
Exploring Descriptive Metrics of Build Performance: A Study of GitHub Actions
in Continuous Integration Projects

Radu Stefan Constantinescu

Supervisor(s): Sebastian Proksch, Shujun Huang

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: Radu Stefan Constantinescu
Final project course: CSE3000 Research Project
Thesis committee: Sebastian Proksch, Shujun Huang, Fenia Aivaloglou

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract
The Continuous Integration (CI) practice, has been
rapidly growing and developing ever since it’s in-
troduction. This practice has been constantly pro-
viding benefits to developers such as early bug de-
tection and feedback to development teams. In this
study, we aim to identify the descriptive metrics
that best illustrate the performance of the CI build
stage, regarded as heart of the development process.
We conduct a small case study on repositories
utilizing GitHub Actions, a CI tool that is rela-
tively unexplored. Within this context, we classify
projects using two performance indicators: build
breakages and build durations. We examine two
distinct sets of metrics in our analysis. The first set
being build level metrics, which are closely linked
to the build stage. The second set including project
level metrics.
Our findings suggest that patterns traditionally as-
sociated with low breakages and durations are ap-
plicable to repositories employing GitHub Actions.
However, understanding the relationship between
project level metrics demands a more comprehen-
sive approach, necessitating a thorough analysis of
the project context for a holistic understanding of
build performance.

1 Introduction
Continuous integration (CI) is a widely recognized practice
in software development, involving the frequent merging of
minor modifications into a shared central repository [1]. This
practice, when adopted, comes with numerous benefits such
as early feedback on code alterations and early detection of
bugs in the development cycle, drastically reducing risks for
development teams [2], [3]. Over time, the concept of CI has
seen substantial evolution and refinement.

A significant milestone for Continuous Integration (CI)
was established in 2006 when Fowler and Foemmel [2] out-
lined ten fundamental CI practices. These were intended to
serve as a guide to enhance software quality and expedite the
development process. After the introduction of these explicit
steps, they were swiftly adopted and incorporated within the
industry. Notably, immediate enhancements in software qual-
ity [1] and software project team productivity [4] were ob-
served.

Up until this time, there exist studies [1], [4] that focus on
CI improvements, with some of them raising the concern that
context and project constraints might influence the way CI
is to be implemented across different organizations [1], [5].
This concern raised the idea that there might not exist a ”one
size fits all” solution for the CI implementation in different
project contexts and further research has to be done in this
area.

In this sense, the knowledge gap we want to address
is: What are the contextual descriptive factors of software
projects that affect the most the implementation of CI prac-
tice, and how can these factors be united in order to provide a
guideline for maturing the continuous integration process.

As Continuous integration has been a subject of extensive
research for several years it is clear that studying CI is a com-
plex matter that requires multi-dimensional approaches. To
obtain this holistic view, our research team narrowed down
our analysis into project activity, maturity and topic, and the
implementation of the CI build stage and pipeline.

In this paper, we will focus on the build stage, also re-
garded as the ”heart of software development ecosystem” [6],
a critical phase, as in the software development process, most
stakeholders get to interact with it [7].

Given its importance we can see how problems such as ex-
tended build times, failures, and frequent breakages not only
disrupt this stage but can also ripple across the entire develop-
ment work [8], having serious effects on programmer’s pro-
ductivity [9].

Building upon these observations, our study aims to un-
ravel: What are the most descriptive metrics for identify-
ing build performance?

In order to answer the main question of this paper, we will
break it down into two sub-questions.

• RQ1: What are the key build level metrics that signifi-
cantly contribute to the evaluation of build performance?

• RQ2: What are the essential project level metrics that
play a significant role in the assessment of build perfor-
mance?

In the subsequent sections of this paper, we will dive into
pertinent research, spotlighting a handful of notable stud-
ies that have informed our methodology. For a smooth un-
derstanding, we shortly explain the structure employed by
Github Actions, then we present an in-depth step exploration
of our data collection process. We will then transition to ex-
amine the findings pertaining to our research questions, fol-
lowed by a comprehensive discussion regarding the discov-
eries made and the limitations and threats to validity of our
findings.

2 Previous work
In software development, particularly when viewed through
the lens of Continuous Integration (CI), the concept of build
performance is multifaceted and subjectively valued. The
unique concerns of various stakeholders significantly influ-
ence the interpretation of this concept. For some, the dis-
course may pivot around financial considerations, as detailed
in a paper focusing on cost-effective CI strategies [3]. Others
might prioritize the quality of the software process, empha-
sizing the efficient and error free builds [4].

In exploring the field of CI build performance, a substantial
body of research is devoted to the phase of building, with a
particular emphasis on examining the diverse nature of build
failures. Several studies concentrate on uncovering the rea-
sons behind build failures [10], [11], [12], while others, ap-
proaching the issue from a unique angle, finding patterns of
failures with the goal of predicting build outcomes. Their aim
is skipping non-failing builds, in order to reduce the overall
cost of the CI stage [3].

On a similar note, the duration of the build process rep-
resents another key performance metric that frequently be-
comes a focal point in CI improvement research. Some



research targets the reasons contributing to extended build
times, investigating factors that may cause unnecessary de-
lays in the build process [13]. Simultaneously, research
pinpointed anti-patterns in CI processes, implying that slow
builds might be a damaging practice in software develop-
ment [14]. Meanwhile, other explore the impact of lengthy,
resource-draining builds on team behavior, highlighting their
substantial effect on team interactions and productivity [15].

While the metrics of build failures and build durations re-
ceive substantial focus in research on CI build performance,
it is important to understand that these metrics are often ex-
plored in isolation, potentially leading to a fragmented under-
standing of build performance [5].

The study of Ghaleb et al [5] aims to bridge this gap. In-
stead of looking into these performance aspects in isolation,
they decide to study build durations and build breakages and
the way in which they are connected. By expanding the Trav-
isTorrent dataset [16] with additional Travis CI 1 projects and
conducting an in-depth analysis of over 900,000 builds, they
identify which factors are most tightly correlated with desir-
able performance. Moreover, they validate their results by
conducting developer surveys. They look into which build
level metrics and project level metrics have a significant im-
pact on build performance, and find that often trade offs have
to be made, and one performance aspect has to be sacrificed
in favour of another.

With a similar methodology, considerable portion of cur-
rent research surrounding the build stage and CI consis-
tently utilizes Travis CI [3], [11] along with the TravisTor-
rent dataset, [16]. The dataset, assembled from over 1000
projects utilizing Travis CI and mined from GitHub reposi-
tories in 2017, was created to simplify the study of CI for
researchers. This methodology has gradually broadened our
understanding of the CI landscape that leverages Travis CI.
However, despite Travis CI’s significant role in the CI field,
numerous other tools exist that demand a more in-depth ex-
ploration, as underscored by recent build performance studies
[5].

In this sense, we decide to shift our focus to GitHub Ac-
tions, a new entrant in the CI tools sector that remarkably
surpassed Travis CI, the longstanding market leader, within
18 months of its launch [17]. Our research will extend the
analysis to multiple branches beyond just the master/main, as
suggested for future research in [5] and will study the perfor-
mance by looking at build breakages and durations together
by exploring various project and build level metrics.

3 Github Actions
Introduced in November 2019, GitHub Actions (GHA) is a
new player in the CI landscape, but has rapidly ascended to
a dominant position [18]. The service’s swift growth can be
attributed to its seamless integration with GitHub’s ecosys-
tem and a flexible, robust workflow configuration, making it
a compelling option for developers [19].

GitHub’s (GH) prominence as the primary social coding
platform has significantly accelerated GHA’s adoption. With
a vast user base of over 94 million users in 2022, including

1https://www.travis-ci.com

414 million contributors and use by 90% of Fortune 100 com-
panies [20], GHA is in a unique position in the CI landscape.

To employ GHA, developers are required to configure a
workflow file with a YAML extension, which determines the
structure of the workflow. Each workflow revolves around
specific events. When these events occur, they trigger the
execution of jobs. Each job is composed of several steps,
which are undertaken sequentially [21].

Even though this sequence of events, jobs, and steps ad-
heres to a standardized structure, GHA provides a significant
level of customization at each stage, offering considerable
freedom to developers. They can modify triggering events,
define the specifics of jobs and steps, select runners, manage
job dependencies, and control the workflow’s behavior upon
the failure of individual steps. This adaptability allows devel-
opers to tailor any time of workflow automation to meet their
project’s unique needs.

Listing 1 demonstrates an example of a GitHub-defined
workflow template for the ”build and test” stage, illustrating
a configuration of a Java Maven Build stage in GHA [22].

Listing 1: Build & Test Java with Maven
name : Java CI
on : [ push ]
j o b s :

b u i l d :
runs −on : ubuntu − l a t e s t
s t e p s :

− u s e s : a c t i o n s / checkout@v3
− name : S e t up JDK 17

u s e s : a c t i o n s / s e t u p −java@v3
wi th :

j ava − v e r s i o n : ’17 ’
d i s t r i b u t i o n : ’ t emur in ’

− name : B u i l d wi th Maven
run : mvn −− ba tch −mode −− upda te −

s n a p s h o t s package

4 Methodology
For this study, we opted for Python 2 due to its flexibility and
the availability of numerous libraries that enable easy access
to APIs and data processing. Central to our tool’s function-
ality was PyGitHub3, a client-side library that facilitated our
tool’s end-to-end processes, ranging from the filtering stage to
the extraction of repository-related data. However, there were
instances when GitHub’s API4 offered features not available
in this library, such as interaction with GHA. In these situa-
tions, we resorted to raw HTTP requests for data extraction,
as in the case of extracting jobs from a given workflow run.

We constructed our tool using a pipeline stage architecture,
promoting enhanced re-usability and methodical progression
through the extraction stages. The structure can be catego-
rized into three primary divisions: Repository Generation,
Data Extraction, and Data Analysis, each hosting a variety
of specific sub-stages tailored to their respective functions.

2https://www.python.org
3https://pygithub.readthedocs.io/en/latest/
4https://docs.github.com/en/rest/actions/workflow-jobs?

apiVersion=2022-11-28

https://www.travis-ci.com
https://www.python.org
https://pygithub.readthedocs.io/en/latest/
https://docs.github.com/en/rest/actions/workflow-jobs?apiVersion=2022-11-28
https://docs.github.com/en/rest/actions/workflow-jobs?apiVersion=2022-11-28


Table 1: Build Level Metrics

Category Metric Description
Configuration Cache usage Usage of GHA caching actions in the build configuration

Fail Fast Usage Usage of the Fail Fast GHA option in the build configuration
Skip Usage Presence of the skipping builds practice
Job Count Number of jobs configured per GHA workflow
Job Churn Added Jobs - Deleted Jobs / consecutive build

Failure Q4 Breakage Rate Frequency of failure conclusions divided by overall conclusions count in the
last 25% of the project’s lifetime (q4)

Retrial Breakage Rate The breakage rate calculated by grouping build runs according to their run -
attempt attribute

# of consecutive breakages The number of failures occurring from the first failure event to the next suc-
cessful one

Duration Build duration The time difference between when the GHA Build Workflow run ended and it
started

Recovery Time (min) The amount of time it took for developers to fix a failed build
CI Activity Weekend/Weekday Build Whether the build has been triggered during a weekday or weekend

Peak week day Day with the most CI activity

Table 2: Project Level Metrics

Category Metric Description
Code Maturity Project Age in years Repository age as identified from the created at GitHub attribute

Project Size (KB) Repository size in KB
Activity # Commits Number of commits in the lifetime of the repository

# Branches Number of active branches in the repository
# Releases Number of releases in lifetime of the repository
# Contributors Number of contributors in lifetime of the repository

Reputation # Stars Number of the stars
# Forks Number of the forks

Furthermore, stage yeild intermediate outputs, and present
configuration files for flexibility. This configuration file pro-
vides stage-specific settings, ensuring the tool’s adaptability
to different inputs, making it highly customizable and ver-
satile. An example of such a configuration can be found in
Listing 2, where we outline the parameters for the Repository
Generator stage.

Listing 2: Repository Generator Configuration
” RepoGenera to r ” : {
” l a n g u a g e s ” : [ ” J a v a S c r i p t ” , ” j a v a ” ] ,
” repo number ” : 400 ,
” m i n s t a r s ” : 75 ,
” m i n d a y s o l d ” : 365 ,
” m i n c o n t r i b u t o r s ” : 5 ,
” min commits ” : 100 ,
}

4.1 Repository Selection
In our research, we utilized several filters to compile a rep-
resentative set of repositories, excluding ’dummy’ and ’toy’
projects in line with prior studies [23], [3]. We find reposi-
tories by querying the GitHub API using the search function-
ality. In selecting repositories we used two set of of filters:
project level and CI level. We will first discuss the project-
level filters criteria.

1. Repository Activity: We asses the lifespan activity for a
repository with a threshold of a minimum 100 commits.

2. Popularity: We further established a popularity crite-
rion, demanding each repository to have garnered at
least 100 stars, indicative of significant community in-
terest or endorsement.

3. Established Date: We enforced a criterion for the
repository’s age, including only those repositories that
were created at least a year prior, ensuring a sufficient
time-frame for maturity and the likely stabilization of
their CI setup.

4. Team Size: We established a minimum requirement of
at least five contributors for each repository, enabling us
to consider the impact of collaboration on CI practices.

5. Non Forked Furthermore, to maintain the authenticity
of our dataset, we excluded forked repositories or those
that were merely copies of other projects.

In terms of CI level filtering, we aim to identify the build
stage out of all repositories workflows, a task that entails
complexity due to the inherent flexibility of GHA workflows
[21]. We take the following steps in order to ease our filtering
task.

Primary Programming Language We chose to limit our
search to three primary programming languages: Java, Type-



Script, and JavaScript. This choice is further justified by the
fact that these languages currently rank among the top 4 most
popular on GitHub [20].

Workflow Analysis Once our search space was refined,
we initiated an in-depth analysis of the workflows of our 400
selected repositories. This analysis focused on understanding
different aspects such as titles (of the workflow file, jobs, and
steps), GHA actions used and scripts executed within steps.
We download all workflows locally making a total of 1745
workflows from 264 repositories.

Scoring System: We devised a scoring system. We award
points based on the following criteria. We look for keywords
(i.e) (”CI”, ”Release”, ”Build”, ”Test”) for the names and ti-
tles of workflows jobs and steps. We look into the presence
of common build commands and actions, and we award extra
points for common stages that typically occur after the build
stage. We do this by analyzing all workflow builds and by
taking inspiration from GH docs [24].

Template Inclusion Based on previous studies, [17], we
understand that more than 50% of developers make use of
configurable templates provided by Github when creating
their workflows. In this sense we run the scoring on the tem-
plates associated with our choice of programming languages,
and we use them as a threshold to ensure that even basic con-
figurations can pass the filtering.

Workflow Scoring Filtering Post-ranking all workflows,
we initiated a series of statistical filters for further investiga-
tion. Initially, we normalized the scores based on the amount
of times a workflow’s score was increased, in order to pre-
vent long configuration files from accumulating exaggerated
scores. We look into empirical studies, where they indicate
that most GHA workflows define 1-2 jobs [19], so we ex-
pected simpler workflows to score lower, while more com-
plex ones could score higher due to their intricate structure.
This resulted in a multitude of workflows achieving a score of
zero, 1102 (63%) and being filtered out for efficiency, and the
filtering of 35 repositories, accounting to 13% of repositories.

In the subsequent step, we applied the Interquartile Range
(IQR) method to pinpoint and eliminate outliers from our
data. The IQR method excels in handling extreme values by
centering on the middle 50% of scores, enabling us to exclude
data points that significantly deviate from the average. Post
outlier removal, we computed the average workflow score and
used this value as a benchmark. Workflows scoring below this
average were dismissed.

After applying the filtering and scoring mechanisms, we
obtained a final set of 66 repositories and 84 workflows,
excluding a total of 1,213 workflows, starting from 300
repositories. Notably, our dataset includes the repository
”GitHubTemplates” that we created, incorporating the tem-
plates provided in the GitHub documentation. This inclusion
ensures that even simple templates are encompassed by our
workflow filtering process.

4.2 Performance Clustering
In our aim to categorize our selected repositories based on the
build performance, it is essential to conduct a thorough exam-
ination of a significant number of builds within each work-
flow. Drawing from the insights in Ghaleb et al.’s study [5],

Figure 1: Workflow Performance Clustering

their sensitivity analysis suggests that analyzing the entirety
of build history might not be viable. Therefore, we have opted
to use a similar strategy by segmenting projects into lifespan
quarters for the purpose of categorization. Consequently, we
strive to extract, if feasible, only the last 25% of the total
workflow runs, representing the most recent quarter. If this
proves unattainable, our extraction will be limited to the final
1000 runs.

This choice to focus on the last quarter of builds was influ-
enced by various considerations. These include the time re-
strictions of our study, the limit of 5000 requests per hour set
by GitHub’s API [25], and our performance clustering deci-
sion, which was informed by the finding that ”80% of projects
maintain their build performance for more than three quarters
of their lifetime” [5].

In order to find out the build performance of the selected
repositories, we use two build performance metrics: build
breakage and build duration. For each workflow, we calcu-
late the median build duration and their breakage ration, as
the amount of ”failure” conclusions / failures and successes,
we omit the other conclusions, as some workflows may be
intentionally omitted/skipped.

We then use the computed medians, median breakage ra-
tion (18.9%), Figure 1, and median build duration (8.89 min-
utes), Figure 2. We then classified the projects into quadrants,
following our reference methodology [5] in order to correctly
identify the project’s current state.

We identify 4 quadrants based on these 2 splits.
1. The bottom-left quadrant, Low Breakage/Low Duration

(LBLD) indicating projects in which the majority of the
analyzed builds have low breakage rate and low dura-
tion. We identify 30 workflows falling in this category.

2. The top-left quadrant, High Breakage/Low Duration
(HBLD) indicating projects in which the majority of the
analyzed builds have high breakage rate and low dura-
tion. We identify 12 workflows falling in this category.

3. The bottom-right quadrant, Low Breakage/High Dura-
tion (LBHD) indicating projects in which the majority
of the analyzed builds have low breakage rate and low
duration. We identify 12 workflows falling in this cate-
gory.

4. The top-right quadrant, High Breakage/High Duration
(LBLD) indicating projects in which the majority of the



analyzed builds have high breakage rate and high dura-
tion. We identify 30 workflows falling in this category.

4.3 Metric Selection
Upon reviewing the literature, it’s evident that research typi-
cally bifurcates the data into two key categories: a high-level
category referred to as project level metrics, and a low-level
metrics related to the build stage referred to as build level
metrics [5], [3].

These research efforts typically begin with an exhaustive
list of metrics, and through analysis, distill down to the most
relevant ones. Following this approach, we will detail the
metrics that we’ve chosen to examine from past research for
each of these two categories project and build level metrics in
the following sections.

Build Level Metrics
Build Level Metrics are metrics that look into various
specifics of the build stage such as details regarding low level
configurations such as: caching, fail-fast, the use of retries.
These metrics are all closer to the build stage and when an-
alyzed reveal valuable insights on desirable patterns when it
comes to build performance.

The exhaustive dataset provided by TravisTorrent [16] of-
fers a wealth of metrics that can be highly beneficial in an-
alyzing the build stage. By integrating these metrics with
the insights from Ghaleb et al’s study, we focus our atten-
tion on the metrics or actions identified most relevant in re-
ducing build times and ensuring successful builds [5]. Given
that their study concentrated on Travis CI, we aim to identify
analogous configurations present in GHA. A description of a
subset of the metrics can be seen below:

1. Caching In order to detect cache usage in a workflow,
we referred to the public documentation of GitHub,
which provided us with the insight, that to enable
caching on dependencies or jobs, either a caching ac-
tion can be used or using the corresponding package
managers setup actions that take care of caching for you
[26]. A few examples of these are Gradle and Maven
with setup-java action, or npm, Yarn, and pnpm with
setup-node. With this understanding, we analyzed the
actions used in each workflow, specifically seeking out
those that involve caching, regardless of version. We
took into account setup actions for all package managers
that we discovered in our workflows. Given the restric-
tive decision of three programming languages for this
study, this approach allowed us for consistent detection
of caching usage in a GHA workflow.

2. Fail-fast Usage Another significant property in the build
configuration is the fast-finish option in Travis CI. This
option allows when enabled for immediate build result
after all required jobs have been finished [27]. A simi-
lar setting exists in the context of GHA, Fail-fast, with
similar functionality, it enables a ”fast failure” if any of
the matrix jobs fails [28]. We look into the frequency in
which this configuration appears in the workflows, with
the note that by default for GHA, the configuration is
enabled.

3. Retry Performance Another metric which was hinted
as a possible way of improving build performance is the
retrial times of the builds. In this sense we look for
the breakage of workflows filtered by their run attempt
GHA workflow run attribute.

4. Resolution Time In addition to metrics analyzed by
Ghaleb et al’s work [5], we also ”resolution time”, in-
spired from by a case study at Google, [10], where they
conduct an empirical study on programmer’s build er-
rors. Resolution time is described as the time it takes be-
tween the first occurrence of a failure and the next build
event which concluded into a successful build. It aims
to calculate the time a developers takes to fix a broken
configuration.

5. Recovery Attempts Additionally, in a similar fashion
to Resolution Time we looked at the Recovery Attempts,
which were calculated by the amount of failures between
the first failure and next success.

6. Skip Usage We looked all conclusions extracted of each
workflow and we identified whether they had a skip con-
clusion in their skip conclusion sets.

7. Weekday/Weekend We looked into the amount of
breakages that occur during weekdays and weekends,
and the most active CI day to see if there are any pat-
terns emerging.

The above described metrics along with additional ones
can be found in Table 1, Build-Level Metrics.

Project Level Metrics
Project-Level Metrics embody the high-level features of a
repository, such as code activity, project maturity and repu-
tation. These metrics offer valuable insight into aspects such
as the maturity of a project, its reputation in the developer
community, its rate of evolution, activity, and can be viewed
as a preface to a project’s face. Previous work [5] shows that
these types of metrics indicate a high association with the two
build performance aspects studied: build breakage and build
duration.

Table 2 encompasses the project level metrics that have
been selected.

5 Experimental Setup and Results
5.1 RQ1: What are the key build level metrics that

significantly contribute to the evaluation of
build performance?

From analyzing the above-mentioned build level metrics we
identify the following observations:

1. Repositories test diverse configurations more fre-
quently on non-primary branches. Table 3 illustrates
the branch usage variances among clustered projects.
Regardless of the cluster, primary branches consistently
display lower breakage rates than their development
counterparts. Notably, clusters with fewer breakages,
such as LBLD and LBHD, exhibit a substantial differ-
ence in breakage rates across branch types (a threefold
and twofold difference respectively). However, projects



associated with high breakages show comparably simi-
lar rates across branches.

2. We identify the principle of ”if it’s not broken don’t
fix it” among studied projects. As hinted in Ghaleb et
al’s. work [5], the principle of ”never change a winning
horse” seem to be present among clusters. Our calcula-
tions of job churn across successive workflows typically
reveal a near-zero percentage (see Table 3). However,
an exception arises within the HDHD quadrant, marked
by a 0.27 value. This implies that repositories in this
category might be recognizing and addressing their per-
formance issues.

3. Keeping the build configuration simple and solving
failures fast is associated with overall good perfor-
mance. Research on Github Actions usage [19] sug-
gests that most workflows are configured with just one
job. We observe that, with the exception of the HBHD
cluster (which has a median of five), all other clusters
configure only a single workflow on their median. For
these clusters, their 80th percentile reaches a maximum
of two configurations, whereas it spikes to nine for the
HBHD cluster (see Table 4). Moreover, we see how
on the main branch, there is a clear increase in resolu-
tion time between clusters as we go further away from
LBLD, observation in line with Fowler’s ”Fix Broken
Builds Immediately” principle [2].

Table 4: Stats of # Jobs Configured / Workflow

Quadrant Average Median p80 p95 p99

LBLD 1.50 1.00 2.00 3.55 5.42
LBHD 1.94 1.00 2.00 5.00 7.4
HBLD 1.08 1.00 1.00 1.45 1.89
HBHD 6.91 5.50 9.00 18.05 29.03

4. As run attempts of a workflow grow the more likely
the results conclude in a failure. Figure 2 shows a clear
escalation in breakage rates as the number of attempts
rises across all clusters. Notably, the HBHD cluster ex-
hibits a relatively consistent distribution of breakages
per run attempt, suggesting a potential prevalent prac-
tice of retrial within this group. This trend is less appar-
ent in the other clusters, where the number of breakages
decreases (Table 5). This observation is in line with the
developer’s perception, which state that ”retrying com-
mands is not always helpful in fixing build breakage and
should rather be a last resort”, opinion confirmed by sur-
veying on the opinion of retrying failed builds [5].

5. CI build activity might be dependent on project con-
text. We explored the relationship between performance
of builds distinguishing between weekdays and week-
ends. Table 7 reveals consistent performance patterns
across these groups. However, the ratio of weekday to
weekend builds varies substantially across clusters, with
low breakage clusters exhibiting a 6.2-1 ratio, compared
to a 3.05-1 and 4.78-1 ratio for the high breakage quad-
rants. This variation might reflect differences in project

Figure 2: Performance on Retrial Attempt

practices or contexts. Furthermore, our heat-map of fre-
quency of peak weekly activity shows Thursday as the
most active day across all clusters (Figure 3). Notably,
for low breakage clusters, the early weekdays - Monday
and Tuesday - seem to be rather active than the counter-
parts. This observation suggests potential organizational
differences among clusters, possibly related to whether
they are company-managed or open-source projects.

6. Caching, Fail-Fast and skipping builds are closely
coupled to one build performance aspect. Table 6 pro-
vides insights into the relationship between various build
configurations and performance clusters. The key take-
away here is that each configuration metric appears to
align with a specific performance metric.

In the case of the fail-fast configuration, it is less fre-
quently disabled in low breakage clusters (with only
6.25% and 6.67% disabling), whereas high breakage
clusters show a contrasting trend, with the configuration
being disabled more often (16.67% and 26.47%), pattern
observed in previous studies as well [13].

Cache usage shows similar patterns. It is prominently
active in workflows with low durations, signifying its
role in efficient build processes. However, as one
might anticipate, high duration workflows tend to dis-
able caching more frequently, possibly due to the poten-
tial overheads or the nature of tasks involved.

When examining the skip command, it’s noteworthy that
its usage is nearly absent in high breakage scenarios (0%
and 2.94%), suggesting that all steps are typically exe-
cuted despite high failure rates. In contrast, low break-
age clusters show higher instances of skipping builds,
with one cluster indicating this practice in a quarter of
its build configurations. These observations underline
the strategic decisions taken by repositories within dif-
ferent performance clusters, hinting that different prac-
tices might be adopted, depending on the value associ-
ated to build performance and possibly context of the
project.



Table 3: Build-Level Metrics on different branches

Quadrant branch
type

breakage rate
mean

resolution time
median

consecutive fails
mean

job churn
mean

run count
mean)

LBLD main 0.05 47.10 0.25 -0.00 312.21
LBLD others 0.15 0.00 0.45 0.00 9.60
LBHD main 0.06 135.39 0.92 -0.00 235.44
LBHD others 0.12 0.00 0.48 0.06 11.00
HBLD main 0.25 92.38 6.53 -0.05 141.42
HBLD others 0.31 5.76 1.00 -0.01 11.43
HBHD main 0.33 219.98 13.91 0.00 235.64
HBHD others 0.34 31.78 1.06 0.27 10.38

Table 5: Breakage - Retrial Correlation

Quadrant #Attempt % Breakage # Breakage

LBLD 1 0.07 30
2 0.30 21
3 0.31 9
>3 0.00 0

LBHD 1 0.09 16
2 0.29 12
3 0.24 8
>3 0.67 3

HBLD 1 0.25 12
2 0.43 11
3 0.83 3
>3 0.75 5

HBHD 1 0.39 34
3 0.39 25
2 0.41 33
>3 0.51 30

Table 6: Fail-fast (FF) and No Cache and Skip Usage in Per-
formance Clusters

Quadrant Fail Fast
Disabled %

Cache
Disabled %

Skip
Usage %

LBLD 6.67% 6.67% 13.33%
LBHD 6.25% 12.50% 25.00%
HBLD 16.67% 0.00% 0.00%
HBHD 26.47% 14.71% 2.94%

5.2 RQ2: What are the essential project level
metrics that play a significant role in the
assessment of build performance?

We used parallel coordinates plotting to illustrate the patterns
derived from the performance clustering classification. This
method effectively represents multidimensional data, such as
multiple numerical project-level metrics we are examining
concurrently. To make these diverse metrics comparable, we
normalized their values. (See Figure 4)

We make the following observations:

1. Keeping the team size low and having a small project
is associated with good performance. We see that the
desired cluster, (LBLD) has the least number of contrib-

Figure 3: Heatmap of Dominant Activity in Day of the Week

Table 7: Day Type Performance

Quadrant Day Type Total Failures Failure Rate

LBLD weekdays 4247 265 0.062397
weekend 696 35 0.050287

LBHD weekdays 2518 260 0.103257
weekend 402 35 0.087065

HBLD weekdays 4120 1040 0.252427
weekend 1348 383 0.284125

HBHD weekdays 6247 1845 0.295342
weekend 1324 384 0.290030

utors and also the smallest project in terms of size. We
also observe that being not as popular (stars and forks)
as the others projects, they seem to have a high number
of branches, hinting towards multiple best practices such
as avoiding pushing to mainline and implementing small
features on feature branches.

2. Popularity might pressure into poor performance,
when certain maturity level has been reached. Clus-
ters with predominantly long durations and frequent
breakages (HBHD), present the most number of stars,
contributors and a high maturity level (age and size).
This mix of observations suggest that the raised num-
ber of contributors could be a response to the increase



Figure 4: Normalized Project Level Metrics across Perfor-
mance Quadrants

in complexity, hence the high maturity levels, as more
work is required in order to advance the development.
This can however come at the cost of performance, due
to difficulties in coordinating increased teams and man-
aging complex codebases. Moreover, the maturity factor
could indicate that either these projects have met with
a unexpected popularity and adoption of best practices
was not a top priority, or that these projects have grown
so complex that adoption of best practices became a
challenging task.

3. Maturity strongly influences build performance, pos-
sibly forcing trade offs between performance aspects
For the 2 clusters, LBHD and HBLD, which seem to be
in a favourable state with only one of the two perfor-
mance metrics, we identify opposed maturity character-
istics. In the case of HBLD, we observe how they are the
most mature in terms of age but have a simple project,
deduced from the size. Moreover they seem be the most
unpopular among clusters, and with the least develop-
ment, however with a relatively high number of contrib-
utors. Looking at LBHD, we identify opposite maturity
aspects. Those projects seem to be the youngest however
with the most complex projects. Interestingly despite in-
tense activity (most commits, branches, releases), they
seem to not be the most popular projects.

6 Responsible Research
This section discusses potential threats to study validity, our
approaches to mitigate these, and the reproducibility of our
methods. Adherence to ethical standards and commitment to
reproducibility, underscored by transparency, objectivity, and
accountability, have been foundational in our research.

6.1 Construct Validity
Construct validity concerns the degree to which our measure-
ments truly reflect the constructs they are intended to repre-
sent. We detail potential challenges to our construct validity

as follows:

• Despite our repository selection based on prior method-
ologies and the use of the GitHub API, its inherent bias
towards displaying popular/active projects could poten-
tially influence our data extraction and subsequently, our
results.

• The scoring system we implemented, primarily focused
on isolating build stage workflows, was principally an
extraction tool, not a core focus of our research. De-
spite its emphasis on specific keywords and actions, it
might overlook certain custom configurations. Recog-
nizing the challenge of comprehending all intricate con-
figurations and the knowledge gaps regarding GitHub
Actions, we incorporated GitHub templates to ensure the
inclusion of basic workflows.

• We recognize the possibility of results being skewed by
inaccuracies in value computations.

• We admit that utilizing medians and means for visual-
izing data and clustering across performance quadrants
may inadvertently obscure valuable information, leading
to potential misinterpretations in findings.

6.2 Internal Validity
Internal validity refers to the extent to which the design and
conduct of the study ensure that the findings are solely due to
the variables the researcher intended to investigate, without
influence from other confounding variables. In the context of
our study, potential threats to internal validity are identified
as follows:

• Our conclusions are primarily drawn from patterns ob-
served by classifying build performance into quadrants,
using methodologies from previous studies. These clas-
sifications, however, encompass only two recognized as-
pects of build performance.

• We acknowledge the limitation that our study only em-
ploys a subset of potentially important metrics for build
performance at both the build and project levels. To ad-
dress this, we analyzed metrics previously identified as
important, yet our selection of project level metrics was
constrained as other researchers in our group are focus-
ing on them. We consciously chose not to dive into more
complex metrics in this study.

6.3 External Validity
External validity refers to the generalization of our results to
other settings and contexts. We have the following observa-
tions:

• We study a limited number of 66 repositories with 84
workflows. We include only workflows which have at
least 500 runs, to be able to capture a realistic frame of
performance.

• We choose to limit our study to 3 popular programming
languages, in order to ease our comprehension of the
GitHub actions workflows. We take in this sense 3 out
of top 4 popular programming languages.



• The decision to evaluate build performance by examin-
ing only the last 25% of the projects’ lifetime may offer
a narrow view of the entire project lifetime. It restricts
visualising the whole performance trends or significant
changes that happened across earlier stages of a project.
We validate this decision with the fact that most projects
keep the same performance quadrant across their life-
time, and the limit imposed by GitHub’s API of 5000 re-
quests/hour [25], combined with the limited time frame
of the research project.

6.4 Reproducibility
Our code, instrumental to our research, is publicly accessi-
ble on GitHub under the Descriptive-CI-Metrics repository 5.
This open-source approach invites peer scrutiny and enables
fellow researchers to validate, reuse, or extend our work,
fostering a spirit of collaboration and cumulative knowledge
growth. It also significantly enhances the reproducibility of
our methods.

In organizing our code, we have followed a pipeline-like
structure. This approach is easy to follow and further en-
hances the reproducibility of our research. It ensures that
each stage of our process is clear, logical, and easily repli-
cated, providing others with a detailed flow of the work.

Our research outcomes are presented with complete hon-
esty. All plots and graphs are genuine reflections of the data
extracted from the preceding stages. If we have excluded any
data, we have not only clearly mentioned it but also explained
the rationale behind this decision. This policy ensures our re-
sults are a true representation of our work, and maintains the
integrity of our research.

7 Conclusions and Future Work
In this paper, we conduct a small scale study on GitHub
projects, with the aim of finding which are the most descrip-
tive factors that affect the implementation of CI practice. In
order to achieve this, we focus on the build stage, specifi-
cally on the aspect of performance. We study build perfor-
mance literature and identify that often build performance
aspects are studied independently. We identify a reference
study which looks at the interplay between build duration and
build breakages. We follow their methodology and cluster our
projects into four performance quadrants, in order to find the
most relevant metrics that can be descriptive when looking at
build performance.

To provide a comprehensive view, we bifurcate the met-
rics into two categories. First, build level metrics, which are
closely tied to the build stage (i.e configurations). Second,
project level metrics that show characteristics of a repository,
including code activity, project maturity, and reputation. This
analysis is conducted in the context of GitHub Actions, a CI
tool that, because of it’s novelty has not been as as extensively
studied.

Following our investigation, our study confirms that prac-
tices and principles already recognized and implemented in
the CI industry, hold valid in the case of GitHub Actions.

5https://github.com/raduConstantinescu/Descriptive-CI-Metrics

Upon examining the build level metrics, we revealed sev-
eral insightful observations. In this sense, we saw the princi-
ple of ”never change a winning horse”, where projects within
favorable performance quadrants rarely altered their build
configurations.

Additionally we can reconfirm the impact of configurations
such as caching, adoption of the ’fail-fast’ strategy, and skip-
ping builds are strongly tied to aspects of build performance.

These observations not only validate commonly accepted
principles but also highlight potential strategies for enhanc-
ing the efficiency and effectiveness of CI practices in projects
using GitHub Actions.

Simultaneously, our exploration of project-level metrics
validates certain patterns. For example, keeping the team and
project size small has a positive correlation with favourable
build performance. Furthermore, it appears that implement-
ing optimal CI practices from the project’s early stage, before
it reaches a mature level, may be beneficial.

However, despite these insights, it’s important to note
that the collective analysis of project-level metrics under-
scores the necessity for understanding the specific context of
a project for a more thorough comprehension.

In summary, our observations confirm that, even when in-
vestigating a relatively new tool as GitHub Actions, we iden-
tified patterns consistent with those seen in other CI tools.
This leads to the suggestion that certain CI practices may
be universally effective, regardless of the specific tool uti-
lized. However, this hypothesis requires further validation.
To this end, we encourage comprehensive, large-scale empir-
ical studies of GitHub Actions with a specific focus on build
performance. Importantly, this studies should not only val-
idate the emerging patterns on a broader scale but also take
into account the project context, recognizing its role in fully
understanding and optimizing CI practices.

References
[1] Omar Elazhary, Colin Werner, Ze Shi Li, Derek

Lowlind, Neil A Ernst, and Margaret-Anne Storey. Un-
covering the benefits and challenges of continuous inte-
gration practices. IEEE Transactions on Software Engi-
neering, 48(7):2570–2583, 2021.

[2] Martin Fowler. Continuous integration. martin-
fowler.com, 2006.

[3] Xianhao Jin and Francisco Servant. A cost-efficient ap-
proach to building in continuous integration. In Pro-
ceedings of the ACM/IEEE 42nd International Confer-
ence on Software Engineering, pages 13–25, 2020.

[4] Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar
Devanbu, and Vladimir Filkov. Quality and productivity
outcomes relating to continuous integration in github. In
Proceedings of the 2015 10th joint meeting on founda-
tions of software engineering, pages 805–816, 2015.

[5] Taher Ghaleb, Safwat Hassan, and Ying Zou. Study-
ing the interplay between the durations and breakages
of continuous integration builds. IEEE Transactions on
Software Engineering, pages 1–21, 11 2022.

https://github.com/raduConstantinescu/Descriptive-CI-Metrics


[6] Shane McIntosh, Bram Adams, Thanh HD Nguyen, Ya-
sutaka Kamei, and Ahmed E Hassan. An empirical
study of build maintenance effort. In Proceedings of the
33rd international conference on software engineering,
pages 141–150, 2011.

[7] George Neville-Neil. Kode vicious permanence and
change. Commun. ACM, 51:27–28, 12 2008.

[8] Md Rakibul Islam and Minhaz F. Zibran. Insights
into continuous integration build failures. In 2017
IEEE/ACM 14th International Conference on Mining
Software Repositories (MSR), pages 467–470, 2017.

[9] Henry Lieberman and Christopher Fry.
https://dl.acm.org/doi/fullhtml/10.1145/223904.223969,
1995.

[10] Hyunmin Seo, Caitlin Sadowski, Sebastian Elbaum, Ed-
ward Aftandilian, and Robert Bowdidge. Programmers’
build errors: A case study (at google). In Proceedings
of the 36th International Conference on Software En-
gineering, ICSE 2014, page 724–734, New York, NY,
USA, 2014. Association for Computing Machinery.

[11] Carmine Vassallo, Gerald Schermann, Fiorella Zam-
petti, Daniele Romano, Philipp Leitner, Andy Zaidman,
Massimiliano Di Penta, and Sebastiano Panichella. A
tale of ci build failures: An open source and a finan-
cial organization perspective. In 2017 IEEE Interna-
tional Conference on Software Maintenance and Evolu-
tion (ICSME), pages 183–193, 2017.

[12] Taher Ahmed Ghaleb, Daniel Alencar da Costa, Ying
Zou, and Ahmed E Hassan. Studying the impact of
noises in build breakage data. IEEE Transactions on
Software Engineering, 47(9):1998–2011, 2019.

[13] Taher Ahmed Ghaleb, Daniel Alencar Da Costa, and
Ying Zou. An empirical study of the long duration of
continuous integration builds. Empirical Software En-
gineering, 24:2102–2139, 2019.

[14] Carmine Vassallo, Sebastian Proksch, Harald C Gall,
and Massimiliano Di Penta. Automated reporting of
anti-patterns and decay in continuous integration. In
2019 IEEE/ACM 41st International Conference on Soft-
ware Engineering (ICSE), pages 105–115. IEEE, 2019.

[15] Graham Brooks. Team pace keeping build times down.
In Agile 2008 Conference, pages 294–297. IEEE, 2008.

[16] Moritz Beller, Georgios Gousios, and Andy Zaidman.
Travistorrent: Synthesizing travis ci and github for
full-stack research on continuous integration. In 2017
IEEE/ACM 14th International Conference on Mining
Software Repositories (MSR), pages 447–450. IEEE,
2017.

[17] Sk Golam Saroar and Maleknaz Nayebi. Developers’
perception of github actions: A survey analysis. arXiv
preprint arXiv:2303.04084, 2023.

[18] Mehdi Golzadeh, Alexandre Decan, and Tom Mens.
On the rise and fall of ci services in github. In 2022
IEEE International Conference on Software Analysis,

Evolution and Reengineering (SANER), pages 662–672,
2022.

[19] Alexandre Decan, Tom Mens, Pooya Rostami Mazrae,
and Mehdi Golzadeh. On the use of github actions in
software development repositories. In 2022 IEEE In-
ternational Conference on Software Maintenance and
Evolution (ICSME), pages 235–245, 2022.

[20] GitHub. The state of the octoverse. https://octoverse.
github.com/. Accessed June 4, 2023.

[21] Github. Understanding github actions. https:
//docs.github.com/en/actions/learn-github-actions/
understanding-github-actions. Accessed June 4, 2023.

[22] Github. Build and test java with gradle. https://docs.
github.com/en/actions/automating-builds-and-tests/
building-and-testing-java-with-gradle#
using-the-gradle-starter-workflow, 2023. Accessed
June 21, 2023.

[23] Chen Zhang, Bihuan Chen, Junhao Hu, Xin Peng, and
Wenyun Zhao. Buildsonic: Detecting and repairing
performance-related configuration smells for continu-
ous integration builds. In 37th IEEE/ACM International
Conference on Automated Software Engineering, pages
1–13, 2022.

[24] GitHub. About continuous integration. https://docs.
github.com/en/actions/automating-builds-and-tests/
about-continuous-integration, 2023. Accessed June 6,
2023.

[25] GitHub. Github docs: Resources in the rest
api. https://docs.github.com/en/rest/overview/
resources-in-the-rest-apiVersion=2022-11-28, 2022.
Accessed June 7, 2023.

[26] Github. Caching dependencies to speed up workflows.
https://docs.github.com/en/actions/using-workflows/
caching-dependencies-to-speed-up-workflows#
using-the-cache-action, 2023. Accessed June 7,
2023.

[27] Travis CI. Fast finish. https://docs.travis-ci.com/user/
customizing-the-build/#fast-finishing, 2023. Accessed
June 12, 2023.

[28] GitHub. Workflow syntax for github ac-
tions. https://docs.github.com/en/actions/
using-workflows/workflow-syntax-for-github-actions#
jobsjob idstrategyfail-fast, 2023. Accessed June 18,
2023.

https://octoverse.github.com/
https://octoverse.github.com/
https://docs.github.com/en/actions/learn-github-actions/understanding-github-actions
https://docs.github.com/en/actions/learn-github-actions/understanding-github-actions
https://docs.github.com/en/actions/learn-github-actions/understanding-github-actions
https://docs.github.com/en/actions/automating-builds-and-tests/building-and-testing-java-with-gradle#using-the-gradle-starter-workflow
https://docs.github.com/en/actions/automating-builds-and-tests/building-and-testing-java-with-gradle#using-the-gradle-starter-workflow
https://docs.github.com/en/actions/automating-builds-and-tests/building-and-testing-java-with-gradle#using-the-gradle-starter-workflow
https://docs.github.com/en/actions/automating-builds-and-tests/building-and-testing-java-with-gradle#using-the-gradle-starter-workflow
https://docs.github.com/en/actions/automating-builds-and-tests/about-continuous-integration
https://docs.github.com/en/actions/automating-builds-and-tests/about-continuous-integration
https://docs.github.com/en/actions/automating-builds-and-tests/about-continuous-integration
https://docs.github.com/en/rest/overview/resources-in-the-rest-apiVersion=2022-11-28
https://docs.github.com/en/rest/overview/resources-in-the-rest-apiVersion=2022-11-28
https://docs.github.com/en/actions/using-workflows/caching-dependencies-to-speed-up-workflows#using-the-cache-action
https://docs.github.com/en/actions/using-workflows/caching-dependencies-to-speed-up-workflows#using-the-cache-action
https://docs.github.com/en/actions/using-workflows/caching-dependencies-to-speed-up-workflows#using-the-cache-action
https://docs.travis-ci.com/user/customizing-the-build/#fast-finishing
https://docs.travis-ci.com/user/customizing-the-build/#fast-finishing
https://docs.github.com/en/actions/using-workflows/workflow-syntax-for-github-actions#jobsjob_idstrategyfail-fast
https://docs.github.com/en/actions/using-workflows/workflow-syntax-for-github-actions#jobsjob_idstrategyfail-fast
https://docs.github.com/en/actions/using-workflows/workflow-syntax-for-github-actions#jobsjob_idstrategyfail-fast

	Introduction
	Previous work
	Github Actions
	Methodology
	Repository Selection
	Performance Clustering
	Metric Selection
	Build Level Metrics
	Project Level Metrics


	Experimental Setup and Results
	RQ1: What are the key build level metrics that significantly contribute to the evaluation of build performance?
	RQ2: What are the essential project level metrics that play a significant role in the assessment of build performance?

	Responsible Research
	Construct Validity
	Internal Validity
	External Validity
	Reproducibility

	Conclusions and Future Work

