

and thus that s = {sa | a ∈ A} is not a solution. This proves that any solution
can be written as {sa = min(max(w, la), ua) | a ∈ A} for some w ≥ 0, from
which uniqueness follows.

Finally, we consider the original problem with both positive and negative
bounds. Without loss of generality, assume that

∑
a∈A− la +

∑
a∈A+ ua ≥ f .

Since
∑

a∈A la ≤ f , it follows that
∑

a∈A+ la ≤ f−
∑

a∈A− la ≤
∑

a∈A+ ua.
Thus, by the simplified version of Lemma 4.4 for exclusively positive bounds
that we proved, there is a unique solution {sa = min(max(w, la), ua) | a ∈
A+} for a w ≥ 0 such that

∑
a∈A+ sa = f −

∑
a∈A− la. A unique solution to

the original problem is then {sa = min(max(w, la), ua) | a ∈ A+} ∪ {sa =
la | a ∈ A−} with this same w ≥ 0, which is a positive curtailment
allocation.

4.4.3 Breaking Down in Binary Congestion Trees

We break congestion trees down into equivalent (for congestion solutions)
binary trees with less parameters (agents, children) per vertex. This reduces
the complexity of induction.

Given a congestion tree T = (V,E,A) we construct an equivalent binary
tree T bin called a binary congestion tree of T . T bin allows capacity constraints
to be infinite (technically. sufficiently large is enough, e.g.

∑
a∈A |da|). For

each vertex v of T , create n + max(n + m − 2, 0) new vertices, where n is
the number of agents at v and m is the number of children of v. See Figure 4.2
for an example. max(n + m − 2, 0) of these new vertices, called ‘connector
vertices’, are consecutive children of v and each other, and all have infinite
upwards capacity. The n remaining new vertices, called ‘agent vertices’, are
children of v and the connector vertices, each containing exactly one agent a,
and also with infinite upwards capacity. The original children of v in T become
children of the rest of the connector vertices and retain their original upwards
capacities.

Note that although a congestion tree T may have leaf vertices without
agents, these can be (repeatedly) removed to obtain an equivalent (for con-
gestion solutions) congestion tree which then translates to a binary congestion
tree with agents located only at leaf vertices, and exactly one agent per leaf.
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Figure 4.2 The congestion tree T and an equivalent binary congestion tree T bin, depicted
around a vertex v, its agents a, b and its children u1, u2, u3

4.4.4 Formulating the Induction Hypothesis

We hypothesize two main properties and eight supporting properties. Given a
(binary) congestion tree T , the following two main properties, corresponding
to Theorem 4.1, hold:

(a) For each feasible root flow f there exists a unique leximin fair alloca-
tion Y ∗

f among feasible allocations with root flow f ,

(b) There exists a unique leximin fair allocation Y ∗
opt among feasible alloca-

tions.

Moreover, for all agents a ∈ A there exist two unique values la and ua such
that the following supporting properties hold:

1. la ≤ ua and 0 /∈ (la, ua) for all agents a,

2. Any allocation Y with Y (a) ∈ [la, ua] for all agents a is feasible on T ,

3. For the minimal and maximal feasible root flows fmin, fmax we have
Y ∗
fmin(a) = la and Y ∗

fmax(a) = ua for all agents a,

4. For any feasible root flow f , Y ∗
f (a) ∈ [la, ua] for all agents a,

5. Y ∗
opt(a) = min(0, la) + max(0, ua) for all agents a.
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Finally, we have the following supporting properties to facilitate the proof and
later the parameterization and algorithmic mechanism:

6. For any feasible root flow f , Y ∗
f is a positive or negative curtailment

allocation for la, ua (a ∈ A),

7. fmin < fmax if and only if Cr > 0, and always fmin ≤ 0 ≤ fmax.

8. If Cr > 0, then max(|la|, |ua|) > 0 for all agents a.

4.4.5 Verifying the Induction base

Consider a leaf vertex v of a binary congestion tree T . Since v is a leaf vertex,
there is exactly one agent a located at v. Without loss of generality this agent a
can be assumed to be a consumer, i.e. da > 0. Since the upwards capacity
is infinite, the only constraint on feasible root flows is desire compatibility. It
follows that fmin = 0 and fmax = da.

Given the existence of a minimal and maximal feasible root flow, we
can immediately see that a unique leximin fair allocation Y ∗

opt is given by
Y ∗
opt(a) = fmax. Furthermore, for any root flow value f ∈ [fmin, fmax], we

see that there exists a unique leximin fair allocation Y ∗
f with root flow f which

is given by Y ∗
f (a) = f . Now take la = Y ∗

fmin(a) = 0 and ua = Y ∗
fmax(a) =

da. With this choice of la and ua, the supporting properties 1–8 hold trivially.

4.4.6 Performing Induction on Subtrees

For the induction step, consider a binary congestion tree T with root vertex r
and child vertices L and R. Assume that the induction hypothesis holds for
TL, with l′a, u

′
a (a ∈ AL) denoting the associated values. Similarly, assume

that the induction hypothesis holds for TR, with l′a, u
′
a (a ∈ AR) denoting the

associated values. Since the vertex r is not a leaf vertex, there are no agents
located at the vertex r. Thus A = AL ∪AR. This means that for all agents a ∈
A we have two values l′a and u′

a as described by the induction hypotheses for
TL and TR. We will later find values la and ua for all agents a ∈ A such that
the induction hypothesis also holds for T .

The proof is structured around steps labelled I. through VI..

I. Find the minimal and maximal feasible root flows fmin and fmax for T .

II. Show that a root flow f for T is feasible if and only if f ∈ [fmin, fmax].

III. Show that property (a) of the hypothesis holds for T for:

III.a. the edge cases fmin = fmin
L + fmin

R and fmax = fmax
L + fmax

R ,

III.b. the other cases, where we can use the Nash product.

IV. Define the values la and ua for all agents a ∈ A.

V. Show that properties 1 – 8 of the hypothesis hold for T .
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VI. Show that property (b) of the hypothesis holds for T .

I. First, we establish the minimal and maximal feasible root flows fmin and
fmax for T . Since there are no agents located at the vertex r, the minimal
feasible root flow fmin is determined by just two factors: the minimal feasible
root flows of the subtrees TL and TR, and the minimal flow that the root
capacity Cr of the tree T allows. By property 3 of the hypothesis for TL, the
minimal feasible root flow of TL is given by fmin

L =
∑

a∈AL
l′a. Similarly,

the minimal feasible root flow of TR is given by fmin
R =

∑
a∈AR

l′a. Thus
the minimal flow at r that the subtrees TL and TR can realise together this way
equals

∑
a∈A l′a = fmin

L +fmin
R . Meanwhile, the minimal flow at the root r that

is allowed by the upwards capacity constraint is −Cr. Since both of these two
factors provide a lower bound on the feasible root flow, the minimal feasible
root flow fmin for T is given by

fmin = max(−Cr, f
min
L + fmin

R ). (4.7)

Following an analogous argumentation, the maximal feasible root flow fmax

for T is given by

fmax = min(Cr, f
max
L + fmax

R ). (4.8)

II. By the definition of the minimal and maximal feasible root flows fmin

and fmax for T , a root flow f /∈ [fmin, fmax] cannot be feasible. To see the
converse, consider a root flow f ∈ [fmin, fmax]. By the definition of fmin and
fmax we have f ∈ [

∑
a∈A l′a,

∑
a∈A u′

a]. In addition, by property 1 for TL

and TR, we have l′a ≤ u′
a (a ∈ A). Thus there exists an allocation Y with

Y (a) ∈ [l′a, u
′
a] for all agents a ∈ A such that F (Y ) =

∑
a∈A Y (a) = f .

By property 2 for TL and TR, this allocation Y is feasible on both TL and TR.
By the definition of fmin and fmax we also have f ∈ [−Cr, Cr]. Thus the
allocation Y is feasible on T , which makes f a feasible root flow.

III. Next, given a root flow f ∈ [fmin, fmax], we will find a leximin fair
allocation Y ∗

f among feasible allocations on T with root flow f and prove that
it is unique. Take a root flow f ∈ [fmin, fmax]. A feasible allocation X on T
with F (X) = f exists because f is a feasible root flow.

III.a. If f = fmin
L + fmin

R , then the only leximin fair allocations on TL and
TR with root flows summing up to f are the unique leximin fair allocations for
the root flows fmin

L and fmin
R on TL and TR respectively. Since an allocation

on a (binary) congestion tree can only be leximin fair if it is leximin fair on
each subtree, the allocation Y on T that consists of these two unique leximin
fair allocations on TL and TR is the only allocation on T with root flow f that
could be leximin fair.
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To see that this allocation Y is leximin fair, we directly apply the defi-
nition of leximin fairness. Increasing the allocation of an agent in AL while
decreasing the allocation of an agent in AR, both relative to Y , results in a
root flow for TR that is smaller than fmin

R . Thus the resulting allocation would
not be feasible on TR and therefore not feasible on T . Then since Y is already
uniquely leximin fair on TL as well as TR, we now see that no agent can have
its (absolute) allocation increased without decreasing the (absolute) allocation
of another agent with smaller (absolute) allocation, both relative to Y . It fol-
lows that Y is the unique leximin fair allocation Y ∗

f on T with root flow f .
Consequently, in this case Y ∗

f (a) = l′a (a ∈ A) and thus, by Lemma 4.2, Y ∗
f

is a positive curtailment allocation with w = 0 with respect to l′a, u
′
a (a ∈ A).

Similarly if f = fmax
L + fmax

R .
III.b. Now consider fmin

L + fmin
R < f < fmax

L + fmax
R . Since L and R are

children of r, we have CL > 0 and CR > 0. By property 7 for TL and TR

this means that fmin
L < fmax

L and fmin
R < fmax

R . Thus there exist an fL and
fR such that f = fL + fR, fmin

L < fL < fmax
L , and fmin

R < fR < fmax
R . By

property 6 for TL, the allocations Y ∗
fmin
L

, Y ∗
fL
, Y ∗

fmax
L

are curtailment allocations
for l′a, u

′
a (a ∈ A). So by property 3 for TL and Lemma 4.2, Y ∗

fmin
L

and Y ∗
fmax
L

are positive and negative curtailment allocations with w = 0, respectively.
By Lemma 4.3, this means that Y ∗

fL
is a curtailment allocation with w ̸= 0.

Similarly for Y ∗
fR

. By property 8 for TL and TR, this implies that the Nash
product on these two allocations is nonzero.

Let the allocation Y be a Nash-optimal allocation among feasible alloca-
tions on T with root flow f . In other words,

Y ∈ argmax
X on T

∏
a∈A

|X(a)|

subject to F (X) = f,

X feasible.

(4.9)

We know that the Nash product is nonzero on this allocation Y since there
exist feasible allocations on TL and TR with root flows summing up to f , on
which the Nash product is nonzero. The allocation Y consists of two feasible
allocations YL on TL and YR on TR with FL(YL) = fL and FR(YR) = fR for
some fL and fR such that fL + fR = f . Since

∏
a∈A

|Y (a)| =

( ∏
a∈AL

|YL(a)|

)
·

( ∏
a∈AR

|YR(a)|

)
, (4.10)

it must then be that YL and YR are Nash-optimal allocations for fL on TL and
for fR on TR respectively.
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Thus, by Lemma 4.1 and property (b) for TL and TR, it must be that the
allocations YL and YR are the unique Nash-optimal allocations on TL and TR

with root flows fL and fR respectively. By property 4 for TL and TR, it then
holds that YL ∈ [l′a, u

′
a] (a ∈ AL) and YR ∈ [l′a, u

′
a] (a ∈ AR). Since this

holds regardless of the values of fL and fR, it follows that Y (a) ∈ [l′a, u
′
a] (a ∈

A).
Now consider the following optimization problem:

maximize
X on T

∏
a∈A

|X(a)|

subject to
∑
a∈A

X(a) = f,

X(a) ∈ [l′a, u
′
a] ∀a ∈ A.

(4.11)

As we have seen, the allocation Y is in the search space of problem (4.11). For
an allocation X in this search space, X(a) ∈ [l′a, u

′
a] (a ∈ A) implies that X

is feasible on TL and TR and thus F (X) = f ∈ [fmin, fmax] ⊆ [−Cr, Cr]
implies that X is feasible on T as well. It follows that the search space of
problem (4.11) is a subset of the search space of problem (4.9). Thus since Y
is in the search space of problem (4.11) and is a solution to problem (4.9), Y
must be a solution to problem (4.11) as well.

By definition of fmin and fmax, f ∈ [fmin, fmax] ⊆ [
∑

a∈A l′a,
∑

a∈A u′
a].

By property 1 for TL and TR, we have l′a ≤ u′
a and 0 /∈ (l′a, u

′
a) for

all agents a ∈ A. This means we can use Lemma 4.4 to conclude that
problem (4.11) has a unique solution, which we know to be Y , and that Y
is a positive or negative curtailment allocation with respect to l′a, u

′
a (a ∈

A). Since we have shown that any solution to problem (4.9) is a solution
to problem (4.11), we can conclude that Y is also the unique solution to
problem (4.9) and is thus the unique Nash-optimal allocation among feasible
allocations on T with root flow f . By Lemma 4.1, this unique Nash-optimal
allocation is the unique leximin fair allocation Y ∗

f among feasible allocations
on T with root flow f .

IV. Now that we have proven property (a) for T , we can use those unique
leximin fair allocations for feasible root flows to define the values la and ua

described by the induction hypothesis for T as follows:

la = Y ∗
fmin(a)

ua = Y ∗
fmax(a)

∀a ∈ A. (4.12)

V. We can now prove properties 1 – 8 of the hypothesis for T :
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(3) To prove: for the minimal and maximal feasible root flows fmin and fmax

we have Y ∗
fmin(a) = la and Y ∗

fmax(a) = ua (a ∈ A).
This holds by definition of la and ua (a ∈ A) in (4.12).

(6) To prove: for any feasible root flow f , Y ∗
f is a positive or negative curtail-

ment allocation with respect to the values la, ua (a ∈ A).
Let f be a feasible root flow. From III.a. and III.b. we know that Y ∗

f is a
positive or negative curtailment allocation with respect to l′a, u

′
a (a ∈ A).

Since fmin ≤ f ≤ fmax, by property 3 for T and Lemma 4.3 for
l′a, u

′
a (a ∈ A), we have la ≤ Y ∗

f (a) ≤ ua (a ∈ A). It follows that Y ∗
f

is also a positive or negative curtailment allocation with respect to the val-
ues la, ua (a ∈ A).

(4) To prove: for any feasible root flow f , Y ∗
f (a) ∈ [la, ua] (a ∈ A).

Let f be a feasible root flow. Since fmin ≤ f ≤ fmax, by properties
3 and 6 for T and Lemma 4.3 for la, ua (a ∈ A) twice, it follows that
la ≤ Y ∗

f (a) ≤ ua (a ∈ A). Thus we have Y ∗
f (a) ∈ [la, ua] (a ∈ A).

(1) To prove: la ≤ ua and 0 /∈ (la, ua) (a ∈ A).
Since fmin ≤ fmax, by property 6 for T and Lemma 4.3 for la, ua (a ∈ A),
we have la ≤ ua (a ∈ A). By property 4 for TL and TR, Y ∗

fmin(a) ∈
[l′a, u

′
a] and Y ∗

fmax(a) ∈ [l′a, u
′
a] (a ∈ A). Since la = Y ∗

fmin(a) and
ua = Y ∗

fmax(a) (a ∈ A) by property 3 for T , this implies that [la, ua] ⊂
[l′a, u

′
a] (a ∈ A). Then, by property 1 for TL and TR, we have 0 /∈

(l′a, u
′
a) (a ∈ A) which now implies 0 /∈ (la, ua) (a ∈ A) as required.

(2) To prove: any allocation Y with Y (a) ∈ [la, ua] (a ∈ A) is feasible on T .
As shown above, we have [la, ua] ⊂ [l′a, u

′
a] (a ∈ A). Thus, by property 2

for TL and TR, an allocation Y on T with Y (a) ∈ [la, ua] (a ∈ A) is
feasible on both TL and TR. By property 1 for T , we have la ≤ ua (a ∈
A) and thus F (Y ) ∈ [

∑
a∈A la,

∑
a∈A ua] = [fmin, fmax]. Then since

[fmin, fmax] ⊂ [−Cr, Cr], it follows that F (Y ) ∈ [−Cr, Cr]. This means
that the allocation Y is feasible on T as well.

(7) To prove: fmin < fmax if and only if Cr > 0, and always fmin ≤ 0 ≤
fmax.
We know from (4.7) and (4.8) that fmax = min(Cr, f

max
L + fmax

R ) and
fmin = max(−Cr, f

min
L + fmin

R ). So by property 7 for TL and TR, we find
that fmin ≤ 0 ≤ fmax. If Cr = 0, then the only feasible root flow is f = 0
and thus fmin = fmax. If Cr > 0, consider that by property 7 for TL and
TR we have fmin

L + fmin
R < 0 and/or 0 < fmax

L + fmax
R . It follows that

max(−Cr, f
min
L + fmin

R ) < 0 and/or 0 < min(Cr, f
max
L + fmax

R ) and thus
that fmin < fmax.
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(8) To prove: if Cr > 0, then max(|la|, |ua|) > 0 (a ∈ A).
By properties 1 and 8 for TL and TR, we have u′

a > 0 (a ∈ A+). From
III.a. and III.b. we know that Y ∗

fmax is a positive or negative curtailment
allocation with respect to l′a, u

′
a (a ∈ A). If Y ∗

fmax is a negative curtailment
allocation, then ua = u′

a (a ∈ A+) and thus ua > 0 (a ∈ A+). If Y ∗
fmax

is not a negative curtailment allocation, then fmax = Cr and it is a positive
curtailment solution for some w > 0 since Cr > 0. In this case, since
u′
a > 0 (a ∈ A+) and w > 0, it also follows that ua > 0 (a ∈ A+).

Similarly for Y ∗
fmin and la < 0 (a ∈ A−).

(5) To prove: Y ∗
opt(a) = min(0, la) + max(0, ua) (a ∈ A).

If Cr = 0 then, by property 7, fmin = fmax. In this case there is only one
leximin fair allocation, which is Y ∗

opt(a) = la = ua (a ∈ A). If Cr > 0
then, by property 8 for T , la < 0 (a ∈ A−) and ua > 0 (a ∈ A+). In this
case, the allocation Y with Y (a) = ua (a ∈ A+) and Y (a) = la (a ∈ A−)
is nonzero. By property 2, this Y is feasible. Thus, by property (a) and 4
for T , Y feasibly and uniquely maximizes the Nash product on T . Then by
Lemma 4.1, Y is leximin fair on T and therefore Y = Y ∗

opt. By property 1
for T , Y ∗

opt can be written as Y ∗
opt(a) = min(0, la) + max(0, ua) (a ∈ A).

VI. Property 5 shows that there exists a unique Nash-optimal allocation Y ∗
opt

among feasible allocations on T . □

4.4.7 Parameterization of Allocations

The parameterization of leximin fair allocations follows easily at this point,
since we have essentially already used it in the preceding proof. Let T =
(V,E,A) be a congestion tree and let la, ua for each agent a ∈ A be the
individual lower and upper bounds defined by properties 1 through 5 of the
induction hypothesis. With those, let Y +(w, a) and Y −(w, a) be the positive
and negative curtailment functions from Equations (4.2) and (4.3) respectively.
Then let

wmin
± = max

{
w
∣∣ F (Y ±(w)

)
= min

x
F
(
Y ±(x)

) }
wmax

± = min
{
w
∣∣ F (Y ±(w)

)
= max

x
F
(
Y ±(x)

) }
.

(4.13)

Now take P+ the bijection from [fmin, fopt] to I = [wmin
+ , wmax

+ ] such that
for all agents a ∈ A and all root flows f ∈ [fmin, fopt],

Y ∗
f (a) =

{
min(max(P+(f), la), ua) ∀a ∈ A+

la ∀a ∈ A− (4.14)

and similarly for P− from [fopt, fmax] to J = [wmin
− , wmax

− ].
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Since, by property 6 of the induction hypothesis, all leximin fair alloca-
tions Y ∗

f on T are curtailment allocations, these bijections P+ and P− exist.
As Equation (4.14) shows, the parameterization P+ lets us compute Y ∗

f (a) for
any agent a ∈ A and any root flow f ∈ [fmin, fopt] in only O(1) time. This
proves Theorem 4.2.

4.5 A Leximin Fair Mechanism
4.5.1 Curtailment using aWater Level Algorithm

Algorithm 5 presents our water level algorithm, which essentially implements
Lemma 4.4 by taking a value f and a set of agents A with lower and up-
per bounds 0 ≤ l′a ≤ u′

a (a ∈ A), and returning a value w such that∑
a∈A min(max(w, l′a), u

′
a) = f or as close to f as possible. We refer to

w as the ‘water level’, see also Figure 4.3.

Algorithm 5: WaterLevel (f,A, I)

Input: A positive flow f , a set of agents A, and an associated set of
bounds l′a, u

′
a ∈ I with 0 ≤ l′a ≤ u′

a (a ∈ A).
Output: A value w (also ‘water level’) such that∑

a∈A min(max(w, l′a), u
′
a) =

min(max(f,
∑

a∈A l′a),
∑

a∈A u′
a).

1 if f ≥
∑

a∈A u′
a then

2 w ← max
a∈A

u′
a

3 else if f ≤
∑

a∈A l′a then
4 w ← 0
5 else
6 lowerbounds← Sort(l′a | a ∈ A)
7 upperbounds← Sort(u′

a | a ∈ A)

// Satisfy lower bounds
8 remainingflow← f −

∑
a∈A l′a

// Divide remainingflow over agents
9 while remainingflow > 0 do

// Select next lowest bound as new w and
allocate equal parts of remainingflow to
agents a with l′a < w ≤ u′

a

// If insufficient remainingflow is left, set w
to divide it over eligible agents

10 return w
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If f can be exactly divided over the agents within their individual bounds we
first satisfy all the lower bounds. This leaves a remaining quantity f−

∑
a∈A l′a

to be divided. Starting with a level at the lowest lower bound and proceeding
through consecutively increasing lower and upper bounds, an equal part of
this remaining flow is allocated to all agents for which that level lies between
their bounds. When not enough remaining flow is left to allocate to all eligible
agents up to the next level, the remaining flow is simply evenly divided over
them. This procedure yields the desired ‘water level’ output w. See Figure 4.3
for a visualization.

0

2

4

6

8

a b c d

la

lb

lc

ldua

ub uc

ud

la level

lb level

ua level

ld level

w

Figure 4.3 An Algorithm 5 example represented as ‘rising water in a cave’. Input is
f = 23 and four agents with bounds as indicated. After meeting all lower
bounds, 8 flow remains. This is divided by raising the water level, reducing the
remaining flow to 7, 3, 2 and finally 0 at w = 6. Curtailment with the output
w yields Y (a) = 4, Y (b) = 6, Y (c) = 7, Y (d) = 6.

4.5.2 A Mechanism for Leximin Fair Allocations

From Section 4.4 we know that for a (binary) congestion tree T = (V,E,A)
there exists a unique set of values la, ua (a ∈ A) that between them contain all
the information we need. Specifically, Section 4.4.7 summarizes that all unique
leximin fair allocations, including Y ∗

opt, are obtained as curtailment allocations
for la, ua (a ∈ A).

Importantly, we know that the values la, ua (a ∈ A) for T can be recur-
sively obtained from their subtree equivalents through the use of curtailment
allocations. This lets us define a recursive algorithm on subtrees that almost
automatically follows from the induction proof of Section 4.4. This algorithm,
presented in Algorithm 6, takes the prosumption desires of agents in a binary
congestion tree T and returns the unique values la, ua (a ∈ A) for T . As such,
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Algorithm 6 constitutes a mechanism by taking agents’ prosumption desires
and returning the unique leximin fair congestion solution Y ∗

opt.
From property 3 of the induction hypothesis we know that la, ua (a ∈ A)

are defined by Y ∗
fmin and Y ∗

fmax . We also know that these allocations are
curtailment allocations for subtree values l′a, u

′
a (a ∈ A). For agents a not at

the root, l′a and u′
a are assigned at lines 4–8 through subtree recursion. Having

obtained l′a, u
′
a (a ∈ A), we can use curtailment with Algorithm 5 to find

Y ∗
fmin and Y ∗

fmax and hence find la, ua (a ∈ A). Since Algorithm 5 only works
with consumers, we will compute our curtailment allocation in two parts: one
for A+ and one for A−. For the A− part, which is symmetric to the A+ part,
we can switch the roles of l′a and u′

a at lines 14 and 18. We then change the
sign of the output to get a negative w.

What is left to check is that the input flows for curtailment at lines 9, 13, 17
and 21 are correct, and that our two part curtailment approach indeed results
in curtailment allocations. We check cases based on the upwards capacity Cr.

Consider Y ∗
fmax and the ua (a ∈ A) which it defines.

• If
∑

a∈A+ u′
a +

∑
a∈A− l′a ≥ Cr then fmax = Cr and we need positive

curtailment to obtain
∑

a∈A ua = Cr. Since in this case
∑

a∈A+ u′
a −Cr ≥

−
∑

a∈A− l′a, at line 14 we have maxnegflow ≥
∑

a∈A− −l′a and thus
ua = l′a at line 16 for all a ∈ A− as required. The positive curtailment is
performed at lines 9–12, resulting in

∑
a∈A+ ua = |

∑
a∈A− l′a|+Cr which

equals −
∑

a∈A− ua + Cr so that
∑

a∈A ua = Cr.

• If
∑

a∈A u′
a > Cr >

∑
a∈A+ u′

a +
∑

a∈A− l′a then fmax = Cr and we
need negative curtailment to obtain

∑
a∈A ua = Cr. Since in this case

−
∑

a∈A− l′a + Cr >
∑

a∈A+ u′
a, at line 10 we have maxposflow >∑

a∈A+ u′
a and thus ua = u′

a at line 12 for all a ∈ A+ as required. The
negative curtailment is performed at lines 13–16, resulting in

∑
a∈A− ua =

−(
∑

a∈A+ u′
a − Cr) which equals −

∑
a∈A+ ua + Cr.

• If Cr ≥
∑

a∈A u′
a then fmax =

∑
a∈A u′

a and we need negative cur-
tailment to obtain

∑
a∈A ua =

∑
a∈A u′

a. Since −
∑

a∈A− u′
a + Cr ≥∑

a∈A+ u′
a and thus −

∑
a∈A− l′a + Cr ≥

∑
a∈A+ u′

a, at line 10 we have
maxposflow ≥

∑
a∈A+ u′

a and thus ua = u′
a at line 12 for all a ∈ A+ as

required. Moreover, since in this case
∑

a∈A+ u′
a − Cr ≤ −

∑
a∈A− u′

a, at
line 14 we have maxnegflow ≤

∑
a∈A− −u′

a and thus maximal negative
curtailment ua = u′

a at line 16 for all a ∈ A−.

Analogously for Y ∗
fmin and the la (a ∈ A) which it defines.

Since the upwards capacities of the vertices that are added when construct-
ing a binary congestion tree from a congestion tree (Section 4.4.3) are infinite,
the values l, u at those vertices do not change from the input values l′, u′. Thus,
Algorithm 6 can also be directly applied to (non-binary) congestion trees.
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Algorithm 6: Mechanism (T )

Input: A (binary) congestion tree T = (V,E,A)
Output: The unique la and ua for all a ∈ A

// Initialize with agent desires
1 for agents a at root r do
2 l′a ← min(0, da)
3 u′

a ← max(0, da)

// Recursion on child vertices
4 for children c of root r do
5 lowers,uppers← Mechanism(Tc)
6 for agents a ∈ Ac do
7 l′a ← lowers[a]
8 u′

a ← uppers[a]

// Now we have l′a and u′
a ∀a ∈ A

// Compute positive ua values
9 maxposflow←

∣∣∑
a∈A− l′a

∣∣+ Cr

10 w ← WaterLevel(maxposflow, A+, {l′a, u′
a}a∈A+)

11 for a ∈ A+ do
12 ua ← min(max(w, l′a), u

′
a)

// Compute negative ua values
13 maxnegflow←

∣∣∑
a∈A+ u′

a

∣∣− Cr

14 w ← −WaterLevel(maxnegflow, A−, {−u′
a,−l′a}a∈A−)

15 for a ∈ A− do
16 ua ← min(max(w, l′a), u

′
a)

// Compute negative la values
17 minnegflow←

∣∣∑
a∈A+ u′

a

∣∣+ Cr

18 w ← −WaterLevel(minnegflow, A−, {−u′
a,−l′a}a∈A−)

19 for a ∈ A− do
20 la ← min(max(w, l′a), u

′
a)

// Compute positive la values
21 minposflow←

∣∣∑
a∈A− l′a

∣∣− Cr

22 w ← WaterLevel(minposflow, A+, {l′a, u′
a}a∈A+)

23 for a ∈ A+ do
24 la ← min(max(w, l′a), u

′
a)

// Now we have la and ua ∀a ∈ A

25 return {la}a∈A, {ua}a∈A
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4.6 Properties of the Mechanism
4.6.1 The Computational Complexity is Low

Algorithm 5 sorts the u and l values in O(m · log(m)) time, where m is the
number of agents in the input set A. It then enters a while loop which takes at
most m − 1 iterations. Thus the computational complexity of Algorithm 5 is
O(m · log(m)).

Algorithm 6 visits each vertex in V exactly once, and at each vertex calls
Algorithm 5 four times. Therefore, the worst case computational complexity
of Algorithm 6 isO(n ·m · log(m)). Here n is the number of vertices in V and
m is the number of agents in A.

4.6.2 The Mechanism is Individually Rational

The mechanism is individually rational if it satisfies the following two con-
ditions: it must not ask production from an agent that plans to consume and
vice versa, and it must not ask an agent to exceed its planned consumption or
production.

Proposition 4.1. Algorithm 6 computing Y ∗
opt, as a mechanism, is individually

rational.

Proof. Y ∗
opt is leximin fair and thus a feasible allocation. Since feasible means

desire compatible, the proposition follows.

4.6.3 The Mechanism is Incentive Compatible

Especially important in mechanisms that deal with fairness is incentive com-
patibility. Without this property, fairness is undermined as agents may ‘game
the system’ by reporting strategically to try to improve their own situation rel-
ative to that of other agents.

Proposition 4.2. Algorithm 6 computing Y ∗
opt, as a mechanism, is incentive

compatible.

Proof. Let T = (V,E,A) be a congestion tree containing an agent a with
reported desire da and true desire d∗a. Without loss of generality, assume that
a ∈ A+, i.e. d∗a > 0.

If agent a reports da = d∗a and the mechanism returns Y ∗
opt(a) < d∗a,

then there is exactly one subtree Tv such that for ua, u
′
a in Mechanism(Tv),

we have Y ∗
opt(a) = ua < u′

a. This means that congestion occurred at v, i.e.
|
∑

a∈A− l′a|+ Cv <
∑

a∈A+ u′
a at line 9.

From line 12 we know that for the water level w computed at line 10 we
have w < u′

a. Since this w does not depend on
∑

a∈A+ u′
a the only way a

reduction ua < u′
a at v is avoided, is if u′

a ≤ Y ∗
opt(a).
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This would require agent a to report a desire da no larger than Y ∗
opt(a),

which it would then be allocated. This shows that agent a cannot improve its
situation by reporting anything other than its true desire d∗a, i.e., being truthful
is a weakly dominant strategy.

4.6.4 The Mechanism as a Distributed Algorithm

Algorithm 6 executes a recursion on subtrees. At each step, only informa-
tion pertaining to its subtree is used. Thus computations pertaining to disjoint
subtrees may be performed in parallel. As such, the algorithm may be imple-
mented as a distributed algorithm.

4.7 Conclusions
In this chapter we investigated the hierarchical interactions of congestion in
flow subnetworks. We naturally extended the notion of leximin fairness to cap-
ture local balancing of commodity flows. We then proved that for each feasible
root flow interaction with the higher-level network, there exists a unique lex-
imin fair congestion solution within the subnetwork. Furthermore, we fully
parameterized these unique leximin fair congestion solutions. This lets us find
the allocation of any agent in a unique leximin fair congestion solution with
any possible root flow in just O(1) time. We then demonstrated the ease of
applicability of these results by proposing an insightful algorithmic mecha-
nism that computes such unique leximin fair congestion solutions. Finally, we
proved that this mechanism is of low computational complexity, individually
rational and incentive compatible, and implementable as a distributed algo-
rithm, making it highly applicable in e.g. the energy domain.





5 Fairness, Welfare, and a
Congestion Aftermarket

In the previous chapters we considered primarily fairness. In this chapter we
introduce the comparison with welfare and study the combination of the two.

5.1 Introduction
With the changes in the electric grid brought about by the energy transition
new challenges arise, many of which concern flexibility of users (Fang et al.,
2012; Pepermans et al., 2005; Ramchurn et al., 2011; Vytelingum et al., 2010).
A central challenge is that of grid congestion, which traditionally only occurs
at the transmission system level, but now also occurs at the local distribution
system level (Verzijlbergh et al., 2014). With the rapidly increasing penetration
of distributed and renewable energy resources these problems can be expected
to extend into the future (Clement-Nyns et al., 2010), especially since research
indicates that neither grid expansion nor storage are solutions on the short to
mid term (Härtel et al., 2016; Spiliotis et al., 2016).

A popular congestion management approach at the transmission system
level is locational marginal pricing (LMP), which is part of the modern stan-
dardized market design (Ma et al., 2003). LMP determines the area price based
on the marginal cost of producers that can actually deliver in that area within
the transmission network capacity constraints. Nevertheless, since the price
set at the transmission system level does not reflect local distribution grid con-
straints, local congestion management is required (Philipsen et al., 2016). LMP
can fill this role as well, implementing what is essentially scarcity pricing, i.e.
raising local prices until users sufficiently reduce their network usage. How-
ever, LMP is not budget balanced and does little to utilize local flexibility.

In this chapter we propose alternative mechanisms for local congestion
management. We model capacity constrained distribution networks as rooted
weighted trees whose edge weights represent line capacities and whose root
represents a connection to a higher-level network, e.g. the transmission sys-
tem. Such non-cyclic graphs accurately model the active radial structure of
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most distribution networks (Sallam and Malik, 2018). The vertices are popu-
lated by agents that represent prosumers: users of the network that can both
consume and/or produce power. Based on the price p̂ set by the higher-level
market mechanism, these agents have desired prosumptions that may cause
congestion in the local network. Our congestion management mechanisms fol-
low the common approach to active power congestion management, which is
curtailment (Bach Andersen et al., 2012; Hu et al., 2014; Rivera et al., 2015;
Tonkoski et al., 2011; Verzijlbergh et al., 2014). Curtailment entails allocat-
ing to agents a prosumption that is a reduction of their desired prosumption in
order to resolve congestion.

Mechanisms for local congestion management can be designed to focus on
different aspects, the most straightforward being economic efficiency as ex-
pressed by utilitarian welfare. Mechanisms such as LMP aim to achieve this
through price signals that result in allocation of capacity to the most compet-
itive agents. However, such solutions do not consider another aspect that has
become prominent in energy networks: fairness (Hekkelman and La Poutré,
2019). Fairness deserves explicit consideration because, when resolving grid
congestion, the question arises how congestion solutions affect different users,
not just individually but also relative to each other. Since energy has become
a basic need for full participation in modern society, this issue of fairness be-
tween users must be addressed (European Parliament, 2016).

In this chapter we consider both approaches. On the one hand, congestion
solutions should be fair to all users of the network. On the other hand, conges-
tion implies a market limitation and has economic consequences for the users.
Users may differ in how they value fairness versus welfare, which suggests that
congestion solutions ideally are able to reconcile these differing viewpoints.
However, since fair congestion solutions consider relative prosumptions in-
stead of individual demand curves, it is unlikely that a fair curtailment solution
also maximizes the total (utilitarian) welfare.

We first consider congestion solutions in the form of curtailment that maxi-
mize the agents’ total welfare. We present an algorithmic mechanism that com-
putes the maximal welfare curtailment allocation that is feasible for all agents
at the price p̂ set by the higher-level market mechanism. Our algorithm con-
siders the demand curves that the agents submit to the higher-level market
mechanism to determine maximal welfare, and is purely a curtailment solution
in the sense that it does not send price signals.

For fair congestion solutions we turn to the literature (Hekkelman and
La Poutré, 2020; Megiddo, 1977). Rather than defining fairness ourselves we
work with the abstract concept of agents’ ‘fair shares’ that can be determined
by any fair congestion solution of choice. With these generalised fair shares
we then go on to propose an algorithmic mechanism that computes a hybrid
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congestion solution that combines fairness and welfare. Our mechanism pro-
vides agents with the choice to either claim their fair share or to participate in
welfare maximization, resulting in a hybrid congestion solution that focuses
on the goals of the two sets of agents in parallel to each other.

Finally, we provide incentives to organize this hybrid solution. We present a
pricing scheme for the welfare maximization aspect of our hybrid solution that
lets us define a congestion aftermarket. Our congestion aftermarket operates
on top of the fair shares and the higher-level price p̂, letting agents trade por-
tions of their allocated fair shares at locally marginal prices. This principle of
local aftermarket prices bears similarities to LMP, with the two most important
differences being that our aftermarket is budget balanced and does not expose
agents that choose to claim their fair share to congestion prices. Our aftermar-
ket incentivizes participation as we prove that it is individually rational for
agents to participate, but does so without imposing economical consequences
on agents that choose not to participate. Since agents are always free to claim
their fair share at the higher-level price p̂, we argue that our hybrid congestion
management mechanism constitutes a fair mechanism.

The main contribution of this chapter is our congestion management solu-
tion, provided in algorithmic form, that both allows individual agents to claim
their fair share and simultaneously maximizes welfare for the other agents in
our novel congestion aftermarket.

5.1.1 RelatedWork

Integral network management frameworks, such as that proposed by (Kok
et al., 2005), generally rely on congestion pricing like LMP. (Esmat and Us-
aola, 2016) and (Haque et al., 2017) address congestion with demand side man-
agement which also usually relies on price signals. (Parhizi et al., 2016, 2017)
focuses on the distribution market operator to implement settlement or penal-
ties for congestion management. (Khodabakhsh et al., 2019) consider fairness
in energy rates with respect to how the burden of network overhead costs are
divided over prosumers. (Philipsen et al., 2016) propose time-slot auctions for
EV charging to resolve congestion and promote fairness among asymmetric
parties. (Ardakanian et al., 2013) address fairness in EV charging through cur-
tailment with a fair allocation that is found by optimizing a fair objective func-
tion under feasibility constraints. (Hekkelman and La Poutré, 2020) consider
different notions of fairness for greedy local matching under capacity con-
straints. (Bashir et al., 2017) evaluate which factors in power networks, specif-
ically PV, should be subject to fairness considerations. In comparison to the
discussed work, we propose opt-in fairness alongside welfare maximization
and emphasise self-contained local market resolution of congestion.
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5.2 Preliminaries
In this chapter we consider congestion in tree graphs modelled on electricity
distribution grids. Given a situation where the users of the network collectively
cause congestion, we seek solutions for this congestion. In particular, we
investigate both fair and welfare maximizing solutions. Fair solutions can be
given as curtailment of users, while welfare solutions often involve a market
mechanism.

We start by modelling commodity flow in congested tree networks popu-
lated by agents. Our model resembles a standard source-sink flow network with
edge constraints, except that we have multiple sources and sinks in the form
of agents. The agents act as either consumers or producers of the commodity
based on a demand (or supply) curve that they submit to a higher-level (e.g.
national) market. The price p̂ set by this market then determines each agent’s
desired prosumption. These desired prosumptions may cause congestion in the
local network that we consider. We will compute allocations that resolve con-
gestion given such an initial situation. We can have two objectives for these
allocations: fair division of capacity over the agents, or welfare expressed by
demand curves.

Let a congestion tree T = (V,E,A) be a rooted weighted tree (V,E) with
a set of agents A located at the vertices. Let a virtual edge at the root r represent
the connection to a virtual parent that represents an external network. Let the
edge weights be strictly positive, representing flow capacities, and denote the
weight of an edge between vertex v ∈ V and its parent as the capacity Cv .

Let supply and demand both be represented by prosumption; respectively
by negative and positive prosumption. Let an agent’s prosumption induce a
matching flow from the external network to the vertex of that agent. Using this
terminology, a maximal production is synonymous with a minimal (negative)
flow.

Let each agent a ∈ A submit a demand curve da(p) which is a strictly
monotonically decreasing function of price p. A positive demand da(p) > 0
indicates a consumer, while a negative demand da(p) < 0 indicates a producer.
Given a price p̂ let A+ ⊆ A and A− ⊆ A denote the sets of consumers and
producers, respectively.

The inverse relation of the demand curve expresses the marginal price or
marginal ma(q) of an agent a, which is a strictly monotonically decreasing
function of its prosumption q. Note that the marginal ma(q) of a production,
i.e. q < 0, represents a marginal cost. The welfare Wa(p, q) of an agent a
is then given by its prosumption surplus

∫ q

0
ma(x) − p dx. Note that for a

producer this expression takes the equivalent form
∫ 0

q
p−ma(x) dx, see also

Figure 5.1.
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q

p

p̂

Figure 5.1 Marginal functions for a consumer (red, right) and a producer (blue, left)
with their respective prosumption surplus (hatched areas) corresponding to a
price p̂.

Since the flow in the entire network is induced by the prosumptions of all
individual agents, it will be convenient to work with allocations Y : A → R
that allocate a prosumption to each agent. Because we consider trees, an
allocation Y then defines the flow over each edge as the sum of prosumptions
in the subtree under that edge. This way, the root flow F (Y ) is given by the
sum of allocated prosumptions over all agents, i.e. F (Y ) =

∑
a∈A Y (a).

Congestion occurs when commodity flow induced by an allocation Y , e.g.
of desired prosumptions Y (a) = da(p̂) (a ∈ A) given a price p̂, results in
the tree’s edge capacities being exceeded. An allocation Y on a congestion
tree T = (V,E,A) is congestion free if for each vertex v the root flow Fv(Y )
of the subtree Tv = (Vv, Ev, Av) with root v does not exceed the capacity Cv ,
i.e. |Fv(Y )| ≤ Cv . An allocation Y is desire compatible if each agent a is
allocated a prosumption between zero and its desire da(p̂). An allocation Y
is feasible if it is both congestion free and desire compatible. Finally, we say
that a root flow f for a congestion tree T is feasible if there exists a feasible
allocation Y on T with F (Y ) = f .

We define a congestion solution Y as a feasible and Pareto allocation on
T . We impose these restrictions since a non-feasible allocation does not satisfy
the boundary conditions of the congestion problem, and if an allocation is not
Pareto then it is possible to improve the allocation for an agent while still
resolving congestion.

Congestion only occurs under certain circumstances, and when no conges-
tion occurs a computed congestion solution will simply allocate the desired
prosumptions. In contrast to the uncertainty of congestion occurring, the agents
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always participate in the higher-level market through their submitted demand
curves. Thus, if congestion occurs relatively infrequently, agents’ higher-level
market participation dominates their participation in congestion management
mechanisms. Therefore, if the higher-level market is incentive compatible we
assume that agents truthfully submit their demand curves. Independent of this
assumption curtailment solutions are individually rational since, at the same
price p̂, any prosumption less than the desired prosumption still has positive
surplus.

5.3 Fair Share Congestion Management
When, for a price p̂, congestion occurs in a congestion tree T = (V,E,A)
due to agents’ desired prosumptions da(p̂), there are often different congestion
solutions Y possible. As stated before, an allocation Y must at least be feasible
and Pareto to qualify as a congestion solution. However, an allocation Y may
be required to have additional desirable properties. One such property is that
of fairness, which may uniquely determine the allocation Y .

A fair congestion solution Yfair allocates to each agent a ‘fair share’ of the
available capacity. Previous work considers different notions of fairness for
this setting (Hekkelman and La Poutré, 2020). Unique fair allocations are also
provided for similar settings, such as by (Megiddo, 1977). For the present work
it is only important that a fair allocation is unique, feasible, and Pareto. Going
forward, when we refer to ‘the fair allocation’ or ‘the fair shares’ we will refer
to the egalitarian fair allocation discussed in (Megiddo, 1977). However, any
other notion of fairness that constitutes a unique feasible and Pareto allocation
on T , such as those from (Hekkelman and La Poutré, 2020), can be substituted
for egalitarian fairness.

5.4 Maximal Welfare Solutions
As opposed to fair congestion solutions we may aim to find congestion solu-
tions in the form of allocations that maximize the welfare of the agents. The
problem can be formulated as follows: given a congestion tree T = (V,E,A)
and a price p̂, find a feasible allocation Y that maximizes the total wel-
fare

∑
a∈A Wa(p̂, Y (a)).

This problem decomposes into local division problems. Consider a conges-
tion tree T = (V,E,A) consisting of a single vertex r. When consumption
congestion (i.e. flow is positive and exceeds capacity) occurs at r then the
available capacity Cr has to be divided over the consumers a ∈ A+. The avail-
able consumption capacity C+ that is to be divided is given by the capacity Cr

increased by the (maximal) production of the producers a ∈ A−, which can
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meet local demand, i.e. C+ = Cr +
∑

a∈A− −da(p̂). This means that the ag-
gregated consumption

∑
a∈A+ Y (a) must equal C+ for the allocation to be

Pareto. Looking at the welfare of the consumers, we see that

∑
a∈A+

W (p̂, Y (a)) =
∑
a∈A+

(∫ Y (a)

0

ma(x)− p̂ dx

)

=
∑
a∈A+

(∫ Y (a)

0

ma(x) dx− p̂ · Y (a)

)

=
∑
a∈A+

(∫ Y (a)

0

ma(x) dx

)
− p̂ ·

∑
a∈A+

Y (a)

=
∑
a∈A+

(∫ Y (a)

0

ma(x) dx

)
− p̂ · C+.

(5.1)

Equation (5.1) tells us that optimization of the total welfare among consumers
does not depend on the price p̂, because it represents a constant factor inde-
pendent of the division. Hence, the local problem reduces to finding a feasible
allocation Y that maximizes

∑
a∈A+

∫ Y (a)

0

ma(x) dx s.t.
∑
a∈A+

Y (a) = C+ (5.2)

The above optimization problem is a standard market efficiency optimiza-
tion problem, the solution to which is an allocation that minimizes the dif-
ference between agents’ marginals ma(Y (a)) at their allocated prosumptions.
Indeed, when for two consumers a and b we have ma(Y (a)) > mb(Y (b)), that
means consumer a can obtain more welfare from a marginal unit of consump-
tion than consumer b does. Therefore, the allocation Y may be improved in
total welfare by shifting an amount of consumption x from consumer b to con-
sumer a such that ma(Y (a)+x) = mb(Y (b)−x). A market obtains the unique
solution by setting a single (scarcity) price p so that the demands sum up to the
available consumption capacity, i.e. p such that

∑
a∈A+ da(p) = C+. This is

the principle under which locational marginal pricing (LMP) works; increas-
ing the local price at r for all agents there reduces consumption while ensuring
equal marginals among prosumers.

Our approach bears similarities to locational marginal pricing in that we
compute allocations that exactly divide the available consumption capacity C+

by setting a single marginal p among the consumers. However, we merely use
this to compute the allocations and do not alter the actual price p̂. As stated
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d(p)

p

q

Figure 5.2 A bounded demand curve d (red). The dashed lines indicate the maximum and
minimum feasible demands.

earlier, the price p̂ does not affect the composition of the maximal welfare
allocation.

In our setting of congestion trees with multiple nodes, we must account
for possible congestion in subtrees. As such, we may not be able to find a
feasible allocation Y for which all consumers’ marginals are equal. To solve
this problem we will compute feasible welfare maximizing allocations for both
minimal and maximal local root flows recursively on subtrees of T . These
minimal and maximal local flow allocations then define agent-specific bounds
of feasibility for the subtrees of T . The initial agent-specific bounds prior to
consideration of subtrees are 0 and the agent’s desired prosumption da(p̂). This
is, respectively, because consumers should not be allocated production and vice
versa, and because the price p̂ makes it so that any units of prosumption in
excess of the agent’s desired prosumption da(p̂) are negative welfare for that
agent.

The agent-specific bounds are used to bound the agents’ demand curves.
See Figure 5.2 for a visual representation. The resulting bounded demand
curves da let us determine prosumption levels based on marginals p, within
the constraints of feasibility. Given a set of bounded demand curves da for the
consumers a ∈ A+, we can look at the aggregated bounded demand curve
to determine a marginal p such that

∑
a∈A+ da(p) = C+. This way we find

the consumer allocation Y (a) = da(p) (a ∈ A+) that feasibly divides the
available consumption capacity C+ over the consumers A+ and maximizes
their total welfare. In this case of consumption congestion the producers
would be allocated maximal production within their individual bounds, i.e
Y (a) = da(p̂) (a ∈ A−).

5.4.1 Maximal Welfare Congestion Algorithm

Consider a congestion tree T = (V,E,A) and a price p̂. The recursive
algorithm presented here in Algorithm 7 computes for each agent a ∈ A
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a unique lower bound la and upper bound ua for which the following is an
invariant of subtrees:

Theorem 5.1. Given a congestion tree T = (V,E,A) and a price p̂, there
exists a unique set of lower bounds {la}a∈A and upper bounds {ua}a∈A such
that for any feasible root flow f , a feasible allocation Y †

f uniquely maximizes
the welfare among feasible allocations Yf with root flow f if and only if Y †

f is
given by either

Y †
f (a) =

{
min(max(da(p), la), ua) a ∈ A+

la a ∈ A− (5.3)

for all a ∈ A or

Y †
f (a) =

{
ua a ∈ A+

min(max(da(p), la), ua) a ∈ A− (5.4)

for all a ∈ A, for some marginal p.

Proof. The proof is by induction. For the induction basis, consider a tree T
with only one vertex r. For the agents a ∈ A we define initial lower and upper
bounds l′a and u′

a that ensure desire compatibility, i.e. 0 and da(p) ordered
such that l′a ≤ u′

a. Consider a feasible root flowf . We can formulate three
properties of the feasible allocation Y †

f that maximizes the welfare among
feasible allocations with root flow f :

• Y †
f must be bounded by the bounds l′a and u′

a to be feasible, i.e. l′a ≤
Y †
f (a) ≤ u′

a (a ∈ A),
• Consumers must be allocated maximal consumption or producers must be al-

located maximal production (i.e. minimal flow). If not, then we can increase
both consumption and production by some amount, which means Y †

f is not
Pareto,

• Consumer and producer welfare is maximal when the difference between
respective agents’ marginals is minimal, as discussed earlier in Section 5.4.

From these three properties we can see that Y †
f is given by either

Y †
f (a) =

{
min(max(da(p), l

′
a), u

′
a) a ∈ A+

l′a a ∈ A− (5.5)
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for all a ∈ A or

Y †
f (a) =

{
u′
a a ∈ A+

min(max(da(p), l
′
a), u

′
a) a ∈ A− (5.6)

for all a ∈ A, for some marginal p. Here, the first property imposes the
minimum of la and maximum of ua on all agents a ∈ A, the second property
requires allocating either la to all producers a ∈ A− or ua to all consumers
a ∈ A+, and the third property leads to a single marginal p across all other
agents.

Now consider Y †
fmax

and Y †
fmin

for the maximal and minimal feasible root
flows fmax and fmin. By Equations (5.5) and (5.6) for all agents, if f ≤ f ′,
then Y †

f (a) ≤ Y †
f ′(a) (a ∈ A). Thus, for every feasible root flow f we

have Y †
fmin

(a) ≤ Y †
f (a) ≤ Y †

fmax
(a) (a ∈ A). This means we can take

la = Y †
fmin

(a) (a ∈ A) and ua = Y †
fmax

(a) (a ∈ A) to obtain the unique
bounds described by Theorem 5.1.

For the induction step, assume that the theorem holds for all subtrees Tc of
T with c a child of the root vertex r. Thus for all agents a not at the root r
we have lower and upper bounds l′a and u′

a by the induction hypothesis. For
agents a at the root r we again define initial lower and upper bounds l′a and u′

a

that ensure desire compatibility, i.e. 0 and da(p) ordered such that l′a ≤ u′
a.

From here we follow the same argumentation as for the induction basis.
Since an allocation that feasibly maximizes the welfare on T must also maxi-
mize the welfare on each subtree for that subtree’s root flow, a maximal wel-
fare allocation on T must be bounded by the bounds l′a and u′

a. So again,
for any feasible root flow f , Y †

f is given by either Equation (5.5) or Equa-
tion (5.6) for some marginal p (minimize differences across subtrees). The
unique bounds are again obtained by taking la = Y †

fmin
(a) (a ∈ A) and

ua = Y †
fmax

(a) (a ∈ A).

Corollary 5.1. For {la}a∈A and {ua}a∈A as in Theorem 5.1,

Ywel(a) =

{
ua a ∈ A+

la a ∈ A− (5.7)

is the unique feasible allocation that maximizes the total welfare among all
feasible allocations on T .

Proof. Since Equation (5.7) is of the form of Equation (5.3) for some
marginal p (and of the form of Equation (5.4) for some other marginal p),
Ywel is feasible. In addition, Ywel uniquely maximizes the prosumption of
consumers within the bounds (ua) and uniquely minimizes the prosumption
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of producers within the bounds (la). Thus Ywel is the unique feasible maximal
surplus allocation.

Our algorithm essentially implements the proof of Theorem 5.1.
Each recursion step of the algorithm considers a different subtree Tv of T .

We will denote the unique lower and upper bounds defined by Theorem 5.1
for direct subtrees Tc of Tv , i.e. with c a child of vertex v, as l′a and u′

a

respectively for agents a ∈ Ac. In addition, for agents a located at the vertex v,
we will similarly denote the initial bounds as l′a and u′

a. This way, when
considering Tv , we have l′a, u

′
a (a ∈ Av) denoting the bounds that ensure

desire compatibility for all agents and ensure congestion freeness on all strict
subtrees of Tv . As such, the information contained in these bounds l′a, u

′
a lets

us focus exclusively on the root capacity Cv of Tv when computing the unique
bounds la, ua defined for Tv by Theorem 5.1.

Algorithm 7 presents the algorithmic mechanism that computes the unique
bounds la, ua for the congestion tree T , and with them, by Corollary 5.1, the
feasible allocation that maximizes the total welfare on T . On Lines 1 to 8 we
compute the bounds l′a, u

′
a for all agents a ∈ A; in Lines 1 to 3 for agents at

the root by setting the initial bounds of 0 and their desired prosumption (as
obtained from their demand curve and the price p̂), and in Lines 4 to 8 for all
other agents through recursion on subtrees.

On Lines 9 and 10 we introduce a help function for clarity. This function
takes any value x and ‘bounds’ it by the summed l′a and summed u′

a of a set
of agents B ⊂ A. The result is that any value x bounded by this function
can be computed as the sum (aggregate) of a set of values that are feasibly
allocated to the agents a ∈ B. In essence, the bounding function lets us apply
the information contained in the l′a, u

′
a in a simple and straightforward way.

On Lines 11 to 14 we aggregate the agents’ demand curves into an aggre-
gated bounded demand and supply curve. The aggregated bounded demand
curve indicates for each marginal p what the combined demand of the con-
sumers is. Because of the bounds, these aggregated demands are guaranteed
to not cause feasibility or congestion issues in strict subtrees of T . See also
Figure 5.2 for a visual representation.

On Lines 15 to 22 we compute the bounds ua (a ∈ A) that constitute the
unique maximal welfare allocation Y †

fmax
that feasibly maximizes the root flow.

For the consumers, the aggregated demand can at most equal the capacity Cr

plus the maximal production −
∑

a∈A− l′a, which means a maximal positive
flow as seen on Line 15. If the aggregated demand does not exceed this, i.e.
there is no consumption congestion, then the maximal consumption is simply∑

a∈A+ u′
a. This last case is caught by the bounded function.

On Line 16, since the aggregated demand is a continuous decreasing (thus
invertible) function that takes values between

∑
a∈A+ l′a and

∑
a∈A+ u′

a, we
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Algorithm 7: MaxWelfare (T, p̂)

Input: A congestion tree T = (V,E,A) and a price p̂
Output: The unique la and ua for all a ∈ A

// Initialize with agent desires
1 for agents a at root r do
2 l′a ← min(0, da(p̂))
3 u′

a ← max(0, da(p̂))

// Recursion on child vertices
4 for children c of root r do
5 lowers,uppers← maxwelfare(Tc, p̂)
6 for agents a ∈ Ac do
7 l′a ← lowers[a]
8 u′

a ← uppers[a]

// Now we have l′a and u′
a ∀a ∈ A

// Add a bounding function for clarity:
9 Function bounded(x,B)

Input: A value x ∈ R and a subset of agents B ⊂ A
Output: The value closest to x between the combined lower and

upper bounds of the agent(s) in B
10 return min(max(x,

∑
a∈B l′a),

∑
a∈B u′

a))

// Aggregate bounded demand curves:
11 Function demand(p)
12 return

∑
a∈A+ bounded(da(p), a)

13 Function supply(p)
14 return

∑
a∈A− bounded(da(p), a)

// Compute maximum flow values in two steps:
// Compute positive ua values

15 maxposflow← bounded(Cr −
∑

a∈A− l′a, A
+)

16 Select marginal p s.t. demand(p) = maxposflow
17 for a ∈ A+ do
18 ua ← bounded(da(p), a)

// Compute negative ua values
19 maxnegflow← bounded(Cr −

∑
a∈A+ u′

a, A
−)

20 Select marginal p s.t. supply(p) = maxnegflow
21 for a ∈ A− do
22 ua ← bounded(da(p), a)
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// Compute minimum flow values in two steps:
// Compute negative la values

23 minnegflow← bounded(−Cr −
∑

a∈A+ u′
a, A

−)
24 Select marginal p s.t. supply(p) = minnegflow
25 for a ∈ A− do
26 la ← bounded(da(p), a)

// Compute positive la values
27 minposflow← bounded(−Cr −

∑
a∈A− l′a, A

+)
28 Select marginal p s.t. demand(p) = minposflow
29 for a ∈ A+ do
30 la ← bounded(da(p), a)

// Now we have la and ua ∀a ∈ A

31 return {la}a∈A, {ua}a∈A

can select a marginal p that corresponds to the determined maximum positive
flow. Then on Lines 17 and 18 we compute the upper bounds ua for individual
consumersa ∈ A+ by breaking down the aggregated demand at the selected
marginal p.

For the producers, the aggregated supply must at least match the maximal
consumption

∑
a∈A+ u′

a minus the capacity Cr, which means a minimal
negative flow as seen on Line 19. Again, the bounded function on Line 19
catches the case where there is no production congestion.

On Lines 20 to 22 we select the marginal p that corresponds to the minimal
supply (i.e. maximal negative flow) and subsequently compute ua for all
producers, analogous to Lines 16 to 18.

Analogously to the bounds ua (a ∈ A) before, on Lines 23 to 30 we
compute bounds la (a ∈ A) that constitute the unique maximal welfare
allocation Y †

fmin
that feasibly minimizes the root flow.

With the output of Algorithm 7, the maximal welfare allocation Ywel on T
can now be found by taking for each agent a ∈ A their most extreme bound, i.e.
for each consumer a ∈ A+ their upper bound ua and for each producer a ∈ A−

their lower bound la.

Theorem 5.2. Given a congestion tree T = (V,E,A) and a price p̂, Algo-
rithm 7 computes the unique feasible maximal welfare allocation Ywel de-
scribed by Corollary 5.1.
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Proof. We showed how Algorithm 7 computes the bounds la, ua described by
Theorem 5.1. The maximal welfare allocation Ywel on T is then found by
simply taking for each consumer a ∈ A+ their upper bound ua and for each
producer a ∈ A− their lower bound la, as described by Corollary 5.1.

5.5 A Hybrid Solution With A Choice
In Sections 5.3 and 5.4 respectively, we introduced the fair allocation Yfair and
the maximal welfare allocation Ywel, both of which are congestion solutions
(i.e. feasible and Pareto). Being curtailment solutions, the price per unit that the
agents trade their allocated prosumptions for is the higher-level market price p̂.

Each agent carries a private preference for one of the two solutions. Such
preferences may be principled or based on individual circumstance. Where the
fair solution provides agents with prosumptions that are fair relative to each
other at the cost of welfare, the maximal welfare solution rewards economical
efficiency at the cost of some welfare among less efficient agents. This last
situation can be observed with LMP as well, where scarcity pricing pushes
some less competitive agents out of the market.

In this section we propose a way for the two solutions to exist in parallel,
and for individual agents to choose in which one they want to participate. We
do this by allowing agents to either "claim their fair share" or participate in
a congestion aftermarket. More specifically, we first curtail agents with the
fair allocation Yfair. Then the subset Afair ⊂ A of agents that indicate that
they want to participate in the fair solution are allocated as determined by
Yfair. Subsequently, we compute a feasible maximal welfare allocation for
the remaining agents, with the prosumption already allocated to the agents in
Afair fixed. This gives us a hybrid allocation Yhyb.

Algorithm 8 presents a modified version of Algorithm 7 that computes the
hybrid solution Yhyb. The modification is small: for the agents a ∈ Afair that
choose to claim their fair share, we initialize both their lower and upper bounds
at this fair share on Lines 2 to 4. For the other agents Algorithm 8 then proceeds
identical to Algorithm 7.

Theorem 5.3. Given a congestion tree T = (V,E,A), a price p̂, a fair
congestion solution Yfair, and a subset of agents Afair, Algorithm 8 computes
the unique feasible allocation Yhyb that allocates the fair share Yfair(a) to
agents a ∈ Afair and maximizes the total welfare of the agents a ∈ A \Afair

given the fair shares allocated to Afair.

Proof. Algorithm 8 initializes l′a = u′
a = Yfair(a) for agents a ∈ Afair.

If l′a = u′
a for an agent a then l′a = la = ua = u′

a because of the use of
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Algorithm 8: Hybrid (T, p̂, Yfair, A
fair)

Input: A congestion tree T = (V,E,A), a price p̂, a congestion
solution Yfair and a subset of agents Afair

Output: Unique la and ua for all a ∈ A

// Initialize with fair shares or agent desires
1 for agents a at root r do
2 if a ∈ Afair then
3 l′a ← Yfair(a)
4 u′

a ← Yfair(a)

5 else
6 l′a ← min(0, da(p̂))
7 u′

a ← max(0, da(p̂))

// Recursion on child vertices
8 for children c of root r do
9 lowers,uppers← Hybrid(Tc, p̂, Yfair, A

fair)
10 for agents a ∈ Ac do
11 l′a ← lowers[a]
12 u′

a ← uppers[a]

// Now we have l′a and u′
a ∀a ∈ A

13 From here proceeds identical to Algorithm 7

the bounded function when computing la and ua. Therefore, the lower and
upper bounds of such an agent will stay constant through recursive steps of the
algorithm. As a result, Yhyb(a) = Yfair(a) for a ∈ Afair.

For agents a /∈ Afair, the bounds la and ua are computed identically to
Algorithm 7. Since the fair shares Yfair(a) claimed by agents a ∈ Afair are
part of the feasible allocation Yfair, we know that fixing these prosumptions
does not render it impossible to find a feasible allocation. In other words,
for agents a /∈ Afair, Algorithm 8 can be regarded as Algorithm 7 on
a congestion tree with its capacities adjusted for the fair shares Yfair(a)
claimed by agents a ∈ Afair. Thus, Yhyb maximizes the total welfare among
agents a /∈ Afair given that Yhyb(a) = Yfair(a) for a ∈ Afair.

The computation of the hybrid solution Yhyb from a fair allocation Yfair

gives rise to the difference allocation Ydiff :

Ydiff (a) = Yhyb(a)− Yfair(a) a ∈ A. (5.8)
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agents a in the local network T and higher-level network

higher-level market mechanism

demand curves da of agents a in the local network T

does congestion occur in the local network T ?

fair solution Yfair on T agents get da(p̂) at price p̂

agents a in T get Yfair(a) at price p̂

keep fair share participate in aftermarket

hybrid solution Yhyb on T with aftermarket pricing

demand curves da

higher-level price p̂

desired prosumptions da(p̂)

yes no

curtailment

agent choice agent choice

nothing changes get Ydiff (a)
at price pa

Figure 5.3 Visualization of the construction of a hybrid congestion solution: a fair
curtailment solution with optional participation in a welfare-maximizing
priced aftermarket.

This difference allocation indicates how the prosumptions allocated to maxi-
mize welfare deviate from the fair shares. Accordingly, Ydiff (a) = 0 (a ∈
Afair). Ydiff essentially tells us how units of prosumption are transferred be-
tween agents relative to their fair shares, and thus will form the basis for the
congestion aftermarket.

For some agents a ∈ A the change Ydiff (a) from their fair share Yfair(a)
to Yhyb(a) moves them away from their desired prosumption da(p̂). In order to
incentivize these agents to still choose to participate in welfare maximization
we can implement a pricing scheme. In Section 5.6 we will lay out the specifics
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of such a pricing scheme, including computation of agent-specific prices pa.
What is important is that we can interpret the difference allocation Ydiff as a
congestion aftermarket in the following way. Each agent a ∈ A gets to trade its
allocated fair share Yfair(a) at the higher-level market price p̂. Subsequently,
agents a ∈ A can choose to enter the competitive congestion aftermarket to
trade an amount of prosumption equal to Ydiff (a) at a certain price pa (defined
in Section 5.6). This may mean either selling a portion of their allocated fair
share or purchasing additional prosumption from other agents participating in
the aftermarket.

Note that when no congestion occurs, then both Yfair and Yhyb simply al-
locate the desired prosumptions da(p) to all agents a ∈ A. This means that
Ydiff is zero and hence that the congestion aftermarket does not exist. In other
words, the congestion aftermarket only serves to let agents efficiently divide
the available capacity among themselves when congestion occurs. Importantly,
the aftermarket approach does not interfere in the higher-level market mecha-
nism when no congestion occurs.

Figure 5.3 visualizes the different steps taken to arrive at the hybrid conges-
tion solution Yhyb with a congestion aftermarket. First the interaction between
the agents’ demand curves da, the higher-level market and its price p̂, and the
desired prosumptions da(p̂) is indicated. We then turn our attention to the lo-
cal network T where the desired prosumptions da(p̂) may cause congestion.
If no congestion occurs in T , the higher-level market mechanism can operate
as intended in T . If, however, congestion does occur in T we must curtail the
desired prosumptions da(p̂), for which we use a fair congestion solution Yfair.
Now, based on agents’ private preferences, agents a ∈ A either claim their fair
share Yfair(a) at price p̂ or participate in a welfare-maximizing congestion
aftermarket. The resulting hybrid solution Yhyb provides every agent a ∈ A
with their fair share Yfair(a) at the price p̂, but on top of that provides those
agents a /∈ Afair that chose to participate in the aftermarket with a prosump-
tion Ydiff (a) traded at a certain (averaged) price pa.

Figure 5.4 shows how first welfare is maximized by market clearing, then
fair shares are allocated to resolve congestion, and finally welfare is increased
again through the congestion aftermarket.

5.6 An Aftermarket Pricing Scheme
In Section 5.5 we discussed a congestion aftermarket where units of pro-
sumption are traded according to a difference allocation Ydiff at individual
prices pa, without specifying these prices. In this section we present an ex-
plicit pricing scheme for the congestion aftermarket. This pricing scheme will
ensure budget balance and individual rationality. Individual rationality means
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db1(p̂)
da1(p̂)

db2(p̂)
da2(p̂)

Yhyb(b1)

Yhyb(a1)

Yhyb(b2)

Yhyb(a2)

Yfair(b1)

Yfair(a1)

Yfair(b2)

Yfair(a2)

q

p

p̂

Figure 5.4 Two examples of transitions from higher-level market to fair curtailment to
aftermarket, shown on marginal functions of two producers a1, b1 (blue, left)
that share a connection and two consumers a2, b2 (red, right) that share a
connection. Indicated values refer to q-coordinates. Desires of all four agents
have equal (on a horizontal line) marginals, namely the price p̂. Subsequently,
the producers are allocated an equal (on a vertical line) fair share as indicated,
as are the consumers. Finally, the producers return to equal (on a horizontal
line) marginals in the aftermarket. The consumers, however, are constrained
by some intermediate capacity in this example, so in the aftermarket their
marginals only approach each other. The black arrows indicate the sign and
magnitude of aftermarket trades Ydiff , and the hatched areas indicate the
prosumers’ aftermarket surplus. The efficiency gap between the consumers is
shown in gray, with any price between the two marginals being acceptable for
both parties.

that it will be economically beneficial for agents to participate in the aftermar-
ket, independent of whether they buy or sell units of prosumption there.

Our goal for this pricing scheme is to put prices on trades of prosumption
between agents that are given by the difference allocation Ydiff . By putting
prices on bilateral trades rather than on purchases and sales individually,
we will automatically satisfy budget balance. For individual rationality, the
price for a trade should be such that both agents get positive surplus out
of each unit transferred between them in the trade. If the post-aftermarket
marginals ma(Yhyb(a)) and mb(Yhyb(b)) of an aftermarket buyer a and seller b
are equal, then we can put a price equal to that marginal on the trade between
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the two agents. In this case the aftermarket operates as regular unconstrained
market-clearing.

However, due to the capacity constraints, not all trades attain maximal ef-
ficiency. For example, consider two consumers a and b that are curtailed by
Yfair because of a congestion they both contributed to. Now, consumer a
would like to purchase a number of units x from consumer b because con-
sumer b has a smaller marginal mb(Yfair(b)) < ma(Yfair(a)). Ideally, this
number of units x is such that the two consumers’ marginals become equal, i.e.
mb(Yfair(b)−x) = ma(Yfair(a)+x), and consumer a would pay a price per
unit equal to that marginal. However, in our example we have this trade cause
new congestion on one of the edges between the vertices where consumers a
and b are located. Thus, a reduced number of units is traded. This means that
after the trade, the marginal of consumer a will still be higher than that of con-
sumer b, i.e. mb(Yfair(b)) < mb(Yhyb(b)) < ma(Yhyb(a)) < ma(Yfair(a)).
For both consumers, any price between the two marginals results in a positive
surplus. The gap indicates an economic inefficiency caused by the capacity
constraints. This is shown in Figure 5.4 for agents a2 and b2.

To deal with pricing under these capacity constraints we need to consider
three aspects. First, we need to determine which trades can happen in which
part of the network. Second, we need to determine what price to put on a
trade when multiple prices yield a mutually beneficial trade. Third, we need
to determine which agents trade with which agents and in what quantity.

For the first aspect, we look at what we call bottlenecks and congestion
regions. In short, a congestion tree T = (V,E,A) consists of alternating
positive and negative congestion regions separated by congestion bottlenecks,
and aftermarket trades are confined to these congestion regions. There may also
be a single uncongested region containing the root r of T where all agents a
are allocated their desired prosumption da(p̂) by both Yhyb and Yfair, which
therefore does not play a role in the aftermarket. See also Figure 5.5.

Definition 5.1. Given a congestion tree T = (V,E,A), a price p̂, and a
congestion solution Y , we say that a vertex v is a positive intermediate
obstruction if Fv(Y ) = Cv and there exists a consumer a with Y (a) ̸= da(p̂)
at a vertex u ∈ Vv such that for all vertices z ̸= v on the path from u to v,
Fz(Y ) < Cz . Analogously for a negative intermediate obstruction.

Definition 5.2. Given a congestion tree T = (V,E,A), a price p̂, and a
congestion solution Y , we say that a positive intermediate obstruction v is
a positive bottleneck if not the closest other intermediate obstruction on the
root path of v is also a positive intermediate obstruction. Analogously for a
negative bottleneck.



104 Chapter 5 Fairness, Welfare, and a Congestion Aftermarket

r

v1

v4

v2

v5

v3

v6
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+ −

Figure 5.5 A congestion tree T with three congestion regions. Edges from v towards r
marked with + indicate Fv(Y ) = Cv (red) while − indicates Fv(Y ) = −Cv

(blue). Vertices v1, v4, v5, v6 are intermediate obstructions, but only v1, v4, v6
are bottlenecks. {v1, v2} and {v6} are negative congestion regions while
{v3, v4, v5} is a positive congestion region. {r} is uncongested.

Definition 5.3. Given a congestion tree T = (V,E,A), a price p̂, and a
congestion solution Y , we say that a subgraph R+ of T is a positive congestion
region if it is a connected component of the forest obtained from T by
removing all edges between bottlenecks and their parents, and it contains a
positive bottleneck. Analogously for a negative congestion region R−.

Lemma 5.1. Given a congestion tree T = (V,E,A), a price p̂, and a conges-
tion solution Y , all producers in a positive congestion region R+ are allocated
their desired prosumption. i.e. Y (a) = da(p̂) for all a ∈ A− in R+. Analo-
gously for consumers.

Proof. Assume, without loss of generality, that there is a positive congestion
region R+ and a producer a ∈ A− with Y (a) ̸= da(p̂) located at a vertex u in
R+. Consider, on the root path of u, the intermediate obstruction v closest to u.
Such v exists and is in R+ because a congestion region contains a bottleneck
that is on the root path of every vertex in that congestion region. Since a
positive congestion region, by definition, contains no negative intermediate
obstructions, v is a positive intermediate obstruction. Hence there exists a
vertex u′ with a consumer b ∈ A+ for which Y (b) ̸= db(p̂) such that, on
the root path of u′, v is the vertex closest to u′ that is at positive capacity (i.e.
Fv(Y ) = Cv). Therefore, since v is the closest intermediate obstruction to both
u and u′ on their root paths, there exists an ϵ > 0 such that Y (a) and Y (b)
can be feasibly decreased and increased, respectively, by ϵ without causing
congestion on the root paths of u and u′, and thus anywhere in T . We conclude
that the congestion solution Y is not Pareto, which is a contradiction.

Lemma 5.2. Given a congestion tree T = (V,E,A) and a price p̂, bottlenecks
are independent of the congestion solution Y .
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Proof. The proof is by induction. For the induction basis, consider without loss
of generality a positive bottleneck v with no other bottlenecks in its subtree Tv .
Since Fv(Y ) = Cv , a congestion solution Y ′ for which v is not a bottleneck
must have Fv(Y

′) < Cv . Since, by Lemma 5.1, Y (a) = da(p̂) (a ∈ A−
v ), it

must also be that Y ′(a) = da(p̂) (a ∈ A−
v ) for Y ′ to be Pareto. Thus it must

be that
∑

a∈A+
v
Y ′(a) <

∑
a∈A+

v
Y (a). Now we consider two cases.

If there exist no other bottlenecks on the root path of v, then v connects
to an uncongested region R where Y (a) = da(p̂) (a in R). In this case, Y ′

cannot feasibly allocate more to any agent a in R than Y does, i.e. Y ′(a) =
Y (a) (a in R). But Y ′ allocates less to consumers a ∈ A+

v than Y does, so Y ′

is not Pareto.
If there do exist other bottlenecks on the root path of v, then among

these the closest to v must be a negative bottleneck u. u is in a negative
congestion region R− that v connects to. Since Fu(Y ) = −Cu and Fv(Y

′) <
Fv(Y ), it must be that Y ′ allocates more to agents in R− than Y does, i.e.∑

a∈B Y ′(a) >
∑

a∈B Y (a) for B the set of agents in R− (agents a ∈
Au \ (Av ∪ B) are in subtrees of positive bottlenecks in Tu). But because,
by Lemma 5.1, Y (a) = da(p̂) (a ∈ B+), this means that

∑
a∈B− Y ′(a) >∑

a∈B− Y (a). So in this case not only are the consumers a ∈ A+
v now

allocated less (less consumption) by Y ′ than by Y , also the producers a ∈ B−

in R− are allocated more (less production) by Y ′ than by Y , which means that
Y ′ is not Pareto.

For the induction step, assume that the lemma holds for all bottlenecks other
than v in Tv . Hence we know that Fu(Y

′) = Fu(Y ) for any of these other
bottlenecks u, for all congestion solutions Y ′. Therefore the can follow the
same argumentation as in the induction basis for the congestion region R+

containing v (instead of Tv).

With these definitions and lemmas we formalized the fact that congestion
trees consist of alternating positive and negative congestion regions invariant
across congestion solutions, which are the only allocations that we are inter-
ested in. Differences between congestion solutions only appear among con-
sumers in positive congestion regions and producers in negative congestion
regions.

Lemma 5.3. The aftermarket trades Ydiff in the subtree Tv of a bottleneck v
result in a net-zero root flow, i.e. Fv(Ydiff ) = 0.

Proof. Since Ydiff is the difference between two congestion solutions, Yhyb

and Yfair, this follows from Lemma 5.2.
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Lemma 5.4. The aftermarket trades Ydiff of all producers in positive conges-
tion regions R+ are zero, i.e. Ydiff (a) = 0 for producers a ∈ A− in R+.
Analogously for consumers.

Proof. This follows from Lemmas 5.1 and 5.3.

Lemmas 5.3 and 5.4 show how aftermarket trades are confined to conges-
tion regions, and that consumers only trade with other consumers (within the
same positive congestion region) while producers only trade with other pro-
ducers (within the same negative congestion region). Consequently, both con-
sumers and producers only interact in one of two ways in the aftermarket: they
either buy from, or sell to, agents with the same prosumption sign (±).

For the second aspect (what price to put on a trade when multiple prices
yield a mutually beneficial trade), we distinguish between two types of after-
market participants which we call strainers and relievers. The strainers’ af-
termarket trades Ydiff are aligned with their prosumption (i.e. da(p̂) > 0 <
Ydiff (a) or da(p̂) < 0 > Ydiff (a) for a strainer a), moving them closer to
their desired prosumption. Because their prosumption was curtailed by Yfair

to resolve congestion, these movements strain the line capacities. To relieve
this strain on capacity, the relievers accept aftermarket trades that move them
further away from their desired prosumption (i.e. da(p̂) > 0 > Ydiff (a) or
da(p̂) < 0 < Ydiff (a) for a reliever a). In a positive congestion region R+, the
strainers are consumers a ∈ A+ in R+ that buy (i.e. da(p̂) > 0 < Ydiff (a))
and the relievers are consumers a ∈ A+ in R+ that sell (i.e. da(p̂) > 0 >
Ydiff (a)), while in a negative congestion region R− the strainers are produc-
ers a ∈ A− in R− that sell (i.e. da(p̂) < 0 > Ydiff (a)) and the relievers are
producers a ∈ A− in R− that buy (i.e. da(p̂) < 0 < Ydiff (a)).

This leads us to choose the marginal of the strainer as the price for every
trade, for two reasons. Firstly and objectively, in the aftermarket a strainer a
attains, with Yfair(a) + Ydiff (a), at most its desired prosumption da(p̂) for
which the marginal is p̂ for all agents, while a reliever a is bounded by a
prosumption of zero for which the marginal ma(0) exclusively depends on
the submitted demand curve. This makes the strainer’s marginal the most
consistent choice of price since it always reflects the real marginal value in the
aftermarket at its vertex and not a bounded value. Secondly and subjectively,
we established that the role of the relievers is to enable additional prosumption
for strainers by essentially resolving some congestion. Since any price between
the marginals of the reliever and strainer is acceptable for a trade, we may want
to maximally reward the role that works to resolve congestion by setting the
price at the strainer’s marginal (instead of at for example the midpoint).

For the third aspect (which agents trade with which agents and in what
quantity), we look at the matching of supply and demand in the aftermarket.
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When a congestion region contains multiple strainers and relievers in the af-
termarket, it is not yet clear which strainer trades with which reliever. Note
that this matching merely labels indistinguishable units whose flows are al-
ready determined by Ydiff . Since strainers always pay a price equal to their
marginals, the matching does not impact them. For relievers, however, it can
matter which strainer they are said to trade with. To resolve the ambiguity, we
simply proportionally match all strainers and relievers that could trade with
each other. As a result, relievers’ prices are set at the proportional average of
the accessible strainers’ marginals.

We implement this proportional matching recursively on subtrees, which,
by Lemma 5.3, results in matching within congestion regions. This recur-
sive approach where relievers and strainers in the aftermarket are maximally
matched locally within each subtree before moving up the tree to larger sub-
trees (i.e. greedy local-first matching), is equivalent to our goal of matching
every reliever with every strainer accessible to them. These are equivalent be-
cause if there is a difference in marginals between strainers in a congestion
region, then there must be an intermediate obstruction between them that ne-
cessitates local matching or else Yhyb would not maximize welfare. If there is
no difference between the strainer’s marginals then all matchings with relievers
are equivalent.

Algorithm 9 presents our pricing scheme in accordance with the three
discussed aspects. On Lines 1 to 8 we set for each agent a ∈ A the price
and quantity already traded in strict subtrees of T . For agents at the root r
of T this must be zero, as seen on Lines 1 to 3. For the other agents we find
their quantities already traded in strict subtrees Tc through subtree recursion
on Lines 4 to 8.

With this information we can identify the quantity that each agent will still
trade outside strict subtrees of T . On Line 11 we compute these untraded
quantities for each agent a ∈ A as the difference between the total eventual
aftermarket participation Ydiff (a) and the quantity qa already traded in strict
subtrees of T . The untraded quantities tell us the total remaining aftermarket
demand and supply in the subtree T , computed on Lines 12 and 13. The
maximal matching of supply and demand, given on Line 14, later determines
the portions q′a of the untraded quantities that will be traded within T among
agents a ∈ A. Note that if the root r of T is a bottleneck then, by Lemma 5.3,
Fr(Ydiff ) = 0 meaning that all aftermarket supply and demand in T is
matched and untraded quantities are 0.

On Line 15 we check if any trades can be made in T . If not, we simply
return the prices pa and quantities qa traded in strict subtrees of T . Otherwise,
we can assign new quantities traded in T . On Lines 16 to 19 we proportion-
ally assign quantities of supply and demand. For the supply or demand side
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Algorithm 9: PricingScheme (T, Yhyb, Yfair)

Input: A congestion tree T = (V,E,A) and the two congestion
solutions Yhyb and Yfair

Output: For each a ∈ A, a price pa and a quantity traded qa

// Initialize prices and quantities
1 for agents a at root r do
2 pa ← 0
3 qa ← 0

// Recursion on child vertices
4 for children c of root r do
5 prices,quantities← PricingScheme(Tc, Yhyb, Yfair)
6 for agents a ∈ Ac do
7 pa ← prices[a]
8 qa ← quantities[a]
// Infer total aftermarket quantities

9 for agents a ∈ A do
10 Ydiff (a)← Yhyb(a)− Yfair(a)

// Identify still untraded quantities (of Ydiff)
11 untraded← {Ydiff (a)− qa}a∈A

// Total still untraded demand and supply
12 demand←

∑
a∈A max(0,untraded[a])

13 supply←
∑

a∈A min(0,untraded[a])

// Maximally match untraded demand and supply
14 matching← min(demand,−supply)
15 if matching ̸= 0 then

// Proportionally assign new trade quantities
16 for a ∈ A with untraded[a] > 0 do
17 q′a ←

matching
demand · untraded[a]

18 for a ∈ A with untraded[a] < 0 do
19 q′a ←

matching
−supply · untraded[a]

// Identify strainers by trades aligned with
prosumption, and relievers as complement

20 strainers← {a ∈ A | untraded[a] · Yhyb(a) > 0}
21 relievers← {a ∈ A | untraded[a] ̸= 0} \ strainers

// Proportional average of strainers’ marginals
sets relief price of new trades

22 prel ←
(∑

a∈strainers q
′
a ·ma(Yhyb(a))

)
/
∑

a∈strainers q
′
a
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// Update price and quantity with new trades
23 for a ∈ strainers do
24 pa ← ma(Yhyb(a))
25 qa ← q′a + qa

26 for a ∈ relievers do
27 pa ← (prel · q′a + pa · qa)/(q′a + qa)
28 qa ← q′a + qa

29 return {pa}a∈A, {qa}a∈A

or both, the newly traded quantities q′a equal the previously untraded quanti-
ties untraded[a], i.e. we maximally match aftermarket supply and demand
within T .

On Lines 20 and 21 we identify which agents are strainers and which are
relievers. We can identify the strainers by the alignment of their aftermarket
trades with their prosumption, i.e. consumers with aftermarket demand and
producers with aftermarket supply. The relievers then necessarily coincide
with the complementary set of agents with nonzero untraded quantities in the
aftermarket.

Having identified the strainers, we can compute a single price prel for the the
reliever side of the newly matched trades in T . Since we want to proportionally
match each reliever with each strainer, we compute this price as the propor-
tional average of the strainers’ prices pa, i.e. their marginals ma(Yhyb(a)).

We are now ready to set a price pa for each agent a ∈ A. For the strainers,
on Lines 23 and 24, the price pa always equals their marginal ma(Yhyb(a)) as
discussed before. For the relievers, on Lines 26 and 27, the price of the new
trades q′a in T is set by the price prel. However, a reliever a may have already
traded a quantity qa in a strict subtree of T at a different price pa. So, in order to
get the price pa for the total quantity traded in T , we take the weighted average
of the two prices. On Lines 25 and 28 we add the newly traded quantities q′a to
the previously traded quantities qa.

The output of the pricing scheme presented in Algorithm 9 on the full
congestion tree T = (V,E,A) on which Yfair and Yhyb are defined is, for each
agent a ∈ A, a price pa and a quantity traded qa. This final quantity traded qa
equals the predetermined aftermarket trade Ydiff (a). The price pa is the price
at which the agent a trades the quantity qa on the congestion aftermarket, with
the total amount paid given by qa · pa.
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For the hybrid allocation Yhyb as a whole, each agent a ∈ A receives its
fair share of prosumption Yfair(a) at a market clearing price p̂, and on top of
that optionally trades Ydiff (a) prosumption in the congestion aftermarket at
a price pa. The total payment for the final prosumption Yhyb(a) is given by
Yfair(a) · p̂+ Ydiff (a) · pa.

Theorem 5.4. Given the allocations Yhyb, Yfair, and their difference Ydiff

on the congestion tree T = (V,E,A), Algorithm 9 computes prices pa for the
aftermarket trades Ydiff (a) (a ∈ A) such that∑

a∈A

Ydiff (a) · pa = 0 (budget balance)

∫ Yhyb(a)

Yfair(a)

ma(x)− pa dx ≥ 0 (a ∈ A) (individual rationality).

Proof. The aftermarket is easily seen to be budget balanced since we showed
how Algorithm 9 computes the reliever prices by aggregating and exactly
distributing the constrainer prices. We also showed how we chose constrainer
prices to always equal their marginals in Yhyb, and how reliever prices are
consequently equal to or better than their marginals in Yhyb. Therefore, each
unit traded between agents in the aftermarket has positive prosumption surplus
for both strainer and reliever, resulting in individual rationality.

Note that since aftermarket trades only occur between agents in the same
congestion region, as stated by Lemma 5.3, Theorem 5.4 also holds for any
subtree Tv of a bottleneck v.

5.7 Full Aftermarket Participation
Since it is individually rational for agents to participate in the congestion
aftermarket, it may be that all agents choose to participate in it. In this case,
since Afair is empty, Yhyb = Ywel. Moreover, since the aftermarket is budget-
balanced and Ywel maximizes total welfare, Yhyb with the aftermarket also
maximizes the total welfare. The difference between the two is the distribution
of the welfare among the agents. The aftermarket, relative to Ywel, increases
welfare for some agents while decreasing it for some others.

The deciding factor in how the welfare is redistributed among the agents
between Ywel and Yhyb with the aftermarket is the fair allocation Yfair. If
Yfair = Ywel then nothing is traded in the aftermarket and welfare is dis-
tributed identically among agents both with and without aftermarket, but any
other Yfair results in a redistribution of welfare relative to Ywel. What is inter-
esting to note is that the choice of fair shares through Yfair thus translates to a
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choice of welfare distribution among the agents, even if no agent claims their
fair share and all agents participate in the aftermarket.

5.8 Numerical Example
Figure 5.6 and Table 5.1 show a simple numerical example illustrating the
benefits of our hybrid solution over straightforward LMP.

Figure 5.6 shows marginal functions of three consumers a, b, and c with
simple linear demand curves da(p) = 8 − 2p, db(p) = 8 − p, and dc(p) =
14−2p. These consumers share a total capacity of 15, and the higher-level price
p̂ is currently 1. The consumers’ demands at p = 1 lead to a total demand of
6+ 7+ 12 = 25, exceeding the capacity by 10. LMP sets the local congestion
price at 3 to reduce total demand to 2 + 5 + 8 = 15. An equitable solution
allocates a total consumption of 5 + 5 + 5 = 15. A subsequent aftermarket
trade at p = 4, in which consumer a does not participate, allocates a total
consumption of 5 + 4 + 6 = 15.

Table 5.1 shows values corresponding to different congestion solutions.
Allocation Y is the result of the higher-level market and is the preferred
outcome, but causes congestion since its total consumption of 25 exceeds the
capacity of 15. The LMP solution YLMP simply raises the price to find the
efficient allocation of 2, 5, 8. However, the total payment now exceeds the cost
of the total consumption in the higher-level market, causing a budget imbalance
of 30 (i.e. the consumers pay the network). The simple equity allocation Yfair

curtails all three consumers to 5 but keeps the original price p̂ and is therefore
budget balanced. However, Yfair can be improved in terms of efficiency. Our
aftermarket, in which agent a chooses not to participate, allows an extra trade
between agents b and c at a price p = 4 which increases the efficiency while
maintaining budget balance (i.e. the consumers pay each other). Finally, Y ′

hyb

shows full aftermarket participation (at a price p = 3). As we can see, this
results in the maximally efficient allocation 2, 5, 8 that was also found by
LMP. However, the aftermarket has avoided congestion pricing and drastically
reduced consumer’s costs. The difference in surplus between full aftermarket
participation Y ′

hyb and YLMP is exactly the 30 congestion overpayment. Notice
that for Y ′

hyb agent a bought 5 units at p̂ = 1 each and sold 3 units at p = 3
each in the aftermarket, netting an income of 4. A different notion of fairness,
e.g. proportional, would affect aftermarket payments, but Y ′

hyb would always
allocate 2, 5, 8.
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Figure 5.6 An example congestion problem, showing marginal functions for three
consumers a (red, left), b (blue, middle), and c (green, right).

Y YLMP Yfair Yhyb Y ′
hyb

price p 1 3 1 1 & 4 1 & 3
consumptiona 6 2 5 5 2
consumptionb 7 5 5 4 5
consumptionc 12 8 5 6 8
consumptiontotal 25 15 15 15 15
paymenta 6 6 5 5 -4
paymentb 7 15 5 1 5
paymentc 12 24 5 9 14
paymenttotal 25 45 15 15 15
surplusa 9 1 8.75 8.75 11
surplusb 24.5 12.5 22.5 23 22.5
surplusc 36 16 23.75 24 26
surplustotal 69.5 29.5 55 55.75 59.5

Table 5.1 Values corresponding to the example congestion problem from Figure 5.6.
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5.9 Conclusions
In this chapter we considered congestion management in systems modelled
after electricity distribution networks. In particular, we considered the wel-
fare expressed by agents’ demand curves in relation to quantities allocated by
congestion-resolving curtailment mechanisms. We differentiated between con-
gestion solutions focused on fairness and those focused on maximizing wel-
fare.

We presented an algorithmic mechanism to find such welfare-maximizing
congestion solutions for tree networks populated by both consumers and
producers. These model e.g. common prosumer-oriented low- and medium-
voltage electricity networks. We then went on to propose a hybrid congestion
solution that provides agents with the choice between fairness and welfare
maximization. We argued that giving agents the choice to claim a fair share
of the available capacity at the original higher-level market clearing price is
sufficient to constitute a fair congestion management mechanism. In such a
mechanism we can let agents that do not choose to claim their fair share en-
gage in welfare-maximizing activity amongst themselves. We achieved this
choice-based hybrid congestion solution by applying our welfare-maximizing
mechanism after locking in the fair shares of agents that decided to claim their
fair share.

We then went on to define the welfare-maximizing part of our hybrid con-
gestion solution as a congestion aftermarket by presenting a pricing scheme for
the changes relative to the fair solution. We showed that this pricing scheme
makes participation in the aftermarket an individually rational choice, and de-
fines in a budget-balanced aftermarket. As a result, in contrast to popular con-
gestion management mechanisms such as locational marginal pricing (LMP)
where scarcity prices generate income for the mechanism, our hybrid solution
gives agents the option of receiving a fair share at a non-scarcity price while
still incentivizing welfare maximization through participation in a budget-
balanced internal market.

Our Theorems 5.3 and 5.4, supported by Algorithms 8 and 9 respectively,
provide local prosumer networks of arbitrary size with a way of becoming
autarkic in their congestion management by offering internally-defined fair
shares in parallel with a completely internal congestion aftermarket that feasi-
bly maximizes welfare.





6Conclusions

With the ongoing energy transition a new, more flexible and distributed, energy
system is emerging. The changes brought about by this transition are especially
disruptive for distribution systems as found in the built environment. The role
of these local grids is changing from an essentially passive one-way system
for distributing energy to end-users, to complex autarkic-like prosumer-based
grids with internal supply-demand matching.

With the increased complexity of energy systems in the built environment,
in part due to the increased penetration of distributed energy resources at the
local level, come challenges previously only faced at the transmission system
level as well as new challenges altogether. The most significant of these new
challenges is the adequate and but also fair matching of supply and demand
between prosumers. A major constraint here is the limited capacity of energy
systems in the built environment that were not designed for today’s usage
patterns.

In our research we set out to investigate the modern need for local conges-
tion management at the distribution level. Since these systems are predomi-
nantly comprised of end-users taking the role of prosumers, the role of resolv-
ing congestion through flexibility falls more and more with these individual
users. As a result, fairness among prosumers in congestion management be-
comes a leading concern for supply-demand matching mechanisms. Therefore,
we sought to answer the following overarching research question:

In a constrained multi-agent power flow system, how can we define fair-
ness and how can we subsequently design supply-demand matching mech-
anisms that manage congestion fairly?

6.1 Answering the Research Questions
We will try to answer our overarching research question by answering the
four narrower research questions that we formulated in Chapter 1. For each
question, we will highlight two aspects. First, we discuss how we arrived
at relevant notions of fairness in the setting. Second, we discuss how we
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were able to implement those notions of fairness in supply-demand matching
mechanisms geared towards congestion management.

Which factors determine how agents compare themselves to other agents,
and how can we duly define, measure, and compute fairness among them?

In Chapter 2 we turned to social comparison theory to gain insight into what
utility functions of agents in our setting may look like when we explicitly in-
corporate notions of fairness. We discovered how the topological aspect of con-
gestion may lead agents to compare themselves primarily to their local peers.
Moreover, we found how the contrast between production and consumption
separates the agents into two groups each with internal envy that are, however,
supportive rather than envious towards the other group. Finally, we devised a
way to incorporate notions of fairness that were found inherently in humans
by research in behavioural economics, directly into the utility functions.

In this chapter we also designed a simple congestion management mecha-
nism for arriving at an egalitarian allocation for radial networks populated by
prosumers of only one type, i.e. only consumers or only producers. We proved
that our mechanism’s allocations maximize the Nash product which also im-
plies Pareto efficiency. The radial structure found in most energy systems in the
built environment allowed us to efficiently compute allocations using subtree
recursion, leading to a low computational complexity. Individual rationality
was a constraint of the mechanism, and we proved the mechanism to be incen-
tive compatible as well.

How does local supply-demand matching affect congestion and how can
we incorporate local balancing into notions of fairness?

In Chapter 3 we explored the implications of local balancing opportuni-
ties for fairness. We postulated that it may be considered fair if an agent can
use local prosumption for local balancing, as opposed to local prosumption
being used for balancing further away in the network and leaving the local
agent with congestion issues. From this starting point we were able to for-
mulate the concept of local, outer matching for radial networks. For division
among local agents we considered three principal notions of fair division: pro-
portional, egalitarian, and non-discriminatory. Moreover, we showed how the
local, outer matching aspect of fairness is compatible with any notion of fair
division. This broad compatibility exists because we incorporate fairness in
two disjoint aspects: one aspect is the selection of agents for supply-demand
matching (where we apply local, outer matching), and the other aspect is the di-
vision of power flow among selected producers and among selected consumers
separately (where we apply one of three principal notions of fair division).
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In this chapter we incorporated the interaction between producers and
consumers by designing a mechanism that takes a subtree-first approach to
supply-demand matching. Again we made use of subtree recursion, this time to
realize local, outer matching with the added benefit of keeping computational
complexity low. We designed this mechanism with a plug-and-play module
for division, making it readily compatible with any notion of fair division.
Individual rationality was a constraint of the mechanism again, but this time
we proved that incentive compatibility depends on the choice of fair division.

How can we adapt fair congestion solutions within a subnetwork to its
collective interaction with a higher-level network?

In Chapter 4, instead of considering local fairness, we considered global
fairness. Local notions of fairness have the potential to prefer matching only
the producers and consumers closest to each other, at the expense of prosumers
further away in the same congested region. This distinction of distance within
the region be viewed as irrelevant when all prosumers in the region are con-
strained by congestion at the same bottleneck. We can reduce emphasis on the
arbitrary distances between prosumers within congested regions by requiring
a global fairness criterion to hold. A global fairness criterion can be any cri-
terion that does not explicitly include the network topology in its definition.
To this end we took the very strict notion of max-min fairness and adapted
it to supply-demand matching settings by defining the max-min property on
absolute values of prosumption.

In this chapter we expanded our focus from the local network to the hierar-
chical interactions between different levels of the energy system. Since a radial
subnetwork interacts with the higher-level network through its flow at the root
connection, we designed a mechanism that computes an entire paramaterized
family of globally max-min fair allocations for all possible root flows. With
this parameterization of fair allocations the local network can quickly decide
on an allocation once the intended interaction with the higher-level network
is decided. Same as the mechanism from Chapter 2, this mechanism is of low
computational complexity and is both individually rational and incentive com-
patible.

How do fairness and welfare relate to each other in the presence of limita-
tions imposed by congestion, and is there a way to reconcile them?

In Chapter 5, we investigated the trade-off between maximizing for fairness
or for welfare. Congestion always introduces a market limitation, resulting in
economical inefficiencies. To arrive at an optimal market solution under con-
gestion, many approaches such as locational marginal pricing (LMP) introduce
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scarcity pricing to reduce consumption. Such an approach, however, raises the
price of all the units traded indiscriminately and results in budget-imbalance.
To avoid such consequences and pursue fairness, we first allocate fair shares
which then serve as a starting point for maximizing welfare through exchanges
between agents. Importantly, this lets us allow agents to choose between either
their fair share or welfare maximization. With our approach, agents’ fair shares
are protected from scarcity pricing while agents retain the option to be flexi-
ble and maximize welfare in a budget-balanced aftermarket. This results in
a choice-based notion of fairness that can exist in conjunction with welfare
maximization, combining the best of both worlds while avoiding detrimental
cross-effects.

In this chapter we first designed a straightforward congestion management
mechanism that maximizes the total welfare, or surplus, of the agents. We then
designed a hybrid mechanism by fixing the fair shares of agents that chose
this option and subsequently applying the welfare maximizing mechanism to
the rest of the agents. The fair shares can be defined by any fair mechanism,
and which agents then actually ‘claim’ their fair share is up to the preferences
of the agents themselves. With this hybrid mechanism we were able to define
a congestion aftermarket with a budget-balanced pricing scheme. We prove
that this pricing scheme makes the mechanism individually rational. We thus
showed that participation in the aftermarket is economically optimal for each
agent, while agents also always retain the option to claim their fair share at its
pre-congestion price.

6.1.1 Answering our overarching research question

With these answers we can now formulate an answer to our overarching
research question:

In a constrained multi-agent power flow system, how can we define fair-
ness and how can we subsequently design supply-demand matching mech-
anisms that manage congestion fairly?

We found that notions of fairness regarding congested commodity flow
networks can either focus on local or global fairness, and that agents can have
differing opinions on the two depending on how wide they draw the circle of
their peers. Furthermore, we found that it is possible to combine notions of
fairness with welfare maximization by letting individual agents decide which
of the two is more important, and protecting their fair shares if so desired.

We were able to use the radial structure prevalent in energy systems in the
built environment to design algorithmic mechanisms of consistently low com-
putational complexity. Besides individual rationality, we showed that egali-
tarian notions of fairness also led to incentive compatible mechanisms, while
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some other common notions of fairness did not. Finally, we showed that it is
possible to combine fairness and welfare in choice-based hybrid mechanisms
through the addition of a budget-balanced congestion aftermarket for which
participation is voluntary.

6.2 Outlook
In this work we focused on smart energy systems in the built environment and
their typically radial structures. Some low- and medium-voltage distribution
networks, however, have a mesh structure. It would be interesting to see how
our results can be expanded to those networks and general network topolo-
gies. Max-min fair allocations can be computed for general isolated networks,
but our concepts such as local, outer matching, root flow paramaterized allo-
cations, and aftermarket pricing schemes do not immediately translate to the
general setting.

Many of the notions of fairness that we considered are based on a version of
egalitarian fairness. A feature of these notions of fairness is that all agents are
considered equal. In reality, however, we may want to discern between differ-
ent agents, for example between a single solar panel on a roof and a complete
solar field, or between a residential house and a hospital. A straightforward way
to implement such distinctions is by assigning weights to the agents. Many of
our mechanisms can be directly extended with weights, since weights are es-
sentially just a way to split agents into “unit agents”.

A potentially interesting direction for weights, however, is to change them
over time. One could imagine gradually raising the weight of an agent that
is repeatedly allocated a small share until it is allocated a sufficient share.
This would introduce the interesting possibility to dynamically change agents’
shares based on shares allocated in the recent past. For example, an agent that
never asks for a large share may be accommodated when it sporadically does
ask for a larger share. Another approach would be to periodically have an
auction for weights, allowing users that expect to cause a lot of congestion
to compensate other users up front instead of being curtailed or suffering
penalties.

In general, adding a time dimension to fair allocation problems is an inter-
esting approach. Next to the dynamic allocations mentioned before, there are
settings in which agents require consecutive allocations over certain periods of
time. For example, it is detrimental for electric vehicle batteries to start and
stop charging often. This raises a question of fairness when a new car arrives
at a charging station with limited capacity: do we re-allocate charging capacity
from an already almost-charged car or do we let it finish charging uninterrupted
before serving the newcomer?



120 Chapter 6 Conclusions

Another technical extension of our mechanisms that could be made is to
incorporate line losses. Even though line losses are usually not a deciding
factor in low-voltage networks, their impact can be noticed. This raises an
interesting question regarding fair shares: does an agent’s fair share concern
the amount of power generated or passing through a certain bottleneck, or
does it concern the amount of power that arrives? Both alternatives could
be incorporated, by reasonable approximation, in most of our mechanisms by
multiplying all prosmuption values that remain unmatched in a subtree, with
the loss ratio of the subtree’s upward connecting edge. This would crudely
account for the losses incurred by the locally unmatched prosumption as the
power flows required for matching from the rest of the network are inflated to
compensate these losses.

Finally, it would be interesting to see if the local and global aspects of
fairness that we found can be reconciled into one multi-level integrated system.
A goal could be to have a system of interconnected fair mechanisms for the
whole energy system, with appropriate notions of fairness for each level but
also with consideration for the impact on other levels.



AThe SES-BE Program

The research in this dissertation contributed to the Smart Energy Systems in
the Built Environment (SES-BE) research program. This appendix provides a
brief overview of the program as a whole and in relation to our work.

A.1 Research Program Outline
With the energy transition, a new sustainable energy supply chain is emerging
due to the increasing deployment of renewable energy sources (RES) such
as wind and solar, together with new types of appliances such as electric
vehicles, heat pumps and other domestic electric usage technologies. Even
though buildings are a major consumer, accounting for up to one-third of total
energy consumption, they can potentially offer a high degree of flexibility
in the way energy is used, stored, and locally produced with their on-site
distributed energy resources (DER). The challenge is to design, operate and
organize the future energy system to fully exploit the flexibility potential of
smart buildings and their environment, while maintaining a high standard of
system reliability and quality of energy supply. (Kling, 2014)

The main scientific challenges of the SES-BE program are to identify and
explore the synergies between the built environment and emerging smart grid
technologies and applications. Concretely, the scientific developments that
the program aims for are: from traditional conversion to new more efficient
technology in buildings; from single commodity to a multi-commodity energy
management; from passive to active participation of end users (prosumers);
and from a centralized to a decentralized market based system operation.
(Kling, 2014)

The smart energy systems in the built environment (SES-BE) research
program (Kling, 2014) formulates the following research question:

How can the complex multi-layered, multi-actor energy system within the
built environment improve its overall sustainability and efficiency while
satisfying user requirements such as cost, reliability and performance?
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A.2 Individual Research Projects
The SES-BE research program couples different disciplines (power systems,
built environment, conversion technologies, automation, computational intel-
ligence and multi-agent decision making) and different aspects (interactive
energy management and control, markets and services, and policies and en-
trepreneurship) of so-called smart energy systems (Kling, 2014).

The program was designed around multiple interconnected research
projects that operate in different layers, from physical infrastructure to dig-
ital infrastructure to products and services. This has resulted in a cohesive
body of research on smart energy systems in the built environment.

• On the topic of energy conversion, storage and distribution technologies for
smart buildings, research focused on local voltage control in smart grids
(Zhang et al., 2017, 2018) and optimization of future microgrids (Bandy-
opadhyay et al., 2018, 2020).

• Research on interactive energy management systems and lifecycle perfor-
mance design for energy infrastructures of local communities worked to-
wards net-zero energy neighbourhoods (Shafiullah et al., 2018, 2019) and
studied life cycle performance design for clusters of buildings (Walker et al.,
2018, 2021).

• Data-driven monitoring, prediction and real-time control for the smart grid
was employed to analyze reduced price volatility in Germany since the
energy transition (Khoshrou and Pauwels, 2018; Khoshrou et al., 2019) and
provide solutions to power-flow problems (Sereeter et al., 2017, 2019).

• A framework for demand-supply matching and ancillary service provision
through distributed energy resources was developed by research on fair
congestion management matching mechanisms (Hekkelman and La Poutré,
2019, 2020) and distributed energy resources in coupled local and central
markets (Farrokhseresht et al., 2020, 2021), and by surveying the partici-
pation of distributed energy resources in balancing markets (Farrokhseresht
et al., 2018).

• Finally, a modelling lab for smart grids, smart policies and smart en-
trepreneurship was developed through research on the design of energy
transitions (Moncada et al., 2017; Nava Guerrero et al., 2019) and the ef-
fectiveness and profitability of aggregation (Okur et al., 2018b; Özge Okur
et al., 2019), and by reviewing aggregator business models (Özge Okur et al.,
2021).

The common theme across these projects is the need for flexibility in energy
networks, playing a role at all levels of energy systems in the built environment:
device, building, community, aggregator, and regional grid. (Kling, 2014)
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Electricity users who share a grid connection 
encounter congestion when they cause too 
much power to flow through the connection. 
To resolve congestion, the available grid 
capacity must be divided over the users.

What is a fair way to divide the capacity? 
What if the network has a more complex 
structure, with different users being affected by 
congestion at different places in the network? 
And what if users not only consume but may 
also produce electricity, enabling matching 
between them to mitigate congestion?

In this dissertation we adapt and define notions 
of fairness for these complex settings. We also 
design algorithmic mechanisms that compute 
corresponding congestion solutions. We prove 
that our mechanisms are fair and that they 
provide the right incentives for users.


