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CORRIGENDA

Page 1, Equation 1 should read:=~

w = £1(w). w = £a(w) = Q(n)

Page 10, last equation should read: =

2
a1 2 1 2 4
APy &) =G = an 11 *+ 7P - J0bSin2¥ - cCos®¥_ + dp Cos*¥

(o)

i
-'é' X
+ on SanOSin ch%}

Page 14, second line from bottom should read: -

It should be noted that the term (Uo+zq)m.W in (52) has a different sign
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SUMMARY

The analysis of the stability and response of second-order non-linear, non-
autonomous systems by Minorsky's stroboscopic method is briefly presented.
This theory is used to determine response curves and stability criteria for the short
period motion of an airframe having non-linear normal force and pitching moment
characteristics and subject to a sinusoidal elevator oscillation. These results are
then compared with those obtained from quasi-linear theory. Some implications
of these results in the synthesis of an automatic control system for an air-to-air
missile are briefly discussed.
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1 Introduction

In Ref. 1 non-linear expressions for the normal force and pitching moment
have been introduced into the equations governing the short-period motion of an
airframe. By confining attention to the motion in w, the perturbation velocity
along the axis of yaw, the problem reduces to consideration of the stability of
the non-autonomous equation

w - fl(w). w - fa(W) = Qn) (1)

where, for the case of the free motion, Q(y) = 0. The stability of the free motion
has been analysed by means of Poincare's theory of singular points in the phase plane
and various stability criteria obtained.

For the forced motion Q(n):# 0 and in the general case the stability of (1)
can no longer be decided in the same manner as for the degenerate case Q(n) = 0.
It is important to remeraber that for a linear system the stability is determined |
completely from the complementary function, provided Q(y) is finite. For the
non-linear case this result is no longer valid and the stability problem is different
for each distinct form of Q(y). It is worthy of note that the case Q(y) constant,
which can be interpreted as a step-function disturbance of the elevator, is an
exception and can be treated by Poincares theory of singular points.

An important practical method for determining airframe response and the
associated aerodynamic derivatives is the frequency response technique. This
consists of oscillating the elevator sinusoidally and measuring, by instruments
such as rate gyroscopes and accelerometers, the variations in the pitching motion
It is of interest to consider the stability of an airframe when subject to a sinusoidal
input in this way.

The problem reduces to solving (1) with Q(n) of sinusoidal form and use is
made of the stroboscopic method suggested by Minorsky (Refs. 2 and 3). This
facilitates the transformation of the non-autonomous equation (1) in w and t to an
autonomous form to which it is possible to apply Poincare$s theory of singular points
and thereby obtain both response curves and stability criteria.

Notation
by, d coefficients in Duffing's equation, see Section 4.
= X, function in the general transformation to the stroboscopic plane
fl o . functions in equation (1)
m airframe mass
q angular velocity about axis of pitch
1 time
v = dx/do
w perturbation in velocity along axis of yaw

X any dependent variable, see Sections 2, 3 and 4



X distance of centre of gravity aft of reference line, see Section 6 and
¢-8 Fig. 2.
A = (U0+ zq) m, - quw
A, = (U, + Zq) m, - qu3
B Moment of inertia about the axis of pitch
B = (U + z)m +m + z
1 o qQ w q w
B_ = 3z
3 3
Cm Pitching moment coefficient
Cn = Cz, normal force coefficient
D the operator d/dt
Dr reference diameter for moment coefficients
F amplitude of sinusoidal oscillation in x or w
7
2 1
H = (-r] 5 o+ M 2)2
JT I functions in the short-period response equation (63)
M moment about axis of pitch
P, Q functions defining the stroboscopie system
Q(n) forcing function of the elevator in equation (1)
Sr reference area, body cross-sectional area
U velocity tangential to flight path
Uo velocity along the axis of roll (longitudinal body axis)
W velocity along axis of yaw
zZ = N, force along axis of yaw
- 1 ,dz
“w rn( dw )w=o
1 ,dZ
z " il S yed
q m dq g=o
1 ,dZ
zn m(dn )n-o
1 ,dM
m_ = = ()
w B dW W=0
m_ = iy,
q B 'dq ‘g=o
1 dM
m = = (3
T‘ B ( Tl )1]=

Z g Zgeees )

s
) constants in the force and moment relations of equation (49)

m, Mg...)




a = angle of incidence in the pitching plane
a = F/U
P /
2
5 = Tan = (n2/1,)
€ angle of downwash
1 elevator angle
U amplitude of sinusoidal oscillation applied to elevator
= U -
M1 na[( o+ Zq) n}] znmq]
= Z
N2 o n
g = wt
.6 angle of elevation
T, B dummy variables used in defining the stroboscopic system
o 7 e
W frequency
Suffixes
o refers to the zero order approximation to the stroboscopic system
1 refers to trimmed conditions
R reference values

A dot over a variable indicates differentiation with respect to t, whilst a prime
indicates differentiation with respect to o,

2. The Stroboscopic Method

In order to get the stroboscopic method in perspective it is useful to refer to
two papers by Poincaré, sin¢e between them they constitute the foundation of the
theory of non-linear oscillations. The first, Ref. 4, is concerned with the theory of
singular points and the topological configurations of the integral curves in the phase
plane. These ideas have been explained and used in Ref. 1. The second, Ref. 5,
is concerned with the "method of small parameters' or "perturbation method'". This
centres around the autonomous equation.

X + u)%( = p,f(x, X), (2)

where p is a small parameter and f(x,x) is non-linear function of displacement and




velocity. Obviously if p is zero then the equation degenerates to that of the
""harmonic oscillator" and in general the motion is considered to be near this
degenerate case. Only periodic solutions are sought and the solution is written
as a series in ascending powers of n , with coefficients which are functions of
the initial conditions and time, i.e.

= X A X +u2 A X :
x Ao(xo,xo,t)+ " l(xo,xo,t) m 2(xo,xo,t)+ etc (3)

Imposing the condition for periodidity then gives rise to a series of recurrence
relations (these are in fact differential equations) which permit Ao, A, .... etc.
to be determined. Equation (3) is an exact expression and could be thought to play
a similar role as series solutions in the theory of linear differential equations and
thereby define some higher transcendental function. Unfortunately, in practical
problems, the analysis becomes exceedingly unwieldly if more than two or three
terms are required.

For a system with a forcing term directly dependent on time, i.e. non-
autonomous, the methods of Poincaré are not directly applicable. The problem
may be formulated in a similar manner to (2) i.e.

X+ o®x = pflx,x,t), (4)

where f is now explicitly dependent on time. If now it were possible to make a
suitable co-ordinate transformation in order to reduce (4) to the autonomous form
(2), then the solutions and their stability can be analysed by Poincarés method.
This, basically, is what Minorsky has done by introducing his concept of a
""stroboscopic system''.

Consider the non-autonomous system of differential equations

dx

e x=v=Qx,v,t); X=v="Px,v,t), (5)

of which (4) is a particular case., Writing

R
2

x= p°Cos V¥ )
and 1 e (6)

v= p®Sin v )
then

p= x2+ v& (7)
and

-1,v
¥y = Tan (;) (8)

and (5) may be written

L - se,wth T o= R(pv,0) (9)




It is now assumed that the system is forced by a periodic disturbance and that
the problem is nearly linear such that the solution is a periodic motion of
period 2n in the region of the linear solution.

For the linear case x will be of the form F Sin (g + ¢),

where o = ot, and x’ =F _Cos (¢ + ¢ ), where the prime refers to
differentiation with respect to ¢. This implies that

p= F; = constant

and differentiating x with respect to ¢ gives

x' = -¥* P%Sin Vo= v = D%Sin\l'
or

vo=- 1 (10)
also

pt = 0 (11)

The differential coefficients ¥’ and p’ may be looked upon as components
of a field vector in the p , ¥ plane and for the non-linear problem may be
represented by

p'= f(pﬁ‘yo(’); W’=-1+ ug(p.V.U) (12)

where p is a small parameter which expresses the difference between the linear
and non-linear solutions. The transformed variables may, following Poincaré's
method for the autonomous case, be written as power series

plo) = plo) + ppalo) + w%2(c) + )
) (13)
vilo) = y (o) + py (o) + p2y, () + )
in which
po(o) S constant ;
and ; (14)
Vo) = [-1.d0 = g -0 )

where fb is constant.

Starting with the zero order approximation, (14), which is the solution to the
linear problem, it is possible to build up a successive approximation according
to (13). For instance the first order approximation is




olo) = p_ + (o) ) }
© e ) (15)
vl o) =g, 0 tun (o) )
where
g
p,{0) = f(p ,¥ ,o)da (16)
1 _{ o'" o
and
4]
V(o) = gl P,V ,0)do (17)
[ op M0

In the phase plane the curve described by (14) is a circle of radius p ,
whereas (15) describes a spiral (in a moderate to lightly damped system)
which may or may not converge to a circle, corresponding to the periodic
solution assumed, as ¢ 2w, Rather than consider the continuous convergence
or divergence of (15) with o, Minorsky proposed studying the geometry of a set
of points on the curve each separated discreetly by an interval equal to the period
2x. See Fig. l(a). The increments in p and ¥ due to the non-linearity and
over the period 2n are

2 x
vor @) = [ Ko voo)s = zmu Pl g) )
0 )
and ) (18)
21 )
(2 x) = f glogs ¥ 0ldo = 2m Qlp , &) )
o
Putting 2 nu = AT, Mo = ppy, and AE = pE, = py,y
then
ZAT I . OE
== Plo k)i o2 = Qe b)), (19)

and when the period 2% is short enough in comparison with the time taken for the
system to settle down to its steady periodic motion, then it is permissible to use
continuous variables

dég

gt = Ple,t) s g = Qle, &) (20)

The study of (15) at discreet points separated by 2n in ¢ has an obvious
analogy with the stroboscope and the resulting equations (20) are referred to as the
"stroboscopic system'" of equation (5). In Fig. 1(a) if the points Ay, Az, .... etc.
on the stroboscopic curve in the phase plane approach a fixed point A as 0 9w
then this implies that the system tends to a periodic motion with period 2x ; each
point A on the final circle is associated with a discreet stroboscopic curve. Since
A is a fixed point then p and £ must be constant and therefore must correspond
to the conditions . £

= = P(po, go) = 0; —g—f— = Q(po,go) = 0 (21)




i.e. a singular point in the stroboscopic system. The following general

conclusion may be drawn from the foregoing, ''the existence of a stable singular
point in the stroboscopic system (20) is indicative of the existence of a periodic
solution of the original system (5)".

The previous conclusion is based on Minorsky's heuristic approach, a form
of argument which is more likely to appeal to the engineer; a more rigorous
development is given by Urabe in Ref. 6.

For specific applications of the method a relation is required which will
transform a given d.e. in x, x and t to its corresponding stroboscopic system.
Consider x = p2Cos V¥ and differentiate with respect to o , giving

-1 1 1
x' = 1p %p’Cos ¥ - p%¢'SinV = p3Siny
or
p' Cosy - V¥'2pSin ¥y = 2p Sin V¥ (22)
Further,
=% 1
x" = v' = 3p %p'Sin y + p%’ Cos ¥
e
= zp 2{p'Sin v+ 2py’ COSW} = f(x,x’,0), say,
or

1=

p’Sin ¥+ ¥/ 2pCos V¥V = 2p2 f(x,x’,0) (23)

Eliminating P’and V¥’ in turn between (22) and (23) gives

-1
2

p flx,x’, o) Cos V¥ Siny 2pCos V¥
p! = (20)* =
Sin - Sin v CosVy -2pSin y
or
)
p'= pSin 2V + 2p2 f(x,x’,0) Sin V; (24)
and o
Sin y p %f(x,x’, o) Sin ¥ 2p Cos V¥
¥ = 2p -
Cos ¥ Sin ¥ Cos ¥ =2pSin V¥
or
51
¥/ = - 1 + Cos® + p 2f(x,x',0)Cos V¥ (25)

In the first approximation the increments in p and ¥ are

27

1
: 2z ‘ :
ppy (210) = L {po Sin 2\1:0 + 2p0 f(xo,xo,o) Sin Wo} do




and
P4 R 1 ,
py, (2%) = | {COS g f(xo,xo. o)Cos Wo} do.
Since
2% 21
f Sin2y do = f Sin2(§_ - o)ds = 0
o o
and
25 27
f Cosz\Vodo = Cosz(go-o)do = x,
o o
then
i 21‘(
a 2 1 s
My (2g) = Zpo fo f(xo,xo, o) Sin \yo do
and . 91
r=s =2 ]
py, (27) = T+e fo f(xo,xo,o)COS \l’odo .

and the continuous stroboscopic system becomes

1 o
a8 Blo bt} = %o f f(x ,x’, ¢) Sin(& - o)d (26)
dr Po’ 50! = i R P o .
and
-3 27
dé 1 Po 2 :
e A Py go) = {1 G- f f(xo,xo. o)Cos(go -og)do  (27)

(o]

3. Stability Criteria

Having transformed a given system into its stroboscopic counterpart,
equations (26) and (27), Poincar®s theory of singular points may now be used
to determine the character of the singular points in the stroboscopic plane and
thereby determine the existence of periodic solutions of the original problem.

In general terms, assume that a system of differential equations

dxi
= xi(xl,xa,....xn) =8, sesan (28)

has a set xio(T) of known periodic solutions which represent a closed curve in
n-dimensional space (for n = 2 the curve lies in phase plane).

In order to discuss the general problem of equilibrium consider a neigh-
bouring solution

x;(r) = xio(‘r)+ vi(T). (29)




where v i(1') is a set of functions, called perturbations. Substituting from (29)
into (28) and then developing the functions x; in Taylor's series around Xi o0

retaining only the linear terms in v;, there is obtained a system of linear
""wvariational equations'

n

dvi e aXi
> T (30)

dr ij i
‘j:l 0O

with respect to x:i into which

where BXi/a x, are the partial derivatives of X,
J

o
the known periodic solutions are replaced after differentiation, The coefficients
of v; may be either constants or periodic functions of T .

Using (29) as a basis, the "asymptotic stability" of the system can be defined
as requiring vi('r) — 0O0as T 2o and the linear equations (30) permit of a more
ready analysis of this condition than in the case of (28) which in its general form
can be taken to be non-linear, This formulation is sufficiently broad to include
both periodic motion and static equilibrium.

In the present application the system has one degree of freedom and is
defined by

T =R E = Qe @)

If Py 3 = is a singular point in the stroboscopic system then the variational

equations become

d( 8p )

2 = B, (o, 8o + Py (o, £ )08 (32)
and
d
L) = Q (o, t)o0 + @ (p,t o (33)
where 8p and 3¢ correspond to v; and ), = g—pP, Pg = —g-?P, Q = -%?‘
9
and Qg = _Z_gg correspond to axl in equation (30).
Jo

Equatiens (32) and (33) are of a similar form to equation (8a) of Ref. 1
and it follows that the type of singularity is governed by the characteristic
equation

22 - (P

5 +Q§)>»+ (PpQg-Png)=o (34)

Stable singularities occur when the inequalities

F, +Q, <0 (35)




0=

and

F“) by

4
% %
are satisfied. These results can conveniently be represented on a diagram,
Fig. K(b), in which the conditions for the various types of singularity are given.
It can be seen that the inequality (36) implies that the singular point is not a

saddle (always unstable) and (35) that the real part of the roots 2y, o are
negative.

> 0 (36)

This then establishes all the stability criteria required for the examples
to be considered. For a rigorous development of stability theory of periodic
motion the reader is referred to Ref, 7.

4. An Example - Duffing's Equation

Before proceeding to the problem of airframe short-period motion, it is
of interest to apply the stroboscopic method to an example for which the solution,
in the first approximation, is known. This should then give a more tangible
interpretation to equations (26), (27), (35) and (36). The example chosen is
Duffing's equation

X + bx + cx -dx? = Q Sin at (37)

whose response and stability characteristics have been extensively discussed by
Stoker in Ref. 8.

Write 0 = ot and (37) becomes

x" = 10)—2{-¢Dbx-cx+dx3 + QSinU}

which in terms of p and V¥ is

x" = 1'0)3 {-mbp%Sin\y - cp3Cos ¥ + dpz/'?Cosjw + Q Sinop (38)
From the general transformation (26) and (27) the stroboscopic system becomes:
dp Po &t 2 1
P( Py’ §O) = i fo {~abein v - chinZyyo + dp oSin WOCOSBWO

1
ol ol
5 on Siny oSm }dc
and

dvy i) ) 2
N —— =k =
Q(po, go) = o {1 + — i [ zwbSinZ\lro cCosawo + dpc,Cos‘lll0

1
i .
+ on Sm\lfo Sin o do,




551 =

in which ¢ = § -o0,
[o) (6)

The definite integrals involved have the following values:

2 21
. 2 _ _
f Sin v, do -f Cosatpo do = x,
o o
21

21
f Sin y do =f Siny Cos® do = 0,
5 o o
o o
21
4 3
fo Cos \llodd T

27
f Sin¥ Sino do = -gxCost,
" o 0

and

21
fo Cos\yoSch do = nSmgo,

which upon substitution reduce the stroboscopic system to

L
2

po
P(po, §o) ot (wb + on Cosgo)

(39)
-1
2

1
Sin§°)+1}ﬁ

Imposing the condition P( Py t)=Q(p, go) = 0 for a singular point in the
stroboscopic plane, and thereby periocﬁc motion in the x, x plane, gives rise
to the simultaneous equations

1
Qo t) ~{aE (-c+2do +Qo,

-1
- dab = Qp_ “Cosg (40)

=

6~ - 3d By ® on— *Sin & (41)

Squaring and adding these equations gives

2

)2+ b2 = o
i P

(o}

- 2_2d
(c - w adp

or since the periodic¢ solution will be of the form x = F Sin (¢ + ¢) then

o= x2+(x')° = F28Sin?(c + ¢) + F2Cos %o + ¢) = F2

or




Sl

2
(c - @® - 3dF2)% b2 = (%—) (42)

which is the same result as that given by Stoker on page 91 of Ref. 8.

By definition

1
2

x=F Sin (0 +¢ ) = p°Cosy
and
i
v=FCos (0 +¢)=p?Siny
which when o = 0 reduces to
i
F Sin ¢ = poosgo
and
1
F Cos ¢ = p°Sin _E.o
or
Tan¢ = Cot &, (43)

From (40), (41) and (43), the phase angle of the solution relative to the
forcing term @ Sin o is

_ -1 ~wb
¢ = Tan [ C'wz"%sz] (44)

which again is in agreement with Ref, 8.

The stability boundaries of the motion described by (42) and (44) are given
by (35) and (36). From the equations describing the stroboscopic system, (39),

= ol

B, = - —wfa— ll‘»b+—%Qp 2Cos g] .

_ P3Q :
E = = Sin ¢,

1 [ay .10 - /2
Qp " TR Sl e 'f% Sin 5}
and

_ Qp-3

Qg * e Cos ¢

The stability boundaries are then defined by

2 pay
or - -wb=0; (45)

A -1
B Wm0 =-u;2 [wb+%Qp 2Cosg]+ (—Q&-é-—zCosg




-13_

and

B, R ) -4

o)

== [a)b + 2Q 2Cos§:|, Q_p_z_ Cos
Q Q 2 Ky
’ i 3/
%m—z-Smé [3 = 2Qp Sing] 2
or
1 a Q

wby 2Cost + 3dp *Sing + %[Coszﬁ - Sin2§] =0 (46)

Now
i F > _ 3.2

Sin ¢ = Cos ¢ =6 (c - o® - $dF<)
and

Cost = Sin ¢ = - gab,
therefore from (46) and upon expansion and manipulation

%;7- d?F* -3(c- od dF? +(c - A2 +ba® =0 (47)

Since w is in general not zero then (45) may be interpreted as a damping
boundary corresponding to the disappearance of b in (37). When b < 0 the
inequality (35) would no longer be satisfied and the system would be subject to a
divergent oscillation.

Consider equation (42) which defines the response curves in the F, ® plane.
Multiplying by F2 and differentiating implicitly with respect to F gives

dw 9
. -3 3 _ b e = 2
,:(c »?) F dF:l ,:c 2F aF o - 2 dF ]

d
2 2 2 C 0y
+ b2(2F»® + 2wF dF) 0.

Upon inserting the condition for vertical tangency, = = 0, this equation reduces

to (47) i.e. the second stability boundary corresponds to the locus of the points

of vertical tangency of the response curves in the F, ® plane. It will be seen that
this result agrees with that of Stoker in Ref. 8 and all the subsequent discussion of
"jump phenomena' is relevant to the present problem. It is worthy of note that
the stroboscopic method avoids the use of the theory of Mathieu's equation, though
be it very elegant, required in Stokers analysis. Further, the case treated in Ref,
8 is the conservative one, b = 0; in order to establish the boundaries defined by
(45) and (47) by this method an additional co-ordinate transformation would be
required to reduce the variational equation to Mathieu's form.

5. Equations of Longitudinal Motion of an Airframe

When synthesizing an automatic control system for an airframe it is often




A

sufficient to consider only the short-period motion when formulating the
transfer-functions in pitch. In this case the linear equations of motion become

(D-zw)W-(Uo+Zq)6 = zn )

- (mv'vD + mw)W +(D - mq)é = m'q n

) .
) (48)
)

As indicated in Ref. 1, non-linear variations of the normal force Z and
pitching moment M with vertical velocity W are introduced as power series in
odd powers of W. Such series must be representative of anti-symmetrical
normal force and pitching moment curves, these being characteristic of most
configurations having aerodynamic symmetry, Thus

Z(W) z Wtz W+ zgWor ... )
m w 3 )
and ) (49)
)
M(W) 3 5 )
B —me+m3W + msw e orere )

For algebraic simplicity only two terms are retained in the remainder of the
analysis, although this can readily extended to any reasonable number,

The non-linear equations of motion become

- 3 °
W—(sz+23W)—(Uo+zq)e =z 1 (50)
and
3 -
- mv.vW - (me +m 3W ) + (D—mq)e = my n (51)

Eliminating & between (50) and (51) then gives
. 3 -« 3
- - - + +
(D mq)(W sz zJW )_(U0 zq)(m“.’W me + mBW )
= [zn(D - mq) + mn(Uo+zQ)] n
ar upon collecting terms

N —(B1+B3W3)Wv (A, W+A 3W3) = [z D+(Uo+zq)m,l -z mq]q (52)

1 1
where
= - A = + -
A, (Uo+zq)mw quw’ - (Uo zq)m3 mq % o
B1 = (Uo+zq)mW + mq+zW and B, = 3z .

It should be noted that the term (Uy+z )m in (52) has a different sign from the
corresponding equation (15) of Ref, 1, the latter is incorrect.
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In Ref. 1 only the free motion, Q(n) = 0, is considered, in the present
problem the airframe is assumed to be trimmed initially at some incidence «

corresponding to a vertical velocity w; and elevator angle n;, and is then '
forced by a sinusoidal elevator motion of amplitude P where 1, is taken to
have the same sign as n;. The elevator displacement is then
n=nt+naSin wt (53)
and the vertical velocity of the forced motion is
W = W, + w (wt and w both small) (54)
Since W = w and W = W then the equation of w motion becomes
- : 3
w - I:Bl + B3(wt+w)i w - [Al(wt+w) +A (W +w) ]
= D+(U 42 Jm_ - z _m + Sin at).
z, (U, q) s - q] (n,+n, )
Now the trimmed condition is defined by
3
- + = + -
(A wirh w ) = [ sz gm, -5 m |, (55)
therefore the equation of w motion reduces to
Aenn 2 2 Zra 2
w l: (B1+ B3wt ) + 2B3wt W+ B3w ]w [(A1 +3A 3wt Yw
2 3| _ _
+ 3A SWW o+ A3w :' = [an+(Uo+zq)mn znmq] TlaSin u)t,
and writing, as before, o = ot this equation finally becomes
[/ 2
w2w” _U_{(Bl +B 3Wt2) + 2B3wtw + B3 wz]w‘ - [(A]_+3A_,,wt w
+ 34, wt.wz +A 3w3] = 1,5in 6 +1, Cos® = H Sin (o +5 ) (56)

where

=N [(Uo+zq)mﬂ znqu = H Cosb,

= = o)
N2 auqazn H Sind ,

H=(nf+n:)

and b = Tan.1 <3-?->
M1

1
2

In order to determine the stroboscopic system corresponding to (56), write



i =

1
w = p?Cosy, W = p?Siny and p= w® +(w’)2,

N

then
1 1
W= %“{(Bl + B wta) + 2B3wt p?>Cos ¥ + Bxp COSZw]pzsm ¥
Aw 3ot a7 Bos®
+(A,+3 sW, )P Cosxlr+3A3wt .pPCos®?¥ + Ap Cos'y

+ H Sin (o +8)},

and from the general transformation (26) and (27) the stroboscopic system
becomes
p_% 2n 1 1
2 B. +B_w,+2B,w, P *Cosy +B.p Cos?¥ 2Sin2y
tpa? (1+3t 35t o o 2o 0o o
(o]

P( po.go) =

N

2 3 2
(A & 3A3wt )p0 Sin \yc‘Cos\yo+3A3 W poSin\yoCos wo

3/2 3 .
+A3po Sin\yoCos \|10+HSm Wo Sin (o +6)} do

and

1 Po 2 “ 1
Qe ok )= 35 + s f (B, +B, wta) + 2B W, 002C08W0+B3p0C032W0:'
(0]

D=

X P, Sin N Cos v,

tof=

a 2 3
+ (A, + 3A3wt ) X Cos Wo + 3A3wtp0Cos ‘Vo

3
+ A3p° /%Zos“vo +H Sin (o + 5) Cos Wo} do

The definite integrals, additional to those already listed, are

2n rzn
i =1 i =
f Sin 2\voCos ¥ od (o} 2 Sin \yoS1n2\lf odu 0

o o
2% 2%
f Sin®% Cos?y do =f Cos?y (1 - Cosy ) = %/4
o o o o}
o o
27 27
= & i =
f Sin ‘Jro Coszq;o do 3 Sin 2 v, Cos ¥ do = 0
o o
2n & 21 2
IS a3 2 _lai :
j; Cos3\|;0 do -fo Cos A (1 szqfo)do fo [Cos v, 2Sin ¥ _Sin2 Vo ]do
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21
f Sin \IIOSin(a,+6)dc = -5 Cos(d+ go)
o

and
2n
f Cos \[fo Sin (¢ +8 )dd = xSin (5 + go),
o

which upon substitution reduce the stroboscopic system to
P(p , &)= %o (B, +B 5w %) +1B -p -%HC09(8+§ ) (57)
o’ "o’ p?|? B A TRy P Ty o

—t
Q po’gop) = E-p%g l:w2+(Al +3A4 wtz) + 344 Rt P *H Sin®® + §°)] (58)

Imposing the condition P(p , ¢ ) =0=Q(p , &) for a singular point in the
: o} o’ o
stroboscopic plane gives rise to the Simultaneou$ equations

oy
L{Bl +B3(wt2 + %po)] = Hpo 2Cos(a+g0) (59)

o
- a2-(A+3A5w ) -3pAs = H ° “Sin(8 +¢ ) (60)

Squaring and adding these equations gives

2 2 _ H2
a)z[B_L + B3(wt2 + 1p o)] + [ma +{A,+ 3A3wt2) + 3 poA3] = Fc_)
Now the resulting periodic oscillation may be expressed as
w =F Sin (o +¢ ) (61)
o
where F = poz’ and the response equation becomes
2
w2 [Bl + B (wta + %Fg)] + [u)2+ A, + 3A3(wf+ iF 2)]2
H,Z 1 ] 2{[ 2
= (— = - 2 2 =( =& - 2
(F) Fg{q1+ nz} <F> (Uo+zq)mn z,lmc1 + 0 (62)
or (0®) + Jo® + K=0 (63)

where
2 a s 2

and

2 2 a\” &
K = I:Al + 3A, (wt + %FZ):I - GF> [(Uo+ zq)mn - znmq]
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Following the Duffing technique the amplitude, F, is considered to be prescribed and
(63) is solved for w.

For some configurations, in particular the rear controlled missile considered in
Section 6.0, the magnitude of z, is such that over the frequency range of interest (for
a moderate centre of gravity margin the undamped natural frequency in pitch will be
of the order of 2 to 5 radians per second) the value of n, is small compared with n, and
8 = 0. Further, the value of z,is usually small compared with U, = U, Zp M is small
compared with Umy, and H may be taken as ) 4

H = n Um, (64)

and the coefficients in (63) become

2
J = [B; & UZB_,,(cxi + %a;,)]2+ 2 [Al + 3U As(ai + %a‘; )]

and
= 2 2 1 2 2 _ _q_g 2
K [Al+3U Ag,(oz,c + o J a, . m,
W, -
(04 ~ i (o = -
where t T and =
From equations (59) and (60)
Sin(6+ & ) = oA o A, + 3A, (w2 + }F2)
0 H 2 & 5 § t
and

oF
Cos(5+§o)= T [B1+B3(wt2+%F2)];

also, from the definition of H and &, Sin & = y,/H and Cos 8 = n,/H.

Now
. . . 1 ;
Sin(s + go) = SindCos £, t Cosd Sin & H [TIZCOSE . 1, Sin go]
and
1
Cos(d+ go) = CosdCos go - SindSin go = ﬁ["h Cosgo -125in go]’
therefore
n2Cos go + 1, Sin §o = -F ':a>2+ A + 3A4 (wf +3F2 )] (65)
and
n,Cos 50— n2Sin go = wF[ B RE (wt2+ %Fz)] (66)

Eliminating Sin go and Cos §o in turn between (65) and (66) then gives




o=

(ni+ n3) Cos & = F‘lu[B.L + Bs(w? +%F2)]- nzi{warAlﬁAa (we +3F3
and

(T\%" 13Sin §0 = - F'ql[m2+ AL+ 3A3(Wt‘2 + -};Fg) -wh, [Bl + B, (wt2+ i-Fz)];
further, for the steady periodic oscillation

1
2

=
i

Cos§ = F Sin ¢

and

w' = p %Siné = F Cos ¢,
o o

implying that Sin ¢ = Cos §0 and Cos ¢ =8in % and finally that

. _ oF
Sin ¢ = ’la {[(U +Z )Inn -z qu [B1+B3(wt2 +%F2)J
-ZTIEL\2+ Al+3A3 (‘Nf +%F2)]} (67)
and
Cos ¢ = FnaU )m, - 2+ A, + 3A, (w® + F3
os ¢ = 2 ( o+z my znm}%y—i— . + 3(wt + zF
+wzn(B +B3(w2~1*F3J} (68)

The phase angle ¢ is that existing between the input sinusoid to the elevator and the
output sinusoid describing the w or @ motion. With the same approximations as those
made in obtaining (63) and (64) the expressions become

.
Sin ¢ = —n“—’ﬂ—li LBI + U®B> (a + 30°F )} (69)
and
a [ 2
Cosé = - ~ f‘n sz +A, +3U A Jat2+ 1o %F) (70)
a 1

In calculating numerical values due regard must be taken of the sign of L which will
be the same as that of n, and can be obtained from (55).

As shown in Section 3.0 the stability boundaries are defined by

= - =0 i
B+ Q 0, P Qg Pg Qp . The partial derivatives are

P
i 20 1 ’%
B = 7 {m[B1+B3(Wt +3 po):' -ino Cos (3 +§o),
P2
B = ——= Sin(d+¢ ),

3/

I S 1 s :
Qp TP [4A3 z R, HSm(6+§o)
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and

IS S
Q§'2w02 Py HCos(8+§0),

which give for the first boundary

P, + Qg = wig{m[Bl +B3(wf +§90)J}= 0,

or since w is finite,
2, 1p2 _
B:L + 33 (wt+2F V=0 (71)
The second boundary is given by

1 2 .’
PoQ -BR Q = %(W){E‘“@l o B3(Wt2+%po)> - %Do ’H Cos (5+§0)}

1
2

-3 i
2 s el : . =
X o *Cosls +¢ ) [41-\3 j 'Hsm@+rg) ]po H Sin (5 + go)} 0
which upon substitution for Sin (5 + §O) and Cos (5 +§o) from equations (59) and (60) give

2
m2[131+ B;(wi+ 3F2 )] [}31+ B, twi+ %FZ)] - %m’{Bl + B, (W + %Fa)]

2
+2A 3F2[a> +A1 + 3As (wt2 +3F2 )] + %[w2+A1 +34A3 (w1t‘2+'41’F2 )] =0

or
(0®>P + Re?+8S =0 (72)
where
R = ’:Bl s B3(wt2 +%F2 )J[Bl +B3(wt2 +1F 2)J 2 2[A,_+3A3 (wt2+—§~F‘2 )]
and

S = [A1+ 3A3(Wt2 - %FZ)] [ Ay +3A5(w2 + iF 2)]

The stability boundary defined by (72) is in fact the locus of the points of vertical
tangency of the response curves given by equation (62); a result which can readily be
proved by differentiating (62) implicitly with respect fo F, remembering that H is a
function of w, and inserting the condition dw /dF = 0. The nature of the instability
corresponds to the "jump phenomena' already discussed in relation to Duffing's equation
and will be discussed in further detail in Section 6. 0.

Equation (71) defines a damping boundary which may readily be compared with
"quasi-linear' theory (i.e. stability theory based on the local slope of the aerodynamic
force and moment characteristics). Quasi-linear theory indicates a disappearance of
damping when the coefficient of W in (52) becomes zero. This implies that the greatest
trimmed value of incidence is given by

=
B,_+E§wt =2 ()
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or W= <— %;) 3 (73)

a boundary which will exist only if B ; is of opposite sign to B, . Since B, is always
negative then B; must be positive. From the definition of By, if z; were the dominant
term then the condition (73) would correspond to the stall. It is implied that stable
pitching oscillations are possible at all values of W up to w, given by (73), whereas (71)
indicates that stable oscillations are possible only for values smaller than

B 2| 3
wy = [-El -%FJz (74)

This means that the value of w; for which stable oscillations are possible is dependent on
the amplitude of the oscillations, F, and reduces to the quasi-linear result for F— 0.

6.0 A Numerical Example - Frequency Response of an Air-to-Air Missile Flying at
High Altitude

The missile chosen for this example, which is hypothetical, is shown in Fig. 2.
It is a cruciform, rear-controlled, air-to-air missile intended to be launched from a
fighter aircraft and having a useful speed range of 1,500 to 3,500 f.p.s. The operational
altitude is between 20 to 70 thousand feet. To avoid the missile's guidance system
losing "sight" of the target, the airframe incidence is limited to ¥ 30 degrees. For the
present purpose it has a weight of 500 lbs. and a moment of inertia in pitch (or yaw) of
4,000 lbs, feet2.

The aerodynamic characteristics have been calculated using methods similar to
those described by Nielsen in Ref. 9. Wing and control normal forces are based on
linearised supersonic theory, whilst the inviscid contribution from the body has been
obtained from an extended form of shock-expansion theory. Non-linear contributions
arise from the body and downwash variations at the control. In the former viscous flow
separation from the leading portion of the body produces a vortex sheet which rolls up into
approximately streamwise vortices; these generate low pressures on the lee side of the
body and produce normal force additional to that predicted by inviscid theory. In the latter
the wing downwash at the control, which is not proportional to the geometric incidence of
the missile, causes the control efficiency, when acting as a stabilizer (i.e. n = 0), to
increase with missile incidence and thereby creates the non-linearity. For the present
configuration the non-linear pitching moment produced by the downwash variation is three
times that arising from viscous separation on the body.

At low incidence ( < 5 degrees) and moderate centre of gravity margins, the non-linear
pitching moment is small compared with the linear contribution. This implies that at
relatively low altitudes, where the operating incidence will be small (this is usually the case,
since the normal force imposed will have to be kept within structural limits), the airframe
response will be linear to a good approximation. When flying at high altitude, even with
comparatively small normal accelerations, the operating incidence is such that non-linear
normal force and pitching moment contributions are of the same order as the linear and
thereby introduce important changes in the frequency response (and in the transient response
as well, although this problem will not be considered here) characteristics. The present
example sets out to demonstrate these effects.

Choosing for example an altitude of 60,000 feet and a speed of 2,000 f.p.s. (Mach
number = 2.066), then the aerodynamic characteristics are
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dC
E&E = 20 per radian,
dC X ~

and M _ 20(*c.g. 0.3),
do DR

where Xc, g, 18 the centre of gravity position measured aft of the datum and the
coefficients are based on a reference area SR = 0.785 square feet and a reference
diameter DR = 1 foot.

Over the incidence range > 30 degrees the non-linear normal force and pitching
moment can be approximated by terms proportional to 3. On this basis the normal
force and pitching moment can be expressed as

~ 3
CN 20c + 40«
and
X -
C . 20( Cg& 0.3) - 100 a3

Experimentally the normal force increment due to a change in n usually indicates
a second control efficiency term dependent on 7 , however, this variation is normally
small and for the present purpose is neglected. The elevator terms become

dC
N
0 = 3.82

and

EEM - 3.gp 4 -Xc.g.)
dn : DR ’

where (4 - Xc.g.) is the distance between the hinge line of the elevator and the centre of

gravity. This approximation for the "tailarm' is permissible if the aerodynamic centre
of the elevator is near the hinge line; this is normally the case if the hinge moment is to
be kept small.

The variation of control normal force with incidence is, of course, included in the
value of 9CN for the complete missile. In calculating certain aerodynamic derivatives
do

the control contribution alone, and not in the presence of downwash, will be required.
This value is

dCNT
dao

= 6.53

In addition a value of g—; , the rate of change of downwash angle with incidence, will be

required in determining my. The control efficiency (1 - %), varies between 0.4 at low

incidence to about 0.8 at = 250, implying a variation of -‘;ix from 0.6 to 0.2. To be
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€
consistent with other linear aerodynamic terms the value of s has been taken at

do
a = 0, an assumption which will overemphasize the importance of m. at high
incidence.

The stability derivatives Zyr My, Zy and my and the coefficients z5 and
m~ stem directly from the primary aerodynamic coefficients and are defined by the

expressions
n (o), - (&
z = =
\ m
2

1 pU S ACN ) PSR ACN
Z ° m 2m a(Ua)? 2mU &°
o 1_<B_M ) DUSRDR <dCM
w B\ow/,._, 2B da ) _o
o 1 ACM
3 7 B 2BU N>

|

n m \ On o 2m dn -
and o U2 5. D

S l(@g B R R <dCM
= = [}
n B Bn‘=o 2B dn1rl=0

where U is the forward speed along the flight path, assumed to be equal to U,, and o
is taken to be approximately XL .
U
For the given configuration the primary contribution to the derivatives z_, m
and m. comes from the rear control and can be obtained from theory based on the q
quasi-static approximation (see Ref. 10 & On this basis, and neglecting the control
drag coefficient in comparison with NT. the derivatives become

1 DUSR dCNp
m (ay '—_51_11_(4-xcg)< >a_o'
Us CN
- = (T Sl A =
B 7 Xe.g.!(da ’a=o,
and
dC
1 /M R Nt  de
. % et {4 -
My B @w> B : xc.g.)z< da ° da)_

With m in slugs, SR in square feet, DR in feet, B in slugs feet2, U in feet per
second and p in slugs per cubic foot, the numerical values of the derivatives are

z, = -0.227 sec’), 1z, = -1.133x10 'ft. Zgec.,
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m = 0.0283 (xc - 0.3) i lgec. '1, m_ = -0.354 x 10'7ft. 3sec.,
-2 -2
zn = -86.7ft.sec. , m; = -10.83(4 - xc-g')sec. ,
z = -0.0741 (4 - x Yibmee, T, i % 0. xi0 " @ -z Y ee
q C.g. q C.g.
m. = - 2,776 x 1079 (4 - X g o

It can be seen that the derivative z_ is very small when compared with U, to
which it is added in all the relationships (}nvolved, and for convenience is neglected
hereon. ' ‘

Substituting these values in the expressions for A, , A, etc. gives
- -2
A, = 56.6 (x -0.3)—2.1x103(4- X )2 sec,
(S C. g
- - 2l
A, =—0.708x104-1.048x109(4—x M fte 2,
cog.
B, = -0.227 - 14.80 x 1073 (4 - X, o )2 sec. '1,
and
‘B, = -3.399 x10 'ft. “sec.

The equation of trim becomes

- [56.6 (x -0.3) -2.1x10 3 (4 - x )2] x 2,000
c Cofle t

+[o.708x10'4+1.048x10‘9 (4 - x )2] x 2,000° ¢ o

Calte

and the trim curyes' of @ v 1 for various x._ g. are shown in Fig. 3, the curves being
anti-symmetric about the "1 axis,

3 2
= - |:21.66x10 (4 -x. _)+0.802 (4 _xc.g.) ]n :

For the purpose of the example the missile is assumed to be flying level at
60,000 feet altitude and subject to a steady normal acceleration in the pitching plane of
lg. The corresponding value of normal force coefficient is 1,42 at an incidence of
0.0703 radians (4.03 degrees), whilst the elevator angle to trim is marked on Fig. 3.
Using the previous values the response curves for various positions of the centre of
gravity and elevator amplitude, n,, have been obtained and are shown in Figs. 4 and 5,
whilst the associated phase angles are shown in Figs. 6 and 7.

Consider first the trim curves of Fig. 3. The aerodynamic centre at zero incidence
(which is the same as the centre of pressure for the symmetrical airframe of the example)
lies at 0.3 feet aft of the datum line and therefore moving the centre of gravity forward
from 0.3 to 0.1, and further to - 0.1 produces an increase in the static stability, whereas
moving the centre of gravity aft to 0.5 and 0.7 gives rise to static instability, i.e. it is
statically unstable on the basis of conventional linear theory for equilibrium at o = 0.




_25_

The value X, g = 0.1, corresponding to a centre of gravity margin of 0.2 feet, would,

on the basis of conventional static stability theory, be an acceptable figure and forward
and backward movements of the centre of gravity from this position produce too great
and too small amounts of static stability respectively. Taking x5 g = 0.1 feet as the

optimum figure (in practice there would be a range of acceptable values about the optimum),
it can be seen that the effect of the aerodynamic non-linearity is to cause a large increase
in the value of the elevator angle to trim; so much so that the airframe is able to reach
only 75 per cent of its limiting incidence before the elevators reach their mechanical

stops. Such a restriction on the useful incidence range would limit the airframe mano-
uvreability under conditions when it is at a premium.

The greater than linear increase of pitching moment with incidence causes the
pitching motion to constitute a ""hard' system and the response curves of Fig. 4 show the
lean towards higher frequencies which is characteristic of such a system (see Ref. 8).

For very small amplitudes, 1,, (less than about 0.5 degrees) the curves are close to
those obtained from quasi-linear theory for small oscillations about the trimmed value.
With increase of i points of vertical tangency occur in the curves and give rise to
"jumps' in amplitude. For instance take the curve 0, = 0.2. Starting at a steady state
value marked A, with increase of frequency the amplitude of oscillations about the trimmed
incidence increase until the curve meets the locus of vertical tangency at C. This point
is on the stability boundary defined by equation (72) and the resulting instability is the jump
in amplitude from C to E. Further increase of frequency then gives rise to amplitude
changes as depicted by the curve E to F. When the frequency is decreased from F to A
another amplitude jump occurs from D to B, the point D lying on the other branch of the
locus of vertical tangents.

It can be seen that the portion of the curve from C to D is never traversed, implying
that the region between the two branches of the locus of vertical tangents is one of instability.
The form of instability is that corresponding to unstable equilibrium since any small
departures from C or D do not diminish with time. On the other hand the motion does not
diverge indefinitely and is obviously a periodic motion in the neighbourhood of that existing
prior to the jump. Such conditions call for extended definition of stability and has given
rise to the concept of "orbital stability' which is discussed in Ref. 8.

The damping boundary, defined by equation (71), does not exist in the present problem
since B; and Bs are of the same sign throughout. Obviously the slope of the normal
force curves will not increase indefinitely and will eventually have a maximum. All this
implies is that the damping boundary lies outside the useful operating incidence range of
the airframe.

Some measure of the accuracy of the response curves can be obtained by comparing
the steady values of Fig. 4 with corresponding changes in trim on Fig. 3. Now the trimmed
conditions defined by equation (55) are exact steady state solutions of (52) and the difference
between these values, Fig. 3, and those from Fig. 4 are an indication of the inaccuracy of
the amplitude of the fundamental and of the magnitude of the neglected higher harmonics
i.e. 3w, 50, etc. Both of these effects arise from the basic approximation made in
establishing the first order stroboscopic system. In making the comparison it is important
to remember that the region of maximum accuracy of the response curves is that embracing
the resonance (this follows by direct comparison with the inverse iteration procedure used
to solve Duffing's equation in Ref. 8) and therefore the comparison of steady state values
is likely to be more pessimistic.
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Another point which is likely to be of practical interest is that the ratio of
the resonant peak amplitudes of the non-linear to linear values tends to decrease
sharply with increase of ny and would thereby tend to reduce the amount of
operation on the incidence limits.

In quasi-linear theory the phase angle is closely related to the amplitude, the
region of resonance corresponding to rapid changes in phase, as seen in Figs. 4 and 6.
Increases of elevator amplitude produce an initial improvement in phase angle, but
finally give rise to jumping. The locus of vertical tangency of the ¢, ® curves
corresponds exactly with that of the @, © curves, a statement which can readily be
demonstrated by differentiating equations (69) and (70) implicitly with respect to ¢ ,
imposing the condition dw/de = 0, and thereby arriving at equation (72). It follows
that the region between the branches of the locus of vertical tangents is a region of
instability in a similar sense to that of Fig. 4 and jumps in phase angle occur between
points such as C to E and D to B. It is worthy of note that similar jumps in phase angle
are characteristic of the periodic solutions of Duffing's equation, a point which does not
appear to have been made in the literature on this subject.

The discussion has, until now, been limited to explaining the effect of aerodynamic
non-linearities on the frequency response of an airframe whose centre of gravity margin
was optimized on the basis of conventional linear static stability theory. In assessing
the relative importance of the non-linear phenomena it is necessary to remember that
the airframe is only one part, albeit an important one, of the overall control loop.

An essential feature of the loop will doubtless be the negative feedback of an output rate
(W and/or 6 ) signal causing a considerable increase in the overall system damping.

It can, therefore, be anticipated that the range of elevator amplitude for which jumping
does not occur will be greatly increased. Quantitative evaluation of this effect must
await further analysis, analysis which must be capable of taking into account the increase
in order of the governing differential equation which is almost certain to arise when the
other components of the control loop are included. The stroboscopic method, in the
form given by Minorsky, is, of course, limited to systems of second order or lower.

One limitation which the control system will not conveniently be able to modify
is the restriction of the useful incidence range brought about by the non-linear variation
in pitching moment. In servomechanism parlance this corresponds to a reduction in
aerodynamic gain or stiffness. The situation can be improved by reducing the static
stability, as shown in Fig. 3. If static instability can be tolerated at low incidence very
useful reductions in the elevator angle to trim can be obtained. It is of interest to
investigate the response of the airframe under these conditions with a view to utilizing
the previous improvements in a closed-loop con’rol system. The case X, = 0.7 feet
is typical of this condition. o

In describing pitching motion it is often convenient to use the concepts of Poincar€s
theory of singular points already employed in Ref. 1. With A, negative there exists only
one trimmed incidence for a given value of n{. The trimmed condition corresponds to
a singular point of equation (52) and will be a stable spiral point.

For a given value of n, there will be a single solution curve whose nature is
related to the nature of the singularity. On Fig. 4, for instance, the o axis corresponds
to the basic singularity, whilst the values of @ at ® = o correspond to changes in the
position of the singularity due to the effective change in elevator angle, mn,. This implies
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that as w— o each solution curve degenerates towards the new singular point
whose ordinates are Ny + N,, @4 + (OlF)w= , whilst when @y = » the solution curves
degenerate towards the basic singularity at the initial trimmed condition Ny Q4.

When A, is positive, i.e. statically unstable at low incidence, three possible
trimmed conditions can exist for a given value of 1,, as shown in Fig. 8. For the
present example the point at A is appropriate. The conditions A and B correspond
to saddle points, i.e. points of unstable equilibrium, whilst C is a stable spiral.
Obviously any small disturbances will cause the airframe to depart from its trimmed
value at A to the stable singularity at C. Nevertheless it is theoretically possible for
a forced sinusoidal motion to be established about A. For small values of 1, three
steady state values at A’ , B’ and C’ are indicated. These correspond with the
typical end points A’ , B' and C' of the Ny = 0.02 radians response curves in Fig. 5.
The angular displacement of A’ , B’ and C' from A, on the trim curves, are then
exact measures of the steady state values to which those on Fig. 5 approximate.
Three distinct curves exist, the two lower curves representing motions which are in
anti-phase at ® = o, whilst the upper curve is initially in phase, as shown on Fig. 7.
With increase of frequency the oscillation associated with A’ degenerates to the
singularity at A, with little change in phase. The other two response curves finally
meet at the locus of vertical tangencies and there is a corresponding meeting of the
phase curves. For larger values of 7, only one steady state value is indicated at D
and a typical response curve for this case would be that for 5, = 0. 1 radian. ‘

The region between the branches of the locus of vertical tangency is again an
unstable region and the curves lying in this region represent impossible motions. The
intercepts of these loci on the af ordinate of Fig. 5 correspond to the points M (the
maximum) and B on Fig. 8. This implies that for small values of 1, two steady
oscillations are possible corresponding to the upper or lower response curves.

Bearing in mind the initial transient required in order to move into the steady sinusoid

it is clear that only the upper response curve is practically relevant at low frequency.
With increase of frequency jumping from the upper to the lower curves occurs and for
higher frequencies it is possible to maintain relatively small amplitude oscillations about
A. With increasing values of 7, the lower and middle response curves finally meet at
the locus of vertical tangency at w= 0, corresponding to the meeting of the points A’

and B’ , in Fig. 8, at the maximum, M. For greater values of n, only a single response
curve exists which now indicates the possibility of both upward and downward jumps in
amplitude. Corresponding jumps in phase are also demonstrated by Fig. 7.

With additional damping provided by a rate feedback and not too large an amount of
static instability, it can be seen that some possibility of successful operation of the
complete control system exists. A full answer as to the practicality of the proposal
must await an analysis of the complete system which must embrace both frequency and
transient response.

The discussion has been deliberately focussed away from the purpose to which a
knowledge of the frequency response can be put. Obviously the results will have different
implications when taken in conjunction with control system synthesis than would be the
case when applied to the analysis of aerodynamic derivatives from flight trials. In the
former there is left the open question of what relevance the frequency response has to
the transient response in deciding overall stability, while in the latter the non-linear
distortion of amplitude and phase curves will have an important bearing on the frequency
and elevator angles selected for the test and on the conditioning of the matrix used for
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extracting the derivatives from the response and phase curves. Finally, it is hoped
that the results will have some intrinsic merit as solutions of a particular differential
equation.

7.0 Conclusions

The important conclusions which may be drawn from this analysis are as
follows:

(1) When the stroboscopic method of Minorsky is applied to obtain periodic solutions
of Duffing's equation, it gives the same results as that obtained by Duffing using the
method of inverse iteration, i.e. selecting the amplitude of the solution and solving for
the frequency, rather than the reverse. Considerable simplification arises in
determining the conditions for stability, thereby avoiding the need to resort to the
stability theory of Mathieu's equation (see Ref. 8).

(2) The short-period motion of an airframe having non-linear aerodynamic
characteristics and subject to a sinusoidal elevator deflection is shown to have a
governing differential equation in W, the vertical velocity, which is closely allied to
Duffing's form. Although the coefficient of W is of non-linear form, it is not such

that the airframe experiences changes from negative to positive damping with increase
of amplitude and thereby excludes the possibility of limit cycling. Resulting from this,
the non-linear phenomena experienced during the pitching motion are similar in
character to those associated with Duffing's equation; in particular, jumps occur in the
amplitude and phase of the oscillations in incidence.

(3) In a similar way to Ref. 1, the analysis has been restricted to the stability and
response of the equation governing the vertical velocity. Unlike the earlier problem
it would seem that a solution for the angular rate of pitch, 6 , is possible. The
governing equation for the & motion can be obtained by substituting w = F Sin (wt + ¢),
with o, F and ¢ known, into equation (56).

(4) In assessing the relative importance of the effects arising from non-linear aero-
dynamic characteristics it is important to remember that the airframe is only one part,
albeit an important one, of the overall control loop. Obviously feedback and shaping
signals will have considerable influence on the overall stability and response, in particular
the range of elevator amplitude for which jumping does not occur can be expected to
increase. Quantitative assessment of this problem must await further analysis, analysis
which must be capable of taking into account the increase in order of the governing d.e.,
which is almost certain to arise when the other components of the control loop are
included.

(5) It will be noted that equation (56) is of a slightly different form from (37) and the
stroboscopic method cannot, without reservation, be applied to it. The restoring term

C(w) = (A1 + 3A 3w5w + 3A,w Wwor A 3;13

t

is of assymetric form, except when wy = 0. This assymetry, due to the term in w?, will,
when w, is not small, produce what is known in electrical engineering terminology as a
"rectification effect''. This means that, in the first approximation, the response in w is not
a simple sinusoid but takes the form

w =wr+FSin(o+ o),

where the rectification term w,. is a function of frequency. Some discussion of this phenomena
is given by McLachlan in Ref. 11 and it is clear that w,. can only be neglected if w{ is small.
Distortion of an assymetric character also arises from the term in ww’. To avoid these
complications it has been assumed that wy is sufficiently small.
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