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Abstract—Airports are attractive targets for terrorism, as they
are designed to accommodate and process large amounts of
people, resulting in high concentration of potential victims. A
popular method to mitigate the risk of these attacks is through
security patrols, but resources are often limited. Game-theory is
often used as a methodology to find optimal patrol routes for
security agents, such that security risks are minimized. However,
game-theoretic models suffer from payoff uncertainty and often
rely solely on expert assessment to estimate game payoffs. Expert
knowledge should not be the only source of information since key
domain features, such as attacker behaviour, which contribute
to the game payoffs are hard to estimate precisely. To address
this shortcoming, we propose a novel approach to estimate
payoff uncertainty through agent-based modelling. We simulate
different attacker and defender strategies in an agent-based
model to estimate game-theoretic payoffs, while the framework
of game-theory is used to find optimal defender policies. The
results of the experiments show that the optimal security patrol
gives special emphasis to high-impact areas, such as the security
checkpoint, to reduce the total security risk. Our results further
show that by strategically randomizing patrol routes, higher
expected rewards for the security officer are achieved.

Index Terms—Agent-based modelling, Patrolling games,
Game-Theory, Airport Security, Empirical game-theory

I. INTRODUCTION

EVER since the attacks on World Trade Center, September
11, 2001, airports significantly enhanced security oper-

ations, procedures, and checks. However, not only security
has improved, but also terrorists have adapted their way
of acting. The Brussels and Atattürk Airport attacks (2016)
illustrate a recent terrorism threat where publicly accessible
areas of airports are deemed as potential targets for an attack.
Protecting these locations, where many people move freely,
is a challenging task for security agencies because attackers
do not have to face passenger or carry-on luggage checks.
Additionally, limited security resources make it extremely
difficult to track a terrorist in a crowded scene.

Airport security patrols are considered an effective alterna-
tive to keep airports safe as they can roam around the airport
and be assigned to different posts within the airport operations.
However, security resources are often scarce which prevent
full coverage on all locations at all times. Thus, security
patrol routes have to be intelligently deployed taking into ac-
count differences in the importance of targets, different attack

threats, and potential uncertainty over the types, capabilities,
knowledge and preferences of attackers faced.

Game theoretic analysis has become a powerful tool to
provide optimal decisions in security domains. Game-theory
provides a mathematical approach to study interactions be-
tween strategic and self-interested agents so that the effective-
ness of their actions is maximized. Hence, it is appropriate to
model adversarial reasoning for security resource allocation
and scheduling problems [1].

One application of game theory is in the domain of security
resource allocation and scheduling, included in a research
area known as security games. These have proven to be
successful in solving real-world security problems in which
security officers deploy limited resources to protect important
infrastructures against human adversaries [2–6]. A security
game is a two-player game between a defender and an attacker.
The defender wants to allocate her1 limited resources to defend
critical targets while the attacker seeks his most favourable
target to attack. Each player has a set of available actions
associated with a particular payoff (also known as utility),
based on the outcome of the corresponding choice within the
game. Payoffs are the reward and penalties to both the defender
and the attacker in a successful or an unsuccessful attack.

Commonly, game-theoretic models rely only on expert
knowledge to estimate game’s payoff values. However, these
are hard to estimate since uncertainty is intrinsic to real-world
security domains. Thus, it may be impossible or impractical
for a security expert to properly estimate payoff values for
different defender-attacker interactions. Moreover, exclusive
reliance on human expert assessment can be can be expensive,
prone to human biases and restrictive if such knowledge is
suboptimal [7].

Agent-based modelling and simulation arises as promising
technique to address this challenge. It has the capacity to repre-
sent socio-technical systems, such as an airport, which endow
the study of these complex systems. Agent-based modelling
allows the specification of a set of autonomous and intelligent
agents who are able to perceive their environment and interact
in the environment to solve problems, achieve goals or execute
tasks. Considering an airport terminal environment, it allows
the specification of different agents, such as airport operational

1The attacker is referred to as “he” and the defender as “she”.
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employees, passengers, security officers and an attacker agent,
who are able to perceive all processes happening around them
and interact with each other in order to achieve their individual
goals. Moreover, it is well-suited for dynamic and uncertain
environments such as airport environment where an attack can
happen anytime and anywhere.

Through simulations, it is possible identify emerging pat-
terns and relations which were not foreseen by the modeller.
One example of a potential emergent phenomena may be
the identification of vulnerable areas in an airport terminal
where an attack can lead to hazardous consequences. The
identification of this emergent property is of crucial impor-
tance as it indicates patrol areas where security should be
reinforced. Hence, one of the main contributions of agent-
based modelling to this project is to support airport managers
in the definition of security patrol choices when defining
airport security procedures.

The goal of this work is to use the average number of
human casualties as an agent-based model outcome to provide
inputs to define payoff matrices in a security game, while
the framework of security games is used to identify optimal
defender patrolling strategies. Although many security studies
have focused on either agent-based modelling [8, 9], or
security games [2, 10], combining both approaches has not
been addressed in the context of airport security, and that is
exactly the key contribution of our work. To serve our goal,
we apply this methodology to a scenario where an attacker
aims to detonate an improvised explosive device on a publicly
accessible area of a regional airport, while security agents
execute patrol routes in the airport terminal.

The paper is organized as follows. In Section II, a review
of the state-of-the-art related work is presented. Section III
describes the system under investigation. Section IV provides
an overview on the proposed methodology, while Section V
explains in detail the proposed model. The discussion of the
simulations results is presented in Section VI. Lastly, Section
VII concludes the paper.

II. RELATED WORK

Relevant work in the domain of security games and agent-
based modelling will be explored in this section.

A. Security Games

Security Games have emerged as an important research
domain in multi-agent systems. Over the past years, game-
theoretic models have been deployed in many real-world
applications: canine-patrol and vehicle checkpoints at the Los
Angeles International Airport [2], allocation of US Federal Air
Marshals to international flights [4], US Coast Guard patrol
boats [5], and many others [3, 6].

Generally, security games are formulated following the
Stackelberg game framework. A Stackelberg Security Game
assumes a leader (wherein referred as the defender) and a
follower (wherein referred as the attacker). The defender must
protect a set of targets as well as possible, using limited
resources. In these games, it is assumed that the defender
first commits to a (possibly randomized) security policy,

while a strategic attacker uses surveillance to learn and create
beliefs about the defender’s strategy. After careful planing, the
attacker selfishly optimizes its payoff, considering the policy
chosen by the leader. The outcome of such a game is an
equilibrium: a combination of strategies in which both players’
strategies are best-response to each other, i.e. cannot improve
their payoff by changing their strategy.

A strategy can be of two types: pure strategies or mixed
strategies. A pure strategy of an agent is one of agent’s
actions, which is selected with certainty. A mixed strategy
is a probability distribution over the set of pure strategies.
A mixed strategy allows for randomization which is critical
in security domains as it avoids the vulnerability that comes
with predicability associated with human-designed schedules.
Humans are unable to produce a completely random set of
events, leading to potentially predicable patterns that may be
explored by an intelligent attacker [11].

Relevant to our work are papers that focus on security
scheduling and allocation to prevent the attacker from ex-
ploiting a particular gap in the defender’s patrol. One relevant
application was introduced by Pita et al. [2], who computed
optimal randomized road security checkpoints and terminal
canine patrol schedules. In that work, Pita et al. cast the pa-
trolling/monitoring problem as a Bayesian Stackelberg game,
allowing the agent to appropriately weigh the different actions
in randomization, as well as uncertainty over adversary types.
However, this work did not consider explicitly spatio-temporal
aspects, assuming that the attacker chooses a target to attack
and is automatically at that location, without considering the
time it takes to reach it. Moreover, the attacker agent could
only be arrested in his target location, while in real-world
scenarios he can can be caught in his path from the airport
entrance towards the target location.

Furthermore, it is also relevant to refer to the research area
of empirical game-theory. Prakash et al. [12] employed an
empirical game-theoretic approach which was defined proce-
durally through a process of multiple simulations. This em-
pirical approach enables modelling of complexity in the form
of uncertainty and dynamics that make the game analytically
intractable. This methodology is similar to the one proposed
in this thesis. Rather than using agent-based modelling to
estimate the game payoff values, the authors use normal
computer simulations for the same purpose. Furthermore, this
work specially focuses on the field of cyber crime which is
a different field from the airport security domain. Moreover,
agent-based modelling is capable of characterizing socio-
technical systems, including the representation of agents’
behaviour and interactions which are not possible with other
methodologies.

Also important to mention are other theoretical work in the
field of empirical game-theory, namely the work of Wellman et
al. [13] and more recently the work of Tuyls et al. [14]. Despite
being important theoretical contributions, these do not consider
human behaviour and interactions, and are not specific for
security problems.

Other notable work are those which study spatio-temporal
security games, also known as patrol planning games. Gen-
erally, these games are played on graphs where targets are
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nodes and a patrol strategy is a vector consisting of defender’s
positions at each time. This approach captures the spatial
evolution over time, i.e. correlates a position at time t to
another possible one at time t + 1. Applications range from
robotic patrols [15] to green security games [16] and protection
of major infrastructures such as airports [5, 17]. Fang et al.
[18] focuses on protecting mobile targets which results in a
continuous set of strategies for the agents. Motivated by the
domain of ferry protection, Xu et al. [19] developed a model
to solve spatio-temporal games with weighted moving targets.

A recent relevant work in the domain of spatio-temporal
game-theory was introduced by Zhang et al. [20]. Zhang
focuses on finding optimal randomize patrol strategies in a
chemical cluster. In that work, potential targets are represented
as nodes of a patrolling graph. The security surveys different
areas by travelling in the graph and staying a certain amount
of time at each node when patrolling that target. The valuable
contribution of Zhang’s work is that an optimal patrol schedule
will not correspond to a randomized fixed patrolling strategy
(fixed set of different positions over time), but to a set of
probabilities of transition between nodes of the patrolling
graph. In other words, representing the probability that the
defender may perform a certain movement (e.g., move from
target A at time x to target B at time x+y; or patrol target A
for a certain period of time).

Despite being a field with many real-world successful
deployments, security games also face multiple challenges.
Those include bounded rationality [21, 22], uncertainty arising
due to human dynamic behaviour [23, 24], and learning in
security games, with a special emphasis on reinforcement
learning to identify the best defender strategy against an
adaptive opponent who is able to observe defender’s behaviour,
learn and adapt to best respond to it [25].

B. Agent-based modelling

Agent-based modelling has been proven to be one of the
prominent approaches to study performance of complex adap-
tive multi-agent systems [26]. Complexity can be interpreted
as non-linear interactions between agents (or agents with the
environment), leading to unexpected emergence patterns.

Agent-based modelling provides a bottom-up approach to
build socio-technical systems with autonomous and intelligent
agents who are able to perceive their environment and interact
in the environment to solve problems, achieve goals or execute
tasks. It is able represent multiple scales of analysis and
multiple types of adaption and learning mechanisms, which are
not straightforward with other methodologies. Additionally, it
can be used to explicitly represent spatio-temporal elements
of the agents and the environment which allow for better
representation of dynamic and uncertain systems such as an
airport terminal one. Furthermore, it allows for the exploration
of different scenarios, which may provide additional knowl-
edge in a certain domain. For instance, in the airport domain,
exploration of different threat scenarios may help to identify
current security breaches which may allow for a better analysis
of airport security and, potentially, the improvement of its
performance.

Noteworthy work in the aviation sector include the work
of Weiss et al. [8], who developed an agent-based model for
airport defence, and the work of Cheng et al. [27] who created
an agent-based model to evaluate the effect of group dynamics
on passenger flow during an evacuation in an airport terminal.
Moreover, Janssen et al. [28] introduced a novel agent-based
methodology combined with Monte Carlo simulations for
security risk assessment, tested in an airport checkpoint, where
security agents aim to detect forbidden items in passenger’s
luggage while being under pressure/time constraints which
affect their performance .

A recent relevant work in the domain of agent-based
modelling was proposed by Janssen et al. [9]. The authors
developed an agent-based model to study the relationship
between security and efficiency in a regional airport terminal
operations. It focuses on a scenario where an attacker aims
to detonate an improvised explosive device in a publicly ac-
cessible area of a regional airport while considering efficiency
indicators such as queuing time for passengers, among others.
This work offers a promising methodology to investigate
airport security and efficiency.

III. CASE-STUDY

This Section describes the system, operational context and
scenarios under study. We study a scenario in a regional airport
terminal where a security officer executes different patrol
strategies around four identified targets: entrance hall, check-
in area, and checkpoint area. Figure 1 illustrates the airport
open publicly accessible area analysed in this case study.

Fig. 1. Airport layout of the open publicly accessible areas considered in this
case study, with indicators for different targets. 0: Entrance area, 1 and 2:
Check-in areas, 3: Security checkpoint area. For a full airport layout, refer to
[9].

In our model, we focus on the airport domain area. Usually,
airports have three different areas to be patrolled: landside,
airside, and terminal. The focus of our study is on air-
port terminal patrols, which includes most processes present
there: check-in, facility visits, security checkpoint operations,
queuing, gate processes, movement of passengers between
these operations, and movement of patrolling agents around
the airport terminal. All passengers, security patrolling team,
operational employees, and a terrorist agent are represented by
agents. The threat scenario we focus on is a bomb attack in
publicly accessible areas of a regional airport terminal. Based
on this threat, twenty attacking scenarios are modelled varying
in the period of 25 minutes with a 5 minutes increment per
scenario (e.g., an attacker entering the airport within the first
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five minutes, ...). For each attack time interval, the attacker
selects one of the four identified targets to attack. The latter
time span was chosen to enclose all the attacks that may
happen within the first thirty minutes, since the attacker takes
time to move from the airport entrance to the selected target.

IV. METHODOLOGY

The main aim of this research is to decrease uncertainty
in game-theoretic payoff structures by estimating them using
agent-based simulation results. There is a significant need
to address uncertainty in both players’ rewards since key
domain features like attacker behaviour, that contribute to
these rewards, are hard to estimate exactly by experts alone.
Hence, this methodology improves on the game-theoretic pay-
off structures which often rely only on expert assessment. To
accomplish this goal, we propose the following methodology,
graphically shown in Figure 2.

1. Build
agent-based

model

ABM
Specification 2. Build

game-theoretic
model

GT model
Specification

5. Generate
optimal

strategies

4. Estimate
game metrics

3. Generate
agents’

strategies

Integrate agent-based model with game-theoretic model
ABM
resuts

Payoff
structures

Fig. 2. Step by step methodology followed in this work. Note: ABM refers
to agent-based modelling and GT refers to game-theoretic model. Dark gray
boxes correspond to the GT model (Step 2 and 5). White boxes correspond
to the agent-based model (Step 1 and 3). The light gray box represent the
interaction between the agent-based model results and the game-theoretic
payoff function.

First, we start by defining the agent-based model. Every
agent-based model requires the definition and modelling of
three key entities: agents, their environment and interac-
tions between agents and with the environment. Next, the
specification of agent’s architecture and properties, namely
agent’s behaviours, states, reasoning, and evolution over time
should be performed. This is done following the approach in
Janssen et al. work [9]. This model was chosen as a starting
point since most airport terminal processes along with the
strategic, tactical and operational behaviour of passengers,
defender and attacker were modelled. An initial evaluation
of the agent-based model was performed to analyse how the
airport system behaves in different scenarios. This helped to
gain knowledge of critical areas with highest agglomeration
of passengers where an attack could have hazardous effects
in terms of impact (human casualties). Those were deemed
as the potential attack targets. Using this information, 20
different threat scenarios (see Section III) were modelled for
an improvised explosive device threat. The outcomes of agent-
based model simulations will later be used to specify game
theoretic payoffs.

The specification of a game-theoretic model needs the
definition of the players involved in the game, mathematical
model constraints and assumptions, and the solution concept
to find an equilibrium solution for both players. This is done
following the approach in Zhang et al. work [20]. Zhang
defines a game-theoretic model aiming to select random, but
strategic security patrols in a chemical cluster. This model is
used, as it is a spatio-temporal game, where the the set of
actions available for each agent takes into consideration both
spatial and temporal conditions. This is a crucial requirement
in security domains, since a terrorist attack can happen anytime
and anywhere. Security patrols should also be spatio-temporal,
rather than only spatial, since the security officer can only
detect an attacker if he is both in observation range and there is
a time overlap between the attacker intrusion and the security
patrol.

Furthermore, it allows security officers to take different
actions at distinct point in time, rather than following a
predefined optimal fixed patrolling strategy. This is a great
advantage as it enables better patrol randomization. The model
assumes perfect rational players, i.e. reward maximizers whose
strategies are best responses to each other.

The next step is to integrate both methods, which forms
the core of our methodology. This step starts by generating
the agent’s strategies which will be simulated in the agent-
based model and which will be regarded as the player’s set
of strategies in the game framework. Those include security
patrols around the airport terminal as well as different attacks
at distinct times and targets. Each attacker-defender strategy-
pair is simulated in the agent-based model so that results for
each interaction are gathered.

Once all attacker and defender strategy combinations are
simulated, the agent-based model outcome, i.e. the average
number of human casualties after an improvised explosive
device attack, is computed. These outcomes are used as
input to define payoffs for the players in the game. A key
contribution of this thesis is proposed in this step where game-
theoretic payoff matrices are enhanced with data generated
by an agent-based model capable of simulating real world
events, rather than relying only on expert assessment. In this
way, more objective and more robust payoff structures are
incorporated in security games.

The last step of the integration process consists of solving
the game and generating optimal strategies for both players.
These results will indicate the set of actions that should be
taken at each time step by both players. Moreover, the optimal
payoff values are computed. The proposed methodology ends
with the evaluation of the optimal solution. This is done
as follows. The optimal defender-attacker strategy pair is
simulated in the agent-based model. Again, the resulting agent-
based model metrics are gathered and used as input to compute
new payoff values for both players. These are compared to the
ones obtained initially after solving the game to confirm that
the game-theoretic solution strategies are optimal.

V. MODELS

Section V describes the agent-based model, the game theo-
retic model and the integration of the two models.
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A. Agent-based model
The agent-based model environment consists of a regional

airport terminal including physical objects (wall and desks), an
improvised explosive device (defined by its location, number
of particles and mass), terminal areas (check-in, checkpoint,
queueing, gate, facility and entrance area) and flights [9].
In a dynamic and unpredictable environment such as an
airport terminal, unanticipated events are common since there
is no guaranteed state that will result from performing an
action. Therefore, the environment is considered to be non-
deterministic. In addition, agents cannot obtain complete,
accurate, up-to-date information about the environment’s state,
because it is limited by its observation range. Hence, the
environment is partially accessible.

The agent architecture has three different layers: Strategic
Layer, Tactical Layer and Operational Layer. In each layer
there are different modules responsible for the execution of
specific actions. The Operational Layer comprises a percep-
tion module which is responsible for the agent’s observation
and an actuation module which executes actions and com-
munications between agents. The Tactical Layer consist of
a belief module that maintains beliefs based on observations,
actions and internal states. This layer is also responsible for the
navigation and activity accomplishment. Lastly, the Strategic
Layer is responsible for a higher level belief and for generating
a plan: an ordered sequence of activities to be carried out by
the agent.

As mentioned earlier, all passengers, security patrolling
team, operational employees, and a terrorist attacker are repre-
sent by agents. Below the main characteristics of these agents
are introduced.

1) Operational Employee: Operational employees commu-
nicate a wait request to passengers when they are in their ob-
servation range. These waiting requests can be communicated
to passengers completing check-in or checkpoint activities.

2) Passenger: Passengers are described by airport arrival
time, level of disorientation, suitability of luggage, checked-
in and facility visitor. For now it suffices to state that level
of disorientation refers to how confused the passenger shows
up in the airport, while suitability of luggage attributes how
well the luggage of the passenger fits with his/her appearance.
These properties are associated with real numbers and are
important indicators used in the SPOT program of the TSA
[29]. In the latter procedure, security officers assign points
to passenger to evaluate their danger to the airport: if the
points accredited to a certain passenger surpasses a threshold,
a secondary screening is performed. Passengers can complete
different activities, namely: check-in, checkpoint, facility and
gate activity. Further details on the formulation of these
properties, along with other characteristics may be found in
[9].

3) Attacker: The attacker is a human agent like any other
passenger and hence shares the same characteristics. However,
he has one unique goal: to cause as many human casualties at
the airport as possible. In order to achieve the latter objective,
the attacker agent carries an improvised explosive device
which he intends to detonate. This activity consists of three
phases: target selection, movement to target and execution of

attack. This thesis extends the previous agent-based model by
modelling different attacking scenarios based on an improvised
explosive device threat. Thus, in the attacker first phase the
target selection is deterministic which means the attacker has
already selected a location to attack (from a set of available
options) before entering the airport. This approach intends to
implement a common assumption in security games where the
attacker is assumed to have identified a breach/weakness in the
security schedule through long term observation. Therefore,
the attacker already knows when and where to execute his
attack. In the second phase, the attacker moves from the
airport entrance to the target location. On his way, he might
be observed by the security officer resulting in one of two
events. With a certain probability, the attacker is arrested and
is not able to execute the attack, and with one minus the
latter probability he detonates the improvised explosive device
on the spot. Alternatively, the attacker is not observed and
continues moving towards the target location, where the last
phase starts. Once reaching that area, the attacker executes the
attack.

4) Security: The security patrolling agent can observe
physical objects, passengers, and attackers in her observation
radius and in her line of vision. The security patrolling
agent has a set of strategies corresponding to patrols around
the airport which she has to follow during the simulation.
This project extends the previous agent-based model [9] by
defining strategic and meaningful defender’s set of strategies
around four identified targets, rather than assuming simplistic
strategies as implemented in the former model. During a
patrol, the security officer randomly chooses one agent, within
her observation range, to evaluate whether it is an attacker
or not. This evaluation lasts for a certain period of time
and is performed according to the SPOT program described
previously. When the points assigned to the observed agent
exceed a specific threshold, the security officer will try to arrest
the agent. If the agent is a passenger, the passenger is arrested
and they both leave the airport. On the other hand, if the agent
is an attacker, the security agent may arrest the attacker with a
certain success probability. If the security successfully arrests
the attacker, the improvised explosive device is not detonated
and the simulation ends. Alternatively, the attacker executes
the attack on the spot.

B. Game-theoretic model

In this spatio-temporal game, the defender can move be-
tween different targets, or stay at a target to detect attacks
there [20]. This is illustrated in Figure 3, where the set of
actions (patrol current target or move to another target) for
each player is defined sequentially at each point i in time. In
this figure, arrows show an example of the set of available
options at each time for the security patrolling player. Briefly,
the security starts her patrol at target T2. At this moment,
she has two possible choices: either to move to target T1
(red arrow) or move to target T3 (blue arrow). Each of these
movements has a probability of transition between two nodes
to represent the likelihood of performing each movement. For
instance, the probability of the initial movement represented
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by the blue arrow (target T2 at time 0 to target T3 at time 1)
may be 0.6, while the probability associated with the initial
movement represented by the red arrow (target T2 at time 0
to target T1 at time 1) may be 0.4. If the defender choice was
to move to target T3, then she only has one option available:
to patrol target T3 for one time unit. On the other hand, if
the defender has moved to target T2 previously, her choices
are confined to patrol target T1 for one time unit. Finally, the
security terminates her patrol by moving from target T3 at
time 2 to target T2 at time 3 (if she had chosen this path) or
by moving from target T1 at time 2 to target T2 at time 3 (if
she had chosen this path). These are just two representative
examples of defender’s strategies, and there are many more
(even in this example).

0 1 2 3
0
1
2
3

Time

Target

Fig. 3. Illustrative representation of the spatio-temporal game-theoretic model.

Details on the game modelling are described below. Airport
graphic modelling and patrolling graph modelling are de-
scribed first. Then, the time discretization, players in the game,
and their set of actions and rewards are explained. Finally,
the solution concept and mathematical model formalization is
introduced.

1) Graphic modelling: The airport terminal is described
by a graph G(V,E) where |V | represents the number of
vertices and |E| the number of edges, shown in Figure 4.
Target locations are modelled as vertices whereas the path
between those are modelled as edges. Moreover, it is also
important to consider two parameters: time to move between
targets and time to patrol a target. The time to move between
targets is constrained by the airport layout, whereas a target
patrolling time is determined by the target importance for
security purposes (e.g., locations where a higher density of
passengers is expected may need to be thoroughly patrolled).

1 2 3

0

e1

e3

e2 e4

e5

Fig. 4. Graph modelling of the airport terminal G(V,E))

2) Patrolling graph modelling: Based on the airport
graphic model, a patrolling graph pG(pV, pE) where |pV |
represents the number of vertices and |pE| the number of
edges, is generated (illustrated graphically in Figure 3). A node
of pG describes a tuple of (t, i), where t ∈ [0, T ] expresses the
time dimension and i ∈ 0, 1, ..., V indicates a node in airport
graphic model G(V,E). For instance, node (t, i) indicates that

at time t the security officer arrives or leaves target i. Hence, an
edge from node (t1, i1) to (t2, i2) represents a security action
where she moves from i1 at time t1 and arrives at target i2 at
time t2. A fixed patrol route is a sequence of patrolling graph
edges denoted as pe1, ..., peN . pe stands for patrolling edge
while N refers to the length of the patrolling graph, i.e. to
the last patrolling edge. These patrolling graph edges have to
comply to three requirements: (i) In-degree of the start node
of pe1 is zero; (ii) Out-degree of the start node of pelen is
zero; (iii) pei and pei+1 are connected, which means that the
end node of pei is the start node of pei+1.

3) Time discretization: The time dimension is discretized
into equal time slices with the length of each time slice
representing a second. It is assumed that the security patrolling
time and travelling time can only start at integer values of the
time axis. The same happens with the attacker who can only
start his attack at the beginning of each time slice. An attack
lasts for different time slices depending on the target location,
since the attacker takes different time from the airport entrance
towards the target location. By discretizing time, it is possible
to enumerate all different attacker strategies.

4) Players: The model considers a two player game be-
tween a security patroller (defender/leader) and a terrorist
(attacker/follower), where both players have perfect rational-
ity. Consequently, both player are payoff maximizers. It is
assumed that the attacker is able to gather information about
the security patrol by long term observation.

5) Strategies: The strategies for both players are introduced
below.
• Defender: At each node of the patrolling graph pG, the

defender can choose to examine that target or move to an
adjacent node. These choices are described as edges in
pG. In this way, we define the security officer’s strategy
sd as a set of probabilities of transitions between nodes
in the patrolling graph pG.

sd =
∏

(s,e)∈pE
cs−e (1)

Where cs−e identifies the probability of transition be-
tween node s to node e, and

∏
represents the Cartesian

product of all edges in pG (i.e. all (s, e) ∈ pE).
• Attacker: An attacker’s pure strategy sa is defined by a

target to attack and a time to start the attack.

sa = (t, i) (2)

Where t represents the attack start time and i denotes the
airport target. Furthermore, the attacker is constrained to
attack only one location, i.e. play a pure strategy.

6) Payoff: Payoffs are provided after every transition be-
tween nodes. This may lead to transitions between nodes
which do not produce any outcome in the agent-based model.
In this case, the payoff value associated with those transitions
is assumed to be zero for both agents. Equation 3 gives an
example of the defender payoff function.

Ud = R1 × c1 + ...+RN × cN (3)

Each element Ri contains the payoff value associated with a
particular transition between nodes ci in the patrolling graph.
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RN and cN denote the payoff value associated with the
last transition between nodes. This reward value is defined
based on a particular outcome arising from the agent-based
model: the average number of human casualties for each
transition between nodes of the patrolling graph pG. Section
VI elaborates further on the reward structure outlined in this
thesis. The game is defined as a zero-sum game, hence the
attacker reward is −Ud.

7) Solution concept: Based on the characteristics described
above, this game is played sequentially. To find an equilib-
rium solution, the model employs the concept of Stackelberg
equilibrium (s∗d, s

∗
a) = (~c∗, (t∗, i∗)) that meet the following

constraints:

(t∗, i∗) = argmax(t,i)∈Sa
ua(~c, (t, i)) (4)

~c∗ = argmax~c∈Sd
ud(~c, (t

∗, i∗)) (5)

As in Stackelberg Security games, the defender (leader)
first commits to a patrolling strategy ~c, while the attacker
(follower) can observe the defender’s strategy and acts op-
timally according to it (Equation 4). The security officer
can also determine the attacker’s optimal solution, hence she
choose her strategy optimally as well (Equation 5). Since
the player’s reward functions are linear polynomials of ~c, a
multiple linear programming algorithm can be used to compute
the Stackelberg equilibrium solution.

In the first step, ua and ud need to be initialized for each
attacker strategy. Then, a linear programming algorithm can
be formulated, as shown below.
• Objective Function:

Max~c∈Sd
ud(t

#, i#,~c) (6)

• Constraints:
∑

in∈{s∈pV |(s,pv)∈pE}
cin−pv =

∑

out∈{e∈pV |(pv,e)∈pE}
cpv−out

(7)∑

out∈{e∈pV |(root,e)∈pE}
croot−out = 1 (8)

ua(t
#, i#) ≥ α+ ua(t, i),∀(t, i) ∈ Sa (9)

ua = −ud (10)

Where in, s, e, out and root refer to nodes of the patrolling
graph pG, α is a small positive number and Sa(Sd) is
the strategy set of the attacker (defender). The root nodes
represents a location where the security officer starts her patrol
shift. Constraint 7 illustrates a property of probabilities cs−e
that, for each intermediate node (node with both income and
outcome edges) of pG the sum of all income probabilities
must equal the sum of all outcome probabilities. Constraint
8 describes a second property of probabilities cs−e that the
sum of probabilities going out from the root node equals
1. This means that the patroller starts at the root node and
must take an action on what to do next. Constraint 9 assumes
that the attacker strategy ua(t

#, i#) is the attacker optimal
strategy. Moreover, α ensures that this model does not rely

on the “breaking-tie2” assumption, but it is still optimal.
Lastly, constraint 10 defines a zero-sum game. The Stackelberg
equilibrium is found by getting the arguments (~c, (t, i)) for
which Equation 6 is maximum.

C. Integration

The integration of agent-based modelling and game-theory
is accomplished in three sequential steps. First, both the
security and attacker strategies are generated, followed by the
specification of game metrics using agent-based model results.
The last step consists of generating the optimal strategies for
both players.

1) Generate agents’ strategies: The first step of the in-
tegration module starts with the generation of both agents
strategies. Given the chosen time discretization, the set of
strategies for the security officer is defined as follows.
• The airport entrance hall is regarded as the root node

from where each patrol starts and ends.
• Each patrol lasts about 1000 seconds, which means that

once a round of patrol is finished, it is repeated until
the time the attacker decides to enter the airport. The
patrol length duration was set based on security expert
knowledge, as current patrols range between 15 and 20
minutes.

• Once the security officer reaches a certain target, she has
to stay there for a given period of time (patrolling time)
which differs from target to target.

• Given the airport layout, we have considered that the
security officer can only move to adjacent nodes. For
example, when the defender is at target T0, she can move
to any of the other targets or stay there; while, if she is
at target 1, she can only move to target T0, target T2 or
stay at target T1 (Figure 2). This constraint was imposed
to avoid the risk of by-passing a certain target.

As mentioned above, patrolling time depends on the target
patrolled. The reasoning behind this choice was to distinguish
between locations which are more security critical to the
airport. For example, a successful attack in an area with
higher density of people can lead to more human fatalities,
thus that location should be better monitored. In order to
estimate patrolling times at each target, a simple case study
was simulated in the agent-based model.

In this simple case study, defender strategies consist of the
set of all possible edges in the airport graph model G(V,E)
(see Section V) that start and finish at the airport entrance (root
node) and where the edges can’t be repeated. As mentioned
above, once a round of patrol is finished, it is repeated until
the time the attacker decides to enter the airport. The defender
strategies were simulated for an attack occurring between
twenty-five and thirty minutes of simulation time; the moment
when the airport was crowded. Based on the agent-based
results, three different importance levels were assigned based
on the average number of casualties at each location. Those

2The ‘breaking-tie’ concept assumes that, when the game follower (i.e.
the attacker) is indifferent on payoffs by playing different pure strategies, he
will play the strategy that is preferable for the game leader (i.e. the security
officer).
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were subject to expert evaluation to corroborate this initial
estimation. It was found that the checkpoint area (T3) was
most important, followed by the check-in areas (T1,T2) and
finally the entrance area (T0).

After identifying different levels of importance within air-
port terminal targets, it was necessary to select the appropriate
patrol time for each target. To accomplish this purpose, a
one parameter at a time sensitivity analysis was performed
where the patrolling time was varied from one minute to
seven minutes (with a one minute step) and was set to be
the same for each target. Agent-based results arising from
these simulations were used to estimate game-theoretic payoff
values. Then, seven game-theoretic formulations (one for
each simulated patrolling time) were defined, where in each
one the set of the security patrol strategies had a particular
patrolling time, ranging from one minute to seven minutes.
Based on the defender’s optimal reward obtained for each
game instance, the patrolling time for each target was defined
as follows. The patrolling time corresponding to the higher
optimal defender payoff was assigned to the most important
target. The patrolling time corresponding to the second highest
optimal defender payoff was assigned to check-in area, and the
patrolling time corresponding to the third optimal defender
payoff was assigned to the airport entrance.

At this stage, all potential strategies satisfying the afore-
mentioned rules were generated. In total 66 different patrol
strategies, which resulted in 596 different patrolling graph
edges (movements), were simulated in the agent-based model.
To include uncertainty related to disruption on security patrols,
the time spent at each target was according to a Gaussian
distribution with mean equals to the time specification set
previously, and standard deviations equal to thirty seconds
(to ensure a 95% confidence interval of one minute). The
resulting patrol times are shown in Table I. Recall that target
T0 corresponds to the airport entrance, target T1 and T2
correspond to the check-in area and target T3 corresponds to
the security checkpoint area.

TABLE I
PATROLLING TIME FOR EACH TARGET IN SECONDS

Target T0 Target T1&T2 Target T3

N (60, 302) N (240, 302) N (360, 302)

Based on the improvised explosive device threat, we have
considered twenty attack scenarios. These scenarios have a
five minute interval uncertainty, for a period of twenty-five
minutes for each of the identified targets (target T0, ..., target
T3). The attacker agent may be caught in his path towards the
target location, even if both security and terrorist agents are
not in the same area, but the latter is within observation range
of the former. This is a closer representation of reality than the
standard game-theoretic formulation, as security officers can
observe further than just their current location. This ensures
that more realism is included.

2) Specify game metrics using results: After generating
the set of strategies for both agents, the next step is to specify
the game metrics based on the agent-based model outcomes
obtained from the previous step. As mentioned above, we have

focus on the average number of human casualties. The average
number of human casualties is affected by the efficiency of the
patrol. The efficiency of the security patrol assesses the patrol
successful arrest rate. These two metrics are detailed in the
next paragraphs.

The number of casualties is estimated as follows. For each
attacker and defender strategy, a consequence function which
assesses the number of human fatalities is calculated for the
simulated threat scenario. This function is used to determine
the consequences for a simulation run of our agent-based
model. Monte Carlo simulations are executed in order to
evaluate the average number of casualties based on a set of
N simulation runs. The number of simulation runs N was
defined based on the coefficient of variation and was set to
500 simulation runs.

The efficiency of each patrol movement for a specific
threat scenario is computed as follows. For each attacker and
defender strategy, the ratio between the number of non-zero
human casualties and N (i.e. total number of simulation runs),
defines the efficiency of each patrol movement. Zero casualty
values means that the attacker was arrested by the security
officer, thus no human casualties occurred.

These two metrics were chosen to integrate our approach
with common security risk assessment. In a security risk
assessment, a security risk ri is defined, for some time period
T , as a function of Threat Likelihood and Conditional Risk.
Threat Likelihood is regarded as the probability that threat
scenario si will happen in time period T . In this study, it is
assumed that an attack will happen. Conditional risk is a mea-
sure of risk that depends on consequences and vulnerability.
Consequence is informally outlined as the outcome of a threat
scenario, and vulnerability describes the inability of a system
to protect against that threat scenario. We assign the number of
casualties to the consequence measure to estimate the outcome
of each threat scenario, whereas the ratio between the number
of successful attack deployments and N (i.e. total number of
simulation runs) was used to determine the vulnerability of
the airport against each threat scenario.

The final game-theoretic model consisted of:
• 20 different attack strategies: one for each combination

target-time interval of 5 minutes.
• 596 different defender patrolling graph edges (move-

ments), resulting from the 66 generated strategies. Those
are the game’s decision variables.

• 11,920 payoff values arising from the 20 different at-
tacker options (target,time) and 596 security patrolling
movements, in total 20 × 596 = 11,920 payoff values
have to be defined.

The outcomes of this second step are twenty different payoff
structures (one for each attack strategy) for each player.

3) Generate optimal strategies: In the last step of our
methodology, we generate the optimal attacker and defender
strategy using the generated payoff values. These optimal
strategies are simulated in the agent-based model and the
outcomes of this simulation are compared to the ones obtained
with the initial simulation assessment. The results are expected
to be similar to positively evaluate the optimal game-theoretic
solution.
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VI. EXPERIMENTS & RESULTS

Experiments performed with the above model are described
in this section. First, the agent-based model experimental
setup and results are described. Then, game-theoretic results
are illustrated. Namely, the game rewards are detailed along
with the Stackelberg game solution for a security probabilistic
patrol route and for a fixed patrol route. Finally, the optimal
strategies achieved for a security probabilistic patrol route are
subject to subsequent evaluation.

A. Experimental Setup

The agent-based model contains a set of parameters in the
experiments, shown in Table II.

TABLE II
AGENT-BASED MODEL CONSTANT PARAMETERS

Parameter Value
Simulation parameters

• Simulation runs N 500
Airport and flight parameters

• Flight departure time 7200 sec
• Number of flights 3
• Number of open checkpoint lanes 2
• Number of open check-in desks 3

Agents parameters
• Proportion passengers check-in 0.5
• Check-in time Norm(60,6) sec
• Checkpoint time Norm(45,4.5) sec
• Observation radius 10 m
• Security arrest probability 0.8

The number of simulations required to obtain a proper
estimate of the distribution of the model output were deter-
mined based on the coefficient of variation. Figure 5 shows
the coefficient of variation for two different attacker-defender
strategy pairs. It shows that the coefficient of variation tends
to stabilize between 300 and 400 simulations. Consequently,
the number of simulations was set to be 500 to ensure a
proper estimation of the model output for all attacker-defender
strategy pairs.

Fig. 5. Coefficient of variability varying with the number of simulation runs

Apart from the number of simulations runs N , the pa-
rameters displayed in Table II were calibrated and validated
according to the agent-based model as described by Janssen
et al. [9] agent-based model. Additional parameters values
may be found in that work. It is important to note that all
flights are defined with the same departure time, as commonly
happens in regional airports. The model was implemented in
the AATOM simulator, a Java-based open source agent-based
airport terminal operations simulator [30].

B. Agent-based model results

Table III shows selected agent-based results associated with
a particular defender transition between two nodes of pG (i.e.
a movement) and an attacker strategy (target, time).

TABLE III
ILLUSTRATIVE EXAMPLE OF AGENT-BASED OUTCOMES. CAS. DENOTES

THE AVERAGE NUMBER OF CASUALTIES. EFF. REPRESENTS THE
EFFICIENCY OF THE PATROL FOR EACH MOVEMENT.

Movement Att. Strategy Cas. Eff. (%)
(Time (s), Target) (Target,Time)
(0, T0) to (6, T2) (T0; 0− 5min) 4.27 0

(6.0, T2) to (246.0, T2) (T0; 0− 5min) 2.194 21.72
(1933, T3) to (1964, T0) (T0; 0− 5min) - -

(0,T0) to (31, T3) (T3; 0− 5min) 0 100
(0, T0) to (31, T3) (T0; 20− 25min) - -

(1582, T3) to (1942, T3) (T3; 20− 25min) 11.615 7.69

From the agent-based model simulation, two scenarios can
occur. First, for a particular defender movement and attack
strategy, an interaction between both agents occurs. This
interaction may be a successful attack or a successful arrest.
However, it may also happen that for a particular defender
movement and attack strategy, no interaction between both
agents occurs. The later happens since the time span of the
defender movement does not coincide with the attack interval.
For instance, movement (1933, Pos.3) to (1964, Pos.0) will
not lead to a defender-attacker interaction when the attacker
attacks target T0 within the first five minutes. Later in the
game formulation, these cases will have a zero payoff value
associated. The reasoning behind this choice was to assign a
neutral payoff value for both players in the cases where they
did not interact.

C. Game-theoretic results

Based on the results of Section VI-B, we describe the
game-theoretic solution, focusing on rewards attained for each
player.

1) Payoff function: Taking into consideration the payoff
function specified in Section V-B, first we define vector
~R as the average number of casualties for each transition
between nodes (Table III Casualties column). Cas1 refers to
the average number of casualties obtained when the defender
performs the movement corresponding to the decision variable
c1. Equation 11 exemplifies the proposed layout.

Ud
target,time = −(Cas1 × c1 + ...+ Cas596 × c596) (11)

The above payoff function assumes different Cas val-
ues for each attacker strategy combination (target, time).
Therefore, 20 different payoff functions were defined
Ud
0,0(U

a
0,0), ..., U

d
3,4(U

a
3,4) for each player. The target index

varies from 0 (target T0) to 3 (target T3). The time index
varies from 0 (attack enters the airport within the first 5
minutes) to 4 (attack enters the airport between the 20 to 25
minutes). Moreover, the defender’s reward has a negative sing
to penalize her for each human fatality. We assume a zero-sum
game, thus the attacker reward has the opposite value of the
defender.
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Fig. 6. The optimal patrolling strategy over time and the attacker’s best response. The black lines symbolise the defender’s optimal (probabilistic) patrolling
strategy. Each line segment (each movement) has an associated number representing the probability that the defender will do that movement. The red line
illustrates the attacker’s best response strategy. Note that the red line only covers Target T3 for the sake of visualization simplicity. In reality, the attacker
enters the airport through its entrance (Target T0) and takes some time to arrive at the target destination. Lastly, the remaining colours with less opacity
represent all possible movements that may have been chosen by the security officer.

2) Stackelberg game solution: Figure 6 shows a graphical
representation of the Stackelberg Equilibrium solution of the
game described in the Section III. The black lines symbolise
the defender’s optimal patrolling strategy, i.e. the non-zero
probabilities for each of the defender actions. Each line
segment has an associated number representing the probability
that the defender will take that action. For the sake of
simplicity, only the probability values for the initial movement
alternatives are shown. For instance, c1 = 0.129 means that at
time 0 sec., the defender will move to check-in area (Target
T2) with a probability of 0.129. Alternatively, the defender
also have an option to stay at the airport entrance (Target
T0) during 60 sec. with a probability of 0.871 (c2 = 0.871).
Once the defender reaches one of these alternatives, her patrol
continues by following the black line segments until the end
of the patrol.

The attacker’s best response strategy is to attack the check-
point area (Target T3), entering the airport at a time between
ten to fifteen minutes, illustrated in Figure 6 as a red line.
Note that the red line only covers Target T3 for visualization
simplicity. In reality, the attacker always enters the airport
through Target T0 and takes some time to arrive at the target
location.

Table IV shows the agent-based model results associated
with the patrol movements corresponding to the optimal patrol
strategy. However, only patrol movements which lead to a
defender-attacker interaction are shown. Yet, it is important
to note that there is one movement for which the time span
does not coincide with the attacker entering time of 10 to 15
minutes. This occurs since the attacker takes time to reach his
target destination in a crowded airport. All other movements
that constitute the optimal strategy, but are not present in Table
IV are those where there was no interaction between both
players. The payoff associated with those movements is zero.

TABLE IV
AGENT-BASED RESULTS ASSOCIATED WITH THE PATROLLER’S

MOVEMENTS WHICH CONSTITUTE THE OPTIMAL PATROL STRATEGY.

Movement (Time (s), Target) Prob. Casualties Eff. (%)
(403, T3) to (763, T3) 0.129 2.286 72.67
(763, T3) to (794, T0) 0.129 1.540 78.94
(794, T0) to (1000, T0) 0.129 6.083 41.35
(475, T2) to (715, T0) 0.871 1.427 70.68
(721, T0) to (781, T0) 0.871 2.284 72.59

(781, T0) to (1000, T0) 0.871 5.430 47.70
(1006, T2) to (1246, T2) 1 10.789 0

Therefore, if the probability value and casualty value as-
sociated with each movements (in Table IV) are introduced
in Equation 11, it is possible to compute the defender and
attacker optimal reward values.

Ud
3,2 = −(2.286× 0.129 + 1.540× 0.129 + 6.083× 0.129

+ 1.427× 0.871 + 2.284× 0.871 + 5.430× 0.871

+ 10.789× 1) = −20.03 (12)

The attacker reward is the opposite of the defender’s reward,
i.e. Ua

3,2 = 20.03. Figure 7 shows every attacker’s reward value
associated with each attacker’s strategy against the defender
optimal (probabilistic) patrolling strategy. These are computed
in a similar fashion as the one illustrated in Equation 12.

Results show that attacking the checkpoint location (target
T3) between 5 and 20 minutes yields the highest reward for the
attacker when comparing to attacking other locations within
the same time frame. This may be explained as follows. Pas-
sengers arriving in previous time intervals finished their check-
in activity and are going towards the security checkpoint,
leading to higher density of people around that area. Thus, if
the attack is successful, its impact would be large. This is not
the case for all the other targets since there are passengers
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who did the check-in online and go straight to the target
T3 which results in lower concentration of passengers around
those areas. Moreover, an attack within the first five minutes
have smaller consequences since less people are at the airport
terminal. This happens because the airport gets more crowded
as the time gets closer to the flight departure time.

Fig. 7. Attacker reward values for each attacking strategy, when the defender
performs the optimal patrol illustrated in Figure 6.

It is also worth noticing that an attack on targets T0, T1
and T2, at the latest time interval yields higher rewards for
the attacker when comparing to other time periods. This is the
case, as the number of people entering the airport considerably
increases during that time interval which results in higher
concentration of people in those areas. This increase results
from the fact that as the time passes by, it gets closer to the
flight departure time and therefore more people start entering
the airport. As mentioned earlier, the latter increases the
chances and consequences of a successful attack.

By comparing results in Figures 6 and 7, defender’s optimal
strategy choice may be justified as follows. From Figure 7 it
can be observed that the attacker reward by attacking target T3
while entering the airport between five to ten minutes yields
the second highest value. Therefore, the defender favours
the patrol of that area during the corresponding time period.
The latter observation may be the reason why the defender’s
optimal strategy does not contain additional movements which
patrol the optimal attack target at the optimal attack time
(between 10 to 15 minutes).

However, the optimal defender strategy location does not
coincide with the attacker target for the entire attack time
interval. Namely, the defender choice after leaving target T3 is
to go either to target T2 or target T0, and, eventually, staying
there until a new patrol starts. This results can be explained
by the fact that the attacker, in his path to target T3, may be
detected by the defender if she is either at check-in lane area
2 (target T2) or at the airport entrance (target T0).

These results show that the optimal security patrol gives
special emphasis to high-impact areas, such as the security
checkpoint, to reduce the total security risk. This is an im-
provement over the more simplistic strategies as shown in the
work of Janssen et al. [9].

3) Stackelberg game solution with the constraint of fixed
patrolling strategy: In the current patrolling practice, it may
happen that the security officer follows a fixed patrolling
strategy. In a fixed patrolling strategy, the probability that an
action is taken was constrained to be either 0 or 1, rather
than a probabilistic value between 0 and 1. To investigate
this scenario, we follow the same procedure illustrated in
the previous Section VI-C2, but with the aforementioned
constraint where the decision variables are either 0 or 1.
Figure 8 illustrates the optimal strategy for both agents. The
red line represents the attacker’s optimal strategy, while the
black line denotes the defender’s best response. It is interesting
to observe that for a fixed patrolling strategy the attacker
best response remains at target T3, but changes the attacking
time interval to a time range between five to ten minutes.
This result shows that attacking target T3 during the time
interval between five to ten minutes yields a high payoff for the
attacker. Therefore, it confirms the optimal defender’s patrol
choice of covering that target during that time interval, in the
previous case of a probabilistic patrol strategy.

Results show that if the defender would follow the fixed
patrolling route and the attacker plays his best response, as
shown in Figure 8, rewards for the defender and for the
attacker are -21.417 and 21.417 respectively. The latter shows
that by optimally randomizing over different movement at
different time moments, the defender is able to generate
strategies that are going to be more effective against a potential
terrorist attack. These conclusions can help airport managers
design security procedures.

D. Evaluation of the optimal solution

Finally, the last step of the proposed methodology is to
simulate the optimal game-theoretic defender-attacker strategy
pair in the agent-based model and compare the latter results
with the ones resulting from the initial agent-based simula-
tions.

For this purpose, the optimal probabilistic defender pa-
trolling strategy was simulated in the agent-based model. The
added value of this new simulations is to introduce the proba-
bilistic effect by simulating the optimal movements according
to the probability given by the game solution. Therefore,
to be consistent with the number of simulations performed
earlier, a total of 500 simulations were executed. Movements
with a probability of 0.129 were executed in 64 runs while
the others were performed in 436 runs. We simulate this
defender strategy against all attacker strategies (i.e. all target-
time combinations). Figure 9 represents the average number
of casualties per attacked target per time when the defender
performs her optimal probabilistic patrol strategy. Note that
Figure 9 distinguishes from Figure 7, as the prior represents
the optimal reward value which is a function of the average
number of casualties and probability of executing the optimal
movements.

From Figure 9 it can be noted that the number of casualties
when the attacker attacks target T0 are fewer than those on the
other targets. This may be justified by the fact that the airport
entrance is a location where people do not agglomerate as
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Fig. 8. The optimal patrolling strategy over time and the attacker’s best response. The black lines symbolise the defender’s optimal patrolling strategy. Here,
the probability associated with each movement is one to represent a fixed patrolling strategy (defender always follows that route). The red line illustrates the
attacker’s best response strategy. Note that the red line only covers Target T3 for the sake of visualization simplicity. In reality, the attacker enters the airport
through its entrance (Target T0) and takes some time to arrive at the target destination. Lastly, the remaining colours with less opacity represent all possible
movements that may have been chosen by the security officer.

intensively as they do in check-in (target T1 and T2) or in the
checkpoint (target T3) areas. Furthermore, the highest patrol
efficiencies happen at the optimal attack target location (target
T3). This is an interesting result which reinforces the choice
of the defender’s optimal strategy since it achieves a higher
arrest rate against the optimal attacker target.
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Fig. 9. Casualties per attacking strategy against the optimal defender’s strategy

Finally, in order to understand the variability in the number
of casualties in each simulations run, a boxplot of the results
in Figure 9 was generated. Figure 10 distinguish the results for
the two possible patrolling alternatives shown in Figure 6. c1
represents the patrol whose initial movement is to reach check-
in area (Position 2) at time 6 seconds, while c2 represents the
patrol whose initial transition is to stay at the airport entrance
(Position 0) for an average time of 60 seconds. For the attack
time after fifteen minutes, this distinction was not specified
since from that time onwards both optimal patrolling strategy

movement alternatives indicate that the defender should be at
target T0. Moreover, from 1000 seconds onwards the optimal
strategy follows a fixed patrol route.

Fig. 10. Number of casualties per target per time in each simulation run. Note
that the axis scales are different among targets.

Figure 10 confirms that the number of casualties in target
T0 are fewer than those on the other targets, while target
T3 yields higher casualties values on average. Once more,
this is due to the fact, that the human density on the airport
entrance is smaller, than those on the check-in areas, which is
smaller than those on the security checkpoint location. Target
T3 also yields the highest number of casualties that occurred
in one simulation. Given the nature of agent-based modelling,
this is a striking result because it indicates that a successful
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attack leading to a higher number of human fatalities may
happen in reality, even if the security is executing the optimal
patrol strategy. Therefore, it can be concluded that despite
the optimal security strategy having higher patrol arrest rates
on target T3, the potential consequences of a successful
attack there may be disastrous. Hence, this area represents
a vulnerable target which should be thoroughly patrolled in
airport security procedures.

Finally, Table V shows the new agent-based model results
associated with the patrol movements corresponding to the
optimal probabilistic patrol strategy.

TABLE V
EMPIRICAL RESULTS FOR THE OPTIMAL PATROLLING STRATEGY AFTER

BEING SIMULATED IN THE AGENT-BASED MODEL. ALL OTHER MOVEMENT
PROBABILITIES ARE ZERO. VALIDATION STEP.

Movement (Time (s), Target) Prob. Casualties Eff. (%)
(403, T3) to (763, T3) 0.129 0.870 91.30
(763, T3) to (794, T0) 0.129 2.625 75.00
(794, T0) to (1000, T0) 0.129 6.687 25.00
(475, T2) to (715, T0) 0.871 1.406 69.31
(721, T0) to (781, T0) 0.871 2.500 69.56
(781, T0) to (1000, T0) 0.871 5.552 47.48

(1006, T2) to (1246, T2) 1 10.636 0

Therefore, if the probability value and casualty value as-
sociated with each movements (in Table V) are introduced
in Equation 11, it is possible to compute the defender and
attacker optimal reward values.

Ud
3,2 = −(0.870× 0.129 + 2.625× 0.129 + 6.687× 0.129

+ 1.406× 0.871 + 2.500× 0.871 + 5.552× 0.871

+ 10.636× 1) = −20.187 (13)

The attacker reward is the opposite of the defender’s reward,
i.e. Ua

3,2 = 20.187. If we compare the later values with the
one achieved by the game-theoretic model (-20.030/20.030)
we conclude that the results slightly differ, which validates
the proposed methodology.

VII. CONCLUSIONS & FUTURE WORK

This paper introduced a novel methodology to improve
game-theoretic solutions by specifying game-theoretic reward
values based on the outcomes of an agent-based model.
The main contribution of this work is in addressing game-
theoretic uncertainty of payoffs by estimating them using
agent-based simulation results. We advocate that our method-
ology improves current game-theoretic formulations by relying
on simulated data which maps real world events rather than
relying on expert assessment alone which can be prone to
errors and human biases.

The methodology was applied to a case study in a regional
airport terminal for an improvised explosive device threat.
Results show that by strategically randomizing patrol routes,
higher expected rewards for the security officer are achieved
leading to lower expected casualties in an improvised explo-
sive device attack. The methodology ensures that vulnerable
targets have higher probabilities of being patrolled and of de-
tection of attackers. Furthermore, it was found that by allowing

the defender to take probabilistic decisions at different time
points, a higher reward is obtained when comparing to a fixed
optimal patrolling strategy which supports the conclusions by
Zhang et al. [20]. Results further show that the optimal security
patrol gives special emphasis to high-impact areas, such as the
security checkpoint, to reduce the total security risk. This is
an improvement over the more simplistic strategies as shown
in the work of Janssen et al. [9].

In terms of industry application, this methodology provides
valuable results for airport managers in the domain of air-
port security strategic deployment. Results achieved with this
methodology were generated by an agent-based model which
represents real life processes occurring at a regional airport
terminal. The resulting strategies can directly be used and
tested by airport managers to improve their security policies.

This work can be extended in several directions. Firstly,
different strategies with less restrictive constraints may be
investigated to understand if better rewards can be achieved.
For instance, time spent at each target may be varied in other
intervals than the ones specified in this thesis, to understand
the influence of that parameter on the current model. Secondly,
research on human behaviour is needed to include more
complex behaviour in the agent-based model. For instance,
different attacker profiles depending on the attacker cultural
background and motivations may be modelled to provide better
results for different types of attackers. In addition, the game
model can also be improved to incorporate different human
rationality models [21]. Lastly, uncertainty related to potential
patrol disruptions may also be further investigated to improve
the current game-theoretic model [24]. Finally, the proposed
methodology can be applied to different infrastructures such
as hospitals, schools, and banks.
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1
Introduction

Ever since the attacks on World Trade Centre in 11 September 2001, airports have significantly enhance
their security operations, procedures and checks. This attack was the most catastrophic hijack in avi-
ation industry resulting in thousands of human fatalities and incalculable economic losses. Nowadays,
security checkpoints consist of cutting-edge technologies which hamper terrorists from passing through
with forbidden objects such as a gun, a knife or an improvised explosive device. These security im-
provements resulted from multiple interactions with terrorists and their attack method. However, not
only security has improved, but also terrorists have adapted their way of acting.

Currently, economic and political conflicts between different nations have led to an environment
of constant fear. Over the past years, terrorist groups such as al-Qaeda and ISIS, have deployed multiple
terrorist attacks in publicly accessible areas of airports where there was high density of people. This
new paradigm arose from two main reasons. First, terrorists do not have to face security checkpoints
and, second, it is extremely hard for security officers to detect them. Therefore, the need to have
efficient security patrol in publicly accessible areas of major infrastructures such as airports has emerged.
Thousands of people move freely through those areas which increases the need for better security
vigilance. However, security have limited resources available due to economic, time and/or capacity
constraints. Indeed, when resources are scarce, optimal security patrols may be an appropriate solutions
for this major security challenge. To address this issue, the present MSc thesis proposes to combine
two main approaches to study human behaviour and interactions: Agent-Based Modelling (ABM) and
Game-Theory (GT).

On one hand, Agent-Based Modelling and Simulation has emerged as one promising approach to
model multi-agent systems in specific environments. This technique provides a bottom-up methodology
to model complex socio-technical systems where single individuals and their dynamic interactions are
represented. By simulating the behavior of basic entities, emergent patterns, relations, responses and
behavior of the global system may be identified. In fact, in an agent-based model and simulation through
many simulations, it is possible to test predicted scenarios, but also emerging patterns and relations
which were not foreseen by the modeller. This is extremely important in security environments where an
attack can happen anytime, anywhere and with unknown means and methodologies. Therefore, by using
this framework, it is possible to understand how agents act, adapt and learn by simulating multiple
interactions between each other. Agent-based modelling and simulation is an expressive approach
capable of capturing both spatial and temporal aspects. Thus, it is logical to use agent-based modelling
as the framework to simulate dynamics, behaviors and relations between passenger, security and attacker
agents in an airport publicly accessible area as the environment.

On the other hand, Game-Theory provides a mathematical model to analyze conflicts and rivalry
between agents. Game-theoretic models have been deployed to address security challenges in a research
area known as security games. In particular, security games model a game between a defender and
an intelligent attacker who aims to cause maximal harm to the defender at minimum cost. Here, each
player has a set of available strategies with an associated reward. Each player aims to maximize its

17



18 1. Introduction

reward. Translating to the context of this study, the defender can be thought as a security patrol
team whereas the attacker represents a terrorist who plans to place a bomb in a publicly accessible
area of an airport. In terms of security modelling, a game-theoretic solution would provide the best
defender strategy given available information, constraints and parameters for the airport setting. An
important aspect is that these models need to randomize patrolling strategies, in an intelligent manner,
as predictability can ease a terrorist attack. Over the years, more realistic and sophisticated features
have been included to model human dynamic interactions. In particular, aspects like human behaviour
modelling from cognitive sciences, uncertainty in human decisions, spatio-temporal constraints, among
other features have turned these models into real world deployments at major infrastructures (e.g.
Los Angeles International Airport). Therefore, game-theoretic models propose a valuable solution to
identify optimal defender strategies against intelligent attackers for airport security patrolling. Thus,
Game-theory will be the technique employed to model agents’ rules of behavior and interactions.

Previous security studies have focused on either agent-based modelling or game-theoretic for-
mulations. However, no combination of both methods have been deployed yet on security literature.
Consequently. this MSc thesis aims to explore the possibilities of creating synergies between the two
powerful approaches to understand human behaviour and interactions. Being a mathematical formu-
lation, results from game theoretic models are highly dependent on their underlying assumptions and
sometimes these assumptions do not depict real-world scenarios. Given these restrictions, agent-based
modelling and simulation offer the possibility to relax those restrictive game-theoretic assumptions by
studying human behaviour, actions, interactions and their consequences, through multiple computer
simulations. By combining an agent-based model with game-theoretic reasoning, it is possible to model
complex socio-technical systems, by including uncertainties and dynamics arising from an agent-based
model which would be impracticable to consider in a game-theoretic formulation only.

In particular, the data gathered throughout multiple simulations in an agent-based model and
simulation framework is employed to induce a game model. Outcomes from an agent-based modelling
are used to define agents’ payoffs in a security game, while a game-theoretic model is employed to define
optimal security patrol strategies. The goal is to combine both methods in a procedural and iterative
way where the game-theoretic model is gradually improved and explored, through data arising from
multiple simulations in an agent-based framework. Payoff values and agent’s policies are continuously
updated to represent the dynamism of human adaption and learning. This methodology will be applied
to a case study where a terrorist aims to detonate an improvised explosive device in a publicly accessible
area of Rotterdam The Hague airport.

This report introduces a literature review on the most recent work addressing subtopics of the
aforementioned challenge. This document is structured as follows. Firstly, in Chapter 2 it is important
to contextualize the reader about the domain motivation and research positioning. Domain motiva-
tion describes the current security problem in airport publicly accessible areas. Research positioning
introduces a widely used technique to model security risk along with its disadvantages. The latter
sets the basis to tackle the identified research gap: combining an agent based modelling framework
with a game-theoretic approach within airport security domain. Additionally, Chapter 2 also illus-
trates the operational context to be considered in this study. Secondly, since agent-based modelling
will be the framework used to simulate behavior and interactions between agents, Chapter 3 discusses
agent-based modelling and simulation main advantages and modelling approaches. After that, Chapter
4 provides an overview on basic game-theoretic concepts which will be important to understand the
remainder of this literature review. Chapter 5 covers the topic of game-theory in security settings.
First, a standard security games framework is described. Then, most prominent approaches addressing
common challenges such as bounded rationality, real-world uncertainties and learning agents in game-
theoretic models are documented. Some publications address multiple issues while others focus on only
one research challenge. Lastly, Chapter 6 summarizes all the previous chapters and builds on these
information to formulate the research question along with the research plan to address it.



2
Research Motivation, Positioning &

Operational Context

As this study focus on airport security, it is important to inform the reader about the need to improve
security in publicly accessible areas of major infrastructures. Hence, Section 2.1 describes the current
problem of terrorist attacks on airports, justifying the need to enhance security. Additionally, Section
2.2 reviews a common methodology for security risk assessment. Based on the limitations of the latter
technique, the research positioning is presented by introducing the goal to integrate an agent-based
model with a game-theoretic approach to minimize the risk of a terrorist attack threat. Finally, Section
2.3 illustrates the operational context which will be considered in this research.

2.1. Motivation domain
Improvement in global economic conditions and lower average airfares have contributed to continuous
growth of worldwide air passengers. Actually, IATA World Air Transport 2017 Report announced that
the number of air travellers exceeded four billions in 2017. In fact, it is estimated that this number
will continue to increase in the upcoming years. Worldwide increase on air passengers implies bigger
gathering of people and more crowded airports leading to higher risks of terrorist attempts.

Usually available security resources are scarce given the enormous number of people present at an
airport, which stunts the task of protecting those people against a potential terrorist attack. Naturally,
transportation systems such as buses, trains, aircraft, where there are large clusters of people at the
same place, constitute a capital target for terrorists’ attacks. Before the September 11, 2001, airport
security measurements were not as efficient as they should have been which allowed intelligent attackers
to perform those terrifying attacks [45]. Aware of this vulnerability, terrorists focused on exploiting
these weaknesses and developed innovative techniques to go unnoticed through screening checkpoints,
aiming to bring different threats inside an aircraft and perform an attack on-site. Threats like liquid
explosives, underwear bombs, laptop bombs using different battery and explosive configurations are
types of objects which passed through security screening and resulted in aircraft bombing attacks.
Apart from September 11, 2001, multiple in-flight aircraft attacks have happened such as the 7 May
2002 China Northern fire in the cabin incident before crashing, the 24 August 2004 Volga-Avia Express
and Siberia Airlines hijack attack and, more recently, 31 October 2015 Metrojet Flight explosive terrorist
attack. These incidents cause irreparable damages in terms of human lives and economical losses.

These attacks triggered a renewed focus on security in the aviation industry, specially on airports.
Nowadays, cutting-edge technologies are deployed at screening checkpoints in major airports, hampering
terrorists from carrying forbidden items inside an aircraft. Therefore, attackers have shifted their
attention to publicly accessible areas in airports where they do not have to pass through any security
checkpoint (apart from the airport doors). In fact, single person attacks (also known as lone-wolf
attacks) like bombs or shootings have been increasing over the past years [90]. Terrorist groups like
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ISIS or al-Qaeda have claimed many of these attacks, for example, bomb attacks at check-in area on
Brussels Airport (2016) or the shooting, followed by suicide bombs at terminal entrance on Atatürk
Airport (2016).

Better security risk assessment and security strategies on publicly accessible areas of an airport
are urgent to keep these incidents from happening. Below, a widely used framework for security risk
assessment and its limitations are presented. Those challenges open an research opportunity for other
approaches. In particular, this MSc aims to design an innovative solution which integrates an agent-
based modelling and simulation method with a game-theoretic approach. The main idea regarding this
approach is briefly explained afterwards and will be further elaborated in Section 6.

2.2. Review of modelling techniques
In this section the well-known Threat, Vulnerability and Consequence framework for analysing risk is
introduced along with its shortcomings. Due to its shortcomings, two alternative methods are discussed,
namely, agent-based modelling and simulation and game-theory.

2.2.1. TVC framework
An up-to-date approach to model security risk assumes risk is a function of the type of a threat,
vulnerabilities to an attack and consequences of that attack in that specific scenario: risk � threat�
vulnerability� consequence [21]. This is labeled as Likelihood, Vulnerability and Consequence (TVC)
framework. Likelihood (in an airport context) refers to one(many) person(s) who aim to cause maximal
damage to an airport terminal or passengers there. Vulnerability refers to the probability that the
attack will succeed, if that threat happens. Consequence relate to quantifiable potential effects of an
attack.

However, the prior framework has two major disadvantages: i) they rely on concepts which are
hard to quantify and ii) they do not integrate intelligent interactions between dynamic agents (security
versus attacker). One aspect linked with the first drawback is that estimating accurate threat, vulnera-
bility and consequence values is time-consuming and, once it is done, it does not provide useful insights
on how to define an optimal security strategy. Moreover, this risk definition assumes threat, vulnera-
bility and consequence are completely independent from each other which justifies that multiplication
formulation. Nonetheless, it is conspicuous that these parameters are intrinsically linked. Cox et al.
states that TVC framework is too direct and can be deceptive when trying to model a terrorist attacker
[21]. In his reasoning, rather than directly assessing probabilities for the actions of intelligent agent,
those should be modelled to capture how they dynamically seek their objectives based on the available
information and experience. These challenges opened a research area for other alternatives.

2.2.2. Agent-based Modelling and Game Theory
In an agent-based model, multi-agent systems are modelled in a simulated environment and in virtual
time. A multi-agent system is one that consists of a number of agents, which interact with one another
and/or with the environment. An agent-based model is the use of a multi-agent system to model a
natural phenomenon. In an agent-based model, basic individual entities or decision makers are modelled
and conceptualized as agents. These entities are different and have autonomous behaviours. With this
methodology, socio-technical interactions (e.g., cooperation, learning, competition) between agents can
be represented. By simulation the behaviour of agents in a proper environment, patterns on a system
level can emerge from independent behaviour and interactions of agents on a local level. Agent-based
models represent cognitive and social processes on a high level of detail.

Game-theory is many times deemed as a branch/language of multi-agent systems. Just like
agent-based modelling, game-theory also presents itself has an appropriate option to handle problems
with strategic agents. Additionally, it reasons on how to model human cognitive behaviour (using, for
example, behavioural models from cognitive sciences) and real world uncertainties. In this way game
theory represent explicitly interactions between agents, opposed to TVC framework where attacker’s
decisions are modelled as random variables or as uncertain threat parameters. Moreover, this theory
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has strong mathematical foundations which provides more accurate and justifiable quantitative results.
In fact, combining these two approaches to minimize security risks and enhance airport security

is an identified research gap. This MSc Thesis aims to design an innovative method where a game-
theoretic approach is employed to define attacker and defender policies which will be simulated in
an agent-based modelling and simulation framework. On the other hand, outcomes achieved from
agent-based simulations (e.g. number of fatalities) can be treated as inputs for a game-theoretic model
(e.g. payoff values). These two concepts have a great added value when combined together. On one
hand, game-theoretic models are able to determine optimal strategies for the agents based on the set of
available options. However, since they rely on a mathematical foundation, it is very hard to model real-
world uncertainties related to human’s behaviour. Agent-based modelling can relax strict assumptions
formulated in game-theoretic models and include real-world uncertainties, by studying the underlying
processes and their consequences through multiple simulations. As such, emergent patterns arising from
an agent-based model can provide useful outcomes which are used to enhance the current game-theoretic
formulation. This empirical approach offers the possibility to model complex systems in the form of
uncertainties and dynamics that yield the game analytically intractable.

2.3. Operational Context
Airport publicly accessible areas are attractive targets for terrorism, as they are designed to accommo-
date and process large amounts of people, resulting in high concentration of potential victims. For this
reason, the operational context studied in this research are the publicly accessible areas of a regional
airport, namely, Rotterdam the Hague Airport. Figure 2.1 illustrates a 2-D scheme of this airport, with
different letters representing different areas. A, B and C are facility areas; D is the check-in area; E
are queuing areas; F is the checkpoint area; G is the gate area and H is the airport entrance. From the
foregoing, this research will focus its attention into areas D,E, H and open areas between those.

Figure 2.1 represents the environment developed by Janssen et al. to study the trade-off be-
tween airport security and efficiency, using an agent-based model [38]. Regarding the airport terminal
environment it is important to mention that it consists of physical objects (wall and check-in desks), an
improvised explosive device (described by its location, number of particles and mass), terminal areas
(check-in, checkpoint, facility, queueing, gate and entrance area) and flights. The model encloses four
types of agents, namely: Operational Employee, Passenger, Attacker, and Security agent. While all
agents are important, the focus is mainly on outcomes arising from the interaction between security
and attacker agents. Further specifications can be found on Janssen et al. work [38].

Figure 2.1: Rotterdam The Hague Airport terminal layout.

The main objective for the next Chapters is to explore the most relevant papers previously
published in the domain of agent-based modelling and game theory, which may be applied to a security
domain.
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Agent-based Modelling

Chapter 2 explained the need to improve security in publicly accessible areas of an airport. Moreover,
the main idea behind combining an agent-based modelling and simulation method with a game-theoretic
approach is clearly defined. Lastly, the operational context under study is illustrated.

The following Chapter focus on agent-based modelling. The latter will be the framework to model
agents’ behaviour and interactions in an airport environment. Main features and advantages of this
method are addressed in Section 3.1. Section 3.2 describes different modelling criteria complemented
by real-world application examples.

3.1. Characteristics & Advantages
Agent-based modelling is one of the prominent approaches to study performance of complex adaptive
multi-agent systems. An adaptive system can be defined as a system which tries to improve its perfor-
mance over time in order to become more robust to different circumstances, disruptions or changes in
its environment. Naturally, an adaptive system is a complex system as any improvement (adaptation)
in the system generates new behavioural rules. Complexity can be interpreted as non-linear interactions
between agents (or agents with the environment), leading to unexpected emergence patterns.

Rather than explicitly modelling the system’s behaviour, patterns and architecture as in top-
down approaches, ABM provides a bottom-up approach to build socio-technical systems through the
representation of basic entities (“agents”), including their characteristics and dynamic interactions.
Interactions can be of two types: agent-agent or agent-environment. Each individual entity is capable
of evaluating its status, interact with others and with the environment and act properly. Agent’s
decisions are based on a simple set of rules. The rules of behaviour and the interactions between agents
shall not be complex as only simple ones can already lead to complex system dynamics. Furthermore,
complexity can be further explored by modelling agents which are able to learn and adapt to unfamiliar
situations. This behaviour might lead to unforeseen actions which may emerge on those circumstances.

Andrade et al. argues that ABM enables modellers to represent, in an intuitive way, multiple
scales of analysis, emergent patterns at system (macro) level resulting from agent’s actions (at local
level) and multiple types of adaption and learning mechanisms, which are not straightforward with
other methodologies [22].

Emergent phenomena is defined as the result of interactions between single units (agents). They
are difficult to deduce and predict given the system’s part only, which makes them sometimes counter
intuitive. Bonabeau et al. focused on a simple example to demonstrate that when agents are modelled
as autonomous entities following specific rules of behaviour, emergent collective behaviour might be
anticipated [11]. However, in simulations with adaptive and learning agents where their behaviour
change over time, emergent phenomena is not predictable. In agent-based modelling, system’s emergent
phenomena arise from a bottom-up approach where only agent’s behaviour and interactions (agent-
agent;agent-environment) at a local level, are modelled. Therefore, it is considered as an appropriate
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paradigm to study these type of complex adaptive multi-agent systems.
Furthermore, an agent-based model offers different levels of flexibility. First, adding or reducing

the number of agents, easily manipulates the model’s complexity. Second, ABM offers a simple frame-
work to define and modify agent’s characteristics such as their behaviour, rationality, intelligence and
way they interact. Those features can be manipulated to attain the desired level of complexity. Third,
it is possible to simulate different levels of aggregation: in the same model individual entities (agents)
and subgroups of entities can coexist. Each entity or subgroup of entities is modelled by the appropriate
level of detail, based on the current knowledge of the system.

This methodology is even more powerful when data is available. Data can be used as an input
to enhance agent-based models focusing on how people behave under specific circumstances. All in all,
agent-based modelling offers some unique features, namely:

• Offers a natural and effective way to model an adaptive and complex socio-technical system.

• Allows the specification of heterogeneous units at different aggregation levels (e.g., individual,
team, organization/system).

• Captures explicit interactions and dependencies between entities.

• Represent multiple scales of analysis (e.g., individual, team, organization/system).

• Enables modelling and analyses of emergent behaviours.

• Provides the possibility to analyse adaption and learning mechanisms of individual entities.

• Focus on dynamic interactions and behaviours, instead of on a static equilibrium.

• Appropriate for dynamic and uncertain environments (such as an airport) and also for functionally
or geographically open distributed systems1.

Despite all the aforementioned benefits, ABM also has some limitations. In particular, in hu-
man behaviour there are uncertainties which are hard to model, assess, tune or justify. Having said
that, outcomes from an agent-based model should be carefully interpreted and validated. Other major
issue comes from its bottom-up approach: simulating the behaviour of individual entities and their
interactions can incur in large computational costs (time-consuming). Lastly, sometimes the outcome
produced can be suboptimal.

3.2. Modelling
First the scope of the agent-based model needs to be defined. Initially, this includes the definition
of domain area. This can for example be an airport. The following step is to identify the processes
and assets to focus on. Considering the airport domain area, processes may for instance be check-
in and security checkpoint activities, while assets may include passengers, security officers or airport
operational employees. Based on the selected domain area, a set of security threats t1, ..., tn have to
be identified along with a set of consequence indicators. Afterwards, for each of those security threats,
specific threat scenarios s1, ...,sm are selected. A security threat is a possible cause of an unwanted
episode, which may end up in serious damage to the selected domain area [38]. A threat scenario is a
set of events related to a specific security threat. For example, a lone attacker enters a regional airport
with a improvised explosive device and detonates it in a publicly accessible area of the airport. For the
latter threat scenario, consequence indicators may assess if the attack was successful or not, and the
number of human fatalities associated with the outcome of the attack.

Given the scope of the project, an agent-based model is defined. This is done following the
approach in Janssen et al. work [38]. In summary, every agent-based model requires the definition and
1An open distributed system is one where different duties, activities and objectives are distributed among various agents
or one where agents are distributed geographically or over different time periods. In this case, the system interacts with
its environment.
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modelling of three key components: agents, their environment and interactions with each other and
with its environment. Next, a high level architecture should be defined to represent agents’ behaviours,
states and evolution over time considering their interactions with each other and with the environment.
Agents have certain attributes expressed as static or dynamic characteristics which distinguishes them
from each other or from other subgroups of agents. It is assumed that this model has a set of model
parameters, with corresponding ranges or distributions, and a set of output variables. Output variables
refer to measured result quantities, while model parameters correspond to metrics which can be changed
in the model. All other parameters are assumed to be constant.

Different models may be found in the literature to describe agent’s behaviour. For instance, Van
Damm et al. described five types of behavioural decision rules applicable in an agent-based framework:
Rule-based Decisions; Multi-criteria Decision-making; Inference Engines; Evolutionary Computing and
Machine Learning [82]. Rule-based Decisions provide a straightforward link between observed behaviour
and decision-making. In Multi-criteria Decision-making agents can analyze different choices by evalu-
ating weights or probabilities assigned to each one. Inference Engines establish a decision tree based
on facts and decision heuristics, which will be evaluated afterwards to decide which is the best action
to take. Evolutionary Computing uses genetic algorithms to find an optimal solution for an agent in
a large and complex solution space. Lastly, Machine Learning is suitable for scenarios where an agent
has to make a decision according to certain patterns. Here, neural networks are frequently employed.
Generally, agent’s behaviour should be formalized considering the context, goal and scenario under
study.

The selection of the right model parameters and output variables are of utmost importance for
a proper definition and specification of the game-theoretic model. This selection process is achieved
through the steps of calibration and validation of the agent-based model. These concern whether the
simulation is a good model of the real system. A common way of validating and calibrating the model
is through the comparison of the agent-based model output with real data. Usually, statistical analysis
is performed to test the significance of the difference between simulated and real data [73].

Furthermore, sensitivity analysis also plays a crucial role in this process since agent-based models
may be very sensitive to small changes in parameter values’. Sensitivity analysis is a relevant tool for both
testing and analysing numerical models. It is a variation of parameter/input-output space exploration
that concentrates on model reaction to variations in the input parameters. Specifically, the modeller
intends to identify parameters for which small changes most impact the model’s output. Currently, the
application of sensitivity analysis in the field agent-based modelling may include one or more of the
following methods: one-parameter-at-a-time, elementary effects, standardized regression coefficients,
meta-modelling, and variance-based decomposition [79].

These steps are essential for the understanding and explanation of the game-theoretic solution in
latter stages of the methodology. To serve such ends, multiple simulations are performed to analysed how
the model behaves in different scenarios. For example, considering the airport domain, understanding
in which areas are there the highest density of people is critical to identify potential target locations
for an attacker to deploy a terrorist attack.

3.3. Application
Many ABM applications have been deployed in diverse domains. One of the first applications was
performed by Epstein and Axtell, known as Sugarscape, in which multiple entities move, behave and
interact with each other and with the environment to get supply (in this case, sugar) [24]. By con-
structing simple but distinctive rules for the agents, Epstein and Axtell were able to observe complex
social patterns such as groups, cooperation and negotiation between agents, among others, emerging
from their simple agent-based model. Since then, agent based modelling and simulation has been suc-
cessfully deployed in different areas, e.g., evacuation scenarios, economic crisis administration, traffic
scenarios, design and diffusion of innovation, epidemic forecast, security risk assessment and manufac-
turing [18, 36, 38, 89].

Bonabeau et al. proposed an agent-based model for fire evacuation where it was demonstrated
that a column in front of the emergency exit surprisingly lowered injuries and increased people’s flow
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speed (unexpected emergent pattern) [11]. Weiss deployed an agent-based model for airport defence
in collaboration with the United States of America Department of Homeland Security [89] . Cheng et
al. created an agent-based model to evaluate the effect of group dynamics on passenger flow during
an evacuation in an airport departure terminal [18]. These results can help in designing better airport
evacuation strategies. Moreover, Sharpanskykh and Zia investigated the importance of strong emotions
on group dynamics and tested the model in a train station evacuation scenario [75]. More recently,
Janssen et al. developed an agent-based model combined with Monte Carlo simulations for security risk
assessment, applied to a case study in an airport security checkpoint [36]. This approach focused on a
setting where an attacker intends to pass through a security checkpoint with an improvised explosive
device on his/her luggage. Security agents aim to detect forbidden items in passenger’s luggage while
being under pressure/time constraints which affect their performance.

Recently, [38] proposed an agent-based model to study the relationship between security and
efficiency in a regional airport terminal. This study was applied to analyse a scenario where an attacker
aims to detonate an improvised explosive device in a publicly accessible area of a regional airport
while considering efficiency indicators such as queuing time for passengers, among others. This study
demonstrated that lowering the number of passengers before the security checkpoint is an efficient
measure to decrease security risks and improve efficiency parameters. Moreover, spreading passengers
across the available space in the airport should be considered in security protocols to minimize the
impact of an improvised explosive device attack.

The latter model was chosen as a starting point since all terminal airport processes mentioned
in the scope were modelled, along with agents’ strategic, tactical and operational behaviour, and an
improvise explosive device threat. In fact,this study extends Janssen et al. work [38]. For completeness,
we briefly introduce the agent framework present in this model (Figure 3.1).

Figure 3.1: Agent Framework modelled in Janssen et al. work [38]

Three different layers can be identified: Strategic Layer, Tactical and Operational Layer. In each
layer there are different modules responsible for the execution of specific functions. In the Operational
Layer, the perception module is responsible for the agent’s observation whereas in the actuation mod-
ule actions and communications between agents take place. In the Tactical Layer, the belief module
maintains beliefs based on observations, actions and internal states. This layer is also responsible for
the navigation and activity accomplishment. Lastly, the Strategic Layer is responsible for a higher level
belief and for generating a plan: an ordered sequence of activities to be carried out by the agent.

This Chapter introduced ABM as a promising bottom-up approach to model human behaviour,
interactions and actions. It captures more realistic features, not possible with prior approaches, in-
corporates complex cognitive and social models and explicitly describes the environment under study.
Moreover, it provides quantitative results reducing security expert assessment. Furthermore, results
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from this modelling technique can be used as inputs for a game-theoretic approach. The next Chapter
discusses relevant concepts in GT, important to keep in mind for the following Chapters.



4
Basics of Game theory

Chapter 3 introduced main advantages, characteristics and applications of agent-based modelling. Its
modelling characteristics have justified the choice to use an agent-based model as a framework to study
the behaviour of dynamic, independent and intelligent agents under a security setting in an airport
environment.

This chapter briefly describes basic concepts in Game-Theory which help the reader to understand
the remainder of this report. Game-Theory is a theory of bilateral choices. In this domain, two-player
and N-player are possible forms of games. This report focus on two-player games since in the context
of security two players (attacker and defender) are interesting to model. Additionally, the report focus
on non-cooperative games since this methodology is applied to security scenario where the defender and
attacker agents have competing interests.

4.1. Introductory concepts
In Game-Theory, a player represents one individual or a group of individuals who make decisions. One
player decision coupled with a decision of another player produce a particular outcome. In order to arrive
at a certain outcome, a player has a set of available strategies. A mathematical formulation correlates
players’ strategies with outcomes, illustrating the consequences of different strategy combinations for
both actors. Consequences of those outcomes are represented by a numerical value called utility. Utilities
are associated with each outcome to illustrate preferences of agents, i.e., a strategy leading to an outcome
with higher utility is more likeable for an agent than one with lower utility. Utilities are also known as
payoff values.

4.2. Representing games
In non-cooperative or competitive games, i.e., games where agent’s choices might be in disagreement
with each other, there are two main ways to represent games played between agents: Extended/Game
Tree Form Games and Normal Form Games

4.2.1. Extended/Game Tree Form Games
Game trees are represented by a set of nodes connected with each other by straight lines called branches.
Each node corresponds to a decision point and each branch correspond to the set of possible player’s ac-
tions. This structure is employed when players take sequential actions, where the first node corresponds
to the player moving first. Utilities to all players are represented at the leaf nodes.

In extended form games simultaneous actions can also be illustrated. Namely, dotted lines
enclosing some nodes are known as information sets and represent agent’s knowledge of his/her position
in the tree [104]. In other words, denotes the information available to one player regarding the choices
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made by the other player at prior moves. For example, in Figure 4.1 Player 2 does not know whether
Player 1 has taken action A or action B, when he made his choice.

ActionA ActionB

ActionC ActionD ActionC ActionD

Player1

Player2

�UA,UC� �UA,UD� �UB ,UC� �UB ,UD�
Figure 4.1: Sample of a game in extended form

Player’s available information at each moment of the game leads to some important definitions.
Perfect Information: A game of perfect information is one where all players can identify their

place on the game at every move, i.e., they have complete knowledge about all previous choices made
by all players, when it comes the time to make a decision.

Imperfect Information: A game of imperfect information is one where neither player knows
the previous strategies of the other when he/she has to make a decision.

Complete Information: A game of complete information is one where all players know the
structure of the game and each others’ payoffs. A game of complete information can have perfect
information or imperfect information.

Incomplete Information: A game of incomplete information is one where one or both player
is not aware about the game structure nor the payoff values of the other. Thus, it can be a one-
side incomplete information when only agent do not possess that information or a two-side incomplete
information where both agents lack that information.

4.2.2. Normal or Matrix Form Games
Normal form is a way to represent games between two (or more) players who have to make an action
and will receive an utility based on their joint responses. Usually, this representation is used for agents
who act at the same time. These utilities are introduced into a payoff matrix as a function of each
player action. Table 4.1 illustrates an example of a payoff matrix for a normal form game.

Player2

Action1 Action2

Player1
Action1 �Uplayer1 ,Uplayer2� �Uplayer1 ,Uplayer2�
Action2 �Uplayer1 ,Uplayer2� �Uplayer1 ,Uplayer2�

Table 4.1: Sample payoff matrix in normal form game

By convention, the first entry in each cells corresponds to the payoff of Player1 when he performs
Action1 or Action2, while the second one corresponds to the payoff of Player2 when he performs Action1
or Action2.

This representation does not provide information about the structure of the game. In other
words, it is not straightforward to understand whether a game has perfect or imperfect information.
Moreover, the sequential aspect present in Extended/Tree Form Game is lost. Therefore, it is not
possible to transform a Normal Form Game into an Extended/Tree Form Game, however the inverse
might occur. Nevertheless, Normal Form Game are able to capture the dynamics of both simultaneous
strategies and sequential strategies.

A strategy is defined as the set of actions a player can perform. In this context, two important
concepts should be highlighted.

Pure Strategy: A pure strategy is one where an agent chooses a particular action from all
available options.
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Mixed Strategy: A mixed strategy is a probability distribution over the set of pure strate-
gies. In other words, in a mixed strategy an agent chooses different actions with specific probabilities
representing the likelihood of performing them.

4.3. Solution Concepts
In competitive games, if the sum of the payoffs of both agents ends up in a constant value, the game
is known as constant-sum. If this constant is zero, then it is a zero-sum game. Constant-sum and
zero-sum games are equivalent games since by adding or subtracting a constant value from the payoffs
of both agent, one can convert a constant-sum into a zero-sum game.

4.3.1. Maximin or Minimax Strategy
One solution concept termed Maximin Strategy arise from the idea that players want to maximize
their security level. To summarize briefly, security level refers to the worst utility associated with each
strategy. Formally, in a game with two agents (i and j), agent i Maximin Strategy is given by:

s
�

i �max
si

min
sj

ui�si,sj�. (4.1)

As illustrated, agent i will chose the best possible action given that agent j will select the action
that is worst for agent i.

Minimax strategy is exactly the same as the Maximin one, but instead of maximize agents’ own
minimum gain, it minimizes agents’ own maximum loss.

When Maximin or Minimax strategies of both agents have the same outcome, these strategies
are in equilibrium and the result associated is labeled as saddlepoint or equilibrium outcome [104]. In
this case, neither agent wants (has an incentive) to deviate from its strategy. In zero-sum games in
the latter conditions, equilibrium strategies are considered optimal and a player who takes them is a
rational one. Rational in this sense means choosing strategies that maximize agents’ utility. In fact,
an equilibrium strategy when existing, defines the best counteraction to take given a strategy that
maximizes the other agent’s security level. In games with an equilibrium outcome, a player does not
benefit neither the other is harmed when having advanced information that the adversary will select its
optimal strategy. A simple way to determine, graphically, a saddlepoint and the associated strategies
for both agents is to search in a payoff matrix (like Table 4.1) for an outcome that is, at the same time,
the maximum of its column and the minimum of its row.

Additionally, an equilibrium strategy is not necessarily singular, yet each equilibrium has the
same value, i.e., is equivalent. Equilibrium strategies with more than one equilibrium outcome are
interchangeable, meaning that if one player selects an equilibrium strategy and the other selects other
equilibrium strategy the result will always be a saddlepoint.

Nonetheless, it has been proven that when both players choose their Maximin strategy they may
not reach an equilibrium outcome.

4.3.2. Dominant Strategy
A Dominant Strategy is one that provides at least the same outcome in every situation and a better
result in one or more situations, than the other. When a strategy generate a better outcome in every
situation it is said to be a strictly dominate strategy. A dominant strategy is clearly better than a
dominated one.

This principle can be generalized into the Iterated Dominance concept where dominated
strategies are eliminated consecutively. This approach starts by eliminating the dominated strategies
from one player, then from another and so on, until all agents are analyzed in successions and there
is no dominated strategy. Nonetheless, this algorithm most of the time ceases before any solution is
found, i.e., none of the agents has a dominant strategy.
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4.3.3. Pareto Optimal Strategy
A Pareto Optimal Strategy is one where there is no other strategy s’ such that at least one player is
better in s’ and no one is worse in s’ than in the Pareto Optimal one. In other words, it is not possible
for an agent to chose an action with higher utility if that means lowering the payoff of other agents
while doing so. However, a Pareto Optimal Strategy faces a problem: agents might not end up in an
equilibrium outcome.

4.3.4. Nash Equilibrium
A Nash Equilibrium is a pair of strategies where none of the agents has the incentive to unilaterally
deviate to another strategy. That is, the strategy of Player 1 is his/her best counter choice to the
strategy of the Player 2, whereas the strategy of Player 2 is also is his/her best response to the strategy
of Player 1. Formally, a pair of strategies si and ti constitute a Nash Equilibrium if:

u1�si¶ti�' u1�sj¶ti� and u2�ti¶si�' u2�tj¶si� ¾ti j tj (4.2)

where si denotes the i
th strategy for Player 1 and ti denotes the i

th strategy for Player 2.
Nash equilibrium is a characteristic concept of normal form games. It was demonstrated that all

payoff matrices have at least one Nash equilibrium strategy, even if it is a mixed strategy. One problem
associated with this concept is that many Nash equilibrium can coexist where some are better for one
agent than for the other. This might lead to an disagreement on which course of action to follow.
Nevertheless, once a Nash equilibrium is set between both agents it is a stable solution.

4.3.5. Subgame Perfect Equilibrium
Subgame Perfect Equilibrium is an improved form of Nash Equilibrium for extensive form games. A
subgame is defined as being any subtree of the extended form game. A Subgame Perfect Equilibrium
strategy s� is a strategy that for every agent i and every subgame, agent i can not get a higher utility
by choosing a different strategy from s

�

i . In other words, a subgame perfect equilibrium strategy is one
which represents a Nash equilibrium for every subgame of the original game. Therefore, a subgame
perfect equilibrium provides to all agents their best counter choice for every node in the tree [84].

4.3.6. Bayesian Nash Equilibrium
A Bayesian Nash Equilibrium is a solution concept for games with different types of actors. A Bayesian
Nash Equilibrium is a set of strategies, one for each type, where no type has incentive to deviate from
his/her strategy given the beliefs about the types and what the other types are doing. Bayesian Nash
Equilibrium is the solution concept used in simultaneous move games of incomplete information.

4.3.7. Perfect Bayesian Equilibrium
A Perfect Bayesian Equilibrium consists of a strategy combination �si, ti� and a set of beliefs. A strategy
of a player indicates how the player acts which may depend on prior history in that information set. The
belief of a player denotes which node in that information set, the player believes he/she is playing at.
These beliefs should satisfy for each node: i) the strategies for the rest of the game are Nash equilibrium
considering the beliefs and strategy of other players (sequentially rational) and ii) each belief is updated
via Bayes’ rule whenever it is possible.

Multiple solution concepts demonstrate how difficult can it be to select the most appropriate
solution. In multi-agent systems one of the major problems is to find an unique equilibrium so that
agents will converge and not deviate from it as they do when there are multiple equilibrium outcomes
or no equilibrium at all.
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Security Games

In Chapter 4 background knowledge on Game-Theory is provided. Namely, introductory concepts and
most common solution alternatives in competitive games are introduced.

The focus of this Chapter is to discuss thoroughly one specific type of games: Security games.
Many security games have been developed since the deployment of game-theoretic approaches in a
security domain. Henceforth, only relevant approaches within the scope of this Master thesis will be
addressed. In Section 5.1, instances of Security games are briefly summarized. Here different game
models employed in security games are introduced. Section 5.2 focus on the main challenges found in
these games. Additionally, along this Section one can understand the advancements of game-theoretic
models which started progressively to take more features into consideration throughout the years. A
critical analysis of these works will be the starting point for this MSc Thesis. Later in Chapter 6 the
research question and project plan will be formulated based on the findings of the current Chapter.

Lastly, it is important to highlight that, by convention, in security games the attacker is referred
to as “he” and the defender as “she”. Henceforth, this will be terminology adopted.

5.1. Instances of Security Games
Generally, a security game is a two-player game between an attacker and a defender. The latter tries
to prevent an attack by protecting a set of targets from the attacker. For this purpose, the defender
has a limited number of resources available. While a pure strategy for the defender is the allocation of
her resources to one or more targets (patrol), a pure strategy for an attacker is the selection of a target
to attack. Utilities rU cd ,Uud ,U ca,Uua x are defined based on the target attacked and whether or not it is
covered by a defender. If target t is covered by the defender and the adversary attacks it, he receives
payoff U ca while she receives utility U cd . On the other hand, if the attacker selects a target which is not
covered by the defender, then he receives utility Uua while she receives utility Uud (Table 5.1). Usually, in
security domains is assumed that protecting a target is always better for the defender and detrimental
for an adversary who intends to attack it, i.e. U

c
a $ U

c
d and Uua % U

u
d . Research in security games is

extensive since defenders have a limited number of resources to protect multiple targets, meaning that
their strategy has to be thoroughly optimized. A special case of security games are zero-sum games.
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Table 5.1: Alternative representation of a payoff structure in a security game with two players and n targets
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5.1.1. Stackelberg Security Games
Stackelberg Security Games (SSG) were inspired by Heinrich Von Stackelberg economical model of
competing companies (1934). Stackelberg Security Games are a class of security game where the
defender commits to play a mixed strategy. On the other hand, the attacker is able to observe the
defender’s strategy and best responds to it. Traditional Stackelberg Security Games assume both
agents are utility maximizing. An optimal solution strategy for the defender usually consists of a mixed
strategy since it is important to randomized over defender set of strategies to hinder attackers from
finding a constant pattern in her actions. Moreover, a defender mixed strategy can be represented as
a marginal coverage probability vector over the set of targets x " r0,1xn, depending on whether the
target is covered or not. Alternatively, an attacker mixed strategy a is a vector where at corresponds
to the probability of attacking target t. Therefore, given a coverage vector x and an attacker mixed
strategy a, the expected utility for the defender and attacker is expressed below:

Ud�x,a��=
t"T

at � �xt �U cd�t�� �1�xtUud �t��ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
Ud�xt�� Payoff for the defender when target t is attacked

(5.1)
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Ua�xt�� Payoff for the attacker when target t is attacked

(5.2)

where xt is the coverage probability of target t.
Bayesian Stackelberg Games
A special case of Stackelberg Security Games are Bayesian Stackelberg Games. These games

model different types of attackers, each with his own reward structure. Basically, each attacker type λ
is assigned to a probability distribution pλ which denotes the probability of that type to play the game.
Thus, the expected payoff for a defender, given coverage vector x when dealing with attacker type λ
whose attack vector is aλ is given by:

U
λ
d �x,aλ��=

t"T

a
λ
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Uλd �xt�� Payoff for the defender when target t is attacked by attacker type λ

(5.3)

Likewise, the expected payoff for the attacker follows the same reasoning, but Uλ,cd and Uλ,ud are
replaced by Uλ,ca and Uλ,ua , respectively.

Threat Screening Games
Threat Screening Games (TSG) are a type of Stackelberg Games. They model teams and re-

source heterogeneity, however, targets are not explicitly modelled. These games address the problem of
screening people for threats (e.g., bombs, guns, etc.) before entering in major infrastructures such as
airports, football stadiums and shopping malls [15]. In screening scenarios, time is an important fea-
ture, thus screening has to be efficient and security-focused at the same time. Here, the challenge is on
how to define dynamic randomized screening procedures aiming to maximize limited security resources
(e.g. security officers, walk through metal detectors and x-ray) while ensuring, at the same time, a high
security performance under time constraints.

A TSG is a game played between a defender (screener) and an attacker (one of the screenees),
including a number of non-players (screenees) who need to be screened by security officers. As in SSG,
the screener commits to randomized screening strategy, while the attacker observes and best responds
to it. However, a TSG has some unique features:

• Time windows: Screenees don’t arrive all at the same time, therefore, the game is divided into
different time windows to withhold screening temporal dynamics.
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• Incoming Passenger Categories: Incoming passenger are allocated into different categories based
on common characteristics (e.g. TSA risk level1). Nc is the total number of screenees in each
class c and Nw

c is the total number of screenees in each class c arriving in time window w.

• Attacker actions: A strategy for the attacker is the selection of a time window, a screenee category
and an attack method (e.g., gun) to pose for the screening checkpoint.

• Attacker types: Attacker has implicit features which he can’t choose. Therefore, the choice of
screenee category is constrained by the attacker’s type. The attacker is aware of his type, however
the defender isn’t.

• Resource types: Defender has a set of resources to deploy during screening such as x-ray, walk
through metal detector, among others. Lwr is the maximum number of screenees to be screened
in time window w.

• Team types: Combination of resources used during screening are referred to as a different screening
team type t. For example, a screening team can be exclusively a x-ray detector (e.g., type t1) or
a combination of a x-ray detector with a walk through metal detector (e.g., type t2).

• Team type effectiveness: Each team has a certain effectiveness against different attack methods,
E
t
m.

A pure strategy P for the defender is the allocation of every incoming passenger to a team type
while meeting the resource type restrictions for each time window. Pwc,t denotes the number of screenees
in c selected to be screened by team type t, during time window w. The expected number of incoming
passengers to be screened by team type t in time window w is given by nwc,t (marginal strategy) and
can be computed as nwc,t �<qPPwc,t, for a mixed strategy qP . The utilities for the screenee and for the
attacker depend on his type and the chosen screenee category. Specifically, given a certain adversary
type θ and his attacking options, the utility for the screener (Equation 5.4) and for the attacker type θ
(Equation 5.5) can be computed as follow:

Us � x
w
c,mU

d
s,c� �1�xwc,m�Uus,c (5.4)

Uθ � x
w
c,mU

d
θ,c� �1�xwc,m�Uuθ,c (5.5)

where xwc,m is the probability of spotting an attacker type θ in category c with attack method m
in time window w. Generally, TSGs are regarded as zero-sum games.

Interesting publications in the domain of TSG were explored by Brown et al. [15] and McCarthy
et al. [55]. However, TSG do not constitute the focus of this research as the main goal is to define
security strategies to patrol publicly accessible areas of an airport, rather than screening for threats.

Solution concepts
Solutions for this game are based on the concept of Stackelberg Equilibrium, which can be of

two types: Strong Stackelberg Equilibrium and Weak Stackelberg Equilibrium. A Strong Stackelberg
Equilibrium assumes the attacker breaks tie in favour of the defender. In other words, in case of multiple
targets with the same utility, the attacker chooses the one which is best for the defender. On the other
hand, in a Weak Stackelberg Equilibrium, the attacker does not breaks tie in favour of the defender,
instead it selects a strategy that minimizes the defender’s outcome.

Most familiar solution principles such as Strong Stackelberg Equilibrium, Minimax , Maximin
and Nash Equilibrium are commonly used along with a Double Oracle structure to successfully resolve
games with large action space. A Double Oracle is an iterative algorithm introduced by McMahan et al.
[57] and ensures convergence to an equilibrium solution in Stackelberg two-player games. Briefly, in each
recurrence a Nash Equilibrium is estimated for a restricted game where each player only has a limited
number of pure strategies available to play. After the restricted game is solved, the algorithm computes
1United States of America Transportation Security Administration (TSA) assigns a risk level for each passenger based
on the upcoming flight and on historical information.
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the best response strategy and determines whether each player’s best solution is already part of the
restricted game. The algorithm ceases when the resulting best response strategy is already included in
the restricted game; otherwise, the best response method is added to the restricted game.

More recently, Wang et al. [86] studied equilibrium refinement to find solution principles with no
associated cost when the attacker deviates from the expected (rational) behaviour. In this paper, the
authors employed a framework with scheduling constraints where defender resources are intelligently
assigned to protect an optimal outcome against a rational attacker while covering at the same time
other targets to ensure good result when facing a bounded rational adversary.

Most of these solution methods all fight against a common challenge in large security games:
computational scalability. The first approach to consider this problem in SSG was introduced by
Paruchuri et al. [67] which developed DOBSS, an algorithm to find a scalable solution using a Mixed
Integer Linear programming. Then, Kiekintveld el al. [47] introduced ORIGAMI, an algorithm that
can find a solution without scheduling constraints in polynomial time. One year later, Jain et al. [34]
considered arbitrary schedule constraints, using a branch and price approach to build the defender’s
optimal response. Soon after, ERASER developed by Ordonez et al. [65] included scheduling constraints
and compacted the defender’s strategy space. The latter technique improved the current state-of-the-
art in terms of scalability solutions. In the same year, Yang et al. [98] employed a cutting-plane
approach which outperformed the branch and price results. Recently, Sinha et al. [78] created novel
approximation techniques which can scale-up to large game settings with multiple features in reasonable
computational time.

Real-world applications
Research on Stackelberg Security Games have been deployed in many real-world applications.

In fact, the first application was introduced by Pita et al. and is known as ARMOR, deployed at Los
Angeles International Airport [68]. ARMOR is a game-theoretic approach which includes scheduling
constraints and computes optimal road security checkpoints and terminal canine patrol schedules. Due
to the success of ARMOR, IRIS was introduced by Tsai et al. to allocate Federal Air Marshals to
international flights [81]. While these two models have only considered one security activity, GUARDS
builds on the latter approaches, but adds multiple security activities and multiple threats to come up
with an intelligent security strategy given limited security resources. GUARDS was developed by Pita
et al. and is, currently, used to secure more than four hundred airports in United States of America
[70]. The success of game-theoretic approaches in the aviation industry led to its application in other
domains, namely, in coastal guard and train fare inspection. PROTECT was deployed in the ports
of Boston to schedule patrols for United States Coastal Guards. It reasons about adversary bounded
rationality, modelling adversary behaviour with Quantal Response model [76]. TRUSTS was tested for
train fare inspections in collaboration with Los Angeles Sheriffs Department [103]. Basically, TRUSTS
identifies optimal patrol schedules, including temporal and spatial constraints, to forestall fare evasion
while considering a huge number of potential attackers.

Stackelberg Security Games have emerged as one relevant research domain in multi-agent sys-
tems. Consequently, some assumptions mentioned above were improved in recent studies. An example
was the initial assumption of adversary perfect rationality which was modified to include results from
cognitive sciences where it was demonstrated that humans are bounded rational individuals. In Section
5.2.1 and 5.2.2, one can follow this improvement process in security game models by relaxing traditional
assumptions and including more real-life elements. Before arriving to those Sections, it is important to
include a few more variations on security games. The upcoming Subsections focus on that topic.

5.1.2. Network Security Games
Network Security Games are a branch of security games which include sophisticated scheduling con-
straints. Different networks can be represented covering transportation networks, computer systems,
abstract networks, among others. The fundamental element in these games is that agents’ strategies
are constrained by the network. Modelling security games in graphs is an efficient and intuitive way to
discretize the continuous space and solve these games. Two possible architectures coexist within this
class of games. In the first one, the game is played on a graph G�V,E� where V represents the number
of nodes and E the number of edges (Figure 5.1). The set of targets coincide with some subset of nodes.
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This architecture resemble a dynamic game where agents move freely along the edges of the graph and
the path followed by each agent represent its own strategy.

Figure 5.1: Representation of a spatial graph based
game G�V,E�
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Figure 5.2: Representation of a time-unrolled graph
G�l, t�

Figure 5.2 represents an alternative structure where both time and space are discretized. A pair
(l,t) represents a location l at time t. A patrol strategy is a vector consisting of defender’s positions at
each time. This approach captures the spatial evolution over time, i.e., correlates a position at time t
to another possible one at time t+1. Network security games gives rise to scalability issues since the
combination of all possible paths for both agents, can grow exponentially with the size of the network.
Different subgroups differing on how agents are constrained by the network architecture, are identified
on the literature. Below two pertinent subclasses are presented.

Patrol Planning Games
Patrol Planning Games are a subtype of Network Security Games where the defender intends

to maximize the probability of covering a set of target nodes (patrol path), whereas the attacker aims
to maximize the probability of attacking a target not protected by the defender when the attack is
deployed. Usually, it is assumed that the attacker cannot break away in the middle of an attack.

Xu et al. uses a time-unrolled graph to protect weighted moving targets [93]. In this setting, the
pair (l,t) slightly differs due to moving targets, namely, (l,t) corresponds to a target l and time t. This
paper developed a novel algorithm to compute an optimal Minimax strategy which can scale-up to large
games in a spatio-temporal domain. In particular, the algorithm considers distinctive features, such as
defender’s maximum speed, protection radius, patrol paths crossing, overlapping, non-overlapping.

Patrol Planning Games have been employed to augment patrol schedules in different security
domains. Zhang et al. [106] employed a patrolling game to optimize patrols in chemical industrial
factories, Klima et al. [50] learned agent’s behaviour to improve patrolling assignments, Basilico et
al. [7] employed a game theoretic approach for optimizing security patrols with the help of an alarm
system, Shieh et al. [76] used a patrolling game to optimize security patrols for safeguarding ferries in
Boston Port and Vorobeychik et al. [85] studied this type of game to protect important infrastructures
such as airports.

Green Security Games
Green Security Games (GSG) are motivated by wildlife protection. Nowadays, in Earth’s fauna

and flora, many species are in danger of extinction such as tigers and rhinos due to illegal poachers.
To minimize this issue, environmental organizations allocate trained rangers to patrol natural parks to,
either, catch the poachers themselves or remove the animal traps they place.

Green Security Games show promising results in modelling human behaviour compared to all
other class of games. In particular, large amounts of adversary data are found, gathered by patrolling
rangers. This information combined with other features such as animal density is of utmost importance
when developing models to learn adversarial behaviour and prevent illegal poaching from succeeding.
These models aim to explicitly model attacker’s behaviour and some might fall into the problem of being
too restrictive. Recent deployments of machine learning techniques have achieved compelling results in
learning attacker’s behaviour based on available data.
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As illustrated above, selecting optimal patrol routes is particularly acute in GSG since only a
limited number of defensive resources (patrol rangers) are available for a vast area in need of protection.
Usually, GSG assume a stationary attacker and dynamic defender moving across the park. The defender
space of action consists of a sequence of consecutive locations covering a finite number of targets, whereas
the attacker strategy is the selection of a certain location (node) to attack. Here, the distance between
targets is taken into consideration and the defender can only cover a certain distance in a patrolling
path. Alternatively, for problems where time-unrolled graph is employed, the defender patrol route
refers to a consecutive sequence of location and time (multiple pairs (l,t)), while the attacker strategy
corresponds to a certain location l to attack, at time t. Utilities for each target depend on domain
elements such as animal density, terrain slope, distance to villages/roads/rivers, among others.

Many research have already been done in this green domain [1, 26, 27, 59, 60, 95, 99] However,
GSG is an on-going research field. Major shortcomings in GSG, resulting from the complexity to map
real-world settings to the available theoretical models, are summarized below:

• Uncertainty in both players’ payoffs due to uncertainty in parameters such as animal density,
which influence the value of the payoffs and are hard to precisely estimate.

• Static "learnable" models used to grasp the necessary parameters to model repeated interactions
between both agents (attacker and defender) do not mirror real-world interactions.

• Reliable results only when gathered data is a good representation of how agents behaved in the
past (and how will they behave in the future). Those predictions are remarkably hard to achieve
in this domain, thus difficult to precise whether a model is accurate or not.

• Biased data (in a spatial aspect) due to operational constraints where patrollers only cover ac-
cessible areas or areas close to their base camps. This can lead to data sampling which do not
express the space of the problem evenly.

5.1.3. Stochastic/Markov Games
In its common representation, a Stochastic Game is also called a Markov Game [66]. These type of
games build on two famous decision theory models: Markov Decision Processes (MDP) and Partially
Observable Markov Decision Processes (POMDP) [6, 33]. However, Stochastic Games broaden these
theories to include reasoning in multi-agent systems since, traditionally, it was assumed that the agent
environment was fixed and did not include adaptive agents.

Formally, an MDP is defined by space state S, a set of actions A, a transition function T and a
reward function R, which together constitute a tuple (S,A,T,R). The agent’s behaviour is described by
a policy which is a mapping from states to actions [84]. The goal is to find a policy which maximizes
the expected sum of discounted rewards over a (in)finite space. A decreasing temporal discount factor
is included in the expected reward function and rules the impact of future discounted rewards in the
optimal decision ( Equation 5.6):

E� �

=
j�0

γ
j
rt�j� (5.6)

where rt�j is the expected reward obtained j steps further in the future and γ is the discount
factor.

Likewise, a POMDP model is identical but the agent is not fully aware about the whole envi-
ronment. For such problem, the agent must rely on limited observations and maintain beliefs over the
state space. Therefore, a POMDP model extends the MDP tuple to include an observation space Ω
and observation probabilities O, forming the tuple (S,A,T,R,Ω,O). In this case, the solution policy lean
on choosing an action with regard to the current state or belief state of the agent.

These models have many applications in security games ([28, 35, 85]) since they explore the case
where agents have to make decisions in stochastic environments while not knowing the payoffs they will
receive for their actions. Therefore, they have to take random actions to discover the possible set of
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actions which may guide them to the desired outcome. In fact, Stochastic Games can be a generalization
of repeated games where depending on how the agents play the present game, they might probabilistic
transition to a different game. A graphical way to interpret these games is presented in Figure 5.3.

Attacker
Action-1 Action-2

Def. Action-1
Action-2

Attacker
Action-1 Action-2 Action-3

Def. Action-1
Action-2

Attacker
Action-1 Action-2

Def.
Action-1
Action-2
Action-3

Figure 5.3: Representation of a Stochastic Game. Note: Def. stands for Defender

5.1.4. Cybersecurity Games
Cyber threats such as intrusions and security breaches are huge temptations for attackers who aim to
harm organization’s virtual assets. Once more, limited security resources are available against mul-
tiple attacker options, reinforcing the need to optimize defender strategy in this domain. Two main
subcategories coexist in cybersecurity games: Cyber Deception and Cyber Threat Screening.

In Cyber Deception Games, an attacker spends most of his time gathering all the important
information he needs to perform the attack. On the other hand, a defender is only aware about the true
state of the network and does not have complete information (i.e. does not know whether or not the
attacker has gathered the sufficient information to be able to succeed in his attack). As a consequence,
the defender deploys decoys in the network (i.e. honeypots) to deceive attackers from attacking real
targets. Nonetheless, attackers aims try to avoid these decoys by communicating with the network. As
such, the defender strategy increases the amount of time an attacker needs to gather all the necessary
information (when possible) and also the likelihood of deploying an attack on a real target. Agmon et
al. studies this type of cybersecurity games [58].

Part of Threat Screening Games, Cyber Threat Screening focus on the problem of attackers
avoiding a set of security alerts placed by the defender. The later observation has shifted the focus to
strategic placement of security alerts, rather than placing them abundantly. Typically, the defender
has to prioritize and set alerts on nodes in the network. On the other hand, an attacker aims to learn
the defender strategic alert placement to launch a profitable attack with a low probability of being
compromised. Aaron et al. focus on both of the aforementioned types of cybersecurity games [74].

5.2. Challenges within Security Games
Subsection 5.2.1 and 5.2.2 focus on modelling the attacker explicitly whereas Subsection 5.2.3 worked
on learning the adversarial behaviour. A common challenge to the next Subsections is the capability of
proposed models to scale up to highly complex and large games instances. In other words, it is desir-
able that models are computationally efficient (convert NP-hard2 optimization problems into problems

2NP-hard problems are problems for which there is no known polynomial algorithm, so that the time to find a solution
grows exponentially with problem size.
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solvable in polynomial time3). Since this is a broad challenge over security games, it will be addressed
in the following Subsections.

5.2.1. Bounded Rationality
Classical game-theoretic solutions have relied on the assumption that the attacker is a perfect rational
player who is driven by reward maximization. Instead, research on human decision-making and cognitive
behaviour showed that this assumption is not appropriate to model humans and may lead to weaknesses
in the defender security strategy. Indeed, humans are bounded rational actors. The idea around bounded
rationality is that cognitive decision-making capacity of humans cannot be fully rational due to a number
of limitations people face. More specifically, inability to solve complex problems, time required to make
decisions (sometimes it is not possible to weigh all important factors), brain capacity to process every
piece of information and many other cognitive constraints. This way, models taking into consideration
bounded rational adversaries are more robust than those assuming human perfect rationality, when
modelling real-world security events. Nonetheless, a common issue is the lack of available data to build
accurate models of human behaviour in some domains.

The first two well-founded theories on human behaviour modelling were Prospect Theory (PT)
and Quantal Response Equilibrium (QRE). Prospect theory is a doctrine from cognitive sciences which
describes human decision making between probabilistic options that involve risk, when the probabilities
of outcomes are unknown. It states that people value gains and losses differently, and make decisions
based on anticipated gains instead of perceived losses. The general idea is that if a human is faced
with two alternatives, both equal, where the first is presented as potential gains and the second as
possible losses, the former alternative will be chosen. On the other hand, QRE is a solution concept
in Game-Theory which defends that humans act stochastically. In other words, agents are assumed
to make mistakes in choosing which pure strategy to play. The probability of choosing a non-optimal
strategy growths as the cost of that error decreases, i.e., very costly errors are improbable.

Closely linked with the latter concept is the well known Quantal Response (QR) behavioural
model of human decision-making [56]. In this model, it is assumed that the probability of an attacker
choosing a target i to attack (qi(x)) is given by:

qi�x�� fi�xi�
<i fi�xi� (5.7)

where fi�xi� ' 0,¾xi " �0,1� is a positive and monotonically decreasing function of xi (coverage
probability of target i). This general form depends on the model chosen. In the case of a QR model,
fi�xi� � eλUai �xi�. Here Uai �xi� represents the attacker’s expected utility when attacking target i and
is computed as indicated in Section 5.1.1. The parameter λ denotes the noise in the attacker’s best-
response function and should be estimated as an input for the model. This model has received great
feedback and support, in recent literature on multi-agent systems, due to good ability to model human
behaviour [91].

The goal of the this methodology is to maximize the defender’s expect utility against humans
who are not perfectly rational, i.e.: maximize the following expression:

n

=
i�1
qi�x�Udi �xi�� n

=
i�1

fi�xi�
<i fi�xi�U

d
i �xi� (5.8)

Given Equation 5.8, it becomes clear that finding a solution for this problem can be computa-
tionally heavy since it is a non-linear and non-convex expression.

Alternatively, Wright et al. presented three other important human behavioural models: Level-
k, Cognitive Hierarchy and Quantal Level-k [91]. Level-k is based on the belief that humans can only
accomplish a finite number of iterated strategic reasoning. Basically, a level-k agent is able to perform k
iterations of reasoning and best responds to an action performed by a Level-(k-1) agent. Nevertheless,
3The absolute worst-case performance of the algorithm is bounded by a polynomial
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there is also a probability that an agent will not act according to the best strategy, i.e. will make an
error, εk.

Cognitive Hierarchy also includes the idea of Level-k agents. On the other hand, Cognitive
Hierarchy differs from the prior model in the following ways: i) Agents will always play best strategy
according to their beliefs (no error is included); ii) Agents best respond to all k-levels below, rather
than only one level below. Camerer et al. designed a Poisson-Cognitive Hierarchy model where the
levels of agents follow a Poisson distribution [16].

Finally, Quantal Level-k combines ideas from both Quantal Response and Level-k models. Each
agent believes the rest of the population is in the lower level type (Level-k model) and each one acts
stochastically (Quantal Response model). It differs from Level-k model since agents understand that
every lower-level agent have a certain error probability of not performing the best action, whereas in
Level-k model, higher level agents believe that all lower level agents will always play an optimal action.
Two years later, Wright et al. created a Bayesian framework which provides useful insights about the
sensitivity of these models to its own corresponding parameters [92].

In addressing humans’ bounded rationality two distinct techniques have arose:

1. Inclusion of human behaviour models into algorithms for computing an optimal defender strategy.

2. Adoption of robust optimization techniques to escape from adversary modelling.

Inclusion of human behaviour models
A notable paper which focused on the first technique was introduced by Yang et al. [96]. This

paper builds on both the concepts of PT and QRE to come up with two algorithms to find an optimal
strategy for the defender against a bounded rational human opponent. While Best Response to Prospect
Theory (BRPT ) is a mixed integer programming to compute the defender optimal strategy against an
attacker following a prospect theory model, Best Response to Quantal Response (BRQR) is a heuristic
to find a solution for the optimal defender strategy against a QR attacker4. Additionally, this study
explored different payoff structures and described a method to define payoff rewards for games with
non-perfect rational adversaries. However, major shortcomings in the latter approach are associated
with a slow runtime.

Later, Yang et al. tried to scale-up to large games settings and included resource assignment
constraints in SSG, against a QR attacker [97]. To achieve this compromise, the authors developed
two different algorithms, namely, GOSAQ and PASAQ. The former uses binary search to repeatedly
estimate a global solution (improving scale-up difficulties), instead of solving a non-convex and non-
linear optimization problem. GOSAQ computes an ε� optimal defender strategy. PASAQ achieved
good solution quality by offering arbitrarily near-optimal solutions with an efficient piece-wise linear
approximation.

Nguyen et al. came up with an improved QR-model [61]. Rather than assuming that human
stochastic actions rely upon expected utilities, this innovative model combine a subjective function into
the QR-model, known as Subjective Utility Quantal Response (SUQR). The main idea in including this
subjective function is that each person has its own assessment of the available alternatives when making
a decision. As a result, the following function was proposed to compute the utility of an attacker when
choosing target i to attack:

U
a
i �w1xi�w2R

a
i �w3P

a
i (5.9)

where Rai and P ai are the attacker’s reward/penalty when attacking target i, xi is the probability
that target i will be covered by the defender (defender mixed-strategy) and (w1,w2,w3) are weights to
be estimated .

Different variations are possible to formulate a subjective function. One alternative was proposed
by Nguyen et al. [61]:
4Attacker whose behaviour modelling can be expressed using a QR model
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U
a
i �w1xi�w2R

a
i �w3P

a
i �w4R

d
i �w5P

d
i (5.10)

where Rdi and P di are the defender’s reward/penalty when target i is attacked.
Thereafter, the respective subjective function was incorporated into Equation 5.7, where Uai was

replaced by, for example, Equation 5.9 or 5.10. The resulting maximizing problem is presented below
(for Uai given by Equation 5.9).

max
x

T

=
i�1

e
λ�w1xi�w2R
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s.t.
T

=
i�1
xi &K,0& xt & 1 (5.12)

Equation 5.12 only refers refers to resource constraints.
In this algorithm, the authors set λ to 1 and employed a Maximum Likelihood Estimator to

estimate the parameters (w1,w2,w3) based on data from human experiments ([71, 96]). The gleaming
aspect of this methodology is in its simple linear combination of weighted features which achieved better
outcomes compared to more complex models.

While Nguyen et al. [61] only deemed homogeneous adversaries, Yang et al. [99] extended the
SUQR model to incorporate heterogeneity in the attacker behaviour. Specifically, the authors developed
a Bayesian SUQR model where the parameters (w1,w2,w3) are assumed to follow a probabilistic normal
distribution to capture this heterogeneity aspect. In other words, different combination of values for
the parameters (w1,w2,w3) are computed for different attacks.

Despite achieving satisfactory results, the previous studies still fail to tackle three critical issues
found on the literature. First, they do not reason about attacker’s adapting future strategy based on
failure/success of past action. Second, they assume that sufficient data is available to construct reliable
models. This observation is critical in security domains where a poor predictive performance of a human
behaviour model might lead to significant losses.

Kar et al. [43] researched on alternatives to minimize these shortcomings. The authors developed
a human behaviour model which reasons about success/failure of past action in future ones; reasons
about the correspondence between unexplored and explored areas of the attack space; includes a dis-
counting element to minimize the short exposure of the attack space and adds a non-linear probability
weighting function.

Firstly, the researchers have conducted experiments with humans to gather data to test the
proposed model afterwards. Attacker’s rewards were obtained in an innovative way : Rai � int�φi� ζ�

Di
maxj�Dj�

�. In particular, animal density (φi) and distance to target i from attacker’s initial location
(Di) were contemplated. Here, ζ determines the emphasis of the distance element. Once player’s
rewards were defined, the authors proposed an enhanced subject utility function illustrated in Equation
5.13. This Equation may be an inverse S-shaped or S-shape function, depending on the sign of γ.

f�p�� δp
γ

δpγ � �1� δp�γ (5.13)

Then, they investigate different variations of the attacker’s utility function. Two examples are
given below.

U
a
i �w1f�xi��w2R

a
i �w3P

a
i (5.14)

U
a
i �w1f�xi��w2φi�w3P

a
i �w4Di (5.15)

Here, f�xi� referring to coverage probability xi is calculated as in Equation 5.13. Thus, 6 different
parameters need to be learned �γ,δ,w1,w2,w3,w4�. This paper introduced a cutting edge methodology,
outperforming all other algorithms in repeated SSGs.
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Robust optimization
In traditional robust approaches, the defender strategy is prepared against worst-case diversions

from the attacker. Pita et al. designed an algorithm, MATCH, assuming the defender loss in a potential
attacker deviation is bounded by the magnitude of that deviation [71]. Thereupon, it avoids that small
attacker deviations may lead to huge losses in the defender reward. This paper achieved interesting
results since it surpasses the outcome with BRQR, even when the QR model had loads of data to best
tune its core parameters.

Haskell et al. applied a robust optimization technique in the field of fish protection to improve
the SUQR human behavioural model. This approach was known as robust SUQR and merges robust
optimization with data-driven learning to tackle situations where there is not enough data available
to accurately estimate the probabilistic distribution followed by the parameters (w1,w2,w3). In gen-
eral, it estimates the worst-case expected reward over previously evaluated attacker SUQR models and
computes the optimal course of action for the defender when facing the attacker type who minimizes
defender’s utility the most.

Summary
Table 5.3 summarize the behavioural models found on the literature. This table gives an overview

on how behaviour models have evolved over time and which early models have influenced the most recent
ones. As represented, SUQR and SHARP are the most recent human behaviour models whose main
concepts may represent interesting alternatives to model a bounded rational attacker.

Overall, it can be stated that, when modelling humans, it is critical to include bounded rationality
to improve efficiency and accuracy of current models. The domain of cognitive modelling is extensive and
other models such as Bayesian Theory of Mind also exist in the literature. The work presented in this
Subsection either require strong model assumptions or are too conservative (e.g., the robust optimization
approach). In particular, previous studies have focused on trying to learn model parameters to best fit
the available data. However, some have failed to arrive at a robust solution due to restrict assumptions
regarding attackers’ modelling behaviour. Nevertheless, SUQR and SHARP model still constitute the
current state-of-the-art in human behaviour modelling.
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Publication Method Influenced by Remarks

[41] Prospect Theory (PT) — People choose between probabilistic alternatives that involve risk, when the probabilities
of outcomes are uncertain.

[56] Quantal Response Quantal Response
Equilibrium

Human decision-making is stochastic. Probability that an attacker chooses target i to
attack: qi�x�� e

λU
a
i �xi�

<i e
λUai �xi�

.

[91]

Level-k — Agents can only accomplish k rounds of iterated reasoning. It might happen that level-k
agent does not play best respond to level-(k-1) agent (error probability).

Cognitive Hierarchy Level-k Similar to Level-k. Main differences: 1) Agent always plays optimal strategy; 2)Agent best
responds to all k-levels below.

Quantal Level-k Quantal Response;
Level-k

Level-k agent acts stochastically and believes lower level agent action can have an error
probability.

[61] Subjective Utility
Quantal Response Quantal Response

Includes a subjective function into the QR-model. The main idea is that people make their
own assessment over the available alternatives when making a decision. Thus, Uai rather
than assuming an expected value (as in QR-model), it will vary depending on people’s
assessment.

[43] SHARP Subjective Utility
Quantal Response

Augment SUQR with a better methodology on people’s actual weighting of probability.
Namely, it included an (inverse) S-shape probability weighting function to include that
people weigh probabilities of events in a non-linear fashion.

Table 5.3: Review of bounded rationality models
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5.2.2. Uncertainty
In real-world applications humans do not always act in an expected optimal way. Indeed, human be-
haviour is constrained by people’s beliefs, experiences, limited observation/information and unexpected
events. Thereupon, multiple types of uncertainty arise due to human dynamic interactions and strategic
actions. SSG games have been extensively applied as a framework for infrastructure security. As set
out above, different types of uncertainties were found on the literature. Those include:

• Attacker and/or defender payoff uncertainty.

• Uncertainty related to adversary rationality resulting in uncertainty in the behaviour of the at-
tacker agents.

• Uncertainty in defender’s strategy due to:

1. Execution uncertainty (unexpected interruptions/disruptions) which affect agents’ ability to
follow the planned schedule/strategy afterwards.

2. Uncertainty in the attacker’s observation of defender’s strategy (observation error).

• Spatial uncertainty (unknown precise location where the attack is occurring).

It is important to mention that uncertainty related with attacker rationality and defender’s strat-
egy (caused by both execution uncertainty and observation errors) are main causes for payoff uncertainty.
Therefore, despite being in separate bullet points these elements are closely linked. Consequently, most
studies concentrate on the first three bullet points.

Payoff uncertainty
Payoff uncertainty was addressed in the literature by both Conitzer et al. [20] and Paruchuri

et al. [67]. Conitzer et al. did a pioneer research in computing optimal strategies for both players
normal-form Stackelberg games and in Bayesian games. In the latter setting, payoff uncertainty was
included since agents might not possess all the tools to make an informed decision: i) might not known
the desire strategy since it may rely on a circumstance which is yet to happen; and/or ii) might not
know the strategy of the opponent.

In similar style, Paruchuri et al. stated that uncertainty about the type of adversary a defender
may face lead to uncertainty in the attacker’s reward structure. In other words, the authors focused on
uncertainty in discrete follower types and modelled it by computing different reward structures for each
attacker type. However, recent findings affirmed that building only upon payoff uncertainty can cause
erroneous and unsatisfying security performances since the attacker’s strategy may deviate thanks to
additional uncertainty types which were not considered.

While previous studies relied on expert assessment and available data to define a small and
finite number of possible attacker types with distinct rewards as means to tackle payoff uncertainty,
Kiekintveld et al. innovated by representing defender uncertainty about attacker’s payoff values with
continuous Uniform or Gaussian distributions [48]. This approach endow more accurate models since,
for example, expert judgment in past papers struggled with proper characterization on how adversaries
weight different factors (e.g., economic consequences, media disclosure and number of casualties) when
selecting a target to attack.

Although continuous payoff distributions obtained interesting results, they ran into scalable
problems for large security game instances. To address this challenge, Kiekintveld et al. proposed an
alternative method predicated on using intervals to model uncertainty, rather than adopting continuous
distributions [49]. The approach taken arise from robust optimization and presuppose the defender only
knows that the attacker reward lies within a certain interval of values. Assuming the defender’s payoffs
are known, the defender will search for an optimal strategy against the worst possible outcome for any
payoff value within that interval (Maximin-based solution). This methodology had some improvements
over prior methods. First, it is simpler for domain specialists to define the interval ranges. Second, it
improves computational solutions (polynomial-time) in contrast with NP-hard problems.
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Uncertainty in human rationality
The aforementioned papers have all considered perfect rational opponents. One of the first

articles to deviate from the latter underlying assumption was proposed by Pita et al. [69]. The authors
studied the topics of uncertainty related to adversary rationality and limited observation of the defender
strategy which may lead to non-optimal solution strategies. Payoff uncertainty was introduced as
distinct reward structures, assuming a Bayesian a priori distribution. In this model, anchoring theory
assuming that humans have anchoring biases5 was combined with robust approaches to overcome human
uncertain actions.

More specifically, three different algorithms were introduced. First, BRASS considered the case
of a bounded rational adversary who selects an ε�optimal strategy�ε as a model input); GUARD builds
on anchoring biases and focus on the case where a perfect rational attacker has limited observation (α);
and COBRA combined the previous approaches. However, this Moreover, one major drawback in the
latter algorithms is related to the fact that it has a hard cutoff point. In order words, if the attacker
selects a strategy that deviates beyond an ε� optimal strategy the result might be really bad for the
defender.

Jiang et al. suggested an alternative approach to cope with behaviour modelling [39]. The main
goal was to generalize the QR model, by providing reward guarantees against attackers who behave
according to a QR model, but where the QR function is not known. Basically, it considers that targets
with greater expected reward are more likely to be attacked (monotonic reasoning). However, this
methodology cannot scale-up to large security problems.

Building off the latter foundation, Brown et al. proposed an approach to deal with uncertainty in
the attacker’s behaviour [14]. In this work, multiple adversary types were modelled. The paper describes
a robustMaximin-based algorithm assuming a SUQR model for the attacker rationality without a known
distribution over types. However this technique does not consider coexistence of different attacker types
and depend upon accurate prediction of behaviour for every opponent type.

All in all, prior research fit into one the following alternatives:

1. Assumption of multiple attackers types with known distribution over types. Each attacker type
follows a certain behavioural model.

2. Assumption of multiple attacker types with perfectly known behavioural models. However, it
is unknown the attacker’s distribution over types. Solution based on finding a strategy for the
defender against the worst attacker type.

However, these approaches suffered from the following shortcomings:

• Huge volumes of data are required to accurately estimate both the distribution over attacker types
and the behavioural model for each attacker type.

• Finding a solution may end up in scalability problems.

• Worst-case approach is regarded as too restrictive and conservative.

Inspired by Pita’s work and aiming to address these limitations, Nguyen et al. [59] and Yadav et
al. [95] studied solutions to incorporate attacker’s bounded rationality with payoff uncertainty in a Green
Security domain. The authors used a SUQR model to reproduce attacker’s bounded rationality and used
intervals to model payoff uncertainty. Apart from handling payoff uncertainty, given adversary bounded
rationality, these studies also included an algorithm to address payoff uncertainty in the presence of
a perfectly rational opponent. The latter extension results from the fact that sometimes it may be
extremely difficult to learn/define all parameters needed for those behavioural models.

Also focused on behavioural uncertainty shortcomings, Nguyen et al. studied only one behaviour
model (QR model) to represent decision making process for all attackers in the population [64, 64].
5An anchoring bias is a cognitive assumption that humans, given no prior information about a discrete set of events, will
select an uniform distribution for the occurrence of each case.
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Thanks to behavioural uncertainty, an uncertainty interval was used to estimate lower and upper bounds
of the quantal response function. Once again, the study aimed to maximize the defender’s utilities
against the worst case scenario.

Execution uncertainty and observation error
Other type of uncertainty common in real world scenarios is execution uncertainty and observa-

tion errors. First, in time-critical settings disruptions occur due to unexpected events or human errors
which may impact planned strategies and, consequently, security procedures. Alternatively, the attacker
observations of defender’s actions may be erroneous. For instance, sporadically, the attacker might miss
the fact that a defender is patrolling a target he intends to attack. A motivation example comes from
a real-world application which developed schedules for the Los Angeles sheriff’s department (TRUSTS
system). In that case, a number of pre-generated patrolling schedules were disrupted due to various
reasons: emergencies and arrests. Those caused the security officers to miss the rest of their patrolling
schedule, which made those schedules useless for the officers. Ergo, it is crucial to introduce these two
noisy aspects in current game-theoretic models.

Yin et al. argued that nature chooses if the attacker observes the defender’s mixed strategy [101].
Given this, the defender without prior knowledge of nature’s decision, picks a distribution over her set of
pure strategies. On the other hand, the attacker chooses a strategy over his set of pure strategies after
observing the defender mixed strategy, if nature has decided so. However, the framework presented
by Yin et al. [101] requires the numerical input on the probability that the attacker observes the
defender distribution. The latter remark leaves questions such as: “Is there a way to model uncertainty
in attacker’s observation capability without explicitly formulating it? What is the consequence of
controlling the previous probability?” open for future research.

Furthermore, Jiang et al. focused on scenarios where time is a critical factor in determining the
success of a security patrol, i.e., in situations where security officers have to be at the right location,
at the right time [40]. This methodology adopted a MDP to model defender’s execution uncertainty in
a Bayesian Stackelberg game while containing, simultaneously, contingency plans for those situations.
Previous work had never considered contingency plans for scenarios where disruptions might occur. In
each state, a MDP represents a tuple of current location and discretized time of the security team.
This model was tested for fare inspection at Los Angeles Metro Rail system and achieved better results
compared to existing scheduling systems (such as TRUSTS).

Delle et al. extended the preliminary version of Jiang et al. [23] and demonstrated how to
compute defender optimal mixed strategy for the model described. Moreover, the model was also
evaluated and validated for large game-instances. Future work should focus in including potential
patrol diversions if a different action is believed to lead to a better security performance.

Recently, Guo et al. [29] analysed uncertainty in defender’s strategy from a different perspective.
In this paper the attacker is uncertain about the number of defender resources (e.g. due to undercover
agents) and the defender is allowed to strategically reveal the number of resources. In particular, these
approach is a novelty since, in traditional SSGs, the defender first commits to a mixed strategy, and
then the attacker observes her strategy and best responds to it. This approach led to the study of intel-
ligent strategic disclosure (strategic information disclosure with public commitment) versus Stackelberg
commitment in security domains. The number of divulged resources is modelled as a signal6 which is
sent by a defender with sufficient resources. By doing so, the defender will create a posterior belief on
the attacker about her type. Experimental results concluded that it’s vital to find a balance between
secrecy and commitment to boost security performance to its best.

Given the amount of literature focusing exclusively on either execution uncertainty or attacker’s
observation error, Yin et al. designed a bi-level programming model which given maximum execution
(α) and observation noise (β), optimizes for the best defender utility against the worst case scenario
[102]. This research can be used as a complement to other types of uncertainty such as payoff and/or
behavioural modelling uncertainty.

One year later, Yin et al. combined his previous work with payoff uncertainty (in both players)
and also with uncertainty over discrete attacker types [100]. One of the main goals of this study

6It’s more probable that the attacker observe the number of revealed resources due to their limited observation.
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was to scale-up Bayesian Stackelberg games whilst providing an algorithm to handle uncertainty. Yin
employed a sample average approximation to tackle execution uncertainty and attacker observation
error. However, this approach faced two main issues. First, solution quality strongly lean on the
number of samples and, second, assuming known distribution of uncertainties might be unfeasible in
real-world security settings.

The Venn diagram in Figure 5.4 gives an overview of state-of-the-art work addressing the topic
of uncertainty in security games.

Uncertainty in behaviour modelling
Payoffs uncertainty
Execution uncertainty and/or Attacker’s observation errors

[20]
[67]
[48]
[49]
[63]

[69]

[69]
[39]
[14]
[60]
[64]

[59]
[95]

[101]
[102]
[51]
[40]
[23]
[29]

[100]
[69]

[63]

Figure 5.4: Uncertainty space in security games

As illustrated in Figure 5.4, only Nguyen et al. combined the three most common types of
uncertainty [62]. Observation uncertainty and execution uncertainty were modelled as in the work of
Yin et al. [102]. When dealing with bounded rationality, this work considers a monotonic adversary
(as in the work of Jiang et al. [40]). Payoff uncertainty was addressed as in the work of Kiekintveld
et al. [49], with payoffs lying within a certain interval. These uncertainties are combined together
into the adversary utility which is a function varying within the range [Uamin�x,i�,Uamax�x,i�], where
U
a
min�x,i�. and Uamax�x,i� depend on the executed defender strategy and on the attacker observation

of the defender strategy. This technique profits from a robust optimization approach to maximize the
defender’s utility against worst case scenarios caused by these uncertainties.

Spatial uncertainty
Usually, spatial uncertainty is related to the defender difficulty in being certain about the precise

location where an attack is happening. These problems are often related with alarm systems that are
not able to identify the attack’s exact location.

Basilico et al. provided one of the first contribution to this domain by designing a model for
patrolling strategies to be joined with signals issued by an alarm system which is uncertain about
the precise location where the attack is happening [7]. One year later, Basilico et al. extended their
previous work and included the possibility of false negatives (attack is happening and the alarm system
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does not issue any signal) [8]. These two studies aim to answer the question on how to best assign
a patrolling strategy without any alarm signal and once an alarm signal is triggered what should be
the best strategy to respond to it. In this model, the environment is represented as a connected graph
G � �V,E� and the uncertain in the alarm system as tuple �S,p�, where S is a set of signals responses
and p the probability that the alarm system sent a signal when a target is being attacked. To augment
this model, false positives should be considered as well as multiple attacker and defender settings.

Summary
Wrapping up, the most discussed uncertainties arising from human dynamic behaviour and

interactions in security games coincide with payoff uncertainty, adversary behaviour uncertainty and
uncertainty in defender’s strategy. A brief overview on the up-to-date models employed to address those
are summarized in Table 5.4.

This Master thesis aims to create a novel methodology which focus mostly on the problem of
payoff uncertainty. Namely, it aims to improve game-theoretic solutions by defining game-theoretic
payoff values based on the outcomes arising from an agent-based model. Here, human behaviour
is modelled in an agent-based model whose agent framework includes different layers of reasoning
to represent the dynamism arising from human dynamic behaviour and interactions. The proposed
methodology aims to improve current game-theoretic formulations by relying on simulated data which
maps the real world rather than on expert assessment which can be prone to errors and human biases.
In this way, justifiable, objective and more robust reward structures are incorporated in security games.
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Uncertainty type Publication Solver Approach

Payoff
uncertainty

[67] Mixed Integer
Linear Programming

Limited number of attacker types were considered with different payoff struc-
tures and normalized so that the maximum and minimum payoff value are 1
and 0, respectively.

[48]

Approximate solution methods
that employ numerical methods,

Monte-Carlo sampling,
and approximate optimization.

Infinite set of attacker types in infinite Bayesian Stackelberg games. Payoff
uncertainty is addressed by modelling each payoff value with a continuous dis-
tribution over possible payoffs. Normal and Gaussian distributions were tested.

[49]
Robust optimization:

Maximize worst-case defender
Utility. (Maximin solution)

Considers different attacker types. Payoff values lie within a certain interval:
pairs of values are used to represent maximum and minimum possible payoffs
for both players.

[63]
Robust optimization:

Minimize worst-case defender loss
(Minimax-Regret solution)

Same as above.

Bounded
rationality

[39] Mixed Integer
Linear Programming

Defender knows that the adversary behaves according to a QR model but does
not know the specific QR function. QR function has to satisfy a monotonic
mathematical condition: Targets with higher expected utility are more likely
to be attacked (Monotonic Attacker).

[14] Mixed Integer
Linear Programming

Assumes multiple attackers types following SUQRmodel (with different weights
for each attacker type). Distribution over different types of the attacker is not
known.

Payoff
uncertainty

&
Bounded
rationality

[59] Mixed Integer
Linear Programming

Payoff Uncertainty: Payoff intervals for both agents. Bounded rationality:
SUQR model for the attacker rationality. Employs the concept of MMR to
find an optimal solution given an uncertainty set.

[64]
[60]

Robust Optimization:
Maximize worst-case defender
Utility. (Maximin solution)

Considers a QR-model to capture attacker behaviour. However, the value of
Fi�xi� in Equation 5.7 is not known and assumed to lie within an uncertainty
interval, with higher and lower limits.

Observation
uncertainty

[101]
[51]

Mixed Integer
Linear Programming

Nature selects randomly whether the defender’s mixed strategy is observable
or not. Then, an equilibrium solution is found for this setting.

Execution
uncertainty

[40]
[23]

Mixed Integer
Linear Programming

MDP to model each individual defender execution of patrols. Defender’s opti-
mal strategy may be non-Markovian because the utilities depend on trajectory
followed.
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Observation uncertainty
&

Execution uncertainty
[102] Mixed Integer

Linear Programming

Maximum execution uncertainty: Given the defender planned strategy, the
executed strategy lies within a certain ranger of values (�xi�γi,xi�γi�. Ob-
servation uncertainty: Given the executed strategy (Θxi) , the defender strategy
observed by the attacker lies within a certain range of values (�Θxi�ηi,Θxi�ηi�)

Observation uncertainty
&

Bounded Rationality
[69] Mixed Integer

Linear Programming

Observation uncertainty: Modelled with an weight (α) on the uniform distri-
bution (see anchoring theory footnote) and the rest, 1�α, on the event they
have actually viewed. α decreases as agent belief more in what they observe.
Bounded Rationality: Attacker can select a strategy which is not optimal, but
is an ε�optimal one. ε as an input for the model.

Observation uncertainty
&

Execution uncertainty
&

Payoff Uncertainty

[100]
Two-stage

mixed-integer
stochastic program

Observation uncertainty and Execution uncertainty: Linear perturbations of
the intended strategy. Two types of execution and observation noise was con-
sidered in the intended strategy: dependent on the defender strategy and in-
dependent of it. They are modelled as random values from some known con-
tinuous distributions. Payoff Uncertainty: random values from some known
distributions.

Observation uncertainty
&

Execution uncertainty
&

Bounded Rationality
&

Payoff Uncertainty

[62] Mixed Integer
Linear Programming

Observation uncertainty and Execution uncertainty: As in [102]. Bounded
Rationality: Similar to [40], with a Monotonic Attacker. Payoff Uncertainty:
As in [49] (only for the attacker). Those are combined into the adversary
utility function. This function varies within a certain range, where the limits
are affected by execution uncertainty, observation uncertainty, for a monotonic
adversary.

Table 5.4: Review of models addressing different types of uncertainty
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5.2.3. Learning in multi-agent systems
Modelling human behaviour has been a research topic over the years. Humans are adaptive agents
with evolving preferences whose actions are affected by biases, cultural preferences and cognitive inter-
actions [83]. Therefore, learning algorithms have an utmost importance in predicting human adaptive
behaviour. These approaches do not model attacker’s behaviour explicitly, instead they aim to learn
agent behaviour through simulating games several times and learning from the outcome of these ex-
periences. The latter is an advantage, when comparing to other models, since not all features have to
be explicitly modelled. As an example, several publications do not model the whole space of strategies
for both agents; rather, they learn those throughout different interactions and experiences along the
repeated games. Therefore, computational efficiency increases as solvers do not have to explore the
complete space of possible strategies. As a result, learning in multi-agent systems within the domain of
security games intends to bridge the existing gap between the theoretical/mathematical modelling and
real world human behaviours.

Traditionally, Haussler et al. introduced a framework for learning, comprising an instance space,
an outcome space, a decision space, a space of hypothesis and a loss function [31]. The space of
hypothesis produces values in the decision space that estimate probabilistic predictions of the real
result. Additionally, a loss function handles the loss when the real result differs from the predictions of
possible outcomes.

Throughout the years different learning techniques were applied to identify optimal strategies
for both agents while reducing as much as possible all types of uncertainties present in security games.
The following paragraphs illustrate different learning approaches proposed in the literature.

Query-based approach
Letchford et al. proposed an initiative to learn optimal Stackbelberg strategies in a two-player

Bayesian game [53]. They tackled the challenge of payoff uncertainty and unknown distribution over
different types of adversaries. The reasoning behind this study is relying on the defender ability to
observe the attacker’s response to different defender strategies (queries) throughout the repeated games
and learn the optimal defender strategy based on best response queries. This approach may need
numerous queries to obtain an optimal defender strategy which is not practical in real-world plots
(e.g., terrorist attack). Additionally, they considered that the defender utility is not a function of the
attacker’s type, when in real-world scenarios defender’s behaviour differ whether dealing with a terrorist
or with a smuggler, for example.

Blum et al. address the topic of uncertainty in adversary payoff, focusing on the shortcomings
of Letchford’s work, but considered only one unknown adversarial type [10]. Blum et al. aimed to
learn accurate values for the payoff matrices by asking a polynomial number of queries. However, these
two studies assumed the following. First, a perfect rational adversary was considered; second, the de-
fender was constantly exposed to the same situation each round; and third, non-existent computational
deficiencies were assumed in the suggested algorithms.

Looking at a different perspective, An et al. discussed the assumption that the attacker possess
prior knowledge regarding defender’s randomized patrolling strategy. In this paper, the attacker was
modelled with limited vision and limited surveillance [3]. Therefore, based on a limited number of
observations, the attacker updates its beliefs throughout the game, using a Dirichlet distribution. A
considerable drawback is due to the fact that the defender has to infer about the number of observations
that the attacker will perform, which may be extremely difficult in real world security settings.

Data-driven approach
Yang et al. shifted his focus to wildlife crime where a framework for incremental learning of

poachers’ behaviour was suggested, as more and more data becomes available [99]. The attacker was
modelled assuming a heterogeneous SUQR-model and assuming known payoffs. This paper combined
different sources of data to learn the multi-variable normal distribution of the three model parameters
w1,w2,w3. Additionally, an adaptive patrol strategy was created to identify an optimal response for
the defender which is updated based on the prevailing result from the learning algorithm. Due to its
potential in Green Security domain, this novel framework was deployed in real-world: Queen Elizabeth
National Park, Uganda.
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Furthermore, Sinha et al. builds on the work of Kearns et al. [46] and Anthony et al. [4], to
propose a model where bounded rational adversary behaviour should be considered as a parameter to
learn - with available data - and then optimized for the learned policy [77]. Considering the learning
foundation of Haussler et al. [31], this study explored two types of response function: Parametric
(considering SUQR model of bounded rationality) and Non-Parametric Lipschitz The models were
applied within the GSG domain using real data from Uganda’s national park. The findings of this
research suggest interesting results for the Non-Parametric Lipschitz approach comparing to the SUQR
bounded rational model.

While the focus of this report is on modelling a strategic terrorist attacker, there is also literature
on other types of opponents. Namely, Zhang et al. designed a game-theoretic model which regards the
attacker as an opportunistic criminal and innovates by learning his behaviour based on real data [105].
Concisely, the authors modelled the attacker’s behaviour as well as the interactions with security de-
fenders as arguments of a Dynamic Bayesian Network and used an Expectation Maximization algorithm
to learn the unknown parameters from the available data. To complement the learning algorithm, the
authors have also developed an online planning mechanism which, periodically, continues to refresh the
opponent behavioural model. Although, the learning model does not illustrate heterogeneity in the
behaviour of both patrol and criminal agents.

Recently, Kar et al. studied the topic of bounded rationality [44]. Kar et al. investigated
how agents develop their belief formation, considering different models of rationality: both perfect and
bounded rationality (Maximin, Proportional, SUQR and Uniform). The authors created a novel belief
formation model which considers four heterogeneous group of agents (mentioned above) and learns
adversary belief formation combining a cluster based approach7 with historical data.

Online-learning approach
A popular concept within the online learning domain is the concept of regret (difference between

the reward of the best hindsight strategy - mixed strategy which achieves the highest payoff - and the
reward anticipated by the online learner algorithm in the online setting). By formulating the game as
a repeated Stackelberg game with adversaries of different types, the regret function is given by:

T

=
t�1

Ud�bat�p*�,p*
�E�
T

=
t�1

Ud�bat�pt�,pt
� (5.16)

where Ud represents the expected utility for the defender, pt represents the coverage probability
vector of the mixed strategy performed at step t and p* stands for the best-in-hindsight strategy.

Marecki et al. explores the trade-off between defender’s exploration and exploitation using Monte
Carlo Tree Search, in a Bayesian Stackelberg game [54] to address uncertainty in adversary payoff.
However these this work assumed the following. First, a perfect rational adversary was considered;
second, the defender was constantly exposed to the same situation each round; and third, non-existent
computational deficiencies were assumed in the suggested algorithms.

A completely different method to tackle uncertainty in attacker’s behaviour was proposed by
Balcan et al., using an online learning approach [5]. Given the regret function illustrated in Equation
5.16, the attacker is able to observe pt and best respond to it by attacking target bat . In this paper, the
authors designed an algorithm which minimizes the total regret as the number of moves go to infinity.
Such algorithm aims to predict attacker’s behaviour, i.e. aims to have full knowledge of the future. The
innovative aspect in Balcan’s work was minimizing the regret against the sequence of adversaries present
in the game instead of the target they have chosen to attack, assuming two different scenarios: full and
partial information. However, the proposed algorithm was designed considering rational adversaries
with full observation capabilities.

Similar online learning framework was pursued by Xu et al., but considering no prior information,
i.e., they have combined both the problem of payoff uncertainty and defender’s unawareness about the
attacker behaviour [94]. Specifically, the authors expressed the problem as a combinatorial adversarial
online learning, where at each instance of the game, the algorithm computes a mixed strategy balancing
7Cluster techniques were applied on experimental data and a separate model was learned for each cluster
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between exploration (i.e., learn best strategy against that attacker) and exploitation (i.e.,maximize the
total future reward over time). With this approach, the algorithm is able to reach a low regret value
when compared with the one of the best strategy on hindsight and to the optimal adaptive one. The
proposed mechanism was tested with most typical attacking models, e.g., Uniform, Stackelberg, Best
Response and Quantal Response, achieving compelling results against them. As such, this work has the
advantage of being more generic compared to previous studies.

Fictitious play
Other noteworthy method for learning Nash equilibrium in normal-form games is known as

fictitious play [13]. This approach assumes agents are playing a stationary strategy, thus it is crucial
to keep track of past actions to formulate a model of the opponent’s set of strategies. Based on the
gathered information, the agent computes a probability distribution for the opponent’s expected action.
Later, Heinrich et al. expanded the aforementioned method to multi-step games (Fictitious Self-Play)
[32]. However, a major flaw is linked to the fact that each agent supposes that its opponent has a fixed
set of strategies, underestimating the inherent dynamic aspect of human behaviour.

Evolutionary Game-Theory
Another learning mechanism extensively studied in the literature is known as replicator dynamics,

a branch of Evolutionary Game-Theory [88]. Inspired by Charles Darwin’s theory of evolution, the main
idea behind this model is to assume that the proportion of agents playing a certain strategy will increase
as a function of its performance in the overall population. However, this learning strategy can face the
problem of never converging. A well-known solution concept to address this problem is an evolutionary
stable strategy, which defends that if all agents in a population play that strategy, then it is impossible for
some invading mutants to receive higher utility than the one received by those playing the evolutionary
stable one.

A good example of Evolutionary Game-Theory in the context of patrolling games is reported
by [2]. In this paper, the authors combined an evolutionary algorithm with Game-Theory concepts
to optimize a border patrol problem against three different objectives simultaneously: i) maximum
idleness; ii) infiltration ratio; iii) patrolling cost. The output was an optimal patrolling strategy for the
defender.

Machine Learning approach
Recent efforts on multi-agent learning within security games have worked on modeling attacker’s

strategic behaviour by combining machine learning techniques such as deep neural networks and rein-
forcement learning with online learning techniques. In fact, there is an extensive literature on reinforce-
ment learning in multi-agent systems using a game-theoretic framework.

Reinforcement learning is a technique used to address problems where an agent or multiple
agents have to learn behaviour by means of trial and error exchanges with a dynamic environment.
This machine learning method models the agent(s) as in a Markov routine. Therefore, the learner agent
receives certain rewards(punishments) based on how good(bad) was his/her action on that state. The
goal is to find the optimal policy corresponding to the agent’s maximum future reward. A popular
algorithm for deep reinforcement learning is Q-learning. Q-learning finds a policy for an immediate
action that is optimal in the sense that it maximizes the expected value of the total reward over all
consecutive steps (long-term), starting from the current state.

Formerly, Erev et al. described an one-parameter reinforcement learning model which predicts
agent’s actions while playing repeated and simultaneous move games [25]. However, in this work the
notion of surveillance and reaction to the strategy of the adversary is missing.

In the meanwhile, much work has been done on reinforcement learning in the context of Game-
Theory [9, 17, 19]. As a result, only the most recent investigations demonstrating the power of deep
reinforcement learning in security games are presented below. Those, include, but are not limited to
the following:

• Bovsansky et al. concentrated on algorithms to mirror the process of human decision making
[12]. In this work, the authors used a Monte Carlo Tree Search and applied Multi-Armed Bandit
algorithms (explores the trade-off between exploration of known reward strategies and exploitation
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of new strategies with unknown rewards) for the selection of strategies in two-player simultaneous
move (stochastic) games. However, this work assumes a game with perfect information.

• Klima et al. studied the problem of delayed rewards in dynamic environments encompassing a
spatial component [50]. Building upon Adversarial Multi-Armed Bandit methods and temporal
difference learning, Klima et al. designed two algorithms to learn an optimal strategy for a defender
to commit to while adjusting it in light of the interactions with the attacker in the environment.
A combination of MDP with repeated games was selected to model the former problem.

• Hartford et al. used deep neural networks to perform cognitive modelling in an unrepeated and
simultaneous-move game, without depending on expert hand-tuned features [30]. The model
used a two payoff matrices m � n and output a m-dimensional probability distribution across
the leader’s actions. Despite achieving interesting results in capturing agent’s strategic reasoning
without expert insight, the current work needs to be extended to repeated games and games with
imperfect information.

• Trejo et al. proposed a framework which combines previous information and a temporal- difference
approach in reinforcement learning [80]. The temporal-difference technique evaluates the yet
unexplored state and assesses whether the resulting rewards from that state will be better or
worse than the expected ones based on a game-theoretic solution. The authors proposed a Markov
game and generated a randomized patrol solution. However, the resulting model request long
computational time to determine agent’s best strategy.

• Veksler et al. conducted three simulations, using a simple reinforcement learning model to
strengthen the idea that cognitive modelling provides several advantages when modelling hu-
man behaviour [83]. Moreover, the authors advocate that input parameters can be dynamically
updated to improve the resulting predictions, even though each person has his/her own preferences
and learning abilities.

• Lanctot et al. extended Fictitious Self-Play to replace pure strategies in the restricted game
by parametrized policies which are able to hypothesize about the state space without the need
to memorize agent’s past experiences [52]. Using a deep neural network, this solution concept
generates policies which are added up to the meta-strategy until the approximated best strategy
is found. This approach is a good alternative for multi-player games with long time horizon.
However, it may not find optimal solutions due to large computational time required to train the
deep neural network.

• Wang et al. extended the work on zero-sum GSGs with sequential movement and added the
element of real-time information [87]. To explore this domain, Wang extended Lanctot’s work
and designed a deep Q-network which determines real time adaptive strategies, for both defender
and attacker, adjusted according to online received information. A distinctive feature in Wang’s
work was the inclusion of agent’s ability to observe footprint remains as a way to model real-time
information. Shifting to an airport security setting, this could be modelled as dropped belongings
or local witnesses.

• Kamra et al. prepared a deep learning approach for solving security games in a continuous space
scenario with an unlimited set of actions [42]. The game starts by disclosing the game state and it
is followed by the defender’s choice of m locations to cover and by the attacker’s choice of n sites
to attack. An interesting result in Kamra’s research was the importance given to fictitious play
to memorize each agent previous actions while reaching, at the same time, good predictions on
unforeseen states and actions. Nevertheless, the current procedure can suffer from a computational
scalability issues.

• Klima et al. focused on uncertainty regarding attacker’s location in the domain of GSG, using
a Q-learning algorithm with a Bayesian inference update based on previous information about
the environment [42]. The algorithm was designed for spatial graph-based security games. This
research assumed a stochastic game using Markov Decision Process to identify the best defender
strategy against an adaptive opponent who is able to observe defender’s behaviour, learn from it
and best respond to it.
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• Rahman et al. developed a model for defender’s (robots, in this case) dynamic patrol allocation
against intelligent and adaptive opponents, formulating it as a zero-sum repeated Stackelberg
Security Game [72]. The defender uses an online reinforcement learning routine to forecast the
upcoming attack pattern. Therefore, the defender should be able to gather information regarding
different observed attacks patterns to improve her patrol route definition. The later intersperses
patrol route exploitation with exploration, adopting a bandit algorithm for that purpose.

• Agmon et al. used an innovative online learning algorithm coupled with a machine learning tech-
nique to design a model of the attacker’s behaviour on-the fly, while generating, at the same time,
scheduling constraint patrols [1]. An innovative aspect was related to the inclusion time by em-
ploying a time-unrolled graph G(l,e). The model was tested considering two adversarial behaviour
types, namely, stochastic adversarial nature and Quantal Response adversary behaviour.

• Agmon et al. motivated by the field of cybersecurity attempted to predict how humans learn and
make decisions when interacting in an adversarial Multi-Armed Bandit configuration [58]. The
authors considered repeated games and studied how intelligent attackers could learn defender’s
strategy. The results gathered were compared with five cognitive models which predict how people
would learn in this scenario.

Summary
From these scientific studies it can be concluded that there is a huge interest in the inclusion

of learning agents in competitive multi-agent scenarios. In these environments each agent wants to
maximize his/her payoff by learning/exploiting the behaviour and weaknesses of the other. Interesting
publications have been found in the domain of learning in multi-agent systems with a game-theoretic
framework. Namely, learning algorithms on the literature focused on different purposes:

• Predict human strategic behaviour to improve current state-of-the-art models for human bounded
rationality.

• Provide means to learn accurate values for parameters which need to be tuned in current bounded
rational models.

• Find policies (strategies) to choose actions that maximize cumulative final reward for the defender
actor.

• Explore the possible space of actions for both agents, where rewards are assigned based on the
performance of the agents through multiple simulations.

Despite being an interesting research direction, this MSc Thesis does not focus on learning ap-
proaches to improve current game-theoretic solutions. Nevertheless, an extensive overview was provided
to understand the current technological advancement in this research area. This may be important for
future work which could exploit the space of possible strategies to be performed by the security officers
through a learning process, rather than relying on a limited number of pre-determined patrol routes.
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Conclusion and project plan

This chapter gives an overview of the literature review, followed by the proposed plan for further research
in the thesis. In Section 6.1, the main ideas from each Chapter are briefly summarized. In Section 6.2,
the research question and related sub-questions are formalized. Finally, Section 6.3 presents the project
plan to be followed throughout this thesis research project.

6.1. Summary of literature research
In Chapter 2, research motivation and positioning are defined. Airports are attractive targets for
terrorism, as they are designed to accommodate and process large amounts of people, resulting in high
concentration of potential victims. This increases the probability of an attack without the terrorist
being detected. Often security resources are limited and it is not possible to monitor all people moving
through those areas. Thus, the need to develop strategic patrolling strategies arises. Strategic, in that
patrols have to be randomized to prevent attackers from drawing a constant patrol pattern while, at
the same time, they should minimize the likelihood of a terrorist attack in those patrolling areas. In
fact, selecting an appropriate patrolling strategy, given limited resources, time and space constraints is
one challenge this thesis aims to tackle.

This MSc Thesis focuses on enhancing airport security at publicly accessible areas, given limited
resources, by combining agent-based modelling with security games. Although many security studies
have focused on either agent-based modelling [[37, 38], or security games [68, 106] no combination of
both methods have been deployed on airport security literature. Hence, the objective of this project is to
develop a methodology that aims to improve game-theoretic solutions by using agent-based modelling.
To serve such ends, we apply this methodology to a scenario where an attacker aims to detonate an
improvised explosive device on a publicly accessible area of a regional airport.

In Chapter 3, agent-based modelling is examined. Main characteristics, modelling techniques,
real-world deployments, advantages and limitations are described. Agent-based modelling is able to
represent real world settings and capture its main features when compared to alternative methods.
Instead of developing mathematical equations which rule agent’s behaviour, ABM provides a natural
way to represent reality by describing how agents act and interact in a specific environment. In agent-
based modelling, global (system level) emergent phenomena arise from a bottom-up approach where
only agent’s actions (behaviour) and interactions (agent-agent;agent-environment) are modelled (local
level).

The outcome of this Chapter illustrates the advantages of using an agent-based model to capture
system emergent patterns based on the behaviour of local individual entities. Therefore, this method-
ology is proposed in Section 6.2 in combination with a game-theoretic approach to identify optimal
security patrol against a terrorist threat in a publicly accessible area of a regional airport. In partic-
ular, the proposed agent-based approach builds upon a noteworthy approach developed by Janssen et
al., which considered three different layers in agent decision-making architecture [38].

55
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Chapter 4 describes fundamental concepts in Game-Theory, mostly focusing on competitive
(non-cooperative) games. The concepts of extended form games and normal form games are introduced.
Additionally, perfect information, imperfect information, complete information, incomplete information,
pure strategy and mixed strategy are briefly explained. Chapter 4 provides useful insights and background
knowledge required to understand the next Chapter.

Lastly, Chapter 5 presents a comprehensive overview on the topic of security games. This Chapter
is divided in two main sections. The first part focus on providing the reader with generic notions of
security games. Specifically, Stackelberg Security games, Threat Screening Games, Network Security
Games, Stochastic Games, Cybersecurity Games are explained. The first modelling choice derived from
this Section is the definition of which type of security game will be the addressed in this MSc Thesis.
The most interesting type of game is believed to be Network Security games, more specifically, patrol
planning games. Network Security games have the advantage to capture both spatial and temporal
aspects when defining strategies for both players. This has a fundamental importance when trying to
model real world scenarios where spatial and time constraints coexist. In fact, defining appropriate
patrol plans requires both patrol paths (space) and corresponding time. In other words, require a
sequence of locations at different time moments.

In Section 5.2, the three main challenges in security games are addressed. First, the concept of
bounded rationality is justified against perfect rationality. Different models to describe human behaviour
are thoroughly examined. Second, uncertainty intrinsic to human nature is another issue in this domain.
The most common types of uncertainty include attacker/defender payoffs uncertainty, uncertainty in
adversary rationality and uncertainty in defender’s strategy. Finally, the third relevant challenge is
learning in security games. In particular, different learning approaches have been employed for different
purposes, ranging from the use of innovative learning algorithms to develop new models of human
behaviour, to the use of learning algorithms to explore the possible space of actions for the agents,
among others.

To wrap-up this literature review, this MSc Thesis aims to demonstrate the power of a fruitful
coalition between agent-based modelling and simulation and game theory. One of the main shortcomings
of the current research is the lack of data available for game-theoretical models. Agent-based modelling
and simulation is of utmost importance to address this gap. By performing various simulations with
different scenarios more data can be gather to improve game-theoretic models. Besides, Game-Theory
relies on a mathematical formulation, thus results from this methodology are highly dependent on
their underlying assumptions. Given these restrictions, agent-based modelling and simulation offer the
possibility to relax those restrictive game-theoretic assumptions by studying human behaviour, actions,
interactions and their consequences, through multiple computer simulations. By combining an agent-
based model with a game-theoretic formulation, it is possible to model complex socio-technical systems
and include multiple human behaviour uncertainties and dynamics arising from an agent-based model
which would be impracticable to consider in a game-theoretic formulation only.

The core of this paper is to improve game-theoretic solutions by using agent-based modelling to
tackle the uncertainty associated with game-theoretic payoff structures. There is a significant need to
handle uncertainty in both players’ rewards since key domain features like attacker motivation, that
contribute to these rewards, are hard to estimate exactly. Hence, this methodology improves on the
game-theoretic payoff structures which often rely only on expert assessment (which is still needed). To
accomplish this goal, we propose the following methodology, graphically shown in Figure 6.1.
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Figure 6.1: Step by step methodology followed in this work. Note: ABM refers to agent-based modelling

First, we start by by the definition of the agent-based model. The choice of the agent-based
model, with especial emphasis on the set of resulting outputs, is essential for the proper specification
of the game-theoretic model on the next step. Once the game-theoretic model is formulated, the next
step consists of integration both methods. First, the set of strategies for both agents are defined and
simulated afterwards. Results generated by the agent-based model are used as input to define payoff for
the players in the game. Finally, we solve the game and generate optimal strategies for both players.
These optimal strategies are simulated in the agent-based model and the outcomes of this simulation
are compared to the ones obtained with the initial simulation assessment. The results are expected to
be similar to positively evaluate the optimal game-theoretic solution.

6.2. Research question
Based on all information gathered throughout this literature review, first it is introduced the research
question, followed by all related sub-questions pertinent for the scope of this research. Before introducing
the research question it is important to specify the meaning of “to minimize the risk ” in this context.
Minimize the risk means defining security strategies to patrol open publicly areas of an airport.

How can the risk of a terrorist threat in a publicly accessible area of a regional
airport be minimized by combining an agent-based modelling and simulation method
with a game-theoretic approach?

The research question will be studied under the following scenario. A security officer performs a
certain patrol strategy around four identified targets: entrance hall, check-in area, and checkpoint area
of a regional airport terminal. This case-study focus on the following threat: a bomb attack in publicly
accessible areas of the airport terminal. Based on this threat, five attacking scenarios are modelled
with a five minute interval uncertainty, for a period of twenty-five minutes (e.g., an attacker entering
the airport within the first five minutes, an attacker entering the airport within five to ten minutes,
...). The latter time span was chosen to enclose all the attacks that may happen within the first thirty
minutes.

To answer the research question, the following related sub-question should be formulated:

• How to model the publicly accessible are of the airport as the environment, agents
within the environment, corresponding characteristics and interactions in an agent-
based simulation model?

As mentioned previously, this project will follow up with the already implemented agent-based
framework specified in [38]. It is assumed that the agents present in Janssen’s work will continue
as part of the model. However, some specifications related to this research project need to be
defined. More specifically, it should be identified if additional agents are needed and, if so, which
are their characteristics. One example is the inclusion of security patrol agents. Furthermore,
interactions between both agents and between agents and environment should be identified and
formalized. As a result, the following questions should be answered:
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– Which aspect influence agents decision making and how these should be modelled and quan-
tified?

– Which interactions and relations between agents and between agents and environment are
interesting for the model?

– Which parameters present in the agent-based model will have influence on the outcome
achieved?

• Which relevant real-world aspects are important to consider and how to model them
in a game-theoretic methodology?
Human cognitive modelling and uncertainty in human behaviour have been included in game-
theoretic approaches to improve representation of reality. Consequently, it is important to define
which of those challenges in security games are going to be addressed and how to combine those
in one unique model. Moreover, it is also crucial to identify main assumptions which will be
the basis of the adopted game-theoretic formulation. Thus, the following sub-question should be
addressed:

– Which information (perfect, imperfect, complete, incomplete information) will be available
to security and attacker agents each moment of the game?

– Which publicly accessible areas of an airport are of interest to include in the model as a set
of possible targets?

– Which temporal, spatial and resource constraints will be considered and how to include them
in the model?

– How to combine different parameters and uncertainties into a game-theoretic model such
that optimal defender policies can be found?

• How can the two techniques be combined to enhance security at a regional airport by
identifying optimal security patrols against an attacker actor who exploits weaknesses
in those strategies?
Broadly, the aim of this research is to combine an agent-based model and simulation method with
a game-theoretic approach to find optimal patrol strategies for the defender such that security
at the airport is enhanced. With that in mind, a fundamental question is on how to squeeze an
expressive formulation such as an agent-based model into a less expressive one such as a game-
theoretic approach. More formally, the following sub-questions need to be answered:

– How will agent-based model and simulation results be employed to define a game-theoretic
payoff matrix?

– Which parameters present in the agent-based model will influence the solutions found on the
game-theoretic formulation?

– How do the obtained results translate to better security solutions for airports?

6.3. Project Plan
In this Section, a project plan is proposed to answer the research question and related sub-questions.
The project plan is divided into different work packages which are presented below.

6.3.1. Prepare the ABMS framework
The proposed research project is established based on the baseline agent-based model developed by [37].
This baseline model is the starting point of this research project and will be adjusted depending on the
project’s need. Therefore, the initial milestone is to get familiar with the current agent-based simulation
and set-up the scenario where an attacker wants to cause maximal harm to the airport by exploiting
an improvised explosive device in an open area of a regional airport. This include the following tasks:

• Learn and understand the current agent-based model simulation in Java environment and also
Java programming language.
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• Calibrate the baseline model for the scope of this research.

• Identify the set of agent-based parameters and output variables.

6.3.2. Set-up a game-theoretic formulation
After getting familiar with the agent-based model and making the adequate adjustments, it is necessary
to design the game-theoretic model. This include the following tasks:

• Select a game-theoretic formulation which is appropriate to deal with security patrolling problems.

• Implement the selected game-theoretic formulation.

• Define a reward structure required as an input for the selected game-theoretic method.

6.3.3. Generate agent-based model results
In this stage, simulations are performed based on the selected models. To achieve such end, a sampling
strategy to investigate the behaviour of the system through many simulations has to be defined. To
conclude this stage, the selected set of strategies for both agents should be simulated to finish the
generation of agent-based model results.

• Choose an appropriate sampling strategy.

• Generate agent-based results.

• Process and analyse agent-based results.

6.3.4. Generate optimal strategies
In this stage, outcomes resulting from the agent-based model are processed and translated to rewards
in the game-theoretic model, depending on the reward structure defined in step 6.3.2. The last step
of this methodology is to compute the optimal strategies for both agents, based on the results arising
from an agent-based model. Therefore, the output of a game-theoretic framework include both the
optimal defender-attacker strategy pair along with associated rewards. Therefore, the final phase is the
validation of the game-theoretic solution. With this in mind, the optimal game-theoretic solution pair
is simulated on the agent-based model. Outcomes arising from the latter simulations are processed and
introduced in the reward structure to validate that those are, in fact, the ones leading to an optimal
solution.

• Include agent-based results in the game-theoretic reward structure.

• Solve the game and identify optimal strategy solutions for both agents.

• Simulate the proposed solution in an agent-based approach.

• Validate results.
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A
Preliminary Results

A.1. Introduction
The methodology proposed in the scientific paper was first evaluated under simpler assumptions and
constraints. A different game-theoretic work was implemented where the set of available strategies for
the defender was limited to 5 deterministic strategies and the set of available strategies for the attacker
was limited to 4 deterministic strategies. Moreover, the game-theoretic model did not consider time
in the player’s strategies. Nonetheless, this preliminary assessment was of utmost important for the
development of this project since it helped to better understand how agent-based modelling and game-
theory could be combined to decrease uncertainty in game-theoretic payoff structures. Details follow
below.

A.2. Case study
This preliminary assessment was applied to the regional airport layout described in the scientific paper.
However, few simplifications were applied in this case study. Those are described in the Section A.4.
Four different targets are identified: entrance hall, two check-in areas, and security checkpoint area.

The case study in this model follows the one in the scientific paper, except for the threat scenario
considered. In this preliminary assessment, only four attack scenarios were modelled. More specifically,
the attack time was set to be between 25 and 30 minutes, for an attack at one of the identified targets.
This time span was selected since it was the moment when the airport was the most crowded as the
time was close to the flight departure time (at 2 hours of simulation time). Agent-based model constant
parameters are the same as described in the scientific paper.

A.3. Methodology
The methodology followed in this preliminary assessment is the one illustrated in the scientific paper.
However, the game-theoretic model selected in this preliminary study was the one proposed in the work
of Pita et al. [68]. The reasons for this choice are twofold. First, it was one of the first real-world
deployments of game-theory in a security domain with results validated at Los Angeles International
airport. Second, the model was relatively simple to understand with straightforward assumptions and
mathematical constraints.

A.4. Model
This Section starts with the specification of the agent-based model. It is followed by the characterization
of the game-theoretic model. Finally, the integration of the agent-based model with the game-theoretic
model is described.
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A.4.1. Agent-based model
The agent-based model is the same as described in the scientific paper. The specification of the multi-
agent system is the same as the one illustrated in the scientific paper. Thus, the environment charac-
teristics and specifications and the agents’ framework and attributes are the same as described in the
scientific paper.

A.4.2. Game-theoretic model
Pita et al. computed optimal randomized road security checkpoints and terminal canine patrol schedules
at Los Angeles International airport. In that work, Pita et al. cast the patrolling/monitoring problem
as a Bayesian Stackelberg game, allowing the agent to appropriately weigh the different actions in
randomization, as well as uncertainty over adversary types. However, in this preliminary study only one
attacker type was considered. Therefore, rather than formulating the problem as a Bayesian Stackelberg
game, it was cast as a Stackelberg Security game. This simplification lead to some adjustments in Pita’s
mathematical model. More specifically, constraints regarding different attacker types were not included.

Moreover, time is not explicitly included in the agents’ set of strategies. This observation is a
simplification as compared to the game-theoretic model proposed in the scientific paper described in
this thesis. Details on the game modelling are described below.

1) Players: The model considers a two player game between a security patroller (defender/leader)
and a terrorist (attacker/follower), where both agents have perfect rationality. Consequently, both
player are payoff maximizers. It is assumed that the attacker is able to observe security strategies over
time and then choose his attack strategy. In other words, the attacker attacks with prior knowledge.

2) Strategies:

• Defender: The security agent’s set of pure strategies consist of a number of pre-determined routes
that patrol the identified targets. The set of defender pure strategies is represented by X.

• Attacker: The attacker set of pure strategies consists of a target to attack. The set of attacker
pure strategies is represented by Q.

3) Rewards: Equation A.1 illustrates the reward function for the defender.

U
i,j
d �Rij (A.1)

Where Rij refer to the payoff value associated with a particular defender strategy xi and attacker
strategy qj . This payoff value is defined based on two outcomes arising from the agent-based model: the
average number of human casualties and the patrol successful arrest rate. The payoff Rij is introduced
in Section A.5.3.

4) Solution concept:
To find an equilibrium solution, the concept of Stackelberg equilibrium is employed. It consists

of the (mixed) strategy for the security that gives the highest payoff when the attacker plays a reward-
maximizing strategy.

The defender’s policy consists of a vector of probability distributions over the set of the defender’s
pure strategies. Thus, the proportion of times in which pure strategy i is used in the defender’s policy is
represented by xi. Moreover, an attacker pure strategy is represented by j and the vector of strategies
is denoted by qj . Additionally, the defender’s and attacker’s payoff matrix are represented by R and C,
respectively.

The optimal policy for the defender is found by solving the a mixed integer linear programming
illustrated below. A change of variables is performed to linearise the model zij � xiqj .

• Objective Function:
maxx,q,a =

i"X

=
j"Q

Rijzij (A.2)
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• Constraints:
=
i"X

=
j"Q

zij � 1 (A.3)

=
j"Q

zij & 1¾i"X (A.4)

=
j"Q

qj � 1 (A.5)

qj &=
i"X

zij & 1¾j "Q (A.6)

0& a�=
i"X

Cij =
h"Q

zih & �1� qj�M ¾j "Q (A.7)

zij " �0, ...,1� (A.8)

qj " r0,1x (A.9)

a" R (A.10)

Note that the expected reward for the attacker is represented by a, and M is a large positive
number. For a set of defender’s strategies x and a set of attacker’s strategies q, the objective function
represents the expected reward for the defender player. Constraint A.3 and constraint A.5 define the set
of feasible solutions x as a probability distribution over the set of strategies X. Constraints A.4 and A.7
limit the attacker strategy vector qj , to be a pure distribution over the set Q. The two inequalities in
constraint A.6 ensure that qj= 1 only for a strategy j that is optimal for the attacker. This constraint
is explained as follows. The leftmost inequality ensures that for all j "Q, a '<i"X Cijxi. This means
that given the defender’s vector x, a is an upper bound on the attacker payoff for any action. The
rightmost inequality is inactive for every action where qj= 0, since M is a large positive quantity. For
the strategy that has qj= 1 this inequality declares that the attacker’s payoff for this action must be
' a, which combined with the previous inequality demonstrates that this strategy must be optimal for
the attacker.

A.4.3. Integration
The integration of agent-based modelling and game-theory is accomplished in three sequential steps.
First, both the security and attacker strategies are generated, followed by the specification of game
metrics using agent-based model results. The last step consists of generating the optimal strategies for
both players.

Generate agent’s strategies
The first step of the integration module starts with the generation of the agents’ strategies. In

this preliminary assessment, simplistic strategies were considered for the defender. Those only had to
comply with the following rules:

• Each patrol route start at the airport entrance and end at that location.

• Once the security officer reaches a certain target, she has to patrol that area for a given period of
time which was set to be the same for all targets.

• Each target is only patrolled once in a patrol route.

• Once a round of a patrol route is finished, it is repeated until the time the attacker decides to
deploy the attack.

• Given the airport layout, we have considered that the security officer can only move to adjacent
nodes. For example, when the defender is at target 0, she can move to any of the other targets or
stay there; while, if she is at target 1, she can only move to target 0, target 2 or stay at target 1
(Figure A.1). This constraint was imposed to avoid the risk of by-passing a certain target.
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There are only nine possible routes across the four targets which meet the aforementioned criteria.
For instance, one patrol route for the security officer is to start at the airport entrance (target 0) and
patrol that area for a pre-determined time interval. Then, she moves to check-in area 1 (target 1)
and patrols that area for a pre-determined time interval. Finally, the defender moves back to airport
entrance and finish her round of this patrol route. The later patrol route is represented by rT0�T1�T0x.
Following the same reasoning, other alternatives are rT0�T2�T0x,rT0�T3�T0x,rT0�T1�T2�T0x,rT0�
T2�T1�T0x,r0�1�2�3�0x,rT0�T3�T2�T1�T0x,rT0�T3�T2�T0x,rT0�T2�T3�T0x.

For the sake of simplicity only a sample of five patrol routes were simulated in the agent-based
model. Those were the following: x0 � rT0�T1�T0x,x1 � rT0�T2�T1�T0x,x2 � rT0�T3�T2�T1�T0x,x3 �rT0�T1�T2�T0x,x4 � rT0�T2�T0x. In this setup, strategies rT0�T1�T2�T0x and rT0�T2�T1�T0x
contain the same targets, however those are covered in a different sequence of movements to investigate
the influence of time, since the latter metric is not explicitly considered in the agent’s set of strategies
in this game-theoretic model. Figure A.1 represents patrol route x0 � rT0�T1�T0x,x2 � rT0�T3�T2�
T1�T0x and x4 � rT0�T2�T0x, for illustration purposes.

Figure A.1: Visual representation of some of the patrolling strategies. x0 refers to the defender strategy rT0�T1�T0x.
x2 refers to the defender strategy rT0�T3�T2�T1�T0x. x4 refers to the defender strategy rT0�T2�T0x

Patrolling time at each target was set to two minutes as an initial estimation. It was later
subject to sensitivity analysis ranging from one minute to seven minutes to investigate the influence of
this parameter in the model’s outcome. The threshold of seven minutes was set to allow the longest
patrol route to finish within the first 30 minutes of simulation (i.e., 7 minutes per target � 4 targets
+ time to move between targets & 30 minutes). In this case, the patrolling time was fixed, rather
than being defined according to a Gaussian distribution as in the scientific paper. This constraint is an
additional simplification. This assumption has clear limitations since it assumes perfect patrol routes
without considering disruptions that may occur and influence the effective patrol times.

The set of strategies for the security officer is another simplification which does not mimic reality
properly. The reason is that some of the simulated strategies induce the defender to move only between
two targets, potentially leading to patrol routes that would not be applicable in real-world scenario.
Moreover, some of these patrol routes lead to uncovered targets which is not desirable in security critical
infrastructures like an airport.

Based on an improvised explosive device threat, four attacking scenarios were simulated. Namely,
a fixed attack time interval between 25 and 30 minutes at one of the four identified targets. The attacker
agent may be caught in his path towards the target location, even if both security and terrorist agents
are not in the same area, but the latter is within the observation range of the former. Thus, if the
security agent observes the attacker, then there is a probability that he is arrested.

Important to mention is that the final model proposed in this MSc Thesis (Part I: Scientific
Paper) took into consideration all the simplistic assumptions and model choices held in this preliminary
assessment and addresses them with solutions aiming for a better representation of reality.

Specify game metrics using agent-based results
After generating the set of strategies for both agents, the next step is to specify the game

metrics based on the agent-based model outcomes resultant from the previous step. Two metrics were
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considered: number of human casualties and efficiency (successful arrest rate) of the security patrol.
The number of casualties is estimated as follows. For each attacker and defender strategy, a

consequence function which assesses the number of human fatalities is calculated for the simulated
threat scenario. This function is used to determine the consequences for a simulation run of our agent-
based model. Monte Carlo simulations are executed in order to evaluate the average number of casualties
based on a set of 500 simulation runs.

The efficiency of each patrol route for a specific threat scenario is computed as follows. For each
attacker and defender strategy, the ratio between the number of non-zero human casualties and total
number of simulation runs, defines the efficiency of each patrol route. Zero casualty values means that
the attacker was arrested by the security officer, thus no human casualties occurred. The reasons for
the choice of these agent-based metrics are the same as discussed in the scientific paper.

The final game-theoretic model consisted of:

• 4 different attack strategies: one per target at a time between 25 and 30 minutes.

• 5 pre-determined patrol strategies. Those are the game’s decision variables.

• 20 payoff values arising from the 4 different attack options and 5 security patrol routes, 4�5� 20
payoff values have to be defined.

Generate optimal strategies
The last step of the integration module, receives the payoff structures, defined in the previous

step, as input and generates the optimal strategies for both players. These optimal strategies are
simulated in the agent-based model and the outcomes of this simulation are compared to the ones
obtained with the initial simulation assessment. The results are expected to be similar to positively
evaluate the optimal game-theoretic solution.

A.5. Experiments & Results
Results of this preliminary assessment are detailed in this Section. First, the agent-based experimental
setup is introduced, followed by the agent-based model results. Section A.5.3 describes the game-
theoretic results. Lastly, Section A.5.4 shows the results achieved after performing a one-parameter
sensitivity analysis for the following parameters: patrolling time at each target and defender observation
range.

A.5.1. Experimental Setup
The agent-based experimental setup is exactly the same as described in the scientific paper. In the
following Subsections, it should be considered an average velocity for each agent of 1 meter per second
(m/s), an observation range for the defender of 10 meters (10m) and a patrolling time at each target
of 2 minutes.
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Figure A.2: Coefficient of variability with the number of simulation runs.

The number of simulations required to obtain a proper estimate of the distribution of the model
output were determined based on the coefficient of variation. Figure A.2 shows two examples of the
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coefficient of variation for two different attacker-defender strategy pairs. It shows that the coefficient
of variation on the left plot tends to stabilize around 300 simulations. Nonetheless, the plot on the
right tends to stabilize between 400 and 500. All other defender-attacker strategy pairs tend to stabilize
around these range of values. Consequently, the number of simulations was set to be 500 to ensure a
proper estimation of the model output for all attacker-defender strategy pairs.

A.5.2. Agent-based model results
As mentioned above, the average number of human casualties and efficiency of a security patrol route
are the agent-based metrics used to specify the game-theoretic payoff matrices. Tables A.1 shows the
average number of human casualties for each attacker-defender strategy pair while Table A.2 shows the
efficiency of each patrol security for each attacker-defender strategy pair.

Table A.1: Average number of human casualties for each attacker-defender strategy pair. x0 refers to the defender strategy
rT0�T1�T0x. x1 refers to the defender strategy rT0�T2�T1�T0x. x2 refers to the defender strategy rT0�T3�T2�T1�T0x.
x3 refers to the defender strategy rT0�T1�T2�T0x. Finally, x4 refers to the defender strategy rT0�T2�T0x.

Attacker

Target T0 Target T1 Target T2 Target T3

Defender

x0 4.914 4.628 4.374 14.242
x1 4.662 4.576 4.744 12.024
x2 4.976 6.560 7.182 12.440
x3 4.560 4.736 4.326 11.742
x4 4.594 4.764 5.142 11.594

Table A.1 shows that an attack at target 3 yields the highest average number of human casualties
when compared to any other target. This may be justified by the high agglomeration of people observed
around that area. Thus, the potential consequences of a successful attack there may be disastrous.
Hence, this area represents a vulnerable target which should be thoroughly patrolled in airport security
procedures. On the other hand, the average number of human casualties is similar in the other targets
as the human density in those areas is about the same. This happens since most passengers did the
check-in online and go straight to the security checkpoint. Thus, the number of passengers in target 0,
1 and 2 are considerably fewer than on target 3.

Table A.2: Patrol efficiency for each attacker-defender strategy pair. x0 refers to the defender strategy rT0�T1�T0x. x1
refers to the defender strategy rT0�T2�T1�T0x. x2 refers to the defender strategy rT0�T3�T2�T1�T0x. x3 refers to
the defender strategy rT0�T1�T2�T0x. Finally, x4 refers to the defender strategy rT0�T2�T0x.

Attacker

Target T0 Target T1 Target T2 Target T3

Defender

x0 0.114 0.536 0.578 0.254
x1 0.102 0.524 0.530 0.298
x2 0 0.344 0.316 0.312
x3 0.092 0.518 0.572 0.310
x4 0.156 0.520 0.512 0.346

Table A.2 shows that the lowest patrol efficiency occurs at the airport entrance (target 0). This
results from the fact that an attack at the airport entrance is executed right after the attacker enters
the airport. Therefore, the security probabilities of detecting the attacker are smaller when compared
to an attack at any other target where the attacker takes time to reach his destination and may be
arrested in between. Thus, an attack at the airport entrance leaves the defender few time to evaluate
the agents’ in her observation range which lowers the possibilities of successfully detecting and arresting
the attacker. Furthermore, the security patrol efficiency at target 3 is lower than at target 1 or 2. This
may be justified by the fact that higher density of people leads to difficulties in detecting an attacker
in a crowded airport.
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A.5.3. Game-theoretic results
Based on the previous results , the game-theoretic solution is described.

Reward function: A zero-sum game is considered in this preliminary assessment, thus the
attacker reward has the opposite value of the defender. Therefore, for simpleness only the reward
function for the defender is shown. Two different reward functions were defined depending on the
particular scenario faced:

• Defender patrol contains attacking target t:

Rjt �Ejt �Casjt� �1�Ejt� � ��Casjt� (A.11)

This equation can be split in two different parts. These are separated based on the plus sign. In
the first part, the average number of casualties is weighted by the patrol’s arrest rate (defined
as the efficiency of the patrol) to reward her for the occasions where her strategy successfully
arrested the attacker. In the second part, the (negative) average number of casualties is weighted
by the attack successful rate (one minus the efficiency of the security patrol) to induce a penalty
for the cases where the security did not arrest the attacker, leading to a successful attack.

• Defender patrol does not contain attacking target t:

Rjt ���1�Ejt� �Casjt (A.12)

In this case, the goal is to penalize the defender since her strategy does not contain the attack
target. This increases the chances of a successful attack. For this reason, the reward for the
defender will be at most zero. The defender payoff includes the average number of casualties
weighted by the attack successful rate. This weight factor is included to illustrate that the
defender might detect the attacker from a different location than the one the attack is planned. If
the efficiency of the patrol is zero, then the defender will get a reward equivalent to the (negative)
average number of casualties to penalize her for the worst possible scenario.

Game Solution
The first step to compute the optimal solution is to introduce the results presented in Table A.1

and A.2, in Equations A.11 or A.12 depending on whether the defender patrol contains or does not
contain the attacking target. For instance, considering the defender strategy x0 and attacking target T0,
the defender reward is computed as follows. Defender strategy x0 contains the attacking target T0, thus
the agent-based results are input in Equation A.11: R00 � 0.114�4.914��1�0.114����4.914���3.7936.

Table A.3 illustrate the reward matrix resultant from the agent-based results in a normal form
representation.

Table A.3: Reward matrix in normal form representation for the results achieved in this preliminary study.

Attacker

Target T0 Target T1 Target T2 Target T3

Defender

x0 ��3.7936,3.7936� �0.3332,�0.3332� ��1.8458,1.8458� ��10.6245,10.6245�
x1 ��3.7110,3.7110� �0.2196,�0.2196� �0.2846,�0.2846� ��8.4408,8.4408�
x2 ��4.9760,4.9760� ��2.0467,2.0467� ��2.6430,2.6430� ��4.6774,4.6774�
x3 ��3.7210,3.7210� �0.1705,�0.1705� �0.6229,�0.6229� ��8.1020,8.1020�
x4 ��3.1607,3.1607� ��2.2867,2.2867� �0.1234,�0.1234� ��7.5825,7.5825�

From Table A.3 it can be found that there is no pure strategy nash equilibrium since for each
defender-attacker strategy pair there is always one alternative pair that incentives one of the agents to
deviate from his/her own strategies. Moreover, it can be noted that attacker strategies to attack target
T1 and T2 are dominated strategies. This is the case since for each defender strategy xi, the associated
attacker rewards when attacking those targets are always lower than the one the attacker receives when
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attacking, for instance, target T3. Finally, given the attacker non-dominated strategies, the defender’s
strategies x0,x1 and x3 are dominated by strategy x4. The reasoning is the same as above, but applied
to the defender’s reward for each non-dominated attacking target.

Figures A.3, A.4, A.5 and A.6 illustrate the payoff values and patrol efficiency for both agents
for each defender-attacker strategy pair.
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Figure A.3: Attacker and defender reward values, for
each defender strategy xi when the attack target is T0.
The bar colour changes based on the efficiency of each
security patrol.
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Figure A.4: Attacker and defender reward values, for
each defender strategy xi when the attack target is T1.
The bar colour changes based on the efficiency of each
security patrol.
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Figure A.5: Attacker and defender reward values, for
each defender strategy xi when the attack target is T2.
The bar colour changes based on the efficiency of each
security patrol.
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Figure A.6: Attacker and defender reward values, for
each defender strategy xi when the attack target is T3.
The bar colour changes based on the efficiency of each
security patrol.

From these figures, it is possible to verify that this payoff structure favours higher patrol arrest
rates for the defender. Subsequently, lower patrol efficiencies are favourable for the attacker. The
following solution was found for the optimal policy for each player:

• Defender:

– 93.68 % strategy x2 � rT0�T3�T2�T1�T0x.
– 6.32 % strategy x4 � rT0�T2�T0x.
– Defender Reward:

Ud � p2,0�U
2,0
d �p4,0�U

4,0
d � 0.9368� ��4.976��0.0632� ��3.1607���4.8612 (A.13)

• Attacker:

– Attack target T0.
– Attacker Reward:

Ua � p2,0�U
2,0
a �p4,0�U

4,0
a � 0.9368� �4.976��0.0632� �3.1607�� 4.8612 (A.14)
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Where p2,0 is the probability associated the executing defender patrol route x2 and attacker
strategy to attack target T0, while p4,0 is the probability associated the executing defender patrol route
x2 and attacker strategy to attack target T0. U

2,0
d (U2,0

a ), U4,0
d (U4,0

a ) are the defender (attacker) payoff
values associated with the aforementioned defender-attacker strategy pair.

The optimal attacker solution is to attack the airport entrance (target T0) while the optimal
defender strategy is to perform the mixed strategy: 93.68 % strategy x1 and 6.32 % strategy x4. Given
the optimal defender mixed strategy, the attacker payoff for an attack at target 1,2 and 3 is computed
to compare the attacker payoff when attacking any of these targets with the optimal attacker policy.
These payoff values are computed as illustrated in Equation A.13. The defender (attacker) payoff
associated the optimal strategy x2 is multiplied by the probability of executing such strategy. The
same computation is performed for the defender strategy x4 and corresponding probability. Finally,
these two values are summed together to calculate the optimal mixed strategy payoff. Table A.4 shows
the attacker payoff values for an attack at target 1, 2 and 3.

Table A.4: Attacker reward for target T1,T2,T3 given the optimal defender mixed strategy.

Target T1 Target T2 Target T3
2.0619 2.4682 4.8610

The optimal attacker strategy to attack the airport entrance (target T0) may be surprising since
there is a lower density of people in the airport entrance when compared to the security checkpoint
area (target T3). This might potentially lead to a lower average number of casualties in the airport
entrance when compared to the security checkpoint. To further investigate these results, the box-plots
illustrated in Figures A.7 and A.8 were generated. Note that the axis scale are different for the two
plots.
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Figure A.7: Box-plot of human casualties for each de-
fender strategy for attacking target T0.
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Figure A.8: Box-plot of human casualties for each de-
fender strategy for attacking target T3.

Results show that there is a clear difference in the average number of human casualties between
these targets: the average number of human casualties is considerable higher for an attack at target T3.
Moreover, the highest number of human casualties in one simulation run for target T3 is more than the
triple of the highest number of human casualties at target T0 in one simulation run. However, security
patrols have higher arrest rates at target T3 than at target T0 (see Figures A.3 and A.6). Rather than
choosing to attack the security checkpoint where the potential consequences of a successful attack may
be more rewarding (for the attacker) but where the probability of getting arrest is higher, the attacker
chooses to attack the airport entrance. His choice is motivated by the fact that he simply needs to enter
in the airport terminal and does not need to walk at all, making it really hard to be arrested when
attacking T0. These results illustrate the importance of having security patrol with higher arrest rates
to decrease airport security risk. In this case, higher patrol efficiencies hamper the attacker to attack
target T3, resulting in an important reduction in the average number of casualties (see difference in the
average number of casualties for target T0 and target T3 in Table A.1).

Evaluation of the optimal solution
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Finally, the last step of the proposed methodology is to simulate the optimal game-theoretic
defender-attacker strategy pair in the agent-based model and compare the later results with the ones
resulting from the initial agent-based simulations.

For this purpose, the optimal mixed defender patrol strategy was simulated in the agent-based
model. To be consistent with the number of simulations performed earlier, a total of 500 simulations
were executed. Thus, given the optimal mixed strategy small probability (6.32%) of executing strategy
x4 , the number of simulations for this strategy were low (27 simulations). Nonetheless, the reason
for this choice is due to the small probability of executing that strategy. Figure A.9 shows that the
coefficient of variation tends to stabilize between 400 and 500. Consequently, the number of simulations
was enough to ensure a proper estimation of the model output.

Figure A.9: Coefficient of variability with the number of simulation runs.

The added value of this new simulations is to introduce the probabilistic effect of the mixed
strategy by simulating the optimal patrol routes according to the optimal mixed defender strategy. The
following results were obtained:

Table A.5: New agent-based results for the optimal defender-attacker strategy pair after being simulated in the agent-based
model. Validation step.

Average number of human casualties Efficiency of patrol
Defender Strategy x2 4.843 0
Defender Strategy x4 4.962 0.110

Values in Table A.5 are introduced in Equation A.11, for each of the optimal pure defender
strategies. Equation A.15 and A.16 illustrates the reward for the defender player.

Ux2 � 0�4.843�1� ��4.843���4.843 (A.15)

Ux4 � 0.11�4.962� �1�0.11�� ��4.96243���3.871 (A.16)

Finally, the new defender payoff value associated with the optimal mixed strategy is calculated as
follows. The payoff value associated the optimal strategy x2 is multiplied by the probability of executing
such strategy. The same computation is performed for the defender strategy x4 and corresponding
probability. Finally, these two values are summed together to calculate the optimal mixed strategy
payoff.

Ud � 0.9368� ��4.843�� �0.0632�� ��3.871���4.7816 (A.17)

The attacker reward is the opposite of the defender’s reward, i.e., Ua = 4.7816. If the later values
are compared with the one achieved by the game-theoretic model (-4.8612/4.8612) we conclude that
the results slightly differ, which validates the proposed methodology.
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A.5.4. Sensitivity Analysis
The goal of sensitivity analysis is to provide additional insight into the behaviour of the agent-based
model through a variation of parameter/input-output space exploration that focuses on model response
to changes in the input parameters. Specifically, this exploration seeks to identify parameters for which
small variations most impact the agent-based model’s output. Hence, we perform a one-parameter-
at-a-time sensitivity analysis on the following parameters: patrolling time at each target and defender
observation range. These are the models’ input which have a direct influence on the security patrol and
arrest rates. Hence, variations on those parameters will lead to changes in the interactions between the
defender and attacker agents.

In one-parameter-at-a-time, each input parameter is explored, in turn, over a set of values and
in isolation by keeping the other parameters at a constant baseline. Results of the sensitivity analysis
for the aforementioned three parameters are illustrated below.

The next results follow the same structure. First, the average number of casualties and efficiency
of each security patrol for different attacker-defender strategy pairs are illustrated. Then, these results
are introduced in Equation A.11 or A.12, depending on whether the defender patrol contains or does
not contain the attacking target. The outcome of these equations are the payoff values for each player.
These payoff values are shown thereafter. Finally, the game-theoretic model is solved and the optimal
(mixed/pure) strategy for both players is presented.

Time at each target: The time at each target was varied from 1 minute to 7 minutes. This
time span was selected to ensure that the longest security patrol finishes within the first 30 minutes of
simulation. All other parameters were the same as in the baseline setup.

• 1 minute:

Table A.6: Average number of human casualties for each attacker-defender strategy pair. x0 refers to the defender strategy
rT0�T1�T0x. x1 refers to the defender strategy rT0�T2�T1�T0x. x2 refers to the defender strategy rT0�T3�T2�T1�T0x.
x3 refers to the defender strategy rT0�T1�T2�T0x. Finally, x4 refers to the defender strategy rT0�T2�T0x. Patrolling
time at each target set to 1 minute.

Attacker

Target T0 Target T1 Target T2 Target T3

Defender

x0 4.832 4.692 4.654 14.528
x1 4.614 3.840 4.954 12.525
x2 4.728 7.284 7.606 10.471
x3 4.554 4.696 4.652 12.118
x4 4.576 5.078 4.290 9.646

Table A.7: Patrol efficiency for each attacker-defender strategy pair. x0 refers to the defender strategy rT0�T1�T0x. x1
refers to the defender strategy rT0�T2�T1�T0x. x2 refers to the defender strategy rT0�T3�T2�T1�T0x. x3 refers
to the defender strategy rT0�T1�T2�T0x. Finally, x4 refers to the defender strategy rT0�T2�T0x. Patrolling time at
each target set to 1 minute.

Attacker

Target T0 Target T1 Target T2 Target T3

Defender

x0 0.112 0.540 0.548 0.212
x1 0.160 0.596 0.514 0.318
x2 0.076 0.308 0.300 0.438
x3 0.120 0.532 0.536 0.322
x4 0.148 0.506 0.578 0.430
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Table A.8: Payoff matrix in normal form game. Patrolling time at each target set to 1 minute.

Attacker
Target T0 Target T1 Target T2 Target T3

Defender

x0 ��3.7496,3.7496� �0.3754,�0.3754� ��2.1036,2.1036� ��11.4481,11.4481�
x1 ��3.1375,3.1375� �0.7373,�0.7373� �0.1387,�0.1387� ��8.5420,8.5420�
x2 ��4.0068,4.0068� ��2.7971,2.7971� ��3.0424,3.0424� ��1.2984,1.2984�
x3 ��3.4610,3.4610� �0.3005,�0.3005� �0.3349,�0.3349� ��8.2160,8.2160�
x4 ��3.2215,3.2215� ��2.5085,2.5085� �0.6692,�0.6692� ��5.4980,5.4980�

Optimal strategies for both players:

– Defender:

� 45.67 % of the times pure strategy x2 � rT0�T3�T2�T1�T0x.
� 54.33% of the times pure strategy x4 � rT0�T2�T0x

– Attacker:

� Attack target T0.

– Payoff values:

� Defender: R = 0.4567� ��1.2984��0.5433� ��5.498���3.5802.
� Attacker: Q = 0.4567� �1.2984��0.5433� �5.498�� 3.5802.

• 2 minutes: Baseline case. Results are shown in Section A.5.2 and Section A.5.3.

• 3 minutes:

Table A.9: Average number of human casualties for each attacker-defender strategy pair. x0 refers to the defender strategy
rT0�T1�T0x. x1 refers to the defender strategy rT0�T2�T1�T0x. x2 refers to the defender strategy rT0�T3�T2�T1�T0x.
x3 refers to the defender strategy rT0�T1�T2�T0x. Finally, x4 refers to the defender strategy rT0�T2�T0x. Patrolling
time at each target set to 3 minutes.

Attacker

Target T0 Target T1 Target T2 Target T3

Defender

x0 4.568 5.244 4.432 11.254
x1 4.786 4.674 4.552 11.429
x2 4.684 8.228 8.260 11.420
x3 5.120 4.094 4.588 16.679
x4 4.456 4.952 4.512 9.279

Table A.10: Patrol efficiency for each attacker-defender strategy pair. x0 refers to the defender strategy rT0�T1�T0x.
x1 refers to the defender strategy rT0�T2�T1�T0x. x2 refers to the defender strategy rT0�T3�T2�T1�T0x. x3 refers
to the defender strategy rT0�T1�T2�T0x. Finally, x4 refers to the defender strategy rT0�T2�T0x. Patrolling time at
each target set to 3 minutes.

Attacker

Target T0 Target T1 Target T2 Target T3

Defender

x0 0.128 0.472 0.566 0.350
x1 0.112 0.522 0.546 0.358
x2 0 0.186 0.212 0.368
x3 0.034 0.576 0.554 0.104
x4 0.178 0.500 0.570 0.448
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Table A.11: Payoff matrix in normal form game. Patrolling time at each target set to 3 minutes.

Attacker
T0 T1 T2 T3

Defender

x0 ��3.3986,3.3986� ��0.2937,0.2937� ��1.9235,1.9235� ��7.3151,7.3151�
x1 ��3.7139,3.7139� �0.2057,�0.2057� �0.4188,�0.4188� ��7.3373,7.3373�
x2 ��4.6840,4.6840� ��5.1672,5.1672� ��4.7578,4.7578� ��3.0149,3.0149�
x3 ��4.7718,4.7718� �0.6223,�0.6223� �0.4955,�0.4955� ��14.9447,14.9447�
x4 ��2.8697,2.8697� ��2.4760,2.4760� �0.6317,�0.6317� ��5.1218,5.1218�

Optimal strategies for both players:

– Defender:

� 55.14 % of the times pure strategy x2 � rT0�T3�T2�T1�T0x.
� 44.86 % of the times pure strategy x4 � rT0�T2�T0x

– Attacker:

� Attack target T3.

– Payoff values:

� Defender: R = 0.5514� ��3.0149��0.4486� ��5.1218���3.9611.
� Attacker: Q = 0.5514� �3.0149��0.4486� �5.1218�� 3.9611.

• 4 minutes:

Table A.12: Average number of human casualties for each attacker-defender strategy pair. x0 refers to the defender strategy
rT0�T1�T0x. x1 refers to the defender strategy rT0�T2�T1�T0x. x2 refers to the defender strategy rT0�T3�T2�T1�T0x.
x3 refers to the defender strategy rT0�T1�T2�T0x. Finally, x4 refers to the defender strategy rT0�T2�T0x. Patrolling
time at each target set to 4 minutes.

Attacker

Target T0 Target T1 Target T2 Target T3

Defender

x0 4.926 4.552 4.246 14.744
x1 4.930 4.226 4.458 14.666
x2 4.962 4.216 4.098 17.536
x3 4.916 4.482 4.852 14.326
x4 4.548 4.540 4.534 9.820

Table A.13: Patrol efficiency for each attacker-defender strategy pair. x0 refers to the defender strategy rT0�T1�T0x.
x1 refers to the defender strategy rT0�T2�T1�T0x. x2 refers to the defender strategy rT0�T3�T2�T1�T0x. x3 refers
to the defender strategy rT0�T1�T2�T0x. Finally, x4 refers to the defender strategy rT0�T2�T0x. Patrolling time at
each target set to 4 minutes.

Attacker

Target T0 Target T1 Target T2 Target T3

Defender

x0 0.068 0.540 0.578 0.148
x1 0.056 0.548 0.562 0.254
x2 0.022 0.560 0.576 0.036
x3 0.0 0.530 0.550 0.156
x4 0.150 0.540 0.558 0.418



A.5. Experiments & Results 81

Table A.14: Payoff matrix in normal form game. Patrolling time at each target set to 4 minutes.

Attacker
T0 T1 T2 T3

Defender

x0 ��4.2561,4.2561� �0.3642,�0.3642� ��1.7918,1.7918� ��12.5619,12.5619�
x1 ��4.3778,4.3778� �0.4057,�0.4057� �0.5528,�0.5528� ��10.9408,10.9408�
x2 ��4.7437,4.74367� �0.5059,�0.5059� �0.6229,�0.6229� ��16.2734,16.2734�
x3 ��4.9160,4.9160� �0.2689,�0.2689� �0.4852,�0.4852� ��12.0911,12.0911�
x4 ��3.1836,3.1836� ��2.0884,2.0884� �0.5259,�0.5259� ��5.7152,5.7152�

Optimal strategies for both players:

– Defender:

� Pure strategy x4 � rT0�T2�T0x
– Attacker:

� Attack target T3.

– Payoff values:

� Defender: R = �5.7152.
� Attacker: Q = 5.7152.

• 5 minutes:

Table A.15: Average number of human casualties for each attacker-defender strategy pair. x0 refers to the defender strategy
rT0�T1�T0x. x1 refers to the defender strategy rT0�T2�T1�T0x. x2 refers to the defender strategy rT0�T3�T2�T1�T0x.
x3 refers to the defender strategy rT0�T1�T2�T0x. Finally, x4 refers to the defender strategy rT0�T2�T0x. Patrolling
time at each target set to 5 minutes.

Attacker

Target T0 Target T1 Target T2 Target T3

Defender

x0 4.402 4.982 4.642 10.050
x1 4.436 5.314 4.206 10.148
x2 4.832 6.514 6.392 11.834
x3 4.354 5.396 4.424 9.560
x4 4.214 5.410 4.986 10.052

Table A.16: Patrol efficiency for each attacker-defender strategy pair. x0 refers to the defender strategy rT0�T1�T0x.
x1 refers to the defender strategy rT0�T2�T1�T0x. x2 refers to the defender strategy rT0�T3�T2�T1�T0x. x3 refers
to the defender strategy rT0�T1�T2�T0x. Finally, x4 refers to the defender strategy rT0�T2�T0x. Patrolling time at
each target set to 5 minutes.

Attacker

Target T0 Target T1 Target T2 Target T3

Defender

x0 0.212 0.488 0.542 0.408
x1 0.202 0.486 0.592 0.438
x2 0.0 0.360 0.392 0.324
x3 0.210 0.480 0.570 0.442
x4 0.234 0.450 0.506 0.418
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Table A.17: Payoff matrix in normal form game. Patrolling time at each target set to 5 minutes.

Attacker
T0 T1 T2 T3

Defender

x0 ��2.5356,2.5356� ��0.1196,0.1196� ��2.1260,2.1260� ��5.9496,5.9496�
x1 ��2.6439,2.6439� ��0.1487,0.1487� �0.7739,�0.7739� ��5.7033,5.7033�
x2 ��4.8320,4.8320� ��1.8239,1.8239� ��1.3807,1.3806� ��4.1656,4.1656�
x3 ��2.5253,2.5253� ��0.2158,0.2158� �0.6194,�0.6194� ��5.3345,5.3344�
x4 ��2.2418,2.2418� ��2.9755,2.9755� �0.0598,�0.0598� ��5.8503,5.8503�

Optimal strategies for both players:

– Defender:

� 80.83 % of the times pure strategy x2 � rT0�T3�T2�T1�T0x��.
� 19.17 % of the times pure strategy x3 � rT0�T1�T2�T0x

– Attacker:

� Attack target T0.

– Payoff values:

� Defender: R = 0.8083� ��4.8320��0.1917� ��2.5253���4.3897.
� Attacker: Q = 0.8083� �4.8320��0.1917� �2.5253�� 4.3897.

• 6 minutes:

Table A.18: Average number of human casualties for each attacker-defender strategy pair. x0 refers to the defender strategy
rT0�T1�T0x. x1 refers to the defender strategy rT0�T2�T1�T0x. x2 refers to the defender strategy rT0�T3�T2�T1�T0x.
x3 refers to the defender strategy rT0�T1�T2�T0x. Finally, x4 refers to the defender strategy rT0�T2�T0x. Patrolling
time at each target set to 6 minutes.

Attacker

Target T0 Target T1 Target T2 Target T3

Defender

x0 5.166 3.388 4.026 18.072
x1 4.972 3.990 4.230 18.526
x2 4.554 9.612 10.120 7.986
x3 5.048 4.662 4.950 9.668
x4 4.750 4.574 4.838 10.762

Table A.19: Patrol efficiency for each attacker-defender strategy pair. x0 refers to the defender strategy rT0�T1�T0x.
x1 refers to the defender strategy rT0�T2�T1�T0x. x2 refers to the defender strategy rT0�T3�T2�T1�T0x. x3 refers
to the defender strategy rT0�T1�T2�T0x. Finally, x4 refers to the defender strategy rT0�T2�T0x. Patrolling time at
each target set to 6 minutes.

Attacker

Target T0 Target T1 Target T2 Target T3

Defender

x0 0.010 0.622 0.608 0.014
x1 0.0 0.594 0.574 0.0
x2 0.044 0.072 0.078 0.524
x3 0.002 0.548 0.536 0.432
x4 0.114 0.534 0.546 0.368
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Table A.20: Payoff matrix in normal form game. Patrolling time at each target set to 6 minutes.

Attacker
T0 T1 T2 T3

Defender

x0 ��5.0627,5.0627� �0.8267,�0.8267� ��1.5782,1.5782� ��17.8190,17.8190�
x1 ��4.9720,4.9720� �0.7501,�0.7501� �0.6260,�0.6260� ��18.5260,18.5260�
x2 ��4.1532,4.1532� ��8.2278,8.2278� ��8.5413,8.5413� �0.3833,�0.3833�
x3 ��5.0278,5.0278� �0.4476,�0.4476� �0.3564,�0.3564� ��5.4914,5.4914�
x4 ��3.6670,3.6670� ��2.1315,2.1315� �0.4451,�0.4451� ��6.8013,6.8013�

Optimal strategies for both players:

– Defender:

� 36.4 % of the times pure strategy x2 � rT0�T3�T2�T1�T0x.
� 12.80 % of the times pure strategy x3 � rT0�T1�T2�T0x
� 50.80 % of the times pure strategy x4 � rT0�T2�T0x

– Attacker:

� Attack target T1.

– Payoff values:

� Defender: R = 0.3640� ��8.2278��0.1280� �0.4475��0.5080� ��2.1315���4.020.
� Attacker: Q = 0.3640� �8.2278��0.1280� ��0.4475��0.5080� �2.1315�� 4.020.

• 7 minutes:

Table A.21: Average number of human casualties for each attacker-defender strategy pair. x0 refers to the defender strategy
rT0�T1�T0x. x1 refers to the defender strategy rT0�T2�T1�T0x. x2 refers to the defender strategy rT0�T3�T2�T1�T0x.
x3 refers to the defender strategy rT0�T1�T2�T0x. Finally, x4 refers to the defender strategy rT0�T2�T0x. Patrolling
time at each target set to 7 minutes.

Attacker

Target T0 Target T1 Target T2 Target T3

Defender

x0 4.160 5.178 5.014 9.436
x1 4.896 4.450 4.588 9.966
x2 4.486 4.998 4.470 9.626
x3 5.078 3.968 4.534 18.762
x4 4.186 5.232 4.488 9.694

Table A.22: Patrol efficiency for each attacker-defender strategy pair. x0 refers to the defender strategy rT0�T1�T0x.
x1 refers to the defender strategy rT0�T2�T1�T0x. x2 refers to the defender strategy rT0�T3�T2�T1�T0x. x3 refers
to the defender strategy rT0�T1�T2�T0x. Finally, x4 refers to the defender strategy rT0�T2�T0x. Patrolling time at
each target set to 7 minutes.

Attacker

Target T0 Target T1 Target T2 Target T3

Defender

x0 0.220 0.502 0.528 0.432
x1 0.092 0.562 0.566 0.394
x2 0.210 0.504 0.552 0.452
x3 0.0 0.588 0.544 0.0
x4 0.216 0.496 0.572 0.438
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Table A.23: Payoff matrix in normal form game. Patrolling time at each target set to 7 minutes.

Attacker
T0 T1 T2 T3

Defender

x0 ��2.3296,2.3296� �0.0207,�0.0207� ��2.3666,2.3666� ��5.3596,5.3596�
x1 ��3.9951,3.9951� �0.5518,�0.5518� �0.6056,�0.6056� ��6.0394,6.0394�
x2 ��2.6019,2.6019� �0.0399,�0.0399� �0.4649,�0.4649� ��0.9241,0.9241�
x3 ��5.0780,5.0780� �0.6984,�0.6984� �0.3989,�0.3989� ��18.7620,18.7620�
x4 ��2.3776,2.3776� ��2.6369,2.6369� �0.6463,�0.6463� ��5.4480,5.4480�

Optimal strategies for both players:

– Defender:
� 35.64 % of the times pure strategy x0 � rT0�T1�T0x.
� 64.36 % of the times pure strategy x2 � rT0�T3�T2�T1�T0x

– Attacker:
� Attack target T3.

– Payoff values:
� Defender: R = 0.3564� ��5.3596��0.6436� ��0.9241���2.5049.
� Attacker: Q = 0.3564� �5.3596��0.6436� �0.9241�� 2.5049.

Analysis:
Table A.24 and Figures A.10, A.11, A.12 and A.13 should be analysed together. Table A.24 shows
a summary of the optimal strategy for each player with varying patrolling time at each target.
These optimal strategies arose from the agent-based results, namely, the average number of human
casualties and successful arrest rate of each security patrol, shown in Figures A.10, A.11, A.12
and A.13. Note that the axis scale are different for different attack targets.

Table A.24: Summary of the optimal game-theoretic strategies for both agents for different patrolling time at each target.

Time at each target
1 min 2 min 3 min 4 min 5 min 6 min 7 min

Def. Payoff -3.5802 -4.8612 -3.9611 -5.7152 -4.3897 -4.0200 -2.5049

Def. Strat.
45.67% x2 93.68% x2 55.14% x2

x4
80.83% x2 36.4% x2 35.64% x0

54.33% x4 6.32% x4 44.86% x4 19.17% x3 12.80% x3 64.36% x2
50.80% x4

Att. Payoff 3.5802 4.8612 3.9611 5.7152 4.3897 4.0200 2.5049
Att. Strat. T3 T0 T3 T3 T0 T1 T3

The patrolling time of 7 minutes at each target yields the highest reward for the defender compar-
ing to all other possibilities. This results may be explained as follows. For the optimal attacker
strategy (target T3), the two optimal patrol alternatives yield the lowest average number of human
casualties and are amongst the strategies with higher patrol efficiency. Therefore, higher arrest
rates lead to less human fatalities which is the desirable outcome for the security officer. The
higher successful arrest rates are a consequence of the optimal security strategies which patrol
either the security checkpoint (target T3) or the airport entrance (target T0) when the attacker
enters the airport (between 25 to 30 minutes). Even though the airport entrance is not the attack
target, the defender is still able to observe and arrest the attacker since he has to walk across it
in his path toward the security checkpoint.
Furthermore, the airport entrance and the security checkpoint are the most desirable targets for
the attacker. First, the security checkpoint is the location where there is the highest density of
people, thus the potential consequences of a successful attack there may be disastrous. In this
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case, the attacker reward is enhanced. Alternatively, the airport entrance is a location which may
be vulnerable as an attack there is harder for the security officer to detect. This is the case since
it takes almost no time for the attacker to enter the airport and detonate an improvised explosive
device in that area. Consequently, this leads to less time for the security officer to successfully
observe and arrest the attacker.

Overall, patrol strategies x2 and x4 constitute the most favourable strategies for the security
officer. On one hand, strategy x2 covers the four airport targets which may lead to higher arrest
rates since the defender has higher probabilities of patrolling the attack target. On the other
hand, strategy x4 is a strategic strategy as it covers the airport entrance and one of the check-in
areas. From these two locations, the defender is able to observe and arrest an attack at any target
since the attacker has to pass through or close to these areas and may be observed from distance.

Figure A.10 shows that an attack at the airport entrance leads to a lower number of human
casualties since the human density on the airport entrance is smaller, than those on the check-in
areas, which is smaller than those on the security checkpoint location. Figure A.13 confirms that
an attack at the security checkpoint may lead to disastrous consequences with the loss of many
human lives.

Figure A.11 and A.12 show a similar pattern: an area where the average number of casualties
slightly varies for each of the different patrolling times, and an area where the average number of
human casualties for the defender patrol strategy x2, suffers considerable fluctuations for different
patrolling. This may be arise from the fact that the defender strategy x2 is the only strategy
which covers the security checkpoint. Hence, it may lead to scenarios where the security officer is
patrolling the security checkpoint while the attacker enters the airport and attacks any of the other
targets which are left unprotected. While patrolling the security checkpoint, the defender is not
able to detect/observe an attacker at any of the other targets, leaving these locations vulnerable.

In addition, all other patrol strategies, apart from strategy x2, roam around areas of the airport
terminal where the attacker has to pass through to get to his target destination. Thus, the defender
might be able to detect and arrest the attacker from a different location during his path towards
the planed attack location. Therefore, the chances of a successful arrest increase. Consequently,
the average number of human casualties decreases which justifies the region with a low variability
in the average number of human casualties.
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Figure A.10: Average number of casualties for security
patrols with different patrolling time at each target.
Attack target T0. The size of the bubbles varies based
on the efficiency of the security patrol.

x
x
x
x
x

Figure A.11: Average number of casualties for security
patrols with different patrolling time at each target.
Attack target T1. The size of the bubbles varies based
on the efficiency of the security patrol.
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Figure A.12: Average number of casualties for security
patrols with different patrolling time at each target.
Attack target T2. The size of the bubbles varies based
on the efficiency of the security patrol.
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Figure A.13: Average number of casualties for security
patrols with different patrolling time at each target.
Attack target T3. The size of the bubbles varies based
on the efficiency of the security patrol.

Defender observation range: The defender observation range was varied from 5 meter to
15 meter with a step of 1 meter. These values were chosen based on human’s observation range
characteristics. All other parameters were the same as in the baseline setup.

• 5 meter radius:

Table A.25: Average number of human casualties for each attacker-defender strategy pair. x0 refers to the defender strategy
rT0�T1�T0x. x1 refers to the defender strategy rT0�T2�T1�T0x. x2 refers to the defender strategy rT0�T3�T2�T1�T0x.
x3 refers to the defender strategy rT0�T1�T2�T0x. Finally, x4 refers to the defender strategy rT0�T2�T0x. Defender
observation range set to 5 meters.

Attacker

Target T0 Target T1 Target T2 Target T3

Defender

x0 4.706 4.596 8.032 15.560
x1 4.690 6.378 5.886 14.850
x2 4.842 9.192 6.446 16.052
x3 4.664 6.296 5.952 14.506
x4 4.594 7.482 4.526 15.068

Table A.26: Patrol efficiency for each attacker-defender strategy pair. x0 refers to the defender strategy rT0�T1�T0x. x1
refers to the defender strategy rT0�T2�T1�T0x. x2 refers to the defender strategy rT0�T3�T2�T1�T0x. x3 refers to
the defender strategy rT0�T1�T2�T0x. Finally, x4 refers to the defender strategy rT0�T2�T0x. Defender observation
range set to 5 meters.

Attacker

Target T0 Target T1 Target T2 Target T3

Defender

x0 0.142 0.520 0.290 0.158
x1 0.128 0.388 0.392 0.156
x2 0 0.112 0.356 0.170
x3 0.112 0.374 0.466 0.188
x4 0.130 0.304 0.546 0.152
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Table A.27: Payoff matrix in normal form game. Defender observation range set to 5 meters.

Attacker
T0 T1 T2 T3

Defender

x0 ��3.3694,3.3694� �0.1838,�0.1838� ��5.7027,5.7027� ��13.1015,13.1015�
x1 ��3.4894,3.4894� ��1.4287,1.4286� ��1.2714,1.2713� ��12.5334,12.5333�
x2 ��4.8420,4.8420� ��7.1330,7.1330� ��1.8564,1.8564� ��10.5943,10.5943�
x3 ��3.6192,3.6192� ��1.5866,1.5865� ��0.4047,0.4047� ��11.7788,11.7788�
x4 ��3.3995,3.3995� ��5.2074,5.2074� �0.4164,�0.4164� ��12.7776,12.7776�

Optimal strategies for both players:

– Defender:

� Pure strategy x2 � rT0�T3�T2�T1�T0x.
– Attacker:

� Attack target T3.

– Payoff values:

� Defender: R = �10.5943.
� Attacker: Q = 10.5943.

• 6 meter radius:

Table A.28: Average number of human casualties for each attacker-defender strategy pair. x0 refers to the defender strategy
rT0�T1�T0x. x1 refers to the defender strategy rT0�T2�T1�T0x. x2 refers to the defender strategy rT0�T3�T2�T1�T0x.
x3 refers to the defender strategy rT0�T1�T2�T0x. Finally, x4 refers to the defender strategy rT0�T2�T0x. Defender
observation range set to 6 meters.

Attacker

Target T0 Target T1 Target T2 Target T3

Defender

x0 4.580 4.658 5.774 15.098
x1 4.698 5.738 4.776 13.226
x2 4.750 8.186 6.370 15.658
x3 4.566 5.886 5.438 13.906
x4 4.704 7.064 4.662 13.506

Table A.29: Patrol efficiency for each attacker-defender strategy pair. x0 refers to the defender strategy rT0�T1�T0x. x1
refers to the defender strategy rT0�T2�T1�T0x. x2 refers to the defender strategy rT0�T3�T2�T1�T0x. x3 refers to
the defender strategy rT0�T1�T2�T0x. Finally, x4 refers to the defender strategy rT0�T2�T0x. Defender observation
range set to 6 meters.

Attacker

Target T0 Target T1 Target T2 Target T3

Defender

x0 0.132 0.514 0.464 0.222
x1 0.104 0.458 0.536 0.230
x2 0.0 0.204 0.368 0.180
x3 0.120 0.410 0.484 0.200
x4 0.120 0.316 0.526 0.244
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Table A.30: Payoff matrix in normal form game. Defender observation range set to 6 meters.

Attacker
T0 T1 T2 T3

Defender

x0 ��3.3709,3.3709� �0.1304,�0.1304� ��3.0949,3.0949� ��11.7462,11.7462�
x1 ��3.7208,3.7208� ��0.4820,0.4820� �0.3439,�0.3439� ��10.1840,10.1840�
x2 ��4.7500,4.7500� ��4.8461,4.8461� ��1.6817,1.6817� ��10.0211,10.0211�
x3 ��3.4702,3.4702� ��1.0595,1.0595� ��0.1740,0.1740� ��11.1248,11.1248�
x4 ��3.5750,3.5750� ��4.8318,4.8318� �0.2424,�0.2424� ��10.2105,10.2105�

Optimal strategies for both players:

– Defender:

� Pure strategy x2 � rT0�T3�T2�T1�T0x.
– Attacker:

� Attack target T3.

– Payoff values:

� Defender: R23 ��10.0211.
� Attacker: Q23 = 10.0211.

• 7 meter radius:

Table A.31: Average number of human casualties for each attacker-defender strategy pair. x0 refers to the defender strategy
rT0�T1�T0x. x1 refers to the defender strategy rT0�T2�T1�T0x. x2 refers to the defender strategy rT0�T3�T2�T1�T0x.
x3 refers to the defender strategy rT0�T1�T2�T0x. Finally, x4 refers to the defender strategy rT0�T2�T0x. Defender
observation range set to 7 meters.

Attacker

Target T0 Target T1 Target T2 Target T3

Defender

x0 4.484 4.538 5.018 14.808
x1 4.486 5.424 4.998 12.496
x2 4.750 7.428 6.550 14.742
x3 4.574 5.124 4.636 12.778
x4 4.234 5.984 4.486 11.586

Table A.32: Patrol efficiency for each attacker-defender strategy pair. x0 refers to the defender strategy rT0�T1�T0x. x1
refers to the defender strategy rT0�T2�T1�T0x. x2 refers to the defender strategy rT0�T3�T2�T1�T0x. x3 refers to
the defender strategy rT0�T1�T2�T0x. Finally, x4 refers to the defender strategy rT0�T2�T0x. Defender observation
range set to 7 meters.

Attacker

Target T0 Target T1 Target T2 Target T3

Defender

x0 0.122 0.550 0.530 0.216
x1 0.130 0.476 0.514 0.272
x2 0 0.280 0.348 0.218
x3 0.132 0.492 0.550 0.300
x4 0.158 0.442 0.566 0.326
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Table A.33: Payoff matrix in normal form game. Defender observation range set to 7 meters.

Attacker
T0 T1 T2 T3

Defender

x0 ��3.3899,3.3899� �0.4538,�0.4538� ��2.3585,2.3585� ��11.6095,11.6095�
x1 ��3.3197,3.3197� ��0.2604,0.2604� �0.1399,�0.1399� ��9.0971,9.0971�
x2 ��4.7500,4.7500� ��3.2683,3.2683� ��1.9912,1.9912� ��8.3145,8.3145�
x3 ��3.3664,3.3664� ��0.0820,0.0820� �0.4636,�0.4636� ��8.9446,8.9446�
x4 ��2.8961,2.8961� ��3.3391,3.3391� �0.5922,�0.5922� ��7.8090,7.8090�

Optimal strategies for both players:

– Defender:

� Pure strategy x4 � rT0�T2�T0x.
– Attacker:

� Attack target T3.

– Payoff values:

� Defender: R43 ��7.8090.
� Attacker: Q43 = 7.8090.

• 8 meter radius:

Table A.34: Average number of human casualties for each attacker-defender strategy pair. x0 refers to the defender strategy
rT0�T1�T0x. x1 refers to the defender strategy rT0�T2�T1�T0x. x2 refers to the defender strategy rT0�T3�T2�T1�T0x.
x3 refers to the defender strategy rT0�T1�T2�T0x. Finally, x4 refers to the defender strategy rT0�T2�T0x. Defender
observation range set to 8 meters.

Attacker

Target T0 Target T1 Target T2 Target T3

Defender

x0 4.788 4.564 4.762 15.384
x1 4.654 5.434 4.900 12.774
x2 4.974 7.206 6.574 14.874
x3 4.626 4.900 4.700 11.806
x4 4.680 5.616 4.880 11.816

Table A.35: Patrol efficiency for each attacker-defender strategy pair. x0 refers to the defender strategy rT0�T1�T0x. x1
refers to the defender strategy rT0�T2�T1�T0x. x2 refers to the defender strategy rT0�T3�T2�T1�T0x. x3 refers to
the defender strategy rT0�T1�T2�T0x. Finally, x4 refers to the defender strategy rT0�T2�T0x. Defender observation
range set to 8 meters.

Attacker

Target T0 Target T1 Target T2 Target T3

Defender

x0 0.116 0.530 0.526 0.188
x1 0.108 0.482 0.538 0.250
x2 0.0 0.304 0.356 0.242
x3 0.110 0.488 0.554 0.320
x4 0.122 0.458 0.536 0.320
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Table A.36: Payoff matrix in normal form game. Defender observation range set to 8 meters.

Attacker
T0 T1 T2 T3

Defender

x0 ��3.6772,3.6772� �0.2738,�0.2738� ��2.2572,2.2572� ��12.4918,12.4918�
x1 ��3.6487,3.6487� ��0.1956,0.1956� �0.3724,�0.3724� ��9.5805,9.5805�
x2 ��4.9740,4.9740� ��2.8248,2.8248� ��1.8933,1.8933� ��7.6750,7.6750�
x3 ��3.6083,3.6083� ��0.1176,0.1176� �0.5076,�0.5076� ��8.0281,8.0281�
x4 ��3.5381,3.5381� ��3.0439,3.0439� �0.3514,�0.3514� ��8.0349,8.0349�

Optimal strategies for both players:

– Defender:

� Pure strategy x2 � rT0�T3�T2�T1�T0x.
– Attacker:

� Attack target T3.

– Payoff values:

� Defender: R23 ��7.6750.
� Attacker: Q23 = 7.6750.

• 9 meter radius:

Table A.37: Average number of human casualties for each attacker-defender strategy pair. x0 refers to the defender strategy
rT0�T1�T0x. x1 refers to the defender strategy rT0�T2�T1�T0x. x2 refers to the defender strategy rT0�T3�T2�T1�T0x.
x3 refers to the defender strategy rT0�T1�T2�T0x. Finally, x4 refers to the defender strategy rT0�T2�T0x. Defender
observation range set to 9 meters.

Attacker

Target T0 Target T1 Target T2 Target T3

Defender

x0 4.830 4.300 4.426 14.816
x1 4.730 5.038 4.196 11.434
x2 4.800 7.066 6.822 12.432
x3 4.674 4.810 4.604 11.784
x4 4.650 5.676 4.844 10.332

Table A.38: Patrol efficiency for each attacker-defender strategy pair. x0 refers to the defender strategy rT0�T1�T0x. x1
refers to the defender strategy rT0�T2�T1�T0x. x2 refers to the defender strategy rT0�T3�T2�T1�T0x. x3 refers to
the defender strategy rT0�T1�T2�T0x. Finally, x4 refers to the defender strategy rT0�T2�T0x. Defender observation
range set to 9 meters.

Attacker

Target T0 Target T1 Target T2 Target T3

Defender

x0 0.108 0.542 0.554 0.228
x1 0.092 0.498 0.574 0.308
x2 0.0 0.302 0.344 0.304
x3 0.116 0.492 0.544 0.346
x4 0.136 0.456 0.534 0.376
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Table A.39: Payoff matrix in normal form game. Defender observation range set to 9 meters.

Attacker
T0 T1 T2 T3

Defender

x0 ��3.7867,3.7867� �0.3612,�0.3612� ��1.9740,1.9740� ��11.4380,11.4380�
x1 ��3.8597,3.8597� ��0.0202,0.0202� �0.6210,�0.6210� ��7.9123,7.9123�
x2 ��4.8000,4.8000� ��2.7981,2.7981� ��2.1285,2.1285� ��4.8733,4.8733�
x3 ��3.5896,3.5896� ��0.0770,0.0770� �0.4052,�0.4052� ��7.7067,7.7067�
x4 ��3.3852,3.3852� ��3.0877,3.0877� �0.3294,�0.3294� ��6.4472,6.4472�

Optimal strategies for both players:

– Defender:

� Pure strategy x2 � rT0�T3�T2�T1�T0x.
– Attacker:

� Attack target T3.

– Payoff values:

� Defender: R23 ��4.8733.
� Attacker: Q23 = 4.8733.

• 10 meter radius: Baseline case. Results are shown in Section A.5.2 and Section A.5.3.

• 11 meter radius:

Table A.40: Average number of human casualties for each attacker-defender strategy pair. x0 refers to the defender strategy
rT0�T1�T0x. x1 refers to the defender strategy rT0�T2�T1�T0x. x2 refers to the defender strategy rT0�T3�T2�T1�T0x.
x3 refers to the defender strategy rT0�T1�T2�T0x. Finally, x4 refers to the defender strategy rT0�T2�T0x. Defender
observation range set to 11 meters.

Attacker

Target T0 Target T1 Target T2 Target T3

Defender

x0 4.882 4.288 4.418 14.632
x1 4.660 4.342 4.604 11.908
x2 4.792 6.728 7.012 11.860
x3 4.448 4.858 4.718 11.176
x4 4.386 5.026 5.002 10.092

Table A.41: Patrol efficiency for each attacker-defender strategy pair. x0 refers to the defender strategy rT0�T1�T0x. x1
refers to the defender strategy rT0�T2�T1�T0x. x2 refers to the defender strategy rT0�T3�T2�T1�T0x. x3 refers to
the defender strategy rT0�T1�T2�T0x. Finally, x4 refers to the defender strategy rT0�T2�T0x. Defender observation
range set to 11 meters.

Attacker

Target T0 Target T1 Target T2 Target T3

Defender

x0 0.098 0.560 0.558 0.220
x1 0.096 0.556 0.556 0.284
x2 0.040 0.324 0.322 0.326
x3 0.188 0.528 0.566 0.384
x4 0.194 0.512 0.528 0.402
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Table A.42: Payoff matrix in normal form game. Defender observation range set to 11 meters.

Attacker
T0 T1 T2 T3

Defender

x0 ��3.9251,3.9251� �0.5146,�0.5146� ��1.9528,1.9528� ��11.4130,11.4130�
x1 ��3.7653,3.7653� �0.4863,�0.4863� �0.5157,�0.5157� ��8.5261,8.5261�
x2 ��4.4086,4.4086� ��2.3683,2.3683� ��2.4963,2.4963� ��4.1273,4.1273�
x3 ��2.7756,2.7756� �0.2720,�0.2720� �0.6228,�0.6228� ��6.8844,6.8844�
x4 ��2.6842,2.6842� ��2.4527,2.4527� �0.2801,�0.2801� ��6.0350,6.0350�

– Defender:

� 92.25 % of the times pure strategy x2 � rT0�T3�T2�T1�T0x.
� 7.75% of the times pure strategy x4 � rT0�T2�T0x.

– Attacker:

� Attack target T0.

– Payoff value:

� Defender: R = 0.9225� ��4.4086��0.0775� ��2.6842���4.2751.

� Attacker: Q = 0.9225� �4.4086��0.0775� �2.6842�� 4.2751.

• 12 meter radius:

Table A.43: Average number of human casualties for each attacker-defender strategy pair. x0 refers to the defender strategy
rT0�T1�T0x. x1 refers to the defender strategy rT0�T2�T1�T0x. x2 refers to the defender strategy rT0�T3�T2�T1�T0x.
x3 refers to the defender strategy rT0�T1�T2�T0x. Finally, x4 refers to the defender strategy rT0�T2�T0x. Defender
observation range set to 12 meters.

Attacker

Target T0 Target T1 Target T2 Target T3

Defender

x0 4.594 4.626 4.806 13.354
x1 4.490 4.424 4.468 10.502
x2 4.728 6.700 7.160 12.152
x3 4.334 4.352 4.674 11.336
x4 4.388 4.720 4.898 9.380

Table A.44: Patrol efficiency for each attacker-defender strategy pair. x0 refers to the defender strategy rT0�T1�T0x. x1
refers to the defender strategy rT0�T2�T1�T0x. x2 refers to the defender strategy rT0�T3�T2�T1�T0x. x3 refers to
the defender strategy rT0�T1�T2�T0x. Finally, x4 refers to the defender strategy rT0�T2�T0x. Defender observation
range set to 12 meters.

Attacker

Target T0 Target T1 Target T2 Target T3

Defender

x0 0.120 0.520 0.516 0.268
x1 0.132 0.540 0.542 0.350
x2 0.036 0.316 0.314 0.316
x3 0.190 0.552 0.544 0.372
x4 0.176 0.532 0.530 0.442
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Table A.45: Payoff matrix in normal form game. Defender observation range set to 12 meters.

Attacker
T0 T1 T2 T3

Defender

x0 ��3.4914,3.4914� �0.1850,�0.1850� ��2.3261,2.3261� ��9.7751,9.7751�
x1 ��3.3046,3.3046� �0.3539,�0.3539� �0.3753,�0.3753� ��6.8263,6.8263�
x2 ��4.3876,4.3876� ��2.4656,2.4656� ��2.6635,2.6635� ��4.4719,4.4719�
x3 ��2.6871,2.6871� �0.4526,�0.4526� �0.4113,�0.4113� ��7.1190,7.1190�
x4 ��2.8434,2.8434� ��2.2090,2.2090� �0.2939,�0.2939� ��5.2340,5.2340�

Optimal strategies for both players:

– Defender:

� Pure strategy x2 � rT0�T3�T2�T1�T0x.
– Attacker:

� Attack target T3.

– Payoff value:

� Defender: R = �4.4719.
� Attacker: Q = 4.4719.

• 13 meter radius:

Table A.46: Average number of human casualties for each attacker-defender strategy pair. x0 refers to the defender strategy
rT0�T1�T0x. x1 refers to the defender strategy rT0�T2�T1�T0x. x2 refers to the defender strategy rT0�T3�T2�T1�T0x.
x3 refers to the defender strategy rT0�T1�T2�T0x. Finally, x4 refers to the defender strategy rT0�T2�T0x. Defender
observation range set to 13 meters.

Attacker

Target T0 Target T1 Target T2 Target T3

Defender

x0 4.146 4.372 4.472 12.024
x1 4.262 5.040 5.344 10.992
x2 4.710 7.066 7.130 11.606
x3 4.326 4.096 4.638 10.756
x4 4.384 4.766 5.158 9.986

Table A.47: Patrol efficiency for each attacker-defender strategy pair. x0 refers to the defender strategy rT0�T1�T0x. x1
refers to the defender strategy rT0�T2�T1�T0x. x2 refers to the defender strategy rT0�T3�T2�T1�T0x. x3 refers to
the defender strategy rT0�T1�T2�T0x. Finally, x4 refers to the defender strategy rT0�T2�T0x. Defender observation
range set to 13 meters.

Attacker

Target T0 Target T1 Target T2 Target T3

Defender

x0 0.226 0.558 0.552 0.330
x1 0.216 0.506 0.492 0.326
x2 0.044 0.300 0.296 0.336
x3 0.220 0.592 0.570 0.406
x4 0.182 0.522 0.506 0.418
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Table A.48: Payoff matrix in normal form game. Defender observation range set to 13 meters.

Attacker
T0 T1 T2 T3

Defender

x0 ��2.2720,2.2720� �0.5072,�0.5072� ��2.0035,2.0035� ��8.0561,8.0561�
x1 ��2.4208,2.4208� �0.0605,�0.0605� ��0.0855,0.0855� ��7.4086,7.4086�
x2 ��4.2955,4.2955� ��2.8264,2.8264� ��2.9091,2.9091� ��3.8068,3.8068�
x3 ��2.4226,2.4226� �0.7537,�0.7537� �0.6493,�0.6493� ��6.3891,6.3891�
x4 ��2.7882,2.7882� ��2.2781,2.2781� �0.0620,�0.0620� ��5.8119,5.8119�

Optimal strategies for both players:

– Defender:

� 86.08 % of the times pure strategy x2 � rT0�T3�T2�T1�T0x.
� 13.92% of the times pure strategy x4 � rT0�T2�T0x.

– Attacker:

� Attack target T3.

– Payoff values:

� Defender: R = 0.8608� ��3.8068��0.1392� ��5.8119���4.0858
� Attacker: Q = 0.8608� �3.8068��0.1392� �5.8119�� 4.0858.

• 14 meter radius:

Table A.49: Average number of human casualties for each attacker-defender strategy pair. x0 refers to the defender strategy
rT0�T1�T0x. x1 refers to the defender strategy rT0�T2�T1�T0x. x2 refers to the defender strategy rT0�T3�T2�T1�T0x.
x3 refers to the defender strategy rT0�T1�T2�T0x. Finally, x4 refers to the defender strategy rT0�T2�T0x. Defender
observation range set to 14 meters.

Attacker

Target T0 Target T1 Target T2 Target T3

Defender

x0 4.310 4.714 4.850 11.894
x1 4.270 4.386 5.178 9.584
x2 4.652 7.088 7.288 11.194
x3 4.408 4.740 5.158 10.294
x4 4.534 4.702 5.234 9.930

Table A.50: Patrol efficiency for each attacker-defender strategy pair. x0 refers to the defender strategy rT0�T1�T0x. x1
refers to the defender strategy rT0�T2�T1�T0x. x2 refers to the defender strategy rT0�T3�T2�T1�T0x. x3 refers to
the defender strategy rT0�T1�T2�T0x. Finally, x4 refers to the defender strategy rT0�T2�T0x. Defender observation
range set to 14 meters.

Attacker

Target T0 Target T1 Target T2 Target T3

Defender

x0 0.184 0.538 0.526 0.346
x1 0.222 0.560 0.530 0.420
x2 0.042 0.296 0.294 0.360
x3 0.174 0.528 0.508 0.414
x4 0.176 0.534 0.514 0.430
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Table A.51: Payoff matrix in normal form game. Defender observation range set to 14 meters.

Attacker
T0 T1 T2 T3

Defender

x0 ��2.7239,2.7239� �0.3583,�0.3583� ��2.2989,2.2989� ��7.7787,7.7787�
x1 ��2.3741,2.3741� �0.5263,�0.5263� �0.3107,�0.3107� ��5.5587,5.5587�
x2 ��4.2612,4.2612� ��2.8919,2.8919� ��3.0027,3.0027� ��3.1343,3.1343�
x3 ��2.8740,2.8740� �0.2654,�0.2654� �0.0825,�0.0825� ��6.0323,6.0323�
x4 ��2.9380,2.9380� ��2.1911,2.1911� �0.1466,�0.1466� ��5.6601,5.6601�

Optimal strategies for both players:

– Defender:

� 26.14 % of the times pure strategy x1 � rT0�T2�T1�T0x.
� 73.86% of the times pure strategy x2 � rT0�T3�T2�T1�T0x.

– Attacker:

� Attack target T0.

– Payoff values:

� Defender: R = 0.2614� ��2.3741��0.7386� ��4.2612���3.7679
� Attacker: Q = 0.2614� �2.3741��0.7386� �4.2612�� 3.7679.

• 15 meter radius:

Table A.52: Average number of human casualties for each attacker-defender strategy pair. x0 refers to the defender strategy
rT0�T1�T0x. x1 refers to the defender strategy rT0�T2�T1�T0x. x2 refers to the defender strategy rT0�T3�T2�T1�T0x.
x3 refers to the defender strategy rT0�T1�T2�T0x. Finally, x4 refers to the defender strategy rT0�T2�T0x. Defender
observation range set to 15 meters.

Attacker

Target T0 Target T1 Target T2 Target T3

Defender

x0 4.354 4.844 5.008 10.820
x1 4.562 4.802 5.278 10.052
x2 4.784 7.282 7.450 11.362
x3 4.452 4.506 5.058 10.362
x4 4.540 4.424 4.936 9.348

Table A.53: Patrol efficiency for each attacker-defender strategy pair. x0 refers to the defender strategy rT0�T1�T0x. x1
refers to the defender strategy rT0�T2�T1�T0x. x2 refers to the defender strategy rT0�T3�T2�T1�T0x. x3 refers to
the defender strategy rT0�T1�T2�T0x. Finally, x4 refers to the defender strategy rT0�T2�T0x. Defender observation
range set to 15 meters.

Attacker

Target T0 Target T1 Target T2 Target T3

Defender

x0 0.196 0.520 0.514 0.390
x1 0.180 0.524 0.504 0.416
x2 0.040 0.278 0.278 0.342
x3 0.172 0.550 0.528 0.428
x4 0.164 0.556 0.534 0.454
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Table A.54: Payoff matrix in normal form game. Defender observation range set to 15 meters.

Attacker
T0 T1 T2 T3

Defender

x0 ��2.6472,2.6472� �0.1938,�0.1938� ��2.4339,2.4339� ��6.6002,6.6002�
x1 ��2.9197,2.9197� �0.2305,�0.2305� �0.0422,�0.0422� ��5.8704,5.8704�
x2 ��4.4013,4.4013� ��3.2332,3.2332� ��3.3078,3.3078� ��3.5904,3.5904�
x3 ��2.9205,2.9205� �0.4506,�0.4506� �0.2832,�0.2832� ��5.9271,5.9271�
x4 ��3.0509,3.0509� ��1.9643,1.9643� �0.3357,�0.3357� ��5.1040,5.1040�

Optimal strategies for both players:

– Defender:
� 71.69% of the times pure strategy x2 � rT0�T3�T2�T1�T0x.
� 28.31% of the times pure strategy x4 � rT0�T2�T0x.

– Attacker:
� Attack target T0.

– Payoff values:
� Defender: R = 0.7169� ��4.4013��0.2831� ��3.0509���4.0189
� Attacker: Q = 0.7169� �4.4013��0.2831� �3.0509�� 4.0189.

Analysis:
Tables A.55 and A.56, and Figures A.14, A.15, A.16 and A.17 should be analysed altogether.

Table A.24 shows a summary of the optimal strategy for each player with different observation range.
These optimal strategies arose from the agent-based results, namely, the average number of human
casualties and successful arrest rate of each security patrol, shown in Figures A.14, A.15, A.16 and
A.17. Note that the axis scale are different for different attack targets.

Table A.55: Summary of the optimal game-theoretic strategies for both players with defender observation range varying
from 5 meters to 10 meters.

Defender observation range
5 m. 6 m. 7 m. 8 m. 9 m. 10m.

Def. Payoff -10.5943 -10.0211 -7.8090 -7.6750 -4.8733 -4.8612

Def. Strat. x2 x2 x4 x2 x2
96.68% x2
6.32% x4

Att. Payoff 10.5943 10.0211 7.8090 7.6750 4.8733 4.8612
Att. Strat. T3 T3 T3 T3 T3 T0

Table A.56: Summary of the optimal game-theoretic strategies for both players with defender observation range varying
from 11 meters to 15 meters.

Defender observation range
11 m. 12 m. 13 m. 14 m. 15 m.

Def. Payoff -4.2751 -4.4719 -4.0858 -3.7679 -4.0189

Def. Strat. 92.25% x2 x2
86.08% x2 26.14% x2 71.69% x2

7.75% x4 13.92% x4 73.86% x2 28.31% x4
Att. Payoff 4.2751 4.4719 4.0858 3.7679 4.0189
Att. Strat. T0 T3 T3 T0 T0

Table A.55 and Table A.56 show, in general, an increasing trend in the optimal payoff value for
the defender agent as the security observation range increases. Exceptions for the defender observation
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range of 12 meters and 14 meters. This process was expected as a smaller observation range results in
less time for the security officer to evaluate and (potentially) arrest the attacker, since she only starts
to evaluate agents when they are within her observation range.

On the other hand, higher observation ranges give more time to the security officer to evaluate
an agent and assess whether he/she is the attacker or not. Moreover, higher observation range allows
the defender to evaluate more agents as she can start to do at longer distances. Therefore, the chances
of detecting the attacker increase leading to less human casualties. Figure A.17 confirms that the later
reasoning where the average number of human casualties decreases with the increase in the defender
observation range. Important to reinforce, the positive impacts of higher observation range, which can
decrease the average number of human casualties from around 15 to 9. Note that the security checkpoint
is, as in the case of different patrolling times at each target, most of the times the optimal target for
the attacker due to the high density of people on that area.

However, the increase in the defender’s observation range may also lead to a negative effect.
More specifically, having the possibility to observe more agents, the defender may fall into the error
of being busy in wrongly analysing a passenger, while the attacker escapes undetected. Strategy x2 in
Figure A.16 is an example of such behaviour.

Finally, these two patterns can also be observed together in Figures A.15 and A.16 where the
average number of human casualties decreases with the increase of the defender’s observation range
and then, from a certain defender observation range, the average number of human casualties tend to
stabilize or even slightly increases.

Overall, it is important to spread passengers around the airport to avoid high agglomeration
of people and to avail the positive effects of a high defender observation range. In this way, higher
agglomeration of passengers are avoided which increases the probabilities of successfully detecting an
attacker. allow the defender to easily observe the passengers

(m rs)

Figure A.14: Average number of casualties for security
patrols with different defender observation range. At-
tack target T0. The size of the bubbles varies based on
the efficiency of the security patrol.

(m rs)

Figure A.15: Average number of casualties for security
patrols with different defender observation range. At-
tack target T1. The size of the bubbles varies based on
the efficiency of the security patrol.
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(m rs)

Figure A.16: Average number of casualties for security
patrols with different defender observation range. At-
tack target T2. The size of the bubbles varies based on
the efficiency of the security patrol.

(m rs)

Figure A.17: Average number of casualties for security
patrols with different defender observation range. At-
tack target T3. The size of the bubbles varies based on
the efficiency of the security patrol.
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