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CORRIGENDA 

Page 1, Equation 1 should read:-

w - fi(w). w - faCv) = Q(TI) 

Page 10, last equation shoiild read: -

+ Qp ^Sint Sin a o o da 

- -ècübSinê lf - cCos^\|r + dp Cos*t 

Page ik, second l i n e from bottom should r e a d : -

I t should be noted t h a t the term (U +z )m in (52) has a d i f f e r e n t s ign 
^ o q ' w ^ ' 
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SUMMARY 

The analysis of the stability and response of second-order non-linear, non-
autononaous systems by Minor sky's stroboscopic n:iethod is briefly presented. 
This theory is used to determine response curves and stability criteria for the short 
period motion of an airframe having non-linear normal force and pitching moment 
characteristics and subject to a sinusoidal elevator oscillation. These results are 
then compared with those obtained fronti quasi-linear theory. Some implications 
of these results in the synthesis of an automatic control system for an a i r - to-ai r 
missile are briefly discussed. 
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1. Introduction 

In Ref. 1 non-linear expressions for the normal force and pitching moment 
have been introduced into the equations governing the short-period motion of an 
airframe. By confining attention to the motion in w, the perturbation velocity 
along the axis of yaw, the problem reduces to consideration of the stability of 
the non-autonomous equation 

w - f (w). w - f (w) » Q(T)) (1) 

where, for the case of the free motion, Q(T)) = 0. The stability of the free motion 
has been analysed by means of Poincares theory of singular points in the phase plane 
and various stability criteria obtained. 

For the forced motion Q(T) ) é 0 and in the general case the stability of (1) 
can no longer be decided in the same manner as for the degenerate case Q(T|) = 0. 
It is important to remember that for a linear system the stability is determined 
completely from the complementary function, provided Q(TI) is finite. For the 
non-linear case this result is no longer valid and the stability problem is different 
for each distinct form of Q(T)). It is worthy of note that the case Q(TI) constant, 
which can be interpreted as a step-function disturbance of the elevator, is an 
exception and can be treated by Poincares theory of singular points. 

An imiportant practical method for determining airfranne response and the 
associated aerodynamic derivatives is the frequency response technique. This 
consists of oscillating the elevator sinusoidally and measuring, by instruments 
such as rate gyroscopes and accelerometers, the variations in the pitching motion 
It is of interest to consider the stability of an airframe when subject to a sinusoidal 
input in this way. 

The problem reduces to solving (1) with Q{i\) of sinusoidal form and use is 
made of the stroboscopic method suggested by Minorsky (Refs. 2 and 3). This 
facilitates the transformation of the non-autonomous equation (1) in w and t to an 
autonomous form to which it is possible to apply Poincares theory of singular points 
and thereby obtain both response curves and stability criteria. 

Notation 

b , c ,d coefficients in Buffing's equation, see Section 4. 

f = X, function in the general transformation to the stroboscopic plane 

f , f functions in equation (1) 

m airframe mass 

q angular velocity about axis of pitch 

t time 

v = dx/da 

w perturbation in velocity along axis of yaw 

X any dependent variable, see Sections 2, 3 and 4 
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X dis tance of cen t re of gravi ty aft of r e fe rence l ine, see Section 6 and 
'^'^' F ig . 2. 

A = ( U + z ) n a - m z 
^ o q w q w 

A^ = (U„ + z ) m - m z 
3 ' o q' 3 q 3 

B Moment of ine r t i a about the ax is of pitch 

B = (U + z ) m + m + z 
1 o q w q w 

B = 3z 
3 3 

C Pi tching moment coefficient 
m 

Cn = C , n o r m a l force coefficient 
" z 

D the opera to r d /d t 

D r e fe rence d i ame te r for moment coefficients 
r 

F ampli tude of s inusoidal osci l la t ion in x or w 

H = (,l^ r , f 

J , K functions in the shor t -pe r iod r e sponse equation (63) 

M moment about ax is of pitch 

P , Q functions defining the s t roboscopic sys tem 

Q(TI) forcing function of the e levator in equation (1) 

S r e f e r ence a r e a , body c r o s s - s e c t i o n a l a r e a 

U veloci ty tangent ial to flight path 

U veloci ty along the ax i s of r o l l (longitudinal body axis) 
o 

W veloci ty along ax is of yaw 

Z = N, force along ax is of yaw 

z = l ( ^ ) 
** m dw w=o 

- ( — ) 
q m dq q=o 

1 , d Z . 
z * — ( — ) 

T) m dri T)=o 
m = 1 ( d M ) 

B *dw 'w=o 
L / d M . 

1 B *dq 'q=o 

m = I(dM. 
r\ B ' ^ % , = o 

w 

m 

^ 3 ' ^ 5 * • • • ' 

m ^ n i g . . . . ) 
' constants in the force and moment re la t ions of equation (49) 
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O! = angle of Incidence in the pitching plane 

«p = F/U 

8 = Tan ' (rig/tii) 

e angle of downwash 

r\ elevator angle 

Tj amplitude of sinusoidal oscillation applied to elevator 

1 1 = T ) ^ (U + z ) m - z m o q T) T) q 

0 = Oit 

. e angle of elevation 

T, \i dummy variables used in defining the stroboscopic system 

S Q * 0 

CO frequency 

Suffixes 

o refers to the zero order approximation to the stroboscopic system 

t refers to trimmed conditions 

R reference values 

A dot over a variable indicates differentiation with respect to t, whilst a prime 
indicates differentiation with respect to c. 

2. The Stroboscopic Method 

In order to get the stroboscopic method in perspective it is useful to refer to 
two papers by Poincare, sin6e between them they constitute the foundation of the 
theory of non-linear oscillations. The first, Ref. 4, is concerned with the theory of 
singular points and the topological configurations of the integral curves in the phase 
plane. These ideas have been explained and used in Ref. 1. The second, Ref. 5, 
is concerned with the "method of small parameters" or "perturbation method". This 
centres around the autonomous equation. 

X + 0 3 ^ = j i f (x , x ) , ( 2 ) 

where n is a small parameter and f(x,x) is non-linear function of displacement and 
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veloci ty . Obviously if n i s z e ro then the equation degenera tes to that of the 
"harmonic osc i l l a to r " and in genera l the motion is considered to be near this 
degenera te c a s e . Only per iodic solutions a r e sought and the solution i s wri t ten 
a s a s e r i e s in ascending powers of n , with coefficients which a r e functions of 
the Initial conditions and t i m e , i . e . 

x = A (x , X , t) + uA (x , X , t) + ^2 A 2(x , X , t) + e t c . (3) 
o o o '̂  ^ o o o o 

Imposing the condition for periodidity then gives r i s e to a s e r i e s of r e c u r r e n c e 
re la t ions ( these a r e in fact differential equations) which pe rmi t A^, A i , . . . . e t c . 
to be de te rmined . Equation (3) i s an exact express ion and could be thought to play 
a s imi l a r ro l e a s s e r i e s solutions in the theory of l inear differential equations and 
the reby define some higher t ranscendenta l function. Unfortunately, in po-actical 
p r o b l e m s , the ana lys i s becomes exceedingly unwieldly if m o r e than two or th ree 
t e r m s a r e r e q u i r e d . 

F o r a sys tem with a forcing t e r m d i rec t ly dependent on t i m e , i . e . non-
autonomous, the methods of P o i n c a r e a r e not d i rec t ly appl icable . The problem 
m a y be formulated in a s imi l a r manner to (2) i . e . 

x + cû x = i-if(x, X, t ) , (4) 

where f i s now explicit ly dependent on t i m e . If now it were possible to make a 
suitable co-ordinate t ransformat ion in o rde r to reduce (4) to the autonomous form 
(2), then the solutions and the i r stabil i ty can be analysed by Poincare 's method. 
T h i s , bas ica l ly , i s what Minorsky has done by introducing h is concept of a 
"s t roboscopic s y s t e m " , 

Consider the non-autonomous sys tem of differential equations 

dx 
dt 

= X = V = Q(x .v , t ) ; X = V = P ( x , v . t ) , (5) 

of which (4) i s a par t i cu la r c a s e . Writ ing 
1. 

X = p^Cos i ) 
and I ) . . . . (6) 

V = p^Sin \|f ) 

then 

a n d 

x^-+ v" (7) 

t = T a n ' \ - ) (8) 
X 

and (5) may be wr i t ten 

dp ^^ = S(p . ^ . t ) ; ^ = R ( p . i ^ , t ) (9) 
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It Is now assumed that the system is forced by a periodic disturbance and that 
the problem is nearly linear such that the solution is a periodic motion of 
period 2it in the region of the linear solution. 

For the linear case x will be of the form F Sin (o + • ) , 

where a = cot, and x' = F Cos (0 + * ), where the prime refers to 
differentiation with respect to o. This Implies that 

2 
p = F = constant 

o 

and differentiating x with respect to a gives 

i i 
x ' = -il'' P^Sin^f = V = P^Sin* 

or 

also 

r = - 1; (10) 

p' = 0 (11) 

The differential coefficients i|r' and p' may be looked upon as components 
of a field vector in the p , i|f plane and for the non-linear problem nmay be 
represented by 

p ' = H P,^,a) : •^' = -I + n g ( p . * . a) (12) 

where n is a small parameter which expresses the difference between the linear 
and non-linear solutions. The transformed variables may, following Polncaréte 
method for the autonomous case, be written as power series 

P (a) = P (a) + |JiPi(0) + i^^Pa (a ) + ) 
° ) (13) 

\|f (0) = \lf̂ (a) + \xi/^(o) + n^2 (<J ) + ) 

in which 

p (o) = p = constant ) 
0 0 . 

and ) 

\|r (a) = / - 1 . d0 = 1 - 0 ) 
o J o : 

where g ig constant. 
o 

Starting with the zero order approximation, (14), which is the solution to the 
linear problem, it is possible to build up a successive approximation according 
to (13), For instance the first order approximation Is 

(14) 
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p ( 0 ) 

i | f(o) 

P + liPi ( a ) 

where 

and 

1^ - 0 + | i t i (a) 

a 
Pi^ a) = ƒ f( p .̂ilf ^, o)d0 

o 

0 

i|'i(a) = J g( P,.*o'<j)d0 

(15) 

(16) 

(17) 

In the phase plane the curve described by (14) is a circle of radius p , 
whereas (15) describes a spiral (in a moderate to lightly damped system) 
which may or may not converge to a circle, corresponding to the periodic 
solution assumed, as 0 -><». Rather than consider the continuous convergence 
or divergence of (15) with o, Minorsky proposed studying the geometry of a set 
of points on the curve each separated discreetly by an interval equal to the period 
2jt. See Fig. 1(a). The Increments in p and ^ due to the non-linearity and 
over the period 2« are 

2rt 

IJ^Pi (2« ) = 

and 
o 

2rt 

f(pQ, i | '^,a)do = 2 itn o o 

Putting 2 flu 

then 

U\|fi(2fl) = / g( PQ. t ^ , a)d0 = 
o 

= AT , Ap = up i , and A | 

2 «u Q(p^, ij 

t i l l = ti^i 

(18) 

Ae. 
AT = ^<V^o)' el 

AT 
Q( P̂ . y . (19) 

and when the period 2fl is short enough in comparison with the time taken for the 
system to settle down to its steady periodic motion, then it is permissible to use 
continuous variables 

5̂  = ^ < % . U ^ 5I = Q<Pc ^o> 
(20) 

The study of (15) at discreet points separated by 2 fl in 0 has an obvious 
analogy with the stroboscope and the resulting equations (20) are referred to as the 
"stroboscopic system" of equation (5). In Fig. 1(a) if the points A i , A 2 etc. 
on the stroboscopic curve in the phase plane approach a fixed point A as a-ma 
then this implies that the system tends to a periodic motion with period 2K ; each 
point A on the final circle is associated with a discreet stroboscopic curve. Since 
A is a fixed point then p and 
to the conditions 

i must be constant and therefore must correspond o 

^ = P(p . 5 o > " 5 ^ - « < O O 
(21) 
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1. e . a s ingular point In the s t roboscopic s y s t e m . The following genera l 

conclusion m a y be drawn from the foregoing, "the exis tence of a s table s ingular 
point in the s t roboscopic sys tem (20) i s indicative of the exis tence of a per iodic 
solution of the or ig inal sys t em (5)" . 

The previous conclusion is based on Minorsky ' s heu r i s t i c approach , a form 
of argunaent which i s m o r e l ikely to appeal to the engineer ; a m o r e r i go rous 
development i s given by Urabe in Ref. 6. 

F o r specific appl icat ions of the method a re la t ion i s r equ i r ed which will 
t r ans fo rm a given d. e . in x, x and t to i t s corresponding s t roboscopic s y s t e m . 
Consider x = p^Cos t and differentiate with respec t to a , giving 

_i 1 i 
x ' = i p ^p 'Cos ilf - p^\ |f 'Sin* = p Sini|f 

or 

p ' C o s \ | / - \|/'2pSin •>!/ = 2 p Sin \|r (22) 

F u r t h e r , 

o r 

_ i i 
| p ^p 'S in \|f + p^ii '̂ Cos \|f 

i p ' ^ j p ' S i n i|r + 2p\|r 'Cos il/l = f ( x , x ' , 0 ) , say , 

p'Sin ilr + \lf' 2p Cos il' = 2 p^ f ( x , x ' , 0 ) 

El iminat ing p 'and ^|'' in tu rn between (22) and (23) gives 

.' = (2P) 
p ' ^ f ( x , x ' , o) Cos v|r 

Sin - Sin \̂  

o r 

Sin + 2 P C O S "^ 

Cosi|r -2pSln \|( 

(23) 

p ' = p S i n 2 * + 2P2 t : ( x , x ' , a) Sin i ; (24) 

and 

o r 

t ' = 2p 
Sin t P ^ f ( x , x ' , 0) 

Cos \|f Sin t 

Sin i|f 2p Cos i|/ 

Cos \|r -2pSin i|f 

\|f' = - 1 + C O S ^ + p"^ f (x ,x ' , 0)CO8 t 

In the f i rs t approximat ion the i nc r emen t s in p and t a r e 

.2fl 
^Pi(2rt) p Sin 2\|r + 2 p ^ f(x , x , o) Sin \|/ 

'̂ o o o 0 0 0} do 

(25) 



and 

^i,^J^ (2Jt) = / -^Cos^\|f + p " f(x , x , 0)Cos ^ r d a . 

o 

Since 
2« o 2fl 

o 

and 

2« piSfl 
/ Sin 2 + da = / Sin 2( 5 - a )do = 0 

2« p2jt 
Cos^ t d0 = / C o s ^ (5 - 0 )d0 

O 

then 
2fl 

d0 ,̂  (2n) = 2 p ^ ƒ f ( x ^ , x ; ^ . 0 ) S i n i ^ 
o 

_i p2« 
, (2 «) = It + p ' f(x , x ' , o) Cos i|f do , 
•̂  o J o o o o 

and the continuous s t roboscopic sys tem becomes 

dp 
dT 

P 2 p "" 
P ( P . S ) = ,rf- / f(x , x ' , o) S l n d - 0 ) d o (26) 

o o JJit J o o o o 

and 
2 j t 

f = Q<V̂ o) = k {'" ^ V „ «VV^)^°^<^ -''̂ ^̂  <27) 
3 . Stability C r i t e r i a 

Having t r ans fo rmed a given sys tem into i ts s t roboscopic counterpar t , 
equations (26) and (27), P o i n c a r e s theory of s ingular points may now be used 
to de te rmine the cha rac t e r of the s ingular points in the s t roboscopic plane and 
the reby de te rmine the exis tence of per iodic solutions of the or iginal p roblem. 

In genera l t e r m s , a s s u m e that a sys t em of differential equations 

dx. 
~ = x. (x^ , x ^ , . . . . x^) 1 = 1,2 n (28) 

has a set Xj (T ) of known per iodic solutions which r e p r e s e n t a closed curve in 
n -d imens iona l space (for n = 2 the curve l i es in phase plane). 

In o rde r to d i scuss the genera l problem of equil ibrium consider a neigh
bour ing solution 

X , ( T ) = Xj ( T ) + V' 
o 1 

( T ) , (29) 
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where V ( T ) i s a set of functions, called pe r tu rba t ions . Substituting from (29) 

Into (28) and then developing the functions xj in T a y l o r ' s s e r i e s around Xĵ  , 

re ta in ing only the l inear t e r m s in v . , t he r e i s obtained a sys tem of l inear 
"var ia t ional equat ions" 

d v . v"! ÖX. 
T - ^ = ) T - ' ^^ <30) 
dT Z_i dx^ 1 

where ^XJ/N are the partial derivatives of X. with respect to x. into which 
Jo •" 

the known periodic solutions are replaced after differentiation. The coefficients 
of Vj may be either constants or periodic functions of T . 

Using (29) as a basis, the "asymptotic stability" of the system can be defined 
as requiring V . ( T ) -* 0 as T ->co and the linear equations (30) permit of a more 
ready analysis of this condition than in the case of (28) which in its general form 
can be taken to be non-linear. This formulation is sufficiently broad to Include 
both periodic motion and static equilibrium, 

In the present application the systena has one degree of freedom and is 
defined by 

^ = P ( p . n ; ^ = Q(P ,Ü (31) 

If p , È is a singular point in the stroboscopic system then the variational 
s s 

equations become 

and 

^ ^ = Qp (P3, y S P + Qg(P3.5s)S6 (33) 

where 6p and &g correspond to v̂^ and I^ = -r— , P. = -——, Qp = - ^ ^ 

on ^ ^' 
a n d Q . = -r-^ correspond to -̂  in equation (30). 

Jo 

Equations (32) and (33) are of a similar form to equation (8a) of Ref. 1 
and it follows that the type of singularity is governed by the characteristic 
equation 

xa - (Pp I- Qj ) X + (Pp Qg - P^ (^ ) = 0 (34) 

Stable singularities occur when the inequalities 

Pp + Qg < 0 (35) 
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and 

Pp 

% 
Q. 

> o (36) 

a r e sa t is f ied . These r e s u l t s can conveniently be r ep re sen t ed on a d i ag ram, 
F i g . 1(b), in which the conditions for the va r ious types of s ingular i ty a r e given. 
It can be seen that the inequali ty (36) impl ies that the s ingular point i s not a 
saddle (always unstable) and (35) that the r e a l par t of the roo t s \^, ^ a r e 
negat ive . 

Th i s then es t ab l i shes a l l the s tabi l i ty c r i t e r i a r equ i r ed for the examples 
to be cons idered . F o r a r igo rous developnaent of stabil i ty theory of per iodic 
motion the r e a d e r i s r e f e r r e d to Ref. 7. 

4 . An Example - Buffing's Equation 

Before proceeding to the problem of a i r f r ame shor t -pe r iod motion, it i s 
of i n t e re s t to apply the s t roboscopic method to an example for which the solution, 
in the f i r s t approximat ion, i s known. Th i s should then give a m o r e tangible 
in te rp re ta t ion to equations (26), (27), (35) and (36), The example chosen i s 
Duffing's equation 

X + bx + ex - dx-' = Q Sin cot (37) 

whose r e sponse and s tabi l i ty c h a r a c t e r i s t i c s have been extensively d i scussed by 
Stoker in Ref. 8. 

Wri te o = cot and (37) becomes 

-g- J - «bx - ex + dx^ + Q Sin in °V 

which in t e r m s of p and i)r i s 

-g- \ - cobpiS in t - c p i C o s l̂» + dp 1::os^\|r + Q S in^ l (38) 

F r o m the genera l t r ans format ion (26) and (27) the s t roboscopic sys tem becomes : 

P( P.. o-'^ -' o ' 'o dT fl|iCU 
/ J-cii)Sin^\|r - icSin2ik + dp Sinijr Cos^* 

J 1 o ' 'o o o % 

and 

Qp ^Sinik Sinffidcr 
o o J 

«<Po- U • 3? • k 1 + 
flCÜ 

O L 

- ia>bSin2\lr - c C o s ^ + d p Cos*i|' 
o o o o 

+ Q p ^Sin\|f Sin a da , 
o o 
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in which \|f = I - °-o o 

The definite In tegra l s involved have the following va lues : 

2 It r^2it 

^ do = « . 

and 

/ S l n ^ t do = / C o s ^ 
^ o ° ^ o 

p 2« 2« 
/ Sin * d o = / Sin * C o s \ da = 0, 

^ o ° Jo ° 

r ^" 4 3« 
/ Cos it do = •;;—. 
/ O 4 ' 

^ o 

p2fl 
/ Sin t Sin a d a = - « C o s ë , 

J o ° 

. 2 n 
/ C o s * Sino da = n Sing , 

J O o ' 

which upon subst i tut ion reduce the s t roboscopic sys tem to 

Po ^ 
P(p , I ) = - - ^ (cob + Q p ^Cos l ) 

o o CO "̂  o o 

Q( P . i ) = | A ( -c + I dp + Qp ' *Sin I ) + 1 [ ^ o o [co-̂  ^ o "̂ o o J 2\i 

(39) 

Imposing the condition P ( p , | ) = Q ( p , | ) = 0 for a s ingular point in the 
s t roboscopic p lane , and thereby per iodic motion in the x, x p lane, gives r i s e 
to the s imul taneous equations 

i 
- d> = Q p ^ ' ^ ' C o s g ^ (40) 

c - co2-fdp^ = Q p ^ ' ^ s m l g <41) 

Squaring and adding these equations gives 

(c -co^ - | d p ^ ) ^ + co2b2= 2 - , 
o 

or since the perlodlö solution will be of the form x = F Sin (cr + <•) then 

p = x^ +(x' f = F ^Sin^ (0 + • ) + F ^ Cos ^(o + • ) = F ^ 
o r 
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(c - co2 - f d F 2 ) % co^b^ 
^F' (42) 

which Is the s ame r e su l t a s that given by Stoker on page 91 of Ref. 8. 

By definition 
i 

X = F Sin (a +* ) = p^'Cosf 

and 

v = F Cos (o + <t>) = p ^Sin i|r 

which when 0 = 0 r e d u c e s to 

F Sin <t> = p * C o s | 

and 

F Cos <t> = p Sin i 

or 

Tan» Cot i (43) 

F r o m (40), (41) and (43), the phase angle of the solution r e l a t ive to the 
forcing t e r m Q Sin a i s 

= Tan 
- 1 -cob 

c - cô  - Ï dF • 

which again i s in ag reement with Ref. 8, 

(44) 

The stabi l i ty boundar ies of the motion descr ibed by (42) and (44) a r e given 
by (35) and (36). F r o m the equations descr ib ing the s t roboscopic s y s t e m , (39), 

^ M-̂ b + iO^ • ^COS g j , 

1 = 

Qp = 

. PiQ 

lacü^ 

1 2 ŵû  

_ Q p - è 

Sin 6 . 

| d - ^ Sin 1 

and 

^ 1 2 t'"»>'' 

The s tabi l i ty boundar ies a r e then defined by 

or 

P + Q . P ^ 1 

- cob = 0 ; 

0 = 
(iCO 

mb + I^Qp ^Cos ê + S ^ C o s S 
2pa)2 

(45) 
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a n d 

Pp H 

o r 

Now 

a n d 

0 

. aiO-sing 

<wb + I Q ^Cosg Q p 

)bp ^ C o s g + | d p ^ S i n | + 
Q_ 
2p 

i Q c 

Cos^S 

2^^co 

' s i n I 

S in i = C o s ^ 
Q 

(c - co2 - | d F = ) 

^ - C o s I 

1 

2\icxP 

Sin^l (46) 

C o s g = Sin •• = - 7:i<^, 
Q 

t h e r e f o r e f r o m (46) a n d upon e x p a n s i o n and m a n i p u l a t i o n 

^ d ^ F * - 3(c - coa) d F ^ + (c - a^^ + bco^ = 0 
16 

(47) 

S i n c e co i s i n g e n e r a l not z e r o t h e n (45) m a y b e I n t e r p r e t e d a s a d a m p i n g 
b o u n d a r y c o r r e s p o n d i n g t o t h e d i s a p p e a r a n c e of b in ( 3 7 ) . W h e n b < 0 t h e 
i n e q u a l i t y (35) wou ld no l o n g e r b e s a t i s f i e d and t h e s y s t e m would b e s u b j e c t t o a 
d i v e r g e n t o s c i l l a t i o n . 

C o n s i d e r e q u a t i o n (42) w h i c h d e f i n e s t h e r e s p o n s e c u r v e s in t h e F , oi p l a n e . 
M u l t i p l y i n g b y F ^ a n d d i f f e r e n t i a t i n g i m p l i c i t l y w i t h r e s p e c t t o F g i v e s 

( c - co )̂ F - |dF=* ,<„J.S| . „ 3 . I „J,, 

+ ba(2F<o2 + 2cüF' Oco 
d F 

) = 0, 

dco 
U p o n i n s e r t i n g t h e c o n d i t i o n fo r v e r t i c a l t a n g e n c y , — = 0, t h i s e q u a t i o n r e d u c e s 
t o (47) i . e . t h e s e c o n d s t a b i l i t y b o u n d a r y c o r r e s p o n d s t o t h e l o c u s of t h e p o i n t s 
of v e r t i c a l t a n g e n c y of t h e r e s p o n s e c u r v e s in t h e F , «> p l a n e . It w i l l b e s e e n t h a t 
t h i s r e s u l t a g r e e s w i t h t h a t of S t o k e r in Ref . 8 and a l l t h e s u b s e q u e n t d i s c u s s i o n of 
" j u m p p h e n o m e n a " i s r e l e v a n t t o t h e p r e s e n t p r o b l e m . It i s w o r t h y of n o t e t h a t 
t h e s t r o b o s c o p i c m e t h o d a v o i d s t h e u s e of t h e t h e o r y of M a t h i e u ' s e q u a t i o n , t h o u g h 
b e i t v e r y e l e g a n t , r e q u i r e d in S t o k e r s a n a l y s i s . F u r t h e r , t h e c a s e t r e a t e d in Ref . 
8 i s t h e c o n s e r v a t i v e o n e , b = 0; in o r d e r t o e s t a b l i s h t h e b o u n d a r i e s de f ined b y 
(45) and (47) by t h i s m e t h o d a n a d d i t i o n a l c o - o r d i n a t e t r a n s f o r m a t i o n wou ld b e 
r e q u i r e d t o r e d u c e t h e v a r i a t i o n a l e q u a t i o n t o M a t h i e u ' s f o r m . 

5 . E q u a t i o n s of L o n g i t u d i n a l M o t i o n of a n A i r f r a m e 

W h e n s y n t h e s i z i n g a n a u t o m a t i c c o n t r o l s y s t e m fo r a n a i r f r a m e i t i s o f t en 
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sufficient to consider only the shor t -pe r iod motion when formulat ing the 
t ransfer - funct ions in pi tch. In th is case the l inear equations of motion become 

( D - z ^ ) W - ( U ^ + Z ^ ) e = z^ 1 ) 

- ( m . D + m )W + (D - m )5 = m TI ) w w q T) 

(48) 

As indicated in Ref. 1, non- l inear var ia t ions of the n o r m a l force Z and 
pitching moment M with ve r t i ca l veloci ty W a r e Introduced a s power s e r i e s in 
odd powers of W. Such s e r i e s mus t be r ep resen ta t ive of a n t l - s y m m e t r i c a l 
no rma l force and pitching moment c u r v e s , these being c h a r a c t e r i s t i c of mos t 
configurations having ae rodynamic s y m m e t r y . Thus 

Z(W) 
= z W + z W + z = W + 

m 

and 

M(W) „ , „ , 3 „ , 5 
' = m W+ m ,W + m _W + 
B W 3 5 

(49) 

F o r a lgebra ic s implici ty only two t e r m s a r e re ta ined in the r e m a i n d e r of the 
ana lys i s , although this can r ead i ly extended to any reasonable number . 

The non- l inear equations of motion become 

W - (z W + z ^W ) - (U + z )ê w 3 o q Zq n (50) 

and 

- m . W - (m W + m W ) + (D-m )e = nu r\ 
w w 3 a 1̂ w w 3 q' 

El iminat ing 6 between (50) and (51) then gives 

3 . 3 
(D - m )(W - z W - z W ) (U +z ) (m. W + m W + m W ) 

q w 3 — o q w w 3 

z„ (D - m ) + m„(U +z ) 
T\ q T] o q 

(51) 

or upon collecting t e r m s 

W - (Bĵ  + B 3W a)W - (A iW + A 3W ̂ ) 

where 

z^D + ( U „ + z ^ ) m ^ - z ^ m ^ J t ) (52) 

AjL = (U +z )ni - m z , A = (U +z )m^ - m z 
o' q' w q w ' 3 ' " o ~ q ' ' " 3 ""q ~ 3» 

B = (U +z )m + m i *^o q w 
+z and B , = 3z , , q w 3 3 

It should be noted that the t e r m (UQ+Z )m in (52) has a different sign from the 
cor responding equation (15) of Ref. 1, the l a t t e r i s i n c o r r e c t . 
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In Ref. 1 only the free miotlon, Q(t)) ; 0, i s considered, in the p resen t 
p roblem the a i r f r a m e i s a s sumed to be t r i m m e d initially at some incidence a . 
cor responding to a ve r t i ca l velocity w. and elevator angle t]^, and i s then 
forced by a s inusoidal e levator motion of ampli tude TJ where r\ i s taken to 
have the same sign a s r\.. The elevator displacement i s then 

1 = 'It ^ ^ a Sin cot (53) 

and the v e r t i c a l velocity of the forced motion is 

W = w + w (w. and w both small) (54) 

Since W = w and W = w then the equation of w motion becomes 

w - A^(w.+w) + A^(w^ + w) ' B i + B3(w^+w) 

= [z D + (U +z )m - z m ] (n + r\ Sin cot) 
"•T) o q T ) T i q t a 

Now the t r i m m e d condition i s defined by 

-(A^w^+A^w^^) = (U +z )in - z m 
o q' n n q 

w -

(55) 

the re fore the equation of w motion r educes to 

(B + B w a) + 2B w^ w + B w^ w - (A^ +3A 3W^ ^) 
1 3 t 3 t J L 

+ 3A WW + A^w z„D+(U +z )m_ - z m 
1 o q 1 1 q 

n Sin CO . 
a t 

and wr i t ing , a s before , o = cot th is equation finally becomes 

co^w" - ü J ( B i + B 3W^) + 2B3W w + B^ w2 w* - (Aj^+3A3W ^)w 

where 

+ 3A, w^.w +A 3W 
3 t 

TliSine+TI2 Cose =H Sin ( 0 + 8 ) (56) 

111 = 11 (U +z )mL, - z _ m = H C o s 6 , 
a |_ o q ^ 1 q j 

T|a - COT] z = H Sin & 
a i\ 

H = (n^ + ^2 ) ^ 
1 'a 

and 8 = Tan m-
In o r d e r to de te rmine the s t roboscopic sys tem corresponding to (56), wr i t e 
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. 2 « - 1. „ . / _ - 2 w = p ^ C o s t , w' = p^Sin \|r and p = w^ + ( w ' ) ^ , 

then 

w« 
co' 

P^Sin + (B^ + B3 w ^ + 2B3W p^Cos t + B3P C o s ^ 

+ (Aj^+ 3A3W ) p^Cosi|r+3A3W . P C O S ^ + A^p Cos ^ 

+ H Sin (0 + 8 ) k 

and from the genera l t r ans format ion (26) and (27) the s t roboscopic sys tem 
becomes 

o 

(B + B w^^ + 2 B , w ^ p ^Cosi|f +B,P C o s ^ 1 3 t ^ t o o 3 o , 
p Ŝin̂ Ajf 

o o 

and 

Q(P 

+ ( A j ^ + 3 A ^ w 3 p ^Sin\|f Cosijf +3A^ w p Sin\|/ Cos^i^ 

+ A « '^Sin\lf C o s \ + H Sin + S i n ( a + & ) 1 da 
3*̂ 0 ^ 0 0 o J 

o ' ^ ) = -h •" 2 W f I - ^ ^ i ^^3 ^ ' > + 2B3W^ P^^Cos t^ - fB3p^Cos^^ 
'-' o L 

X p Sin ilr Cos \ir 
o o * o 

+ (A, + 3A,w5) p ^Cos t + 3A,w p C o s \ 
1 3 t ô '̂ o 3 t ^o *o 

+ A , p tlos^iir + H Sin ( o + 8 ) Cos ilr I da 
3'^o ^o oj 

The definite In teg ra l s , additional to those a l r eady l i s ted , a r e 

2« > 
/ S l n ^ Cosi t da = i / Sin \|r Sin2i|f da = 0 

J o o o J ^ o o 

P 2« p 2« 
/ Sin^ijf Cos^ijf da = / Cos2,|r (1 - Cos^i|f )da = «/4 

J o ° ° J o ° ° 

2« ƒ^2It 
/ Sin \|f Cos^i|f da = | / Sin 2 i|f Cos >]/ do = 0 

J o o J 0 0 
'-'o o 

p2n - 2« 2rt • 
/ C o s ^ da = / Cos \|r (1 - Sin^ îr )da = / [Cos ^ - iS in f Sln2 i/ ]da 

= 0 
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2fl 
r Sin + Sin (O, + 8 ) do = - n Cos ( 8 + | ) 

o o 
"J o 

and 

2n 
r Cos t Sin (tf +8 )da = n Sin (6 + | ), 

"-' o 

which upon substi tut ion reduce the s t roboscopic sys tem to 

P 

P < V V^MCO-

Q<Po.̂ o) - i ü S ^ 

{Bj_ +B 3W^̂ ) + ï B ^ p ĉo - P ^ ' ' H Cos (8 + 6^)1 

,2+(A. +3A3 w^^ + l A , p + p "*H Sln(8 + 5 ) 
• ^ • ^ t 0 0 o J 

(57) 

(58) 

Imposing the condition P ( p , g ) = 0 = Q ( p , 6 ) for a s ingular point in the 
s t roboscopic plane gives r i s e to tne s imul taneous equations 

CO B^ + B 3 ( w 2 + i p ^ ) = H p ^ ^Cos(8+5^) 

- cü2 - (A ,+ 3A3 w^ ) - I p A3 = H p ' 'SMB + ê ) 
t o o o 

Squaring and adding these equations gives 

co2 B, + B3 (w 2 + \p J]^+ L a +(Ai + 3A3 w^^ + I p^Ag I = 

Now the resu l t ing per iodic osci l lat ion m a y be expressed a s 

w = F Sin (o + • ) 

(59) 

(60) 

H ' 

(61) 

where F = p , and the r e sponse equation becomes 

B 1 + B3 {vi^ + iF^) cü^+ Aj + 3A3(w ̂ iF3)J 

= <|)' = '^{,^4 =(FT{K%J-̂ -1-q?^r }̂ 
or 

where 

and 

(co'-) + Jco^ + K = 0 

(62) 

(63) 

B 1 + B3 (w^^ + i F ^ + 2 A, +3A3(w^^+iF^]- ( ^ ) ' 

K A,+ 3A3(w^%iF^)p - ( ^ y (U + z )m - z „ m 
o q t] T) q r 
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Following the Duffing technique the ampl i tude , F , i s considered to be p r e s c r i b e d and 
(63) i s solved for co. 

F o r some configurat ions, in pa r t i cu la r the r e a r controlled m i s s i l e cons idered in 
Section 6. 0, the magnitude of z« i s such that over the frequency range of In te res t (for 
a mode ra t e cen t re of gravi ty marg in the undamped na tura l frequency in pitch will be 
of the o r d e r of 2 to 5 r ad i ans per second) the value of iia i s sma l l compared with rii and 
5 = 0 . F u r t h e r , the value of z i s usually sma l l compared with U - U, z na i s sma l l 
conapared with Um^ and H naay be taken a s 

H = n,Um^ 

and the coefficients in (63) become 

(64) 

and 

where 

J = 

K = 

BL +V^j(a^ + \a%) + 2 2 ^ 1 2 A, + 3U A3(aa + Aal , ) 
t r 

A^+ 3U A3(a2 + ia^) 

w, 
a^ 

a •=; _ 1 and a - £ . 
t U F U 

F r o m equations (59) and (60) 

Sin(8+5 ) = - ^ 
o H 

0^ A i + 3A3 (wa + i F ^ ) 

and 

C o s ( 8 + | ^ ) = ^ rBi+B3(wa + i F 2 ) l ; 

alsoi from the definition of H and 5 , Sin 6 = ija/H and Cos 6 = T J ^ H . 

Now 

l a C o s l ^ + t i i S i n l J Sin(8+6 ) = SinSCose + C o s 6 S i n e 
o o o 

1̂  
H 

and 

Cos(8+ i ) = C0S8C0S S - Sln8Sin | 
o 0 0 Til C o s t -TiaSin 5 0̂} 

the re fore 

TI2C0S 5 + tiiSin I 
o o 

0^+ \ + 3A3 (wf 

and 

riiCos S - 1)2Sin i = coF RL + B3 (w 

f .iF-)] 

,%iF^)] 

(65) 

(66) 

Eliminat ing Sin I and Cos 6 In tu rn between (65) and (66) then gives 
0 0 ° 
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( l i + l i ) Cos 1^ = coP^i BL + B3(w^2 +iF^) j - T)2F<o^Ai+3A3 (w^̂  +\F^ 

and 

(Tif+ i f S l n IQ = - FTII f A^ + 3A3(w^^ + iF^) -cüFfi2 B^ + B 3 ( w ^ 2 + i F 2 ) l ; 

f u r t h e r , for the s teady per iodic osci l la t ion 

and 

w = p ' 'Cos 5 = F Sin * 
o o 

w' = p ^Sin I = F Cos * , 
o o 

implying that Sin <t> = Cos I and Cos <t> = Sin 6 and finally that 

coF 
(U +z )na„ - z„na 
_ o q T] 1 q 

Sin * jia_ r 
H I 

B , f B3(w f +iF2)j 

£0̂ + Ai + 3A3 (w^ + ^ F ^ ) } (67) 

and 
F« 

Cos « = -
H-̂^ <^o^^H " "" ̂  ""q] f''̂  ̂ ^ "" ^̂^ "̂"t̂  ^ ^̂  ̂ ] 

+ '"%rB,+ B3(w^2+AF--^j| (68) 

The phase angle * i s that exist ing between the input sinusoid to the e levator and the 
output sinusoid d e s c r i b i n g the w or o; mot ion. With the s a m e approximat ions a s those 
made in obtaining (63) and (64) the expres s ions beconae 

and 

Sin <)> = 

C o s * 

a F 

a n 
Bj. + U^B3 (a^ + i a ^ F ) 

a F 

' a A 

+ A^+ 3U'^A .j,a^+ia^) 

(69) 

(70) 

In calculat ing numer i ca l values due r e g a r d mus t be taken of the sign of r\ , which will 
be the s ame a s that of r\ and can be obtained from (55). 

As shown in Section 3 . 0 the s tabi l i ty boundar ies a r e defined by 

j ^ + Q | = 0, P a - P Q = 0, The par t ia l der iva t ives a r e 

Pp = î̂ Ti "̂̂  B i + B 3 ( w . ^ + è p^) | H p ^Cos (8 + t ), 
o o 

_ S in (8 + ê ), 
JKO^ O 

% - 2iicoa 
I A3 - i p^ H Sin (8+ 5 )̂ 
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and 

S -—:= p ^ H Cos (8+ I ), 2 |aa>2 ''o (0 ' 

which give for the f i rs t boundary 

1 
Pp + Q | 

or s ince co i s finite, 

(JCO 
•̂ co B, + B^(w^ +^p^) 1= 0, 

B + B, (wf + I F )̂ = 0 
1 3 t 

The second boundary i s given by 

(71) 

P p Q | -Ii% = i ( ^ ) ^ | o ( ^ i + B 3 ( w ^ i p ^ ) ) - i p ^ ' ^ H Cos ( 8 + 5 ^ ) 

X p"^Cos(8 +5 ) - |A_ - i ' ! l S in(8 + | ) p % Sin(6+ I ) U 0 o ' ' o | _ 3 o o j o o J 

which upon substi tut ion for Sin (8 + g ) and Cos (8 + | ) from equations (59) and (60) give 

co<= B i + B 3 ( w ^ + i F ^ ) B ^ + B ^ ( w a + A F ^ 

+ I A 3 F 2 

1 2̂  2C0 ^1 + B 3 ( w ^ H- ïF^) 

to +Ax + 3A3 (w '̂  + i F ) ">+Ai. +3A3 (w ''+\F'^ ) 

or 

where 

and 

(cu^ )2 + Rü̂ a + S (72) 

BL + B^jtw^ +fF^ ) B^ +B3(w^a + i p â  ^ 2I A1+3A3 (w^^+iF^ )1 

S = A i + 3A3(w^ + | F ^ ) i\ A^+ 3A^(v/a +iF^) 

The stabil i ty boundary defined by (72) i s in fact the locus of the points of ve r t i ca l 
tangency of the r e sponse curves given by equation (62); a r e su l t which can read i ly be 
proved by differentiating (62) inaplicitly with r e spec t fo F , r e m e m b e r i n g that H i s a 
function of co, and inse r t ing the condition dco/dF = 0. The na ture of the instabi l i ty 
co r responds to the "jump phenomena" a l ready d iscussed in re la t ion to Duffing's equation 
and will be d iscussed in further detai l in Section 6, 0. 

Equation (71) defines a damping boundary which may read i ly be compared with 
" q u a s i - l i n e a r " theory ( i . e . s tabil i ty theory based on the local slope of the aerodynamic 
force and naoment c h a r a c t e r i s t i c s ) . Quasi - l inear theory indicates a d i sappearance of 
damping when the coefficient of W in (52) becomes z e r o . This impl ies that the g rea tes t 
tr imnaed value of incidence is given by 

Bĵ  + ]^ w = 0 
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'. = (- k) or w. = ( - ^ ) (73) 

a boundary which will exist only if B 3 is of opposite sign to B , Since B 1 is always 
negative then B3 must be positive. From the definition of Bi , if z^ were the dominant 
term then the condition (73) would correspond to the stall. It is implied that stable 
pitching oscillations are possible at all values of W up to w, given by (73), whereas (71) 
indicates that stable oscillations are possible only for values smaller than 

^ t - ipj ^ (74) Bi , „ a 
B 

This means that the value of w^ for which stable oscillations are possible is dependent on 
the amplitude of the oscillations, F , and reduces to the quasi-linear result for F-» 0. 

6.0 A Numerical Example - Frequency Response of an Air-to-Air Missile Flying at 

High Altitude 

The missile chosen for this example, which is hypothetical, is shown in Fig. 2. 
It Is a cruciform, rear-controlled, a i r - to-ai r missile intended to be launched from a 
fighter aircraft and having a useful speed range of 1,500 to 3,500 f. p , s . The operational 
altitude is between 20 to 70 thousand feet. To avoid the missile 's guidance system 
losing "sight" of the target, the airframe incidence is limited to - 30 degrees. For the 
present purpose it has a weight of 500 lbs. and a moment of inertia in pitch (or yaw) of 
4,000 lbs, feet2. 

The aerodynamic characteristics have been calculated using naethods sinailar to 
those described by Nielsen in Ref. 9. Wing and control normal forces are based on 
linearised supersonic theory, whilst the inviscid contribution from the body has been 
obtained frona an extended form of shock-expansion theory. Non-linear contributions 
arise from the body and downwash variations at the control. In the former viscous flow 
separation from the leading portion of the body produces a vortex sheet which rolls up into 
approximately streamwise vortices; these generate low pressures on the lee side of the 
body and produce normal force additional to that predicted by inviscid theory. In the latter 
the wing downwash at the control, which is not proportional to the geometric incidence of 
the missile, causes the control efficiency, when acting as a stabilizer ( i ,e , t\ = 0), to 
increase with m.issile incidence and thereby creates the non-linearity. For the present 
configuration the non-linear pitching monaent produced by the downwash variation is three 
times that arising from viscous separation on the body. 

At low incidence ( < 5 degrees) and moderate centre of gravity margins, the non-linear 
pitching moment is small compared with the linear contribution. This implies that at 
relatively low altitudes, where the operating incidence will be snaall (this is usually the case, 
since the normal force imposed will have to be kept within structural limits), the airframe 
response will be linear to a good approximation. When flying at high altitude, even with 
comparatively small normal accelerations, the operating incidence is such that non-linear 
normal force and pitching naoment contributions are of the same order as the linear and 
thereby introduce inaportant changes in the frequency response (and in the transient response 
as well, although this problem will not be considered here) characteristics. The present 
example sets out to demonstrate these effects. 

Choosing for example an altitude of 60,000 feet and a speed of 2,000 f. p. s, (Mach 
number = 2,066), then the aerodynamic characteristics are 
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dCN OUN 
= 20 per radian, 

d a dC 
and 

^ M _ 20(^c.g. - 0.3) 
da " Dp 

where Xj,̂ g_ is the centre of gravity position measured aft of the datum and the 
coefficients are based on a reference area Sjj = 0.785 square feet and a reference 
diameter Dp = 1 foot. 

Over the incidence range t 30 degrees the non-linear normal force and pitching 
moment can be approximated by terms proportional to a^ . On this basis the normal 
force and pitching moment can be expressed as 

and 

C„ = 20a + 40 a^ 
N 

C = 20(^c.g. - 0.3) . l o o a ^ 
M Dp 

Experimentally the normal force increment due to a change in r\ usually Indicates 
a second control efficiency term dependent on i] , however, this variation is normally 
small and for the present purpose is neglected. The elevator terms become 

dT, = 3.82 

and 

dT] D R 

where (4 - xc. g.) is the distance between the hinge line of the elevator and the centre of 
gravity. This approximation for the "tallarm" is permissible if the aerodynamic centre 
of the elevator is near the hinge line; this is normally the case if the hinge moment is to 
be kept snaall. 

The variation of control normal force with incidence i s , of course. Included in the 
value of ^ £ N for the complete missile. In calculating certain aerodynamic derivatives 

da 
the control contribution alone, and not in the presence of downwash, will be required. 
This value is 

—7—!- = 6.53 d a 

In addition a value of — , the rate of change of downwash angle with Incidence, will be 

required in determining m ^ . The control efficiency (1 - -^), varies between 0.4 at low 

incidence to about 0.8 at a = 25 , implying a variation of — frona 0.6 to 0 .2 . To be 



- 23 

consis tent wi th other l inear ae rodynamic t e r m s the value of -r- has been taken at 
da 

a = 0 , an assumpt ion which will ove remphas ize the impor tance of m . at high 
inc idence . 

The stabil i ty de r iva t ives z ^ , m ^ , z-^ and m^ and the coefficients Z3 and 
m 3 s t em d i rec t ly from the p r i m a r y aerodynanaic coefficients and a r e defined by the 
exp re s s ions 

z = 
w 

^ -

m = 
w 

m3 = 

\ -

' ' \ -

1̂  
m 

1̂  
m 

| ( 

1̂  
B 

1_ 
m 

1 
B 

^ ^w=o 

CAWV " 

^ ö ^ / w = o 

/ A M \ 

/ Ö Z \ 

/ aM\ 
^ ^ M =0 

PUS^ . 6 C . 

2m V da y 

pUa S^ 

2m 
^ ^ N ' \ 
A(Ua)^ 2mU 

2B ^ da l__^-

'^SR°R 
2BU 

PU^SR 
2m 

^ ^ M 

Qh 
P " ' « R ° R r^CM\ 

2B V dti y ' 
^ ' ^n =0 

^ ^ N 
da^ 

and 

where U i s the forward speed along the flight path, a ssumed to be equal to U Q , and a 
i s taken to be approxinaately _ . 

U 
F o r the given configuration the p r i m a r y contribution to the der iva t ives z , m 

and m - comes from the r e a r control and can be obtained from theory based on the 
quas i -s ta t ic approximat ion (see Ref. 10), On this b a s i s , and neglecting the control 
d rag coefficient in compar ison with ^ T i the der iva t ives become 

da 
1 x^Zs, _ P U S R V / ' ^ ^ N T X 

q m l^oq L^Q 2m e . g . V da / 
a = o 

1 
m = — 

q B 
SV1\ P U S R , a / ^ \ 

^) = --21- < -̂ ''c.g.)(-i^-) . 

and 

m . = — 
1. / ^ M ^ _ ' ^ R ( 4 - x f / ' ^ ' ^ ^ T de 

w B \b^J ~ 2B e . g . ' V d a ' da / 
^ ^w=o ^ ^̂ 0=0 

With m in s lugs , Sp in square feet, D R in feet, B in slugs feet a , U in feet per 
second and p in slugs per cubic foot, the nunaerical values of the der iva t ives a r e 

-1 -7 -2 
z = - 0.227 sec , z , = - 1 . 1 3 3 x 1 0 ft. s e c , 

w 3 
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m 
w 

0.0283 (x 
e . g . 

0.3) f t ' ^ s e c . '^ : 

q 
m-

w 

= - 86 .7 ft. sec 

= - 0.0741 (4 - X 

= - 2,.776 X 10 

-2 

na 

m r 

) ft. sec 
e . g . 

" % 4 - X )^ft 
e . g . ' 

-1 

-7 3 
0,354 X 10 ft. s e c . 

10.83 (4 - X ) sec . 
e . g . 

na 9.25 X l O ' ^ (4 X ) s e c . , 
e . g . 

It can be seen that the der ivat ive z i s ve ry smal l when conapared with U, to 
which it i s added in a l l the re la t ionsh ips involved, and for convenience is neglected 
he reon . 

Substituting these values in the express ions for A^ , A 3 , e t c . gives 

a n d 

B , 

56.6 (x - 0.3) - 2 .1 X 10 (4 
e . g . 

-2 -2 
X ) s e c . 

e . g . 

0.708 X 10 

0.227 - 14,80 X 10 

1.048 X 10 

- ^ 4 -

" ^ 4 - X ) ^ t . ' ^ 
e . g . 

.2 -1 
X ) s e c . 

e . g . 

3.399 X 10" ft. ' s e c . 

The equation of t r i m becomes 

- 56.6 (x 
e . g . 

0.3) - 2 .1 X l o ' ^ (4 - x )^ 
e . g . , 

X 2 ,000a . 

0,708 X 10"'* + 1.048 X 1 0 ' ^ (4 X ) ' 

e . g . 
X 2.000^0 3^ 

21.66 X 10^ (4 - x ) + 0.802 (4 - x )^ 
e . g . e g . 

and the t r i m c u r v e s ' of a v TJ for var ious x^^ „̂  a r e shown in F i g . 3 , the curves being 
a n t i - s y m m e t r i c about the TJ a x i s . 

F o r the purpose of the exanaple the m i s s i l e i s a ssumed to be flying level at 
60,000 feet al t i tude and subject to a steady norma l acce le ra t ion in the pitching plane of 
Ig. The corresponding value of nornaal force coefficient i s 1.42 at an incidence of 
0.0703 rad ians (4 .03 deg rees ) , whilst the e levator angle to t r i m is marked on F i g . 3 . 
Using the previous values the r e sponse curves for var ious posi t ions of the cen t re of 
gravi ty and elevator ampl i tude, T],^, have been obtained and a r e shown in F i g s . 4 and 5 , 
whilst the assoc ia ted phase angles a r e shown in F i g s . 6 and 7. 

Consider f i rs t the t r i m curves of F i g . 3 . The aerodynamic cen t re at ze ro incidence 
(which i s the s ame as the cent re of p r e s s u r e for the s y m m e t r i c a l a i r f r ame of the example) 
l i es at 0 .3 feet aft of the datum line and there fore moving the cen t re of gravi ty forward 
frona 0 .3 to 0 , 1 , and further to - 0,1 produces an inc rease in the s ta t ic s tabi l i ty , whereas 
moving the cen t re of gravi ty aft to 0 .5 and 0.7 gives r i s e to s ta t ic instabi l i ty, i . e . it is 
s ta t ical ly unstable on the bas i s of conventional l inear theory for equilibriuna at a = 0. 
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The value x = 0 . 1 , corresponding to a centre of gravity margin of 0.2 feet, would, 
c g. 

on the basis of conventional static stability theory, be an acceptable figure and forward 
and backward movements of the centre of gravity from this position produce too great 
and too small amounts of static stability respectively. Taking x =0 .1 feet as the 

c, g, 
optimum figure (in practice there would be a range of acceptable values about the optinaum), 
it can be seen that the effect of the aerodynamic non-linearity is to cause a large increase 
in the value of the elevator angle to trim; so much so that the airframe is able to reach 
only 75 per cent of its limiting incidence before the elevators reach their naechanical 
stops. Such a restriction on the useful incidence range would limit the airframe mano-
uvreability under conditions when it is at a premium. 

The greater than linear increase of pitching naoment with incidence causes the 
pitching motion to constitute a "hard" system and the response curves of Fig. 4 show the 
lean towards higher frequencies which is characteristic of such a system (see Ref. 8). 
For very small amplitudes, ^1^ ,̂ (less than about 0.5 degrees) the curves are close to 
those obtained from quasi-linear theory for small oscillations about the trimmed value. 
With increase of TI points of vertical tangency occur in the curves and give r ise to 
"jumps" in amplitude. For instance take the curve l̂ ^ = 0.2. Starting at a steady state 
value marked A, with increase of frequency the amplitude of oscillations about the trimnaed 
incidence increase until the curve meets the locus of vertical tangency at C, This point 
is on the stability boundary defined by equation (72) and the resulting instability is the jump 
in amiplitude from. C to E. Further increase of frequency then gives r ise to amplitude 
changes as depicted by the curve E to F . When the frequency is decreased frona F to A 
another anaplitude jump occurs frona D to B, the point D lying on the other branch of the 
locus of vertical tangents. 

It can be seen that the portion of the curve from C to D is never traversed, implying 
that the region between the two branches of the locus of vertical tangents is one of instability. 
The form of instability is that corresponding to unstable equilibriuna since any small 
departures frona C or D do not dinainish with t ime. On the other hand the naotion does not 
diverge indefinitely and is obviously a periodic motion in the neighbourhood of that existing 
prior to the junap. Such conditions call for extended definition of stability and has given 
r ise to the concept of "orbital stability" which is discussed in Ref. 8, 

The damiping boundary, defined by equation (71), does not exist in the present problem 
since B^ and B3 are of the same sign throughout. Obviously the slope of the normal 
force curves will not increase indefinitely and will eventually have a maximuna. All this 
implies is that the damping boundary lies outside the useful operating incidence range of 
the airframe, 

Some 3aieasure of the accuracy of the response curves can be obtained by comparing 
the steady values of Fig. 4 with corresponding changes in trina on Fig, 3. Now the trinamed 
conditions defined by equation (55) are exact steady state solutions of (52) and the difference 
between these values. Fig. 3, and those from Fig. 4 are an indication of the inaccuracy of 
the amplitude of the fundamental and of the naagnitude of the neglected higher harmonics 
i . e . 3a), 5cu , etc. Both of these effects ar ise from the basic approximation made in 
establishing the first order stroboscopic system. In making the conaparison it is important 
to renaenaber that the region of naaximum accuracy of the response curves is that embracing 
the resonance (this follows by direct comparison with the inverse iteration procedure used 
to solve Duffing's equation in Ref. 8) and therefore the comparison of steady state values 
is likely to be more pessimistic. 

;•> 

'1 
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Another point which is likely to be of practical interest is that the ratio of 
the resonant peak amplitudes of the non-linear to linear values tends to decrease " 
sharply with increase of T)̂  and would thereby tend to reduce the anaount of 
operation on the incidence l imits. 

In quasi-linear theory the phase angle is closely related to the amplitude, the 
region of resonance corresponding to rapid changes in phase, as seen in Figs. 4 and 6. 
Increases of elevator anaplitude produce an initial improvement in phase angle, but 
finally give r i se to jumping. The locus of vertical tangency of the • , <o curves 
corresponds exactly with that of theop , co curves, a statement which can readily be 
demonstrated by differentiating equations (69) and (70) implicitly with respect to <l> , 
imposing the condition "^^/d* = 0, and thereby arriving at equation (72). It follows 
that the region between the branches of the locus of vertical tangents is a region of 
instability in a similar sense to that of Fig, 4 and jumps in phase angle occur between 
points such as C to E and D to B. It is worthy of note that similar jumps in phase angle 
are characteristic of the periodic solutions of Duffing's equation, a point which does not 
appear to have been naade in the literature on this subject. 

The discussion has, until now, been limited to explaining the effect of aerodynamic 
non-linearities on the frequency response of an airframe whose centre of gravity margin 
was optinaized on the basis of conventional linear static stability theory. In assessing 
the relative inaportance of the non-linear phenomena it is necessary to renaenaber that 
the airframe is only one part, albeit an important one, of the overall control loop. 
An essential feature of the loop will doubtless be the negative feedback of an output rate 
(W and/or 9 ) signal causing a considerable increase in the overall system danaping. 
It can, therefore, be anticipated that the range of elevator amplitude for which jumping 
does not occur will be greatly increased. Quantitative evaluation of this effect naust 
await further analysis, analysis which must be capable of taking into account the increase 
in order of the governing differential equation which is almost certain tcj ar ise when the 
other components of the control loop are included. The stroboscopic naethod, in the 
form given by Minorsky, i s , of course, linaited to systems of second order or lower. 

One limitation which the control system will not conveniently be able to modify 
is the restriction of the useful incidence range brought about by the non-linear variation 
in pitching moment. In servomechanism parlance this corresponds to a reduction in 
aerodynamic gain or stiffness. The situation can be inaproved by reducing the static 
stability, as shown in Fig. 3. If static instability can be tolerated at low incidence very 
useful reductions in the elevator angle to tr im can be obtained. It is of interest to 
investigate the response of the airframe under these conditions with a view to utilizing 
the previous improvements in a closed-loop control system. The case x = 0 . 7 feet 
is typical of this condition. 

In describing pitching motion it is often convenient to use the concepts of Poincares 
theory of singular points already employed in Ref. 1. With A ĵ  negative there exists only 
one trimmed incidence for a given value of r̂ .̂ The trimnaed condition corresponds to 
a singular point of equation (52) and will be a stable spiral point. 

For a given value of T] there will be a single solution curve whose nature is 
related to the nature of the singularity. On Fig. 4, for instance, the co axis corresponds 
to the basic singularity, whilst the values of o: at "̂  = o correspond to changes in the 
position of the singularity due to the effective change in elevator angle, T^. This implies 
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that as CO-» o each solution curve degenerates towards the new singular point 
whose ordinates are n+ + 1Q, 0+ + ( "-'F),,, , whilst when co -* «> the solution curves 

I. d t CO = 0 

degenerate towards the basic singularity at the initial trimmed condition TJ. , a^, 
When A^ is positive, i . e . statically unstable at low incidence, three possible 

trinamed conditions can exist for a given value of Hi, as shown in Fig. 8. For the 
present exanaple the point at A is appropriate. The conditions A and B correspond 
to saddle points, i . e . points of unstable equilibrium, whilst C is a stable spiral . 
Obviously any snaall disturbances will cause the airframe to depart from its trinamed 
value at A to the stable singularity at C. Nevertheless it is theoretically possible for 
a forced sinusoidal motion to be established about A. For snaall values of r\ three 
steady state values at A' , B ' and C ' are indicated. These correspond with the 
typical end points A' , B and C of the r\g^ = 0.02 radians response curves in Fig. 5, 
The angular displacement of A' , B ' and C' frona A, on the tr im curves, are then 
exact measures of the steady state values to which those on Fig. 5 approximate. 
Three distinct curves exist, the two lower curves representing naotions which are in 
anti-phase at co = o, whilst the upper curve is initially in phase, as shown on Fig. 7. 
With increase of frequency the oscillation associated with A degenerates to the 
singularity at A, with little change in phase. The other two response curves finally 
naeet at the locus of vertical tangencies and there is a corresponding meeting of the 
phase curves. For larger values of T^ only one steady state value is indicated at D 
and a typical response curve for this case would be that for T) = 0.1 radian. 

The region between the branches of the locus of vertical tangency is again an 
unstable region and the curves lying in this region represent impossible motions. The 
intercepts of these loci on the a p ordinate of Fig. 5 correspond to the points M (the 
maxinaum) and B on Fig. 8. This inaplies that for small values of T) ^ two steady 
oscillations are possible corresponding to the upper or lower response curves. 
Bearing in mind the initial transient required in order to naove into the steady sinusoid 
it is clear that only the upper response curve is practically relevant at low frequency. 
With increase of frequency jumping from the upper to the lower curves occurs and for 
higher frequencies it is possible to maintain relatively small amplitude oscillations about 
A. With Increasing values of TÎ  the lower and middle response curves finally naeet at 
the locus of vertical tangency at CD= o, corresponding to the meeting of the points A' 
and B ' , in Fig. 8, at the maximum, M. For greater values of T, only a single response 
curve exists which now indicates the possibility of both upward and downward jumps in 
amplitude. Corresponding junaps in phase are also demonstrated by Fig. 7. 

With additional damping provided by a rate feedback and not too large an amount of 
static instability, it can be seen that some possibility of successful operation of the 
complete control system exists. A full answer as to the practicality of the proposal 
must await an analysis of the complete system which must embrace both frequency and 
transient response. 

The discussion has been deliberately focussed away from the purpose to which a 
knowledge of the frequency response can be put. Obviously the results will have different 
implications when taken in conjunction with control systena synthesis than would be the 
case when applied to the analysis of aerodynamic derivatives from flight t r ia l s . In the 
former there is left the open question of what relevance the frequency response has to 
the transient response in deciding overall stability, while in the latter the non-linear 
distortion of amplitude and phase curves will have an inaportant bearing on the frequency 
and elevator angles selected for the test and on the conditioning of the matrix used for 
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extracting the derivatives from the response and phase curves. Finally, it is hoped 
that the results will have some intrinsic merit as solutions of a particular differential 
equation. 

7.0 Conclusions 

The important conclusions which may be drawn frona this analysis are as 
follows: 

(1) When the stroboscopic naethod of Minorsky is applied to obtain periodic solutions 
of Duffing's equation, it gives the same results as that obtained by Duffing using the 
method of inverse iteration, i . e . selecting the amplitude of the solution and solving for 
the frequency, rather than the reverse . Considerable simplification ar ises in 
determining the conditions for stability, thereby avoiding the need to resort to the 
stability theory of Mathieu's equation (see Ref. 8). 

(2) The short-period motion of an airframe having non-linear aerodynamic 
characteristics and subject to a sinusoidal elevator deflection is shown to have a 
governing differential equation in W, the vertical velocity, which is closely allied to 
Duffing's form. Although the coefficient of W is of non-linear form, it is not such 
that the airfranae experiences changes frona negative to positive damping with increase 
of anaplitude and thereby excludes the possibility of limit cycling. Resulting frona this, 
the non-linear phenomena experienced during the pitching motion are sinailar in 
character to those associated with Duffing's equation; in particular, junaps occur in the 
amplitude and phase of the oscillations in incidence. 

(3) In a similar way to Ref, 1, the analysis has been restricted to the stability and 
response of the equation governing the vertical velocity. Unlike the earlier problem 
it would seem that a solution for the angular rate of pitch, 6 , is possible. The 
governing equation for the 6 naotion can be obtained by substituting w = F Sin (cot + <t>), 
with CO , F and * known, into equation (56). 

(4) In assessing the relative importance of the effects arising from non-linear aero
dynanaic characteristics it is important to remember that the airframe is only one part, 
albeit an important one, of the overall control loop. Obviously feedback and shaping 
signals will have considerable influence on the overall stability and response, in particular 
the range of elevator amplitude for which junaping does not occur can be expected to 
increase. Quantitative assessment of this problem naust await further analysis, analysis 
which must be capable of taking into account the increase in order of the governing d , e . , 
which is alnaost certain to arise when the other components of the control loop are 
included. 

(5) It will be noted that equation (56) is of a slightly different form from (37) and the 
stroboscopic method cannot, without reservation, be applied to it. The restoring term 

C(w) = (A + 3A w )w + 3A3W .w^+ A ^^ 

is of assymetric form, except when Wj. = 0. This assymetry, due to the term in w " , will, 
when w^ is not small, produce what is known in electrical engineering terminology as a 
"rectification effect". This means that, in the first approximation, the response in w is not 
a sinaple sinusoid but takes the form 

w = w + F Sin (o + * ), r 

where the rectification term Wj. is a function of frequency. Some discussion of this phenomena 
is given by McLachlan in Ref. 11 and it is clear that w .̂ can only be neglected if w^ is snaall. 
Distortion of an assymetric character also ar ises from the terna in ww'. To avoid these 
complications it has been assumed that w^ is sufficiently snaall. 
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