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ABSTRACT

The ever-growing aerospace industry’s urgent need to reduce greenhouse gas emissions has ignited a surge of interest
in hybrid or fully electric propulsion systems. The electrification of aircraft introduces the possibility for energy to
be recovered during phases of flight where no power input is required, and previous research has demonstrated the
potential for small energy balance enhancements using dual role propellers. The design and operation of dual-role
propellers involves considering two opposing load cases: positive thrust and torque during propulsive operation, and
negative thrust and torque in regenerative operation. Thus, the ideal blade shape for maximizing performance in each
opposing operating condition will be very different. Structural tailoring of the composite blades may be an effective
approach for reducing energy consumption during operation in both regimes. Accordingly, the primary objective
of this research is to determine the extent of dual-role propeller performance improvements that may be obtained
through the application of aeroelastic tailoring. Sensitivity studies were conducted to convey an understanding of how
dual-role propeller performance is affected through variations in structural designs (ply orientations and thicknesses).
Optimization studies were subsequently performed to identify the extent of performance enhancements yielded
solely through aeroelastic tailoring for flexible constant- and variable-pitch propellers of fixed geometry, assuming
installation on a reference aircraft, and evaluated over multiple cruise distances for a climb-cruise-descent mission.

The thesis objectives were achieved through the development and application of an aeroelastic analysis and
optimization framework. Blade element momentum (BEM) theory was used for the aerodynamic model with engineer-
ing corrections for compressibility, effects of rotation, root- and tip-losses, and the turbulent wake state. Excellent
agreement was obtained from comparisons with a previous BEM code, and reasonable agreement in performance
trends was observed through comparisons with experimental data during verification and validation. A modified
version of PROTEUS, an aeroelastic tailoring code that was developed at the TU Delft, was used for the structural
model. The aerodynamic analysis routine of PROTEUS was modified to instead use the developed BEM code for
the evaluation of loads, sensitivities, and performance. The structural model of PROTEUS was modified to feature
centrifugal forces and different input structures that are more conducive to the analysis of rotor blades. The structural
model implemented during this project accounts for geometric nonlinearities, as well as nonlinear loads through
the application of a corotational framework, and it is capable of accurately representing the detailed 3D blade as a
reduced-order Timoshenko beam element mesh through its use of a cross-sectional modeller. Finally, a tightly coupled
aeroelastic analysis procedure was developed and applied, which ensures convergence through the minimization
of a residual vector using Newton’s method, and analytical sensitivities for all loads were included in the analysis.
Excellent agreement was obtained during verification studies for both the structural and aeroelastic analyses.

Results from the optimization and sensitivity studies indicate that the flexible blades constructed out of symmetric-
unbalanced laminates yield a significant variation in thrust and power through the presence of bend-twist and
extension-shear coupling, which results in an increasing change in twist distribution with increasing deflection or
elongation. Only small variations in performance were observed from symmetric-balanced laminates, as the minimal
amount of coupling resulted in negligible twist deformations, which confirms that the presence of bend-twist and
extension-shear coupling drives variations in performance obtained through aeroelastic tailoring. Furthermore, it was
found that the presence of an aerodynamic wash-out effect augments the range of advance ratio values corresponding
to high-efficiency operation during both propulsive and regenerative modes. An opposite trend was observed in the
presence of a wash-in effect. Lastly, due to the significantly decreased loading in descent, combined with its small
contribution towards the total mission energy consumption, effects of aeroelastic tailoring are significantly greater in
propulsive conditions (climb and cruise) in comparison to regenerative conditions.

From optimization, it was found that the flexible constant-pitch propeller features an energy consumption that is
between 0.7% and 1.5% lower than the energy consumption of the rigid propellers. Despite this consistent decrease in
energy consumption, all optimal flexible constant-pitch propellers were found to regenerate between 3% and 25% less
energy than the rigid variable-pitch propeller, and between 3% and 10% less energy than the rigid constant-pitch
propeller. This further suggests that the application of aeroelastic tailoring is most-suitable for improving performance
in propulsive mode, as the enhanced performance yielded in propulsive mode outweighs the degraded performance in
descent by a significant enough margin to enable the flexible constant-pitch propeller to outperform all rigid propellers.
Moreover, the flexible variable-pitch propeller naturally yielded an even better performance than the constant-pitch
propeller, with a total mission energy consumption that is between 1.5% and 2.0% less than the energy consumption of
the rigid propellers. It has thus been shown that aeroelastic tailoring can yield noticeable improvements in propeller
performance, at least for the fixed mission profile and reference aircraft that was studied.
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NOMENCLATURE

SYMBOLS

Symbol Context Definition Dimensions

AAA Structures In-plane stiffness tensor in (x̃ , ỹ , z̃) frame [M][T]−2

BBB Structures Coupling stiffness tensor in (x̃ , ỹ , z̃) frame [M][L][T]−2

CCC Structures Timoshenko cross-sectional stiffness matrix

CP Aerodynamics Total power coefficient [−]

CQ Aerodynamics Total torque coefficient [−]

CT Aerodynamics Total thrust coefficient [−]

Cd Aerodynamics Sectional drag coefficient [−]

Cl Aerodynamics Sectional lift coefficient [−]

Cm Aerodynamics Sectional moment coefficient [−]

Cp Aerodynamics Sectional power coefficient [−]

Cq Aerodynamics Sectional torque coefficient (blade-design level) [−]

Ct Aerodynamics Sectional thrust coefficient (blade-design level) [−]

Cx Aerodynamics Sectional axial force coefficient [−]

Cθ Aerodynamics Sectional tangential force coefficient [−]

DDD Structures Out-of-plane stiffness tensor in (x̃ , ỹ , z̃) frame [M][L]2 [T]−2

D Aerodynamics Drag [M][L][T]−2

E Optimization Mission energy consumption [M][L]2 [T]−2

ECP
min Optimization Min. energy consumption of rigid constant-pitch propeller [M][L]2 [T]−2

EVP
min Optimization Min. energy consumption of rigid variable-pitch propeller [M][L]2 [T]−2

Erigid Optimization Minimum energy consumption of the rigid propeller [M][L]2 [T]−2

E11 Structures Elastic modulus of unidirectional ply along x̂1 axis [M][L]−1 [T]−2

E22 Structures Elastic modulus of unidirectional ply along x̂2 axis [M][L]−1 [T]−2

EA Structures Extensional stiffness of beam element [M][L][T]−2

EIs Structures Bending stiffness of beam element (s ∈ {2,3}) [M][L]3 [T]−2

F Aerodynamics Prandtl root- and tip-loss factor [−]

G12 Structures Shear modulus of unidirectional ply in x̂1-x̂2 plane [M][L]−1 [T]−2

GAs Structures Shear stiffness of beam element (s ∈ {2,3}) [M][L]2 [T]−2

GJ Structures Torsional stiffness of beam element [M][L]3 [T]−2

J Aerodynamics Advance ratio (J = nD/V∞) [−]

JJJ Structures Jacobian matrix for aeroelastic analysis

KKK Structures Stiffness matrix in global coordinates

L Aerodynamics Lift [M][L][T]−2

MMM Structures Mass matrix of beam element in global coordinates

M Structures Internal structural moment resultant in (x̃ , ỹ , z̃) frame [M][L][T]−2

MLMLML Structures Mass matrix of beam element in local coordinates

Ma Aerodynamics Mach number [−]

NNN Optimization Normalization matrix for design variables

NNN Structures Matrix of shape functions for the beam element
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viii NOMENCLATURE

Symbol Context Definition Dimensions

N Structures Internal structural force resultant in (x̃ , ỹ , z̃) frame [M][T]−2

Nb Aerodynamics Number of blades [−]

Ntrim Optimization Number of applicable propeller operating conditions [−]

P Aerodynamics Power [M][L]2 [T]−3

P Optimization Power consumption in each mission segment [M][L]2 [T]−3

Pmax Optimization Maximum power consumption [L]

PC Aerodynamics Integral power coefficient (PC = CP J−3) [−]

QQQ Structures Plane stress constitutive matrix in (x̂1, x̂2, x̂3) frame [M][L]−1 [T]−2

Q̃̃Q̃Q Structures Plane stress constitutive matrix in (x̃ , ỹ , z̃) frame [M][L]−1 [T]−2

Q Aerodynamics Torque [M][L]2 [T]−2

QC Aerodynamics Integral torque coefficient ((QC = CQ J−2)) [−]

¯
R Residual vector for aeroelastic and BEM calculations

R Aerodynamics Rotor tip radius [L]

RRR Structures Rotation matrix [−]

Re Aerodynamics Reynolds number [−]

T Aerodynamics Thrust [M][L][T]−2

T1T1T1 Structures Stress transformation matrix (x̂1, x̂2, x̂3)→ (x̃ , ỹ , z̃) [−]

T2T2T2 Structures Strain transformation matrix (x̂1, x̂2, x̂3)→ (x̃ , ỹ , z̃) [−]

T Aerodynamics Total thrust coefficient (TC = CT J−2) [−]

U Structures Strain energy of beam element [M][L]2 [T]−2

U Structures Material stiffness invariant [M][L]−1 [T]−2

V Structures Kinetic energy of beam element [M][L]2 [T]−2

V Aerodynamics Resultant local velocity (with induced velocity) [L][T]−1

V∞ Aerodynamics Freestream velocity (in axial direction) [L][T]−1

a Aerodynamics Axial induction factor in propeller plane [−]

a′ Aerodynamics Tangential induction factor in propeller plane [−]

c Aerodynamics Local chord length [L](
eb

1 , eb
2 , eb

3

)
Structures Global coordinate system of blade structure [−](

e0
1 , e0

2 , e0
3

)
Structures Local coordinate system of beam element [−]

¯
f Aeroelasticity Forces acting at structural degrees of freedom [M][L][T]−2

f Optimization Normalized objective function [−]
˜
¯
f Structures Force acting on structure at eccentric node [M][L]2 [T]−2

g Optimization Normalized inequality constraint [−]

h Optimization Normalized equality constraint [−]

l0 Structures Beam element length [L]
˜
¯
m Structures Moment acting on structure at eccentric node [M][L]2 [T]−2

m̄ Structures Beam element mass per unit length [M][L]−1

n Aerodynamics Rotor speed (revolutions-per-second) [T]−1

¯
p Structures Full degree of freedom deformation vector [L], [−]

¯
pe Structures Element degree of freedom deformation vector [L], [−]

pi Optimization Blade tip degree of freedom deformation (i ∈ {1,2, ... ,6}) [L]

pmax Optimization Maximum tip displacement [L]

q∞ Aerodynamics Freestream dynamic pressure [M][L]−3

¯
r Structures Vectorized undeformed radial position along blade [L], [−]

r Aerodynamics Local propeller blade radial location [L]

t Optimization Time spent in each mission segment [T]
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Symbol Context Definition Dimensions

u Structures Beam element deformation along e0
1 axis [L]

v Structures Beam element deformation along e0
2 axis [L]

vi Aerodynamics Axial induced velocity in propeller plane [L][T]−1

vw Aerodynamics Axial induced velocity far downstream of propeller [L][T]−1

w Structures Beam element deformation along e0
3 axis [L]

xl Structures Beam element length coordinate [L]

∆S Aerodynamics Surface area of blade element [L]2

ΓiΓiΓi Structures Material stiffness invariant matrices (i ∈ {0 , . . . , 4}) [M][L]−1 [T]−2

Ω Aerodynamics Rotor speed (revolutions-per-second) [T]−1

¯
Ω Aerodynamics Vectorized rotor speed (revolutions-per-second) [T]−1

Φ Optimization Design variable

¯
Φ Optimization Design vector

¯
Φ0 Optimization Midpoint between lower and upper bound of design vector

ΦL Optimization Lower bound of design variable

¯
ΦL Optimization Lower bound of design vector

ΦU Optimization Upper bound of design variable

¯
ΦU Optimization Upper bound of design vector

ˆ
¯
Φ Optimization Normalized design vector [−]

Θ Optimization Ply orientation used to define stacking sequences [−]

α Aerodynamics Local static angle of attack [−]

β Aerodynamics Blade twist angle [−]

β0.7 Aerodynamics Blade twist angle at a reference span location of r/R = 0.7 [−]

ε Structures Direct strain [−]

εT
max Optimization Maximum normal strain (tensile) [−]

εC
min Optimization Minimum normal strain (compressive) [−]

ηeh Aerodynamics Energy-harvesting efficiency [−]

ηP Aerodynamics Propulsive efficiency [−]

ηT Aerodynamics Turbine efficiency [−]

γ Structures Shear strain [−]

κ Structures Curvature [L]−1

ν Structures Poisson ratio [−]

ω Aerodynamics Rotor speed (radians-per-second) [T]−1

φ Structures Beam element rotation around e0
1 axis [−]

ϕ Aerodynamics Local resultant flow angle (with induced velocity) [−]

ψ Structures Beam element rotation around e0
3 axis [−]

ρ∞ Aerodynamics Freestream flow density [M][L]−3

ρs Structures Material density [M][L]−3

σ Structures Normal stress [M][L]−1 [T]−2

σUC Structures Ultimate compressive strength [M][L]−1 [T]−2

σUT Structures Ultimate tensile strength [M][L]−1 [T]−2

τ Structures Shear stress [M][L]−1 [T]−2

τmax Optimization Maximum shear strain [−]

τU
12 Structures Ultimate in-plane shear stress [M][L]−1 [T]−2

θ Structures Beam element rotation around e0
2 axis [−]

ξk
i Structures Lamination parameters (k ∈ {A,B,D}, i ∈ {1, . . . ,4}) [−]



x NOMENCLATURE

SUBSCRIPTS

Subscript Definition

0 Quantity evaluated far downstream of propeller

11 Structural quantity of ply aligned with x̂1 axis (aligned with fibres)

1 Flow quantity evaluated directly behind propeller plane

12 Structural quantity of ply within x̂1-x̂2 plane

2 Flow quantity evaluated directly in front of propeller plane

22 Structural quantity of ply aligned with x̂2 axis (orthogonal to fibres and in-plane)

∞ Flow quantity evaluated far upstream of propeller

a Load or stiffness contribution due to external aerodynamics

c Load or stiffness contribution due to rotation (centrifugal)

e Load or stiffness contribution due to external eccentric loads

root Quantity observed at blade root

s Force or stiffness contribution due to internal structure

tip Quantity observed at blade tip

SUPERSCRIPTS

Superscript Definition

BE Quantity evaluated using blade element theory

CP Quantity evaluated for constant-pitch propellers

M Quantity evaluated using momentum theory

VP Quantity evaluated for variable-pitch propellers

ABBREVIATIONS

Abbreviation Definition

BEM Blade Element Momentum

CFD Computational Fluid Dynamics

CPVR Constant-pitch and variable-RPM propeller configuration

LLFVW Lifting-Line Free-Vortex Wake

NVLM Nonlinear Vortex Lattice Method

RANS Reynolds-Averaged Navier-Stokes

TE Trailing Edge

UML Unified Modelling Language

VLM Vortex Lattice Method

VPCR Variable-pitch and constant-RPM propeller configuration

VPVR Variable-pitch and variable-RPM propeller configuration
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1
INTRODUCTION

The need to reduce greenhouse gas emissions within the rapidly expanding aerospace industry has resulted
in recent interest in the development of hybrid- or fully electric propulsion systems. This recent interest in
electrified propulsion systems has resulted in a renewed interest in propeller-based propulsion systems.
Furthermore, with batteries being used for energy storage and electric motors for supplying power, the
electrification of aircraft enables the possibility for energy to be recovered during phases of flight where no
power input is otherwise required, such as during descending flight.

The design and operation of dual-role propellers involves considering two opposing load cases: positive
thrust and torque during propulsive operation, and negative thrust and torque in regenerative operation.
This suggests that a propeller that is designed exclusively for propulsive operation will perform poorly
in energy harvesting conditions. Indeed, Sinnige et al. [1] have shown that a propeller that is designed
exclusively for propulsive operation will have a maximum energy harvesting efficiency of approximately
10% [1]. Conversely, Erzen et al. [2] saw a 19% decrease in energy consumption during the ascend/descend
flight pattern and a 27% increase in the number of traffic pattern circuits performed with a dual-role
propeller in comparison to a conventional propeller design when used during flight patterns that are
conducive to regeneration during descent [2]. These results indicate that considering both propulsive and
regenerative operation during the design of propellers has the potential to yield at least a small decrease
in energy consumption due to energy balance improvements that may be attained in descending flight.

The objective of this thesis is to determine whether it is possible to yield further increases in perfor-
mance of dual-role propellers through the application of aeroelastic tailoring. By including bend-twist
or extension-shear coupling through the strategic design of the laminates used in the construction of
each propeller blade, it may be possible to broaden the range of advance ratio values where the propeller
operates with high efficiency. There has not been any work to-date that involves the application of this
approach towards dual-role propellers, although work has been done to optimize flexible propellers for
maximum efficiency during the propulsive case. For example, Sodja et al. [3] considered exclusively
applying geometry modifications for this purpose, and Khan [4] applied different ply stacking sequences
to a propeller with a fixed geometry. To build upon this work, an aeroelastic analysis and optimization
framework has been developed and applied to maximize the performance of dual-role propellers.

This chapter is organized as follows: Section 1.1 contains an overview of the previous research and
state-of-the-art on dual-role propeller design and analysis, and Section 1.2 contains a discussion on
previous applications of aeroelastic tailoring towards the design of propellers. Using the discussion from
the two preceding sections as a guide, Section 1.3 contains an overview of gaps in current research and
a list of research objectives to address these gaps. Finally, the scope of this thesis has been outlined in
Section 1.4, including the research questions and boundaries of the project.

1.1. DUAL-ROLE PROPELLER DESIGN AND ANALYSIS
The use of propellers as wind turbines to harvest energy on an aircraft was first suggested by the well-
known aerodynamicist Glauert [5] in 1926, although there were no feasible implementations of this
technology at the time of his research. This concept was subsequently revisited over 70 years later by
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MacCready [6] in 1999, who provided an initial application of the concept towards a battery-electric and
self-launching sailplane, which operates its propellers as onboard energy harvesters during descending
flight, thereby using its potential energy to recharge its battery. The energy-harvesting performance
of the so-called Regenosoar concept that was developed by MacCready was later studied in more depth
by Barnes [7–9]. Through a detailed multidisciplinary analysis of the model provided by MacCready,
Barnes found that the capability of regeneration can enhance range, steepen descent, and add thrust-
reversal while landing [7]. Both MacCready and Barnes suggested that the propeller geometry yielding
optimal performance during regenerative operation is vastly different from the geometry yielding optimal
performance during propulsive operation. This is because the flow and loading encountered by each blade
section is notably different between the two cases, as indicated by the velocity triangles in Figure 1.1.

(a) Propulsive operation. (b) Regenerative operation.

Figure 1.1: Velocity triangles for a propeller operating in propulsive and regenerative modes [1].

MacCready [6] and Barnes [7] suggested several ways to mitigate this problem, such as including
two sets of propellers, with one set operating in propulsive conditions and the other set operating in
regenerative conditions, and either of the two propeller rotors being capable of folding when not in
use [6, 7]. This propeller design was implemented into an aircraft configuration by Barnes in [7, 9],
where a rotor of low solidity was used in propulsive conditions and one with a high solidity was used
in regenerative conditions. Another suggestion was to have a design that is a compromise between the
two, otherwise yielding “good, but not ideal, effectiveness in both charging and power delivery modes”,
or to design a propeller with an even number of blades, with half optimized for maximum regenerative
performance and the other half optimized for propulsive performance [6]. Designing propeller blades that
fold inward or outward mid-flight introduces an undesirable level of complexity, especially for general
aviation applications, which is the primary interest of this work. The work of this project is mainly
targeted towards finding an acceptable compromise between performance in propulsive and regenerative
operating conditions, as suggested by the preceding authors. Allowing the propeller to passively deform
during its operation was not suggested, although it may enable a suitable compromise in performance.

More recently, Erzen et al. [2] presented a propeller design for exploiting the capability of the Pipistrel
Alpha Electro for in-flight power recuperation. The propeller design approach involved considering
three disciplines: aerodynamics, electronics, and operations. For the aerodynamic design, low-fidelity
computational tools were used such as XFOIL to optimize the airfoil shape and blade design. RANS
simulations were later used for verification purposes. The design of the electrical system involved allowing
the capability of a hardware-enabled bidirectional power flow, with the ability to optimize the angular
velocity and torque combination for maximized energy-harvesting at given descent rates [2]. This was
accomplished by the power control unit and main computer, which allowed the aircraft to switch between
propulsive and regenerative operation without additional pilot inputs [2]. Finally, the strategic design
included a design of the mission profile to minimize overall energy consumption, the flight pattern was
designed to exploit the benefits of reverse thrust, including the requirement of a steeper descent. As
a result, the propeller that was designed for both propulsive and regenerative operation yielded a 19%
decrease in energy consumption and a 27% increase in the number of traffic pattern circuits [2]. The
observed improvement in performance is heavily dependent on the selected flight pattern, and thus a
consistent mission must be considered to realistically estimate potential decreases in consumption.

The results obtained by Erzen et al. in [2] present a positive outlook on benefits that may be realized
through the use of dual-role propellers, although the performance in energy-harvesting conditions is
generally very limited for propellers that are designed for propulsive operation only. For example, in 2019,

https://web.mit.edu/drela/Public/web/xfoil/
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Sinnige et al. [1] investigated the interaction effects between wing and propeller of a wingtip-mounted
tractor propeller in propulsive and energy-harvesting conditions. Although most of the results obtained
cover the interaction effects between wing and propeller, experimental and numerical results on the
blade loading, slipstream characteristics, and energy-harvesting performance of an isolated propeller
were also collected. As shown in Figure 1.2, the authors were first to observe that the thrust and power
coefficient curves flatten considerably in regenerative conditions, since the TUD-PROWIM propeller under
investigation is not designed to operate in these conditions. As a result, the energy-harvesting mode
caused the blades to encounter separation and a distorted loading (and induced velocity) distribution
that did not resemble the usual distributions of a minimum-induced-loss propeller. Accordingly, the peak
energy-harvesting efficiency obtained by the authors was approximately 10%, which is low in comparison
to small conventional wind turbines [1]. The qualitative results from this work were again obtained by
Goyal et al. [10], where a detailed study was performed on isolated energy-harvesting propellers.

(a) Thrust. (b) Power. (c) Efficiency.

Figure 1.2: Propeller performance data that was obtained by Sinnige et al. [1].

Goyal et al. [10] investigated the performance of an isolated propeller in propulsive and regenerative
conditions, both experimentally and with a multi-fidelity numerical approach. The propeller considered by
Goyal et al. has a similar design to the propeller that was analysed by Sinnige et al. in [1] and the size and
number of blades is different. Low-fidelity simulations were performed using a BEM code that accounted
for effects of rotation using RFOIL (see [11] for the underlying theory). High-fidelity simulations were
performed using experimentally validated RANS simulations. The observations made by the authors
were similar to that of Sinnige et al.: the flow field is dominated by separation and viscous losses in
energy-harvesting conditions and the blade loading distribution is considerably distorted, thus leading to
a significantly degraded performance and a relatively low maximum energy-harvesting efficiency. This
presence of separation means that it is crucial to account for effects of rotation in the prediction of blade
loading, as the Coriolis and centrifugal forces encountered by the blades have a profound influence on
viscous effects such as separation and transition. It is clear that RANS simulations tended to always
yield acceptable results, whereas the BEM code tended to yield noticeable discrepancies in the presence of
separated flow. The authors’ BEM code noticeably overpredicted the power coefficient at high advance
ratios, and errors were equivalently observed in the predicted energy-harvesting efficiency despite a
reasonable agreement in the predicted thrust coefficient. This is shown in Figure 1.3. The authors suggest
that this is due to an overprediction of separation and an underprediction of the drag [10]. Nevertheless,
the general trends are reasonably predicted up to around the peak energy-harvesting efficiency.

(a) Thrust. (b) Power. (c) Efficiency.

Figure 1.3: Performance data for the TUD-XPROP-3 propeller obtained by Goyal et al. [10].

https://www.esru.strath.ac.uk//EandE/Web_sites/09-10/MCT/html/Technical/rfoil.html
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Plots of the streamlines at various blade sections are provided in Figure 1.4, as computed by Goyal et al.
to indicate locations where the flow is separated. The qualitative trends regarding the presence of flow
separation in energy-harvesting conditions were also reported by other researchers, such as Binder et al.
[12] for a ducted fan, which encountered separation originating at the tips of the blade with decreasing
rotational speed and constant freestream velocity. Binder et al. hypothesized that when operating a fan in
energy-harvesting conditions, there will always be a region of separated flow originating from the tips,
as shown in Figure 1.5. However, the model used by Binder et al. is of a ducted fan with both a rotor
and a stator [12]. Compared to the single-row unducted propellers that are of interest to this project, the
presence of the stator and duct alters the flow conditions near the blade tips in addition to the mass flow
rate. The results presented in [12] are thus not entirely applicable, although their predictions of generic
flow conditions at different operating points were also reported by Sinnige et al., Goyal et al. [1, 10].

(a) Propulsive (J = 0.57, TC = 0.144, PC = 0.215). (b) Regenerative (J = 1.00, TC =−0.094, PC =−0.034).

(c) Regenerative (J = 1.15, TC =−0.108, PC =−0.043). (d) Regenerative (J = 1.60, TC =−0.093, PC =−0.025).

Figure 1.4: Friction coefficient and streamline plots for the TUD-XPROP propeller at propulsive and
regenerative modes, showing flow separation originating at the tips with increasing advance ratio [10].

Figure 1.5: Trends hypothesized by Binder et al. for an increasing flow coefficient from (a) to (e) [12].
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Lastly, Nederlof et al. [13] identified important effects on performance associated with variations in
blade collective pitch angle. First, it has been shown that the peak energy-harvesting efficiency increases
with decreasing pitch setting, while the propulsive efficiency increases with increasing pitch setting [13].
Additionally, because the advance ratio of maximum energy-harvesting efficiency tends to decrease with
decreasing pitch setting, the rotational speed is proportionally higher, which allows more power to be
recovered. Nederlof et al. also identified that the thrust coefficient decreases proportionally faster than the
power coefficient with decreasing pitch setting, which causes the maximum turbine efficiency to decrease
with decreasing pitch setting. Additionally, the diagram shown in Figure 1.6 shows that the negative lift
vector already points largely in the direction of negative torque for higher pitch settings, and therefore
the negative blade sectional angle of attack does not need to be as high as it otherwise needs to be at
low pitch settings for the propeller to operate in energy-harvesting conditions. For this reason, the peak
turbine efficiency tends to occur at lower advance ratios with decreasing pitch setting, and more negative
thrust is required to reach energy harvesting conditions with decreasing pitch setting. Plots of the various
efficiencies in addition to the thrust and power coefficient as a function of advance ratio are shown in
Figure 1.7 and Figure 1.8 to support this discussion.

(a) Low pitch setting. (b) High pitch setting.

Figure 1.6: A comparison of relevant blade forces and flow velocity components acting on a propeller
blade section with either a low- or a high-pitch setting during energy-harvesting conditions [13].

(a) Propulsive efficiency. (b) Energy-harvesting efficiency. (c) Turbine efficiency.

Figure 1.7: Efficiency plots for the TUD-XPROP-3 propeller at varying blade pitch settings [13].

(a) Thrust coefficient. (b) Power coefficient.

Figure 1.8: Performance plots for the TUD-XPROP-3 propeller at varying blade pitch settings [13].
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To conclude, it has first been shown that blade loads encountered during regenerative and propulsive
conditions are directly opposite to each other. Since the pioneering work of MacCready [6], few designs
have been proposed for a propeller that can also operate as a wind turbine during flight, and the research
within this area is somewhat sparse in academic contexts despite its potential impact. Few promising
examples have been presented, with the most notable resulting from the work of Erzen et al. [2], where
improvements were observed over the otherwise conventional propeller. Conversely, it has been shown
by Barnes [7–9], Sinnige et al. [1], Goyal et al. [10], and Binder et al. [12] that due to a vastly different
loading on the blades between the two modes of operation, a conventional propeller design will encounter
detrimental effects of separation and other losses during energy-harvesting, therefore implying that a
new propeller design should be proposed. This also has been found to result in noticeable inaccuracies
between the low-fidelity methods that are normally used to evaluate propeller performance in comparison
to experimental data [10]. Finally, important trends associated with the blade collective pitch angle have
also been identified by Nederlof et al. [13], indicating that blades of a dual-role propeller may benefit from
being able to change their pitch setting during different flight phases.

1.2. PROPELLER AEROELASTICITY AND AEROELASTIC TAILORING
Shirk et al. [14] provided a historical background and motivation for the general use of aeroelastic tailoring
for various applications. The authors also performed trend studies and discussed applications of this
approach, both for yielding performance improvements and decreasing weight. Shirk et al. primarily
discussed the advantages of this approach towards the design of aircraft wings, although they also
highlighted the patent of Munk [15], involving the concept of a wooden propeller blade with diagonal plies
that will twist favourably for improved performance with increasing load. A similar patent application
was placed in 2015 by Wood and Ramakrishnan [16], with General Electric, for an open-rotor concept,
which has composite blades that will deform favourably under increasing load to yield decreases in noise.

Several studies on the design of flexible propellers or wind turbines for improved performance in their
normal operating modes were performed following the published works of Munk and Shirk et al.. For
example, the earliest use of aeroelastic tailoring for the design of composite propellers appears to have been
undertaken by Dwyer and Rogers [17], who used a BEM code to investigate differences in performance
between rigid and flexible blades. The authors modified individual ply orientations to yield a coupling
between the centrifugal force and shear strain, although they found that the blade mass was too small
to yield large enough centrifugal forces to provide a desirable amount of twist. The authors solved this
problem by including concentrated masses at several spanwise positions. A maximum improvement of
5% was found at on-design conditions, with a 20% gain at off-design conditions for a fixed-pitch propeller.
For a variable-pitch propeller, the authors found an improvement of at-most 5%. Nevertheless, it is
unclear whether Dwyer and Rogers made any attempt to improve efficiency without affecting the thrust
coefficient, as was successfully attempted in other research that is presented in this section. Indeed, it is
also necessary to prevent the thrust coefficient from deceasing when modifying a baseline propeller to
maintain its original capabilities. Even if the authors did not consider this, their work demonstrates that
propeller performance may be noticeably influenced by aeroelastic tailoring.

Years later, Yamamoto and August performed a two-way coupled structural and aerodynamic analysis
of a large advanced propeller blade in [18] using the NASTRAN finite element analysis software for the
structure and a 3D finite-difference Euler solver for the aerodynamics. The structure was discretized using
shell elements, and a nonlinear finite-element solver was used to iteratively compute deformations, which
affect aerodynamic loads. This process would be repeated until convergence. The authors demonstrated
that the centrifugal loads will always untwist the blade, whereas the aerodynamic loads can either
increase or decrease the amount of twist of each propeller blade. This was also observed by Sodja et al. [3].
Yamamoto and August also suggested that the centrifugal loads produced most of the total deformations
affecting performance, although this may be configuration-dependent.

Chattopadhyay et al. later used blade element momentum theory and the finite element method
(treating the blade as a composite box-beam) to optimize the design of a prop-rotor for maximum cruise
efficiency and hover figure of merit [19]. They formulated a multi-level optimization problem, which used
nonlinear programming for the continuous design variables (including the rotor geometry) to maximize
aerodynamic performance, and integer programming for the discrete design variables (including ply
orientations and thicknesses). This work is mostly not relevant to the current project, firstly because the
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authors focused on maximizing the hover figure of merit, which is of course not relevant to propellers.
Additionally, they did not use aeroelastic tailoring to improve performance, and instead relied purely on
aerodynamic optimization for this, with aeroelastic tailoring only being applied to minimize deformations.
Thus, the optimization results cannot be used to indicate the potential for improvements to be made, and
the optimization method that was applied in this work has not been considered anyway.

Around a decade after the work of Chattopadhyay et al., a different methodology from theirs was
applied by Sandak and Rosen [20] to design a flexible propeller with improved performance. Instead of
using a fully flexible blade, the authors designed a rigid blade with a flexible element in the root section.
The nonlinear torsion spring element reacts to varying loads at different operating conditions to change the
collective pitch angle of the propeller. The authors mainly intended on using this to improve performance
at problematic flight regimes (such as during take-off, initial climb, or low-speed flight). To accomplish this,
a multi-objective optimization procedure was applied to maximize the weighted efficiency in different flight
regimes, with design variables being the spring constants. It was found that straight blades exhibit a small
torsional moment, and therefore the spring deformation depends primarily on bending deformations in
these cases [20]. Additionally, the authors were successful in exploiting the geometric bend-twist coupling
that results from a backward sweep angle. Overall, a potential improvement in efficiency between 7
and 17% was observed. Though, this is dependent on the propeller blade geometry as well as chosen
weight functions. Moreover, the physical implementation of their root spring model was not investigated
in this work, and therefore these numbers may not be realistic in practical applications. Nevertheless, it
was suggested in the authors’ conclusion that the non-physical torsion spring model may be physically
realizable using anisotropic composite materials.

Sodja et al. [3] continued the work of Sandak and Rosen through the development of an optimization
procedure for the geometric design of a flexible propeller made from an isotropic material, with design
variables corresponding to the blade axis geometry. The work of Sodja et al. consisted of aerodynamic
optimization, allowable stress design, and blade-axis optimization. The authors used a BEM model for
the aerodynamics, and the finite element method based on Euler-Bernoulli beam theory and Saint-Venant
theory of torsion for the structure. The authors’ optimizer minimized the curvature of the efficiency vs.
advance ratio curve and maximized efficiency at on-design conditions. This framework was selected to
yield designs with maximum on- and off-design efficiency. It was found that the deformation of the blade
is heavily affected by the sweep angle, as the aerodynamic loads tended to deform the forward-swept (FB)
blade opposite to the direction of rotation and away from the propeller plane, with the opposite effect
occurring for the blade with zero or backward sweep [3]. The inertial forces always deformed the blade
towards the propeller plane. The result of this is that for propulsive operation, forward-swept blades
exhibit an unfavourable wash-in effect that results in a relatively narrow range of advance ratios of high
propulsive efficiency [3]. Backward-swept blades (BB) conversely have a favourable deformation with
increasing freestream velocity and constant speed [3]. As the load increases, the bend-twist coupling
results in a wash-out effect that maximizes off-design propulsive efficiency. Thus, Sodja et al. demonstrated
the potential to increase on- and off-design efficiency of fixed-pitch propellers by introducing bend-twist
coupling through blade-axis flexibility. The authors also successfully validated their findings through the
collection of experimental data. The propeller blades under investigation are shown in Figure 1.9 to clarify
the authors’ valuable physical insights.

(a) BB. (b) SB. (c) FB. (d) Manufactured blades.

Figure 1.9: Pictures of the modelled and physical propeller blades analysed by Sodja et al. [3, 21].
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A different approach toward the design of a propeller blade with the ability to passively deform under
aerodynamic loads was applied by Heinzen et al. [22]. In this work, rather than using a flexible material,
the propeller blades were allowed to pivot freely about their radial axis, and the aerodynamic design of the
blades were conducted so that their pitching moments would be balanced at collective pitch angles that
yield favourable performance. The authors used variations in blade pivot point and sweep angle to control
the blade’s static margin over a range of operating conditions. Flexible propeller blades have a fixed pitch
angle, and their geometry or structure result in perturbations of the elastic axis or twist angle to yield
improvements in performance at applicable operating conditions.

Most recently, Möhren et al. developed a static aeroelastic analysis procedure for propellers, which
couples a finite element structural model to a blade-element momentum theory aerodynamic model. The
authors used their model to evaluate the performance of flexible propellers during propulsive conditions, to
characterize the importance of elastic effects on propeller performance. In particular, the thrust evaluated
with rigid propellers was compared to the thrust evaluated with flexible propellers. Möhren et al. found
that blade elasticity had the largest effect on performance in cases of low disk loading. Moreover, propellers
with a large diameter or a high amount of sweep were found to be most impacted by aeroelastic effects.

In addition to the journal publications that have been previously presented, multiple PhD theses have
also been produced on the aeroelastic tailoring of propeller or wind turbine blades for yielding performance
improvements. The earliest work was done by Khan [4], who developed a coupled propeller aerodynamic
and structural analysis framework and applied it towards the structural design of a flexible composite
propeller in [4]. The aerodynamic model is an application of blade element momentum theory and the
structural model is an application of the finite element method, where the propeller was represented by a
single laminate of five plies. The ply orientations were adjusted to yield increases in the thrust coefficient,
CT , and propulsive efficiency, ηP, and decreases in the power coefficient, CP . The same methodology was
used to characterize the effect of bend-twist coupling on propeller performance in a subsequent paper
published by Khan et al. [24]. In both works, it was shown that it is possible to yield noticeable increases
or decreases in the thrust coefficient, power coefficient, and efficiency over a wide range of advance ratio
values through modifications of only the ply orientations of a flexible composite propeller with a constant
geometry. Moreover, Khan was notably successful in improving on-design efficiency while maintaining the
baseline thrust coefficient, and generally was able to obtain significant changes in performance through
the introduction of bend-twist coupling. In the work of Khan et al. [4, 24] and Chattopadhyay et al. [19],
only symmetric stacking sequences were considered to simplify the calculation procedure and to eliminate
any elongation coupling, unlike the previous work of Dwyer and Rogers [17].

Two notable PhD theses were produced at the TU Delft on aeroelastic tailoring of flexible wind turbine
blades: first in 2016 by Ferede [25], and then in 2019 by Hegberg [26]. In the thesis of Ferede, an
optimization procedure is developed to minimize the blade mass of stall-controlled wind turbines through
modifications of the blade geometry and ply orientations. Lamination parameters were also used to
ensure that all structural design variables are continuous. The aerodynamic loads are evaluated using
blade element momentum theory and the deformations are evaluated using the nonlinear Timoshenko
beam model. The purpose of this work was to present a stiffness optimization methodology, and this
notably resulted in a considerable mass decrease. The work of Ferede also highlights the benefit of using
unbalanced laminates, as the presence of extension-shear and bend-twist coupling was exploited to yield
performance improvements. This finding was also demonstrated by Ferede et al. [27] in the following
year. The more recent work of Hegberg concerns the design of pitch-regulated wind turbines. In this
case, the aerodynamic loads were instead evaluated using an inviscid vortex lattice method with mutually
interfering spanwise and chordwise vortex panels, and a prescribed cylindrical wake. The aerodynamic
model is considered to have an equal fidelity to the structural model, which is similar to the model that
was used by Ferede. Lamination parameters were again used to allow for a gradient-based optimization,
and the objective function in this case is to minimize the blade mass when subjected to two separate load
cases: one to represent typical wind loads and another to represent extreme wind shear. A noticeable
decrease in blade mass was observed from the optimization procedure.

Static aeroelastic analysis procedures for propellers have been developed and applied by other re-
searchers, including Möhren et al. [23] and Gur and Rosen [28]. At the TU Delft, the static aeroelastic
analysis program, PROTEUS, was developed by Werter and De Breuker [29] and applied towards the
conceptual design of aircraft wings in [30, 31] and wind turbine blades in [26, 27]. The structural model
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of PROTEUS is similar to the method applied in [23], as both models apply the finite-element method
to solve deformations on a reduced-order Timoshenko beam element mesh, which is obtained from the
3D blade structural geometry using a cross-sectional modeller. During this project, PROTEUS has been
modified to be applicable to propellers through the use of a BEM model for the aerodynamics and a change
in the optimization problem to improve propeller performance rather than to minimize weight.

The presented state-of-the-art review shows several promising examples regarding the application of
aeroelastic tailoring. It is apparent that aeroelastic tailoring has received attention from both industrial
and academic parties. Moreover, when applied towards the design of propellers, aeroelastic tailoring
has largely been used towards the improvement of performance in propulsive conditions (increasing
efficiency or thrust over a range of applicable advance ratios). However, aeroelastic tailoring has not been
applied towards improving the regenerative performance (increasing the energy-harvesting or turbine
efficiency) of a propeller. This research gap has been addressed by this thesis through the development
and application of a novel propeller design framework that considers effects of static aeroelasticity. This
research builds upon the work of Sodja et al. [3, 21] and Khan et al. [4, 24] by providing physical insights
into effects on regenerative or propulsive performance through variations in structural design variables
and geometric parameters (including the blade axis geometry and blade stiffness properties). This has
been accomplished using an analysis method that is similar to the method of [23] and an optimization
procedure that is similar to [4, 26]. In this way, propeller performance in propulsive conditions is not being
improved directly. Instead, the goal of this work is to address suggestions made in [6, 7, 32] to design a
propeller that minimizes mission energy by providing a compromise between performance in propulsive
and regenerative modes. This distinction is what separates this work from previous research.

1.3. RESEARCH OBJECTIVES AND QUESTIONS
From the discussion that was provided above, the following observations were made:
• Conventional aerodynamic models used to evaluate propeller performance should be modified to ac-

count for effects resulting from blade rotation and flow separation. These effects are known to cause
conventional propellers to underperform significantly during energy-harvesting conditions.

• Loads encountered by the propeller during regenerative operation are opposite to the loads encountered
during propulsive operation, and therefore the ideal aerodynamic design of a dual-role propeller may be
profoundly different from that of a conventional propeller.

• Aeroelastic tailoring has the potential to yield noticeable changes in propeller performance, particularly
due to effects of bend-twist or extension-shear coupling.

− Most research concerning propeller aeroelastic tailoring aims at improving efficiency in propulsive
mode, and aeroelastic tailoring has not been applied towards the design of dual-role propellers.

− Propulsive efficiency of a propeller is generally improved through modifications in the structural
design by introducing a wash-out effect, as this will primarily result in deformations that decrease the
blade angle of attack with increasing blade loading (and vice versa). This might also delay separation.

− It may be interesting to exploit synergies between geometric parameters and structural design
variables, as effects of bend-twist coupling were notably amplified in cases involving propeller blades
that have either large diameters or large amounts of sweep. The diameter and sweep have been held
constant during this research to solely assess the influence of aeroelastic tailoring on performance.

− It was found by Möhren et al. [23] that the effect of blade elasticity increases for a decreasing stiffness
or increasing blade loading. This suggests that it may be possible to yield notable improvements in
performance during the propulsive mode, which is characterized by a high blade loading (particularly
during climb). Conversely, this suggests that the effect of aeroelastic tailoring may not be as noticeable
during the descent, where the loading encountered by the blade is significantly lower.

− Only one example has been found (from Dwyer and Rogers [17]) involving the application of extension-
twist coupling, through the use of a non-zero BBB-matrix, to yield twist deformations that are dependent
on centrifugal loads. For this case, concentrated masses needed to be added near the middle and
tip of the blade so that performance enhancements would be noticeable. For this reason, bend-twist
and extension-shear coupling, which primarily couple twist deformations to aerodynamic forces, are
expected to be the dominant mechanisms influencing propeller performance. Accordingly, balanced
laminates (with BBB =000) have been exclusively considered during this project.
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The above points have been applied during this research project to establish a reasonable project
scope and to formulate relevant research questions and objectives. Particular emphasis has been placed
on implementing an efficient aeroelastic analysis method that maintains a reasonable level of accuracy
and precision, as well as on formulating an optimization problem that appropriately includes both the
propulsive and regenerative operating conditions.

1.3.1. RESEARCH OBJECTIVES AND ASSOCIATED QUESTIONS
In previous research, comprehensive sensitivity studies involving variations in laminate properties
have not been performed. Moreover, aeroelastic tailoring of dual-role propellers has not previously been
considered, as all previous investigations focused on only the propulsive case. Thus, the first objective of this
research project is to study the behaviour and structural design trends of a flexible dual-role propeller of
constant geometry made from composite materials under static aerodynamic loads. A numerical aeroelastic
analysis and optimization procedure has been developed to perform sensitivity studies and optimization
of the flexible composite propeller. For the sensitivity studies, propeller performance quantities and
deformations were evaluated at varying ply orientations and laminate thicknesses over a range of operating
conditions characterizing propulsive and regenerative conditions. These results were used to identify
important structural design trends, as well as to compare how performance in propulsive mode differs from
performance in regenerative mode. During the optimization, a theoretical propeller structural design was
obtained that minimizes power consumption while maintaining an approximately equivalent thrust across
a fixed mission profile with a variable cruise distance. Both variable-pitch and constant-pitch propellers
were considered for the full mission optimization studies. Optimization studies were also performed for
each mission segment individually to compare with results from the full mission optimization. The results
obtained from the optimization procedure have been used to show the effectiveness of aeroelastic tailoring
when applied towards the design of propellers. Additionally, ideal structural design characteristics of
dual-role propellers were obtained using the structural blade designs obtained from the optimization
studies. Through these investigations, the extent that dual-role propeller performance may be enhanced
through the application of aeroelastic tailoring has been explicitly shown and favourable structural design
characteristics have been identified. Finally, off-design performance of each optimal blade design has been
evaluated through the collection of performance maps over a range of operating conditions characterizing
both the propulsive and the regenerative case. These results have been used to identify how the optimal
propeller blades generally perform. Corresponding to the research objectives discussed in this section, the
following research questions have been formulated and answered during this project.

(1) To what extent can further enhancements in dual-role propeller performance be obtained solely through
the application of aeroelastic tailoring?

(a) Which structural characteristics (i.e. material properties, ply orientations, and laminate thick-
nesses) have an important influence on dual-role propeller performance, and how are performance
quantities and deformations affected by variations in these structural characteristics?

(b) How do structural modifications in favour of improving performance during propulsive operation
affect performance during regenerative operation?

(2) How does the application of aeroelastic tailoring impact overall energy consumption over a generic
climb-cruise-descent mission profile for constant-pitch or variable-pitch dual-role propellers?

(a) How does the blade structure that is optimized for each individual mission segment differ from the
blade structure that is optimized for a mission with a variable cruise distance?

(b) How do energy consumption results from optimization studies involving each individual mission
segment compare with results from optimization studies involving the full mission?

(c) How do the optimal propeller blade designs perform over a range of operating conditions that may
otherwise not be considered during the optimization studies?

This research project is expected to build upon the work of Sodja et al. [3, 21] and Khan et al. [4, 24]
by providing physical insights into effects on regenerative or propulsive performance through variations
in structural parameters, as previous work considered either only the structural design of propellers for
propulsive operation or the geometric design of flexible propellers. Thus, the goal of this work is to address
suggestions made in [6, 7, 32] to design a propeller that provides a compromise between performance in
propulsive and regenerative modes through the implementation of the modern technique of aeroelastic
tailoring. This distinction is what separates the work that is planned for this thesis from the existing body
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of knowledge. A similar investigation to the one that has been applied during this project was also applied
by Ferede [25] and Hegberg [26] for the design of wind turbine blades.

The discussed objectives have been realized through the application of a similar structural analysis
method to Möhren et al. [23] and Hegberg [26], integrated within a gradient-based optimization framework.
The objective function of the optimization problem involves maximizing propeller performance during
both propulsive and regenerative operation. Classical laminated plate theory has been used to represent
the composite structure (like the work of [4, 17, 25, 26]) and a geometrically nonlinear beam model has
been used to evaluate blade deformations (similar to the work of [3, 21, 25, 26]). Furthermore, structural
properties of each laminate have been represented using lamination parameters, as was done in [25, 26],
so all design variables remain continuous. Moreover, as indicated in [1, 10, 13], the aerodynamic loads are
strongly affected by flow separation, and it is therefore necessary that the selected aerodynamic model can
account for these effects. Thus, a blade-element momentum theory model with corrections for rotational
effects has been used to evaluate loads, similar to the model that was applied by Goyal et al. [10].

1.4. THESIS SCOPE AND OUTLINE
A comprehensive review of literature on the relevant disciplines concerning this research project was
completed as a separate project before beginning any work for this thesis. The contents of this literature
study are provided in Appendix B for reference. The past research that was reviewed covered aerodynamic,
structural, and aeroelastic analysis methods for propellers, as well as relevant optimization strategies.
Some information provided in this literature study may extend beyond the scope of this thesis, although
the research that was compiled and critically reviewed has been used to establish the scope for this
work, as well as to motivate decisions made concerning the methodologies, assumptions, and formulations
applied during this project. Decisions made using results from the literature study are summarized below.

The aeroelastic analysis and optimization procedure under consideration during this project is a
modified version of PROTEUS, which was previously developed and applied at the TU Delft towards
the conceptual design of aircraft wings in [30, 31] and wind turbine blades in [26, 27]. PROTEUS has
been selected for this project because it already features many of the modelling characteristics of interest,
including the capability to account for nonlinearities in geometry and loading, as well as a very low
computational requirement despite providing a medium to high level of fidelity. The structural model of
PROTEUS is similar to the method applied by Möhren et al. [23], as both models apply the finite-element
method to solve deformations on a reduced-order 1D Timoshenko beam element mesh, which is obtained
from the 3D blade structural geometry using a cross-sectional modeller. The difference between the two
approaches is that PROTEUS accounts for geometric nonlinearities due to large beam deformations, as
well as nonlinear structural responses to loads (such as the centrifugal-stiffening effect). Modifications to
PROTEUS were made to account for the aerodynamics of propellers through the use of a BEM model, the
inclusion of centrifugal forces in the structural model, and the implementation of a suitable optimization
problem that features an appropriate objective and constraint function. Blade element momentum theory
was selected because it provides a sufficient level of precision and has the lowest computational cost,
making it ideal for optimization. The effect of rotation on fluid particles in the boundary layer has been
accounted for through the use of the RFOIL during the collection of airfoil polar data because it is the
only physics-informed stall-delay model that was identified from the literature. Finally, a two-way coupled
aeroelastic solver is required to couple the aerodynamic and structural models from different tools, as
the structural deformations must influence the aerodynamic loads to allow the optimization to proceed.
For this, a tightly coupled approach has been applied, like the method implemented by Ferede [25] and
Hegberg [26]. This method was selected because it is robust and guarantees fast convergence.

The TUD-XPROP-3 was used as the baseline propeller for both optimization and verification/validation
out of convenience. This propeller was selected for verification and validation of the aerodynamic and
aeroelastic analyses because numerical and experimental results for it exist in both propulsive and
regenerative modes from Goyal et al. [10] and Nederlof et al. [13]. For the optimization problem, the
power consumption was minimized whilst maintaining thrust requirements in both propulsive and
regenerative conditions. Constraints have also been applied to ensure that strains, deformations, and
power consumption values do not exceed the maximum allowable values, similar to the approach of
Sodja et al. [3]. Finally, to account for both propulsive and regenerative operating conditions, a weighted
multi-objective optimization procedure was applied through the evaluation of approximate total energy
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consumption in a generic climb-cruise-descent mission with a varying cruise distance, like the work of van
Neerven [33], and Scholtens [34]. This ensures that the optimizer appropriately accounts for all relevant
operating conditions of the propeller, with weighting factors that are assigned based on the mission profile
of interest. Both constant-pitch and variable-pitch propellers were investigated to provide a complete
picture of the effects of aeroelastic tailoring. For optimization, previous researchers have parametrized
the propeller blade structure using a combination of discrete and continuous variables to represent the
distribution of laminates, although more recent developments have been made towards the derivation of
so-called lamination parameters, which enable the design space to be represented by a fixed number of
continuous design variables. As a result, the use of lamination parameters enables the application of a
gradient-based optimization procedure, and thus they have been selected as structural design variables.

When designing a dual-role propeller for an aircraft, it is ideal to consider structural and geometric
design variables, the mission strategy, electrical system design, and overall aircraft design. For this
project, only the uninstalled propeller has been considered and aerodynamic optimization of the propeller
has not been applied before the structural optimization, as the propeller under consideration throughout
most of this work represents the geometry of a previous-generation aircraft propeller. Nevertheless,
applying an aerodynamic optimization before the structural optimization to yield a rigid blade geometry
that maximizes performance may have yielded more realistic conclusions to the research objectives. It
also would have been beneficial to consider the concurrent application of aerodynamic and structural
optimization, considering both geometric and structural design variables, to yield an optimal flexible blade
design with greater performance than what would otherwise be obtained through aeroelastic optimization
alone. This investigation would even enable the direct comparison between performance enhancements
obtained through aerodynamic optimization and aeroelastic optimization alone, which could provide
insight into how the less-conventional approach of aeroelastic tailoring compares to the more traditional
approach of aerodynamic optimization. The mission strategy under consideration during this project has
also remained fixed, and the electrical system has not been considered. Thus, the mission profile and
operating conditions considered in each segment have been held constant during the analysis. As discussed
already, a generic climb-cruise-descent mission strategy has been assumed during the optimization, with
varying cruise distances. In this way, coupling between aircraft design, aircraft mission, and propeller
performance has been ignored during this thesis, as the mission analysis has only been used to quantify
the relative importance of differing propeller operating conditions. Lastly, only structural design variables
have been included during the optimization study, while the blade geometry has remained constant.

This thesis has six chapters, including its introduction. Details on the underlying theory and formu-
lations used for the aerodynamic, structural, and aeroelastic analyses are first provided in Chapter 2.
Chapter 3 subsequently contains the formulation used for the optimization problem under consideration, as
well as an overview of the design study that was completed. Next, results from verification and validation
of the aerodynamic, structural, and aeroelastic analysis methods that were applied during this project
have been provided in Chapter 4. Chapter 5 then contains results and discussions from sensitivity studies
and optimization cases, which were used to address the research objectives and answer the research
questions for this thesis. Lastly, Chapter 6 contains conclusions from this work, answers to the research
questions, and a list of future recommendations.



2
PROPELLER ANALYSIS METHODS

Underlying theory on the propeller analysis routines that were applied during this project are summarized
in this chapter. Section 2.1 contains details on the aerodynamic analysis routine that was applied, Sec-
tion 2.2 contains an overview of the structural model that was used, and Section 2.3 contains information
on the nonlinear aeroelastic analysis procedure that was applied. An overall summary of the propeller
analysis routine that was developed is lastly provided in Section 2.4.

2.1. BLADE ELEMENT MOMENTUM THEORY
During this project, a blade element momentum (BEM) model has been used to evaluate propeller
performance. The advantage of this approach is that it has a very low computational cost, while also being
capable of accounting for all aerodynamic phenomena of interest when appropriate corrections are applied.
Most BEM codes rely on the same assumptions and underlying theory, with a few minor differences in the
engineering correction models that are included. With blade element momentum theory, the propeller
blade aerodynamic loads are evaluated iteratively using both momentum theory and blade element theory,
correcting the axial and tangential induced velocities until the loads evaluated with momentum theory
are equal to the loads obtained from blade element theory. Thus, the 3D characteristic of the propeller
flowfield is decomposed into a 1D conservation of momentum and 2D sectional aerodynamics. The BEM
formulation that was applied during this research is based on the theory of Adkins and Liebeck [35].

2.1.1. MOMENTUM THEORY
With momentum theory, the thrust and torque distributions acting on each propeller blade are evaluated
through a conservation of momentum. Diagrams of the control volume for a propeller in propulsive and
regenerative conditions are shown in Figure 2.1. Momentum is added to the flow during positive thrust
conditions, which causes the streamtube to contract in the direction of positive velocity, with the axial
velocity at the propeller plane being V∞+vi and the axial velocity far downstream being V∞+vw.

(a) Propulsive mode. (b) Regenerative mode.

Figure 2.1: Control volumes used during the analysis with actuator disk theory (adapted from [36]).

13
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Because the induced velocity components at each radial position of the propeller blade are different,
the control volume pictured above is discretized into several annuli, with each annulus corresponding to a
unique blade element. By applying a conservation of momentum through each annulus, the differential
thrust and torque that is imparted onto the flow by the propeller can be evaluated. Diagrams of the
annular control volumes at the rotor disk are shown in Figure 2.2.

(a) Front view. (b) Sectional view.

Figure 2.2: Annulus of the propeller disk, which is used for the momentum analysis [37].

By evaluating the differential thrust and torque through each annulus of the control volume, the total
thrust and torque has been evaluated using the following integral. The thrust and torque coefficients in this
case are obtained through a normalization by the freestream dynamic pressure, q∞. This normalization is
not usually applied for the analysis of propellers, although this convention has been applied during this
work because it yields a result that is more compatible with blade element theory.

T =
∫ rtip

rroot

Ct

(
1
2
ρ∞ V 2

∞
)
2π r dr=

∫ rtip

rroot

Ct q∞ 2π r dr (2.1)

Q =
∫ rtip

rroot

Cq · r
(

1
2
ρ∞ V 2

∞
)
2π r dr=

∫ rtip

rroot

Cq q∞ 2π r2 dr (2.2)

One important drawback of this approach is that the mutual interference between blade elements and
annular control volumes is not accounted for [38]. This means that 3D effects are generally not accounted
for by BEM models unless engineering correction models are applied. In addition, it is assumed during this
formulation that the flow encountered by the propeller is axisymmetric and steady, and the static pressure
far upstream is approximately equal to the static pressure far downstream. With these assumptions, the
thrust and torque coefficients are evaluated using Equation (2.3) and Equation (2.4), neglecting any losses
in circulation due to effects associated with the propeller’s finite number of blades [35].

Ct (r)= 4 a (1+a) (2.3)

Cq (r)= 4 a′ (1+a)
ωr
V∞

(2.4)

CORRECTIONS FOR ROOT- AND TIP-LOSSES

Equation (2.3) and Equation (2.4) both do not account for the fact that circulation decreases near the
root and tip of each propeller blade. Indeed, when the chord at these locations is finite, blade element
momentum theory will produce a non-zero lift when it should instead be zero. This loss of lift at the tip of
the rotor is important and if it is neglected, then the thrust for a given amount of power will be noticeably
overestimated [36, 37]. Various approaches to modelling this effect exist, although the simple analytical
expression that was developed by Prandtl (see [39]) has been selected for this project.
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F = Froot ·Ftip (2.7)
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A closed-form expression for the optimal circulation distribution over a lightly loaded propeller blade
was developed by Goldstein [40]. The so-called Prandtl tip-loss factor, shown in Equation (2.7), provides a
reasonable approximation to this exact solution, which improves as the number of blades increases, as
indicated by sample plots of the circulation distribution shown in Figure 2.3. For this project, it is only
important that the characteristic of losses near the blade tips is represented accurately, and therefore the
Prandtl tip-loss factor was applied instead of the method of Goldstein.

(a) Number of blades: 2 (b) Number of blades: 4

Figure 2.3: Ideal radial distributions of circulation for propellers with different tip-speed-ratios, λ2
(dashed lines are the Prandtl approximation and solid lines are the exact solution of Goldstein) [41].

LARGE NEGATIVE INDUCTION FACTORS

Because the axial induction factor can either be positive (in propulsive conditions) or negative (in regener-
ative mode), it is important to consider circumstances where the value of the induction factor is large and
negative. Because the velocity in the propeller wake is expressed by V∞ (1+2a), if a drops below -0.5, then
the flow far downstream would reverse directions. This flow reversal is non-physical, as the actual flow
entrains momentum from outside the wake and turbulence increases [42].

Several methods have been developed to correct for this, which are usually based on a quadratic fit to
empirical results. For example, Glauert [5] defined a parabolic curve, given by Equation (2.8).

Ct =−0.889+ 0.0203− (0.143+a)2

0.6427
−0.4> a >−1.0 (2.8)

Modifications to this expression have been proposed by several others, including Burton et al. [43] and
Buhl [44]. These expressions are shown respectively in Equation (2.9) and Equation (2.10).

Ct = 1.39(1+a)−1.816 −0.326> a >−1.0 (2.9)

Ct =
(
4F − 50

9

)
a2 +

(
4F − 40

9

)
a− 8

9
−0.4> a >−1.0 (2.10)

All three of the above expressions were originally developed to correct the overall thrust coefficient
through the propeller disk [5]. However, the thrust coefficient associated with each annulus of the rotor
disk needs to be corrected for applications involving BEM. It is therefore possible that none of the three
proposed expressions realistically represent the thrust coefficient distribution at large negative induction
factors. However, because the axial induction factor typically only falls below −0.35 at the root and
tip sections of each blade, this correction is expected to have a negligible influence on the overall loads
and performance. During this work, this correction has therefore primarily been applied to maintain
consistency (preventing a non-physical flow reversal). As shown in Figure 2.4, the expression that was
proposed by Buhl [44] maintains continuity with the curve that is generated by momentum theory when
corrections for root and tip losses are applied, while the other two equations yield a gap in the predicted
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thrust after applying the tip-loss factor to the original momentum equation because they do not explicitly
account for losses in circulation near the root and tip of the blade.

(a) F = 1.00 (b) F = 0.90

Figure 2.4: A comparison between theoretical thrust coefficient expressions at with and without the
Prandtl tip-loss factor, also compared with experimental results (collected by Lock et al. [45]) for the total

thrust coefficient produced by an airscrew in negative thrust conditions.

Because wake-mixing occurs at large negative induction factors, the helicoidal vortex structure does
not exist, meaning that the Prandtl tip loss factor may no longer be valid. However, because the blades
have a finite span, there must be zero circulation at the root and tip, and thus corrections for this loss in
circulation are still required. Several authors continue to multiply the total thrust by the Prandtl tip loss
factor in these conditions for convenience [43]. This method will be applied during this project (rather
than applying the expression proposed by Buhl [44]), thus ensuring that the aerodynamic loads vanish
around the root and tip of the blade. Accordingly, Equation (2.9), which was proposed by Burton et al. [43],
has been applied throughout this project because it appears to fit the experimental data best.

COMPLETE MOMENTUM THEORY EQUATIONS

Combining everything shown above, the following assumptions have been applied for the momentum
theory concerning this project. This is consistent with most implementations of BEM theory.
• The propeller rotor is represented as an actuator disk with a finite number of blades, and the entire

control volume surrounding the streamtube of the propeller is divided into several annular control
volumes, each corresponding to a unique rotor blade section

− There is no aerodynamic interaction between neighbouring annular control volumes
− The flow velocity and static pressure are uniform within each annulus

• The loss in circulation near the root and tip of each blade is represented by the Prandtl tip-loss factor

• The static pressure values far upstream and far downstream are both uniform and ambient

− The swirl that is generated by the rotor negligibly influences the pressure distribution

• The flow through each annular control volume is inviscid, incompressible, and irrotational

• The flow that enters the propeller streamtube far upstream is purely axial and uniform

• The turbulent wake state is assumed to occur at axial induction factors below −0.326, and the Prandtl
tip-loss factor is still applied in this condition

From these assumptions, expressions for the thrust and torque coefficients are shown below.

CM
t =

{
4 a (1+a)F a ≥−0.326
(1.39(1+a)−1.816)F a <−0.326

(2.11)

CM
q = 4 a′ (1+a)

ωr
V∞

F (2.12)

Figure 2.5 contains notional diagrams of the thrust and torque coefficients for varying axial or
tangential induction factor values. In both cases, the magnitude of the thrust and torque scales with the
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tip-loss factor, although this has only been indicated within the plot of the thrust coefficient. In the plot of
the torque coefficient, (ωr/V∞)F was set equal to 1, as this term does not affect the general trends.

(a) Ct vs. a for varying tip loss factor values. (b) Cq vs. (a,a′), with (ωr/V∞)F = 1.

Figure 2.5: Plots of the thrust and torque coefficients as functions of the induction factors.

2.1.2. BLADE ELEMENT THEORY

The thrust and torque cannot be evaluated with momentum theory alone because the inductions factors
are not known a priori. Thus, blade element theory must also be applied to allow for the induction factors
to be iteratively evaluated. With blade element theory, the propeller blade is discretized into several blade
elements, and the thrust and torque that acts on each blade element is evaluated using lift and drag polar
plots. Figure 2.6 contains a schematic diagram of a propeller blade element, with the local flow velocity
components, aerodynamic loads, and flow angles indicated.

β

dT

dQ

dL

dD

V∞	(1+a)

ωr(1‒a')

φ
α

Figure 2.6: A diagram of a propeller blade element with associated aerodynamic loads.

The main assumptions concerning blade element theory are provided below.

• Each blade of the propeller is divided into several sections, with each section corresponding to an annular
control volume from momentum theory

− Each blade encounters identical aerodynamic loads (uniform inflow)
− There is no aerodynamic interaction between neighbouring blade elements

• Two-dimensional forces are evaluated at each blade section using lift and drag polar plots

− Lift and drag polar data is evaluated numerically using a modified version of XFOIL called RFOIL,
which is capable of accounting for rotational effects that stabilize the boundary layer to delay the
onset of flow separation and decrease drag

− Compressibility effects are accounted for using the well-known Prandtl-Glauert transformation

https://web.mit.edu/drela/Public/web/xfoil/
https://www.esru.strath.ac.uk//EandE/Web_sites/09-10/MCT/html/Technical/rfoil.html
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The following equations are used to evaluate thrust and torque at each blade element.

dT = 1
2
ρ∞ V 2 c Cz Nb dr (2.13)

dQ = 1
2
ρ∞ V 2 c Cx Nb r dr (2.14)

The force coefficients, Cz and Cx, are evaluated using the transformation shown in Equation (2.15).
Additionally, expressions for the resultant flow velocity, V , and angles (ϕ, α) are easily discerned from
Figure 2.6 and provided in Equation (2.16). With these expressions, all terms required for calculating the
differential thrust and torque acting on a blade element are known, except for the induction factors.[
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]
=

[
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(
ϕ

) −sin
(
ϕ

)
sin

(
ϕ

)
cos

(
ϕ

) ][
Cl (α,Re,Ma)
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]
(2.15)

V =
√

(V∞ (1+a))2 + (ω r (1−a′))2 tan
(
ϕ

)= V∞ (1+a)
ω r (1−a′)

α=β−ϕ (2.16)

The thrust and torque coefficients for each blade element are provided below in Equation (2.17) and
Equation (2.18) after normalizing by the freestream dynamic pressure and annular cross-section:

CBE
t = dT

q∞ 2π r dr
= Cz σ(r)

(
V

V∞

)2
(2.17)

CBE
q = dQ

q∞ 2π r2 dr
= Cxσ(r)

(
V

V∞

)2
(2.18)

where the local solidity is defined by σ(r)= (Nb c) / (2π r).

2.1.3. CALCULATING PROPELLER PERFORMANCE
The BEM code that was used during this project was initially developed and applied by Goyal et al. for
the results that were presented in [10]. A modification was made to the iterative scheme, although the
underlying theory was not changed. In the present implementation, the induction factors are iteratively
evaluated using Newton’s method to minimize a residual vector,

¯
R, as shown below.

¯
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=
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A UML activity diagram has been provided in Figure 2.7 to indicate the BEM solution procedure.

Provide model inputs

  Air Properties
Temperature or altitude
Density
Dynamic viscosity
Speed of sound
Ideal gas constants

   
  Propeller Geometry

Chord and twist distribution
Number of blades

  Operating Conditions
Advance ratio or rotor speed
Freestream airspeed or Mach number
Pitch setting at reference span location

  Polar Plots
Lift coefficient
Drag coefficient
Moment coefficient

 

Interpolate geometry data
for each blade element

Provide initial values for axial and
azimuthal induction factors

Calculate two sets of thrust and torque
coefficients with blade element and momentum
theories; use this to obtain the residual vector

Update values of the induction factors
using Newton's method

Post-process resultsAre all residuals
below tolerance?

NO

YES

Powered By�Visual Paradigm Community Edition

Figure 2.7: A UML activity diagram of the aerodynamic analysis procedure.
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After solving the BEM equations, the total thrust and torque is evaluated by the solver using Equa-
tion (2.1) and Equation (2.2). It is then possible to evaluate the thrust, torque, and power coefficients using
Equation (2.19) and Equation (2.20). Usually, the thrust and power coefficients are normalized using the
freestream velocity and propeller disk area at the aircraft design level, as it is more convenient to use
these terms in discussions regarding propeller installation effects. Discussions during this work are for
isolated propellers only and thus remain at the blade-design level. For this reason, it is convenient to
normalize the thrust and power by an effective dynamic pressure that is defined using the rotation rate of
the propeller. The coefficients TC , QC , and PC are used to represent the performance of any type of rotor
that provides a thrust (such as a wind turbine), whereas the coefficients CT , CQ , and CP are exclusively
used for the evaluation of propeller performance. While PC represents the nondimensional shaft-power
of the propeller, TC represents the nondimensional thrust-power of the propeller. In this way, the thrust
coefficient, TC , accordingly represents the nondimensional average disc loading of the propeller.

TC = T
ρ∞ V 2∞ (2R)2

QC = Q
ρ∞ V 2∞ (2R)3

PC = P
ρ∞ V 3∞ (2R)2

(2.19)

CT = T
ρ∞ n2 (2R)4

CQ = Q
ρ∞ n2 (2R)5

CP = P
ρ∞ n3 (2R)5

(2.20)

Efficiencies in different operating conditions are evaluated using Equation (2.21). The usual propulsive
efficiency, ηP, is defined as the ratio between the thrust power and the shaft power; this must be maximized
to minimize fuel consumption in propulsive conditions. The energy-harvesting efficiency, ηeh, is defined to
characterize performance during regenerative mode, since it represents the ratio between the total power
extracted from the freestream and the total power available in the freestream. This efficiency is limited by
the Betz upper-limit of 59.3% and is usually used for the analysis of wind turbines [46]. This metric will be
used during this project to quantify the percentage of available power in the flow that is being recovered
by the propeller during energy harvesting conditions. Lastly, the turbine efficiency, ηT, was defined by
Glauert [39] as the inverse of the propeller efficiency [47]. This metric is useful for quantifying the ratio
between the extracted power and the power that is used to provide negative thrust.

ηP = η−1
T = V∞ T

P
= J CT

CP
= TC

PC
; ηeh = −P( 1

2ρ∞V 2∞
)( 1

4π (2R)2
)
V∞

= −8P
ρ∞π (2R)2 V 3∞

= −8PC

π
(2.21)

2.2. STRUCTURAL MODELLING
This section describes the main concepts that were applied to develop the structural model. A finite
element model was developed to perform the structural analysis of each blade under consideration, this
model receives inputs corresponding to the blade structural design (geometry, materials, laminate details)
and outputs deformations, stresses, and strains. The properties of each laminate of the propeller blade
are expressed in terms of lamination parameters, which are used to provide their corresponding {AAA,BBB,DDD}
matrices. The cross-sectional modelling approach of Ferede [25] was used to define the blade structure with
Timoshenko beam elements, while preserving the anisotropic properties of each laminate. The Timoshenko
beam elements are defined within the corotational framework that was formulated by De Breuker [48] to
account for nonlinearities that may be present due to large deformations or centrifugal forces. During
this project, the finite element model has only been applied to determine blade deformations, stresses,
and strains through a static structural analysis. Buckling was not analysed during this project, despite
being required during the design of aircraft wings and wind turbines. This is because the centrifugal loads
encountered by each blade are typically large enough to ensure that structural members are primarily
subjected to tensile loads. The minimal presence of compressive loads prevents bucking from occurring.
This assumption was proven to be valid for this project during the collection of results.

2.2.1. STRESS-STRAIN FORMULATION FOR COMPOSITE LAMINATES
Classical laminated plate theory is essential for providing a relationship between the stress resultants and
the local strains. Details concerning classical laminated plate theory have therefore been provided within
this section to indicate how the structural properties of each laminate are represented. The textbooks of
Kassapoglou [49], Agarwal et al. [50], Daniel and Ishai [51], Whitney [52], and Jones [53] were consulted
for general details concerning classical laminated plate theory, while the textbook of Tsai and Hahn [54]
was referenced for details regarding lamination parameters.
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It has been assumed that the blade structure is made entirely from pure fibre laminates, meaning that
laminates do not include a core material. Additionally, each ply that is used to construct a given laminate
is unidirectional and therefore orthotropic, and thus the stress-strain characteristics of the material are
uniform across three planes of symmetry that are orthogonal to the principal axes, as shown in Figure 2.8a.
Unidirectional laminae have one preferred axis. A laminated plate that is composed of several plies with
this characteristic is reasonably approximated as monotropic (since its height is usually small enough to
be neglected), which means that material properties are only invariant across the x̂1-x̂2 plane, as shown
in Figure 2.8b [49]. Coordinate systems for plies will be denoted as shown in Figure 2.8, with x̂1 being
aligned with the fibres, and the (x̃ , ỹ , z̃) axis being fixed for a given laminate, as shown in Figure 2.8b.

(a) Planes of symmetry for an orthotropic plate. (b) Planes of symmetry for a monotropic plate.

Figure 2.8: Diagrams of the coordinate systems used for plies (adapted from [55]).

The stress-strain relationship of an orthotropic ply is shown in Equation (2.22) within the (x̂1 , x̂2 , x̂3)
coordinate system. This equation relies on the plane stress assumption. The stress-strain relationship of
an orthotropic ply in the global (x̃ , ỹ , z̃) frame is given by Equation (2.23), where θ is the ply orientation
angle (equivalent to the clockwise angle between the x̃ and x̂1 axes).
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Subscripts 1, 2, and 3 are used to denote quantities in the local (x̂1 , x̂2 , x̂3) frame, and subscripts x, y,
and z are used to denote quantities in the global (x̃ , ỹ , z̃) frame.
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The two transformation matrices, T1T1T1 and T2T2T2, are defined to compute the stress-strain relationship
in coordinates that are rotated about the x̂3-axis by an angle of θ. The two transformation matrices are
required here because engineering notation is being used instead of tensor notation, and the engineering
shear strain is twice the tensor shear strain [49].

T1T1T1 =
 cos2(θ) sin2(θ) 2sin(θ)cos(θ)

sin2(θ) cos2(θ) −2sin(θ)cos(θ)

−sin(θ)cos(θ) sin(θ)cos(θ) cos2(θ)−sin2(θ)

 , T2T2T2 =
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
The unique stress-strain relationships of each ply within a given laminate are used to define the

stiffness tensor that relates plane forces and moments to plane strains and curvatures, as shown below.
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The (AAA , BBB , DDD) stiffness tensors are essential to classical laminated plate theory, as they couple stress
resultants (expressed as a force or moment per unit length) to local strains. The AAA matrix describes the
in-plane stiffness and the DDD matrix describes the out-of-plane stiffness. The BBB matrix is called the coupling
matrix because it couples the plane curvatures to plane forces, while also coupling the plane strains to
plane moments. Thus, a laminate with a non-zero BBB matrix can encounter curvatures due to extensional
forces. Figure 2.9 depicts the internal sign convention for a monotropic plate and the coordinates used to
index through plies of a laminate. Only symmetric laminates are considered, meaning that BBB =000.

(a) Coordinates for internal forces and moments. (b) Variables denoting layers of a laminate.

Figure 2.9: Diagrams of variables and coordinates describing a laminated plate (adapted from [51]).

Entries of the (AAA , BBB , DDD) stiffness tensors are given by the expressions shown in Equation (2.25).

A i j =
k=n∑
k=1

Q̄ i j (zk − zk−1) , Bi j =
k=n∑
k=1

Q̄ i j

2
(
z2

k − z2
k−1

)
, D i j =

k=n∑
k=1

Q̄ i j

3
(
z3

k − z3
k−1

)
(2.25)

2.2.2. LAMINATION PARAMETERS
As shown in the preceding section, the stiffness tensor for a laminated plate depends on the unique material
properties, thickness, and orientation of each lamina. Optimization problems that are defined with these
variables are usually highly nonlinear, non-convex, and prone to suffering from objective functions that
can have several local optimum values [56]. The main advantages of using these variables to define the
structure are that they all bear a straightforward physical meaning, and their use guarantees that the
structure is always physically realizable. Nevertheless, the optimization problem must be formulated as an
integer programming problem if the number of plies is not established a priori, as this is a discrete variable.
To enable the use of a gradient-based optimization procedure without any loss of generality, lamination
parameters were introduced by Tsai and Hahn [54] to allow the stiffness properties of a laminated plate
to be represented using a fixed number of variables that are defined within convex feasible regions [57].
For any laminate with an arbitrary number of plies of differing orientations, only 12 variables, shown in
Equation (2.26), are required to define its thickness-normalized stiffness properties completely. The main
drawback of this approach is that the lamination parameters do not bear any physical meaning.

ξA
[1 ,2 ,3 ,4] =

∫ 1/2

−1/2
[cos(2θ) , sin(2θ) , cos(4θ) , sin(4θ)]dz̄

ξB
[1 ,2 ,3 ,4] =

∫ 1/2

−1/2
[cos(2θ) , sin(2θ) , cos(4θ) , sin(4θ)] z̄dz̄

ξD
[1 ,2 ,3 ,4] =

∫ 1/2

−1/2
[cos(2θ) , sin(2θ) , cos(4θ) , sin(4θ)] z̄2dz̄


z̄ = z/h (2.26)

In this case, z refers to the continuous generalization of the discrete variable {zk}k=n
k=1 that is shown

in Figure 2.9b, and thus θ is dependent on z or z̄. The (AAA , BBB , DDD) stiffness tensors are obtained from the
lamination parameters using material stiffness invariants, which are defined using the QQQ matrix of each
ply from Equation (2.22). This is shown in Equation (2.27). Only 8 lamination parameters remain for
symmetric laminates. Research on the feasible regions for lamination parameters in addition to some
expressions for the boundaries considered during this project are provided in Appendix B.

Γ0Γ0Γ0 =
[

U1 U4 0
U4 U1 0
0 0 U5

]
, Γ1Γ1Γ1 =

[
U2 0 0
0 −U2 0
0 0 0

]
, Γ2Γ2Γ2 =

[
0 0 U2

0 0 U2

U2 U2 0

]
, Γ3Γ3Γ3 =

[
U3 −U3 0
−U3 U3 0

0 0 −U3

]
, Γ4Γ4Γ4 =

[
0 0 2U3

0 0 −2U3

2U3 −2U3 0

]
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U1 = 1
8

(3Q11 +3Q22 +2Q12 +4Q66)

U2 = 1
2

(Q11 −Q22)

U3 = 1
8

(Q11 +Q22 −2Q12 −4Q66)

U4 = 1
8

(Q11 +Q22 +6Q12 −4Q66)

U5 = 1
8

(Q11 +Q22 −2Q12 +4Q66)


AAA = h

(
Γ0Γ0Γ0 +Γ1Γ1Γ1ξ

A
1 +Γ2Γ2Γ2ξ

A
2 +Γ3Γ3Γ3ξ

A
3 +Γ4Γ4Γ4ξ

A
4

)
BBB = h2

4

(
Γ1Γ1Γ1ξ

B
1 +Γ2Γ2Γ2ξ

B
2 +Γ3Γ3Γ3ξ

B
3 +Γ4Γ4Γ4ξ

B
4

)
DDD = h3

12

(
Γ0Γ0Γ0 +Γ1Γ1Γ1ξ

D
1 +Γ2Γ2Γ2ξ

D
2 +Γ3Γ3Γ3ξ

D
3 +Γ4Γ4Γ4ξ

D
4

)


(2.27)

2.2.3. CROSS-SECTIONAL MODELLING
A generic propeller structural design is shown in Figure 2.10, according to Lis [58]. However, within the
research that was presented in Section 1.1, the structural design of a propeller blade has been represented
in several ways. For example, Dwyer and Rogers [17] represented each blade as a hollow composite
beam. On the other hand, the SR7L propeller blade that was analysed by Yamamoto and August [18]
has an aluminium spar, with a fibreglass shell and foam fill. Additionally, Sodja et al. [3, 21] modelled a
3D-printed propeller with a solid cross-section, and Chattopadhyay et al. [19] represented their propeller
blade as a composite box-beam with an aluminium honeycomb fill. Because only general design trends are
of interest for this project, the structural design of the propeller blade does not need to be as detailed as
the representations that were used in many of these preceding works. In the work of Khan [4, 24], the
propeller blade is represented by a variable-thickness plate made from composite materials.

Figure 2.10: A notional diagram depicting the realistic cross-section of a generic blade structure
featuring a spar, foam fill, and composite shell (adapted from [58]).

The structural representations of Khan [4] and Dwyer and Rogers [17] are the most convenient because
they allow the qualitative effects of bend-twist coupling to be evaluated while remaining relatively simple
in comparison to the other examples presented above.

It is reasonable to assume that only the outer composite shell and spar skins of the blade contribute to
its torsional stiffness, similar to the methods presented in [17, 19]. Composite or aluminium spar caps can
be included in the structural model to yield a more realistic result, similar to the model of Hegberg [26].
This will not noticeably influence general design trends. Furthermore, to reduce the number of design
variables, only one laminate has been used to represent the structure in the chordwise direction on its
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upper and lower surfaces at each spanwise location, and the structure will consist of multiple evenly
spaced laminates along its span, either with or without spars. Complexity may be increased as necessary,
though this model is at least more detailed than the model used by Khan et al. and Dwyer and Rogers,
which were at least useful for identifying general trends, as is the primary focus of this work. Thus, the
blade cross-section shown within Figure 2.10 resembles the cross-section that was considered during this
project, except foam was not included during this project. Lastly, the simplified cross-sectional geometry
may not feature spar caps, if the blade is instead defined as a hollow shell.

By applying the cross-sectional modelling approach of Ferede [25], the three-dimensional properties of
the blade structure, which are defined using classical laminated plate theory, are represented equivalently
using one-dimensional Timoshenko beam elements. The advantage of this approach is that it preserves
the strain energy and anisotropic properties of each laminate, while reducing the number of degrees of
freedom. This is advantageous for applications involving aeroelasticity and optimization because it results
in a decreased computational cost. The underlying theory concerning the cross-sectional modeller has
been left out for brevity, as this theory was not changed from the work of Ferede and Abdalla [59].

The cross-sectional modeller is capable of representing any arbitrary open or closed and single- or
multiple-celled thin-walled cross-section. Each cross-section is modelled in three-dimensions using linear
shell elements of constant properties, and this shell-element representation is used by the cross-sectional
modeller to approximate the mass and stiffness properties of the section. Figure 2.11 contains a notional
diagram of the shell element discretization of a blade section that includes spar caps.

Outer Blade Contour

Shell Element of Structure

Figure 2.11: A notional diagram of the shell-element representation of a blade section with spar caps.

The (AAA , BBB , DDD) matrices of each laminate of the cross-section are used to obtain the local stiffness
matrix, CCC, which relates forces and moments applied at a node of the beam element mesh to its strains
and curvatures, as shown in Equation (2.28) from [26] and [30]. The first strain (ε11) acts in the axial
direction, while the remaining two strains (ε12 and ε13) act in the shear direction. The first curvature (κ1)
corresponds to torsional deformations, while the remaining two curvatures (κ2 and κ3) refer to bending.
The stiffness properties of the blade can be determined around any arbitrary reference location. The shell
element representation is also used to approximate the mass properties of each element, including the
mass per unit length, the first mass moment of inertia, and the second mass moment of inertia. All mass
and stiffness quantities are considered to vary linearly over each beam element.

F1

F2

F3

M1

M2

M3


=



EA C12 C13 C14 C15 C16

C12 GA2 C23 C24 C25 C26

C13 C23 GA3 C34 C35 C36

C14 C24 C34 GJ C45 C46

C15 C25 C35 C45 EI2 C56

C16 C26 C36 C46 C56 EI3


·



ε11

ε12

ε13

κ1

κ2

κ3


=CCC ·

[
¯
ε

¯
κ

]
(2.28)

After the aeroelastic analysis has been completed, the cross-sectional modeller is used again to recover
the skin strains using the computed deformations and the three-dimensional shell-element discretization.
This may be used to evaluate stresses to ensure that they are below the maximum stress.

2.2.4. GEOMETRICALLY NONLINEAR BEAM MODEL
The static structural model is defined after the cross-sectional properties of the blade have been calculated.
The static structural analysis is largely based on the work of De Breuker [48], and this section includes
a brief summary of the model that was implemented during this project based on their work. A more
complete overview of this model may be found within [30, 48].
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As mentioned previously, the linear Timoshenko beam elements that have been used during this project
each have constant properties, and therefore also a constant cross-section. Thus, changes in geometry
or structure along the span of each blade must be represented by a sufficient number of elements to
accurately represent any gradual changes. Each local Timoshenko beam element has 20 degrees of freedom
and is shear-deformable. The strain energy of the beam is given by U .

U = l0

2

∫ 1

0

[
¯
εT

¯
κT

]
CCC

[
¯
ε

¯
κ

]
dξ ξ= xl

l0
(2.29)

The length of the beam element that connects nodes 1 and 2 is computed using the following expression,
where (xi , yi , zi) denotes the spatial coordinates of the ith beam node.

l0 =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 (2.30)

Figure 2.12 indicates the definition of the 20 degrees of freedom of each element. The only degrees
of freedom that are considered in the local stiffness matrix correspond to the two end nodes, and the
remaining eight degrees of freedom located strictly between the two nodes are treated as parameters that
enrich the displacement and rotation shape functions, to prevent the shear locking effect [48].

Figure 2.12: A diagram indicating the element degrees of freedom [48].

Corresponding to Figure 2.12, the following shape functions are used to describe deformations at any
point along the element, based on deformations in the 20 degrees of freedom.

u (ξ)= u1 (1.0−ξ)+u2ξ+ q5ξ (1.0−ξ) (2.31)

v (ξ)= v1 (1.0−ξ)+v2ξ+ q1ξ (1.0−ξ)+ q3ξ (1.0−ξ) (0.5−ξ) (2.32)

w (ξ)= w1 (1.0−ξ)+w2ξ+ q2ξ (1.0−ξ)+ q4ξ (1.0−ξ) (0.5−ξ) (2.33)

φ (ξ)=φ1 (1.0−ξ)+φ2ξ+ q6ξ (1.0−ξ) (2.34)

θ (ξ)= θ1 (1.0−ξ)+θ2ξ+ q7ξ (1.0−ξ) (2.35)

ψ (ξ)=ψ1 (1.0−ξ)+ψ2ξ+ q8ξ (1.0−ξ) (2.36)

For each element, the stiffness tensors corresponding to each node, CCC1 and CCC2, may be different, and
thus at any given point along the element, the stiffness tensor is expressed as shown below.

CCC (ξ)= (1−ξ)CCC1 +ξCCC2 (2.37)

Lastly, the strains and curvatures are expressed in terms of the degrees of freedom as follows.[
¯
εT

¯
κT

]
=

[
1
l0
∂u
∂ξ

1
l0
∂x
∂ξ

−ψ 1
l0
∂w
∂ξ

+θ 1
l0

∂φ
∂ξ

1
l0
∂θ
∂ξ

1
l0

∂ψ
∂ξ

]
(2.38)

The strains and curvatures may be expressed as a matrix containing shape functions, multiplied by a
vector of displacements in each degree of freedom, as shown below.[

¯
ε

¯
κ

]
=NNN

[
u1 v1 w1 φ1 θ1 ψ1 u2 v2 w2 φ2 θ2 ψ2 q1 q2 q8

]T =NNN
¯
pe (2.39)

With the expressions defined previously, Equation (2.29) may be re-written as follows.

U =
¯
pT

e

[
l0

2

∫ 1

0
NNNT [(1−ξ)C1C1C1 +ξC2C2C2] NNN dξ

]
¯
pe (2.40)
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This expression has been used to obtain the local structural stiffness matrix, which is defined as the
second derivative with respect to the degrees of freedom, as shown below.[

KL
20x20KL
20x20KL
20x20

]
i j
= ∂2U
∂pei∂pe j

=⇒ KL
20x20KL
20x20KL
20x20 =

l0

2

∫ 1

0
NNNT [(1−ξ)CCC1 +ξCCC2] NNN dξ (2.41)

The resulting stiffness matrix in this case is 20-by-20, while only the twelve degrees of freedom located
at the two end nodes of each element are required for applying loads and computing deformations. The
resulting equilibrium expression in this case is provided below. Note that the displacements vector,

¯
pe,

has been partitioned into two groups. The first 12 entries contain displacements at the end nodes, and the
remaining 8 entries contain components of displacements within the interior of the element. Thus, the
force vector will always have at least eight trailing zeros, since it is not possible for loads to be applied
through degrees of freedom that act within the interior of each element.K1,1K1,1K1,1 K1,2K1,2K1,2

K2,1K2,1K2,1 K2,2K2,2K2,2

 ·
 ¯

pe,1

¯
pe,2

=
 ¯

Fl

¯
0

 (2.42)

The trailing 8 degrees of freedom must be eliminated, and this has been done using the method of
static condensation from [60] to yield the condensed stiffness matrix, as shown below.

KL
12x12KL
12x12KL
12x12 =K1,1K1,1K1,1 −K1,2K1,2K1,2K2,2K2,2K2,2

−1K2,1K2,1K2,1 (2.43)

KL
12x12KL
12x12KL
12x12 ·

¯
pe,1 = ¯

Fl (2.44)

2.2.5. PROPELLER BLADE REFERENCE FRAMES
Coordinate transformations are required to ensure that blade loads and deformations are all expressed
within the same global coordinate system. For a propeller blade with zero sweep and zero lean, the global
êb

2-axis points along the span of the blade, and the êb
1-axis points in the chordwise direction of the blade at

70% of its total span. Because both fixed- and variable-pitch propellers may be analysed during this project,
the physical definition of the blade relative to the global coordinate system must also be modified due to
changes in pitch setting. During this project, the axis of rotation is always considered to be coincident with
the êb

3-axis. Thus, the entire blade is rotated about its structural axis with changes in pitch setting. This
representation is convenient when comparing the deformations of different blade geometries, since the
thrust axis will always remain constant. For each element of the blade structure, the ê0

1-axis is aligned
with the structural axis, the ê0

2-axis is always aligned with the local chord line, and the ê0
3-axis is positive

in the downward direction. The two reference frames are shown in Figure 2.13.

Structural Axis

Blade Planform

e2
0

e3
0

e1
0

e3	,	Ω	
b

e2
b

e1
b

Figure 2.13: A diagram of the global and local reference frames used in the finite element model.

Because the axis of rotation is always aligned with the ẑ0-axis irrespective of the blade pitch setting,
the angular velocity vector of the propeller blade will always take the following form. The angular velocity
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vector may also be represented as a skew-symmetric matrix, as shown in Equation (2.45). This form is
useful for computing the centrifugal force vector and stiffness matrix, as described in Section 2.2.6.

¯
Ω=

0
0
Ω

 , ΩΩΩ=

0 −Ω 0
Ω 0 0
0 0 0

 (2.45)

COROTATIONAL FRAMEWORK

While not pictured in Figure 2.13, the corotational framework that was applied to account for geometrical
nonlinearities decomposes large beam displacements and rotations into rigid displacements and small
elastic deformations. The linear elastic part is still solved in the element frame, and geometric nonlinearity
is introduced through rigid deformations of each element reference frame. In this way, large displacements
are evaluated iteratively as local coordinate systems rotate with each local beam element. At every
iteration, a new local coordinate system is defined for each element using the corresponding angular
deformations at each node. A complete discussion concerning the corotational formulation that was used
within this work is provided by De Breuker [48]. The advantage of this approach is that it allows the
linearized structural solution to remain valid even for nonlinear cases involving large displacements
through a decomposition of large displacements into several smaller displacements that are defined within
coordinate systems that corotate with the deforming structure. Maintaining the same convention that
was used in Figure 2.13, the corotational framework is visually explained using Figure 2.14. Note that
the flow velocity and rotor speed are always expressed in the body-fixed frame, which is denoted by TTT bbb.
The undeformed local frames attached to each node are denoted by T 0T 0T 0, and the rigid element frames are
denoted by TTT rrr

k for the kth element. Elastic frames for each node are denoted by TTT lll
j for the jth node.

The body-fixed frame is transformed into the initial orientation frame using the rotation matrix, R0R0R0,
which is defined in T bT bT b. Maintaining the previously discussed conventions, this matrix is defined as follows.

R0R0R0 =

0 1 0
1 0 0
0 0 −1

 ·

1 0 0
0 cos(θ) −sin(θ)
0 sin(θ) cos(θ)

=

0 cos(θ) −sin(θ)
1 0 0
0 −sin(θ) −cos(θ)

 (2.46)

The global frame is used to describe the loads and blade axis geometry, whereas the initial orientation
frame, the rigid element frame, and the elastic frame are used to express local quantities such as
deformations. Because the nonlinear static structural analysis computes deformations iteratively, local
element quantities must be converted into global quantities, and vice versa. On the other hand, the linear
static structural analysis does not require an iterative solution procedure, and thus the load vector as
well as the mass and stiffness matrices do not need to be updated during the analysis. Thus, the linear
analysis requires that transformations between local and global coordinates are only applied before and
after deformations have been computed, and not during the analysis. The rigid element frame is always
defined as being aligned with the deformed geometry, and for an undeformed blade axis, it is identical to
the initial orientation frame. Thus, this frame is defined based on the “rigid rotation” of each element.
After computing the rigid element frame, the beam node orientations are evaluated in terms of their rigid
element orientations. This allows for the local deformations of each node to be evaluated, as required
for calculating strains. The nonlinear structural analysis requires that the global stiffness matrix is
updated iteratively using the local coordinate frames. The rigid element frame is also used to evaluate
local deformations, which are required to evaluate beam strains.

There are two ways to transform the initial orientation frame to the elastic frame. First, the body-fixed
frame can be transformed into the rigid element frame (for the kth element) using RRRrrr,k, and then the rigid
element frame can be transformed to the elastic frame of the jth node using RRRlll

j. The second approach is
to transform the initial orientation frame directly to the elastic frame using the rotation matrix that is
defined by RRRggg

j . Thus, RRRggg
j and RRRrrr,k are respectively defined in T 0T 0T 0 and TTT bbb, and RRRlll

j is defined in TTT rrr
k.

Further details on the corotational framework that was applied in this work have been provided by De
Breuker [48], Werter [30], and Hegberg [26], and thus have been left out of this report for brevity.
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Figure 2.14: A notional diagram indicating the relative positions and transformations between global
and local frames within the corotational framework [48].

2.2.6. INCLUDING THE EFFECTS OF CENTRIFUGAL FORCES
Because the propeller blade is always assumed to be rotating at a constant angular velocity, each node of
the blade structure will encounter a centrifugal force that acts outwards in the radial direction from its
axis of rotation. The result of this force is that it introduces a stiffening effect, which makes the blade
structure resistant to transverse loads. As the blade structure deforms due to transverse loading, the
centrifugal force will continue to act in the radial direction. Thus, the centrifugal force component that acts
orthogonally to the structural axis of the beam will continue to grow. This effect is shown in Figure 2.15,
and is known as the spin-softening effect. This is only included with a nonlinear finite element model.

A nonlinear finite element model must be used because the way that the undeformed geometry reacts
to centrifugal loads is different from how the deformed geometry will react to loads. This is clear from
the diagrams shown in Figure 2.15, as the centrifugal force direction does not change in either diagram,
although there is only an axial centrifugal force component and no transverse component present in
Figure 2.15a. Conversely, a transverse centrifugal force component is clearly present in Figure 2.15b.
Thus, the structural response must be iteratively computed until convergence. It is therefore not sufficient
to use a linear finite element model for this project, as structural deformations of the propeller blade would
be significantly overestimated in the absence of the centrifugal stiffening effect.

fcs fcs
Ω

(a) Undeformed structure (only axial loading).

fcs

fcs

Ω

(b) Deformed structure (axial and transverse loading).

Figure 2.15: A diagram indicating how the centrifugal stiffening effect resists bending deformations.
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To calculate the contribution due to centrifugal forces, it is first important to calculate the global mass
matrix. This is done by calculating either the lumped or consistent mass matrix of each element within
their respective local coordinate systems. The lumped mass matrix is evaluated by simply splitting the
total mass of each element evenly to its nodes. This results in a diagonal matrix which has the following
form for a single element with 6 translational and 6 rotational degrees of freedom.

ML, lumped
12x12ML, lumped
12x12ML, lumped
12x12 = ρs Al0

2


I3x3I3x3I3x3 03x303x303x3

03x303x303x3 03x303x303x3

I3x3I3x3I3x3 03x303x303x3

03x303x303x3 03x303x303x3

06x606x606x6

06x606x606x6

 (2.47)

In this way, the lumped mass matrix here has zero rotational inertia, which is sufficient for this project
because the rotational degrees of freedom do not contribute to the centrifugal forces experienced by each
element and the mass matrix is not required for any other calculation within this project.

The consistent mass matrix gets its name from being evaluated using the same displacement model
that is being used to evaluate the local stiffness matrix. In this way, it is obtained for one-dimensional
elements by starting from the expression for total kinetic energy, as shown within Equation (2.48), where
the mass per unit length is constant for each element and therefore may be taken out of the integral.

V = l0

2

∫ 1

0
m̄

¯
ṗT

e NNNTNNN
¯
ṗe dξ=

¯
ṗT

e

[
l0 m̄

2

∫ 1

0
NNNTNNN dξ

]
¯
ṗe m̄ = ρs A (2.48)

Knowing that the consistent mass matrix is defined as the second derivative of the kinetic energy with
respect to the velocity, the consistent mass matrix is defined using Equation (2.49). The number of degrees
of freedom for each element is 20, meaning that the calculated mass matrix is 20-by-20. Thus, the static
condensation method of Guyan [60] must be applied to reduce the mass matrix to correspond to only the
12 degrees of freedom defined at the end nodes of the element, shown in Equation (2.50).

[
ML, consistent

20x20ML, consistent
20x20ML, consistent
20x20

]
i j
= ∂2V
∂ṗei∂ṗe j

=⇒ ML, consistent
20x20ML, consistent
20x20ML, consistent
20x20 = l0 m̄

2

∫ 1

0
NNNTNNN dξ=

M1,1M1,1M1,1 M1,2M1,2M1,2

M2,1M2,1M2,1 M2,2M2,2M2,2

 (2.49)

=⇒ ML, consistent
12x12ML, consistent
12x12ML, consistent
12x12 =M1,1M1,1M1,1 −M1,2M1,2M1,2KKK−1

2,22,22,2K2,1K2,1K2,1 −
(
KKK−1

2,22,22,2K2,1K2,1K2,1

)T (
M2,1M2,1M2,1 −M2,2M2,2M2,2KKK−1

2,22,22,2K2,1K2,1K2,1

)
(2.50)

During this project, both the lumped and consistent mass matrices were calculated. The consistent
mass matrix is used in cases that are not limited by computational cost, where greater precision is required,
for example when only a structural analysis must be performed. The lumped mass matrix is used instead
for cases that are limited by computational cost, where the decreased computational cost resulting from
its use compensates for any losses in precision, such as during optimization.

After calculating the global mass matrix, MMM, the centrifugal force is evaluated using the following
expression, whereΩΩΩ is the skew-symmetric version of

¯
Ω.

¯
fc

(
¯
p
)=−MMM ·ΩΩΩ ·ΩΩΩ · (

¯
r+

¯
p
)

(2.51)

From this expression, it is easy to see that the derivative of the centrifugal force by the structural
deformations is given by the following expression. The mass matrix is always a positive definite matrix,
and the termΩΩΩ ·ΩΩΩ is always a negative semidefinite matrix (all eigenvalues ofΩΩΩ ·ΩΩΩ are zero only if the
rotor speed is zero). Thus, the matrix given by MMM ·ΩΩΩ ·ΩΩΩ is negative semidefinite. With the additional minus
sign, KcKcKc is always positive semidefinite. This term therefore decreases the effect of the structural stiffness
matrix, thus working against the centrifugal stiffening effect. For this reason, it is usually referred to as
the spin-softening matrix.

∂
¯
fc

∂
¯
p

(
¯
p
)=−MMM ·ΩΩΩ ·ΩΩΩ ·

¯
p =KcKcKc ·

¯
p (2.52)

Neglecting any other external forces, the equations that govern the deformations of the propeller blade
structure are defined as follows, if the structure is subjected to an initial deformation,

¯
p0.

KsKsKs ·
(
¯
p0 +

¯
p
)=

¯
fc

(
¯
p0 +

¯
p
)=

¯
fc(¯

0)+KcKcKc ·
(
¯
p0 +

¯
p
)

(2.53)

KsKsKs ·
(
¯
p0 +

¯
p
)−KcKcKc ·

(
¯
p0 +

¯
p
)=

¯
fc (

¯
0) (2.54)
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The spin-softening effect is normally small and more than compensated for by the aforementioned
centrifugal stiffening effect that is depicted in Figure 2.15. For this reason, the spin-softening matrix, KcKcKc,
has not been included during linear analyses of the blade structure (where the spin-stiffening effect may
not be observed), although it has been included within all nonlinear analyses.

2.3. AEROELASTIC MODELLING
During the aeroelastic analysis, aerodynamic loads are evaluated using blade element momentum theory
at the quarter-chord location of each blade element. These loads are passed to the structural model, which
projects the loads evaluated at each blade element onto the structural grid. The aeroelastic analysis
couples the aerodynamic and structural models using calculated derivatives of each load vector in terms of
the structural degrees of freedom. In this way, a closely coupled solution strategy was established, which
minimizes the residual function defined as the difference between internal and external forces, as shown
in Equation (2.55). The resultant external force vector is obtained by a summing together the aerodynamic,
centrifugal, and additional eccentric forces. The eccentric force vector is included to maintain generality.

¯
R

(
¯
p
)= [

¯
fs

(
¯
p
)]︸ ︷︷ ︸

internal

−[
¯
fa

(
¯
p
)+

¯
fc

(
¯
p
)+

¯
fe

(
¯
p
)]︸ ︷︷ ︸

external

(2.55)

The external and internal forces encountered by the structure are purely dependent on structural
deformations, as operating conditions and initial geometric parameters are otherwise fixed. Thus, the
residual function also depends solely on structural deformations. When this residual function is equal
to zero, the internal structural forces resulting from the blade’s deformations are exactly equal to the
forces acting on the blade, and thus the aeroelastic system reaches equilibrium. This residual function
is minimized iteratively using Newton’s method, which relies on a linearization of

¯
R at the ith iteration

around
¯
pi, as shown in Equation (2.56). Deformations at each iteration are found using Equation (2.57).

¯
R

(
¯
pi+1

)≈
¯
R

(
¯
pi

)+[
∂

¯
R
∂

¯
p

(
¯
pi

)] · (
¯
pi+1 −

¯
pi

)
:=

¯
0 (2.56)

=⇒
¯
pi+1 =

¯
pi −

[
∂

¯
R
∂

¯
p

(
¯
pi

)]−1

¯
R

(
¯
pi

)
(2.57)

Expanding Equation (2.56) results in the following expression, where the derivative of each force
defines a corresponding stiffness matrix. The difference between the structural stiffness matrix and the
stiffness matrices due to aerodynamic, centrifugal, and eccentric forces will be referred to as the Jacobian
matrix, since it corresponds to the complete derivative matrix of the residual function,

¯
R.

−
¯
R

(
¯
pi

)= (
¯
fa

(
¯
pi

)+
¯
fc

(
¯
pi

)+
¯
fe

(
¯
pi

))−
¯
fs

(
¯
pi

)= [
∂
¯
fs

∂
¯
p
− ∂

¯
fa

∂
¯
p

− ∂
¯
fc

∂
¯
p
− ∂

¯
fe

∂
¯
p

]∣∣∣∣∣
¯
pi

(
¯
pi+1 −

¯
pi

)
(2.58)

(
¯
fa

(
¯
pi

)+
¯
fc

(
¯
pi

)+
¯
fe

(
¯
pi

))−
¯
fs

(
¯
pi

)= [KsKsKs −KaKaKa −KcKcKc −KeKeKe]
(
¯
pi+1 −

¯
pi

)
(2.59)

=⇒ (
¯
fa

(
¯
pi

)+
¯
fc

(
¯
pi

)+
¯
fe

(
¯
pi

))−
¯
fs

(
¯
pi

)= JJJ · (
¯
pi+1 −

¯
pi

)
(2.60)

2.3.1. DERIVATIVE CALCULATION FOR AEROELASTIC ANALYSIS
To reduce the computational cost involved with iteratively solving the aeroelastic system of equations, it is
essential to ensure that sensitivities shown in Equation (2.58) are correct. Moreover, these sensitivities
were computed analytically wherever possible by directly differentiating the necessary equations with
respect to the structural degrees of freedom. This approach circumvents the evaluation of finite differences
during the analysis procedure, thus reducing the number of function evaluations required during the
aeroelastic analysis to further decrease computational cost. The method that was applied to compute
the spin-softening matrix, KcKcKc, has been outlined in Section 2.2.6, and the derivation of the structural
stiffness matrix, KsKsKs, has been provided in Section 2.2.3. The remaining two sensitivities to compute are
the derivative matrices for the external and aerodynamic forces.

EXTERNAL FORCES

If an applied external force or moment is located at one of the structural nodes, then it is relatively
straightforward to include it within the analysis. However, in most cases, applied loads are eccentric, and
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thus must be appropriately handled by the finite-element solver, such that equivalent loads are applied
at the structural degrees of freedom instead. The calculation of external forces and their sensitivities is
based on the work of De Breuker [48] and Werter [30], who applied the formulation developed by Battini
and Pacoste [61] to allow for both constant and follower external forces and moments. For completeness, a
discussion on the formulation used to define external loads and their derivatives has been provided within
this section, although further details may be found within references [30, 48, 61]. This derivation has been
repeated in this work because it is essential for the calculation of sensitivities for the aerodynamic forces,
as they always act at points that are eccentric to the structural nodes.

For any structural element, external forces can be applied at any location, at a distance of
¯
v0 from the

line that joins the two end nodes of the element. Considering nodes k and k+1 of the structure, which have
position vectors given by

¯
xk and

¯
xk+1, an input external force and moment can be applied at a location of

¯
xa + ¯

v0, where
¯
xa is a point on the element that joins

¯
xk and

¯
xk+1.

The normalized distance between
¯
xa and

¯
xk is given by ξ, which is defined as follows.

ξ=
∣∣∣∣

¯
xa − ¯

xk
∣∣∣∣∣∣∣∣

¯
xk+1 − ¯

xk
∣∣∣∣ =⇒ 1−ξ=

∣∣∣∣
¯
xk+1 − ¯

xa
∣∣∣∣∣∣∣∣

¯
xk+1 − ¯

xk
∣∣∣∣

Diagrams of this scenario are provided in Figure 2.16 for clarity.

xk

xk+1

xa
v0
me

ξ

1-ξ

fe

~
~

(a) A diagram of the external force applied to
the undeformed structure.

ue

ua
v0

xa

xk

xk+1

va
xa'

xk'

xk+1'

Initial 
configuration

Co-rotated 
configuration

Ra

(b) A diagram of the displacement of external forces.

Figure 2.16: Schematic diagrams of the external forces and moments (adapted from [30]).

The location of the applied force in the initial configuration is given by the following expression, where

¯
v0 is defined as a rigid link that is orthogonal to the beam element, as depicted in Figure 2.16a.

¯
xe = ¯

xa + ¯
v0 (2.61)

Figure 2.16b indicates that the rigid link may be converted into its corotated orientation as follows.

¯
va =RaRaRa · ¯v0 (2.62)

Using Figure 2.16, the displacements of the location of the applied load can be related to the deformation
of the nearest point on the beam element,

¯
xa, as shown below.

¯
ua + ¯

va = ¯
v0 + ¯

ue (2.63)

=⇒
¯
ue = ¯

ua +
[
RaRaRa − III

]
¯
v0 (2.64)

To transfer the applied load acting at
¯
xe onto the two nodes of the beam element, it must be ensured

that the virtual work of the equivalent loads acting at the two nodes must be equal to the virtual work of
the eccentric load. This is expressed using the following expression, where the total rotational pseudo-
vector of the eccentric point is given by

¯
θe, the total rotational pseudo-vectors of the two end nodes are

given by
¯
θk and

¯
θk+1, and displacement vectors of the two nodes are denoted by

¯
uk and

¯
uk+1.

δ
¯
pT

e

[
¯
f̃e

¯
m̃e

]
=

[
δ

¯
pT

k δ
¯
pT

k+1

]


¯
fk

¯
mk

¯
fk+1

¯
mk+1

 ¯
p =

[
¯
u

¯
θ

]
(2.65)
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Using the relations derived above and the assumption of equivalent virtual work, Werter [30] derived
a relationship between deformations of the eccentric node and global deformations of the two end nodes of
the beam element in variational form, where

¯
ϑa is the spatial angular variation at the eccentric node.

δ
¯
ue = δ¯

ua +δRaRaRa¯
v0 (2.66)

δRaRaRa = δϑaϑaϑaRaRaRa (2.67)

=⇒ δ
¯
ue = δ¯

ua +δϑaϑaϑaRaRaRa¯
v0 = δ¯

ua +δϑaϑaϑa¯
va = δ¯

ua −vavavaδ¯
ϑa (2.68)

=⇒ δ
¯
pe =

[
δ

¯
ue

δ
¯
θe

]
=

[
(1−ξ)I3x3I3x3I3x3 − (1−ξ)vavava ξI3x3I3x3I3x3 −ξvavava

03x303x303x3 (1−ξ)I3x3I3x3I3x3 03x303x303x3 ξI3x3I3x3I3x3

]
δ

¯
uk

δ
¯
ϑk

δ
¯
uk+1

δ
¯
ϑk+1

=BeBeBe ·
 δ

¯
pg

k

δ
¯
pg

k+1

 (2.69)

To transform the spatial angular variation into the variation of the total rotational pseudo-vector, the
relation that was derived by Ibrahimbegovic [62] has been applied as follows.

TθTθTθ =
sin

(∣∣∣∣
¯
θ
∣∣∣∣)∣∣∣∣

¯
θ
∣∣∣∣ III +

(
1− sin

(∣∣∣∣
¯
θ
∣∣∣∣)∣∣∣∣

¯
θ
∣∣∣∣

)
¯
u⊗

¯
u+ 1

2

(sin
(∣∣∣∣

¯
θ
∣∣∣∣ /2

)∣∣∣∣
¯
θ
∣∣∣∣ /2

)2

θθθ (2.70)


δ

¯
uk

δ
¯
θk

δ
¯
uk+1

δ
¯
θk+1

=


03x303x303x3 03x303x303x3

03x303x303x3 TTT −1
θkθkθk

03x303x303x3 03x303x303x3

03x303x303x3 TTT −1
θk+1θk+1θk+1

06x606x606x6

06x606x606x6

 ·


δ

¯
uk

δ
¯
ϑk

δ
¯
uk+1

δ
¯
ϑk+1

=HHH

[
δ

¯
pk

δ
¯
pk+1

]
(2.71)

The full conversion between displacements at the eccentric node and displacements at the degrees of
freedom of the element is given by the following relation, which is used as shown to compute loads.

δ
¯
pe =BeBeBe ·HHH ·

[
δ

¯
pk

δ
¯
pk+1

]
=⇒ δ

¯
pT

e =
[
δ

¯
pT

k δ
¯
pT

k+1

]
(BeBeBe ·HHH)T (2.72)

=⇒ (BeBeBe ·HHH)T
[

¯
f̃e

¯
m̃e

]
=HHHT ·BBBT

eee ·
[

¯
f̃e

¯
m̃e

]
=


¯
fk

¯
mk

¯
fk+1

¯
mk+1

 (2.73)

This method of mapping forces from eccentric nodes to the nodes of the structural mesh has been
applied also to convert aerodynamic loads from the aerodynamic grid points to the structural nodes.
Centrifugal forces are already calculated at the nodes of the structure and thus are not converted.

The derivative of the external forces is calculated by taking the variation of the external force vector.
δ
¯
fk

δ
¯
mk

δ
¯
fk+1

δ
¯
mk+1

=
(
δHHHT

)
·BBBT

eee ·
[

¯
f̃e

¯
m̃e

]
︸ ︷︷ ︸

geometric moment stiffness

+ HHHT ·
(
δBBBT

eee

)
·
[

¯
f̃e

¯
m̃e

]
︸ ︷︷ ︸

geometric rotation stiffness

+HHHT ·BBBT
eee ·

[
δ
¯
f̃e

δ
¯
m̃e

]
︸ ︷︷ ︸
material stiffness

=KeKeKe

[
δ

¯
pk

δ
¯
pk+1

]
(2.74)

=⇒ [
KhKhKh +KgKgKg +KmKmKm

][
δ

¯
pk

δ
¯
pk+1

]
=KeKeKe

[
δ

¯
pk

δ
¯
pk+1

]
(2.75)

The complete derivation of the derivative matrix of the external forces has been provided by Werter
[30], and thus the full derivation of the external force derivative matrix will not be repeated here for
brevity. Nevertheless, the material stiffness has been briefly revisited within this section, as it has been
treated differently during the calculation of the aerodynamic stiffness matrix. The geometric moment
stiffness and the geometric rotation stiffness are not dependent on the nature of the applied forces, and
thus their form remains unchanged from what has been presented in [30].
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To calculate the material stiffness, the variation of the applied force must be calculated, as all remaining
quantities are already known. This has been defined as the derivative of the eccentric forces with respect
to the degrees of freedom, multiplied by the variation of the degrees of freedom.[

δ
¯
f̃e

δ
¯
m̃e

]
=

(
d

d
¯
pe

[
¯
f̃e

¯
m̃e

])
·δ

¯
pe (2.76)

Substituting Equation (2.72) into the above expression yields the following expression for the variation
of the eccentric loads. This expression can then be used to determine the material stiffness matrix.[

δ
¯
f̃e

δ
¯
m̃e

]
=

(
d

d
¯
pe

[
¯
f̃e

¯
m̃e
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·BeBeBe ·HHH ·

[
δ

¯
pk

δ
¯
pk+1

]
=⇒ KmKmKm =HHHT ·BeBeBe

T ·
(

d
d

¯
pe

[
¯
f̃e

¯
m̃e

])
·BeBeBe ·HHH (2.77)

This derivation has only been used to evaluate the material stiffness matrix for aerodynamic forces,
while the original derivation that was provided by Werter [30] has been used for the evaluation of the
material stiffness matrix for all other externally applied forces.

To calculate the derivative matrix for aerodynamic forces, it has been assumed that they depend solely
on the blade twist angle, β, thus yielding the following expression. Note that the subscript “e” has been
replaced by “a” to indicate that the loads being discussed are due to aerodynamic effects.(

d
d

¯
pa

[
¯
f̃a

¯
m̃a
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¯
0

¯
0

¯
0

¯
0 d
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0

¯
0

¯
0

¯
0

¯
0 d

dβ ¯
m̃a ¯

0

 (2.78)

The following section contains details on how these derivatives have been determined. Appendix D
also contains an extension of this derivation to include sensitivities in terms of radial deformations.

AERODYNAMIC LOADS

Sensitivities for the aerodynamic forces are evaluated on the aerodynamic grid using blade element
momentum theory because all aerodynamic quantities are already known at these locations. This makes
it possible to analytically evaluate derivatives of the aerodynamic forces and moments. The sensitivities
are then mapped onto the finite element grid using the approach that was outlined in the previous section
so that they may be applied within Equation (2.58). The process of evaluating derivatives of aerodynamic
loads at the aerodynamic grid locations has accordingly been discussed in this section.

At a point on the aerodynamic grid, the aerodynamic forces and moments are given by the following
expression, which is solved for using blade element momentum theory, outlined within Section 2.1.[ ˜

¯
f a

˜
¯
ma

]
= q∞∆S (r)

[
Cx

(
α,ϕ,Re,Ma

)
0 Cz

(
α,ϕ,Re,Ma

)
0 Cm (α,Re,Ma) c 0

]T
(

V
V∞

)2
(2.79)

The force coefficients, Cx and Cz, are directly evaluated using Equation (2.15). Thus, they depend
entirely on the lift and drag coefficients and the flow angle, ϕ, of the blade section.

To calculate the derivatives in terms of structural degrees of freedom, the following two assumptions
have been applied. First, it has been assumed that only pitch deformations contribute to changes in
aerodynamic loads. Thus, only derivatives with respect to blade twist, β, have been computed. It is
recognized that loads are also dependent on the radial position of the blade element, although these
derivatives are relatively small and therefore can be omitted without losses in precision during the
aeroelastic analysis. For this reason, the derivation of sensitivities with respect to radial deformations has
not been included in this section, although a complete derivation for this may be found in Appendix C.
Because the axial and tangential induction factors, a and a′, depend on the twist of any given blade section,
the inflow angle, ϕ, also depends on the blade twist. This implies that it is not possible to simply assume
that derivatives of aerodynamic quantities with respect to angle of attack are equivalent to derivatives of
aerodynamic quantities with respect to blade twist.

d
dβ

[ ˜
¯
f a

˜
¯
ma

]
= q∞∆S

([
Cxα 0 Czα 0 Cmα c 0

]T
(

dα
dβ

)(
V

V∞

)2
+

[
Cx 0 Cz 0 Cmc 0

]T
(

2V
V 2∞

)(
dV
dβ

)) (2.80)
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The only unknown contained within the second term of Equation (2.80) is dV /dβ, which is computed
using the following expression, shown in Equation (2.81). The only unknown quantities in Equation (2.81)
are the derivatives of the induction factors with respect to the pitch setting, da/dβ and da′/dβ.

V =
√

(V∞ (1+a))2 + (ω r (1−a′))2 =⇒ dV
dβ

=
V 2∞ (1+a) da

dβ − (ωr)2
(
1−a′) da′

dβ

V
(2.81)

The first term of Equation (2.80) requires slightly more work to evaluate. First, the normal and
tangential force coefficients, Cz and Cx, are differentiated with respect to α using Equation (2.82).[

Czα
Cxα

]
=

[
cos

(
ϕ

) −sin
(
ϕ

)
sin

(
ϕ

)
cos

(
ϕ

) ][
Clα (α,Re,Ma)
Cdα (α,Re,Ma)

]
(2.82)

Derivatives of the lift, drag, and moment coefficients with respect to the angle of attack can be easily
obtained numerically using polar data, since all aerodynamic quantities are already obtained using the
BEM equations. Thus, the only term that is missing is the derivative of the angle of attack with respect to
the twist, dα/dβ. Using Figure 2.6 and differentiating the expression for the angle of attack that is shown
in Equation (2.16), an expression for this derivative may be obtained as follows.

dα
dβ

= dβ
dβ

− dϕ
dβ

= 1− dϕ
dβ

(2.83)

dϕ
dβ

= d
dβ

(
arctan

(
V∞ (1+a)
ω r (1−a′)

))
=

V∞ω r
(
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dβ

(
1−a′)+ da′

dβ (1+a)
)

(ω r (1−a′))2 + (V∞ (1+a))2
(2.84)

=⇒ dα
dβ

= 1− V∞
V

ω r
V

(
da
dβ

(
1−a′)+ da′

dβ
(1+a)

)
(2.85)

Derivatives of the angle of attack with respect to the blade twist have also been calculated using blade
element theory and momentum theory to obtain two other expressions for derivatives of the angle of attack
with respect to the blade twist. With momentum theory, thrust and torque coefficient expressions are
provided in terms of the axial and tangential induction factors, whereas blade element theory relates the
thrust and torque coefficients to the angle of attack and inflow angle.

dCt

dβ
= ∂Ct

∂a
∂a
∂β

+ ∂Ct

∂a′
∂a′

∂β
= dCt

dα
dα
dβ

(2.86)

dCq

dβ
= ∂Cq

∂a
∂a
∂β

+ ∂Cq

∂a′
∂a′

∂β
= dCq

dα
dα
dβ

(2.87)

With momentum theory, the thrust and torque coefficient derivatives with respect to the blade twist
are given by Equation (2.88) and Equation (2.89). These expressions maintain all the same assumptions
as outlined in Section 2.1.1, in addition to the simplifications discussed in this section.

dCM
t

dβ
=

{
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(
(1+2a)F +a (1+a) ∂F

∂a
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(2.88)
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)
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(2.89)

Differentiating the root and tip loss factors, Froot and Ftip, with respect to the incoming flow angle, ϕ,
yields the following two expressions, which are directly found using Equation (2.7).

dFroot
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 (2.90)
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√
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 (2.91)
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The derivatives of the Prandtl tip-loss factor, F, with respect to the axial and tangential induction
factors are given by Equation (2.92) and Equation (2.93), which are obtained by applying the chain rule.
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With these expressions, all terms within Equation (2.88) and Equation (2.89) are known except for
da/dβ and da′/dβ. Derivatives of the thrust and torque coefficients with respect to the blade twist may
also be evaluated using blade element theory to isolate for the derivatives of the axial and tangential
induction factors, as shown below. This yields three expressions for dα/dβ.
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With three expressions and three unknowns, the derivatives da/dβ and da′/dβ, may be iteratively
solved for using Newton’s method by constructing a residual vector, as shown below, and evaluating the
system of equations shown in Equation (2.97) (presented at the ith iteration) until convergence.
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After solving for both da/dβ and da′/dβ, dα/dβ can be evaluated by substituting these terms into
either Equation (2.85), Equation (2.94), or Equation (2.95). All three of these equations will, of course,
yield the same result. With this, all terms required to evaluate Equation (2.80) are known.

As already mentioned, the advantage of the approach proposed in this section is that it requires significantly
less computational time in comparison to if the derivatives were to be evaluated using finite differences.
To verify that the derivative calculation routine performs as anticipated, comparisons were made between
the derivatives evaluated using equations shown in this section to derivatives evaluated using a central
differencing scheme, which proceeds according to Equation (2.98) and has a truncation error of O

(
∆β2)

,
where h is the aerodynamic quantity being differentiated.

dh
dβ

(
β
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(
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(
β−∆β)

2∆β
(2.98)

To demonstrate differences observed between the sensitivities evaluated analytically and numerically,
the TUD-XPROP propeller (with geometry information provided in Appendix A) has been analysed at
a pitch setting of 20◦ over a range of advance ratios between 0.6 and 1.5. The step size used for the
numerical calculation was given by ∆β = 10−6, while the step size for the lift curve slopes calculated
during the analytical calculation are given by ∆α = 10−6. Values for the step sizes were determined
heuristically, as smaller step sizes were found to yield negligible improvements in precision. The results
of this investigation are shown in Figure 2.17. The absolute difference plots shown in Figure 2.17 were
calculated by taking the absolute value of the difference between the derivative obtained analytically
and the derivative obtained numerically. The sensitivities shown correspond to the force and moment
coefficients, the induction factors, and the flow angles. The derivatives have been computed analytically
respectively using Equation (2.79), Equation (2.97), and Equation (2.85).
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(a) Radial dα/dβ distribution. (b) Radial dϕ/dβ distribution.

(c) Radial da/dβ distribution. (d) Radial da′/dβ distribution.

(e) Radial dF/dβ distribution. (f) Radial dCm/dβ distribution.

(g) Radial dCx/dβ distribution. (h) Radial dCz /dβ distribution.

Figure 2.17: Comparisons between derivatives computed numerically and analytically for the
TUD-XPROP (see Appendix A for geometry details) at a blade collective pitch setting of 20◦.
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The results indicate that the unknown quantities, dα/dβ, dϕ/dβ, da/dβ, da′/dβ, dF/dβ, and dCm/dβ
are nearly identical between the two methods. Errors were generally observed near the root section at
relatively high advance ratios, possibly due to modelling difficulties in this region, as viscous effects have
an important influence on the flow. This causes the slope of the lift and drag coefficients to be more difficult
to predict, thus leading to a larger error. In particular, significant uncertainties are observed in results for
the derivatives of the normal and tangential force coefficients, respectively dCz/dβ and dCx/dβ. This, of
course, also affects results obtained for derivatives of the dimensional forces. The derivative of the pitching
moment coefficient is predicted with more precision than derivatives of the thrust and torque coefficients
because it is not evaluated using an iterative method. Nevertheless, the results obtained indicate that the
general trends are predicted correctly using the analytical approach, which verifies this method.

2.3.2. AEROELASTIC ANALYSIS PROCEDURE
The static aeroelastic analysis procedure that was applied during this research can be used to perform
either a linear or a nonlinear analysis. The linear analysis is performed by solving Equation (2.60) for one
iteration only, whereas the nonlinear analysis is performed by solving Equation (2.60) for several iterations
until the residual function decays to zero. Thus, the nonlinear analysis is an extension of the linear
analysis, which guarantees that energy is conserved at all degrees of freedom, while the linear method
does not ensure the conservation of energy. The linear approach has been described for completeness,
although the nonlinear method was exclusively applied during this project unless specified otherwise.

LINEAR ANALYSIS

A UML activity diagram depicting the linear analysis procedure has been provided within Figure 2.18.

Compile model inputs
Calculate aerodynamic,

centrifugal, and external loads,
as well as their sensitivities

Construct the residual vector and
Jacobian matrix

Assemble global stiffness matrix
and assume zero internal

structural forces

Calculate structural deformations
and update global stiffness matrix

Store deformations, deformed
geometry, loads, and sensitivities

Activity

Powered By�Visual Paradigm Community Edition

Figure 2.18: A schematic diagram indicating the linear aeroelastic analysis procedure.

Because the linear analysis only performs one iteration, structural deformations are evaluated using
the following expression. Thus, all loads and their sensitivities are evaluated exactly once.(
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Because structural deformations are initially assumed to be zero, it must initially be assumed that the
internal structural forces are equal to zero. Thus, the real form of the equation solved during the linear
analysis is given by the following expression, as shown in Equation (2.100).
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The linear method is suitable for systems that only encounter small deformations, where geometric
nonlinearities are not significant, as the sensitivities embedded within the Jacobian matrix are applied
through a linearization of the full nonlinear system about the initial geometry. Moreover, this method is
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incapable of accurately accounting for the nonlinear centrifugal stiffening effect because only the initial
geometry is considered during the evaluation of loads and sensitivities. Lastly, because the aerodynamic
loads and sensitivities are evaluated only once, for the initial geometry, the aerodynamic loads will be
inaccurate with large changes in twist distribution because the aerodynamic model used during this
project is nonlinear. Thus, the linear aeroelastic method is insufficient for this project.

NONLINEAR ANALYSIS

The nonlinear analysis proceeds similarly to the linear analysis, although now Equation (2.60) is solved
iteratively. To stabilize the iterations, a scale factor (λs) is applied as shown in Equation (2.101) and
gradually increased from zero to one. The nonlinear analysis thus proceeds as follows. First, the scale
factor is initialized between zero and one, and then the residual function is minimized for the aeroelastic
system with scaled loads. After convergence is reached, the scale factor is increased and the residual
function is minimized again. This process is repeated until convergence with a scale factor that is equal to
one, thus being equivalent to Equation (2.58). Values for the scale factor and its step size were determined
heuristically, and fast convergence was observed with an initial λs value of 0.5 and a step size of 0.25.
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A UML activity diagram depicting the nonlinear analysis procedure is shown within Figure 2.19.

Compile model inputs

Store deformations, deformed
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Figure 2.19: A schematic diagram indicating the nonlinear aeroelastic analysis procedure.

It is clear from Figure 2.19 and Equation (2.101) that the nonlinear analysis evaluates the linearized
aeroelastic system at each iteration. The converged solution corresponds exactly to the nonlinear aeroe-
lastic system, satisfying Equation (2.55) because the linearized expression is updated to correspond to
the deformed geometry at each iteration. The residual vector usually does not equal zero when using the
linear analysis. The proposed nonlinear analysis method generally reaches full convergence relatively
quickly, in fewer than ten iterations. It is additionally usually possible to initialize the scale factor with a
value of 1 to decrease the number of iterations that are required in a single analysis.

2.4. MODEL OVERVIEW
After presenting the formulation used for the aeroelastic analysis within the preceding three sections, a
summary of the workflow and limitations of the analysis procedure are discussed in this section.

2.4.1. FULL ANALYSIS WORKFLOW
A UML activity diagram of the analysis procedure that was developed is provided within Figure 2.20,
starting from the definition of model inputs and ending at the post-processing of results.

In the first step, the blade geometry and structural design is read by the program. The geometry
input is defined as spanwise distributions of airfoils, chord lengths, twist angles, leading edge locations,
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reference axis locations, and composite skin configurations. For each spanwise laminate of the structural
design, eight lamination parameters and a constant thickness are defined. With the provided lamination
parameters and thicknesses, the program calculates the structural properties of each laminate along the
span of the blade. The analysis program then interpolates the geometric and structural information to
spanwise locations defining the nodes of the structural mesh. Lastly, airfoil polar plots are generated, and
aerodynamic coefficients are interpolated along the span of the blade before the analysis begins. After
processing all the inputs and storing information on the operating conditions to be studied, the interpolated
laminate properties and cross-sectional geometry are processed by the cross-sectional modeller to represent
the structure as an equivalent Timoshenko beam element mesh. The static aeroelastic analysis is then
performed using the beam element model. After the aeroelastic analysis is completed, post-processing of
results is possible. For example, the cross-sectional modeller may be used again to recover strains over the
3D geometry or propeller performance trends can be evaluated.

External Process

Input propeller blade properties
and load case information

Analysis

Interpolate cross-sectional geometry inputs,
calculate structural properties, and store

constants for each load case

Post-process results

Use the cross-sectional modeller to generate
a Timoshenko beam element mesh that

represents the blade structure

Perform static aeroelastic analysis to
calculate loads, sensitivities, and

deformations

ObjectNode
Powered By�Visual Paradigm Community Edition

Figure 2.20: A UML activity diagram indicating the full analysis workflow.

2.4.2. MODEL LIMITATIONS
The most important feature of the model that has been developed is that it is computationally efficient,
which thus makes it especially suitable for the preliminary design of propellers. By prioritizing computa-
tional efficiency, some limiting assumptions have been introduced that may adversely affect the accuracy
or precision of the model. The main limitations on the models that were applied are provided below.
• As discussed in Appendix B.1, blade element momentum theory cannot intrinsically represent three-

dimensional phenomena and thus must rely on approximate engineering correction models to account
for some of their effects. One way to address this would be to implement a higher fidelity aerodynamic
model (such as with a lifting-line or vortex-lattice method), like the approach of Hegberg [26].

• By using the Prandtl-Glauert correction, results are only considered valid up to a Mach number of
approximately 0.75. The selected aerodynamic model is also incapable of modelling drag-divergence,
which has significant effects on aerodynamic loads at high Mach numbers.

• It has been assumed that the cross-sectional geometry of the blade does not change during its defor-
mation. This implies that the cross-sectional modeller is only required at the beginning and end of the
analysis, and airfoil polar plots remain unchanged during the analysis.

• Because laminate properties have been represented with lamination parameters, a post-processing step
is required to retrieve an applicable ply stacking sequence for a given parametrization. This procedure
usually results in a decrease in performance, and has not been considered in this work.

• Buckling has been neglected during this project, although a suitable method for this work was developed
and applied by Dillinger [63]. The decision to neglect buckling was justified, as compressive strains
were nearly negligible in all results that were presented.
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Details on the optimization framework that was developed for this project, including a description of the
optimization problem that was formulated for this work, have been provided in this chapter. The developed
optimization framework has been used to demonstrate the potential to apply aeroelastic tailoring towards
the improvement of propeller performance. Section 3.1 first covers the formulation of the optimization
problems, which were considered during the design studies, including descriptions of the objective function,
design variables, and constraints. Section 3.2 then contains an overview of the design study that was
performed during this research, including descriptions of the propeller blade geometry and materials being
considered, operating conditions used, optimization goals and cases under consideration as well as a brief
discussion on the methods applied to perform the optimization.

3.1. FORMULATING THE OPTIMIZATION PROBLEM
A multi-objective optimization problem has been formulated to ensure that the final propeller design
always maintains reasonable performance characteristics during all phases of flight, corresponding to
both propulsive and regenerative operation. A broad range of operating conditions has been considered
during the structural blade optimization procedure through the use of a climb-cruise-descent mission
profile to quantify propeller performance. This mission has also been used to define realistic operating
conditions for the propeller, whilst appropriately accounting for their relative importance toward the
overall design. To maintain a low computational cost during the evaluation of the objective and constraint
functions, propeller performance in each mission segment was quantified by a single operating condition.
More specifically, the climb, cruise, and descent segments were each defined by a single operating point.
Nevertheless, the code that was developed is capable of defining the mission either by four segments (first
climb, second climb, cruise, and descent), or by three segments (climb, cruise, and descent). Despite the
greater accuracy of the mission with four segments, the three-segment mission was accordingly used
throughout this project to maintain a low computational cost. Notional diagrams depicting the mission
profiles considered during this work have been provided below in Figure 3.1. In each mission segment,
operating conditions and thrust requirements were defined at the median altitude. Further details on the
selection of operating conditions for the propeller are provided in Section 3.2.1.

During the optimization, equality constraints on the thrust requirements were set, and the mission
profile under consideration corresponds to a realistic aircraft configuration, to guarantee that realistic
values were set. By establishing equality constraints on the thrust output of the propeller, the advance
ratio and pitch setting values in each mission segment can be treated as design variables during the
optimization. In this way, the optimizer is free to select operating conditions that minimize the power
consumption or maximize power regeneration while maintaining the thrust requirements.

The size of the propeller under consideration during this project was scaled up to match the size of
the reference aircraft that it would otherwise be installed on. This decision was made because including
blade flexibility prevents the results obtained on a scaled model from being scaled up to realistic flight
conditions because the deformations between the scaled and full models will be of a different magnitude
unless (the laminate stiffness properties are also adjusted), which will impact the overall performance.

39
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(a) Four-segment mission profile (not used during this project). (b) Three-segment mission profile.

Figure 3.1: Notional diagrams of the two mission profiles that may be evaluated using the optimization
framework that was developed and applied during this project.

3.1.1. OBJECTIVE FUNCTION
The generic multi-objective optimization problem shown below in Equation (3.1) has been used to formulate
the optimization problem considered during this project. It is more convenient to reformulate this problem
as a single objective optimization problem. There are several approaches that are suitable for evaluating
multi-objective optimization problems, although the so-called weighted sum method that is outlined by
Martins and Ning [64] has been applied because it offers an intuitive method of quantifying overall
propeller performance that appropriately accounts for all mission segments.

Minimize fk (
¯
Φ) k ∈ {

1 , . . . , Nobj
}

subject to g j (
¯
Φ)≤ 0 j ∈ {

1 , . . . , Ncon, 1
}

hl (
¯
Φ)= 0 l ∈ {

1 , . . . , Ncon, 2
}

with bounds ΦL
n ≤Φn ≤ΦU

n n ∈ {1 , . . . , Nvar}

(3.1)

The primary goal of the aeroelastic tailoring methodology is to obtain a structural blade design that
maximizes efficiency within each mission segment. By maintaining a constant thrust requirement in each
mission segment, minimizing the power consumption will cause the optimizer to attempt to maximize the
efficiency. This approach is well-suited for this problem because it guarantees that all feasible solutions to
the optimization problem will satisfy the mission requirements. Thus, the optimizer should attempt to
minimize the power consumption in each mission segment, subject to applicable inequality constraints
as well as equality constraints on the required thrust in each mission segment. To reformulate this
multi-objective optimization problem as a single-objective optimization problem, the objective function
was defined as the total mission energy consumption, which is computed using Equation (3.2). The energy
consumption in each mission segment is accordingly evaluated by multiplying the power consumption
in each segment by the time spent. The energy consumption in each mission segment can then be
summed together to yield the total energy consumption. Thus, corresponding to the weighted sum method,
the multiple objectives are given by the power consumption values in each mission segment, and their
corresponding weight factors are given by the time spent in each mission segment.

E =
Nobj∑
k=1

Pk · tk (3.2)

With this definition, the multi-objective optimization problem has been reformulated as a single
objective optimization problem, as shown in Equation (3.3).
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(3.3)
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Some potential challenges with the chosen formulation have been identified. First, only a single mission
profile was analysed during this project, corresponding to a fixed aircraft configuration. By decoupling the
mission strategy from the design of an aircraft configuration, the power consumption of the propeller has
no effect on the thrust requirement and the time spent in each mission segment. Thus, the time spent
and the thrust required in each mission segment have been held constant during each optimization case.
This may be inaccurate, as these values can vary as the required power changes in realistic scenarios. To
mitigate this drawback, the propeller optimization framework would need to include modifications to the
overall aircraft design, which would then lead to changes in thrust requirements and time spent in each
mission segment. This approach was not taken during this work because the propeller blade design is the
primary focus, and decoupling the propeller design from the design of an aircraft configuration prevents
the results from being dependent on external and potentially unrelated factors that could otherwise bias
the results. Moreover, it is expected that the relative difference in time spent between mission segments
would not change by a significant amount as the energy consumption varies, and because this mission
analysis is only being used to provide weighting factors between objectives during the optimization.

The second main drawback of this approach is that the optimal propeller blade design corresponds
only to the fixed mission under consideration during this project, while it may be interesting to consider
other mission types such as traffic pattern circuits, which were considered by Erzen et al. [2], or loiter-dash
mission profiles, which were investigated by Dorfling and Rokhsaz [65]. This limits the applicability
of outputs from the optimization to only be suitable for the mission strategy under consideration. A
more generic result may be obtained through the use of additional mission strategies to quantify overall
propeller performance. During this project, the selection of a climb-cruise-descent mission profile was
deemed sufficient because it features both the propulsive and regenerative operating conditions in a
realistic setting. It would have been interesting to also consider traffic pattern circuits during this project,
although the selected mission profile is more commonly flown with the aircraft being considered. While
the climb and descent segments were never adjusted, this problem was partially addressed by performing
multiple optimization studies at differing cruise distances, to show how results depend on cruise distance.

Finally, the climb and descent segments would be most realistically represented using several operating
conditions at varying altitude levels. As already mentioned, the climb and descent segments were only
represented using one operating condition each at the median altitude. Because the cruise altitude is
relatively low during this project, losses in precision through the selection of only a single operating point
have a minimal effect on the results. Furthermore, general design trends were still obtained through the
use of just a single operating condition in climb and descent, although the energy consumption values
yielded by the optimizer will not be as precise as they otherwise would be with a greater number of mission
segments. Decreases in computational cost resulting from the definition of less operating conditions were
prioritized over any potential improvement in accuracy or precision.

3.1.2. DESIGN VARIABLES
The structural design variables used for the optimization are the lamination parameters and the laminate
thicknesses. The blade was parametrized with only one laminate on each of its upper and lower surfaces
over its full span due to limitations on computational cost. The upper and lower skins of each blade section
were parametrized with eight lamination parameters and one thickness variable, while the spar webs of
each blade section were approximated as quasi-isotropic and thus have zero-valued lamination parameters
over the full span of the blade. As discussed previously, eight lamination parameters were used instead of
twelve, since only symmetric laminates have been considered during this project. The decision to ensure
that the spar webs are quasi-isotropic was made to reduce computational cost significantly, as the spar
webs were found to provide a negligible influence on the deformations due to their small size. Thus, the
total blade structure was parametrized with four laminates, one for each surface. Thus, four laminate
thicknesses were defined in addition to eight lamination parameters each for the upper and lower surfaces.
This yields 20 structural design variables in total to completely represent the blade structure.

The optimization framework that was developed and applied during this project is also capable of
representing each laminate of the blade structure using reduced sets of structural design variables, as
indicated in Table 3.1. In particular, five different sets of structural design variables may be considered.
The largest and second-largest sets of design variables respectively correspond to blades constructed out of
either symmetric or symmetric-balanced laminates. Symmetric-balanced laminates feature six lamination
parameters, and can exhibit coupling between out-of-plane bending and twisting curvatures. Symmetric
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laminates are defined by all eight lamination parameters, and can include coupling between out-of-plane
bending and twisting curvatures, as well as between in-plane normal and shear strains. The third-smallest
set of design variables corresponds to a blade that is constructed from orthotropic laminates. In this case,
each laminate features only four lamination parameters and one thickness, with zero coupling between
in-plane normal and shear strains, as well as between out-of-plane bending and twisting curvatures.
The fourth set of design variables corresponds to a blade that has isotropic laminates, in this case, only
the thickness of each laminate can be modified. For isotropic laminates, deformations in each degree of
freedom are only coupled through geometric characteristics, and a straight blade will not exhibit any
coupling between degrees of freedom. Finally, the fifth and smallest set of design variables corresponds to
a rigid propeller blade, which features zero structural design variables, and thus only operating conditions
can be optimized. The rigid blade optimization was only used to provide baseline performance metrics.

Despite the numerous available sets of structural design variables that may be considered by the
optimizer when defining the laminates of the blade structure, only the largest set of structural design
variables was used during aeroelastic tailoring. This is because it was found during sensitivity studies that
the performance characteristics of propeller blades constructed out of symmetric-balanced laminates are
relatively insensitive to structural changes. The rigid propeller was also considered initially to identify the
baseline minimum power consumption in each mission segment considered during the optimization study.
Using the minimum energy consumption of the rigid propeller guarantees that all further decreases in
energy consumption yielded by the flexible propeller result from aeroelastic tailoring, and not the selection
of otherwise more suitable operating conditions. This prevents the results from being biased.

Table 3.1: Sets of structural design variables that can be included in the optimization procedure.

Number Laminate Type Design Variables Included Per Laminate

1 Symmetric only All lamination parameters and thickness: ξA
1 ,ξA

2 ,ξA
3 ,ξA

4 ,ξD
1 ,ξD

2 ,ξD
3 ,ξD

4 ; t > 0
2 Symmetric & balanced Six lamination parameters and thickness: ξA

2 = ξA
4 = 0; t > 0

3 Orthotropic Four lamination parameters and thickness: ξA
2 = ξA

4 = ξD
2 = ξD

4 = 0; t > 0
4 Isotropic Only laminate thickness: ξA

1 = ξA
2 = ξA

3 = ξA
4 = ξD

1 = ξD
2 = ξD

3 = ξD
4 = 0; t > 0

5 Rigid No structural design variables included; thickness is constant

The remaining design variables include advance ratios and pitch settings for each mission segment.
Using advance ratio values as design variables is equivalent to using rotor speeds as design variables
because the freestream velocity in each mission segment does not change throughout the optimization
procedure. These design variables have been selected to allow the optimizer to always find an operating
condition that enables the thrust requirements to be met. During the optimization, both constant-pitch
and variable-pitch propellers were evaluated, and thus either a single pitch setting is defined and used for
all three mission segments or a unique pitch setting is used in each mission segment. The advance ratio is
always different between each mission segment being considered by the optimizer.

3.1.3. CONSTRAINTS
INEQUALITY CONSTRAINTS
Several inequality constraints have been applied to ensure that the propeller blade structure is feasible.
First, inequality constraints defining known feasible regions for lamination parameters have been included
to ensure that it is possible to extract a feasible ply stacking sequence from the resulting set of lamination
parameters. Details on these feasible regions have been provided in Appendix B. Constraints corresponding
to the maximum allowable normal and shear strains of the material were applied to ensure that strains
evaluated within the structure are always below these limits. The maximum allowable shear strains
are evaluated from the material properties of the composite material being used. Because the stacking
sequence of the composite materials is not known during the optimization procedure, it is not possible to
use the classical composite strength failure criteria. Instead, the method of IJsselmuiden et al. [66] is used,
which is expressed in the lamination parameter design space and is based on the Tsai-Wu failure criterion.
This method guarantees that structural failure does not occur for any set of ply orientations. During this
project, the implementation of this theory from Khani et al. [67] has been used, which defines the failure
envelope using the material stiffness invariants that were presented in Section 2.2.1. Lastly, the power
consumption of the propeller was constrained by the maximum shaft power of the reference aircraft under
consideration, and blade tip displacements were constrained to prevent excessive deformations. Table 3.2
contains a summary of the inequality constraints that were applied.



3.1. FORMULATING THE OPTIMIZATION PROBLEM 43

Table 3.2: A list of inequality constraints used during the optimization procedure.

Category Constraint Name

Structural

• Maximum normal strain (tensile), εT
max

• Minimum normal strain (compressive), εC
min• Maximum shear strain, τmax

• Maximum tip displacement, pmax

Feasibility • Feasible regions for lamination parameters (see Equation (B.11))

Performance • Maximum shaft power, Pmax

EQUALITY CONSTRAINTS

The only equality constraints considered during the optimization are for the thrust that is produced by the
propeller. By maintaining a constant thrust during the optimization, it is ensured that any decreases in
power consumption that the optimizer obtains will not come at the cost of a decrease in thrust. In doing
this, it is ensured that the optimized propeller can still be used to meet the requirements of the mission.
By minimizing the power consumption for a constant thrust, the goal of the optimizer is to effectively
increase the efficiency of the propeller (propulsive efficiency during positive thrust conditions and turbine
efficiency during energy-harvesting conditions).

3.1.4. NORMALIZATION
To ensure that the optimizer can correctly assess the sensitivities of the design variables, it is essential
that the design vector, objective function, and constraints are normalized so that all variable values and
function outputs are within approximately the same orders of magnitude.

DESIGN VARIABLES

All design variables of the optimization have been normalized to take values between -1 and 1. For this
normalization, the mean value between the bounds of each design variable is computed first as follows.

¯
Φ0 = 1

2

(
¯
ΦL +

¯
ΦU

)
As shown in Equation (3.4), the normalization of the design vector is computed by subtracting the

midpoint between the upper and lower bounds of the design vector from the original design vector and
then multiplying this value by a so-called normalization matrix NNN. The normalization matrix in this case
is defined as shown in Equation (3.5).This normalization guarantees that all design variables are between
-1 and 1, with the midpoint between the upper and lower bounds occurring at a normalized value of 0.

ˆ
¯
Φ=NNN (

¯
Φ−

¯
Φ0) (3.4)

NNN = diag
{(

1
2

(
¯
ΦU −

¯
ΦL

))−1}
(3.5)

CONSTRAINT FUNCTIONS

Each constraint function is normalized by their limit values, as shown below.

Maximum Normal Strain (Tensile):
εT −εT

max

εT
max

≤ 0 (3.6)

Minimum Normal Strain (Compressive):
εC −εC

min

εC
min

≤ 0 (3.7)

Maximum Shear Strain:
τ−τmax

τmax
≤ 0 (3.8)

Maximum Tip Displacement:
p− pmax

pmax
≤ 0 (3.9)

Maximum Shaft Power:
P −Pmax

Pmax
≤ 0 (3.10)

Thrust Equality Constraints:
T −Trequired

Trequired
= 0 (3.11)
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OBJECTIVE FUNCTIONS

The objective function is the total mission energy, which is normalized by the value corresponding to the
rigid propeller, as shown in Equation (3.12). This normalization was selected because the rigid propeller
performance is considered as the baseline during this work.

f = E∣∣Erigid
∣∣ (3.12)

3.2. DESIGN STUDY OVERVIEW
A design study was performed to identify the effect of aeroelastic tailoring on performance. During the
design study, parameter studies were first performed to identify how performance varies with changes
in laminates. After completing the sensitivity studies, the propeller blade was optimized using the
framework that was described in Section 3.1. Results from this investigation were used to answer the
research questions. To summarize the design study that was completed during this project, this section
contains information on the reference aircraft configuration and mission, propeller blades and materials,
optimization cases, and the optimization routine that was applied.

3.2.1. PROPELLER OPERATING CONDITIONS
During the propeller optimization study, only one high-speed mission was defined using the Pipistrel
Panthera. This aircraft falls within the light category and was selected because it operates at relatively
high speeds and because hybrid- and full-electric versions of this aircraft are currently in development by
the manufacturer [68]. Physical dimensions and performance characteristics presented in this section
have been assumed to correspond to its full-electric variant. A mission profile defined by relatively higher
speeds was selected so that the loads encountered by the propeller would be relatively high. This enables
the maximum effect of aeroelastic tailoring to be relatively large. Additionally, it is anticipated that this
aircraft would primarily be used to perform climb-cruise-descent missions, which makes it suitable for
the chosen mission profile. To define the thrust requirements and operating conditions of the aircraft in
each mission segment, the methods applied in the M.Sc. theses of van Neerven [33] and Scholtens [34]
have been applied. Geometry and performance details for the aircraft under consideration are provided in
Table 3.3. Lastly, Figure 3.2 contains images of the Pipistrel Panthera for reference.

Table 3.3: A list of performance characteristics for the Pipistrel Panthera, used to motivate the definition
of a mission profile for the optimization study (considered primarily as a guideline).

Metric (at MTOM) Value [68]

Stall speed (flaps extended) 62 KEAS
Stall speed (flaps retracted) 68 KEAS
Manoeuvring speed 143 KEAS
Cruise speed 140 KEAS (55% power)
Never exceed speed 220 KEAS
Climb rate at best climb speed 5.8 m/s
Best climb speed 100 KEAS*

Range (with maximum payload) 1000 nm (1852 km)
Cruise condition for range calculation 155 KTAS, FL 120
Best glide ratio speed 85 KEAS*

Maximum power 200 kW (150 kW continuous)

Maximum takeoff weight, W 13300 N
Wing aspect ratio, AR 10.53
Wing taper ratio, λ 0.4*

Wing sweep, Λ 0.0◦

Wing span, b 10.9 m
Wing area, SW 11.2 m2

Fuselage width, dF 1.5 m

* Quantities marked with an asterisk have been estimated using values obtained for similar reference aircraft from [69].
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(a) Dimetric view. (b) Side view.

Figure 3.2: Images of the Pipistrel Panthera, the reference aircraft selected for this project [68].

OBTAINING DRAG AND GLIDE RATIO POLAR PLOTS

The first step to evaluating the mission performance of the Pipistrel Panthera is to obtain the drag and
glide ratio polars. For this, the potentially oversimplified relationship shown in Equation (3.13) has been
used from [69]. With this representation for the drag coefficient, the lift coefficient corresponding to the
minimum drag coefficient has been approximated as exactly zero, this is potentially inaccurate, as the
minimum drag coefficient may occur for a slightly non-zero lift coefficient. The approximation of the
drag polar using this approach requires the evaluation of the Oswald factor. The Oswald factor has been
calculated using the statistical method from Niţă and Scholz [70], which is provided in Equation (3.14),
Equation (3.15), and Equation (3.16). Because compressibility effects have been considered to be negligible,
ke,M has been set to 1. Lastly, ke,D0 has been set to 0.804 for general aviation aircraft [70].

CD = CDmin +
1

πAR e
C2

L = CDmin +kC2
L (3.13)

f (λ)= 0.0524λ4 −0.15λ3 +0.1659λ2 −0.0706λ+0.0119 (3.14)

ke,F = 1−2
(

dF

b

)2
(3.15)

e = ke,F ke,D0 ke,M

1+ f (λ) AR
(3.16)

To estimate the minimum drag coefficients for the Pipistrel Panthera, the best glide ratio speed was
substituted into Equation (3.17). This approximation may yield a very low precision, although it is
sufficient for this analysis, as it is only important that the propeller operating conditions defined for each
mission are realistic. The derivation for this expression has been left out of this report for brevity, although
it may be found in [69], starting from Equation (3.13). The best glide ratio may subsequently be evaluated
using Equation (3.18). This expression was used to verify that the minimum drag coefficient is reasonably
predicted, using the maximum glide ratio that is computed from Equation (3.13).
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Both van Neerven [33] and Scholtens [34] analysed the Pipistrel Alpha Electro in their work, which
has almost identical performance and geometry characteristics to the Velis Electro [71]. For this reason,
polar plots of the Velis Electro were also evaluated and compared to the results obtained by Scholtens [34]
to verify that the drag and glide ratio polars are being reasonably computed using the method proposed
in this section. Table 3.4 contains the calculated quantities that are required to construct the two-term
parabolic drag polar for both the Pipistrel Panthera and the Pipistrel Velis Electro. Using these quantities,
the drag and glide ratio polar plots for each aircraft have been shown in Figure 3.3.
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(a) Drag polar plots. (b) Glide ratio polar plots.

Figure 3.3: Estimated drag and glide ratio polar plots for the Pipistrel Panthera and Velis Electro.

The maximum glide ratio for the Velis Electro is reported by the manufacturers in [71] as having a
value of 15, whereas the value obtained using the method discussed in this section is 14.85. This level of
agreement is considered sufficient for this study. Values for the maximum glide ratio of the Panthera are
not reported by the manufacturers. For the Pipistrel Alpha Electro, Scholtens [34] obtained a value of
0.031 for the minimum drag coefficient and a value of 0.66 for the Oswald factor. The method applied by
Scholtens [34] is slightly different, although the polar plots are similar enough in appearance to verify
that the approach used in this work is sufficient for defining the operating conditions of the mission.

Table 3.4: Calculated quantities that were used to construct the polar plots shown in Figure 3.3.

Performance Metric Panthera Velis Electro (Verification Only)

k 0.041 0.036
CDmin 0.041 0.031

e 0.745 0.732

With reference performance and geometry data for the Pipistrel Panthera shown in Table 3.3, corre-
sponding to the polar data for the overall aircraft that is shown in Figure 3.3, it is now possible to calculate
the thrust requirements in each mission segment. A separate analysis was completed for each segment.

CLIMB ANALYSIS

A free-body diagram of the climbing aircraft is shown in Figure 3.4. From this diagram, the full equations
of motion are given as follows. These equations assume zero steady rotation around the global y-axis.

L−W cos
(
γcl

)+T sin(ε)= W
g

d
dt

(
V sin

(
γcl

))
(3.19)

−D−W sin
(
γcl

)+T cos(ε)= W
g

d
dt

(
V cos

(
γcl

))
(3.20)

Several simplifications have been made during this analysis to adapt the above equations to represent
a steady climbing flight. First, the time derivative of the flight velocity is assumed to be zero. Additionally,
the angle of attack and angle of incidence of the propeller are assumed to be negligible. With these
assumptions, the lift and drag of the aircraft in climbing flight are reformulated as shown in Equation (3.21)
and Equation (3.22). These expressions have been used to obtain the required thrust during the climb.

L =W cos
(
γcl

)
(3.21)

T =W sin
(
γcl

)+D (3.22)
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Figure 3.4: A free-body-diagram of an aircraft in a climb manoeuvre [69].

CRUISE ANALYSIS

A free-body-diagram of the aircraft in cruise is shown in Figure 3.5. From this diagram, the equations of
motion are provided in Equation (3.23) and Equation (3.24).

L =W (3.23)

D = T (3.24)

Figure 3.5: A free-body-diagram of an aircraft in cruise conditions [69].

DESCENT ANALYSIS

The equations of motion for the aircraft in descending flight, corresponding to Figure 3.6, are very similar
to the aircraft in climbing flight. Like before, the generalized equations have been provided below.

L−W cos
(
γdes

)+T sin(ε)= W
g

d
dt

(
V sin

(
γdes

))
(3.25)

−D+W sin
(
γdes

)+T cos(ε)= W
g

d
dt

(
V cos

(
γdes

))
(3.26)

The same simplifications as applied for the climbing aircraft have again been applied to result in
the following two expressions. The descent rate at zero negative thrust was calculated as 3.64 m/s for
the Pipistrel Panthera, with a corresponding descent angle of 4.87◦. The choice of a descent rate for
regeneration is largely arbitrary, although for safety and practical reasons, the maximum descent rate
was prevented from exceeding 5 m/s. A similar bound was applied by van Neerven [33]. An investigation
on the optimal descent rate for regeneration was considered outside the scope of this project, although this
should be considered in a future study. For this project, the descent rate was held constant.

L =W cos
(
γdes

)
(3.27)

D =W sin
(
γdes

)+T (3.28)
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Figure 3.6: A free-body-diagram of an aircraft during a descent [69].

TOP-LEVEL OPERATING CONDITIONS
As already mentioned, the three-segment mission was considered during the optimization study despite
the more precise representation that would be offered by the four-segment mission, which is also possible
to evaluate with the code that was developed. This decision was made because it is still possible to address
the main focus of this research with the less precise mission, although a more precise mission would be
useful to investigate in a future project. The averaged operating conditions considered in this project are
provided in Table 3.5 for the Pipistrel Panthera. The climb is assumed to be taking place at a constant
equivalent airspeed. The descent rate for regeneration is taken to be slightly greater than the descent
rate at the best glide ratio speed. The computed thrust requirements in each mission segment have been
provided in Table 3.5 as well, including their corresponding thrust coefficient, TC , values.

Table 3.5: Quantities defining the climb-cruise-descent mission used during the optimization study.

Operating Condition Value

Climb altitude 1000 m
Climb speed 55 m/s (107 KTAS)
Climb rate 5.5 m/s
Climb distance 20 km
Time spent in climbing flight 6 min
Climb thrust requirement 2585 N (TC = 0.230)

Cruise altitude 2000 m
Cruise speed 80 m/s (156 KTAS)
Cruise distances {0, 50, 100, 150, 200, 400} km
Time spent in cruise conditions {0, 10, 21, 31, 42, 83} min
Cruise thrust requirement 1780 N (TC = 0.083)

Descent altitude 1000 m
Descent speed 45 m/s (88 KTAS)
Descent rate 4.8 m/s
Descent distance 22 km
Time spent in descending flight 7 min
Descent thrust requirement -380 N (TC =−0.051)

3.2.2. PROPELLER BLADES AND MATERIALS CONSIDERED
The propeller blade used during this study is the three-bladed version of the TUD-XPROP, which is the
propeller that was used to verify that the aeroelastic analysis was implemented correctly in Section 4.3.
The main difference is that the propeller has a scale factor of 4.5 instead of 5 in this case to ensure that
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the diameter of the propeller matches the blade diameter of the referenced aircraft. A diagram of this
propeller is shown in Figure 3.7. Additionally, the number of elements used in both the structural and
aerodynamic models have been selected accordingly to maintain a low computational cost whilst ensuring
an acceptable level of precision. Table 3.6 contains details on the spacial discretization schemes used.

Figure 3.7: A diagram of the propeller blade geometry used during the optimization study.

The composite material chosen for all laminates of the propeller blade considered during the optimiza-
tion is AS4/APC2, all of its material properties are provided in Table B.3. This material was selected
because it has relatively low values for E11 and E22 in comparison to the other carbon fibres, whilst
maintaining a significant enough difference in stiffness between the two in-plane axes, thus enabling a
substantial amount of coupling between deformations in each degree of freedom.

Table 3.6: Parameters defining the discretization schemes applied during the optimization study.

Quantity Value

Maximum number of spanwise laminates 5
Number of chordwise laminates at each spanwise laminate location 1
Minimum number of structural beam elements 35
Minimum number of cross-sectional shell elements 100
Number of blade elements for the aerodynamic analysis 75
Angle of attack values used for polar plots (blade element theory) {-25◦, -24◦, . . . , 25◦}
Range of Reynolds numbers used for the polar plots (blade element theory) {1.0, 3.0, . . . , 99.0} ×105

3.2.3. OVERVIEW OF OPTIMIZATION CASES
The main purpose of the optimization study is to address the top-level research objectives, as provided in
Chapter 1. To address these objectives, the following goals have been defined for the optimization study.

(1) Design Space Exploration: Sensitivity studies with structural variables (i.e. ply orientations and
laminate thicknesses)

(2) Evaluate difference between laminate types and their potential to improve performance

(3) Identify the optimal design for each isolated mission segment and for the full mission

(4) Identify the effect of the cruise length on the result obtained from the optimization

(5) Evaluate the effect of aeroelastic tailoring on variable- and constant-pitch propellers

Sensitivity analyses and optimization studies have been constructed to satisfy the listed objectives. The
sensitivity studies were performed for the propeller operating at conditions that represent the propulsive
and regenerative case before completing the blade optimization. This was done to identify general design
trends and to explore the overall design space. For the sensitivity studies, effects of variations in ply
orientations on maximum deformations and overall performance have been investigated to identify trends
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with ply orientations. Additionally, blades with different laminate types have been analysed and compared
in both propulsive and operating conditions to identify in particular how the blade’s deformations and
performance differ when using either symmetric-unbalanced or symmetric-balanced laminates.

After developing an intuition for the propeller design problem, the optimization studies were completed
and the results were analysed to address the remaining objectives. First, each mission segment was
considered individually as the objective function in addition to the full mission with a varying cruise
distance to determine the optimal laminate configurations for maximum performance in climb, cruise,
and descent in comparison to the full mission. This investigation was used to quantify the effect of the
cruise length on the optimal blade structure, in addition to the extent that performance may be enhanced
as the cruise length increases. These optimization studies have been performed for both variable-pitch
and constant-pitch propellers. The rigid propeller performance at its best pitch setting has been used as
a baseline for comparisons with the flexible propeller performance during all investigations to prevent
the results from being biased. This difference in performance between flexible and rigid propeller blades
has been used to identify the extent that performance may be enhanced through aeroelastic tailoring.
Table 3.7 contains a list of all the cases that were considered during the optimization.

Table 3.7: An overview of the 15 optimization cases considered during this project.

# Laminate Type Objective Type Cruise Lengths (km) Propeller Type

1 1, 5 Climb Only N/A N/A
2 1, 5 Cruise Only N/A N/A
3 1, 5 Descent Only N/A N/A
4 1, 5 Full Mission 0, 50, 100, 150, 200, 400 CPVR, VPVR

3.2.4. APPLIED OPTIMIZATION METHOD
The propeller optimization was completed using fmincon, a gradient-based optimization function that is
built into MATLAB. Sensitivities are computed using a numerical forward-differencing scheme, and the
sequential quadratic programming (SQP) algorithm was found to be the most suitable for all optimization
cases under consideration. Figure 3.8 contains a UML activity diagram of the optimization procedure.
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Figure 3.8: A UML activity diagram of the aeroelastic optimization procedure.

https://www.mathworks.com/help/optim/ug/fmincon.html


4
VERIFICATION AND VALIDATION

Verification and validation of the aeroelastic analysis framework was completed in three steps during
this project. First, the aerodynamic analysis routine was verified against results from an existing BEM
code and validated against experimental data in Section 4.1. The structural model was then verified
through comparisons with the commercial finite element code, ABAQUS, in Section 4.2. Validation of
the structural model was determined to not be necessary for this project, as near-perfect agreement was
obtained between results from the present method in comparison to ABAQUS, and most of the structural
analysis routine was left unchanged from the work of De Breuker [48] and Werter [30]. Finally, verification
of the tightly coupled aeroelastic analysis routine was completed and documented in Section 4.3 through
comparisons with a loosely coupled method. Validation of the aeroelastic analysis was not performed
because it was not possible to obtain experimental data to compare with.

4.1. PROPELLER AERODYNAMIC MODEL
The BEM code that was used during this project was previously validated by Goyal et al. [10] through
comparisons to experimental data obtained with the TUD-XPROP propeller (shown in Appendix A). The
authors considered only a pitch setting of 15◦ during their comparisons, although the model’s sensitivity
to changes in pitch are important for this project. Thus, further comparisons have been made at pitch
settings between 10◦ and 30◦ using the experimental results of Nederlof et al. [13]. To ensure that the
aerodynamic model will be suitable for optimization, computational cost was significantly reduced by
decreasing the amount of data that is used for evaluating the lift and drag coefficients corresponding to
each blade element. Goyal et al. evaluated the lift and drag coefficient for angles of attack between −25◦
and 25◦ with increments of 0.1◦, whereas polar plots were generated using angles of attack between −24◦
and 24◦ with increments of 3◦ during this work. Comparisons were made with the results obtained by
Goyal et al. [10] to demonstrate that this adjustment does not noticeably affect the model’s precision.

4.1.1. INPUT DATA
The TUD-XPROP-3 propeller was studied for all results that have been presented. Geometric information
has been provided for this propeller in Appendix A. This includes details on the outer diameter, twist
and chord distributions, and airfoil shapes at varying spanwise locations. Additionally, all results have
been collected for a fixed freestream velocity of V∞ = 30 m/s. All BEM calculations were performed using
50 elements with widths defined by a cosine spacing law from the blade root to tip, and details on the
experimental setup that was used to collect the data that was used for comparison is provided by Nederlof
et al. in [13]. Finally, Table 4.1 contains details on the ranges of operating conditions being considered.

Table 4.1: Advance ratio sweeps for different pitch settings at V∞ = 30 m / s.

β0.7 = 10◦β0.7 = 10◦β0.7 = 10◦ β0.7 = 15◦β0.7 = 15◦β0.7 = 15◦ β0.7 = 20◦β0.7 = 20◦β0.7 = 20◦ β0.7 = 25◦β0.7 = 25◦β0.7 = 25◦ β0.7 = 30◦β0.7 = 30◦β0.7 = 30◦

0.50≤ J ≤ 1.50 0.55≤ J ≤ 1.50 0.65≤ J ≤ 1.90 0.80≤ J ≤ 2.00 0.90≤ J ≤ 2.10

51
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Because experimental lift and drag coefficient curves do not exist for the airfoils of the TUD-XPROP
propeller, all results have been collected through numerical calculations. It is recommended by the
researchers who created RFOIL to fix the location that the transition from laminar to turbulent flow
occurs at [11]. However, the location of transition has not been fixed during this work, and instead the
well-established eN method was used to predict the location of transition to match the approach of Goyal
et al.. A critical amplification factor of N = 4.5 was used during this project, which was also used by Goyal
et al.. This method may lead to a decrease in accuracy because RFOIL is incapable of accounting for the
effect of rotation on transition. Nevertheless, an investigation involving the effect of the transition location
on propeller performance is considered outside the scope of the present work. Sample lift and drag polar
plots are shown in Figure 4.1. Lift and drag has been computed within these plots at three radial locations
to represent the blade root, middle, and tip. Results have also been shown for low, medium, and high
Reynolds numbers to indicate the effect of variations in Reynolds number on lift and drag coefficients.

(a) Cl vs. α. (b) Cd vs. α.

Figure 4.1: Plots of the lift and drag coefficient for varying Reynolds numbers and radial locations.

As expected, the maximum lift coefficient tends to increase and the drag coefficient tends to decrease
with increasing Reynolds number. Additionally, despite the differing airfoils at each radial position, the
stall-delay effect is clearly present, as the angle of attack where separation occurs tends to decrease with
increasing radial position. The underlying physical mechanism is caused by the outward displacement of
fluid particles, which leads to a thinner boundary layer at the root section. This effect is more noticeable at
positive angles of attack, as the positively cambered airfoils of the propeller are not designed to operate at
negative angles of attack. Moreover, because increasing the Reynolds number decreases viscous effects, the
effect of blade rotation should become less pronounced with increasing Reynolds number. This is indeed
indicated by a less noticeable delay in separation with decreasing radial position for the high Reynolds
number results in comparison to the low Reynolds number results. The decrease in drag coefficient with
decreasing radial position also appears less apparent at high Reynolds numbers.

4.1.2. RESULTS
Figure 4.2 contains plots of the calculated power and thrust coefficient of the propeller at varying pitch
angles, in comparison to the experimental results collected by Nederlof et al. [13] and the calculated results
(using BEM with rotational effects included) from Goyal et al. [10].

At all pitch settings that were considered, the calculated power and thrust coefficients appear to exhibit
the same general trends as the experimental data at operating conditions corresponding to positive and
low negative power coefficients. Although, with more negative thrust settings, BEM tends to overpredict
the amount of power that is recovered by the propeller. This is most likely caused by an incorrect
prediction in the lift and drag coefficients at large negative angles of attack. These discrepancies grow as
the amount of flow separation increases because RFOIL cannot be used to predict results in regions of
completely separated flow, and generally can only provide an acceptable result for attached and slightly
separated flows [11]. In regions of separated flow, the assumption of zero aerodynamic interaction between
neighbouring blade elements also becomes invalid [1]. The prediction of performance may be improved
by providing more accurate lift and drag polar input data at large negative angles of attack. This is not
possible for the propeller model under consideration, as experimental data for the airfoils does not exist.

https://www.esru.strath.ac.uk//EandE/Web_sites/09-10/MCT/html/Technical/rfoil.html
https://www.esru.strath.ac.uk//EandE/Web_sites/09-10/MCT/html/Technical/rfoil.html
https://www.esru.strath.ac.uk//EandE/Web_sites/09-10/MCT/html/Technical/rfoil.html
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Although it is not possible to accurately predict performance at very high thrust settings, an acceptable
range of advance ratios has been considered for each pitch setting to limit the amount of blade loading,
and excellent agreement with the calculated results from Goyal et al. [10] has been demonstrated, which
indicates that the BEM analysis is performing as expected. Lastly, it is undesirable to operate in the
presence of large amounts of negative thrust, and thus the required limitations on advance ratios will not
noticeably hinder this project, and realistic bounds have accordingly been set during the optimization.

(a) CP vs. J. (b) CT vs. J.

Figure 4.2: Plots of the power and thrust coefficient for varying blade pitch settings in comparison to
experimental results from [13] and calculated results from [10] (using the same BEM methodology).

Efficiency curves have been plotted in Figure 4.3 for varying pitch settings in comparison to the
experimental results of Nederlof et al.. Because the energy harvesting efficiency is simply a normalization
of the power generated by the propeller, the same conclusions drawn from the comparison of the power
coefficients may be drawn from the comparison of the energy harvesting efficiencies.

(a) ηP vs. J. (b) ηeh vs. J.

Figure 4.3: Calculated efficiency curves in comparison to experimental results from [13].

The trends in propeller efficiency appear consistent between the calculated and experimental results.
However, there is an offset in advance ratio between the two sets of results, which appears to increase with
increasing pitch setting. This offset also appears to be present in the thrust and power coefficient results.
The reason for this has been hypothesized by Goyal et al. as being due to differences in the location of
transition. In this case, the real-life model may encounter an earlier transition, which would decrease
the lift coefficient and increase the drag, ultimately resulting in a decreased efficiency and thrust. The
power coefficient can either decrease or increase, depending on the relative contributions from lift and
drag components towards the torque. This effect cannot be mitigated unless a more accurate method of
calculating lift and drag polar plots is applied, such as if experimental polar plots were obtained.

To motivate the selection of upper-limits on the advance ratio at each pitch setting, Figure 4.4 contains
plots of the percent error between the experimental results and the calculated results for the thrust and
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power coefficients. From these results, it was considered reasonable to maintain a maximum error of
approximately 20%, as errors in the power coefficient appear to grow quite fast beyond this point. Errors in
the thrust coefficient appear to always remain within an acceptable range, despite relatively large amounts
of negative thrust being produced at the maximum advance ratio that the BEM model is considered to be
valid for at each pitch setting. Table 4.2 contains the maximum advance ratios that will be considered
at each pitch setting. The chosen upper limits on advance ratio also enable the peak energy harvesting
efficiency to be included at all pitch settings, as shown in Figure 4.3.

Table 4.2: Maximum advance ratios for different pitch settings at V∞ = 30 m / s.

β0.7 = 10◦β0.7 = 10◦β0.7 = 10◦ β0.7 = 15◦β0.7 = 15◦β0.7 = 15◦ β0.7 = 20◦β0.7 = 20◦β0.7 = 20◦ β0.7 = 25◦β0.7 = 25◦β0.7 = 25◦ β0.7 = 30◦β0.7 = 30◦β0.7 = 30◦

J ≤ 1.2 J ≤ 1.4 J ≤ 1.6 J ≤ 1.7 J ≤ 1.9

(a) Power: 100×
∣∣∣(Cexp.

P −Ccalc.
P

)
/Cexp.

P

∣∣∣ (b) Thrust: 100×
∣∣∣(Cexp.

T −Ccalc.
T

)
/Cexp.

T

∣∣∣
Figure 4.4: Percent error between calculated and experimental power and thrust coefficient results

(corresponding to the results shown in Figure 4.2) at varying pitch settings.

Finally, load distributions obtained by Goyal et al. have been reproduced using the present calculation
approach in Figure 4.5. In addition to the results shown in Figure 4.2, the results shown in Figure 4.5
indicate that the load distributions obtained with the present calculation method are in close agreement
with the BEM results obtained by Goyal et al.. The result from RANS indicates that BEM tends to
overpredict loads in the presence of separated flow. Furthermore, the characteristic of the blade load
distribution is only poorly predicted at an advance ratio of 1.60, which is very high anyway.

(a) Power coefficient distributions. (b) Thrust coefficient distributions.

Figure 4.5: Thrust and power coefficient distributions computed using the current method and compared
with BEM and RANS results obtained by Goyal et al. [10] (β0.7 = 15◦).
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4.2. STRUCTURAL MODEL
The linear and nonlinear structural analysis programs were verified by considering three simple cantilever
beam models. All details on the three models are shown in Table 4.3 and Table 4.4.

First, a cantilever box beam with a point force acting at the tip along the global z0-axis and subjected to
centrifugal forces (due to rotation about the z0-axis) was analysed. This case was considered to ascertain
that the centrifugal force calculation was implemented correctly, and that the nonlinear analysis is capable
of capturing the spin-stiffening effect. Because it is possible to define a structure with or without spars,
the box-beam geometry was selected to ensure that the spars are being defined correctly. The second case
that was analysed is identical to the first, except a constant distributed transverse load is applied through
the full length of the beam along the z0-axis instead of the point force at the tip of the beam. This load case
represents the actual loading that will be encountered by the propeller blade, as the aerodynamic force
will generate a distributed force and pitching moment. Through this case, it was shown that the structural
model appropriately represents loads that will be typically encountered by the structure. The third case
features the same load case as the first case, except the box beam is subjected to a pitch setting that varies
between 0◦ and 60◦. This model was analysed to verify that the structural analysis continues to perform
correctly for geometries of varying pitch setting. In cases 1 and 2, the applied forces act along the ẑ0-axis,
while in case 3, the applied force rotates with the beam as it changes in pitch setting. Moreover, applied
forces do not follow pitch deformations in all cases. Cases 1 and 2 were analysed at rotational speeds
ranging from 0 through 100 RPS, with increments of 10 RPS. Case 3 was analysed only at 100 RPS, at
pitch settings ranging from 0◦ through 60◦, with increments of 10◦.

Table 4.3: Geometry information for each case that was analysed to verify the structural model.

Case Material Profile Height (mm) Width (mm) Thickness (mm) Length (mm)

1 Aluminium Rectangular 60 110 10 1200
2 Aluminium Rectangular 60 110 10 1200
3 Aluminium Rectangular 60 110 10 1200

Table 4.4: Loading information for each case that was analysed to verify the structural model.

Case Rotation Rate (RPS) Tip Force (N) Distributed Load (N/m) Pitch Setting (ooo)

1 0, 10, . . . , 100 3000 − 0
2 0, 10, . . . , 100 − 5000 0
3 100 3000 − 0, 10, . . . , 60

The height and width dimensions provided in Table 4.3 denote the outermost dimensions. Images
indicating each beam model’s geometry and loading (generated using PROTEUS) are shown in Figure 4.6.
The structural mesh has 200 elements of equal length in both ABAQUS and PROTEUS, as this grid size
was found to provide a sufficient level of precision in all three cases.

(a) Cases 1 and 3 (0◦ pitch) (b) Case 2

Figure 4.6: Beam models that were analysed to provide verification for the structural analysis.
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4.2.1. RESULTS
Reaction forces at the beam root, the tip deformations, and the full beam deformations are compared in
this section. Components that have not been plotted in this section are small and thus provide a negligible
contribution. Figure 4.7 contains plots of the reaction forces acting through the three principal axes of the
global coordinate system for an increasing rotational velocity in cases 1 and 2, and for a changing axis of
rotation in case 3. In all results shown, the percent error is below 1%, which verifies the proposed method.

(a) Case 1 x0-component (b) Case 1 y0-component (c) Case 1 z0-component

(d) Case 2 x0-component (e) Case 2 y0-component (f) Case 2 z0-component

(g) Case 3 x0-component (h) Case 3 y0-component (i) Case 3 z0-component

Figure 4.7: Reaction forces obtained for case 3 for a range of pitch settings.

Figure 4.8 contains plots of the root bending moment about the x0-axis for cases 1 and 2, and Figure 4.9
contains plots of the root bending moment about the x0- and z0-axes for case 3.

(a) Case 1 (b) Case 2

Figure 4.8: Root bending moment plots about the global x0-axis for cases 1 and 2.
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(a) Moment about the global x0-axis (b) Moment about the global z0-axis

Figure 4.9: Root bending moment plots for case 3.

As expected, the reaction forces in the global x̂0 and ẑ0 axes remained constant for case 1 and case
2, since they are orthogonal to the axis of rotation. The reaction force in the y0-axis naturally increases
in magnitude as the rotation rate increases. Because the centrifugal force is proportional to the squared
rotation speed, the reaction force in the y0-axis grows quadratically. For case 3, the reaction forces in the
ẑ0-axis decreases and the reaction force in the x̂0-axis increases as the pitch setting increases because
the applied force vector becomes more aligned with the global x̂0-axis with increasing pitch setting. The x
reaction force also grows in magnitude due to the centrifugal forces that act with increasing magnitude
along the x̂0-axis, as the x-distance between the deformed beam axis and the axis of rotation increases.
This effect becomes more significant with increasing pitch setting, as deformations in the x̂0 axis increase
with increasing pitch setting. The linear analysis is incapable of accounting for this effect, since loads are
only computed for the undeformed beam geometry, whereas the nonlinear procedure involves iteratively
recalculating loads and deformations. Thus, the large difference in magnitude observed between linear
and nonlinear reaction forces in the x̂0-axis is entirely due to centrifugal forces. Because the centrifugal
force acts along the ẑ0-axis, there is no difference between the linear and nonlinear z reaction forces, as the
centrifugal force will not act in this direction. The difference in x root bending moment between the linear
and nonlinear analysis is directly caused by the centrifugal stiffening effect. The resultant centrifugal
force acts radially relative to the ẑ0 axis, and thus does not contribute to the moment about the ẑ0-axis.

Plots of the deformations over the full length of each beam are shown in Figure 4.10 and Figure 4.11.
Figure 4.12 through Figure 4.14 subsequently contain plots of the tip displacement of each beam model in
global coordinates. It is shown that the nonlinear analysis is capable of capturing the spin-stiffening effect,
as deformations are significantly reduced in comparison to the linear case. The physical interpretation of
the deformations identically follows the reasoning that was provided for the calculated reaction forces.

(a) Case 1 (b) Case 2

Figure 4.10: Full beam deformations for cases 1 and 2 at two different rotation speeds (not to scale).
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(a) y0-component (b) z0-component

Figure 4.11: Full beam deformations for case 3 at a pitch angle of 30◦ (not to scale).

(a) x0-component (b) y0-component (c) z0-component

Figure 4.12: Calculated tip displacement values for case 1 over a range of rotation rates.

(a) x0-component (b) y0-component (c) z0-component

Figure 4.13: Calculated tip displacement values for case 2 over a range of rotation rates.

(a) x0-component (b) y0-component (c) z0-component

Figure 4.14: Calculated tip displacement values for case 3 over a range of pitch settings.
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4.3. AEROELASTIC ANALYSIS PROCEDURE
Due to a shortage of available experimental results to compare with during the validation of the aeroelastic
analysis, verification was performed through comparisons to a loosely coupled method that proceeds by
iteratively running the structural and aerodynamic analyses separately until the difference between
deformations computed during two subsequent iterations is sufficiently small. This approach to providing
validation for the aeroelastic analysis was considered sufficient because both the aerodynamic and
structural models have already been validated, and thus the final remaining step is to demonstrate that
the iterative scheme discussed in Section 2.3 is performing as intended. The loosely coupled method is
very similar to the methods applied by Khan [4] and Sodja et al. [3], which do not require derivatives of
aerodynamic forces with respect to structural degrees of freedom, and it proceeds as follows.

(1) Provide model inputs and initial conditions.

(2) Calculate aerodynamic and centrifugal loads.

(3) Apply loads to nodes of the structural mesh.

(4) Compute deformations using the finite element method.

(5) Modify the geometry input to the aerodynamic model (twist distribution and blade axis).

(6) If differences in deformations between subsequent iterations are above the defined tolerance,
recompute aerodynamic loads. Otherwise, evaluate performance and end calculations.

The three-bladed version of the TUD-XPROP propeller was analysed, as shown in Figure 4.15. Details
on the structure and loading considered are provided in Table 4.5 and Table 4.6. Details on the lamination
parameter values considered in this case have also been provided in Table 4.7, corresponding to the layup
stacking sequence indicated in Equation (4.1). All ply angles are defined relative to the spanwise axis of
the blade, positive towards the trailing edge for the upper and lower surfaces, and positive downwards for
the spar webs.

S =
{

0◦ 15◦ 30◦ 30◦ 45◦ 45◦ 60◦ 60◦ 75◦ 90◦
}

s
(4.1)

Figure 4.15: A visual depiction of the geometry that was used during verification of the aeroelastic
analysis. Spar webs are shown in magenta, node locations of the structural mesh are shown in red,

structural surface skins are shown in yellow, and the exterior geometry is shown in blue. The coordinates
denoted by (X , Y , Z) correspond to the

(
eb

1 , eb
2 , eb

3
)

coordinates from the corotational framework.
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The front and rear spar webs were placed as near as possible to the leading and trailing edges within
each blade section to prevent numerical difficulties, since the airfoils of the TUD-XPROP do not have a
closed trailing edge. Moreover, each surface of the structure was defined using one constant thickness
laminate, meaning that four laminates were used to describe the blade. Lastly, 35 linearly spaced beam
elements were used for the structural analysis, 75 cosine-spaced elements were used for the BEM analysis,
and each 3D structural cross-section was represented with 100 shell elements.

Table 4.5: Structural information for the cases analysed to verify the aeroelastic model.

Case Material Geometry Front Spar (%c%c%c)a Rear Spar (%c%c%c)a Laminate Thickness (mm)

1 AS4 / APC2 TUD-XPROP 0.02 0.90 0.75
2 AS4 / APC2 TUD-XPROP 0.02 0.90 0.75

a Front and rear spars have been added because the cross-sectional modeller could not represent the stiffness properties of the
leading and trailing edge sections. This change should not have any noticeable influence on general design trends.

Table 4.6: Loading information for each case that was analysed to verify the structural model.

Case Rotor Speed (RPS) Advance Ratio Altitude (m) Pitch Setting (ooo)

1 40 0.75 0 25
2 20 2.00 0 25

Table 4.7: Lamination parameter values considered during verification of the aeroelastic analysis.

Surface ξA
1ξ
A
1ξ
A
1 ξA

2ξ
A
2ξ
A
2 ξA

3ξ
A
3ξ
A
3 ξA

4ξ
A
4ξ
A
4 ξD

1ξ
D
1ξ
D
1 ξD

2ξ
D
2ξ
D
2 ξD

3ξ
D
3ξ
D
3 ξD

4ξ
D
4ξ
D
4

Upper 0.000 -0.646 -0.100 0.000 -0.572 -0.569 0.056 0.390
Lower 0.000 0.646 -0.100 0.000 -0.572 0.569 0.056 -0.390
Spars 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Figure 4.16 contains diagrams of the loading encountered by the blade in both the regenerative and
propulsive operating conditions. Loads have been scaled for visibility, and mapped in three-dimensions
onto the three-dimensional deformed blade geometry. The same scale factors have been used for the loads
in both images, and thus it is possible to visually compare the magnitudes and directions of the loads
between the two cases, although the numerical values do not have any physical meaning. The shapes of
the force distributions and directions of the forces have additionally been represented accurately.

(a) Case 1 (propulsive operation) (b) Case 2 (regenerative operation)

Figure 4.16: Blade models that were analysed to provide verification for the aeroelastic analysis. The
coordinates denoted by (x , y , z) correspond to

(
eb

1 , eb
2 , eb

3
)

coordinates from the corotational framework.
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Deformations and performance characteristics were compared between the two methods. Figure 4.17
contains plots of the translational and rotational deformations obtained for each case in the coordinate
system shown in Figure 4.15, whereas Table 4.8 contains a summary of the overall propeller performance
evaluated for each case, including the percent difference between the results from each method. Excellent
agreement was obtained between the two analysis methods, with a maximum difference that is below
0.01% for all quantities of interest. This level of agreement is expected, as the main advantage of the
tightly coupled method is that it is faster and more robust in comparison to the loosely coupled method.

(a) Case 1: Translational deformations (b) Case 2: Translational deformations

(c) Case 1: Rotational deformations (d) Case 2: Rotational deformations

Figure 4.17: Translational and rotational deformations obtained for the two cases under consideration.

Table 4.8: Performance results obtained for cases 1 and 2, indicating close agreement.

Case Method CTCTCT CQCQCQ CPCPCP TCTCTC PCPCPC ηPηPηP ηTηTηT ηehηehηeh

1
Tightly Coupled 0.098 0.014 0.090 0.175 0.213 0.820 N/A N/A
Loosely Coupled

(Percent Difference)
0.098

(0.001%)
0.014

(0.001%)
0.090

(0.001%)
0.175

(0.001%)
0.213

(0.001%)
0.820

(0.001%)
N/A N/A

2
Tightly Coupled -0.218 -0.056 -0.354 -0.054 -0.044 N / A 0.809 0.111
Loosely Coupled

(Percent Difference)
-0.218

(0.010%)
-0.056

(0.010%)
-0.354

(0.010%)
-0.054

(0.010%)
-0.044

(0.010%)
N / A

0.809
(0.010%)

0.111
(0.010%)

Three-dimensional plots of the blade deformations in each case have been shown in Figure 4.18 to
indicate how deformations in each degree of freedom are represented on the three-dimensional structure.
The comparison shown in Figure 4.17 are considered sufficient for comparison, and thus the plots shown
in Figure 4.18 were generated using results from the tightly coupled analysis. Finally, plots of the
performance trends for the propeller configuration under consideration have been shown in Figure 4.19,
corresponding to constant rotor speeds of 40 and 20 RPS respectively in positive and negative thrust
conditions. These results have also been generated using the tightly coupled analysis, as the results shown
in Table 4.8 have been considered sufficient for comparisons.
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(a) Case 1 (propulsive operation)

(b) Case 2 (regenerative operation)

Figure 4.18: Three-dimensional plots of the deformations encountered by the propeller blade during
verification of the aeroelastic analysis, generated using the tightly coupled method. The coordinates

denoted by (x , y , z) correspond to the
(
eb

1 , eb
2 , eb

3
)

coordinates from the corotational framework.

(a) Case 1 (propulsive operation), Ω= 40 RPS (b) Case 2 (regenerative operation), Ω= 20 RPS

Figure 4.19: Performance curves for the flexible and rigid propellers used during verification of the
aeroelastic analysis, generated using the tightly coupled method.



5
AEROELASTIC TAILORING RESULTS

Results from the aeroelastic optimization and sensitivity studies have been presented in this chapter
to address the research objectives concerning this project. Section 5.1 contains results from the sensi-
tivity studies that performed through variations in ply orientation and laminate thickness. Section 5.2
subsequently contains all results from the optimization studies.

5.1. SENSITIVITY STUDIES
Before beginning the optimization, sensitivity studies were completed to develop an intuition for the
propeller design problem. The propeller blade discussed in Section 3.2.2 has been used during the
collection of results from the sensitivity studies to maintain commonality, as the same blade design
has been considered during the optimization as well as during the verification and validation studies
documented in Chapter 4. Ply orientations have been varied to identify their influence on performance
(Section 5.1.2) and deformations (Section 5.1.3). A summary of the main conclusions from the sensitivity
studies in terms of ply orientation is provided in Section 5.1.4. Lastly, the laminate thickness has been
varied for two constant stacking sequences in Section 5.1.5 to motivate the selection of bounds during the
optimization. Supplementary results to sensitivity studies are also shown in Appendix D.

5.1.1. LAMINATE INPUTS
The TUD-XPROP-3 propeller blade, with a structure that is defined by one laminate each on its upper and
lower surfaces, was analysed over a range of ply stacking sequences. The stacking sequence for the upper
surface and lower surface laminates is defined by Equation (5.1), with trends being evaluated at varying
angles given by Θ1 and Θ2. Results obtained from the sensitivity studies were divided into two groups.
In the first group, symmetric-balanced and symmetric-unbalanced laminates were exclusively studied
through variations in the ply orientations that respectively maintain the relations given by Θ1 =−Θ2 =Θ
and Θ1 =Θ2 =Θ. This sensitivity study was performed to directly identify differences between performance
trends corresponding to symmetric-balanced and symmetric-unbalanced laminates. After completing the
first sensitivity study, a second investigation was performed by continuously varying both Θ1 and Θ2 to
yield performance and deformation results corresponding to any combination of the two angles. This
investigation was completed to provide a more complete picture of the observed trends.

S =
{

90◦ 0◦ Θ1 Θ2 Θ1 Θ2 Θ1 Θ2 0◦ 90◦
}

s
Θ1 , Θ2 ∈

{−90◦ , −75◦ , ... , 90◦} (5.1)

Table 5.1: Structural and geometric inputs for the sensitivity studies in terms of ply orientation.

Material Geometry Spars (%c%c%c) Laminate Thickness (mm) Rotor Speed (RPS) Pitch Setting

AS4 / APC2 TUD-XPROP-3 0.02, 0.90 1.5 23 25◦

Note that all results presented in this section correspond to a pitch setting of 25◦, although additional results have been shown in
Appendix D for a pitch setting of 15◦ and a rotor speed of 30 RPS to indicate that the general trends remain unchanged.
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For the sensitivity study that was performed through variations in a single variable, Equation (5.2)
defines the ply stacking sequence for the symmetric-unbalanced laminates, and Equation (5.3) defines the
ply stacking sequence for the symmetric-balanced laminates. For all ply stacking sequences defined in this
section, ply angles are defined relative to the spanwise axis and positive towards the trailing edge.

Symmetric-Unbalanced: S =
{

90◦ 0◦ Θ Θ Θ Θ Θ Θ 0◦ 90◦
}

s
(5.2)

Symmetric-Balanced: S =
{

90◦ 0◦ Θ −Θ Θ −Θ Θ −Θ 0◦ 90◦
}

s
(5.3)

5.1.2. PERFORMANCE RESULTS
For the sensitivity studies evaluated through variations in a single variable, propeller performance was
evaluated through comparisons in thrust, power, and efficiency. For symmetric-unbalanced laminates,
changing the ply orientation directly changes the major principal stiffness axis, as it will always align with
the angle Θ=Θ1 =Θ2. Conversely, for symmetric-balanced laminates, the major principal stiffness axis
will either have an angle of 0◦ or 90◦, depending on which angle Θ=Θ1 =−Θ2 is closest to. Variations in
two ply orientations were subsequently performed to identify trends in the thrust and power coefficients
at an operating point characterizing either propulsive or regenerative mode.

VARIATIONS IN A SINGLE VARIABLE: BALANCED VS. UNBALANCED LAMINATES

Plots of the thrust and power coefficient are shown in Figure 5.1 for both symmetric-unbalanced and
symmetric-balanced laminates. The coefficients CT and CP were used since the rotor speed was held
constant when varying the advance ratio, and thus the normalization is constant over the full range of
operating points. This means that the trends in CT and CP are equivalent to trends in thrust and power.
Nevertheless, the coefficients TC and PC were found to exhibit the same trends corresponding to ply
orientation variations for both laminate types, their plots have been omitted for brevity.

(a) Thrust coefficient (symmetric-unbalanced laminates). (b) Thrust coefficient (symmetric-balanced laminates).

(c) Power coefficient (symmetric-unbalanced laminates). (d) Power coefficient (symmetric-balanced laminates).

Figure 5.1: Thrust and power coefficient plots obtained from sensitivity studies.

For symmetric-unbalanced laminates, Figure 5.1a and Figure 5.1c indicate that ply orientations
yielding a decrease in thrust coefficient will also cause the power coefficient to decrease. This was found to
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occur for negative ply orientations, which generally induce an aerodynamic wash-out effect as the blade
deforms. For symmetric-unbalanced laminates with positive ply orientations, an aerodynamic wash-in
effect is observed as the blade deforms. The wash-out effect resulting from negative ply orientations causes
the upward bending and shear deformations to result in leading-edge-down pitch rotations that reduce the
loading. At positive ply orientations, the wash-in effect causes upwards bending and shear deformations to
yield leading-edge-up pitch deformations that increase the amount of loading. Figure 5.1b and Figure 5.1d
indicate that variations in performance for symmetric-balanced laminates are significantly smaller in
comparison to performance variations for symmetric-unbalanced laminates. This difference is caused by
the absence of extension-shear coupling and the negligible bend-twist coupling, which may be discerned
from Figure D.9b, as ξA

2 and ξA
4 are zero, and ξD

2 and ξD
4 are small for all ply orientations.

For symmetric-unbalanced laminates, the largest decrease in thrust and power appears to be present
at ply orientations between −30◦ and −15◦. Conversely, the largest increase in thrust and power appears
to be present at ply orientations between 15◦ and 30◦. This is consistent with the observation that changes
in performance are closely linked to the presence of bend-twist and extension-shear coupling, as it is
indicated in Figure D.9 that coupling terms (given by ξA

2 and ξA
4 for extension-shear coupling, and ξD

2 and
ξD

4 for bend-twist coupling) are largest in magnitude between these angles. Trends for symmetric-balanced
laminates are difficult to discern in comparison to the trends observed for symmetric-unbalanced laminates.
This is because variations in performance are less sensitive to variations in ply orientation in this case. It
appears that the performance trends approximately overlap for ply orientations of 90◦ and 0◦, ±75◦ and
±15◦, as well as ±60◦ and ±30◦. The laminates corresponding to each pair are the same, except offset from
each other by 90◦. Thus, they have the same amount of torsional and shear stiffness. This is made clear in
Figure D.9b by following the curves corresponding to ξA

3 and ξD
3 , which exhibit the same characteristic

and appear to reach a minimum at ±45◦, suggesting that this is the point of maximum torsional stiffness.
This observation was made by recognizing through Equation (2.27) that ξA

3 and ξD
3 are the only terms that

respectively contribute to the shear and torsional stiffness, with increasing values for ξA
3 and ξD

3 yielding
a decrease in stiffness. Because the aerodynamic loads exert a leading-edge-down pitching moment on
the blade that increases with advance ratio (as indicated in Figure 5.8b), the loading is always decreased
relative to the rigid propeller and this difference in loading grows with increasing advance ratio.

The most important conclusion to draw from the results presented in Figure 5.1 is that the difference
in performance is largely dependent on pitch deformations of the propeller, and thus aeroelastic tailoring
may only be used to enhance performance through the inclusion of extension-shear or bend-twist coupling.
In this way, symmetric-balanced laminates provide a minimal change in performance because they provide
a negligible amount of bend-twist and extension-shear coupling. Symmetric-unbalanced laminates have
the potential to provide a substantial amount of bend-twist and extension-shear coupling, and thus may
yield a significant change in thrust and power that can either enhance or degrade performance, depending
on the type of coupling that is present. The application of symmetric-unbalanced laminates towards the
improvement of performance has accordingly been explored further through the optimization studies.

To clarify the trends in performance that have been shown up to this point, the power consumption
(CP ) has been plotted against the thrust (CT ) for both laminate types under consideration in Figure 5.2.

(a) CP vs. CT (symmetric-unbalanced laminates). (b) CP vs. CT (symmetric-balanced laminates).

Figure 5.2: Plots of power (CP ) as a function of thrust (CT ), obtained from sensitivity studies.
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The trends observed in Figure 5.2a confirm the previous finding of negative ply orientations providing
favourable performance in comparison to positive ply orientations, with the least amount of power being
consumed at a constant thrust in propulsive conditions and either more or equal energy being harvested in
regenerative conditions for ply orientations between approximately −30◦ and −15◦. Differences between
the flexible and rigid propeller performance are difficult to discern from Figure 5.2b, which is consistent
with the observations that were previously made corresponding to Figure 5.1.

Efficiency plots are shown in Figure 5.3 for both balanced and unbalanced laminates. The propeller
efficiency appears to either be increased or decreased depending on the ply orientations, although the
turbine efficiency appears to always decrease through the consideration of blade flexibility.

(a) Propeller efficiency (symmetric-unbalanced laminates). (b) Propeller efficiency (symmetric-balanced laminates).

(c) Turbine efficiency (symmetric-unbalanced laminates). (d) Turbine efficiency (symmetric-balanced laminates).

Figure 5.3: Propeller and turbine efficiency plots obtained from sensitivity studies.

The trends in efficiency vs. advance ratio are less clear than the trends in thrust and power. This is
because the blade loading is different at each ply orientation, for a constant advance ratio. Thus, it is
difficult to make a direct comparison in the efficiency yielded by each ply orientation when plotted against
advance ratio. For symmetric-unbalanced laminates, Figure 5.3a indicates that negative ply orientations
result in a larger efficiency in comparison to positive ply orientations, with a similar peak value that always
appears to exceed the peak efficiency yielded by the rigid propeller. For symmetric-balanced laminates,
the efficiency curves shown in Figure 5.3b are less spread apart due to the lack of extension-shear and
bend-twist coupling. For symmetric-unbalanced laminates, Figure 5.3c indicates that the turbine efficiency
is always lower or close to equivalent for the flexible propeller in comparison to the rigid propeller, although
the ply orientations between approximately −30◦ and −15◦ appear to exhibit the greatest turbine efficiency,
whilst also yielding favourable performance in propulsive conditions. For symmetric-balanced laminates,
Figure 5.3d indicates that the flexible propeller always underperforms in comparison to the rigid propeller,
with the best turbine efficiency unsurprisingly being demonstrated for ply orientations of ±45◦, which
exhibits performance trends that are closest to that of the rigid propeller.
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VARIATIONS IN TWO VARIABLES

To provide a more holistic representation of the general trends shown through the sensitivity studies
as a function of a single variable, sensitivity studies have also been performed by varying Θ1 and Θ2
in Equation (5.1) continuously. Figure 5.4 contains plots of the thrust and power coefficient at a single
constant advance ratio value that represents either propulsive or regenerative operating conditions. The
power coefficient has also been plotted at a single constant thrust coefficient value in either propulsive or
regenerative conditions in Figure 5.5. As expected, all plots are periodic across their four outer edges, and
they are also symmetric across the diagonal line connecting the bottom-left and top-right corners due to
the assumption of smeared material properties through the thickness of each laminate.

(a) ∆CT (propulsive conditions, J = 0.75). (b) ∆CT (regenerative conditions, J = 1.60).

(c) ∆CP (propulsive conditions, J = 0.75). (d) ∆CP (regenerative conditions, J = 1.60).

Figure 5.4: Plots of ∆CT or ∆CP obtained from sensitivity studies for the TUD-XPROP-3 made from
laminates defined by Equation (5.1) through variations of Θ1 and Θ2 at a constant advance ratio.

The trends shown in Figure 5.4 appear consistent with the trends that were observed in Figure 5.1.
In particular, when the thrust coefficient of the flexible blade is below that of the rigid blade, the power
coefficient of the flexible blade is also below that of the rigid blade, and vice versa. The local maximum
and minimum values of thrust and power also indeed appear to be present at 15◦ and −15◦, respectively.
Lastly, the variations in both thrust and power with ply orientation appear to exhibit the same general
trends, with all local maxima and minima appearing at the same locations. The general trends appear to
match the trends in pitch displacement that are shown in Figure 5.14a for propulsive conditions and in
Figure 5.14b for regenerative conditions. In particular, local minima and maxima in pitch deformations



68 5. AEROELASTIC TAILORING RESULTS

respectively correspond to local minima and maxima in both thrust and power. This result is consistent
with the observation that the performance trends are driven primarily by the presence of extension-shear
and bend-twist coupling, as pitch deformations are primarily driven by the presence of extension-shear or
bend-twist coupling since the aerodynamic and centrifugal forces acting on each blade produce a minimal
amount of torsional loading when no coupling is present.

The trends discussed in the previous paragraph may be further explained using velocity diagrams
shown in Figure 1.1. In general, if the twist changes to increase the angle of attack, then the magnitude
of both the lift and drag will increase. In propulsive mode, this always results in an increase in torque,
although it is possible for the thrust to decrease if the decrease in thrust caused by the drag rise is greater
than the increase in thrust caused by the increase in lift. Nevertheless, the change in drag is usually
significantly smaller than the change in lift (especially in the linear regime), as shown in Figure 4.1, and
thus the thrust usually decreases due to an increase in angle of attack. In regenerative conditions, a more
negative angle of attack generally causes the thrust to increase in magnitude, although the torque can
either increase or decrease depending on the relative change in lift and drag. The blades of the propeller
are designed exclusively for propulsive operation, and thus the cambered airfoils of the propeller may more
readily yield a change in drag that exceeds the change in lift (especially in the presence of flow separation).
For the operating conditions considered in this study, power still decreased as the thrust decreased.

Lastly, Figure 5.5 clearly indicates that ply orientations corresponding to favourable performance in
propulsive conditions also correspond to favourable performance in regenerative conditions. In propul-
sive conditions, Figure 5.5 confirms the trends that were observed in both Figure 5.1 and Figure 5.2,
where symmetric-unbalanced laminates with negative ply orientations were shown to decrease power
consumption, and particularly that at a constant thrust, the power consumption can be reduced. The
trends for symmetric-balanced laminates are also confirmed, where it is shown that the difference in power
consumption for a constant thrust is minimal. It is also clear from Figure 5.5 that ply orientations that
increase power consumption during propulsive mode also tend to reduce the amount of energy that may be
recovered during regenerative conditions; this trend was also observed in Figure 5.2. In particular, the
point of maximum power consumption (and minimum energy-harvesting) appears to be at approximately
Θ1 =Θ2 =+15◦. The point of minimum power consumption (and maximum energy-harvesting) conversely
emerges at approximately Θ1 =Θ2 =−15◦. The trends accordingly match trends in pitch deformations,
shown in Figure 5.14a (positive thrust) and Figure 5.14b (negative thrust), as pitch deformations that
yield an aerodynamic wash-out effect result in a decrease in power consumption, and vice versa.

(a) Propulsive conditions (CT = 0.12). (b) Regenerative conditions (CT =−0.12).

Figure 5.5: Plots of ∆CP obtained from sensitivity studies for the TUD-XPROP-3 made from laminates
defined by Equation (5.1) through variations of Θ1 and Θ2 at a constant thrust coefficient.

The most important conclusions to draw from the results presented for 2D variations, is that changes
in performance are closely linked to the blade’s pitch deformations. Additionally, that the presence of an
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aerodynamic wash-out effect leads to decreases in power consumption during propulsive conditions and
increases in power recovered during regenerative conditions. The opposite is also true, as the presence
of an aerodynamic wash-in effect tends to degrade performance. The largest improvement was notably
observed for symmetric-unbalanced laminates, with both ply angles having values of approximately −15◦.
The worst performance was seen also for symmetric-unbalanced laminates, with both plies having angles of
approximately +15◦. Additionally, it was unsurprisingly observed that ply orientations yielding a decrease
in thrust coefficient were also found to yield a decrease in power coefficient. Finally, all results from 2D
variations confirm the trends observed from the 1D variations shown previously.

5.1.3. DEFORMATION RESULTS
The blade’s deformations have been plotted as a percentage of its radius, and angular deformations have
been expressed in degrees. As discussed in Section 3.2.2, the TUD-XPROP-3 has been scaled by a factor of
4.5, and thus has an outer radius of 0.9144 m. This scale factor has also been used for the optimization,
and was selected to ensure that the size of the propeller matches the selected reference aircraft.

VARIATIONS IN A SINGLE VARIABLE: NOT INCLUDING AERODYNAMIC LOADS

Plots of the tip displacements for the case where the blade is subjected to zero aerodynamic loads (with
only the centrifugal force being applied) are presented in Figure 5.6. Rotational deformations of the blade
tip under zero aerodynamic loads are additionally shown in Figure 5.7.

(a) Symmetric-unbalanced laminates (Θ1 =Θ2). (b) Symmetric-balanced laminates (Θ1 =−Θ2).

Figure 5.6: Plots of the blade tip displacements obtained from sensitivity studies of the TUD-XPROP-3
when subjected to zero aerodynamic loads (Ω= 23 RPS), pmax =

√
p2

1 + p2
2 + p2

3.

(a) Symmetric-unbalanced laminates (Θ1 =Θ2). (b) Symmetric-balanced laminates (Θ1 =−Θ2).

Figure 5.7: Plots of the blade tip rotations obtained from sensitivity studies of the TUD-XPROP-3 when
subjected to zero aerodynamic loads (Ω= 23 RPS), pmax =

√
p2

1 + p2
2 + p2

3.

In the case where zero aerodynamic loads are present, the only force experienced by the blade acts
along its axis, since only the centrifugal loads are present. Large axial and bending deformations are
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present at 90◦, since the fibres are aligned with the chord line in this case, and thus the lowest amount
of structural stiffness acts along the axial direction to resist the applied load. Conversely, when the ply
orientations are all set to 0◦, the fibres are directly aligned with the blade axis, and thus the greatest
amount of stiffness acts in the axial direction, which directly opposes the applied load. Thus, the axial and
bending deformations are minimal when Θ= 0◦. The general trends in displacements and rotations are
different between the two laminate types under consideration, due to the presence of extension-shear and
bend-twist coupling. Finally, the axial deformations, p2, are minimal in all cases under consideration, as
the blade is highly resistant to deformations along this axis due to its construction.

For symmetric-balanced laminates, the amount of bend-twist coupling is small at all ply orientations
considered (with zero bend-twist coupling being present atΘ ∈ {0◦ , 90◦}), and there is always zero extension-
shear coupling. As a result of this minimal amount of coupling, it is unsurprising that the rotations about
the y-axis are small. The small amount of bend-twist coupling that is present prevents rotations about
the y-axis from being exactly zero, as bending deformations always appear to be present. The amount
of twist deformations present for symmetric-balanced laminates is still nevertheless small enough to be
disregarded. Bending deformations, p1 and p3, appear to always be within the same order of magnitude
for the two types of laminates under consideration, although it appears that the symmetric-balanced
laminates appear to yield less bending deformations over a broader range of ply orientations centred
around zero degrees in comparison to the symmetric-unbalanced laminates. For symmetric-balanced
laminates, bending deformations are smaller due to their lack of extension-shear coupling, which leaves
only the geometry to influence most of the shear deformations.

Plots of the rotations are more interesting in comparison to plots of the translations, as there is a clear
discrepancy in the rotations obtained about the y-axis between the two considered laminate types. The
symmetric-unbalanced laminates show a clear trend in twist deformations due to the strong presence of
bend-twist and extension-shear coupling. In particular, the extension-shear coupling causes the blade to
experience more shear deformations when subjected to an axial load. This increase in shear deformations
causes the blade to encounter more bending deformations, which then result in twist deformations
due to the presence of bend-twist coupling. The ply orientations corresponding to a maximum twist
deformation are approximately the angles corresponding to the most substantial amount of performance
variations found in Section 5.1.2 (with approximately Θ ∈ {−20◦ , +20◦}), and these angles appear to also
yield maximum extension-shear and bend-twist coupling according to Figure D.9. Upward bending and
shear deformations naturally yield leading-edge-down pitch deformations for negative ply angles, and vice
versa for positive ply angles. Finally, with significantly less extension-shear and bend-twist coupling, the
symmetric-balanced laminates conversely encounter a negligible amount of twist deformations.

VARIATIONS IN A SINGLE VARIABLE: BALANCED VS. UNBALANCED LAMINATES

The first set of deformation results presented with aerodynamic loads included concerns the plots of twist
deformations around the y-axis, shown in Figure 5.8 as a function of both the advance ratio and thrust
coefficient. These results are most interesting because they precisely indicate the presence and type of
bend-twist coupling, as the aerodynamic loads that the blade is subjected to provide a relatively small
pitching moment contribution when no coupling is present. These results may also be used to show the
pitch deformation tendencies of the blade in the absence of any coupling.

For symmetric-unbalanced laminates, the significant differences in pitch deformations are primarily
caused by the presence of extension-shear and bend-twist coupling. This is indicated by the significant
differences observed between symmetric-balanced and symmetric-unbalanced laminates. The negative
slope of pitch angle deformations with increasing advance ratio for symmetric-unbalanced laminates with
positive ply orientations shown in Figure 5.8a and Figure 5.8a indicate a positive bend-twist coupling,
where upward bending deformations (positive x- and z-displacements, as well as positive x- and negative
z-rotations) of the blade will yield leading-edge-up pitch rotations (positive rotations about the y-axis).
This is consistent with the results shown in Figure 5.1a and Figure 5.2a, which indicated positive ply
orientations to yield more thrust and power at a constant advance ratio in comparison to negative ply
orientations of the same absolute angle value. For laminates with negative ply orientations, the opposite
type of coupling exists, as indicated by the positive slope with respect to advance ratio, and upward
bending of the blade results in a node-down pitch deformation. For laminates with ply orientations of
equivalent values and opposite signs, the positive ply orientations have a slope with a slightly greater
magnitude in comparison to the negative ply orientations because the pitching moment due to aerodynamic
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forces tends to increase in the leading-edge-up direction with increasing thrust. Thus, using positive ply
orientations yields a similar structural response to the forward-swept blade that was studied by Sodja
et al. [3], whereas negative ply orientations yield a similar structural response to the backward-swept
blade that was investigated by Sodja et al. [3]. Lastly, the most significant amount of coupling was found
at ply orientations near 15◦ and 30◦. This is unsurprising, as the largest variations in performance were
identified near these angles in Figure 5.1a, Figure 5.2a, Figure 5.4, and Figure 5.5 from Section 5.1.2.

(a) Symmetric-unbalanced laminates (Θ1 =Θ2). (b) Symmetric-balanced laminates (Θ1 =−Θ2).

(c) Symmetric-unbalanced laminates (Θ1 =Θ2). (d) Symmetric-balanced laminates (Θ1 =−Θ2).

Figure 5.8: Blade tip torsional deformation plots obtained from sensitivity studies.

For symmetric-balanced laminates, Figure 5.8b and Figure 5.8d indicate that the propeller blade
structure encounters an aerodynamic wash-in effect with increasing thrust. This is expected since the
blade does not have any sweep and lean, and the aerodynamic forces generate a pitching moment that
increases in the leading-edge-up direction as the thrust increases because the structural axis is aft of
the quarter-chord line. As shown in Figure D.9, the point of maximum torsional stiffness corresponds to
ply orientations of ±45◦. As the laminates become more closely aligned, the torsional stiffness decreases,
and thus the magnitude of torsional deformations increases as ply orientations approach 0◦ and 90◦. As
already mentioned, the torsional stiffness is equivalent for laminates with ply orientations of 0◦ and
±90◦, ±15◦ and ±75◦, and ±30◦ and ±60◦, although the smaller angles in each pair have more stiffness in
bending and thus have a slightly decreased slope in comparison to their counterparts.

The remaining figures contain plots of bending deformations and tip displacements that were obtained
with aerodynamic loads included. Figure 5.9 and Figure 5.10 respectively contain plots of the blade tip
shear displacements and bending rotations with either symmetric-balanced or symmetric-unbalanced
laminates. Lastly, the net tip displacements are shown in Figure 5.11.

The bending and shear deformation plots follow analogous trends because bending deformations are
driven by shear deformations and vice versa. The discussion concerning bending and shear deformations
has thus been combined. With minimal extension-shear and bend-twist coupling for symmetric-balanced
laminates, magnitudes of deformations shown in Figure 5.9b, Figure 5.9d, Figure 5.10b, and Figure 5.10d
appear to be primarily affected by the changing stiffness contributions as the ply orientations change, and
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aligning laminates with the blade axis will increase the structure’s ability to resist axial and transverse
loads. Accordingly, laminates with Θ= 90◦ appear to yield the largest deformations because the majority
of the plies are aligned with the chord line of the blade and thus the stiffness in response to axial and
transverse loads will be the lowest. This is indicated as well in Figure D.8, which shows plots of the
stiffness rosettes, as the majority of the stiffness points in the ê0

2-axis for laminates with most plies that
have an orientation of Θ= 90◦. The magnitude of deformations also clearly decreases as the laminates
become more closely aligned with the structural axis of the blade (i.e. as Θ→ 0◦). This may also be
explained by the stiffness rosettes shown in Figure D.8, as the direction of maximum stiffness becomes
more closely aligned with the blade axis as ply orientations approach 0◦.

The changing stiffness with ply orientation appears to play a dominant role in the shear and bending de-
formation results obtained for symmetric-unbalanced laminates, as Figure 5.9a, Figure 5.9c, Figure 5.10a,
and Figure 5.10c indicate that the magnitude of deformations increases with ply orientation. Moreover,
Figure D.9 indicates that plane-stiffness terms for laminates with angles of either (+Θ , +Θ) or (+Θ , −Θ)
are equivalent, and thus differences in the deformations of symmetric-balanced and symmetric-unbalanced
laminates are driven by the extension-shear and bend-twist coupling. In particular, the presence of bend-
twist and extension-shear coupling causes positive ply orientations to experience a higher loading than
negative ply orientations of the same angle value. As a consequence, positive ply orientations yield larger
deformations at fixed operating conditions in comparison to their negative counterparts.

The main conclusions from the bending and shear deformations plots shown in Figure 5.9 and Fig-
ure 5.10 are that the stiffness increases as the ply orientations become more closely aligned with the
blade axis, and because the loading is negligibly affected by the ply orientation for symmetric-balanced
laminates, the change in deformations is equivalent for laminates with orientations of either (+Θ , −Θ)
or (−Θ , +Θ). This trend still exists for symmetric-unbalanced laminates, as the plane stiffness increases
equivalently as Θ→ 0◦+ or Θ→ 0◦−. The presence of bend-twist coupling affects the amount of loading that
the blade experiences, and thus unbalanced laminates with positive ply orientations will encounter larger
deformations than laminates with negative ply orientations of the same angle.

(a) Displacements along the x-axis (symmetric-unbalanced). (b) Displacements along the x-axis (symmetric-balanced).

(c) Displacements along the z-axis (symmetric-unbalanced). (d) Displacements along the z-axis (symmetric-balanced).

Figure 5.9: Blade tip shear deformation plots obtained from sensitivity studies.
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(a) Rotations about the x-axis (symmetric-unbalanced). (b) Rotations about the x-axis (symmetric-balanced).

(c) Rotations about the z-axis (symmetric-unbalanced). (d) Rotations about the z-axis (symmetric-balanced).

Figure 5.10: Blade tip bending deformation plots obtained from sensitivity studies.

Trends in net displacements shown in Figure 5.11a and Figure 5.11b are consistent with the trends
shown in Figure 5.9 respectively for both symmetric-unbalanced and symmetric-balanced laminates.
This is because displacements along the x- and z-axes always have a considerably larger magnitude
in comparison to displacements along the y-axis. Tip displacements along the y-axis have not been
plotted for this reason. To reduce the effect of the differences in loading between results at different ply
orientations, the net tip displacement been shown as a function of the thrust coefficient in Figure 5.11c for
symmetric-unbalanced laminates and in Figure 5.11d for symmetric-balanced laminates.

When plotting the tip displacement as a function of the advance ratio, it is clear that the magnitude
decreases as plies become more closely aligned with the blade axis. This is especially clear for the
symmetric-balanced laminates, which have minimal extension-shear and bend-twist coupling, although
the trend in maximum displacement is still apparent for symmetric-unbalanced laminates despite being
less clear due to the presence of bend-twist coupling. These trends have also been observed in Figure 5.9
and Figure 5.10, and their physical explanation is the same as provided in the discussion on these results.

In the plots of tip displacement vs. thrust, the more consistent loading makes it somewhat easier to ob-
serve the trend in magnitude with changing ply orientation. This is especially true for symmetric-balanced
laminates, where it has been shown in Figure 5.2b that the power coefficient is quite similar between each
ply orientation for a constant thrust coefficient (especially in propulsive conditions), indicating a similar
amount of loading at each constant thrust coefficient. For symmetric-unbalanced laminates, Figure 5.2a
indicated a much larger difference in power coefficient for a constant thrust coefficient (especially in
propulsive conditions), suggesting more considerable differences in the amount of loading encountered
for symmetric-unbalanced laminates of differing ply orientations. Lastly, the displacement magnitude
appears to vary linearly with thrust coefficient for both laminate types considered.

The deformations of positive ply orientations being notably more sensitive to changes in performance
in comparison to negative ply orientations of the same angle value causes the point of minimum tip
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displacement to be different for different ply orientations. In particular, the advance ratio and thrust
coefficient of minimal tip displacements are both approximately coincident for all symmetric-balanced
laminates considered, whereas the symmetric-unbalanced laminates with positive ply orientations reach
minimal deformations at lower advance ratios and higher thrust coefficient values in comparison to the
negative ply orientations. This is because positive ply orientations have an aerodynamic wash-in effect,
whereas negative ply orientations have a negative wash-out effect. Indeed, the local minima are spread
symmetrically, with the lowest advance ratio (and highest thrust) occurring for the ply orientation of +15◦,
and the highest advance ratio (and lowest thrust) occurring for the ply orientation of −15◦. The difference
in sensitivity is strongest between ply orientations of −15◦ and +15◦, and it is least apparent between
ply orientations of −75◦ and +75◦. This is consistent with the fact that the most amount of bend-twist
coupling was found for symmetric-unbalanced laminates with lower ply orientations near 15◦, and the
least amount of coupling being present at higher ply orientations towards 90◦. Differences in slope for
tip displacement plots of symmetric-balanced laminates are purely affected by the changing stiffness
properties, as the points of minimum tip displacement (when plotted against both thrust and advance
ratio) are approximately coincident for all ply orientations considered.

(a) Symmetric-unbalanced laminates (Θ1 =Θ2), net blade tip
displacements vs. advance ratio.

(b) Symmetric-balanced laminates (Θ1 =−Θ2), net blade tip
displacements vs. advance ratio.

(c) Symmetric-unbalanced laminates (Θ1 =Θ2), net blade tip
displacements vs. thrust coefficient.

(d) Symmetric-balanced laminates (Θ1 =−Θ2), net blade tip
displacements vs. thrust coefficient.

Figure 5.11: Blade tip displacement plots obtained from sensitivity studies, pmax =
√

p2
1 + p2

2 + p2
3.

VARIATIONS IN TWO VARIABLES: NOT INCLUDING AERODYNAMIC LOADS

To further elucidate the trends that were observed concerning the deformations for different laminate
types and ply orientations, continuous variations of two ply orientations, Θ1 and Θ2 corresponding to
Equation (5.1), were performed analogous to the approach that was taken for investigating variations in
performance from Section 5.1.2. Like the variations in a single variable that were shown in the previous
two sections, plots of deformations under zero aerodynamic loads are first presented in Figure 5.12.

Figure 5.12a confirms the plot shown in Figure 5.6, as the tip displacement appears to decrease
as ply orientations become more closely aligned with the blade axis, with minimal tip displacements
corresponding to the laminate with most plies having an angle of 0◦. The plot of torsional deformations
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shown in Figure 5.12b indicates trends of ply orientations corresponding to maximum extension-shear and
bend-twist coupling, which match the general trends shown in Figure 5.4 and Figure 5.14. As seen in other
results, the ply orientations of maximum coupling are approximately −20◦ and +20◦. This also confirms
the trend shown in Figure 5.7, which showed significant torsional deformations for symmetric-unbalanced
laminates and minimal torsional deformations for symmetric-balanced laminates, indicating a strong
dependency on the presence of extension-shear and bend-twist coupling.

(a) Net blade tip displacement. (b) Blade tip torsional deformation.

Figure 5.12: Net displacements and torsional deformations of the blade tip under zero aerodynamic loads.

VARIATIONS IN TWO VARIABLES: INCLUDING AERODYNAMIC LOADS

Deformations results presented with aerodynamic loads present are provided in this section. Tip displace-
ments are shown in Figure 5.13 and torsional deformations are shown in Figure 5.14. At one operating
condition each for the propulsive case and the regenerative case.

(a) Propulsive conditions (J = 0.75). (b) Regenerative conditions (J = 1.60).

Figure 5.13: Net blade tip displacement plots obtained from 2D sensitivity studies.

The trend in pitch deformations that are shown in Figure 5.14 appear to match the trends in thrust
and power coefficient variations that are shown in Figure 5.4, unlike the trend in tip displacements that
shown in Figure 5.13. In particular, the tip displacement of the blade reaches a maximum for plies of 90◦,
which have the least amount of stiffness under the loads encountered by the blade. The tip displacement
accordingly decreases as plies become aligned with the blade axis. Moreover, the presence of bend-twist
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and extension-shear coupling appears to provide a small influence on the tip displacement, as the majority
of displacements are caused directly by the transverse and centrifugal forces that the blade encounters.
Thus, like the case with zero aerodynamic loads, tip displacements are driven by the stiffness of the
laminate, whereas pitch deformations are governed almost entirely by the presence of bend-twist or
extension-shear coupling. This suggests that coupling may be used to enhance the blade’s performance
without significantly altering its maximum tip displacements. This is also why the trends shown in
Figure 5.13 and Figure 5.14 respectively match the trends shown in Figure 5.12a and Figure 5.12b.

(a) Propulsive conditions (J = 0.75). (b) Regenerative conditions (J = 1.60).

Figure 5.14: Blade tip torsional deformation plots obtained from 2D sensitivity studies.

5.1.4. SUMMARY OF RESULTS FROM PLY ORIENTATION VARIATIONS
Conclusions that were drawn from the variations in ply orientation are summarized below.

• Flexible blades constructed out of symmetric-unbalanced laminates were shown to yield substantial
variations in thrust and power when compared to the rigid (baseline) blade due to the strong presence
of bend-twist and extension-shear coupling, whereas all flexible blades constructed out of symmetric-
balanced laminates yielded small variations in performance when compared to the rigid propeller due to
their lack of extension-shear coupling and their negligible amounts of bend-twist coupling. As a result
of the strong dependence on bend-twist and extension-shear coupling, trends in pitch deformations
matched the trends in thrust and power variations. This is expected because pitch angle deformations
drive changes in angle of attack at fixed operating conditions.

• Symmetric-unbalanced laminates with negative ply orientations yield an aerodynamic wash-out effect
with increasing thrust. Hence, upward displacements (positive along x- and z-axes) yield a leading-edge-
down pitch rotation and downward displacements yield a leading-edge-up pitch rotation. Symmetric-
unbalanced laminates with positive ply orientations were instead found to yield an aerodynamic wash-in
effect. This suggests that using positive ply orientations results in a similar structural response to
the forward-swept blade that was studied by Sodja et al. [3], whereas negative ply orientations yield a
similar structural response to the backward-swept blade that was investigated by Sodja et al. [3].

− As expected, laminates yielding a decrease in thrust at fixed operating conditions will yield a decrease
in power, whereas laminates yielding an increase in thrust will yield an increase in power.

− The presence of an aerodynamic wash-out effect accordingly results in a decrease in power consump-
tion during propulsive mode and an increase in power recovered during regenerative mode.

• For a constant thrust, symmetric-unbalanced laminates with negative ply orientations were found
to reduce the amount of power consumption through a decrease in the amount of loading, whereas
symmetric-unbalanced laminates with positive ply orientations were found to increase the amount of
power consumption through an increase in loading. A negligible change in power consumption was
naturally observed for symmetric-balanced laminates.
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• Larger variations in power consumption were observed during propulsive mode in comparison to the
variations in power recovery observed during regenerative mode for an equivalent amount of thrust.
Because the amount of negative thrust that the propeller will generate during regenerative conditions
will always be significantly below the amount of positive thrust that the propeller produces during
propulsive mode, variations in performance obtained during propulsive mode will always be significantly
greater than the variations in performance observed during regenerative conditions.

• The largest performance improvements were observed for symmetric-unbalanced laminates with ply
orientations between −30◦ and −15◦ because they feature large amounts of bend-twist coupling and
relatively small amounts of stiffness under shear and torsional loads. Despite also having large amounts
of bend-twist and extension-shear coupling, ply orientations of ±45◦ have the most stiffness under shear
and torsional loads and thus yield smaller pitch deformations in comparison to plies with smaller angle
values. The largest performance decreases were observed for symmetric-unbalanced laminates with ply
orientations between 15◦ and 30◦ according to same physical reasoning.

• While pitch deformations are almost entirely driven by the presence of extension-shear and bend-twist
coupling as well as the amount of stiffness that the laminate has in shear and torsion, bending and
shear deformations are almost entirely driven by the amount of stiffness that the blade has along its
structural axis. The presence of extension-shear and bend-twist coupling has a smaller effect on bending
and shear deformations in comparison. This is because the loads encountered by the blade are mostly
axial and transverse, with only a small pitching moment being generated by the aerodynamics.

• Because the stiffness of the blade under bending and transverse loading increases as ply orientations
become more closely aligned with the blade axis, bending and shear deformations always decrease as the
majority of ply orientations approach 0◦ at fixed operating conditions. Bending and shear deformations
will accordingly reach a maximum as the majority of ply orientations approach 90◦.

− For blades with symmetric-balanced laminates at fixed operating conditions, the magnitudes of shear
and bending deformations are almost entirely influenced by how the blade’s overall stiffness changes
with ply orientation because the amount of loading is approximately independent of ply orientation
in this case due to the negligible amount of extension-shear and bend-twist coupling.

− For blades with symmetric-unbalanced laminates, the magnitudes of shear and bending deformations
are equivalently influenced by how the blade’s overall stiffness is affected by changes in ply orientation,
although there is notably more extension-shear and bend-twist coupling, which has a substantial effect
on the amount of loading encountered at fixed operating conditions. Thus, blades with symmetric-
unbalanced laminates that have mostly positive ply orientations will yield larger deformations than
those with negative ply orientations, due to differences in loading caused by twist deformations.

5.1.5. LAMINATE THICKNESS VARIATIONS
Before beginning the optimization, bounds on the laminate thicknesses must be established to ensure
that the optimization problem is defined appropriately. To determine bounds for the laminate thicknesses,
a sensitivity study was performed by varying the laminate thickness and evaluating the structural
deformations and change in performance. The upper bound was selected at a point of diminishing returns,
and the lower bound was selected at the lowest value that the solver converged for, to prevent numerical
problems during the optimization procedure. The ply stacking sequence used in this case is defined by
Equation (5.2), and Θ ∈ {−30◦ , +30◦}, since these ply orientations were found to yield the largest amount
of twist deformations and accordingly also the largest change in performance according to the analysis
provided in Section 5.1.2. For variations in laminate thickness, Figure 5.15 contains plots of the change in
thrust and power, whereas Figure 5.16 contains plots of the tip displacement and twist deformations.

Figure 5.15 indicates that variations in performance become negligible for laminate thicknesses beyond
20 millimetres, although differences in performance between the flexible and rigid propeller are already
small for laminate thicknesses around 10 millimetres. Nevertheless, because the blade structure is being
defined with only one laminate each on its upper and lower surfaces, the maximum laminate thickness is
limited by the thinnest point of the blade structure. Thus, the upper bound of the laminate thickness was
instead set to a value of 1.75 millimetres during the optimization. The minimum laminate thickness was
set to a value of 0.50 millimetres, as the solver never encountered convergence problems for thicknesses
greater than this value. A laminate thickness of 0.50 millimetres will also consist of approximately ten
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plies, which already restricts the feasibility of a given set of lamination parameters. Nevertheless, the
selected upper and lower bounds for thicknesses still provide a sufficient level of design freedom. This
study lastly shows that aeroelastic effects will always be non-negligible during the optimization.

(a) Thrust Coefficient. (b) Power Coefficient.

Figure 5.15: Plots of thrust and power coefficients as a function of laminate thickness for ply orientations
with approximately maximum bend-twist coupling.

(a) Net tip displacements. (b) Torsional Deformations.

Figure 5.16: Plots of torsional deformations and tip displacements as a function of laminate thickness for
ply orientations with approximately maximum bend-twist coupling.

5.2. OPTIMIZATION RESULTS
The ideal operating conditions and best performance metrics of the rigid propeller were first calculated to
determine the baseline energy consumption values to consider during the flexible propeller optimization.
Results for the best pitch settings, maximum efficiency, minimum energy consumption, and peak efficiency
are shown in Section 5.2.1. Results obtained from the flexible propeller optimization study, including
performance trends, ideal operating conditions, and stiffness rosettes, are shown in Section 5.2.2.

5.2.1. RIGID (BASELINE) PROPELLER RESULTS
The baseline propeller performance used during the optimization has been defined as the performance of
the rigid propeller at its best pitch setting for each case that is under consideration. For variable pitch
propellers, this best pitch setting was found through an evaluation of the efficiency as a function of the
pitch setting in each mission segment (for a constant TC). The pitch settings yielding maximum efficiency
in each segment were selected for all optimization studies involving the variable-pitch propeller. For the
constant-pitch propeller, the total energy consumption over the entire mission was evaluated at each pitch
setting, for a variable cruise length. For each optimization study involving constant-pitch propellers, the
pitch setting that was found to minimize the overall energy consumption was selected.

Figure 5.17a contains plots of the efficiency as a function of the pitch setting in climb, cruise, and
descent. The annotations correspond to the pitch settings that yielded peak efficiency. These pitch settings
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were used to define the baseline performance of the variable-pitch propeller for all cases of the optimization,
as well as the baseline performance of the constant-pitch propeller during optimization studies involving
only a single mission segment. For the constant-pitch propeller, Figure 5.17b contains plots of the best
pitch setting as a function of the cruise distance. Horizontal lines indicating the best pitch settings in climb,
cruise, and descent have been shown for reference. As expected, the best pitch setting of the constant-pitch
propeller approaches the best pitch setting for only the cruise segment as the cruise distance increases.
Because the climb and descent are of approximately equal length, when the cruise distance is zero, the
best pitch setting is approximately in between the best climb and descent pitch settings.

(a) Plots of the efficiency vs. pitch setting for climb, cruise, and
descent segments, used to inform the selection of ideal rigid blade

pitch settings for the variable-pitch propeller optimization.

(b) Plots of the best pitch setting vs. cruise distance for the
constant-pitch propeller, used to select ideal rigid blade pitch

settings for the constant-pitch propeller optimization.

Figure 5.17: Plots indicating the best pitch settings for both the variable- and constant-pitch propellers
corresponding to individual mission segments as well as the full mission with a varying cruise distance.

Figure 5.18 contains plots comparing the total mission energy for a varying cruise distance. Values for
the energy consumption of the constant- and variable-pitch propellers are always within 1% of each other
because the ideal pitch settings between the three operating conditions under consideration are very close
to each other, and the efficiency in climb and cruise change by a small amount within the range of pitch
settings corresponding to the constant-pitch propeller as the cruise distance increases. This is indicated in
Figure 5.17. The difference between the minimum energy consumption of the constant- and variable-pitch
propellers accordingly decreases as the cruise distance increases because the climb and descent segments
constitute a decreasing proportion of the total energy consumption with increasing cruise distance.

(a) Minimum energy consumption vs. cruise distance for the
variable- and constant-pitch propellers.

(b) The difference in minimum energy consumption between
variable- and constant-pitch propellers vs. cruise distance.

Figure 5.18: Plots used to compare the minimum total energy consumption for the variable- and
constant-pitch propellers for varying cruise distances.

5.2.2. FLEXIBLE PROPELLER RESULTS
This section contains results obtained from the flexible propeller optimization studies. First, the most
important performance trends, including plots for the efficiency and energy consumption in each mission
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segment, have been plotted and compared with results for the ideal rigid propeller. The optimized propeller
operating conditions (pitch setting and advance ratio values) of each mission segment were subsequently
shown in comparison to the ideal rigid propeller operating conditions. These results indicate the ideal on-
design performance, improvements, and operating conditions. Stiffness rosettes were additionally shown
for the optimized laminate configuration corresponding to each case to indicate the optimal structural
design in each case. After presenting results from the optimization studies, performance maps were
produced using the optimized flexible propeller blades and compared to results obtained with the ideal
rigid propeller. These results indicate how the optimized flexible propellers would perform at off-design
conditions. Finally, convergence history plots are shown in Appendix E for all considered cases.

PERFORMANCE TRENDS

Plots of the optimal efficiency for the rigid and flexible propellers are shown in Figure 5.19. Following this,
the objective function and inequality constraint values for each propeller configuration have been shown
respectively in Figure 5.20 and Figure 5.21 for comparison.

(a) Propeller efficiency (climb and cruise) (b) Turbine efficiency (descent)

Figure 5.19: Efficiencies corresponding to each optimal propeller configuration in each mission segment.

As expected, optimizing for each segment individually results in the greatest efficiency. It is interesting
to observe that the full-mission optimization with a variable-pitch propeller yields efficiency values that
are very close to the individual segment optimization results, independently of the cruise distance being
considered. This is particularly unsurprising in climb and cruise, where the ideal structural design was
shown to be similar in Figure 5.23 and Figure 5.24, and the full-mission optimization yielded similar
structural designs to the ideal climb and cruise structure. However, in descent, it was shown that the ideal
structural design differs considerably from the ideal structural design for the climb and cruise segments.
Nevertheless, the turbine efficiency of the ideal flexible variable-pitch propeller is very close to that of the
rigid variable-pitch propeller. This result is consistent with findings from Section 5.1, where it was shown
that the change in energy-harvesting performance is considerably less than the change in propulsive
performance, and negative ply orientations yielded similar power consumption values in comparison to
the rigid blade for a constant thrust setting. This result also makes physical sense, as the blade loading
encountered in descent is considerably smaller than the blade loading encountered in propulsive conditions
due to the relatively low rotor speeds and freestream velocities that characterize regenerative conditions.
Thus, deformations observed in the descent will be considerably smaller than deformations observed in
the climb or cruise segments, accordingly leading to a decreased effect of aeroelastic tailoring.

It is clear from Figure 5.19 that the climb performance of the constant-pitch propeller is always very
similar to the climb performance of the variable-pitch propeller, although the cruise performance can never
be improved. This is because the optimizer must always maintain the thrust requirement in descent, due
to the presence of an equality constraint on the thrust coefficient in each mission segment. Thus, the pitch
setting of the constant-pitch propeller cannot be increased beyond a value of approximately 29◦ while
still maintaining the desired amount of negative thrust in descent. This is further confirmed through the
turbine efficiency results, as the turbine efficiency values of the constant-pitch propeller reach excessively
low values, before levelling off beyond a cruise distance of 150 km. If the negative thrust requirement in
descent were either reduced in magnitude or removed completely, then the efficiency of the constant-pitch
propeller in cruise would approach the efficiency of the variable-pitch propeller as the cruise distance
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increased, and the climb efficiency of the constant-pitch propeller would decrease as the cruise distance
increased. Despite the optimal flexible constant-pitch propeller being forced to remain at a suboptimal
pitch setting during the majority of the optimization cases, it maintains a better overall performance than
both the rigid constant-pitch and variable-pitch propellers, as indicated by Figure 5.20.

(a) Climb segment (full mission optimization) (b) Cruise segment (full mission optimization)

(c) Descent segment (full mission optimization) (d) Total mission (objective function)

Figure 5.20: Mission energy consumption or recovery compared between different optimal propellers.

In Figure 5.20, E∗ represents a theoretical maximum improvement that may be achieved through
aeroelastic tailoring of propellers. This was computed using the energy consumption of the optimal flexible
climb-only propeller in climb, the optimal flexible cruise-only propeller in cruise, and the optimal flexible
descent-only propeller in descent. With one structural design alone, it is likely not possible to obtain
the decrease in energy consumption (or increase in energy recovered). Therefore, it is useful to observe
values for E∗ as theoretical upper-limits on the extent that performance may be enhanced through the
application of aeroelastic tailoring. It is interesting to observe that the energy consumption or recovery
values of the optimal flexible variable-pitch propeller are generally quite close to this upper limit already.

Results for the energy consumption in each individual mission segment follow directly from the
efficiency results shown in Figure 5.19. For the total energy consumption, shown in Figure 5.20d, the
results appear very promising. It appears that the flexible constant- and variable-pitch propellers always
perform better than the rigid constant- and variable-pitch propellers. Due to the somewhat high thrust
requirement in descent, the flexible constant-pitch energy consumption never converges towards the
flexible variable-pitch energy consumption, and instead appears to maintain an almost constant offset
beyond cruise distances of 100 km. It is expected that if the constraint on thrust required during descent
were relaxed, then the energy consumption of the flexible constant-pitch propeller would converge toward
the energy consumption of the flexible variable-pitch propeller beyond a cruise distance of 50 km. It
is likely possible to observe even further enhancements in performance with more design regions or a
different flight pattern being considered during the optimization. Nevertheless, when compared with the
rigid variable-pitch propeller across all optimization cases that were considered, the energy consumption
decrease by 1.5−2.0% for flexible variable-pitch propellers and by 0.7−1.4% for flexible constant-pitch
propellers is already quite substantial. In comparison to the rigid constant-pitch propeller, the decrease in
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energy consumption is even greater, at approximately 1.5−2.0% for flexible variable-pitch propellers and
1.0−1.5% for flexible constant-pitch propellers. Moreover, the similar values yielded between the flexible
variable-pitch and theoretical maximum performance improvement suggests that it may not be possible to
yield significant further decreases in total energy consumption unless more design regions are included.

(a) Climb segment (full mission optimization) (b) Cruise segment (full mission optimization)

(c) Descent segment (full mission optimization) (d) Individual mission segment optimization results

Figure 5.21: Inequality constraint values obtained during the flexible propeller optimization studies.

Plots of the inequality constraints for the full mission optimization (Figure 5.21a, Figure 5.21b, and
Figure 5.21c) are consistent with expectations, as the relative amount of loading that the blade experiences
is different in each mission segment. In particular, the loading is greatest in climb due to the thrust
requirement being the highest, and thus the strains experienced by the blade are also largest in climb, the
loading is slightly reduced during the cruise segment, although it is still quite high, due to the relatively
high cruise speed that was chosen for the optimization studies. However, the blade loading is relatively
small in descent, and thus the strains and deformations are also small. This is expected, as the descent is
characterized by low rotor speeds and a low flight velocity. It is also expected that the optimizer would
converge on a blade design that features at least one inequality constraint being active. This suggests
that the blade is deforming as much as possible before encountering a structural failure. The critical
strain in this case is the maximum tensile strain, which is consistent with expectations, as the blade
is primarily loaded under tension through its centrifugal force, which acts along the blade axis, and its
transverse aerodynamic force which also places at least one of the surfaces under tension. In this case, the
high centrifugal forces negate the compressive load from the aerodynamic forces, resulting in a maximum
compressive strain that is close to zero. This confirms the initial assumptions made during this project,
and it suggests that the structure has a negligible risk of buckling under the loads being applied.

OPERATING CONDITIONS

Plots of the propeller advance ratio and pitch setting corresponding to each optimization case are provided
in Figure 5.22 for climb, cruise, and descent. Plots of the operating conditions present an important
limitation on the applicability of the application of aeroelastic tailoring towards enhancing propeller
performance. In particular, the operating conditions associated with optimal propeller performance are
considerably different in comparison to the rigid propeller, and generally very difficult to predict, as they
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depend on blade size, structure, loading, freestream velocity, and rotor speed. The results shown are
consistent with initial expectations, motivated by the sensitivity study results from Section 5.1, which
suggest that the presence of aerodynamic wash-out yields favourable performance.

(a) Climb advance ratio (b) Climb pitch setting

(c) Cruise advance ratio (d) Cruise pitch setting

(e) Descent advance ratio (f) Descent pitch setting

Figure 5.22: Operating conditions for rigid and flexible optimal propeller configurations.

The ideal pitch setting of the flexible propeller tends to increase in comparison to that of the rigid
propeller in propulsive mode because the optimizer is exploiting the effect of aerodynamic wash-out
to enhance performance through the alleviation of loads encountered by the propeller. In descent, an
aerodynamic wash-in effect is instead present and exploited by the optimizer, which leads to a lower optimal
pitch setting for the flexible decent-only propeller in comparison to the rigid variable-pitch propeller. For
descent-only optimization only, the optimizer increases the loading encountered by the blade at a constant
thrust, thus yielding a larger amount of recovered power. Lastly, the optimizer always prioritizes the
climb and cruise segments over the descent segment when optimizing for the full mission, and thus
the optimal pitch setting of the flexible constant-pitch propeller is always greater than that of the rigid
constant-pitch propeller, as downward deformations will yield leading-edge-down pitch deformations due
to the presence of an aerodynamic wash-out effect. This occurs because the effect of aeroelastic tailoring
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is small in the descent compared to the climb and cruise, particularly due to the decreased loading in
descent. The minimal effect of aeroelastic tailoring in descent is also indicated by the small difference in
descent operating conditions for the rigid variable-pitch propeller in comparison to the optimal flexible
variable-pitch and descent-only propellers. Advance ratio trends follow from the pitch setting trends. As
the pitch setting increases, the advance ratio must increase to maintain the same thrust.

OPTIMAL BLADE STIFFNESS DISTRIBUTIONS

Stiffness rosettes obtained for the blade upper surface are shown in Figure 5.23, whereas the stiffness
rosettes obtained for the blade lower surface are shown in Figure 5.24. For each design study, the optimizer
adjusted the thicknesses of the upper and lower surface laminates until the strains reached an acceptable
level. Plots of the laminate thicknesses have been omitted from this section for brevity, although they may
be inferred from the plots shown in Appendix E. Stiffness orientations are defined relative to the spanwise
axis of the blade, positive toward the trailing edge on both the upper and lower surface laminates. Thus, a
principal stiffness axis with an angle of 90◦ will point directly towards the leading edge and a principal
stiffness axis with an angle of 0◦ will point directly towards the blade tip.

(a) In-plane (individual segments) (b) Out-of-plane (individual segments)

(c) In-plane (constant-pitch) (d) Out-of-plane (constant-pitch)

(e) In-plane (variable-pitch) (f) Out-of-plane (variable-pitch)

Figure 5.23: Upper surface stiffness rosettes obtained from optimization studies.
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(a) In-plane (individual segments) (b) Out-of-plane (individual segments)

(c) In-plane (constant-pitch) (d) Out-of-plane (constant-pitch)

(e) In-plane (variable-pitch) (f) Out-of-plane (variable-pitch)

Figure 5.24: Lower surface stiffness rosettes obtained from optimization studies.

Starting with the individual mission optimization studies, the stiffness rosettes associated with the
climb- and cruise-only optimization studies appear to have a similar shape on both the upper and lower
surfaces. This is expected based on findings obtained from the sensitivity studies, as it was found that ply
orientations between −30◦ and −15◦ yielded the lowest power consumption at a constant thrust setting at
all advance ratios corresponding to propulsive mode. This is especially true for the upper surface laminate,
whereas the stiffness rosette of the lower surface laminate associated with the climb-only optimization is
more balanced in comparison to the cruise-only rosette. This is because the loading is higher during climb
in comparison to cruise, and thus the blade structure must have more balanced stiffness properties in
the climb segment to prevent the maximum normal strain from exceeding the maximum allowable strain.
In Figure 5.21d, it is shown that the maximum shear strain constraint is active in both the climb and
cruise missions, which suggests that the optimizer is attempting to maximize the blade’s deformations
to yield the largest possible difference in performance. For the climb- and cruise-only cases, blade tip
displacements accordingly yield an aerodynamic wash-out effect.
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As initially hypothesized, the optimal stiffness rosette configuration for the descent-only case appears
considerably different from the ideal climb- and cruise-only results. In all optimization cases besides
the descent-only case, the optimizer maintained all laminate thicknesses on or near the lower bound of
0.5 millimetres, whereas in the descent, the upper surface has a laminate thickness that is exactly on
the upper bound of 1.75 millimetres. On the lower surface, the laminate thickness was found to be 0.9
millimetres. In descent, it appears that the optimizer tends to prioritize the extension-shear coupling
rather than the bend-twist coupling. This is clear due to the outer surface rosettes shown in Figure 5.23b
and Figure 5.24b being near 90◦. The presence of extension-shear coupling yields a slight aerodynamic
wash-in effect during descent, as the blade elongation results in twist deformations due to the laminate
shear deformations because the shared edges of the upper and lower surfaces must remain connected to
ensure that the leading and trailing edges of the upper and lower surfaces remain connected.

For both constant-pitch and variable-pitch propellers, the upper and lower laminates obtained by
the optimizer yield the same stiffness rosette plots at all non-zero cruise distances under consideration.
Additionally, similar stiffness rosettes appear to be obtained for both the constant- and variable-pitch
cases, which appears to be a combination between the ideal stiffness distributions found during the climb-
and cruise-only optimization cases. Moreover, the stiffness distribution results for optimization studies
involving the non-zero cruise distance appear consistent with the sensitivity studies that were shown
in Section 5.1, as it was found that ply orientations between −30◦ and −15◦ yielded the lowest power
consumption at a constant thrust setting. When the cruise distance was set to zero kilometres, the upper
and lower surface stiffness rosettes appear slightly different from the remaining stiffness rosettes, as the
optimizer appears to be compensating slightly for the descent segment. Otherwise, the descent appears
to be almost wholly neglected by the optimizer, which is expected as the recovered energy in descent is
small, and the loads encountered during descent are also considerably decreased in comparison to the
loading in cruise and climb, which provides a substantial limitation on the amount that regenerative
performance may be affected. This appears to be beneficial, as the ideal laminate configuration in climb or
cruise is significantly different from the ideal laminate configuration in descent. In all cases featuring the
full mission, the optimizer therefore exploits both bend-twist and extension-shear coupling to yield an
aerodynamic wash-out effect that reduces power consumption for a constant thrust.

OVERALL PERFORMANCE MAPS
After completing the optimization studies, performance maps of the optimal flexible blades were computed
and compared with the rigid blade. Only two representative variable-pitch and two constant-pitch propeller
blades were considered: one of each type that was designed for a mission with a non-zero cruise distance,
and one of each type that was designed for a mission that does not include the cruise. This choice was made
because most of the blade structural designs were found to be approximately the same during optimization
studies involving the full mission. All three of the blades obtained from optimization studies involving only
a single mission segment were also included. Thus, seven blades in total were analysed. For each blade
under consideration, upper surface lamination parameters are provided in Table 5.2 and lower surface
lamination parameters are provided in Table 5.3. Operating conditions considered during the analysis are
additionally provided in Table 5.4. The three pitch settings of 15◦, 25◦, and 35◦ were studied because the
ideal flexible cruise pitch setting is approximately 35◦, and the ideal descent pitch setting is approximately
18◦. This ensures that performance is evaluated over the full range of relevant operating points.

Table 5.2: Blade structures that were analysed during the collection of performance maps, indicating the
mission type, cruise distance, and upper surface lamination parameter values.

ID Type Cruise Length (km) ξA
1ξ
A
1ξ
A
1 ξA

2ξ
A
2ξ
A
2 ξA

3ξ
A
3ξ
A
3 ξA

4ξ
A
4ξ
A
4 ξD

1ξ
D
1ξ
D
1 ξD

2ξ
D
2ξ
D
2 ξD

3ξ
D
3ξ
D
3 ξD

4ξ
D
4ξ
D
4

Blade 1 CPVR 0 0.4337 -0.2036 -0.4127 -0.4955 0.4351 -0.5763 0.0313 -0.6299
Blade 2 CPVR 150 0.5593 -0.2676 -0.0467 -0.5166 0.4712 -0.5517 0.0316 -0.6301
Blade 3 VPVR 0 0.6300 -0.2580 -0.0907 -0.4687 0.4964 -0.5374 0.0315 -0.6306
Blade 4 VPVR 150 0.6015 -0.3365 0.0521 -0.6776 0.4371 -0.5750 0.0319 -0.6306
Blade 5 climb N/A 0.6314 -0.2619 -0.0843 -0.4595 0.4885 -0.5418 0.0315 -0.6306
Blade 6 cruise N/A 0.6019 -0.3573 0.0842 -0.6741 0.4228 -0.5850 0.0319 -0.6306
Blade 7 descent N/A -0.5338 -0.4254 -0.3875 0.2451 -0.5563 -0.2043 -0.0333 -0.2740
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Table 5.3: Blade structures that were analysed during the collection of performance maps, indicating the
mission type, cruise distance, and lower surface lamination parameter values.

ID Type Cruise Length (km) ξA
1ξ
A
1ξ
A
1 ξA

2ξ
A
2ξ
A
2 ξA

3ξ
A
3ξ
A
3 ξA

4ξ
A
4ξ
A
4 ξD

1ξ
D
1ξ
D
1 ξD

2ξ
D
2ξ
D
2 ξD

3ξ
D
3ξ
D
3 ξD

4ξ
D
4ξ
D
4

Blade 1 CPVR 0 -0.0758 0.1766 -0.6619 -0.1129 0.2000 0.5202 0.0313 0.6283
Blade 2 CPVR 150 0.1209 0.3353 -0.4075 0.4417 0.4620 0.5591 0.0320 0.6303
Blade 3 VPVR 0 0.0007 0.3374 -0.2819 0.3507 0.4227 0.5848 0.0316 0.6306
Blade 4 VPVR 150 0.3263 0.4139 -0.0223 0.7934 0.4228 0.5850 0.0319 0.6306
Blade 5 climb N/A -0.0310 0.4015 -0.1794 0.2638 0.4223 0.5853 0.0316 0.6311
Blade 6 cruise N/A 0.3974 0.4777 0.0471 0.8612 0.4228 0.5850 0.0319 0.6305
Blade 7 descent N/A 0.0453 -0.7663 -0.4815 -0.4667 -0.2996 -0.5416 0.0599 0.5758

During the collection of performance data, either the rotor speed or the freestream velocity was held
constant. This enables a complete set of results to be obtained. With variations at a constant rotor speed
(defined by case 1), CT vs. J, CP vs. J, and CP vs. CT plots were generated. With variations in freestream
velocity (defined by case 2), TC vs. J, PC vs. J, PC vs. TC , ηP vs. J, ηT vs. J, ηP vs. TC , and ηT vs.
TC plots were generated. This decision was made to ensure that the absolute loading is comparable
between each blade configuration at each constant thrust or advance ratio point being used for comparison,
which ensures that the effect of aeroelastic tailoring is compared without the presence of biases due to
operating conditions. Moreover, when plotting efficiency against the thrust output, ηP vs. TC plots must
be generated, as this prevents the efficiency curve from being dependent on advance ratio (as given by
ηP = η−1

T = JCT /CP = TC /PC). Lastly, when varying the advance ratio at a constant rotor speed, it is
possible to maintain realistic operating conditions in climb and cruise, although the loading encountered in
descent will be overestimated (because the freestream velocity must be increased to increase the advance
ratio). Conversely, when varying the advance ratio at a constant freestream velocity, realistic operating
conditions in descent and climb can be maintained by setting a realistic freestream velocity, although
the loading encountered in cruise will be underestimated due to the freestream velocity being set too low.
Evaluating performance trends through both types of variations therefore enables the relative changes in
performance between all mission segments to be appropriately assessed.

Table 5.4: Operating conditions considered during the collection of performance maps.

Case Constant β0.7β0.7β0.7 ConstantΩΩΩ (RPS) Constant V∞V∞V∞ (m/s) Variable JJJ

1
25◦ 25 N/A 0.8 – 1.8
35◦ 20 N/A 1.0 – 2.2

2
15◦ N/A 30 0.5 – 1.3
25◦ N/A 40 1.1 – 1.9
35◦ N/A 50 1.7 – 2.5

As shown in Table 5.4, only the two pitch settings of 25◦ and 35◦ were considered for performance maps
obtained with a constant rotor speed. This is because the operating conditions for descent are unrealistic
in this case, and thus only the pitch settings that are close to ideal in climb and cruise conditions have
been shown. Corresponding to case 1, Figure 5.25 contain CT vs. J and CP vs. J plots. Lastly, Figure 5.26
contains CP vs. CT plots for both pitch settings. Similar trends were observed at both pitch settings.
All blades that were optimized for the full mission behave similarly at all operating conditions that
were investigated during this study, as they all exhibit an aerodynamic wash-out effect that tends to
alleviate the loading that is encountered. This wash-out effect has already been shown to reduce the power
consumption for a given thrust setting. All flexible blades appear to exhibit almost no difference in the
amount of power that is recovered in regenerative conditions, despite the unusually high amount of loading
that the blade is experiencing during this investigation. This is consistent with the performance trends
observed during the sensitivity studies documented in Section 5.1. For example, Figure 5.2a indicates a
greater difference in performance during propulsive mode in comparison to regenerative mode.



88 5. AEROELASTIC TAILORING RESULTS

(a) CP vs. J for β0.7 = 25◦ (b) CT vs. J for β0.7 = 25◦

(c) CP vs. J for β0.7 = 35◦ (d) CT vs. J for β0.7 = 35◦

Figure 5.25: Power and thrust coefficients, CP and CT , plotted against advance ratio, J, for case 1.

(a) β0.7 = 25◦ (b) β0.7 = 35◦

Figure 5.26: Power coefficient, CP , plotted against the thrust coefficient, CT , for case 1.

In addition to the noticeable differences in behaviour between the ideal propeller for descent only in
comparison to the others, there is also a clear difference in the amount of bend-twist coupling that each
blade type has. As expected, blade 6 has the largest amount of aerodynamic wash-out, as its deformations
are limited by strains encountered during the cruise segment, while the deformations of blade 1 through
blade 5 are limited by strains encountered during climb, and the loads encountered in climb are greater
than the loads encountered in cruise. Blade 2, blade 3, and blade 5 perform similarly, whereas blade 4
performs similarly to the cruise-optimized blade and noticeably better than the rest in propulsive mode.

It is clear that the optimizer heavily prioritized performance in propulsive mode for the blades that
were optimized for the full mission with a non-zero cruise length, as aeroelastic tailoring appears to have
a pronounced effect in propulsive conditions and a minimal effect in regenerative conditions. There is also



5.2. OPTIMIZATION RESULTS 89

a significant amount of energy being consumed in propulsive mode and only a minimal amount of energy
being recovered during descent, which further contributes to this. It is also indicated by the performance
of blade 1, that the optimizer partially accounts for the performance in descent when the constant-pitch
propeller is used for a climb-descent mission, as this blade exhibits the most amount of compromise
between minimizing power consumption in propulsive mode and maximizing power recovered during
descent. With variable-pitch capabilities, it is no longer necessary to compromise between propulsive and
regenerative performance, as blade 3 and blade 4 have a much stronger wash-out effect than blade 1, thus
yielding better performance in propulsive mode, with blade 2 and blade 3 performing similarly.

For case 2, plots of the thrust and power coefficients, TC and PC have been shown as a function of the
advance ratio in Figure 5.27. The trends appear consistent with trends that were observed in Figure 5.25.

(a) PC vs. J for β0.7 = 15◦ (b) TC vs. J for β0.7 = 15◦

(c) PC vs. J for β0.7 = 25◦ (d) TC vs. J for β0.7 = 25◦

(e) PC vs. J for β0.7 = 35◦ (f) TC vs. J for β0.7 = 35◦

Figure 5.27: Power and thrust coefficients, PC and TC , plotted against advance ratio, J, for case 2.

For case 2, plots of the propeller and turbine efficiency as a function of the advance ratio are shown
in Figure 5.28, and plots of the propeller efficiency as a function of the thrust coefficient are shown in
Figure 5.29. Similar trends were observed in Figure 5.29 in comparison to Figure 5.26, where aeroelastic
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tailoring causes significant variations in power consumption in propulsive mode and only minor variations
in power recovery during regenerative mode. As expected, the blades that feature an aerodynamic wash-
out effect with increasing load tend to yield better performance in propulsive conditions with increasing
pitch setting. Due to the presence of the aerodynamic wash-in effect, the blade that was optimized only
for descent (blade 7) underperforms considerably during propulsive mode. During the descent, this blade
appears to exhibit the best performance within a very narrow range of advance ratio values at all pitch
settings, while also exhibiting the worst performance outside this region. Moreover, the difference in
turbine efficiency between the descent-optimized blade and the others is almost not noticeable at the point
where it reaches its best performance. Thus, it is unsurprising that the optimizer would tend to almost
completely neglect the descent when performing the full mission optimization.

(a) ηP vs. J for β0.7 = 15◦ (b) ηT vs. J for β0.7 = 15◦

(c) ηP vs. J for β0.7 = 25◦ (d) ηT vs. J for β0.7 = 25◦

(e) ηP vs. J for β0.7 = 35◦ (f) ηT vs. J for β0.7 = 35◦

Figure 5.28: Efficiencies, ηP and ηT, plotted against advance ratio, J, for case 2.

After observing results from efficiency curves, it appears that blade 4 is closest to a local optimum
in comparison to the remaining blades, when considering propeller performance over the entire range
of advance ratios. On the other hand, blade 7 appears furthest from a local optimum when considering
the full mission, despite reaching the greatest efficiency at very low thrust outputs. This is because
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it underperforms considerably at moderate-to-high thrust coefficients, especially with increasing pitch-
setting. Because its efficiency is lowest by a significant margin at the thrust coefficients characterizing
the climb and cruise segments, blade 7 should not be considered as a suitable candidate. While blade 6
shows the best performance, its maximum normal strain in climb is greater than the maximum allowable
strain of the composite material, and thus it cannot be considered. Blade 1 was optimized for the constant
pitch propeller performing only a climb-descent mission and thus features the most amount of compromise
between propulsive and regenerative conditions. The effect of tailoring is least noticeable in this case, and
thus the remaining blades obtained from optimization studies of either the full mission or the propulsive
mode appear to perform better. The remaining three blades appear to perform similarly, which suggests
that the ideal blade design obtained from the full mission optimization is similar to the ideal blade design
obtained from the climb-only optimization.

(a) ηP vs. TC for β0.7 = 15◦ (b) ηT vs. TC for β0.7 = 15◦

(c) ηP vs. TC for β0.7 = 25◦ (d) ηT vs. TC for β0.7 = 25◦

(e) ηP vs. TC for β0.7 = 35◦ (f) ηT vs. TC for β0.7 = 35◦

Figure 5.29: Efficiencies, ηP and ηT, plotted against thrust coefficient, TC , for case 2.

In maintaining the maximum strain requirements in climb and cruise, it is possible that blade 1 through
blade 6 all yield similar efficiencies in climb and cruise, as the optimizer will maintain the maximum
loading before exceeding the maximum allowable strain through modifications in pitch setting and advance
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ratio. Thus, there is likely only a small difference in the minimum mission energy consumption that is
yielded by either blade 2, blade 3, blade 4, or blade 5.

5.2.3. SUMMARY OF RESULTS
Conclusions that were drawn from the mission-weighted optimization studies are summarized below.

• Variable-pitch propeller blades obtained from full mission optimization studies were found to yield
similar efficiencies in each mission segment in comparison to the blades obtained from individual
mission segment optimization studies, independently of the cruise distance.

• The optimal flexible constant-pitch propeller yielded a lower energy consumption than both the rigid
constant- and variable-pitch propellers, despite remaining at suboptimal pitch settings over long cruise
distances due to the thrust requirement in descent.

− In comparison to the rigid variable-pitch propellers, energy consumption decreased by 1.5-2.0% for
flexible variable-pitch propellers and by 0.7-1.4% for flexible constant-pitch propellers. In comparison
to the rigid constant-pitch propellers, energy consumption decreased by 1.5-2.0% for flexible variable-
pitch propellers and by 1.0-1.5% for flexible constant-pitch propellers.

• In every case except for the descent-only optimization, the maximum tensile strain constraint was active,
and the compressive strains were negligible. This suggests that the optimizer maximized the effect of
aeroelastic tailoring without exceeding critical strains. The negligible compressive strains verify the
prior decision to not consider buckling as a potential failure mode.

• The optimal operating conditions of the flexible blades are always considerably different from the rigid
blades for all considered cases. This limits the applicability of aeroelastic tailoring, as the ideal operating
conditions will be difficult to predict during in-flight conditions due to their dependence on blade size,
structure, loading, freestream velocity, and rotor speed.

• The optimal blade structure obtained exclusively for propulsive conditions yields an aerodynamic wash-
out effect that tends to reduce the loading encountered at a constant thrust, thus resulting in a decreased
power requirement. This is consistent with the results obtained in Section 5.1 and by Sodja et al. [3],
where the backward-swept blade always yielded the best performance in propulsive mode.

• The optimal blade obtained from the descent-only optimization featured an aerodynamic wash-in effect,
which severely degrades performance in propulsive mode. This is consistent with the results from Sodja
et al. [3], where the forward-swept blade always yielded the worst performance in propulsive mode.

• In all full-mission optimization cases, the optimizer heavily prioritized the minimizing energy consump-
tion in propulsive mode over maximizing energy recovered in descent. For missions involving a non-zero
cruise distance, the optimizer entirely ignored the descent segment.

− This behaviour occurred for two reasons. First, a large amount of energy is consumed during climb
and cruise in comparison to the small amount of energy that may be recovered during descent. Second,
the loading encountered in descent is significantly smaller than the loading encountered during
propulsive mode, which causes the effect of aeroelastic tailoring to be heightened considerably during
propulsive mode in comparison to during regenerative mode.

• All propeller blades obtained from the full mission optimization studies in addition to the climb-
and cruise-only optimization studies yielded similar performance trends, featuring the presence of
an aerodynamic wash-out effect. The performance encountered during the descent by all of these
blade designs was only marginally degraded at on-design conditions despite being improved at off-
design conditions, as indicated by their trends in efficiency as a function of the thrust coefficient. The
aerodynamic wash-out effect always yielded favourable off-design performance trends, characterized by
a broad range of advance ratio values corresponding to high values for ηP or ηT.

− The optimal descent-only blade design, which featured an aerodynamic wash-in effect, only per-
formed favourably at on-design conditions, with significantly degraded off-design performance that is
characterized by a narrow region of advance ratio values corresponding to high values for ηP or ηT.
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6.1. CONCLUSIONS
During this thesis, the application of aeroelastic tailoring towards the enhancement of dual role propeller
performance was investigated. The scope of this project included the development, verification, validation,
and application of a nonlinear static aeroelastic analysis and optimization code. Blade element momentum
theory was applied to assess the aerodynamics, and PROTEUS was used for the structure, with modifica-
tions to account for the centrifugal force experienced by the propeller blade. A tightly coupled aeroelastic
analysis routine was implemented to ensure a high level of computational efficiency and numerical stability.
The structural, aerodynamic, and aeroelastic analysis routines were verified through comparisons with
pre-existing numerical procedures. Near-perfect agreement was obtained from all verification studies,
indicating that the three models were implemented correctly. Additionally, the aerodynamic model was
validated through comparisons with experimental data, yielding reasonable agreement in general trends,
thus providing confidence in the applicability of the selected modelling approach.

Using the developed analysis tools, the TUD-XPROP-3 propeller, scaled to realistic flight conditions, was
evaluated with varying configurations of symmetric-unbalanced and symmetric-balanced laminates. The
purpose of this investigation was to determine how the performance and deformations of the blade differ
with changes in structure. Through this investigation, it was found that the flexible blades constructed
out of symmetric-unbalanced laminates yield a significant variation in thrust and power through the
presence of bend-twist and extension-shear coupling, which results in an increasing change in twist
distribution with increasing deflection or elongation. Only small variations in performance were observed
from symmetric-balanced laminates, as the minimal bend-twist coupling and zero extension-shear coupling
resulted in negligible twist deformations, caused only by the aerodynamic moment. Thus, changes in
performance are almost entirely dependent on the presence of bend-twist and extension-shear coupling,
which is consistent with initial expectations, as variations in performance that are computed using blade
element momentum theory are almost completely driven by changes to the blade twist distribution.

During the sensitivity studies, it was found that the symmetric-unbalanced laminates with negative ply
orientations (using a reference system where positive angles point toward the trailing edge and downward)
yield a favourable aerodynamic wash-out effect, where upward deflections of the blade axis (positive in the
global x- and z-axis) yield leading-edge-down pitch deformations and vice versa. Accordingly, laminates
with positive ply orientations were found to yield an unfavourable aerodynamic wash-in effect, with
positive displacements of the blade axis yielding a leading-edge-up pitch rotation and vice versa. While
maintaining a constant thrust requirement, it was found that blades exhibiting an aerodynamic wash-out
effect will yield a decrease in power consumption during propulsive conditions and a potential increase
in power recovery during regenerative conditions. Moreover, for an equivalent thrust magnitude, larger
variations in power consumption were observed during propulsive mode in comparison to regenerative
mode. Because the amount of negative thrust generated by the propeller in descent is significantly lower
than the positive thrust required during climb or cruise, it is expected that the effect of aeroelastic tailoring
will always be more pronounced in propulsive conditions in comparison to descent. With the presence of an
aerodynamic wash-out effect at negative ply angles, the largest improvement in performance was found for
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ply orientations between −30◦ and −15◦, whereas performance was worsened the most for ply orientations
between 15◦ and 30◦. This is a result of the large amount of bend-twist and extension-shear coupling
that is present at these angles, in addition to the smaller shear and torsional stiffness in comparison to
larger ply angles near 45◦. Finally, as expected, the bending and shear deformations of the blade under a
constant loading are primarily driven by the amount of stiffness that the blade has along its structural
axis, with the presence of bend-twist and extension-shear coupling having a relatively small influence on
blade axis deformations, this is because the aerodynamic and centrifugal loads act primarily in the axial
and transverse directions, and thus any changes in deformations through structural coupling will be less
visible in comparison to deformations that are directly caused by loads acting on the blade.

After completing the sensitivity studies, optimization studies were performed using the same scaled
version of the TUD-XPROP-3 blade that was used during the sensitivity studies. The optimization problem
was formulated by integrating the propeller onto an existing aircraft configuration, the Pipistrel Panthera,
which was analysed over a constant climb-cruise-descent mission profile. During the optimization, the
thrust requirements in climb, cruise, and descent were set a priori according to performance requirements
of the chosen aircraft configuration. Additionally, the cruise length was varied over a range of 0−400
kilometres. In all optimization cases, the propeller was considered to feature just one laminate on each
of its upper and lower surfaces, as well as one laminate for each of its spar webs. The objective of the
optimization was to reduce the overall energy consumption over the full mission and over each segment
individually. Ideal performance of the rigid propeller either with constant- or variable-pitch capabilities
was then compared with the ideal performance of the optimal flexible propeller with either constant-
or variable-pitch capabilities. Constraints on the maximum allowable shear and normal (tensile and
compressive) strains, tip displacements, and shaft power were applied during the optimization to guarantee
a converged blade design that is feasible both structurally and for the aircraft configuration of interest.

During the optimization, it was found that the ideal blade design during climb or cruise features
symmetric-unbalanced laminates that have negative ply orientations, which is consistent with the sensi-
tivity studies that were previously performed. The ideal blade design during only the descent was found
to be notably different from that of the climb or cruise segments, and it featured primarily extension-
shear coupling with minimal bend-twist coupling to yield an aerodynamic wash-in effect that appears to
only maximize performance at the one operating point considered during descent. For the full mission
optimization, the optimizer almost completely neglected the descent when finding the optimal structural
design, as the optimal stiffness rosettes obtained from the full mission optimization featured the same
characteristic shape in comparison to the climb- or cruise-only cases. The results obtained from all
optimization cases involving at least one mission segment in propulsive mode suggest that the optimizer
is exploiting the aerodynamic wash-out effect that was found to provide a more favourable performance
during the sensitivity studies. Consistency between results from optimization studies in comparison to the
sensitivity studies provides confidence in the optimal stiffness distribution results that were obtained.

The best performance of the optimal flexible blades was found to be considerably greater than the best
performance of the rigid blade. In particular, the flexible variable-pitch propeller was found to have an
increase of 1.4% in cruise efficiency in comparison to the rigid variable-pitch propeller, and the flexible
constant-pitch propeller was found to yield approximately an increase of 0.9% in cruise efficiency at
all cruise distances under consideration. This is because the constant-pitch propeller was required to
maintain the thrust requirement in descent, and thus was forced to operate at a suboptimal pitch setting
in cruise even at very long cruise lengths, even despite the regenerative performance otherwise yielding a
negligible change in energy consumption. In the absence of the descent, the cruise efficiency of the flexible
constant-pitch propeller would converge toward the same cruise efficiency as the flexible variable-pitch
propeller. During climb, both the flexible constant-pitch and variable-pitch propellers yielded an increase
in efficiency from the rigid variable-pitch propeller by approximately 1.5%. At long cruise distances, the
improvement in climb efficiency approached 2.5% for both flexible propellers in comparison to the rigid
constant-pitch propeller. The efficiency in climb of the flexible constant-pitch propeller did not decrease
with increasing cruise distance due to the thrust requirement in descent, as the blade was restricted from
operating at higher pitch settings that would otherwise be more favourable for cruise and less favourable
for climb. In descent, the flexible constant-pitch propeller performed considerably worse than both rigid
propellers, with a turbine efficiency that is approximately 10% below the second-lowest turbine efficiency
corresponding to the rigid constant-pitch propeller. The flexible variable-pitch propeller maintained a
very similar turbine efficiency to the rigid variable-pitch propeller, despite the structural design being
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primarily conducive to the climb and cruise mission segments. This is because the loading in descent is
significantly reduced from the loading in climb or cruise, and thus the effect of aeroelastic tailoring is
significantly reduced in descent when compared with climb or cruise.

Despite the significantly degraded regenerative performance of the flexible constant-pitch propeller, the
energy consumption of the flexible constant-pitch propeller was consistently found to be below that of both
the rigid constant- and variable-pitch propellers, which potentially suggests that enhancing performance
through the application of aeroelastic tailoring has greater energy-saving benefits in comparison to the
application of energy-harvesting during descent. A decrease in energy consumption by 0.7−1.4% was
found for the flexible constant-pitch propeller in comparison to the rigid variable-pitch propeller, and a
decrease by 1.0−1.5% was found in comparison to the rigid constant-pitch propeller. For the variable-pitch
propeller, a decrease in energy consumption of 1.5−2.0% was found in comparison to both the rigid
constant-pitch and rigid variable-pitch propellers. Lastly, the flexible variable-pitch propeller yielded very
similar performance in comparison to the optimal blade designs obtained through optimization studies
with only a single mission segment. Indeed, the flexible variable-pitch propeller yielded a 0.1% greater
energy consumption in comparison to the theoretical maximum decrease in energy consumption that
may be obtained through the application of aeroelastic tailoring. The theoretical maximum decrease in
energy consumption was computed using the optimal climb-only, cruise-only, and descent-only energy
consumption values. This suggests that the optimal variable-pitch propeller is generally very close to the
maximum potential enhancement in performance that may be obtained through aeroelastic tailoring.

During the optimization, the blade was primarily loaded in tension, with maximum tensile normal
strains being considerably larger in magnitude than the maximum compressive normal strains. Addi-
tionally, the maximum tensile normal strain was an active constraint for all cases featuring the propeller
operating in propulsive conditions, although the loading in descent was never large enough for the opti-
mizer to find a structural design that yielded large strains. The maximum compressive normal strain was
always found to be close to zero, which confirms the decision to neglect buckling as a failure mode.

Finally, the ideal pitch setting and advance ratio values of the flexible propeller are considerably
different from those of the rigid propeller, especially in propulsive conditions where deformations are
particularly high. This is expected due to the optimal flexible blade featuring the aerodynamic wash-out
effect, which alleviates the loads encountered by the blade, thus requiring it to operate at a higher pitch
setting and lower rotor speed. This presents an important limitation on the results that were presented, as
it is generally difficult to predict the ideal operating conditions of the propeller with flexible blades. This is
because the deformations, and consequently the performance, vary depending on the blade size, structure,
loading, dynamic pressure, and rotor speed. Nevertheless, the performance enhancement yielded through
aeroelastic tailoring was considerable, suggesting that this may be interesting to investigate further.

Elaborating on the above discussion regarding higher-level conclusions, answers to the research
questions outlined in Section 1.3.1 are explicitly provided below.
(1) To what extent can further enhancements in dual-role propeller performance be obtained

solely through the application of aeroelastic tailoring? This question was answered using
results obtained from the optimization studies. During this project, a reference aircraft was analysed
over a mission involving relatively high speeds, which suggests that the loads encountered by the
propeller are relatively large. This heightens the effect of aeroelastic tailoring. Additionally, the
propeller under consideration features straight blades, with no sweep or lean, and aerodynamic
design was not considered during the optimization. This directly enables the extent of performance
enhancements obtained solely through aeroelastic tailoring to be assessed. Performance enhancements
in this case are characterized by the amount that energy consumption is decreased over the mission,
as well as the amount that propeller or turbine efficiency may be increased at each mission segment.

During the climb segment, it was possible to obtain a maximum increase in propeller efficiency by
approximately 1.4% in comparison to the ideal rigid variable-pitch propeller when considering the full
mission with either the constant- or variable-pitch propeller. Both flexible propellers optimized for
the full mission with a long cruise distance saw an increase in propeller efficiency of 2.5% from the
efficiency of the rigid constant-pitch propeller. Neither of these values are more than 0.3% below the
maximum propeller efficiency obtained by the flexible propeller that is optimized for climb only.

During the cruise segment, the flexible variable-pitch propeller yielded a noticeably greater efficiency
in comparison to the flexible constant-pitch propeller at all cruise distances. This is because the
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constant-pitch propeller always needed to maintain a compromise in pitch setting that allowed the
thrust requirement in descent to be met. The flexible propeller yielded a 1.4% greater propeller
efficiency in cruise in comparison to the rigid variable-pitch propeller for optimization cases involving
either only the cruise segment or the full mission with the variable-pitch propeller. For optimization
cases involving the full mission with the constant-pitch propeller, a propeller efficiency was obtained
that is approximately 0.9% greater than that of the rigid variable-pitch propeller. This shows that
aeroelastic tailoring may still be used to yield performance improvements for the constant-pitch
propeller over the rigid variable-pitch propeller, even when a suboptimal pitch setting must be used.

During descent, all optimized flexible propeller blades underperformed in comparison to the rigid
variable-pitch propeller, although the difference in turbine efficiency that was yielded by the flexible
variable-pitch propeller was negligibly smaller than that of the rigid propeller. The flexible descent-
optimized propeller yielded an ideal turbine efficiency that is 0.4% greater than that of the ideal rigid
propeller, which is very insignificant due to the already small amount of energy being recovered during
descent. This demonstrates that aeroelastic tailoring is only effective during propulsive mode, while
its effects during regenerative mode will not be noticed.

(a) Which structural characteristics (i.e. material properties, ply orientations, and lam-
inate thicknesses) have an important influence on dual-role propeller performance,
and how are performance quantities and deformations affected by variations in these
structural characteristics? For aeroelastic tailoring, it is essential to use unidirectional
fibre composites to exploit the effects of coupling. In particular, bend-twist and extension-shear
coupling mechanisms were exploited during this work and thus each laminate must be symmetric-
unbalanced or symmetric-balanced. Orthotropic laminates do not exhibit any coupling between
strains or curvatures, and thus may not yield any substantial variations in performance. More-
over, it was even shown that symmetric-unbalanced laminates may be used to yield noticeable
effects on performance through aeroelastic effects, whereas considerably smaller variations in
performance were obtained with symmetric-balanced laminates. Carbon fibres with a relatively
low maximum stiffness were considered most suitable for aeroelastic tailoring and thus were
used exclusively during this project. Unidirectional glass fibres do not have enough difference
between their two elastic moduli to yield a significant enough amount of coupling.

The laminate thickness influences the magnitude of deformations, and thus decreasing the
laminate thickness will yield increases in strains, deformations, and performance variations.

The most important parameters affecting dual-role propeller performance are the ply orientations.
It was shown during sensitivity studies that symmetric-unbalanced laminates yielded substantial
variations in performance, whereas symmetric-balanced laminates did not. This is due to the
presence of extension-shear and bend-twist coupling. In general, the presence of an aerodynamic
wash-out effect tends to augment the range of advance ratio values where the propeller operates
with high efficiency, whereas the presence of an aerodynamic wash-in effect tends to narrow
the range of advance ratio values where the propeller operates with high efficiency. Symmetric-
unbalanced laminates with negative ply orientations (defined relative to the spanwise axis of the
blade and positive towards the trailing edge) yielded an aerodynamic wash-out effect, whereas
positive ply orientations yielded an aerodynamic wash-in effect. Thus, negative and positive
ply orientations respectively yield similar performance characteristics to the backward- and
forward-swept blades that were studied by Sodja et al. [3].

Pitch deformations are almost entirely driven by the presence of bend-twist and extension-shear
coupling, in addition to the amount of stiffness the laminate has in torsion and shear. Blade pitch
deformations also drive the variations in performance. The largest performance improvements
were observed for ply orientations between −30◦ and −15◦, as they feature large amounts of bend-
twist and extension-shear coupling in addition to relatively small amounts of shear and torsional
stiffness. The largest decrease in performance was observed for ply orientations between +15◦
and +30◦ through the same physical reasoning. Despite also having large amounts of bend-twist
and extension-shear coupling, ply orientations of ±45◦ have a large amount of shear and torsional
stiffness, which negates the effect of bend-twist and extension-shear coupling, resulting in a
weaker effect of aeroelastic tailoring in comparison to the aforementioned smaller angles. Similar
trends in terms of ply orientations were also observed by Khan [4, 24].
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(b) How do structural modifications in favour of improving performance during propulsive
operation affect performance during regenerative operation? Propeller blades optimized
for propulsive mode yielded either equivalent or worse performance during regenerative mode,
although the presence of an aerodynamic wash-out effect appears to always yield favourable
effects on performance at both on- and off-design conditions by broadening of the range of advance
ratio values corresponding to high-efficiency operation. Nevertheless, maximizing performance
during climb and cruise through aeroelastic tailoring still yielded a decrease in performance
during descent. Because the loading encountered in descent is significantly smaller than the
loading encountered in climb and cruise, the effect of aeroelastic tailoring is significantly greater
in propulsive mode compared to regenerative mode. Moreover, because the amount of energy that
is recovered during descent is orders of magnitude below the amount of energy that is required
for the climb and cruise, aeroelastic tailoring has a small effect on energy recovered in descent.

Results from the full-mission optimization studies suggest that the optimizer neglected the
descent completely, yielding a structural design featuring the presence of an aerodynamic wash-
out effect. Considerable improvements in propeller efficiency were obtained for the optimal
flexible variable-pitch propeller at both climb and cruise conditions, independently of the cruise
distance, at the expense of a negligible decrease in turbine efficiency. The optimal flexible
constant-pitch propeller also exhibited noticeable improvements in propeller efficiency during
climb and cruise, at the expense of a substantial decrease in turbine efficiency during descent in
comparison to its rigid counterparts. Nevertheless, the optimal flexible constant-pitch propeller
still yielded a considerable decrease in total energy consumption in comparison to both the
rigid constant- and variable-pitch propellers. This demonstrates that performance decreases
in descent have a lesser effect on the total energy consumption in comparison to the effect of
performance enhancements that are otherwise obtained in propulsive mode. Lastly, the optimal
blade design obtained from the descent-only optimization study featured an aerodynamic wash-
in effect that yielded greater turbine efficiency at on-design conditions only, with significantly
degraded performance at both propulsive and regenerative conditions outside the single operating
point characterizing the descent segment under consideration. Thus, the blade design obtained
from the descent-only optimization study was deemed unsuitable for use over the full mission.

(2) How does the application of aeroelastic tailoring impact overall energy consumption over a
generic climb-cruise-descent mission profile for constant-pitch or variable-pitch dual-role
propellers? The optimal flexible constant-pitch propeller yielded a lower energy consumption than
both the rigid constant- and variable-pitch propellers, and the flexible variable-pitch propeller naturally
yielded an even lower total energy consumption than the flexible constant-pitch propeller. More
specifically, the ideal flexible constant- and variable-pitch propellers respectively yielded decreases
in total energy consumption in comparison to the rigid variable-pitch propeller by 0.7−1.4% and
1.5− 2.0%. In comparison to the rigid constant-pitch propeller, the ideal flexible constant- and
variable-pitch propellers respectively yielded decreases in total energy consumption by 1.0−1.5% and
1.5−2.0%. This shows that propeller performance may be noticeably improved through the application
of aeroelastic tailoring. The theoretical total energy consumption obtained by summing together
the energy consumption of the ideal climb-, cruise-, and descent-only propellers in their respective
mission segments was consistently found to be approximately 0.1% below the total energy consumption
of the flexible variable-pitch propeller. This suggests that the energy consumption of the optimal
flexible variable-pitch propeller is near the theoretical minimum total energy consumption that may
be obtained with aeroelastic tailoring. This also confirms that the effect of aeroelastic tailoring on
performance in descent may be neglected in favour of improving performance during propulsive mode.

The results obtained correspond to the flexible propellers optimized for a fixed mission profile and
with only one design region for each of its surfaces. Thus, it may be possible to yield even further
decreases in energy consumption either through the use of a different mission profile or through
the inclusion of a greater number of design regions. The aircraft configuration was also selected a
priori and held constant throughout the optimization studies, and thus it may even be possible to
yield further decreases in energy consumption through the use of a different aircraft configuration.
Finally, the propeller blade axis geometry and aerodynamic design was held constant throughout all
optimization studies, whereas the inclusion of additional design variables for the blade geometry may
increase the extent of performance enhancements obtained with aeroelastic tailoring.
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(a) How does the blade structure that is optimized for each individual mission segment
differ from the blade structure that is optimized for a mission with a variable cruise
distance? The climb- and cruise-optimized blade structures have a similar characteristic, with
the principal in-plane and out-of-plane stiffness axes pointing towards the leading edge at similar
angles between −30◦ and −20◦. Thus, both blades exhibit an aerodynamic wash-out effect that
tends to alleviate the loading encountered in propulsive conditions, thereby reducing the power
required for a given thrust output. The cruise-optimized blade features more bend-twist and
extension-shear coupling, whereas the climb-optimized blade features more balanced stiffness
properties. This is because the loading in climb is higher than the loading in cruise, and thus a
stiffer structure is required for the climb to prevent the maximum strain constraint from being
active. The descent-optimized blade structure appears considerably different from the other two
blades. The lower surface principal in-plane stiffness points towards the trailing edge instead of
the leading edge, and the lower surface principal out-of-plane stiffness axis also points toward
the trailing edge with a relatively large angle of approximately 60◦. On the upper surface, the
principal out-of-plane stiffness axis points toward 90◦ and the principal in-plane stiffness axis
points toward −60◦. As a result, the descent-optimized blade exhibits an aerodynamic wash-in
effect instead of the wash-out effect that was observed from all other optimal blade structures.
Trends observed from full mission optimization studies for constant- and variable-pitch propellers
appear to match, and thus the discussion for both cases has been combined. For a cruise
distance of zero kilometres, the resulting blade structures from the full mission optimization
appeared to match the ideal climb-only blade structure. For a non-zero cruise distance, the ideal
blade structure appeared to yield a compromise between the ideal climb- and cruise-only blade
structures, with the variable-pitch propeller appearing more similar to the cruise-only blade
structure. In all full mission optimization cases, the descent was ignored, resulting in structural
designs that do not bear any resemblance to the ideal descent-only blade. It is interesting to
observe that the ideal blade structure obtained from all optimization cases involving a non-zero
cruise distance are the same, whereas a different blade structure was obtained from full mission
optimization studies that did not include the cruise distance. Furthermore, it is unsurprising
that the descent segment was ignored by the optimizer in all full mission optimization cases, as
the descent-only blade yields significant decreases in performance during propulsive mode.

(b) How do energy consumption results from optimization studies involving each indi-
vidual mission segment compare with results from optimization studies involving
the full mission? As expected, the blades optimized for each mission segment individually
yield a lower energy consumption (or greater amount of recovered energy) in their respective
mission segments in comparison to both the constant and variable-pitch propellers optimized
for the full mission at all cruise distances. In climb, the flexible constant- and variable-pitch
propellers yield a similar energy consumption at all cruise distances. If the thrust requirement
in descent were not included, then the climb energy consumption of the constant-pitch propeller
would increase in comparison to that of the variable-pitch propeller. The energy consumption
of the climb-optimized propeller was less than both the constant- and variable-pitch propellers,
by at-most 0.3%. The cruise-optimized propeller yielded a cruise energy consumption that is
at-most 0.6% less than that of the optimal flexible constant-pitch propeller, and the optimal
flexible variable-pitch propeller yielded a cruise energy consumption that is negligibly less than
that of the cruise-optimized propeller. In descent, the descent-optimized blade was capable of
recovering a negligibly larger amount of energy than the optimal flexible variable-pitch propeller,
despite its significant differences in structural design. Conversely, the descent-optimized pro-
peller is capable of recovering approximately 25% more energy in comparison to the ideal flexible
constant-pitch propeller. This result illustrates the significance of the propulsive mode over
the regenerative mode best, as even despite its apparently substantial decrease in regenerative
performance, the flexible constant-pitch propeller noticeably outperforms both the rigid constant-
and variable-pitch propellers at all cruise distances under consideration. This result is observed
even though the rigid variable-pitch propeller yields a negligible difference in regenerative per-
formance in comparison to the descent-optimized propeller blade. Thus, this result demonstrates
that aeroelastic tailoring is most suitable for maximizing propeller performance in propulsive
conditions, and its effects on performance come at a greater benefit than potential energy balance
improvements that may be yielded through regeneration during descent.
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(c) How do the optimal propeller blade designs perform over a range of operating con-
ditions that may otherwise not be considered during the optimization studies? All
propeller blades optimized for the full mission in addition to the blades optimized only for the
climb and cruise segments feature an aerodynamic wash-out effect that broadens the range of
advance ratio values corresponding to high-efficiency operation. This occurs in both propulsive
and regenerative operating conditions. At on-design conditions corresponding to the descent
segment, these blades yield performance that is only marginally degraded. As already stated,
the performance improvements in climb and cruise significantly outweigh any decreases in
performance during descent. The descent-optimized propeller yields a significantly different
performance in comparison to the others due to its aerodynamic-wash in effect. In particular, it
features an aerodynamic wash-in effect that yields a sharp decrease in efficiency at advance ratio
values moving away from the operating point that characterizes the descent segment.

6.2. FUTURE RECOMMENDATIONS
Future recommendations have been identified to address limitations concerning the aeroelastic analysis
routine and optimization procedure, the formulation of the optimization problem, and particularly the
definition of the project scope. Potential extensions of this project have also been identified.

The aerodynamic model that was used during this project is an application of blade element momentum
theory. The main limitations of this approach are that it is unable to take three-dimensional effects into
consideration due to the lack of mutual interference between blade elements. Using a higher-fidelity
aerodynamic model that is similar to the level of fidelity of the structural model, such as an application
of either lifting-line or vortex-lattice methods, would enable finite-span effects and changes in blade
axis geometry to be directly resolved. This may enhance the accuracy and precision of aerodynamic
performance results. Additionally, the polar data for the propeller blade geometry that was considered
during this project was evaluated numerically only and thus may be considerably different from reality.
This is especially true for the drag coefficient data in the presence of at least moderate amounts of flow
separation, as RFOIL is incapable of accurately modelling the effects of rotation on the drag coefficient
[11]. It is therefore recommended to experimentally obtain lift and drag polar plots for the airfoils of the
propeller, or to perform the same design study that was documented during this project on a propeller
blade that features airfoil aerodynamic performance data that was obtained experimentally.

It was initially planned to complete the optimization studies for two mission profiles, one with relatively
high speeds and another with relatively low speeds, to precisely investigate the effect of loading on the
extent of performance increases or decreases obtained with aeroelastic tailoring. In this case, only the
high-speed mission was performed due to timeline constraints, and thus it is recommended to perform
the same investigation using lower flight speeds to identify how variations in performance depend on
the amount of loading that the blade encounters. Like the work of van Neerven [33] or Scholtens [34], it
could be interesting to consider a different reference aircraft that typically flies at lower airspeeds, such as
an electric trainer aircraft like the Pipistrel Velis Electro (formerly the Alpha Electro) [71]. Additionally,
during the optimization, it was initially planned to consider using multiple upper and lower surface
laminates, spaced evenly along the span of the blade. Due to computing limitations and timing constraints,
only one laminate (or design region) each for the upper and lower surfaces was eventually used to define
the blade structure. It therefore may be possible to obtain even further enhancements in performance
through the inclusion of multiple design regions, rather than just a single design region, and it is therefore
recommended to perform further optimization studies with more than one design region over the propeller
blade. Finally, the mission profile was approximated using one operating condition each for the climb,
cruise, and descent to minimize computational cost. It would be more realistic to model the climb with at
least two operating segments, as the climb operating conditions change with altitude.

As the number of design regions increases, the number of design variables will increase. Additionally,
including more climb segments linearly scales the number of function evaluations. For the optimization
studies performed during this project, the gradient was evaluated numerically using a central differencing
scheme, and thus the objective function and constraints needed to be evaluated twice for each design
variable, implying that the problem size increases as the number of mission segments or design variables
increase. It is therefore recommended to modify the method of evaluating derivatives so that they are
computed either analytically or through the method of automatic differentiation to significantly reduce

https://www.esru.strath.ac.uk//EandE/Web_sites/09-10/MCT/html/Technical/rfoil.html


100 6. CONCLUSIONS

the number of function evaluations, as this will ensure that the computational cost of the optimization
procedure remains relatively low. It is also recommended to apply the method of aeroelastic tailoring
for other laminate types, either by reducing the set of lamination parameters to symmetric-balanced, to
directly investigate the influence of extension-shear coupling on potential performance improvements, or
by increasing the set of lamination parameters to investigate any generic type of laminate. This extension
is less practical than the others, as asymmetric laminates are difficult to manufacture.

Concerning the aeroelastic analysis and optimization, it would be interesting to validate the aeroelastic
analysis procedure through comparisons to experimental data, as well as to investigate the optimal blade
design in a wind tunnel to see its potential for enhanced performance. Experimental data that is suitable
for validation studies was not found during this project, although it may be possible in future work to find a
suitable case for comparison if further interest in aeroelastic tailoring for propeller blades is garnered. This
work could also be extended through the implementation of a method of retrieving a realistic ply stacking
sequence from the optimal set of lamination parameters. It would then be interesting to construct one of
the optimal propeller blades that is yielded from the optimization studies completed during this work. This
would enable the possibility for comparisons to be made between results obtained both experimentally and
numerically, without any dependence on the collection of results from any external organization.

During this project, the effect of improvements in propeller performance through aeroelastic tailoring
was evaluated independently of the blade’s aerodynamic design. Furthermore, the aircraft configuration
and mission profile were held constant and not included in the optimization. Thus, coupling between
aircraft design, aircraft mission, and propeller performance was ignored during this thesis. It is therefore
recommended in future work to consider also incorporating geometry changes to yield additional structural
coupling through the blade geometry or to yield improvements in the aerodynamic design. This would offer
greater design freedom as well as the potential for synergies between design characteristics to be exploited,
which may enable even greater enhancements in performance to be reached. It would also be interesting
to couple the aircraft design or mission strategy to the flexible propeller analysis and optimization, thus
enabling the effect of aeroelastic tailoring on mission energy consumption to be determined more precisely.
Lastly, multiple different mission profiles could be investigated to identify how the optimal blade structural
design varies depending on the mission strategy under consideration.



A
REFERENCED PROPELLERS

Blade geometry data for the TUD-XPROP propeller is provided in [13]. There are two composite propellers
with the same blade geometry and either three or six blades (XPROP-3 and XPROP, respectively). The
incidence angle of the blades can be manually adjusted, and the diameter of the propeller is 406.4 mm.
The propeller represents a typical previous-generation turboprop propeller. It has negligible sweep and
lean, making its geometry relatively simple, and the three rotors under consideration have been used
extensively already for investigations into isolated propeller aerodynamics, propeller integration studies,
and distributed propeller studies (i.e. [1, 10, 13]). Geometry data for this propeller is shown in Figure A.1
and Table A.1, and images of the propellers are shown in Figure A.2.

(a) Airfoils at varying spanwise locations. (b) Chord and twist distributions.

Figure A.1: Geometric data for the TUD-XPROP propeller [13].

(a) TUD-XPROP [72]. (b) TUD-XPROP-3 [72].

Figure A.2: The propellers studied by Sinnige et al. [1], Goyal et al. [10], and Nederlof et al. [13].
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Table A.1: Geometry data for the TUD-XPROP propeller.

Spanwise position, r/Rr/Rr/R Chord, c/Rc/Rc/R Twist angle, βββ

0.160 0.1603 26.82
0.195 0.1580 24.83
0.230 0.1556 22.89
0.265 0.1533 20.99
0.300 0.1510 19.15
0.335 0.1488 17.38
0.370 0.1469 15.62
0.405 0.1456 13.87
0.440 0.1451 12.14
0.475 0.1456 10.43
0.510 0.1468 8.730
0.545 0.1485 7.050
0.580 0.1502 5.390
0.615 0.1515 3.750
0.650 0.1523 2.120
0.685 0.1528 0.600
0.720 0.1534 -0.730
0.755 0.1533 -1.870
0.790 0.1515 -2.910
0.825 0.1465 -3.900
0.860 0.1380 -4.800
0.895 0.1256 -5.670
0.930 0.1094 -6.530
0.965 0.0912 -7.370
1.000 0.0681 -8.000

During this project, the XPROP-3 was used exclusively because the reference aircraft configuration
under consideration features a three-bladed propeller, and the pitch settings corresponding to optimal
performance in climb, cruise, and descent are closer together for the XPROP-3 in comparison to the original
six-bladed TUD-XPROP. Detailed airfoil geometries and polar plots have been made available for this
project by researchers at the TU Delft.



B
REVIEW OF APPLICABLE DISCIPLINES

This chapter provides details on the review of literature concerning the applicable disciplines of this
project. The purpose of this literature review is to provide a theoretical foundation that enables required
decisions to be made on the scope, methodologies, formulations, and assumptions for this project. The
main disciplines concerning this thesis include propeller aerodynamics, rotor blade static aeroelasticity,
and aeroelastic tailoring. First, common aerodynamic modelling methods are reviewed in Appendix B.1 to
identify an approach that would be most suitable for analysis and optimization of dual-role propellers.
Engineering correction methods for aerodynamic models have subsequently been reviewed in Appendix B.2
to provide an indication of corrections to aerodynamic loads that must be applied during this work.
Following this, a summary of open-source or otherwise available propeller aerodynamic analysis codes
has been provided in Appendix B.3 to provide an indication of the modelling approaches and assumptions
of other researchers, further motivating the selection of a suitable modelling method for this project. A
discussion on main themes and overall conclusions obtained from the reviewed literature on aerodynamic
models for propellers has then been provided in Appendix B.4. Static aeroelastic analysis methods for rotor
blades are reviewed next in Appendix B.5, thus covering the second main discipline of this thesis. This
section contains details on structural modelling methods for propellers, approaches towards the structural
analysis with composite materials, and a list of material properties for common types of composite
materials to identify a material type that would be suitable for this project. After reviewing suitable
analysis methods for rotor blades, previous cases involving the structural or aerodynamic optimization
of propeller blades were reviewed in Appendix B.6 to identify approaches that may be applicable to this
project and to quantify the extent of performance improvements that were obtained by other researchers.
Finally, all important conclusions from this literature study are summarized in Appendix B.7.

B.1. PROPELLER AERODYNAMIC MODELLING
There are several methods to compute the aerodynamic loads that act on propellers with varying levels of
complexity, precision, and computational cost. Within this section, various approaches with different levels
of fidelity will be introduced and discussed within the context of their applicability towards the analysis of
propeller aerodynamics. A trade-off study between the applicable aerodynamic models has been completed
to identify the model that is most capable of addressing the important phenomena and challenges that
were introduced in Section 1.1 while maintaining a low computational cost.

A detailed history of propeller aerodynamic model development is provided by Wald [41], and a
summary of this information is provided here. Rankine [73] and Froude [74] first developed the momentum
theory of propellers for marine applications. Applying this theory to aeronautics, Wilbur and Orville
Wright were the first researchers to combine blade element and momentum theories to predict propeller
aerodynamic load distributions [75]. Following this, the lifting-line model developed by Prandtl [76]
provided more detail to the representation of propeller aerodynamics. Betz [77] later derived the condition
that a minimum induced loss propeller has a wake that consists of vortex sheets that move axially
downstream as rigid screw surfaces with a constant wake pitch. Goldstein [40] extended this formulation
by presenting a closed-form solution for the circulation distribution over lightly loaded propeller blades.
The work of Goldstein was extended by Theodorsen [78] to be applicable to highly loaded propellers by
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considering the vortex system far downstream of the propeller rather than directly behind the propeller.
Tibery and Wrench Jr. [79] later provided accurate tabulated values to the Goldstein function over a wide
range of tip-speed ratios. Larrabee [80] then developed a design procedure for propellers, which offers
convenience, although it does not make use of the generalization made by Theodorsen and instead is
limited to the assumption of light loading [41]. Finally, this design procedure was extended by Adkins and
Liebeck [35], who dropped the small-angle approximation that Larrabee relied on.

According to Leishman [37] and Wald, blade element momentum (BEM) theory is most commonly used
for modelling propellers in industrial applications, despite the clearer understanding that is offered by
modelling the propeller with higher fidelity methods. Any textbook may be referenced for more information
on this approach, including [36, 37, 39, 43, 81]. Nevertheless, other models have also been considered in
previous works regarding the aeroelastic tailoring of propellers or wind turbines. For example, Hegberg
[26] implemented a vortex lattice method to calculate aerodynamic loads, and MacNeill and Verstraete [82]
implemented a three-dimensional free-wake panel method using a surface distribution of quadrilateral
sources and doublets. In the latter case, comparisons were made with experimental data for a propeller in
propulsive mode, for which excellent agreement was obtained. Yamamoto and August [18] also used a
three-dimensional Euler method to calculate propeller aerodynamic loads, which also yielded reasonable
agreement with experimental results. A review of propeller modelling techniques using Euler methods has
been presented by Zondervan [83]. In these additional cases, however, the flow is assumed to be inviscid,
and this assumption has already been shown to yield considerable inaccuracies for propellers operating in
at least partially separated flow, such as in energy-harvesting conditions. Due to the high computational
cost associated with CFD methods, applications involving this approach have not been reviewed during
this project, although lifting-line and vortex-lattice methods may be of interest as they provide a medium
level of fidelity and have been applied to similar problems such as in [26, 82, 84–86].

B.1.1. BLADE ELEMENT METHODS
Blade element models are commonly used in the design and optimization of propellers because they
usually require a small amount of computational resources. A comparison between several blade element
models for propellers has been provided by Gur and Rosen [87] for straight and swept blades in propulsive
conditions, however no such comparison has been performed for propellers operating in energy-harvesting
conditions. The paper identifies and describes three classifications of models to be combined with blade
element models for the calculation of propeller aerodynamic properties: momentum, lifting-line, and vortex
models. From this study, Gur and Rosen concluded that all models provide a similar level of precision,
although BEM generally has the lowest computational cost. The low computational requirement of BEM
makes it particularly useful for static aeroelastic analyses, with several researchers using it for application.
For example, the blade element momentum theory has been applied towards the aeroelastic analysis and
optimization of propeller blades by Dwyer and Rogers [17], Chattopadhyay et al. [19], Khan et al. [4, 24],
and Ferede [25, 27]. In all examples, the reasons that the authors cite for choosing to use blade element
momentum theory are twofold. First, the method provides results that correlate reasonably well with
experimental data, while also yielding meaningful design trends when applied in a numerical optimization
procedure. Second, the computational cost is very low in comparison to alternative methods, thus making
it suitable for optimization. Within the following three sections, various applications of blade element
models will be reviewed. The important difference between the three types of models presented is the
way that induced velocities are calculated. For instance, the blade element momentum model calculates
induced velocities using actuator disk theory, whereas the lifting-line method, formalized by Prandtl [76],
effectively represents the propeller blade as a bound vortex filament at the quarter-chord line. Trailing
vortices are created to form the wake as a result of the variations in circulation over the blade. The
vortex-lattice method is an extension of the lifting-line method to allow for the detailed blade and wake
geometry to be resolved directly. Lastly, vortex models, initially formulated by Betz [77] and later extended
by Goldstein [40] and Theodorsen [78], refer to formulations that are based on the optimal distribution of
circulation along the propeller blade.

BLADE ELEMENT MOMENTUM THEORY

As the name suggests, the blade element momentum theory applies the previously discussed momentum
theory with blade-element theory to compute the lift and drag distributions of the propeller. The theory
was pioneered by Glauert [39], and it is commonly applied towards the aeroelastic analysis of wind turbines
[88]. Indeed, wind turbines are generally stall-regulated and therefore large sections of the blades may
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be subject to flow separation, and the BEM method provides a simple approach to modelling separation
that relies on lift and drag polar plots for each input airfoil section [88]. For these reasons (also for its low
computational cost), several commercial or open-source wind turbine aeroelastic analysis codes apply the
blade element momentum method, including GH Bladed, HAWC, BHAWC, FAST, and Flex5 [88].

Several authors including McCormick [89], Leishman [37], and Burton et al. [43] have suggested that
the propeller blade advance angle is small enough to apply the small angle approximation at all radial
locations of the propeller blade and at all advance ratios while applying the blade element theory. This
approximation requires the loss in propeller thrust resulting from the induced drag to be considered
negligible, and has been shown to be inaccurate by Whitmore and Merrill, who proposed a solution method
that drops this small-angle approximation in [90], although their method does not include the effect of
rotational velocity in the propeller slipstream. Several years earlier, Adkins and Liebeck [35] developed a
similar blade element momentum model that did include a conservation of angular momentum to include
rotational velocities in the propeller slipstream. Adkins and Liebeck also applied their method towards
an optimal propeller design procedure in [35], therefore improving upon the design procedure that was
applied by Larrabee [80], which relied on the small-angle approximation.

As discussed previously, Gur and Rosen [87] performed a comparative study between the three different
types of blade element models (momentum, lifting-line, and vortex). For their BEM code, Gur and Rosen
included rotational velocities in the propeller slipstream and did not apply the small-angle approximation.
Through their comparison, it was shown that evaluating propeller performance during propulsive operation
using BEM theory compared well with experimental data. Moreover, the agreement obtained with BEM
yielded similar differences in comparison to the other two modelling methods, as shown in Figure B.1.

(a) Results for propeller I from [91] (two swept blades). (b) Results for propeller II from [91] (two unswept blades).

(c) Results for propeller III from [91] (two unswept blades). (d) Results for the propeller from [92] (four unswept blades).

Figure B.1: Comparison between CT and CP results from blade element models and experiments [87].

For applications in aeroelasticity, the effects of blade-axis deformations on aerodynamic loads have
been identified as important to consider by Chattopadhyay et al. [19] and by Sodja et al. [3, 21]. Both
authors applied the blade element momentum method of Adkins and Liebeck [35] and modified the
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procedure to allow for the loads to be affected by variations in sweep angle. The method that was applied
by Chattopadhyay et al. [19] is not documented within their paper or within any derivatives of this work,
although the method applied by Sodja et al. has been explained well in [3]. Sodja et al. expressed the BEM
equations in vector form, therefore allowing a blade-axis of generic shape and orientation to be provided
as an input and used to correct the calculated axial and tangential interference factors. Gur and Rosen
also applied a different modification to the BEM equations (by adjusting the axial momentum theory)
to account for the radial velocity component encountered by a propeller with a curved blade axis in [38].
Results presented in [3, 19, 21, 38, 93] all correlated well with results from high-fidelity simulations and
physical tests, as shown for example in Figure B.2.

(a) CT versus J. (b) CP versus J. (c) ηP versus J.

Figure B.2: Results obtained using the extended BEM method of Sodja et al. within an iteratively
coupled FSI model (L-F), and a previously validated high-fidelity FSI model (H-F) for flexible propeller

blades that are either swept-forward (FB), swept-back (BB), or unswept (SB) [21].

The blade element momentum method has been found to yield results that are reasonable in comparison
to experimental data and high-fidelity simulations in [43, 81, 87, 90, 93] among others, for propellers
in propulsive conditions. However, for cases involving propellers operating in regenerative conditions,
the accuracy of this method deteriorates as flow separation becomes more severe [10]. This has already
been discussed within Section 1.1. Nevertheless, the general trends of the calculated distributive and
integral properties appear to match the trends observed from other methods based on the results shown in
Figure 1.2, Figure 1.3, Figure 1.8, Figure B.2, and Figure B.1 even if errors are present at exceedingly
high or low advance ratios. It is likely that the errors present at these severe operating conditions cannot
be mitigated by a different blade element model (such as lifting line or vortex theories), as the errors are
likely caused by inaccuracies in the polar plots in the presence of partially or fully separated flow.

LIFTING-LINE AND VORTEX-LATTICE METHODS

The lifting-line method is another model that may be used to represent lifting bodies with a finite span. It
is most effective for surfaces with high aspect ratios, and it was originally intended for fixed wings [36, 87].
The blade is discretized by a collection of vortex filaments with different strengths at the local aerodynamic
centre. To satisfy the Kelvin Helmholtz theorem, these vortex lines bend and extend far downstream into
the wake. The typical lifting-line model as applied to propeller aerodynamics is depicted within Figure B.3
to indicate this. Theory concerning the lifting-line model for fixed wings is provided by Anderson [94] for
attached and separated flows, and by Drela [95]. In this way, the wake is explicitly resolved and therefore
the empirical relations that the BEM model depends on to remain accurate do not need to be applied, such
as the tip-loss factor [43]. The loads that are computed using this method therefore also depend on the
shape of the wake, and three methods have been identified for modelling the wake Gur and Rosen:

a) A prescribed wake model

b) A semi-prescribed wake model

c) A free-wake model

In the prescribed wake model, the wake pitch is fixed and does not depend on the induced velocities;
whereas in the semi-prescribed wake model, the wake shape is provided and its exact geometry depends
mainly on the axial induced velocity. Finally, the free-wake model is the most complicated and the wake
geometry is solved explicitly through the condition that trailing vortices have zero forces acting on them
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and the direction of the trailing vortices at any point in the wake is coincident with the direction of the
local resultant velocity [87]. In their comparison between solutions obtained with the three approaches,
Gur and Rosen [87] observed minimal differences in the solutions obtained, and aerodynamic loads were
slightly overestimated in all cases, although the general trends in performance still matched.

(a) The horseshoe vortex system of a fixed-wing [94]. (b) The vortex system of a propeller [43].

Figure B.3: Diagrams of the generic lifting-line model for a finite wing and a propeller.

To reduce computational cost, therefore enabling this method to be applied within an aeroelastic
analysis and optimization procedure, it is desirable to use a prescribed wake model. Indeed, the free-wake
method is generally reserved for performing unsteady analyses or evaluating complicated wake structures
(such as a helicopter rotor in hover, where a significant amount of wake contraction would be present)
[87, 88]. For the work of this thesis, evaluated loads are steady and the induced velocity components are
relatively small in comparison to the freestream, and therefore it would be sufficient to use a prescribed
helical wake model that neglects any wake contraction, similar to the work of Hegberg [26] or of Rand and
Rosen [96], who respectively applied vortex-lattice and lifting-line rotor-blade aerodynamic models. To
evaluate performance, lift polar data can also be supplied to obtain the circulation distribution using the
Kutta-Joukowski theorem; the velocities induced by the wake may be obtained using the Biot-Savart law
[94]. For a lifting-line propeller aerodynamic model with a prescribed helical wake that has a constant pitch
and radius, Lerbs [97] derived solutions for the axial and tangential induced velocities in terms of potential
functions under the assumption that the propeller hub is an infinite cylinder of zero circulation. Wrench Jr.
[98] later improved upon this solution by providing expressions relating the axial and tangential induction
factors directly to the wake pitch, yielding similar results to Lerbs. The closed-form approximations of
Wrench Jr. are provided by Kerwin and Hadler [99]. The lifting-line method has been used within a
few propeller or wind turbine aerodynamic analysis programs, such as in [85, 86]. Epps used the lifting-
line method with a prescribed wake model for the calculation of aerodynamic loads acting on a marine
propeller in [85, 100, 101]. More recently, Marten extended the lifting-line method in the development of
an aeroelastic analysis program for modern wind turbine blades in [86]. The open-source code resulting
from this work, QBlade, uses a lifting-line free vortex wake (LLFVW) that is largely based on the work of
van Garrel [84], who developed a nonlinear steady wind turbine aerodynamic model using the LLFVW
method. Both models apply the spacial discretization scheme from Figure B.4.

The LLFVW method is similar to the method that was applied by Hegberg [26], with the main difference
being that Hegberg represented the wind turbine blades with vortex panels (using a prescribed wake
model), which allowed the full blade geometry to be represented. The classical lifting-line theory was
considered by Hegberg, although the vortex panel method was ultimately selected to enable a more detailed
representation of the blade geometry, with a similar level of fidelity as the author’s structural model,
thus preserving the three-dimensional properties of each blade. Hegberg also used the panel method to
obtain aerodynamic loads by evaluating the blade’s bound vorticity distribution (thus not relying on the
blade-element method for this, unlike the approach of van Garrel [84] and Marten [86]). The consequence
of this is that Hegberg considered the flow to be inviscid, which implies that the flow is always fully
attached over each blade [26]. The aerodynamic model that was applied by Hegberg is analogous to the
aerodynamic model that was applied by Werter [30] and Dillinger [63] for aeroelastic tailoring of aircraft
wings. It is suggested by Hansen et al. and in the list of future recommendations provided by Hegberg that
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the induced velocities that are calculated by the panel method at sections of the blade can be used to allow
nonlinear aerodynamic loads to be evaluated using look-up tables within an iterative scheme, therefore
allowing separated flow to be accounted for. This is effectively the same approach as applied by van Garrel
[84] and Marten [86] (by evaluating the bound vorticity distribution using the lifting line method instead
of the vortex lattice method), and it is already partially used by Hegberg to evaluate the parasitic drag
encountered at each spanwise position of the wind turbine blade [26, 102].

Figure B.4: The blade and wake spacial discretization method of van Garrel and Marten [84].

A review of lifting-line and vortex-lattice methods (VLM) for evaluating rotor-blade aerodynamics has
been provided by Lee et al. in [103], although their discussion is primarily limited to free-vortex wake
methods, which are not the main concern of this project. The authors do, however, provide a discussion on
nonlinear vortex-lattice methods (NVLM), which combine the typical vortex-lattice method, as used within
the work of Hegberg, with airfoil lookup tables, semi-empirical stall-delay models (see Appendix B.2.2),
and vortex strength corrections [103]. The relevant aspects of this review include the discussion on
vortex-lattice methods and the method of applying corrections with semi-empirical lift and drag polar data.
Hegberg and Lee et al. both reference Katz and Plotkin [104] for a detailed description of the governing
equations for the vortex-lattice method. According to Lee et al., the sectional lift and drag forces evaluated
with lookup tables may be used to correct the circulation distribution. A detailed iterative procedure
has been provided and validated by Lee and Lee [105] to perform this calculation for a free-wake VLM
code. It may be possible to adapt this procedure and implement it in the prescribed-wake code of Hegberg.
This method facilitates the evaluation of nonlinear aerodynamic forces with a more precise method of
evaluating induced velocities in comparison to BEM, due to the inclusion of three-dimensional effects.

One of the most important features differentiating the lifting-line and vortex-lattice methods in
comparison to the blade element momentum theory model is that it intrinsically represents important
aspects of the flow that the blade element momentum theory must rely on engineering approximations to
capture. For instance, the VLM and lifting-line methods intrinsically represent three-dimensional effects,
such as losses in circulation near the root and tip of each propeller blade [106]. However, because the
selected aerodynamic model will be used to solve a somewhat large optimization problem, computational
time is a crucial factor, and the lifting-line method is generally more computationally expensive in
comparison to the BEM model. Regarding these concerns, comparisons were made between BEM and
lifting-line or panel methods for wind turbines in [102, 106–109], and for propellers in [38]. Although
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the models used were different in each comparison, the general trends were roughly the same: The BEM
and lifting-line models compared reasonably well in on-design conditions, although the induction factors
evaluated by the BEM model were found to yield errors in cases of excessively high or low tip speed
ratios. Gur and Rosen [87] observed that the lifting-line models outperformed the BEM models at low
advance ratios, while Ismail and Okita [108] found that the BEM model noticeably over-predicted the
wind turbine performance outside its normal operating conditions, and de Luna et al. [109] observed
only marginal differences at off-design conditions. Moreover, Blondel et al. [107], Hauptmann et al. [106],
and Perez-Becker et al. [102] did not observe any large differences between the two approaches within
any of the operating conditions that would be of interest to this project. Lastly, the lifting-line models
considered for comparisons all relied on a free-vortex wake representation and therefore the simulation
time was between 6- and 34-times greater than that of the BEM codes according to Ismail and Okita,
although Hegberg reported a relatively low computational time for evaluating aerodynamic loads using a
prescribed-wake code despite not providing quantitative data on this. Thus, it is possible to conclude that
the lifting-line or vortex-panel method should be considered if three-dimensional effects are important to
model directly (such as in cases involving a large amount of wake contraction, non-uniform inflows, or
complex blade geometries). For this project, it is anticipated that the required level of precision would be
obtained by the more simple BEM model, as the geometry of the blade is expected to remain fixed, and
BEM was found to at least replicate general trends at operating conditions of interest to this project.

VORTEX METHODS

Vortex theory was initially developed by Betz [77], who established a design criterion for minimizing
the induced losses of a propeller. According to Betz, a minimum-induced-loss propeller creates a wake
of helical vortex sheets with constant pitch along the radial axis, although the pitch may vary in the
axial direction. This condition is only satisfied at one operating condition, which has maximum efficiency
(excluding any viscous losses). A diagram depicting this condition is shown in Figure B.5.

(a) Betz’s rigid wake condition for minimum induced loss propellers,
as indicated by the displacement velocity at two blade sections [80].

(b) A diagram of the wake behind an ideal wind turbine,
showing a constant axial displacement velocity [81].

Figure B.5: Diagrams indicating that the wake of each blade section has an equal displacement velocity
given by w, where wcos(Φ) is the local vortex sheet velocity and Φ is the local helix angle of the vortex

sheet, with the induced velocity always being orthogonal to the wake pitch.

A closed-form expression for the optimal circulation distribution over a lightly loaded propeller blade
was first developed by Goldstein [40]. Theodorsen [78] subsequently extended this to heavily loaded
propellers by identifying that the circulation distribution depends wholly on the configuration of vortex
sheets in the wake, and that these vortex sheets do not need to have the same pitch as the blades of the
propeller [41]. Another similar model was produced by McCormick [89] with the same assumptions as
Theodorsen [87]. Vortex theory models rely on the assumption that the induced velocity in the propeller
plane is orthogonal to the relative incoming flow velocity (as shown in Figure B.5), and that the axial
displacement velocity of the vortex sheets produced by the propeller is half of its value in the far-wake.
Gur and Rosen [87] compared results obtained with the vortex models of Theodorsen and McCormick to
the results obtained with lifting-line and BEM models. Details on the calculation of the induced velocities
are provided in [87] and Figure B.1 contains sample results of this comparison. As already mentioned,
the simpler BEM model appears to provide an equal or more consistent approximation in comparison to
the two vortex models. For this project, the advantages of using slightly more computationally expensive
vortex models over the BEM models are not clear, although the vortex theory is helpful for explaining the
tip-loss factor, which has been reviewed in Appendix B.2.1 and documented in Section 2.1.
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B.2. CORRECTIONS FOR AERODYNAMIC MODELS
All three of the aerodynamic models discussed in the previous section require the use of blade element
theory with nonlinear airfoil data to represent the effect on lift and drag due to flow separation and the
transition from laminar to turbulent flow. Because the flow passing over each rotating blade is subjected
to Coriolis and centrifugal forces, it will tend to travel outward, therefore causing the inboard sections
to be more resistant to boundary layer growth, which affects the onset of both transition and separation.
Several stall-delay models have been proposed to address this effect, and these models have been reviewed
in Appendix B.2.2. Additionally, the BEM model is incapable of accounting for losses in circulation at the
root and tip, and therefore root- and tip-loss corrections have been discussed briefly in Appendix B.2.1.

B.2.1. TIP LOSS FACTORS
For lifting-line and vortex methods, the root- and tip-loss factors are not required, since the solvers directly
resolve losses in circulation at the root and tip of the blades. However, for the blade element momentum
method, corrections for the root and tip losses are essential to ensure that loads are appropriately
represented. Indeed, when the chord at the tip is finite, blade element momentum theory will produce a
non-zero lift when it should instead be zero. This loss of lift at the tip of the rotor is important and if it is
neglected, then the thrust for a given amount of power will be noticeably overestimated [36, 37]. A review
of the methods used to account for these losses is provided by Shen et al. in [110]. The most well-known is
the Prandtl tip-loss factor, which is provided in Equation (2.7) and documented in [41], among others.

The tip-loss factor provided by Glauert is the most widely used due to its ease of implementation
[36, 37, 41, 43]. However, other tip loss factors have been provided by Wilson and Lissaman [111] and
de Vries [112], although for the rotor that was analysed by Shen et al., the differences in blade-loading
distribution between the three methods were nearly indistinguishable. Plots to indicate this have not been
included within this report for brevity. Shen et al. also suggests a modification to this tip-loss factor, which
is recommended by Burton et al., although this model depends on experimental data and is therefore not
practical when propeller performance is not known a priori. For this project, it is only important that losses
near the blade tips are represented with reasonable accuracy, and therefore the method of Glauert was
selected over the method of Goldstein. This method has also been featured in most of the blade-element
momentum models that were reviewed in this report (such as in [3, 19, 35, 42, 80, 87, 90, 113, 114]).

B.2.2. STALL-DELAY MODELS
3D effects on rotating blades near stall were investigated experimentally and with CFD methods by
Himmelskamp [115], Dwyer and McCroskey [116], Young and Williams [117], Madsen and Christensen
[118], Snel et al. [119], Narramore and Vermeland [120], and Robinson et al. [121]. The results of these
investigations indicate that the sectional lift-curve slope may differ significantly from the otherwise 2D
lift curve slope due to three-dimensional effects of rotation. This is directly due to the centrifugal and
Coriolis forces that act on the boundary layer flow that passes over the propeller blades. In general, this
effect tends to delay the onset of separation and transition, as the additional acceleration components tend
to suppress the boundary layer growth [122]. At a given spanwise position,

¯
r, the Coriolis acceleration

is given by Equation (B.1) and the centrifugal acceleration is given by Equation (B.2) [122]. Figure B.6
provides an indication of how the Coriolis and centrifugal forces will influence the trajectory of a fluid
particle and the sectional lift coefficient curve. According to Leishman [37], a precise method that does not
rely on high-fidelity simulations for modelling this effect on the boundary layer is still missing. Therefore,
semi-empirical stall-delay models are generally used to account for this.

acor. =−2
¯
ω×

¯
V (B.1)

acen. =−
¯
ω× (

¯
ω×

¯
r) (B.2)

As shown in Figure B.6, the Coriolis acceleration vector will act tangentially to the blade rotation
and towards the blade trailing edge, whereas the centrifugal acceleration vector will point outward in
the radial direction. This suggests that the stall-delay effect is more pronounced near the hub, as fluid
particles get transported outward from the blade root, which leads to a thinner and therefore more
stall-resistant boundary layer near the root, as indicated by the more favourable Cl-α curve shown in
Figure B.6b. Goyal et al. [10] confirmed this by studying angles of attack where rotational effects are most
significant for the TUD-XPROP propeller and providing a plot of the difference in lift and drag coefficients
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between the calculations with and without effects of rotation. Results from this investigation are shown in
Figure B.7. It is also apparent from this plot that the stall-delay effect affects the drag coefficient even at
very low angles of attack near the root section of the blade. The propeller blade under consideration in
this case is cambered and thus experiences separation at lower magnitudes of negative angles of attack.
The stall-delay effect appears to have a more pronounced effect at negative angles of attack in this case,
because the separation is less gradual in comparison to if it occurred at positive angles of attack.

(a) A drawing demonstrating the effect of Coriolis and centrifugal forces on the
trajectory of a fluid particle in the boundary layer [122]

(b) An example of the effect of rotation
on the spanwise 2D lift coefficients [115].

Figure B.6: Effects of rotation on sectional properties of a propeller blade (reproduced from [122]).

(a) Lift. (b) Drag.

Figure B.7: Plots of the influence of effects due to rotation on the prediction of either lift or drag using
blade element momentum theory for the TU Delft XPROP propeller [10].

Because the aerodynamic models that have been presented previously are either inviscid or rely on
experimental data for the lift and drag coefficient information, stall-delay models should be included with
any model that is capable of capturing nonlinear aerodynamic loads. A comparison between different stall
delay corrections within a BEM model was completed by Morgado et al. [123] for propellers operating at
low advance ratios. However, mistakes were present in the equations that they presented, and separation
did not appear to occur for most of the operating conditions under consideration in their analysis. No other
comparisons between stall-delay models appear to have been performed for propellers, although Breton
et al. [124] performed a similar comparison for wind turbines using a prescribed-wake lifting-line model.
Breton et al. did not modify any of the stall-delay model coefficients to match their experimental data, and
therefore were unable to observe common trends between any of the results from different models. It is
anticipated that the stall-delay effect is more pronounced during propulsive conditions in comparison to
regenerative conditions, since the centrifugal force increases quadratically with rotational speed and the
Coriolis force increases linearly with rotational speed. Hence, the acceptable model parameters may differ
between the two modes of operation. Some applicable stall delay models have been reviewed within this
report. Many of the developed models apply the expressions shown in Equation (B.3) and Equation (B.4) to
respectively correct the lift and drag coefficients; including models of Snel et al. [119], Du and Selig [125],
Chaviaropoulos and Hansen [126], Gur and Rosen [127], and Dumitrescu and Cardos [128]. Note that
terms gCl and gCd correspond to model coefficients that are determined from empirical or numerical data.
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Cvisc
l,3D = Cvisc

l,2D + gCl

[
Cinv

l,2D −Cvisc
l,2D

]
(B.3)

Cvisc
d,3D = Cvisc

d,2D + gCd

[
Cinv

d,2D −Cd,0

]
(B.4)

Coefficients that have the subscript “3D” will always refer to values that include effects of rotation,
and the subscript “2D” will always be used to denote values that do not include effects of rotation.

MODELLING STALL-DELAY USING THE METHOD OF CORRIGAN AND SCHILLINGS

One of the oldest stall delay models for propellers or helicopter rotors was developed by Corrigan and
Schillings [129], which correlates stall delay to the ratio between the local blade chord and radial position.
This implies that the stall-delay phenomenon increases proportionally with local solidity. Corrigan and
Schillings continued the work of Banks and Gadd [130], who analysed pressure gradients in the boundary
layer to determine the location of laminar separation by assuming chordwise and radial boundary layer
profiles. The model of Corrigan and Schillings also requires the assumption that the external flow on the
suction surface has a constant adverse velocity gradient in the streamwise direction, given by K [124]. As
shown in Figure B.8, the authors define an angle Θ, between two lines starting at the axis of rotation and
extending respectively to the trailing edge and the location of separation, which is approximated by c/r.
Equation (B.5) is then used to determine the 3D lift coefficient, and no relation is provided for the drag.

(a) A sketch of the coordinate system that was used. (b) An approximation of the adverse velocity
gradient using the separation location.

Figure B.8: Images corresponding to the stall-delay model of Corrigan and Schillings [131].

The model of Corrigan and Schillings effectively represents the delay of stall by a perturbation in angle
of attack, and assumes that separation occurs near the leading edge [124, 131]. More information on this
model and its assumptions may be found in [131] and has been left out for brevity. Contrary to most of the
models, which were compared with data for wind turbines, Equation (B.6) was obtained largely through
comparisons with empirical data for helicopters and propellers (a value of n = 1 is usually used) [131].

Cvisc
l,3D = Cvisc

l,2D + (α+∆α)Cinv
lα (B.5)

∆α=
(
αCl,max −αCl=0

)[(
K (c/r)
0.136

)n
−1

]
n ∈ [0.8 ,1.6] (B.6)

MODELLING STALL-DELAY USING THE METHOD OF SNEL

The seminal work of Snel et al. [119, 132] involves the development of 3D boundary layer equations on
a rotating blade in cylindrical coordinates. The authors then implemented these equations into a 2D
viscous-inviscid interaction program. Through comparisons with simulation and experimental results for
a wind turbine, the following simple correction was applied, corresponding to Equation (B.3).

gCl = 3.1
( c

r

)2
(B.7)
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Bosschers et al. used the modified 3D boundary layer equations that were proposed by Snel to include
rotational effects, and implemented them within XFOIL to form the program RFOIL [11]. This is the
program that was used by Goyal et al. within their BEM code for comparisons with experimental data
and CFD in [10]. The general solution procedure is explained by Bosschers et al. in [11]. RFOIL is most
applicable in high-lift conditions, where the separated flow is affected primarily by the Coriolis force,
pressure force, and shear stress [122]. Nevertheless, this method is advantageous because it does not
require empirical data and thus is less configuration-specific than the methods discussed previously.

Several stall-delay models were developed following the work of Snel [119], using either the boundary
layer equations that were formulated or experimental data. For example, Du and Selig [125], Chaviaropou-
los and Hansen [126], Eggers et al. [133], Lindenburg [134], and Dumitrescu and Cardos [128] developed
stall-delay models using both calculated and experimental data for horizontal axis wind turbines. Models
developed by these authors will not be discussed further within this report, as it is suggested that the
stall-delay phenomenon is primarily dependent on the local chord (c/r), airfoil shape, and twist angle
[88, 124, 126]. Furthermore, the results presented by Breton et al. [124] during their comparisons between
six of the stall-delay models under consideration showed strong differences between model predictions
for the power, lift, and drag. This indicates that empirically derived models are poorly representing the
underlying physics and instead are highly dependent on the configuration being analysed. For these
reasons, the only models considered were developed for propellers in particular.

MODIFICATIONS TO THE MODEL OF SNEL

Regarding the lift coefficient correction, Snel [132] and Gur and Rosen [127] both reason through physical
arguments that lim(c/r)→∞ gCl = 1 and lim(c/r)→0 gCl = 0. Resulting from this, both authors suggested using
a hyperbolic tangent function within gCl , as it possesses these properties and is mostly linear between
0 and 1 [127]. Gur and Rosen showed promising results when comparing the calculated performance of
propellers with this correction to experimental data at low advance ratios. However, the drag coefficient
correction, gCd , is less straightforward. Some researchers, including Du and Selig [125], suggest that
the drag coefficient decreases with rotation through arguments that are motivated by results from CFD
simulations. Whereas other researchers suggest that the drag coefficient will decrease due to a delayed
separation point that reduces the size of the wake [135]. Several other researchers, including Lindenburg
and Chaviaropoulos and Hansen, have also suggested that the drag force will increase [135]. For these
reasons, it is tempting to not modify the drag coefficient, as suggested by Corrigan and Schillings, Snel
et al., Dumitrescu and Cardos, and Bosschers et al..

Gur and Rosen [127] suggest using Equation (B.8) to correct the lift coefficient, which may be viewed
as a potential generalization for the model of Snel [132], since the coefficient used in that case was just fit
to experimental data. Veldhuis [122] suggests that k1 = 0 and k2 = 3 may yield interesting results, as it
is similar to the model of Snel [132] and using a hyperbolic tangent function introduces the potentially
favourable properties that were previously discussed. Nevertheless, this model has not been compared
with experimental data.

gCl = tanh
(
k1 (c/r)+k2 (c/r)2

)
(B.8)

B.3. AVAILABLE PROPELLER AERODYNAMIC ANALYSIS CODES
Some codes that are either open-source or available at the TU Delft have been explained in this section to
identify the assumptions and methods that have been applied by other researchers. Table B.1 contains a
tabulated summary of propeller aerodynamic analysis codes that would be suitable for optimization. Most
of the codes contained within this list apply blade element momentum models. Brief summaries of each
code have also been provided below. In general, all of these programs were largely developed from the
same underlying theory, and are therefore expected to behave similarly, with differences in performance
being largely due to minor variations in the assumptions considered.

Comparisons between results from physical tests, RANS simulations, and three of the aerodynamic
analysis codes shown in Table B.1 are provided by Bergmann et al. in [137]. The authors provide a short
review of JavaProp, JBLADE, and XROTOR. JBLADE and XROTOR appear to perform similarly, whereas
JavaProp appears to consistently underperform. From this comparison, it was concluded that JavaProp
is only suitable for preliminary analysis due to the large errors observed, whereas XROTOR provides
a level of fidelity that is more suitable for blade design applications, and it especially provides a good

https://web.mit.edu/drela/Public/web/xfoil/
https://www.esru.strath.ac.uk//EandE/Web_sites/09-10/MCT/html/Technical/rfoil.html
https://www.esru.strath.ac.uk//EandE/Web_sites/09-10/MCT/html/Technical/rfoil.html
https://www.mh-aerotools.de/airfoils/javaprop.htm
https://sites.google.com/site/joaomorgado23/Home
https://web.mit.edu/drela/Public/web/xrotor/
https://sites.google.com/site/joaomorgado23/Home
https://web.mit.edu/drela/Public/web/xrotor/
https://www.mh-aerotools.de/airfoils/javaprop.htm
https://www.mh-aerotools.de/airfoils/javaprop.htm
https://web.mit.edu/drela/Public/web/xrotor/
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thrust prediction. The errors observed when using JBLADE are primarily due to its poor performance in
post-stall conditions. Thus, from the results obtained in [137], XROTOR appears to be most suitable for
this project; the aerodynamic model within XROTOR is also closer to the level of fidelity that is provided
by the structural model of PROTEUS. The other codes listed in Table B.1 were not directly compared in
any studies, although CCBlade would be interesting to consider for applications related to optimization,
since it was primarily developed for this purpose [42].

Table B.1: Information on open-source or otherwise available propeller aerodynamic models.

Model Year Type & Theory Reference Author(s)

CCBlade 2020 BEM [42, 113] Ning
JavaProp 1996 BEM [80, 138, 139] Eppler and Hepperle
JBLADE 2014 BEM [140–142] Morgado et al.
PROTEUSa 2019 VLM (prescribed wake) [26, 104] Hegberg
QPROP 2007 BEM [143] Drela
XROTOR 2003 BEM [35, 80, 143], lifting-line, or vortex [40] Drela and Youngren

XFOIL 1986 Viscous airfoil analysis (no rotation) [145] Drela
RFOIL 1996 Viscous airfoil analysis (with rotation) [11] Bosschers et al.

a PROTEUS generally refers to the complete structural analysis and optimization program of Werter and De Breuker [29], although
in this context, it only refers to the rotor aerodynamic analysis method that was applied by Hegberg in [26].

XROTOR and QPROP Both of these applications were developed by Drela [143], and feature very
similar formulations for the BEM solvers. The BEM model uses the Prandtl tip-loss factor and is based
on the classical theory of Goldstein [40] and Theodorsen [78], which was reformulated by Larrabee [80]
and Adkins and Liebeck [35]. In both codes, the wake has zero contraction (the induced velocity vector
is orthogonal to the resultant incoming flow velocity) and there is a notable difference in the application
of the Prandtl tip-loss factor, which includes effects at the blade root, as shown in Equation (B.9). It is
also expressed using the local wake advance ratio, λw

2 (instead of the inflow ratio, λ2). This is possibly
more realistic for heavy disk loading, though it likely would not be noticeable for cases investigated in this
project. Otherwise, the theory used is nearly identical to that of Adkins and Liebeck.

Ftip = 2
π

arccos
[
exp

(
−Nb

2
1− r̃
λw

2

)]√
1+ (

4λw
2 / (πNb r̃)

)2
λw

2 = r̃ tan
(
ϕ

)
(B.9)

XROTOR was later modified to also feature a prescribed-wake lifting-line solver and a vortex solver
based on the theory of Goldstein [40]. The lifting-line theory that is applied within XROTOR is not
documented anywhere by the authors, and has a higher computational requirement than the other two
approaches, though the prescribed wake appears to have a constant pitch with zero contraction.

PROTEUS This code has been discussed briefly within Appendix B.1.1, and it features the only aerody-
namic model of the presented alternatives that does not rely on the blade element method. In this context,
PROTEUS describes the prescribed-wake VLM model that was used by Hegberg [26] to evaluate wind
turbine aerodynamic loads. The flow over the blades does not feature any viscous effects because it is
evaluated using a linear aerodynamic theory. This code also may be modified to include viscous effects
such as separation, for example, using the method of Lee and Lee [105]

JBLADE This program is slightly more recent, and largely based on the PhD research of Morgado [142].
Like the others, it is also based on the classical blade element momentum theory, which relies on 2D polar
plots from XFOIL that are corrected by an empirical post-stall model. JBLADE includes a calculation for
radial induced velocities, meaning that it could be suitable for more heavily loaded rotors, though it relies
on the assumption of a constant axial induced velocity during the radial induced velocity calculation only
(to apply the free-vortex condition), which is generally unrealistic for propellers and wind turbines [81].

https://sites.google.com/site/joaomorgado23/Home
https://web.mit.edu/drela/Public/web/xrotor/
https://web.mit.edu/drela/Public/web/xrotor/
https://flow.byu.edu/CCBlade.jl/stable/
https://flow.byu.edu/CCBlade.jl/stable/
https://www.mh-aerotools.de/airfoils/javaprop.htm
https://sites.google.com/site/joaomorgado23/Home
https://web.mit.edu/drela/Public/web/qprop/
https://web.mit.edu/drela/Public/web/xrotor/
https://web.mit.edu/drela/Public/web/xfoil/
https://www.esru.strath.ac.uk//EandE/Web_sites/09-10/MCT/html/Technical/rfoil.html
https://web.mit.edu/drela/Public/web/xrotor/
https://web.mit.edu/drela/Public/web/xrotor/
https://web.mit.edu/drela/Public/web/xfoil/
https://sites.google.com/site/joaomorgado23/Home
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JavaProp This program does not appear to contain any notable differences from the original method of
Larrabee [138]. Additionally, tangential induced velocities are not included in its calculations. For these
reasons, this code is expected to provide the least accurate prediction of propeller performance.

CCBlade This code was developed with the purpose of being applied within a numerical optimization
procedure, and it is intended to be used for both the analysis of wind turbines and propellers. As such,
a correction was applied for cases involving large negative induction factors (a <−0.5) that result in a
non-physical flow reversal in the far-wake to be represented by the traditional momentum theory (this
is not relevant for positive thrust conditions, although required during negative-thrust operation), and
a modification to the solution procedure is applied to allow the formulation to be capable of handling
cases with zero freestream velocity (such as for a hovering rotor) [42]. Lastly, the calculations applied
by Ning [42] enable all induced velocities to be obtained by minimizing only one residual function that
depends solely on the inflow angle, ϕ, thus making the method particularly reliable for optimization,
where numerical difficulties can be encountered. Otherwise, it uses the conventional Prandtl tip loss factor
and the theory of Adkins and Liebeck for the analysis of propellers.

B.4. CRITICAL DISCUSSIONS ON AERODYNAMIC MODELLING METHODS
Approaches to modelling the aerodynamics of propellers have been reviewed within this section, with
the goal of identifying the most suitable method for use within an aeroelastic analysis and optimization
procedure. Within this context, it has been identified that propeller performance is usually evaluated with
blade-element models, as the use of higher fidelity approaches involving CFD is precluded by computational
cost. Thus, two types of models were found to be suitable for this project: blade element momentum
(such as the approach of Adkins and Liebeck [35] or Sodja et al. [3, 21]), and prescribed-wake VLM or
lifting-line methods (like the model used by Hegberg [26]). With these classifications, Table B.2 groups
and summarizes characteristics of each method to highlight their advantages and drawbacks.

Table B.2: Comparison between characteristics of BEM and VLM or lifting-line methods.

Characteristic Blade Element Momentum VLM or Lifting-Line

Intrinsic Effects
• Axial Induced Velocity
• Tangential Induced Velocity

• Axial induced velocity
• Tangential induced velocity
• Radial induced velocity
• Finite number of blades
• Three-dimensional effects (including sensi-

tivity to changes in blade-axis geometry)

Engineering
Corrections

• Finite number of blades
• Rotational effects on boundary layer flow • Rotational effects on boundary layer flow

Simulation Time • Minimal
• Prescribed wake: low
• Free wake: high

Any nonlinear blade element method that is selected requires nonlinear static lift and drag polar plots
to be used, which include effects of rotation due to the presence of powerful Coriolis and centrifugal forces.
Additionally, while the airfoils of the TUD-XPROP propeller are known, experimental lift and drag polar
plots for the airfoils of this propeller have not been collected. Therefore, the 2D lift and drag polar plots
will need to be evaluated using a numerical procedure such as XFOIL. For representing the effects of
rotation, only the nonlinear aerodynamic model that was proposed by Bosschers et al. [11] may be used for
calculating sectional lift and drag coefficients. This decision was made despite the problems with RFOIL
that were observed by Goyal et al. [10], as they report that it led to an overestimated prediction of stall
near the tips of the propeller blade. The key advantage that RFOIL has over all other methods that were
reviewed in this chapter is that it is not configuration-dependent, and therefore does not rely on any
experimental data. Indeed, it was observed in Appendix B.2.2 that all other stall-delay models require
empirical data for the selection of coefficient values. Because it has been shown by Breton et al. [124] that
the applicability of these semi-empirical stall-delay models depends heavily on the choice of coefficient
values, they have all not been considered appropriate for this project.

https://web.mit.edu/drela/Public/web/xfoil/
https://www.esru.strath.ac.uk//EandE/Web_sites/09-10/MCT/html/Technical/rfoil.html
https://www.esru.strath.ac.uk//EandE/Web_sites/09-10/MCT/html/Technical/rfoil.html
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As identified in Appendix B.1.1, the main advantage of using a lifting-line or VLM code to calculate
propeller aerodynamic loads is that it does not require an engineering correction model to be applied for
considering root and tip losses. It also will likely provide a more precise result for the induced velocities at
each blade element, as the 3D blade geometry will be accurately represented. Nevertheless, it is not clear
whether this increase in fidelity will yield a noticeable improvement in the ability to quantify general
design trends for improved regenerative performance (as is the primary purpose of this project). Indeed,
the baseline propeller blade even has a simple geometry with zero sweep and lean. However, it has even
been shown by Sodja et al. [3] and Chattopadhyay et al. [19] that it is possible to quantify the effect of
changes in sweep or lean on aerodynamic loads using a BEM code. The effectiveness of using BEM for
propeller aeroelastic analyses is further confirmed through the reasonable agreement that was obtained
by Sodja et al. [21] when they compared their low-fidelity aeroelastic analysis approach, which relies on
BEM, to high-fidelity FSI simulations, which rely on CFD solutions.

For this project, VLM is not expected to provide noticeable improvements in the ability to represent lift
and drag coefficients during conditions involving flow separation. Indeed, the main source of the errors
shown in Figure 1.3 according to Goyal et al. [10] concerns the calculation of lift and drag coefficients, and
not necessarily the calculation of induced velocities. It is therefore likely that similar discrepancies will
always be present at excessively high or low advance ratios, regardless of the type of model that is selected.
This is because the lift and drag coefficients are calculated in the same way in all blade element models.
Hence, an otherwise better approximation for the lift and drag coefficients in the presence of separated
flow may be equivalently applied to either model. For these reasons, blade element momentum theory is
sufficient for calculating blade loads and evaluating propeller performance during this research.

Lastly, because the relative flow velocity is expected to be significantly larger than the induced velocity
in all cases under consideration for this project, only a small amount of wake contraction is expected.
Resulting from this, it may be concluded that the momentum theory model proposed by Glauert [39] is
sufficient for evaluating induced velocities. Moreover, because the propeller being analysed during this
project will always be lightly loaded, the vortex model that was applied by Goldstein [40] could also be
applicable. During this project, it was considered sufficient to approximate losses due to approximate losses
in circulation at the root and tip of each blade with the Prandtl tip-loss factor instead of the potentially
more precise circulation function developed by Goldstein. While the uncertainty that is associated with
each approximation concerning the propeller aerodynamics may compound to provide a noticeable decrease
in precision, it is expected that general trends will be reasonably represented. To confirm this, model
verification and validation has been provided in comparison with results obtained by Goyal et al. [10] and
Nederlof et al. [13] for aerodynamic loads and performance in propulsive and regenerative conditions.

B.5. ROTOR BLADE STRUCTURAL MODELLING AND AEROELASTICITY
B.5.1. STRUCTURAL ANALYSIS
In most cases, the propeller structure is represented as a cantilever beam, with aerodynamic loads acting
as a distributed transverse force and torsional moment out the span of the blade, and centrifugal loads
acting radially [146]. For both propellers and wind turbines, the loading and structural models that have
been applied are fairly similar. For propellers that are not made from composite materials, structural
models that are applied within an optimization program are usually mathematical models based on
Euler-Bernoulli beam theory for bending and Saint-Venant theory for torsion. For example, Sodja et al. [3],
Gur and Rosen [28], and Hoyos et al. [147] applied this principle during the optimization of propeller blades
made from homogenous and isotropic elastic materials. For rotor blades that are made from composite
materials, the finite element formulation is usually applied to enable a more detailed representation
of each laminate. For example, Cornell and Rothman [146], Khan [4], and Yamamoto and August [18]
used 2D shell elements within a finite element analysis program to compute deformations and stresses.
For structural optimization and aeroelastic analyses of propeller blades, usually a beam model is used
to minimize the number of degrees of freedom. For example, beam models were developed and applied
by Möhren et al. [23, 148] and MacNeill and Verstraete [82] for performing aeroelastic analyses, and by
Chattopadhyay et al. [19] for structural optimization.

When modelling rotor blades with 1D elements, Euler-Bernoulli beam theory [149] or Timoshenko
beam theory [150] are most commonly applied in practice. More information on higher-order beam theories
and comparisons between beam models are provided by Öchsner [151]. Euler-Bernoulli beam theory
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is only applicable to slender and straight beams, and fundamentally assumes that sections that are
orthogonal to the neutral axis remain orthogonal even after deformations [149]. This assumption implies
that deformations only occur in a single plane. The Timoshenko beam theory extends the Euler-Bernoulli
beam theory by being applicable to shear-deformable curved beams or elements of relatively low aspect
ratio [149]. This theory was applied by Hegberg [26], Werter [30], and Ferede [25] for aeroelastic tailoring,
and by Möhren et al. [23, 148] for the aeroelastic analysis of a propeller blade.

To provide a compromise between the high level of fidelity that is provided by detailed 3D blade models,
and the low computational cost of beam models, a cross-sectional modelling approach that is similar to the
method that was applied by Möhren et al. [23, 148] for propeller blades has been applied during this work.
The approach that has been applied is part of PROTEUS, this time referring to the aeroelastic analysis and
optimization program that was developed at the TU Delft, which is documented by Werter and De Breuker
in [29]. This structural modelling method has been applied by Hegberg [26] for the aeroelastic tailoring of
wind turbine blades, and by Werter [30] for the aeroelastic tailoring of wing structures. Within PROTEUS,
the so-called cross-sectional modeller program converts an input detailed 3D model of a rotor blade (or
wing) structure into an approximately equivalent 1D beam model with a significantly reduced number
of degrees of freedom. This so-called cross-sectional modelling approach is commonly applied towards
the analysis of wind turbines or helicopter rotors because it is very computationally efficient due to the
low number of degrees of freedom being included, whilst approximately preserving the level of precision
that is simultaneously associated with high-fidelity 3D finite element models and required for aeroelastic
tailoring [152, 153]. PROTEUS was chosen to be used during this project because it has been extensively
verified and validated in [29, 30], and it has already been applied towards the optimization of wings and
wind turbines in [29–31, 154].

B.5.2. MODELLING COMPOSITE STRUCTURES
The cross-sectional modeller approach that is applied within PROTEUS was verified and validated
by Werter [30] through comparisons with experimental data collected by Chandra et al. [155] for the
response of an orthotropic composite box beam subjected to a torsional load. Deformations obtained by
PROTEUS were compared to the result from VABS (Variable Asymptotic Beam Section analysis), which
is a commercial cross-sectional modelling program that was developed by Hodges [156]. The result from
PROTEUS was nearly identical to the result from VABS, while also being in reasonable agreement with
the experimental data. This comparison demonstrates that the two solvers provide an approximately
equivalent result for hollow composite beam structures. Moreover, VABS has been extensively verified and
validated by its authors, and through the in-depth comparison between several cross-sectional modelling
programs that was performed by Chen et al. [157], it was found that VABS consistently showed excellent
agreement with higher-fidelity methods and experimental data in all benchmark cases that were used
for comparison [157]. Therefore, further verification and validation of PROTEUS was found to not be
necessary during this project unless substantial changes are required.

PROTEUS applies Classical Laminated Plate theory to represent the detailed 3D rotor blade structure.
Detailed information on the relationship between loads, strains, and curvatures of each laminate is
provided in most textbooks on composite materials, including [49, 50, 52]. PROTEUS then represents the
(AAA,BBB,DDD) stiffness tensors as a function of lamination parameters, ξi

j (i ∈ {A,B,D} and j ∈ {1,2,3,4}), and
material stiffness invariants, Uk (k ∈ {1,2,3,4,5}), according to the method of Tsai and Hahn [54]. Note
that each stiffness tensor is defined by four lamination parameters, and thus each laminate of a composite
structure is made up of 12 lamination parameters. If symmetric laminates are used, then BBB =000 and thus
only 8 lamination parameters are required. The governing equations for classical laminated plate theory
are provided in Section 2.2.1 and have been documented in [25, 26, 30, 54, 57], among others. Lastly, a
discussion on feasible regions for lamination parameters has been provided in this section for completeness,
although research within this area is not entirely relevant to this thesis. Indeed, the incomplete set of
nonlinear inequalities defining the feasible region of lamination parameters (see Equation (B.11)) have
been applied without further investigation. The main drawback of using lamination parameters is that
an additional post-processing step is required to convert a set of lamination parameters into a feasible
stacking sequence with a corresponding set of ply orientations, and usually a decrease in performance
is obtained through this process due to manufacturing limitations [30]. A review of work done towards
mitigating this is provided by Albazzan et al. [56]. However, this is currently outside the scope of this
thesis, as the structural design of the propeller has always been expressed using lamination parameters

https://www.altair.com/vabs
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https://www.altair.com/vabs
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during this project, with the expectation that the conversion of lamination parameters into a sequence of
plies and angles will be addressed during a future research project.

After evaluating the structural properties of each blade section using the lamination parameters
and material stiffness invariants, PROTEUS discretizes the structure into linear Timoshenko beam
elements that preserve the orthotropic material properties of each laminate, while applying a co-rotational
framework that results in a geometrically nonlinear structural model [29]. This co-rotational approach
was developed by De Breuker [48], who provides the following explanation for it: “. . . the elastic beam
deformations are solved in a coordinate system which is connected to each beam element, and which moves
rigidly with the deformations of the beam. This coordinate system is called the element frame, and is also
referred to as the local frame.” More information on this approach is provided in [26, 29, 30, 48, 63]. Each
segment of the 1D and 3D structural models used by PROTEUS has a constant cross-section, and thus
small sections may be required to precisely represent detailed geometries.

FEASIBLE REGIONS FOR LAMINATION PARAMETERS

Because there is no direct physical connection between lamination parameters and a feasible laminate
design of plies with thicknesses, orientations, and materials, it is necessary to ensure that sets of lamination
parameters being used to represent any laminate of the blade are contained within regions that guarantee
the existence of a feasible structural design. A comprehensive review into the use of lamination parameters
with feasible regions for the efficient design of laminated composites was performed by Albazzan et al. [56].
The main details of this review have been summarized here. Using lamination parameters allows the
composite structure to be completely represented by continuous design variables over a convex domain,
although the main drawback of this approach is that closed-form expressions for the feasible regions of
lamination parameters are not known in general [30]. Moreover, the lamination parameters have values
that are inter-related (i.e. the feasible regions of each lamination parameter are dependent on the values
of the other lamination parameters) [57]. Some work has been done to address this. For example, Hammer
et al. [158], Miki and Sugiyama [159], and Wu et al. [160, 161] derived expressions relating the in-plane,
coupling, and out-of-plane lamination parameters to define the feasible region of orthotropic laminates
with 19 nonlinear constraints. These equations (as listed in Equation (B.10)) are currently regarded as the
most efficient expression of the boundary for orthotropic laminates. Modifications to these expressions
were later suggested by Raju et al. [162] so that they may be applicable toward cases with non-zero
bend-twist coupling, although the list of constraints for anisotropic plates is not expressed in a directly
applicable way. Otherwise, Setoodeh et al. [163] developed a method for determining a set of constraints
that completely defines the feasible region of lamination parameters, though it usually results in a huge
number of constraints that is impractical for optimization. Bloomfield et al. [57] derived a potentially
small set of constraints that should be satisfied to yield a feasible region. However, the authors restrict
feasible ply orientations to a finite set, which may not be practical. Expressions defining feasible regions
for lamination parameters that represent symmetric or symmetric-balanced laminates are shown below.

Symmetric-Balanced Laminates These laminates do not have extension-shear coupling, although
they do have bend-twist coupling, and BBB =000. Thus, ξA

2 = ξA
4 = 0. Efficient feasible regions for these types of

laminates were defined by Wu et al. [160], as shown in Equation (B.10). Note that to precisely represent
the boundary, t must be defined by any value in the compact interval [−1 , 1], though the domain that is
indicated in this set of equations has generally been found to provide a reasonable result.
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(B.10)

Symmetric Laminates For laminates that are symmetric and not necessarily balanced, the expressions
shown in Equation (B.10) are too restrictive. The first two expressions of Equation (B.11) were derived
by Fukunaga and Sekine [164] and Grenestedt and Gudmundson [165] by applying the Cauchy-Schwarz
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inequality. The same approach was applied by Raju et al. [162] to obtain the final equation in this set,
which generalizes the first expression of Equation (B.10) for non-zero ξA

2 , ξA
4 , ξD

2 , and ξD
4 .

A generalization of the last two expressions within Equation (B.10) for monotropic plates was provided
by Bloomfield et al. [57], and is repeated in [160–162]. This generalization allows the feasible region for
each lamination parameter to be precisely constructed, and it was successfully applied in [162].
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COMPOSITE MATERIAL PROPERTIES

For this project, only symmetric laminates have been considered, as stated in Appendix B.5.2, to prevent
any manufacturing difficulties that may be present due to the inclusion of coupling between strains
and curvatures [49]. Despite the “rules of thumb” provided by Kassapoglou [49], coupling between
degree of freedom deformations will be used to enhance performance and thus unbalanced laminates
have been considered. To calculate deformations, it is necessary to know the material properties of the
fibre composites being used. Table B.3 contains a summary of material properties for some commercial
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fibre composites. The composites listed in this table are split into groups. The first group is for carbon
fibres, which generally exhibit a good combination of strength and stiffness [50]. Shown next are glass
fibres, which typically have a high strength, though they also have a low stiffness and high density [50].
Glass fibres generally exhibit less coupling between degree of freedom deformations, as their directional
stiffnesses are relatively similar in magnitude. Boron fibres have been shown next, although they are very
brittle and sensitive to surface damage despite their high elastic modulus and tensile/compressive strength
[50]. Lastly, aramid fibres, colloquially known as Kevlar or Twaron, are generally used in applications that
require materials with a high elastic modulus and impact resistance, although aramid fibres generally
have a very low compressive strength [50]. Only carbon fibres will be considered for this project, as
they are commonly used for aerospace applications, and exhibit more balanced properties, while aramid
and boron fibres may not be applicable due to their aforementioned limitations. To enable relatively
significant structural deformations, the only carbon fibres that have been considered during this work
have a relatively low modulus of elasticity (such as AS4/APC2, AS4/3501-6, and T300/934).

It would be interesting to also consider using sandwich panels with symmetric facing sheets during a
future project, as the added thickness is generally used to prevent buckling [26]. Nevertheless, buckling is
generally not a primary concern for propeller blade structures because they normally do not experience
substantial compressive loads. A model was proposed by Dillinger [63] for calculating failure due to
buckling of laminated plates that are idealized as having zero curvature. This model would be suitable for
this project, though it has not been included because its use would not assist in addressing the research
questions and objectives. Material properties for applicable sandwich core materials are provided in
several textbooks on composite structures, including the book of Daniel and Ishai [51].

Table B.3: Material properties for common unidirectional fibre composites [50, 51].

Materiala,b ρSρSρS E11E11E11 E22E22E22 G12G12G12 ν12ν12ν12 σUT
11σUT
11σUT
11 σUC

11σUC
11σUC
11 σUT

22σUT
22σUT
22 σUC

22σUC
22σUC
22 τU

12τU
12τU
12

AS4 / APC2 1.57 134 8.70 5.1 0.28 2060 1100 78 196 157
AS4 / 3501-6 1.60 147 10.3 7.0 0.27 2280 1725 57 228 76
IM6G / 3501-6 1.62 169 9.00 6.5 0.31 2240 1680 46 215 73
IM7 / 977-3 1.61 190 9.90 7.8 0.35 3250 1590 62 200 75
T300 / N5208 1.60 181 10.3 7.2 0.28 1500 1500 40 246 68
T300 / 934 1.50 148 9.65 4.6 0.30 1314 1220 43 168 48

E-Glass 1.97 41 10.4 4.3 0.28 1140 620 39 128 89
S-Glass 2.00 45 11.0 4.5 0.29 1725 690 49 158 70

B-4 / N5505 2.00 204 18.5 5.6 0.23 1260 2500 61 202 67

Kevlar 49 1.46 76 5.5 2.3 0.34 1400 235 12 53 34

a SI units are used for all dimensional quantities, with g/cm3 for densities, GPa for elastic constants, and MPa for strengths.
b Fibre composite materials are conventionally named as follows: “fibre material” / “resin composition”.

B.6. AEROELASTIC TAILORING AND OPTIMIZATION
Previous implementations of propeller optimization procedures have been divided into two groups: aeroe-
lastic optimization in Appendix B.6.1 and aerodynamic optimization in Appendix B.6.2. The goal of this
review is to motivate decisions made concerning the formulation of the optimization problem for this
project, as well as to provide an indication of the extent of potential improvements in propeller performance
that may be achieved during this project. Optimization algorithms have not been discussed directly within
this chapter because a suitable gradient-based optimization algorithm already exists within PROTEUS.
It is therefore only necessary to ensure that the optimization problem is correctly formulated and that
outcomes from previous studies are understood.

B.6.1. AEROELASTIC OPTIMIZATION
The first example of a dedicated optimization algorithm being used to obtain an aeroelastically tailored
rotor blade is that of Khan [4], which has already been discussed extensively. In this work, multiple
single-objective optimization problems were formulated, for a structure that is composed of a single
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laminate of 5 plies. Design variables in this case were ply orientations that could vary continuously
between -90 and 90 degrees. In this case, only on-design performance was evaluated. The most notable
optimization problem that was formulated was to maximize the on-design efficiency, while maintaining an
approximately constant thrust coefficient (through an equality constraint). In this way, the propeller is
still capable of satisfying the same mission requirements even after optimization, though it may have been
sufficient for a lower limit on the thrust to instead be provided using an inequality constraint. A maximum
improvement in efficiency of around 8% was obtained at low-to-moderate advance ratios, and a negligible
improvement was obtained at higher advance ratios. Unconstrained optimization procedures involving
the improvement of either the thrust, power, or efficiency were also performed, for which the respective
maximum improvements were approximately 47%, 14%, and 3% at low-to-moderate advance ratios, and
32%, 24%, and 7% at high advance ratios. The author did not specify changes in other performance metrics
besides the targetted values, and thus it is possibly unlikely that any baseline performance requirements
were maintained during the generation of these unconstrained optimization results.

A single objective optimization problem was also formulated by Sodja et al. [3], though in this case,
both on- and off-design efficiency was targetted by minimizing the function shown in Equation (B.12),
which is defined as the curvature of the efficiency vs. advance ratio curve. The authors defined advance
ratios above and below the design point, and at each iteration they would evaluate the efficiency at the
three points to numerically determine the derivative using a central finite differencing scheme.

ρη (J)= η′′ (J)√(
1+ (

η′ (J)
)2

)3
(B.12)

By selecting the above type of objective function, Sodja et al. [3] observed more significant improvements
at high advance ratios beyond the design point, with only marginal improvements at lower advance ratios.
The authors were therefore able to mainly improve off-design performance by maximizing the range
of advance ratios where the propeller operates with high efficiency. Before performing the aeroelastic
optimization using this objective, Sodja et al. performed an allowable stress design procedure to ensure
that the maximum von Mises stress never exceeds the yield strength of the material. An aerodynamic
optimization procedure was also performed at the design point to find the chord and twist distribution that
minimizes induced losses. This method is suitable for improving the entire characteristic of the efficiency
curve, while the method of Khan [4] is suitable for improving performance at a single operating point.

A multi-objective optimization problem was formulated by Sandak and Rosen [20] (which was also
discussed in Section 1.1) because the authors were trying to maximize propulsive efficiency at several
operating conditions. Sandak and Rosen reformulated the optimization problem by defining a single
objective function that is a weighted average of the objective at each of the Ntrim trim points, as shown
below. This approach is formally referred to as the weighted sum method from the textbook of Martins and
Ning [64]. The weight factors are usually normalized so that the sum shown in Equation (B.13) forms a
convex combination, though Sandak and Rosen just set all the weighting parameters equal to 1. The trim
points are selected to represent various operating conditions of the propeller that would be encountered
during a full mission.

f =
Ntrim∑
i=1

ζi

η2
i

(B.13)

Sandak and Rosen also applied constraints that prevented the thrust coefficient from decreasing by
more than 10% at every trim point. The power coefficient was also not able to decrease by more than 25%
during takeoff and initial climb (to limit the increase in engine RPM during takeoff to at-most 10%), and
the rotation speed was prevented from changing during cruise [20]. With this formulation, the optimizer
tended to improve performance at very low advance ratios (representing take-off conditions), with either
marginal or degraded performance at advance ratios representing cruise conditions. Nevertheless, the
result is heavily dependent on the selection of weighting parameters.

B.6.2. AERODYNAMIC OPTIMIZATION
Without any examples of aeroelastic tailoring for propellers in energy-harvesting conditions, examples
involving aerodynamic optimization were considered instead. Additionally, by clearly identifying the
potential benefits of aerodynamic optimization, the extent that performance can be improved through
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aeroelastic tailoring may be realized. These works were also used to identify how optimization problems
regarding improvements in energy-harvesting performance were formulated in previous research.

It has been made clear throughout this chapter that traditional propeller design methods generally con-
sider an isolated propeller, which is consequentially evaluated independently of any aircraft configuration.
However, Gur and Rosen [28], van Neerven [33], and Scholtens [34] considered the overall performance of
an aircraft configuration during their propeller optimization studies. For example, van Neerven developed
an optimization procedure that performs a full mission analysis of an electric trainer aircraft to directly
minimize the total required mission energy. This objective guarantees that the optimal propeller design,
which regenerates energy during descent, decreases the total energy required for a predetermined mission.
The objective that is presented in Appendix B.6.1 may not necessarily guarantee this, especially if perfor-
mance during propulsive conditions deteriorates by too much through the improvement of regenerative
performance. Gur and Rosen optimized the overall design of a propeller-based propulsion system for an
ultralight aircraft through either the minimization of fuel consumption, the maximization of flight speed,
or both, while also being subjected to both acoustic or structural constraints. This design approach was
ultimately selected by Gur and Rosen instead of the optimal propeller design strategy that is provided by
Adkins and Liebeck [35] to enable the inclusion of structural or acoustic constraints. Additionally, when
comparing results from the two methods (for an unconstrained optimization problem), the optimal designs
were nearly identical [28]. Finally, like the work of van Neerven, Scholtens developed an aircraft mission
analysis and sizing method that allows changes to the propeller blade design to affect overall performance
metrics. This sizing method was used to investigate how allowing energy to be recuperated during descent
affects total energy consumption, for different mission strategies. It appears to be necessary to quantify
propeller performance through the consideration of its effect on total mission energy for an aircraft
configuration with a generic mission profile, like the work of van Neerven and Scholtens. In this way, it is
possible to directly quantify how the use of an aeroelastically tailored dual-role propeller influences total
required mission energy. It would also be interesting to compare or constrain other characteristics, such as
the rate of descent or the energy consumption during each segment.

Dorfling and Rokhsaz [65] applied a similar propeller optimization study to that of [28, 33, 34] for
a typical commuter aircraft performing a mission with only high-speed dash and loiter segments. The
authors first identified propeller operating conditions corresponding to each mission segment, and then
completed two optimization studies to design the propeller either for the loiter segment or for the high-
speed dash segment, with the objective being to maximize the thrust output, subject to a constant power
constraint. Mission analyses of the aircraft and propeller configurations were performed afterwards to
compare the effect that the propeller design has on the required power. Because the aircraft design and
mission were considered fixed, the computational requirement for the optimization procedure used by
Dorfling and Rokhsaz is likely reduced in comparison to the optimization that was performed by van
Neerven, who resorted to using a genetic algorithm to avoid performing the several objective function
evaluations that would be required at each iteration of a gradient-based method.

AERODYNAMIC OPTIMIZATION RESULTS FOR DUAL-ROLE PROPELLERS

The main objective of the work of van Neerven [33] was to study the extent of potential performance
improvements that may be achieved through the use of variable pitch or variable rotor speed capabilities
on total energy consumption of an electric trainer aircraft (like the Pipistrel Alpha Electro) for a given
climb-cruise-descent mission profile. This was completed solely through aerodynamic optimization of
a dual-role propeller, which operates in energy-harvesting mode during descent and propulsive mode
during the other two mission segments. Two different optimization studies were performed. First,
propellers were optimized for minimum energy consumption (or maximum regeneration) in each mission
segment independently, and then propellers were optimized for minimum energy consumption over
the entire mission. In all cases, it was naturally found that the variable-pitch-variable-RPM (VPVR)
propeller outperformed the constant-pitch-variable-RPM (CPVR) and variable-pitch-constant-RPM (VPCR)
propellers in all comparisons that were performed. Additionally, the CPVR propeller that was optimized
for cruise had a maximum energy-harvesting efficiency of approximately 6.5%, while the propeller that
was optimized for climb had a maximum energy-harvesting efficiency of approximately 11%, and the
propeller that was optimized for descent had a maximum energy-harvesting efficiency of approximately
16.5%. All three propellers have 3 blades, and the propeller that is optimized for descent has a noticeably
larger solidity. The CPVR and VPVR propellers optimized for descent generally maintain around the same
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maximum energy-harvesting efficiency, while the VPVR propellers optimized either for climb or for cruise
have a larger energy-harvesting efficiency by approximately 3-5 percentage points in comparison to their
CPVR counterparts (the VPCR propellers were permitted to have variable RPM during descent and thus
their performance is equivalent to the VPVR propeller in this circumstance).

The propellers that were optimized for descent tended to consume noticeably more energy than the
propellers that were optimized for other flight phases. The descent propeller’s climb efficiency was generally
found to be between 1 and 3 percentage points lower than the propeller that was optimized for climb,
although all propellers usually had an efficiency between 79% and 83% during climb. The noticeable effect
on overall energy consumption likely resulted from a significant deterioration in propulsive efficiency
during cruise, where the descent CPVR propeller had a maximum efficiency in cruise conditions of
approximately 81% while the other two CPVR propellers had maximum efficiencies over 90%. The VPVR
descent propeller had a maximum efficiency in cruise conditions of approximately 86%, although the
other two propellers remained at efficiencies over 90%. The propellers that were optimized for maximum
climb performance generally outperformed the other propellers in all single-point optimization cases. For
the optimization of a propeller for minimum energy consumption over the full mission, the maximum
energy-harvesting efficiency varied from 6-16% for the CPVR propeller and from 10-18% for the VPVR
propeller. The optimizer naturally tended to prioritize the energy-harvesting performance less with
increasing range. In all results presented by van Neerven, the blade twist, chord distribution, and tip
radius were varied by the optimizer (the sweep and lean angles were fixed), and the number of blades was
set as either 2 or 3. The airfoils of each blade section were also fixed.

Both van Neerven and Scholtens [34] observed a significant increase in solidity with propellers designed
for regeneration during descent, which adversely impacts propulsive efficiency. Additionally, Scholtens
found that decreasing the camber of each section or using variable-pitch capabilities enables sufficient
regeneration at a reduced solidity. The fixed-pitch propellers with differing amounts of camber usually had
an energy-harvesting efficiency around 12.5%, while the variable-pitch propellers had energy-harvesting
efficiencies between 18.5% and 22% in [34]. It was also shown by Scholtens that regeneration during
descent is only effective when the aircraft must perform a steep descent, and for a fixed range without any
constraints on the minimum rate of descent, a shallow descent (for which energy-harvesting is not possible)
always yielded a lower total mission energy. A relatively high minimum descent rate will therefore be
applied if a mission analysis is required for this project.

It is not likely that the energy-harvesting efficiency obtained during this project will exceed the values
reported in [33, 34]. This is because the baseline propeller considered in this work exhibits a maximum
energy-harvesting efficiency of approximately 10-12% and the aerodynamic design of the propeller will not
be directly optimized for maximum regenerative performance. However, the results presented in [33] are
useful because they provide an upper-limit on the energy-harvesting efficiency that may be attained, which
can be used to evaluate the effectiveness of aeroelastic tailoring for improving regenerative performance.
The selection of constraints on performance in propulsive conditions should also be motivated by the
results shown in [33, 34] for the propulsive efficiency during cruise and climb.

B.7. CONCLUSIONS
The purpose of the literature survey that is documented in this chapter is to provide information on
aerodynamics, structural, and aeroelastic analysis methods for rotor blades, as well as on relevant
optimization strategies. Within these subjects, the applicability of common analysis methods for propellers
was discussed based on the physical phenomena that were found to be relevant for dual-role propellers.

Blade element methods have been relied on in most previous examples involving the aerodynamic
analysis of propellers, as they are computationally efficient and provide a reasonable level of precision,
especially if the sectional airfoil aerodynamic data is obtained experimentally. By correcting aerodynamic
loads using nonlinear airfoil polar plots, it is possible to account for viscous effects including transition
and separation through the use of blade element methods. Three different types of blade element
theories have been identified for analysing propellers. The first is blade element momentum theory, which
intrinsically models the axial and tangential induced velocity. However, this method relies on engineering
approximations for variations in blade-axis geometry and losses in circulation at the blade tips due to
the finite number of blades. Usually, losses in circulation are approximated using the so-called Prandtl
tip loss factor, although more precise mathematical representations of the circulation distribution over a



124 B. REVIEW OF APPLICABLE DISCIPLINES

propeller blade have been derived, and these methods do not require any sort of engineering correction
for tip losses. Within this project, these models were termed vortex models, and the theory proposed
by Goldstein for lightly loaded rotor blades was found to be sufficient for this project. It is not possible
to represent effects on performance resulting from variations in blade axis geometry because both of
the aforementioned methods treat each blade element as independent (therefore neglecting the mutual
interference between blade elements). Lifting-line or vortex-lattice methods conversely feature a greater
level of fidelity by intrinsically modelling some effects of the mutual interference between blade elements
through the Biot-Savart law, though most previously implemented VLM codes generally rely on the linear
Kutta-Joukowski theorem to evaluate the lift distribution, and therefore do not rely on blade element
theory to provide the lift and drag distributions. It is still possible however to correct aerodynamic loads
using blade element theory while applying vortex-lattice and lifting-line methods, and therefore they
remain relevant to this discussion. With these methods, the wake must either be prescribed, in which case
its shape is known a priori, or a computationally expensive free-wake model must be used to iteratively
determine the shape of the wake and its effect on aerodynamic loads. Blade element momentum theory
provides a sufficient level of precision, whilst having the lowest associated computational requirement.

For all blade element methods, engineering corrections are generally required to account for the effect
of rotation on fluid particles in the boundary layer. Most of the models that have been developed require
empirical data for the selection of coefficients and therefore do not intrinsically represent the physical
phenomena. The 2D boundary layer equations for an airfoil section were modified however by researchers
at ECN and NLR to include effects of rotation, and these equations were used to develop RFOIL, which is
a modified version of XFOIL. This is the only stall-delay model that was identified which does not require
any empirical data, and therefore it has been applied during this project.

The common structural design of a propeller features an outer shell made from a carbon or glass
fibre material, a spar, and a foam or honeycomb fill material. However, the structural design has usually
been idealized by other researchers either to feature only the outer shell with or without spar caps, or
to be represented as a variable-thickness plate. For applications involving aeroelastic tailoring, only
unidirectional fibre composites are used, and classical laminated plate theory is generally applied to
evaluate structural deformations. Historically, the blade structure is parametrized by a combination of
discrete and continuous variables, although recent developments have been made towards the derivation
of so-called lamination parameters, which enable the entire design space to be represented by a fixed
number of continuous design variables. This method enables the application of gradient-based optimization
procedures (despite a somewhat less intuitive physical description) and thus it has been applied during
this research. Cross-sectional modelling tools have been developed both commercially and in academia to
represent complex 3D blade structures as 1D beams, thus dramatically reducing the number of degrees
of freedom to be evaluated and ultimately providing a significant decrease in computational cost. This
approach has therefore also been applied during this research. Lastly, a two-way coupled scheme is
required to couple the fluid and structural models from different tools because the structural deformations
must influence the aerodynamic loads to allow the optimization to proceed. For this, two approaches have
been identified. The first involves the application of Newton’s method to minimize a residual function
that is defined as the difference between internal and external forces, and the second approach involves
iteratively recalculating aerodynamic loads and structural deformations until negligible differences in
deformations are observed. The latter method requires under-relaxation to guarantee numerical stability.

Propeller optimization problems are typically formulated as constrained multi-objective optimization
problems involving the improvement of performance at several operating conditions, subject to several
operational or design-related constraints. Some relevant constraints include maintaining a maximum
allowable power, a constant rotor speed, a minimum or constant thrust, or a maximum allowable strain
(among others). Objectives considered by other researchers include either the minimization of power or
the maximization of efficiency. Some researchers considered the optimization of propellers by integrating
propeller performance calculations into a mission analysis procedure for a suitable reference aircraft and
minimizing required mission energy, subject to structural or operational constraints. This approach was
commonly used for optimizing the propeller aerodynamic design when subjected to opposing requirements
during different mission segments, and thus has been applied towards the optimization of dual-role pro-
pellers in previous research. Other researchers considered the optimization of the propeller independently
of any reference aircraft, this approach is only suitable for the characterization of generic design trends.

https://www.esru.strath.ac.uk//EandE/Web_sites/09-10/MCT/html/Technical/rfoil.html
https://web.mit.edu/drela/Public/web/xfoil/


C
COMPLETED LIST OF DERIVATIVES

FOR AERODYNAMIC LOADS

The assumption applied during this project is that the derivatives of aerodynamic loads with respect to
radial deformations are negligible. The resulting derivative matrix is shown in Equation (C.1).
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This derivative matrix is sufficient for this project, as indeed the radial deformations of each blade
section were always found to be relatively small, resulting in deformations in the radial direction having a
relatively small effect on changes in aerodynamic loads. Nevertheless, aerodynamic loads are still sensitive
to changes in radial deformations, as changes in radius result in a change in tangential velocity, which
affects the incoming flow angle. Moreover, the change in radius also affects the area of the annular control
volume considered by momentum theory. This accordingly results in a change in induced velocity, thrust,
and torque. The following derivation enables these effects to be accounted for.

The derivative matrix of aerodynamic loads considered during this section is provided in Equation (C.2).
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The derivatives with respect to radial deformations are expressed in terms of the linear degree of
freedom displacements, x and y, according to the expressions shown in Equation (C.3).
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Thus, the derivatives of aerodynamic loads with respect to degree of freedom deformations, x and y,
are expressed respectively with Equation (C.4) and Equation (C.5), using Equation (2.79).
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From the above expressions, it is clear that only derivatives with respect to radial deformations are
necessary to be evaluated. With blade element theory, the thrust and torque coefficients are defined a
shown respectively in the following expressions, which have been repeated from Section 2.1.2.
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Using blade element theory, derivatives of the thrust and torque coefficients with respect to radial
deformations are expressed respectively in Equation (C.6) and Equation (C.7).
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Derivatives of the local force coefficients, Cx and Cz, are given by Equation (C.8), shown below.[ dCz
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The derivative of the local solidity, σ(r), is given in Equation (C.9). Additionally, the derivative of the
local incoming flow velocity with respect to radial deformations is given in Equation (C.10).
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Derivatives of the flow angles with respect to radial deformations are additionally provided below.

dα
dr

= dβ
dr

− dϕ
dr

=−dϕ
dr

(C.11)

dϕ
dr

= d
dr

(
arctan

(
V∞ (1+a)
ω r (1−a′)

))
= V∞

V
ω r
V

(
da
dr

(
1−a′)+ da′

dr
(1+a)

)
− V∞

V
(1+a)ω

(
1−a′) (C.12)

=⇒ dα
dr

=−V∞
V

ω r
V

(
da
dr

(
1−a′)+ da′

dr
(1+a)

)
+ V∞

V
(1+a)ω

(
1−a′) (C.13)

Substituting Equation (C.9) and Equation (C.10) into Equation (C.6) and Equation (C.7) yields the
expressions shown in Equation (C.14) and Equation (C.15), which define the derivatives of the thrust and
torque coefficients with respect to radial deformations using blade element theory.
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Using momentum theory, the derivation largely follows the derivation shown in Section 2.3.
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The major difference between the derivation shown in this appendix and the derivation shown in
Section 2.3, is how the root and tip losses are treated. In this case, they must be differentiated directly with



127

respect to radial deformations, as the radius term appears directly in the expression for the root and tip
losses. Thus, the expression for the root and tip losses must be differentiated directly with respect to radial
deformations. Differentiating the root and tip losses with respect to r yields the following expressions.
Derivatives of Froot and Ftip with respect to ϕ are shown in Equation (2.90) and Equation (2.91).
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Expanding derivatives of Froot and Ftip with respect to ϕ yields Equation (C.18) and Equation (C.19).
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The complete derivative of the Prandtl tip-loss factor, F, with respect to radial deformations is given
by Equation (C.20), which follows directly from applying the chain rule.
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With these expressions, the method of evaluating sensitivities with respect to radial deformations
similarly follows the method that was applied to evaluate sensitivities with respect to the angular
deformations. A residual function is constructed by taking the difference between the coefficient values
obtained from blade element and momentum theory. This residual function is then used to solve for
derivatives of the axial and azimuthal induction factors with respect to radial deformations, da/dr and
da′/dr. The residual vector that is constructed to solve these equations is shown below in Equation (C.21).
This expression is solved using Newton’s method by iteratively evaluating Equation (C.22).
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After solving for derivatives of the axial and tangential induction factors with respect to radial deforma-
tions, the derivatives of the thrust and torque coefficients may be evaluated either with momentum theory
(Equation (C.16) and Equation (C.17)) or with blade element theory (Equation (C.14) and Equation (C.15)).
It is also now possible to directly evaluate the derivative of the local flow velocity with respect to radial
deformations, Equation (C.10). Thus, all required terms in Equation (C.4) and Equation (C.5) are known.

Because the calculation shown above was not applied during this project, it was not necessary to
verify whether it yields the correct solution. For this reason, comparisons between the sensitivities
computed analytically have not been compared with sensitivities computed numerically. It is thus required
to complete this verification study before implementing this derivative calculation into the aeroelastic
analysis routine that was applied during this project.





D
ADDITIONAL SENSITIVITY STUDIES

Additional results from sensitivity studies have been provided in this chapter, corresponding to the inputs
provided in Table 5.1, for the three-bladed TUD-XPROP at a fixed pitch setting of 15◦ and a rotor speed of
30 RPS. Only variations in a single ply orientation have been provided, corresponding to Equation (5.2) for
symmetric-unbalanced laminates, and Equation (5.3) for symmetric-balanced laminates. It was considered
redundant to perform additional variations over two independent ply orientations, as sufficient agreement
was obtained for all variations in a single variable. Variations in propeller performance quantities have
been shown in Appendix D.1, and variations in tip deformations have been shown in Appendix D.2, for
comparison with results from Section 5.1.2 and Section 5.1.3, respectively.

D.1. PERFORMANCE RESULTS

(a) Thrust coefficient (symmetric-unbalanced laminates). (b) Thrust coefficient (symmetric-balanced laminates).

(c) Power coefficient (symmetric-unbalanced laminates). (d) Power coefficient (symmetric-balanced laminates).

Figure D.1: Thrust and power coefficient plots obtained from sensitivity studies (β= 15◦).
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(a) Propeller efficiency (symmetric-unbalanced laminates). (b) Propeller efficiency (symmetric-balanced laminates).

(c) Turbine efficiency (symmetric-unbalanced laminates). (d) Turbine efficiency (symmetric-balanced laminates).

Figure D.2: Propeller and turbine efficiency plots obtained from sensitivity studies (β= 15◦).

(a) CP vs. CT (symmetric-unbalanced laminates). (b) CP vs. CT (symmetric-balanced laminates).

Figure D.3: Plots of power (CP ) as a function of thrust (CT ), obtained from sensitivity studies (β= 15◦).

The results shown in this section indicate the same trends as observed in Section 5.1.2. The discussion of
these results follows exactly from the discussion that was provided in Section 5.1.4, and thus has been
omitted here. Not only did negative ply orientations show to yield less power consumption (or more power
recovered) for a constant thrust requirement, but even the ply orientations yielding maximum performance
increases or decreases appear to be approximately the same as for the case with a pitch setting of 25◦.
Small differences in the magnitudes of performance increases or decreases, or in the efficiency trends,
were observed between the results obtained for the two different pitch settings and rotor speeds, although
this is largely due to the differences in loading encountered by the propeller in each case. Moreover, due to
the efficiency curves’ dependence on advance ratio, which covers different ranges between the two pitch
settings under investigation, minor differences in efficiency trends are expected.
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D.2. DEFORMATION RESULTS
As expected, general trends also match the results shown in Section 5.1.3 for a pitch setting of 25◦.
Deformation plots under zero aerodynamic loads are shown first in Figure D.4 and Figure D.5, which
indicate identical trends to the results shown in Figure 5.6 and Figure 5.7, except for the deformations
being slightly larger due to the higher rotor speed setting. The remaining plots indicate deformations
when subjected to aerodynamic loads, and the trends shown are nearly identical. All conclusions from
Section 5.1.4 thus may also be drawn from the results presented at a pitch setting of 15◦ in this section.

(a) Symmetric-unbalanced laminates (Θ1 =Θ2). (b) Symmetric-balanced laminates (Θ1 =−Θ2).

Figure D.4: Blade tip displacements obtained from sensitivity studies of the TUD-XPROP, made from
laminates defined by Equation (5.1) and subjected to zero aerodynamic loads (Ω= 30 RPS, β= 15◦).

(a) Symmetric-unbalanced laminates (Θ1 =Θ2). (b) Symmetric-balanced laminates (Θ1 =−Θ2).

Figure D.5: Blade tip rotations obtained from sensitivity studies of the TUD-XPROP, made from
laminates defined by Equation (5.1) and subjected to zero aerodynamic loads (Ω= 30 RPS, β= 15◦).

(a) Symmetric-unbalanced laminates (Θ1 =Θ2). (b) Symmetric-balanced laminates (Θ1 =−Θ2).

Figure D.6: Blade tip torsional deformation plots from sensitivity studies (Ω= 30 RPS, β= 15◦).
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(a) Displacements along the x-axis (symmetric-unbalanced). (b) Displacements along the x-axis (symmetric-balanced).

(c) Displacements along the z-axis (symmetric-unbalanced). (d) Displacements along the z-axis (symmetric-balanced).

(e) Rotations about the x-axis (symmetric-unbalanced). (f) Rotations about the x-axis (symmetric-balanced).

(g) Rotations about the z-axis (symmetric-unbalanced). (h) Rotations about the z-axis (symmetric-balanced).

Figure D.7: Blade tip bending and shear deformation plots from sensitivity studies (Ω= 30 RPS, β= 15◦).
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D.2.1. LAMINATION PARAMETER VARIATIONS AND STIFFNESS ROSETTES
Stiffness rosettes and lamination parameter values have been shown corresponding to the symmetric-
balanced and symmetric-unbalanced laminates that were studied in Section 5.1 to provide an overview of
stiffness properties corresponding to the ply orientations that were considered. Variations in lamination
parameters are used to indicate the types of coupling that are present for each ply orientation. The
discussions presented in this section correspond to Equation (5.2) for symmetric-unbalanced laminates,
and Equation (5.3) for symmetric-balanced laminates.

STIFFNESS ROSETTES

Laminate stiffness rosettes have been shown at selected ply orientations, representing symmetric-
unbalanced and symmetric-balanced laminates. Only six ply orientations of each type are shown. The
in-plane stiffness represents the ability of the laminate to resist in-plane forces, whereas the out-of-plane
stiffness represents the ability of the laminate to resist out-of-plane forces.

(a) In-plane stiffness (symmetric-unbalanced). (b) In-plane stiffness (symmetric-balanced).

(c) Out-of-plane stiffness (symmetric-unbalanced). (d) Out-of-plane stiffness (symmetric-balanced).

Figure D.8: Plots of stiffness rosettes for ply orientations considered during sensitivity studies.

As expected from the stiffness rosettes for symmetric-unbalanced laminates, shown in Figure D.8a
for in-plane stiffness and in Figure D.8c for out-of-plane stiffness, the direction of maximum stiffness
is closely aligned with the angle that most of the plies are aligned with. This is immediately clear for
laminates with Θ ∈ {−45◦ , 45◦}. The ply orientations of ±30◦ and ±60◦ are slightly skewed due to the
constant presence of fibres with orientations of 0◦ and 90◦. The in-plane stiffness of symmetric-balanced
laminates appears to be independent of the stacking sequence, as Figure D.8b indicates that laminates
corresponding to orientations of (+Θ , −Θ) and (−Θ , +Θ) have equal in-plane stiffness. The out-of-plane
stiffness is skewed between laminates with equivalent ply angles of opposite sign, showing more stiffness
towards the outermost plies and less stiffness towards the innermost plies. The difference observed
between the out-of-plane stiffness corresponding to ply orientations of (+Θ , −Θ) and (−Θ , +Θ) would likely
be greater if the laminate only consisted of fibres with these corresponding orientations, instead of also
containing plies with angles of 0◦ and 90◦. For symmetric-balanced laminates, the maximum stiffness
is either aligned closely with 0◦ or 90◦, depending on whether ±Θ is closer to 0◦ or 90◦. Without the



134 D. ADDITIONAL SENSITIVITY STUDIES

outermost and innermost fibres that have constant angles of 0◦ and 90◦, the stiffness rosettes would
instead be more closely aligned with the angles given by ±Θ.

LAMINATION PARAMETER VARIATIONS IN A SINGLE VARIABLE

Figure D.9 contains plots of the lamination parameter values for symmetric-unbalanced and symmetric-
balanced laminates. The only difference between the two plots are the curves for ξA

2 and ξA
4 , which indicate

the presence of extension-shear coupling, and the curves for ξD
2 and ξD

4 , which indicate the presence of
bend-twist coupling. For symmetric-balanced laminates, ξA

2 and ξA
4 are of course zero, meaning that

there is zero extension-shear coupling. The small values for ξD
2 and ξD

4 indicate minimal amounts of
bend-twist coupling. It is also useful to note that the stiffness properties are otherwise the same between
symmetric-balanced and symmetric-unbalanced laminates that have the same ply orientations, which
differ by a sign. Indeed, lamination parameters ξA

1 , ξA
3 , ξD

1 , and ξD
3 are all symmetric across the vertical line

at 0◦. The maximum amounts of torsional and shear stiffness appear to emerge at 45◦ for both laminate
types, and the most amount of extension-shear and bend-twist coupling appears to emerge for unbalanced
laminates with orientations between ±15◦ and ±45◦. As the torsional stiffness decreases, the influence of
coupling will tend to increase, which explains why the maximum variations in performance were observed
for unbalanced laminates with ply orientations between ±15◦ and ±30◦.

(a) Symmetric-unbalanced laminates. (b) Symmetric-balanced laminates.

Figure D.9: Plots of lamination parameters for ply orientations considered during sensitivity studies.
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OPTIMIZATION OUTPUT DETAILS

Plots of the optimization progress for each case that was studied during this project are provided in this
appendix. Figure E.1 through Figure E.3 contain plots for the individual mission segment optimization
studies. For the full mission optimization studies, plots are shown in Figure E.4 through Figure E.9 for
the variable-pitch propeller, and in Figure E.10 through Figure E.15 for the constant-pitch propeller. It
is shown that the optimizer converged with a first-order optimality measure in the order of 1E−03 or
1E−04 in all cases. Additionally, a feasible design with a lower objective function value was found in
every case, and convergence to a local optimum was obtained in at least two cases, as indicated by the
first-order optimality measure decaying to exactly zero. To enable the optimizer to converge, a minimum
step size of 1E −02 was selected for the central finite differencing scheme that was used during the
gradient evaluation. Thus, the truncation error associated with the finite differencing method is expected
to be at least O (1E−04). Moreover, the cases that reached full convergence yielded similar values for the
structural design, objective function, and inequalities in comparison to the remaining cases that appeared
to have not fully converged. Thus, all cases yielded an adequate level of convergence.

Figure E.1: Optimization progress history plots obtained from the climb-only case.
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Figure E.2: Optimization progress history plots obtained from the cruise-only case.

Figure E.3: Optimization progress history plots obtained from the descent-only case.
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Figure E.4: Optimization progress history plots obtained from the variable-pitch 0 km mission case.

Figure E.5: Optimization progress history plots obtained from the variable-pitch 50 km mission case.
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Figure E.6: Optimization progress history plots obtained from the variable-pitch 100 km mission case.

Figure E.7: Optimization progress history plots obtained from the variable-pitch 150 km mission case.
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Figure E.8: Optimization progress history plots obtained from the variable-pitch 200 km mission case.

Figure E.9: Optimization progress history plots obtained from the variable-pitch 400 km mission case.
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Figure E.10: Optimization progress history plots obtained from the constant-pitch 0 km mission case.

Figure E.11: Optimization progress history plots obtained from the constant-pitch 50 km mission case.
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Figure E.12: Optimization progress history plots obtained from the constant-pitch 100 km mission case.

Figure E.13: Optimization progress history plots obtained from the constant-pitch 150 km mission case.
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Figure E.14: Optimization progress history plots obtained from the constant-pitch 200 km mission case.

Figure E.15: Optimization progress history plots obtained from the constant-pitch 400 km mission case.

For the plots shown of the normalized design vector (labelled as Current Point), the first eight entries
correspond to the upper surface lamination parameters, the ninth entry corresponds to the upper surface
laminate thickness. Entries 10 through 17 correspond to the lower surface lamination parameters, with
entry 18 corresponding to the lower surface laminate thickness. The remaining entries correspond to the
advance ratio and pitch setting inputs at each mission segment. This plot was shown to indicate that
the only design variables that are located on their upper or lower bounds correspond to the laminate
thicknesses. In every case, the upper bound was set to 1.75 millimetres and the lower bound was set to 0.5
millimetres. The upper bound was selected as the largest value that could be selected without causing the
upper and lower surfaces to interfere with each other. The lower bound value was selected to ensure that
at least 10 plies could be used to construct any laminate returned by the optimizer. This assures that any
structural configuration obtained by the optimizer is physically realizable.

For the final two cases investigated with the constant-pitch propeller, shown in Figure E.14 and
Figure E.15, the optimizer did not plot the design variable values or the number of function evaluations.
The optimization was not re-run to generate these plots due to time constraints. It is still clear that a
reasonable level of convergence was reached, and values for the design vector may be inferred from results
shown in Section 5.2.2, as well as from results shown in Figure E.11 through Figure E.13, as the design
variable values are similar between all cases involving a mission with a non-zero cruise distance.
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