
An overview of hybrid approaches in Horizontal Federated Learning

EDUARD FILIP , KAITAI LIANG , RUI WANG
TU Delft

Abstract
Federated Learning starts to give a new perspec-
tive regarding the applicability of machine learn-
ing in real-life scenarios. Its main goal is to train
the model while keeping the participants’ data in
their devices, thus guaranteeing the privacy of their
data. One of the main architectures is the Horizon-
tal Federated Learning, which is the most common
one implemented. However, the challenges of the
model (security attacks, data leakage), led to using
some privacy-enhancing elements. Even those have
their own trade-offs that make Federated Learning a
challenge to implement in real-life scenarios (com-
munication cost, training time).
One question may rise up based on the aforemen-
tioned challenges: What if there is a hybrid way
of implementing the Federated Learning so that we
can overcome the challenges of the present imple-
mentations and expand its potential? This paper
aims to answer this by diving into five hybrid mod-
els that use a variety of components for preserving
privacy (Differential Privacy combined with Secure
Multiparty Computation, blockchain) and will be
compared with each other. Based on that, a reader
can get an overview of how the hybrid approach af-
fects the evolution of Horizontal Federated Learn-
ing.

1 Introduction
Artificial Intelligence and Machine Learning reached a highly
developed state in 2016. Yet, the models used until that mo-
ment were based on centralized training data. When it comes
to real-life scenarios, the current models seem to face some
new challenges. The new legal concerns about the users’ pri-
vate data such as GDPR [1] increase the difficulty of acquir-
ing the necessary data to train the models. Another new chal-
lenge is the distribution of data. Organizations may want to
use their data together to train models, however, the structure
is not the same, and not centralized [2]. Google introduced in
2016 the Federated Learning (FL) model, which overcomes
these challenges in the industry [3].

This model can be categorized based on the characteristics
of the data: Horizontal Federated Learning (HFL), Vertical

Federated Learning (VFL) and Federated Transfer Learning
(FTL) [4]. The horizontal model is used in the cases where
the datasets of the participants share the same feature space,
but the space in samples differs. Such architecture is present
in the existing FL algorithms directed to applications in smart
devices or networks containing similar medical information
between different hospitals [2].

While this new approach does expand the usability of AI in
more complex structures, FL presents a new set of vulnerabil-
ities that can be exploited. The main concerning aspects are
security, privacy, and performance. Although the main aim
of the FL model is to preserve privacy, researchers found out
that the gradient descent can be exploited to unveil the private
data provided by a certain participant to train the model [5].
Also, the FL is vulnerable to security attacks such as model
update poisoning, data poisoning, and inference evasion. This
is caused by the fact that the server can observe the individ-
ual updates and interfere with the training process. Another
cause is that the participants can see the global parameters
and thus control their parameter uploads maliciously.[5]

In order to tackle the security and privacy risks of the HFL,
privacy-enhancement tools were investigated and led to two
main ones. One is Homomorphic Encryption (HE), a specific
type of Secure Multiparty Computation (SMC) [6], which al-
lows to perform computations on encrypted data and leads to
a result that, when decrypted, is the same as if the computa-
tions were made on the plain text [7]. This approach is used,
for instance, for training data on the cloud. Its challenge is to
find the right trade-off between accuracy and privacy caused
by evaluating non-linear functions [4]. The other one, Dif-
ferential Privacy (DP), consists of adding noise to the data,
such that the third party cannot easily recover the data trans-
mitted, therefore ensuring privacy. The challenge here is to
find the right trade-off between accuracy and privacy caused
by the complexity of the process in which the other neces-
sary parameters of the DP method are transmitted to obtain
the desired results [8].

The two methods of privacy-preserving in FL, along with
their advantages and disadvantages, led the researchers and
developers to look up for hybrid approaches that can achieve
the privacy-preserving of the FL, as well as exploit the poten-
tial of the two methods. Some researchers ([9, 10] looked into
whether combining a (SMC) algorithm with DP can signifi-
cantly boost the performance of the framework while keep-

1

Delft University of Technology, Bachelor Seminar of Computer Science and Engineering



ing a high level of privacy. Some others tried a protocol that
could bring a high performance while preserving a good level
of privacy ([11]). Other approaches were considered as well,
such as having the privacy level guaranteed by the properties
of the blockchain, thus boosting the performance of the FL
algorithm used to its maximum ([12, 13]).

This paper aims to take a look at the current implementa-
tions of hybrid models for HFL and explore how they per-
form over the state-of-the-art models. The analysis will be
made from three main criteria: privacy level, performance
(e.g. accuracy, model training time complexity), communica-
tion costs and security risks. Also, this paper compares the
studied implementations between each other to identify what
direction is more suitable in the future, as well as what miss-
ing points should be further investigated to make the HFL
more practical in real scenarios.

This paper is organized as follows. Besides the introduc-
tion, we present an overview of the two methods of privacy-
preserving for FL in Section 2, as well as the current security
challenges the HFL is put up against. Section 3 presents the
methodology of the analysis done in this paper, highlighting
what and how the key features of the studied frameworks are
examined. In Section 4, we will analyze five FL models that
use different main components for preserving privacy. The
next section, Section 5, a comparison between these frame-
works is made, obtaining a better perspective over the features
that they have and how they work out in different scenarios.
Here we will also highlight which framework is better from
different standpoints. Next comes Section 6 which tackles
the ethical aspect of the analysis done throughout this paper.
Section 7 discusses what are the remaining open problems for
HFL, as well as future directions for further research. In the
end, Section 8 concludes the paper.

2 Background
In this section, a quick overview of the key concepts that
need a better understanding for our analysis will be presented.
Firstly, an overview will be made about the current challenges
the HFL has regarding security and privacy Then the main
privacy enhancements will be presented, along with their ad-
vantages, disadvantages, and their performances in the state
of the art model. This information will be used in the follow-
ing sections of the paper, since the hybrid models will also
be compared to these frameworks to see whether the hybrid
approach is the next step in the development of the HFL.

2.1 Security threats and privacy risks of HFL
FL, as a model of machine learning, promotes the privacy of
the data of the participants by not needing to take the data
out of the device for training the model. However, recent
work shows that just the model does not provide sufficient pri-
vacy guarantees, as the gradient results received by the cen-
tral server can still reveal sensitive information about the data
used by the user in the model training process [5]. Also, FL is
prone to security attacks that enable the attackers to interfere
and significantly change the performance of the global model.
There are three main types of attacks. The first one is model
update poisoning, in which the attacker can directly manipu-
late the model updates sent to the server. This can be achieved

either by directly changing the updates of a participant or by a
man-in-the-middle attack. The second type is data poisoning,
in which the attacker can only interfere with the participant’s
data, thus leading to erroneous model updates. The last one
is inference evasion, in which the attacker can manipulate the
samples that are fed into the model. This is most visible when
the test inputs are perturbed, thus the model assuming that its
model is not in a good version. For the poisoning attacks,
these can be performed for both targeted attacks (alter the
model’s behavior for a minority of samples) and untargeted
attacks (reduce global model’s accuracy, leading to breaking
the model) [14].

To understand better what vulnerabilities each framework
has, a threat model is shaped when creating an HFL model.
The attacks can be carried out by either insiders or outsiders.
Insiders are the ones that are part of the training process of
the model, while outsiders are the ones who want to interfere
with the communication between participants and the central
server. As for the type of setting of the FL training, we can
have trusted, honest-but-curious or malicious parties (partici-
pants and central server) [5].

2.2 SMC and Homomorphic Encryption
The first privacy-enhancing method used for the state-of-the-
art HFL is Secure Multiparty Computation (SMC). This has
the goal of providing methods for participants to be able to
perform computation on encrypted data. In this way, the in-
puts (the gradient results of the training) remain private. A
specific method of SMC is Homomorphic Encryption (HE),
which can compute over encrypted data without accessing the
secret key. The result, which is still encrypted, can then be
used by the central server, which has the private key, to im-
prove the model. The challenge here is the threshold which
tells that no subset of participants smaller than it is able to
decrypt the shared data given to the central server. [9] The
higher the number, the more complex the calculations get,
thus increasing the training time of the model.

2.3 Differential Privacy
The second privacy-enhancing method is Differential Privacy
(DP), which is a mathematical framework that adds noise to
the data such that third parties cannot distinguish the data.
This guarantees the privacy of the data sent to the central
server. Therefore, it stops an attacker’s ability to infer the
membership of a participant. [9]. However, this comes at a
cost: the performance of the model. The accuracy decreases
the more noise is added (i.e the higher the privacy level, the
lower the accuracy). Also, it requires sending additional data
necessary for processing the result by the central server to
ensure a good accuracy level, thus increasing the communi-
cation costs of the model training [8].

When it comes to the algorithms used to implement DP,
[15] presents the Global Differential Privacy and its perfor-
mance in an FL framework. Here is highlighted a theorem
which shows that there is a need for additional noise terms
(notated nD) to be added by the server in order to satisfy the
desired (ε, δ)-DP requirement. This is affected by the number
of aggregation times and the number of clients. The ’Noising

2



before Aggregation’ FL algorithm, proposed by [15], accom-
plishes the DP requirement by adding noise at both the client
and the server. Its performance was studied on the MNIST
dataset and the results show that the performance of the model
is affected by the following three elements: the protection
level - the lower, the better the performance is; the number of
clients - the larger, the better; the number of maximum aggre-
gation times - the performance can be increased by the larger
number of aggregations, yet the higher variance of the noise
will a negative impact on it. This highlight the challenges that
the HFL models that use DP have, and they will be taken into
account when comparing this model to the hybrid ones.

3 Methodology
This section presents an overview of the main aspects used to
analyze the hybrid models presented in this paper, along with
the meaning and importance of the criteria considered. This
can be considered a literature study, since there was little time
to implement an FL model that can evaluate the performance
of the five analyzed implementations.

Firstly, for each paper, we get a better understanding of
the main components used for preserving privacy and how
the training process works. In this way, the reader can eas-
ily see the main features of the framework and observe the
diversity of the hybrid approaches presented. The next el-
ement analysed is its performance. This can be shaped by
a couple of aspects. Model training represents the speed at
which the machine learning model evolves. One way of an-
alyzing this is the training loss after a certain number of ag-
gregations. Another way of measuring performance is the
computation complexity. Here the algorithm of the frame-
work is analyzed, and based on the privacy-preserving meth-
ods applied to the clients and servers, time complexities can
be calculated. Here the best-effort approach was taken, since
not all the papers had very concrete implementations for both
the server and the client, thus making some estimations for
comparing all the frameworks in all criteria. In this part, we
will also consider the communication cost since it influences
the scalability of the framework. as well as the network over-
head. Lastly, security and privacy will be examined. Here
the threat model will be considered, which shows the level of
privacy guaranteed by the framework, as well as the security
attacks that they can be immune to (e.g collusion, malicious
client, malicious aggregator, whether a trusted third party is
needed or not). We will also identify what are the security
risks that are still open in these implementations.

4 New approaches for FL
When it comes to real applications of the Federated Learning
framework, there are scenarios in which the state-of-the-art
model does not provide enough to make the participants sat-
isfied with the results of the trained model. Therefore scien-
tists looked for methods that can use a combination of com-
ponents so that they can bring the advantages of them in one
place, and even expand the potential of the HFL. In the fol-
lowing part of this section we will present 4 hybrid models,
highlighting the components used to implement them, as well
as their key features.

4.1 A hybrid approach with DP and SMC [9]
This first approach presented in this paper tackles this con-
cept: use SMC and DP to balance the trade-offs that each en-
hancement brings up [9]. The three security aspects that are
addressed with this model at the following: inference dur-
ing the learning process, inference over the output (in case
the model would be deployed as a service after it has been
trained well enough), and trust. The scenario presented in
the paper considers a set of N parties, each one having its
disjoint dataset, and an aggregator. Along with this, the ad-
ditional parameters taken into account for the algorithm are:
fm (the training algorithm), t (minimum number of honest,
non-colluding parties), and ε(the level of differential privacy
that is satisfied). The aggregator runs a learning algorithm
that cosists of k or fewer queries, each one requesting infor-
mation from the N datasets. Each participant will calculate
a response for the query received, encrypt the results using
homomorphic encryption, use a differential privacy depen-
dent on the algorithm to add the necessary amount of noise to
their data, and then send it to the aggregator. Homomorphic
encryption is used to reduce the noise that the DP algorithm
needs to add, thus increasing the performance and accuracy.
In the meantime, the aggregator queries at least N-t+1 partic-
ipants to decrypt the aggregate value, then updates the model.
Once the new version of the model has been made, it is ex-
posed to all the participants. The algorithm is presented for
more analysis in Figure 1.

Based on the algorithm, we can calculate the time com-
plexity of this model. In our case we consider the encryption
step to be O(1), since this can help us get a better perspec-
tive of the architecture of the framework, rather than how it
is affected by the concrete implementations of the privacy-
preserving enhancements. Looking at the algorithm, we can
see that for each step of the entire training (labeled by Qs), we
have O(N) for obtaining the data from all participants, then
O(N − t+ 1) for querying t participants to partially decrypt
the aggregate value. The rest of the parts of the algorithm are
O(1). Therefore, for one step we have the total complexity
of O(2N − t + 1), which shows that it is linear. For an en-
tire training process, the time complexity is O(Nk), based
on the number of queries needed for each fm. Another thing
worth mentioning here is that the communication complexity
is O(2N − t + 1), which shows that we need two cycles of
data transfers: one for the results of the query, and one for the
partially decrypted aggregate value.

This model has been experimented with three learning
models: decision trees (DT), convolutional neural networks
(CNN) and linear Support Vector Machines (SVM). For DT,
the hybrid approach achieves an F1 score of 0.8 and it is kept
at this value when increasing the number of participants, on
the other hand, the local DP significantly decreases, getting
to 0.4 when there are more than 25 participants. For CNN,
MNIST data was used and the performance of the hybrid ap-
proach has a F1-score of 0.9, which is higher than local DP
by 0.2. Also, it is close to the performance of a Central Data
holder model, with an F1 score of 0.95. Lastly, For SVM,
the performance of the hybrid model has an F1-score of 0.87,
which is almost equal to the central DP, while having a higher
score than local DP by 0.1.

3



Figure 1: Algorithm used for implementing FL with DP and SMC

4.2 HybridAplpha [10]
HybridAplha is a model which focuses on improving the
training time of the model while keeping the privacy level
high. This is achieved by using functional encryption as the
main secure multiparty computation (SMC) protocol, along
with DP. One thing that it can do compared to other models
is that it allows dynamic participants, meaning that some can
drop out while others can join without affecting the overall
performance of the model. Also, the training is made using
only one round, excluding the key distribution communica-
tion, which is more efficient than other models.

The framework contains three main components: the par-
ticipants, the aggregator, and a Trusted Third Party (TPA).
The TPA is present due to the use of functional encryption as
the main privacy-preserving enhancement. This component
sets up a master public key and a master private key. These
will be used to derive multiple public keys that will be sent
to the parties that want to participate in the training process.
With the key received, the participants will encrypt the results
of the training with their own dataset.

The HypridAlpha algorithm is as follows. Firstly, there is
the setup stage, where the TPA generates the master public
key and master private key. Then, it derives a large number
of public keys and distributes them to the participants. The
new aspect here, compared to other frameworks, is that it al-
lows new participants to join the training even after it started.
When a new participant wants to join, the TPA will just give
them one of the available public keys that were generated in
the setup stage. The next stage is the learning stage. Here
the aggregator asynchronously queries each participant with a
query to train the given learning algorithm. The participants,
during the training process, add differential privacy noise to
the model parameters, then encrypts the resulting model and
sends it back to the aggregator. Once all the results have been
received, the aggregator requests a key from the TPA based
on the number of participants that joined. In case a participant
drops out, then the aggregator can request a key based on the
number of responses received. Then it will decrypt the set of
results received and update the global model. The detailed
algorithm for further analysis is provided in Figure 2.

When it comes to evaluating the framework, HybridAlpha

Figure 2: Algorithm used for implementing HybridAlpha

was used to train a CNN on the MNIST dataset of handwrit-
ten digits [16]. It was compared to the performance of two
SMC models. When it comes to both the communication
cost and the training time, the theoretical analysis made in
the paper shows that HybridAlpha, compared to SMC mod-
els, has the smallest one, which is O(mn + m + n), m rep-
resenting the number of aggregators, and N the number of
participants. This shows that HybridAlpha has the simplest
aggregation process, which has a great impact on the scala-
bility of the framework. As for the experiments made, it can
be seen that the F1-score of HybridAlpha is close to the 0.9,
which a similar score to other SMC models that also use DP.
When it comes to the training time, HybridAlpha is similar to
an FL without any privacy, which means that the extra privacy
added to the model does not affect significantly the training
time needed. Another element analyzed here is the network
transmission efficiency, which was measured by the volume
of the encrypted parameters sent throughout the network. The
results show that HybridAlpha uses a size 15mb, compared
to 100mb and 140mb that the other models need. This has
a great impact on the efficiency of data transmission, which
helps participants with an unstable connection to be part of
the training process with a smaller chance of dropout.

To improve the security level of the framework, Hybri-
dAlpha implements an inference prevention module, which
solves the threat model of having an honest but curious aggre-
gator. This module is implemented with TPA and it inspects

4



the requests for the key from the aggregator. In this way, the
framework makes sure that the aggregator cannot ask for cer-
tain keys that could lead to revealing the model updates of a
certain participant.

4.3 Turbo-Aggregate [11]
Turbo-aggregate focuses on optimizing the aggregation over-
head of the main server. It manages to reduce it from
quadratic time complexity to O(NlogN). As HybridAlpha,
it is tolerant to the users who drop out in case of poor connec-
tion, thus not affecting the overall performance of the training
model. As the main privacy enhancement component, it uses
an improved version of the secure aggregate protocol, which
is capable of providing up to 40x speedup in running time.

Turbo-aggregate consists of three stages. In the first one,
a multi-group circular aggregation structure is created to en-
able fast model aggregation. Here, a network with N users
is partitioned into L groups. In the second stage, to ensure
the privacy of the participants, the framework uses additive
secret sharing by adding randomness to the resulting models
so that they will be canceled out once all the trained models
are aggregated. This is done to ensure the privacy of the user
models against collusions between the interactive participants
(between users or between users and server). In the last stage,
aggregation redundancy is added by using Lagrange polyno-
mial in the model updates that are passed from one group to
the other. This redundancy can be used to reconstruct the ag-
gregated model even when in the case some users dropped
out during the process.

The framework performs L steps sequentially. In each step,
the users in a specific group encode their inputs, which in-
clude their trained models and the partial results from the pre-
vious groups, and then send them to the next group. The fol-
lowing group recovers the missing data due to dropped users
and then perform an aggregation on the received messages.

The analysis of the time complexity can be extracted based
on the algorithm presented in Figure 3 and the formulas
mentioned in the algorithm, which are further explained and
demonstrated in [11]. For each user in a group, it takes and
O(l) for computing the masked model and generate the en-
coded model (l represents the number of members in the fol-
lowing group), and O(k) for calculating the code aggregate
value and updating the aggregate value (k represents the num-
ber of members in the previous group). The last step, sending
the parameters to the users in the following group, takesO(l).
This totals to O(l + k). Since both l and k represent a parti-
tion of N, they can be replaced by logN . Therefore, the total
time complexity for all users becomes O(NlogN). The fi-
nal aggregation is similar in the approach, with the exception
that all parameters are sent to the main server, thus a simi-
lar time complexity like the one for each group is needed. In
the end, the server computes the aggregation that will update
the global model, which takes O(logN). This shows that the
algorithm has a time complexity of O(NlogN).

Communication-wise, we can see that each user sends k
messages, meaning that it sends their result to all the other
members of the following group. Therefore, for a user, the
total communication cost is O(k). Since k is a partition of
N, it can be rewritten as logN . Therefore, for the total com-

munication cost of the algorithm, it is still O(NlogN). This
shows that the communication cost has been optimized, com-
pared to the state-of-the-art protocol that requires quadratic
cost (i.e. O(N2)).

The performance of the framework is compared to a bench-
mark protocol that represents the performance of the state-of-
the-art secure-aggregation. Two versions of Turbo-Aggregate
are evaluated: Turbo-Aggregate, which is the one just pre-
sented, and Turbo-Aggregate+, which parallelizes the execu-
tion stages. The experiments have been performed over up to
200 users. When comparing the total running time, it can be
seen that Turbo-Aggregate has a 5.8x speedup compared to
the benchmark, while Turbo-Aggregate+ has a 40x speedup.
Also, having an aggregation overhead of O(NlogN) com-
pared to the quadratic complexity significantly improves the
scalability of the framework, which is a key element for real
applications. As for the security aspect, the secure-aggregate
protocol ensures a good level of data privacy. If higher levels
are desired, then DP can be used in the framework.

This framework ensures two important aspects regarding
its privacy and security. The first one is that it guarantees pri-
vacy against up to N/2 colluding users (thus treating the se-
curity threat of honest but curious users). This shows that the
more participants join a training epoch, the higher the privacy
level gets. This is useful in real scenarios where the number
of participants can get to the order of thousands. The other as-
pect is that the privacy of the aggregate of any subset of user
models is guaranteed as long as a collusion between the server
and the participants cannot reveal the aggregation of the ran-
dom masks used by the participants. This is achieved by the
fact that the server knows only N/Nl equations, Nl repre-
senting the number of members in a group, while there are
at least N/2 masks generated by the participants. Therefore,
the server cannot remove the random masks, which solves the
threat model of honest but curious server/aggregate.

Figure 3: Algorithm used for implementing Turbo-Aggregate

5



4.4 BlockFLA [12]
This FL uses blockchain as the main element, however, even
here the scientists go a step further. They use a hybrid
blockchain, using both private and public blockchains to get
the advantages of both in one place and to overcome each
one’s weaknesses. This framework is powerful against model
poisoning attacks since it uses smart contracts to automati-
cally detect, then punish the participants that turn out to be
attackers by giving monetary penalties. Each participant has
a wallet and when they want to update the central model,
they need to pay for it. If it turns out that they were honest
about their involvement, they are awarded and can get more
involved in the process. In case they are attackers, the cen-
tral server can identify them and no longer give them any
’money’ (the model uses Ethereum as their currency of the
transactions). This means that they can no longer contribute
to the training of the model.

This approach contains a couple of key components. The
overall architecture is presented in Figure 4. The partici-
pants in this scheme are the ones who train the model. They
are called ’workers’ and they directly communicate with
both types of blockchain and the Secure Cloud. The private
blockchain performs aggregation and then sends the updated
global model back to the participants. Since aggregation es-
sential part of the model training, having high transaction
throughput performance and low latency is essential, which
is guaranteed by the private blockchain. Also, it ensures pri-
vacy and confidentiality of the transactions made by workers,
which is the key property of FL, so having that by the use
of this component is great. The public blockchain is the one
who hosts smart contracts, In this implementation, Ethereum
is used as the currency, which has low transaction throughput
and high latency on transaction confirmation. The last com-
ponent is the Secure Cloud, which logs all the updates each
worker sent to the private chain during an epoch. This is im-
portant to reinforce the trojan detection process. These are
also useful whenever a worker suspects another participant of
being malicious. They can get one-time access to the logs of
the suspect and perform the trojan detection themselves.

The training process is as follows. In the first step, the
workers send the local parameters resulted from model train-
ing to the private blockchain. This is also logged in the Secure
Cloud. The next step consists of the workers sending the gen-
erated hashes of their local updates to the public blockchain
for verification. In this way, the potential attackers can be
identified and penalized properly. The public blockchain also
rewards honest participants. After that, the private blockchain
aggregates all the local updates received from the involved
workers to generate a global update. In the last step, the new
model is sent back to the workers for the next epoch.

The performance of BlockFLA can be extracted based on
the process itself, as well as some results observed in the ex-
periment made in the paper. The raw performance of the FL
algorithm used in this framework is considered as the one
without any privacy enhancements since there is no need to
use any on top of it. This is the result of the architecture of
the blockchain that achieves the necessary level of privacy the
FL needs. For step 1, the time complexity is O(N), since all
the workers send their parameters to the private chain and the

hashes to the public chain. Then, the aggregation process de-
pends on the aggregation algorithm used. In the paper, the
ones discussed are SignSGD [17] and FedAvg [18]. Out of
these two, SignSGD performs way better than FedAvg, with
a difference in deploy and aggregation time of around 10.5
minutes for 5-10 epochs. However, we will consider the time
complexity of FedAvg, since with SignSGD it was not possi-
ble to implement the attacker detection algorithm. Therefore,
for the aggregation process, we consider the time complexity
as O(1/sqrt(NT ) +N/T ), with T the number of stochastic
updates performed by each worker. [19]. We assumed E = 1
since there is direct communication between the worker and
the private chain, and the throughput is very efficient. There-
fore, the total time isO(N +1/sqrt(NT )+N/T ). Commu-
nication wise, the total time isO(2N), since each worker has
to send messages to both chains.

The performance of the attacker detection algorithm has
also been evaluated. The results show that when identically
and distributed data (IID) is used, the algorithm easily detects
the attackers. However, in the non-IID scenario, the algorithm
also included honest agents. This shows that the algorithm is
useful for identifying the attackers, but other detection algo-
rithms can be used along with this one for better detection.

When it comes to the security of the framework, this frame-
work achieves a couple of things. In the honest but curious
participants threat model, the framework has the attacker de-
tection algorithm, which works at its best if at least 51% of the
participants are honest. In the case an attack has been unde-
tected, the private chain can perform a re-simulation to iden-
tify the malicious data introduced. Then the attacker is penal-
ized properly. The honest but curious aggregator threat model
does not apply to this framework, since it is represented by the
private blockchain that is responsible for ensuring the partic-
ipants are properly authenticated and their updates are kept
safe. Also, attackers cannot change the aggregation process,
thus the private chain can be considered trustworthy.

As for privacy, the data each worker sends to the private
chain is kept safe because each worker has a separate channel
to the main server. This enables strict access control on the
shared data between the worker and the server. Also, only
the participants who are an authorization can join the private
chain, which means that the data is inaccessible to external
users. This ensures that the data cannot be leaked to third
parties. Therefore, the privacy guarantees are of a high level.

4.5 Blockchain empowered Asynchronous FL [13]
This implementation of FL is studied on the Internet of Ve-
hicles (IoV) scenario, to solve the challenges regarding the
bandwidth, security, and privacy of the data shared between
the vehicles for collaborative analysis. The key element here
is using an asynchronous FL along with a hybrid blockchain
mechanism. The blockchain, named PermiDAG, consists of a
main permissioned blockchain and the local Directed Acyclic
Graph (DAG). These are responsible for the synchronous
global aggregation and the asynchronous local training in the
FL model. The advantage of the hybrid blockchain is that it
allows a part of the participating nodes to run the blockchain
effectively. Also, by letting the vehicles store the local DAG
and letting the Road Side Units (RSUs) store the permis-

6



Figure 4: BlockFLA architecture diagram

sioned blockchain, the storage efficiency is significantly im-
proved. The RSU is responsible for optimizing the network
efficiency and enhance security with a malicious IoV detec-
tion algorithm [20]

This framework contains three phases: node selection, lo-
cal training, and global aggregation. The node selection algo-
rithm chooses the nodes with a higher amount of resources to
participate in the federated learning process. This improves
the running efficiency and training accuracy. Once the nodes
are selected, they vote for the delegates (RSUs) that maintain
the permissioned blockchain. In the next one, local training,
the participants, which are the vehicles in this case, train their
local model and send it to the local DAG for verification and
aggregation. The vehicles also retrieve the verified models of
other participants from the local DAG and perform a local ag-
gregation to improve their local model. In the last phase, the
aggregation, the delegates (RSUs) retrieve the local models
from the local DAG and perform a global aggregation. Once
this is completed, the new model will be sent to all delegates.

The performance of the framework is analyzed based on
the algorithm presented in Figure 5, as well as the formulas
presented in the paper. For each vehicle that participates in
the training process, the time complexity is O(1), since all
the steps are constant (lines 4-10). The most time-consuming
step is the computation of the local gradient descent. For
an episode, the total time complexity is O(tP ), where t is
the number of local training rounds made by each vehicle,
and P the number of selected nodes. The steps outside the
loop (lines 12-14) take at most O(P ). For having a final
global model, the total time complexity is O(etP ), where e
is the number of episodes (in the other papers they are called
epochs). In the case of selecting all the participant, the result
becomes O(etN)

The evaluation of the framework is made on the MNIST
dataset. The results are compared to the ones achieved by lo-
cal and centralized CNN models. The accuracy of the frame-
work is similar to a centralized CNN, having very close val-

ues as the number of iterations increases. As for the time cost,
the asynchronous FL performs better, reducing the cost by six
times compared to the centralized CNN. This shows that the
approach is efficient. The aspect to note is that the cost grows
quickly as the network becomes more complex (the number
of RSUs and vehicles rises). Therefore, there may be chal-
lenges regarding its scalability.

Privacy and security are achieved by the implementation
of the hybrid blockchain mechanism. By storing and verify-
ing the model parameters sent by the vehicles, the framework
makes sure that the data is not modified maliciously and also
that they cannot be leaked to the other members in a way
that can lead to the leak of the training data used. However,
there is no discussion regarding whether the aggregator can
be curious, or if some participants collude with the training
data. Some of these concerns may be solved by the use of
blockchain, which by its nature reduces the risk of data leak-
age and gives the participants more control over the access of
the shared data, but further investigation should be made in
that matter.

Figure 5: The Hybrid Blockchain Empowered FL algorithm

7



Table 1: Comparison between the presented frameworks

5 Comparison
Five FL architectures have been presented in the previous sec-
tion. To understand better their potential and how they shape
the evolution of FL, a thorough comparison between them
will be made in this section. The main elements that will be
taken into account are training time complexity, communica-
tion cost, and security threat model. In addition, we will also
discuss the set of features that they have that stand out. A
summary of the comparison is presented in Table 1.

The interesting part, to begin with, is that two frameworks
use a combination of DP and SMC, and two make use of
blockchain. Comparing the first two ones, it can be seen that
their communication cost and training times are quite similar:
they are both linear in regards to the number of participants.
One thing to note is that HybridAlpha treats the dishonest
threat model, which increases the level of security guaran-
teed. Another thing that can be compared is their F1 scores
since they were both tested on the MNIST data. The FL with
DP and SMC has a score of 0.9, while HybridAlpha with
DP has a score of about 0.9. This shows that they are sim-
ilar regarding precision and sensitivity. Another thing worth
noting is that the communication of HybridAlpha is achieved
through one set of messages, compared to two sets of mes-
sages in the other one, since it needs to ask the participants to
decrypt the aggregate value, which can affect the communi-
cation overhead when thousands of participants contribute to
the model training in an epoch.

BlockFLA and PermiDAG both looked for better privacy-
preserving enhancements in the properties of the blockchain
mechanism. Both consider that blockchain enables access
control by the participant over the data shared with the oth-
ers while keeping the attacks to the sent data to a mini-
mum. Although they use different architectures regarding the
blockchain, the complexities are quite similar in regards to the
number of participants. BlockFLA guarantees a higher level
of security and privacy since it has an honest but curious se-
curity threat model. Also, it increases the level of security by
having an attack detection algorithm that works quite well in
certain uniform distributed data scenarios. Communication-
wise, BlockFLA performs slightly better, since there is not
much overhead on the throughput. PermiDAG asks the par-
ticipants to perform local aggregation with the shared param-
eters from the other participants. On the other hand, Block-
FLA uses the private chain that is much more efficient on the
throughput and can easily act as the main aggregator.

Turbo-Aggregate seems the one that stands out from mul-

tiple perspectives. Firstly, it uses a protocol that the others do
not have. It supports DP for extra privacy, but it does not im-
pact its performance signifficantly. Compared to the others,
it can easily be implemented in scenarios in which no main
aggregator is needed (e.g. peer-to-peer networks). Also, with
Turbo-Aggregate+, it can easily parallelize the aggregation
process, while the others perform the global aggregation se-
quentially. Another thing worth mentioning is that it supports
user dropout of up to 50%, which is a feature that HybridAl-
pha also has. The difference is that HybridAlpha also sup-
ports users to join even after the training process started.

Looking at the security threat model, it can be said that
most of the frameworks focus on the honest and curious threat
model. The ones who do not use blockchain mechanisms
even treat the scenario of colluding users, which requires that
the data of the honest users is not revealed even when a certain
amount of users try to work together to reveal that data. In
the frameworks where blockchain was not used, they support
collusion of up to N/2. BlockFLA is a better-suited frame-
work, since it also has a detection algorithm that can penalize
the attacker in case it sends malicious model updates, thus
no longer being able to participate in the following training
epochs. However, HybridAlpha is second on the list, since
it also implements an inference prevention filter, which in-
creases its defense against inference attacks.

As for the time complexity, most of them try to be linear
in regards to the number of participants. The most efficient
one is BlockFLA, since it gets to use the raw performance of
the FL model. This is achieved since the privacy and security
concerns are solved by the combination of private and public
blockchains.

For communication cost, the most efficient is HybridAl-
pha, since it only needs one round of messages for an epoch,
compared to the FL with DP and SMC, which needs three.
Turbo-Aggregate needs one round of messages, but the num-
ber of messages sent is way higher, since each member of
a group has to send messages to all the members of the fol-
lowing group, which can have an impact when thousands of
participants contribute to the model training.

6 Responsible Research
The analysis made throughout this paper has been achieved
by applying a set of key principles. Firstly, the papers consid-
ered had a high number of citations, meaning that the work
done in the papers is recognized. Once the first set of papers
has been selected, we filtered based on the approach taken

8



in the implementation of the FL, as well as the level of de-
tails provided regarding the proposed architecture. This en-
sures that the variety of approaches analyzed in the paper is
large (we have DP combined with SMC, secure aggregation
protocol, blockchain mechanisms), while also being able to
compare similar implementations.

All the calculations of the performance of the presented
models have been made based on analyzing the algorithms,
the results of the experiments, and the formulas provided in
the analyzed papers. Therefore, a good part of them can eas-
ily be replicated. If the paper does not provide such in-depth
data to easily make these calculations, then a rough estimate
is made based on the components used in the framework, the
design of the FL model, the training process, as well as in-
terpreting the results of the experiments. For instance, for
BlockFLA no concrete algorithm is used, therefore the pro-
cess is the main aspect to study for the complexities, along
with the aggregation algorithm used. For the complexity of
the algorithm, an analysis of papers that dived into the algo-
rithm is made.

As for the papers picked for the first sections (introduc-
tion and background), papers with a good amount of citations
were used, which can show that the work presented in them
is believable and of good quality. For definitions and main
concepts, booksm and articles were used to easily present the
concepts to a new reader.

Overall, the literature study presented in this paper helps
the other researchers get an overview of the hybrid ap-
proaches that are implemented, as well as their performance,
trade-offs, security, and privacy levels. Also, this study can
help in identifying new directions of the evolution of HFL.
Therefore, it will have a positive impact on ethical computer
science.

7 The future of the hybrid approaches in HFL
The future for the HFL looks promising. Looking back to
the state-of-the-art implementations with either DP or HE, it
can be seen that their performance was not suitable for real
scenarios. However, the models presented in this paper are
suitable for a variety of cases, such as the IoV, peer-to-peer
network, asynchronous training. The performance of these
frameworks has a significant boost, which is helpful in scala-
bility, network efficiency, and aggregation overhead.

The challenges that still remain tackle the security threats
and attacks. Most of the frameworks presented are able to re-
sist targeted model update attacks. BlockFLA is also able
to prevent data poisoning, while HybridAlpha can defend
against inference-time evasion attacks by having an inference
prevention filter. Yet, these solutions are not the best. The
BlockFLA’s attacker detection algorithm works better if com-
bined with other detection algorithms. HybridAlpha’s threat
model does not take into account the scenario in which a ma-
licious aggregator will interrupt the network or replace the
model update sent by an honest participant. [11] suggests that
further investigation regarding the Byzantine attacks should
be made if the security of the Turbo-Aggregate framework.

The attacks that were not quite handled are the following:
inference-time evasion, untargeted and Byzantine model up-

date poisoning, and Byzantine-robust aggregation. By not
treating these, the frameworks will significantly lose their ac-
curacy, which can further lead to breaking the global model
(for untargeted attacks) and alter the behavior on a minority of
samples (for targeted attacks). Therefore, a nice future path
is to see how could the privacy advantages of the provided
mechanisms (blockchain, DP, Secure-Aggregate) can be used
to challenge the open security risks that the FL faces. Also,
it will be nice to see if the threat model can be further devel-
oped, as in try out the frameworks in riskier scenarios. By
doing this, possible defense mechanisms can be identified.

One other thing that can be noted is that in the case of FL
frameworks that use blockchain, the FL algorithm does not
use any privacy-preserving enhancements. It would be in-
teresting to dive into hybrid FL models that use blockchain
and also a combination of SMC and DP. For instance,
[21] presents an architecture consisting of a permissioned
blockchain and an FL module that uses DP. Similar ap-
proaches should be further investigated in the future since it
can lead to making the FL immune to more security threats.

8 Conclusion
This paper presents how hybrid approaches in HFL opened
new horizons in the evolution of the HFL model. This is
achieved by diving deeper into the main concepts of the
HFL: the main purpose, security and privacy challenges, main
privacy-preserving enhancements. Then, five hybrid models
are examined, highlighting the main component of the frame-
work, the training process, as well as the security threat model
used. Two models (FL with DP and SMC and HybridAlpha)
combine the advantages of DP and SMC, while minimizing
their trade-offs. Turbo-Aggregate uses a new improved proto-
col based on secure aggregation, focusing on optimizing the
aggregation overhead. The last two models presented, Block-
FLA and PermiDAG, use blockchain mechanisms to ensure
the privacy level needed by FL. Therefore, the performance
of the FL algorithm is improved significantly.

The performance and the communication cost of the pre-
sented concepts are analyzed based on the algorithms im-
plemented. Also, their performance in real scenarios is dis-
cussed by diving into the results of the experiments made in
the papers. The security guarantees are also discussed for
each implementation. After that, a comparison between the
five frameworks is made to highlight the most suitable one
regarding the security level achieved, the training time per-
formance, and communication cost. Also, by comparing the
studied frameworks, the reader can see how a similar ap-
proach (e.g. combining DP with SMC) can be implemented
differently and identify the key elements that improve the FL
model. The features that are quite unique for each framework
are also highlighted here.

The implementations presented open new problems to be
examined. It would be interesting to make a hybrid model
that uses both blockchain and a privacy-preserving enhance-
ment and see whether other security risks are solved. Also,
by experimenting with the implementations against the threat
models that have not been treated, new aspects can be identi-
fied regarding the direction of the development of the HFL.

9



References
[1] Paul Voigt and Axel Von dem Bussche. “The eu gen-

eral data protection regulation (gdpr)”. In: A Practical
Guide, 1st Ed., Cham: Springer International Publish-
ing 10 (2017), p. 3152676.

[2] Li Li et al. “A review of applications in federated
learning”. In: Computers & Industrial Engineering
149 (2020), p. 106854. ISSN: 0360-8352. DOI: https:
/ / doi . org / 10 . 1016 / j . cie . 2020 . 106854. URL:
https : / /www.sciencedirect . com/science /article /pii /
S0360835220305532.

[3] Beandan McMahan and Daniel Ramage. “Federated
Learning: Collaborative Machine Learning without
Centralized Training Data”. In: Google AI Blog (2017).
URL: https://ai.googleblog.com/2017/04/federated-
learning-collaborative.html.

[4] Qiang Yang et al. “Federated Machine Learning: Con-
cept and Applications”. In: ACM Trans. Intell. Syst.
Technol. 10.2 (Jan. 2019). ISSN: 2157-6904. DOI: 10.
1145/3298981. URL: https://doi.org/10.1145/3298981.

[5] Lingjuan Lyu, Han Yu, and Qiang Yang. “Threats
to federated learning: A survey”. In: arXiv preprint
arXiv:2003.02133 (2020).

[6] Chuan Zhao et al. “Secure multi-party computation:
Theory, practice and applications”. In: Information
Sciences 476 (2019), pp. 357–372.

[7] Xun Yi, Russell Paulet, and Elisa Bertino. “Homomor-
phic Encryption”. In: Homomorphic Encryption and
Applications. Cham: Springer International Publish-
ing, 2014, pp. 27–46. ISBN: 978-3-319-12229-8. DOI:
10.1007/978-3-319-12229-8 2. URL: https://doi.org/
10.1007/978-3-319-12229-8 2.

[8] Katrina Ligett et al. “Accuracy first: Selecting a differ-
ential privacy level for accuracy-constrained erm”. In:
arXiv preprint arXiv:1705.10829 (2017).

[9] Stacey Truex et al. “A Hybrid Approach to Privacy-
Preserving Federated Learning”. In: Proceedings of
the 12th ACM Workshop on Artificial Intelligence
and Security. AISec’19. London, United Kingdom:
Association for Computing Machinery, 2019, pp. 1–
11. ISBN: 9781450368339. DOI: 10 . 1145 / 3338501 .
3357370. URL: https : / / doi . org / 10 . 1145 / 3338501 .
3357370.

[10] Runhua Xu et al. “Hybridalpha: An efficient approach
for privacy-preserving federated learning”. In: Pro-
ceedings of the 12th ACM Workshop on Artificial In-
telligence and Security. 2019, pp. 13–23.

[11] Jinhyun So, Başak Güler, and A Salman Avestimehr.
“Turbo-aggregate: Breaking the quadratic aggregation
barrier in secure federated learning”. In: IEEE Journal
on Selected Areas in Information Theory 2.1 (2021),
pp. 479–489.

[12] Harsh Bimal Desai, Mustafa Safa Ozdayi, and Mu-
rat Kantarcioglu. “Blockfla: Accountable federated
learning via hybrid blockchain architecture”. In: arXiv
preprint arXiv:2010.07427 (2020).

[13] Yunlong Lu et al. “Blockchain empowered asyn-
chronous federated learning for secure data sharing in
internet of vehicles”. In: IEEE Transactions on Vehic-
ular Technology 69.4 (2020), pp. 4298–4311.

[14] Peter Kairouz et al. “Advances and open prob-
lems in federated learning”. In: arXiv preprint
arXiv:1912.04977 (2019).

[15] Kang Wei et al. “Federated learning with differential
privacy: Algorithms and performance analysis”. In:
IEEE Transactions on Information Forensics and Se-
curity 15 (2020), pp. 3454–3469.

[16] Yann LeCun, Corinna Cortes, and Christopher J
Burges. “MNIST handwritten digit database. 2010”.
In: URL http://yann. lecun. com/exdb/mnist 7 (2010),
p. 23.

[17] Jeremy Bernstein et al. “signSGD: Compressed op-
timisation for non-convex problems”. In: Interna-
tional Conference on Machine Learning. PMLR. 2018,
pp. 560–569.

[18] Felix Sattler et al. “Robust and communication-
efficient federated learning from non-iid data”. In:
IEEE transactions on neural networks and learning
systems 31.9 (2019), pp. 3400–3413.

[19] Zhaonan Qu et al. “Federated Learning’s Blessing:
FedAvg has Linear Speedup”. In: arXiv preprint
arXiv:2007.05690 (2020).

[20] Sudha Anbalagan et al. “Machine Learning-based Effi-
cient and Secure RSU Placement Mechanism for Soft-
ware Defined-IoV”. In: IEEE Internet of Things Jour-
nal (2021), pp. 1–1. DOI: 10.1109/JIOT.2021.3069642.

[21] Yunlong Lu et al. “Blockchain and federated learning
for privacy-preserved data sharing in industrial IoT”.
In: IEEE Transactions on Industrial Informatics 16.6
(2019), pp. 4177–4186.

10

https://doi.org/https://doi.org/10.1016/j.cie.2020.106854
https://doi.org/https://doi.org/10.1016/j.cie.2020.106854
https://www.sciencedirect.com/science/article/pii/S0360835220305532
https://www.sciencedirect.com/science/article/pii/S0360835220305532
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://doi.org/10.1145/3298981
https://doi.org/10.1145/3298981
https://doi.org/10.1145/3298981
https://doi.org/10.1007/978-3-319-12229-8_2
https://doi.org/10.1007/978-3-319-12229-8_2
https://doi.org/10.1007/978-3-319-12229-8_2
https://doi.org/10.1145/3338501.3357370
https://doi.org/10.1145/3338501.3357370
https://doi.org/10.1145/3338501.3357370
https://doi.org/10.1145/3338501.3357370
https://doi.org/10.1109/JIOT.2021.3069642

	Introduction
	Background
	Security threats and privacy risks of HFL
	SMC and Homomorphic Encryption
	Differential Privacy

	Methodology
	New approaches for FL
	
	
	
	
	

	Comparison
	Responsible Research
	The future of the hybrid approaches in HFL
	Conclusion

