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Abstract: Isentropic processes in thermodynamics are fundamental to our understanding of numerous
physical phenomena across different scientific and engineering fields. They provide a theoretical
reference case for the evaluation of real thermodynamic processes and observations. Yet, as analytical
relations for isentropic transformations in gas dynamics are limited to ideal gases, the inability to
analytically describe isentropic processes for non-ideal gases is a fundamental shortcoming. This work
presents generalised isentropic relations in thermodynamics based on the work by Kouremenos et
al., where three isentropic exponents γPv, γTv and γPT are introduced to replace the ideal gas
isentropic exponent γ to incorporate the departure from the non-ideal gas behaviour. The general
applicability of the generalised isentropic relations is presented by exploring its connections to
existing isentropic models for ideal gases and incompressible liquids. Generalised formulations
for the speed of sound, the Bernoulli equation, compressible isentropic flow transformations, and
isentropic work are presented thereafter, connecting previously disjoint theories for gases and liquids.
Lastly, the generalised expressions are demonstrated for practical engineering examples, and their
accuracy is discussed.

Keywords: isentropic relations; real gas thermodynamics; speed of sound; compressible fluid flows;
compressibility; isentropic work

1. Introduction

Isentropic processes describe idealized processes without irreversibilities such as fric-
tion or heat losses and are therefore used as a theoretical reference case for the evaluation
of real thermodynamic processes and observations. For this reason, isentropic relations
are encountered in many fields of science and engineering applications. In fluid dynamics,
where flows are approximated as isentropic flows outside the viscous boundary layer,
the isentropic relations are an intrinsic part of modelling fluid compressibility and are,
therefore, an underlying assumption in aerodynamics. In energy engineering, the isen-
tropic relations find their way into evaluating the isentropic work of gas compression
and expansion systems and are also fundamental to turbo-machinery design. Driven by
increasing energy and fuel efficiency, state-of-art energy conversion systems, such as the
supercritical CO2 cycle [1–3], Organic Rankine Cycles [4], and high-pressure industrial heat
pumps [5], seek to exploit the non-ideal behaviour of unconventional working fluids where
the ideal gas approximation is no longer valid. As the ideal gas equation is used to relate
isentropic transformations, their application is limited to ideal gases only. The conventional
classification between “ideal” and “non-ideal” is distinctive for the apparent lacking means
to conveniently describe isentropic processes in the general sense.

Where isentropic processes for ideal gases are conveniently modelled by the isentropic
exponent γ—the often assumed constant ratio of the specific isobaric and isochoric heat
capacities cp and cv—our capabilities are limited in the general case, where engineers and
scientists are forced to resort to thermodynamic libraries, look-up tables, and equations
of state of (semi)-empirical nature. Although this may not be a problem with today’s
computing power and access to powerful (open-source) libraries, such as CoolProp [6] and
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RefProp [7], the lacking ability to describe isentropic processes in a general way is a gap
in our understanding of thermodynamics, as isentropic transformations under the ideal
gas model cannot simply be projected on non-ideal gas applications as their gas-dynamic
behaviour is vastly different.

In a series of papers published in the 1980s, on which this work is based, Kouremenos et al.
proposed a set of generalised isentropic relations to model isentropic processes in a general
way [8–10]. They introduced three isentropic exponents to replace the adiabatic coefficient γ,
based on the mathematical argument that the form of a generalised model should adhere to
its ideal gas counterpart. Compressibility effects and departure from the ideal gas behaviour
are then included in three alternative isentropic exponents. Although their derivation of the
general isentropic model appeared successful, they did not pursue to extend their analysis
to existing isentropic transformations, but instead performed empirical evaluations of
the isentropic exponents using an equations of state [9,11]. A similar model was later
proposed by Baltadijev, who made efforts to derive additional isentropic flow relations [12].
Nederstigt [13] further extended this approach to develop generalised isentropic relations
for several process quantities. Recently, the non-ideal gas isentropic exponents also found
their way into the field of computational fluid dynamics [14].

This work seeks to introduce the generalised isentropic relations proposed by
Kouremenos et al. to a broader audience and to complete the analytical framework by ad-
dressing previously unexplored connections with existing isentropic models for ideal gases
and liquids—connecting previously disjoint theories for speed of sound, isentropic flows,
and isentropic work between gases and liquids. Finally, the applicability of the generalised
isentropic relations is demonstrated for practical engineering examples, and their accuracy
is discussed.

2. Isentropic Exponents for the Real Gas Thermodynamic Region
2.1. Generalised Isentropic Relations

First, the generalised isentropic relations proposed by Kouremenos et al. [8–10] are
presented. The model is based on the isentropic relations of ideal gases where the ratio
of the specific heats γ = cp/cv is replaced by exponents γPv, γTv and γPT . The subscripts
refer to the pressure–volume, temperature–volume, and pressure–temperature isentrope
governed by each of the exponents, respectively, summarised as

PvγPv = const., (1a)

TvγTv−1 = const., (1b)

TP
1−γPT

γPT = const., (1c)

where P is the pressure, v—the specific volume, and T—the temperature. Consequently,
the pressure ratio, temperature ratio, and density ratios in any isentropic transformation
can be related by

P1

P2
=

T1

T2

γPT
γPT−1

=
ρ1

ρ2

γPv
, (2)

where subscripts 1 and 2 refer to the respective thermodynamic states along an isentrope.
The generalised isentropic exponents are then to be expressed in terms of other ther-

modynamic state variables, which will be demonstrated to be a function of the specific heat
capacities and partial derivatives in pressure, volume, and temperature. The derivation of
exponent γPT is shown here as an example [13].

Let the entropy s be defined as a function of pressure and temperature, such that
s = s(P, T). Consequently, the change in entropy can be expressed as the exact differential

ds =
(

∂s
∂P

)
T

dP +

(
∂s
∂T

)
P

dT, (3)
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where ds = 0 for an isentropic process. Rearranging the derivatives yields(
dP
dT

)
s
= −

(
∂s
∂T

)
P

/(
∂s
∂P

)
T

. (4)

The left-hand side of Equation (4) can be evaluated by differentiation of the assumed
isentropic pressure–temperature relation, Equation (1c), yielding(

dP
dT

)
s
=

γPT
γPT − 1

P
T

. (5)

The right-hand side of Equation (4) can be transformed using Maxwell’s relations

−
(

∂s
∂T

)
P

/(
∂s
∂P

)
T
=

(
∂s
∂T

)
P

/(
∂v
∂T

)
P
=

cp

T

(
∂T
∂v

)
P

, (6)

where (∂s/∂T)P = cp/T.
Finally, equating Equations (5) and (6), an expression for γPT is obtained in terms

of pressure P, the isobaric specific heat capacity cp, and the partial derivative (∂v/∂T)P,
given as

1− γPT
γPT

= − P
cp

(
∂v
∂T

)
P

. (7)

The exponents γTv and γPv for the temperature-volume and pressure-volume isen-
trope can be derived in a similar fashion from Equations (1a) and (1b) [13]. Together,
the three generalised isentropic relations can be summarized as

PvγPv = const., where γPv = − v
P

cp

cv

(
∂P
∂v

)
T
=

γ

Pβ
, (8a)

TvγTv−1 = const., where γTv − 1 =
v
cv

(
∂P
∂T

)
v
=

vα

cvβ
, (8b)

TP
1−γPT

γPT = const., where
γPT − 1

γPT
=

P
cp

(
∂v
∂T

)
P
=

Pvα

cp
, (8c)

where α = 1/v(∂v/∂T)P is the thermal expansion coefficient and β = −1/v(∂v/∂p)T—the
isothermal compressibility factor [12].

As, according to Gibbs’ phase rule, the thermodynamic state of a (pseudo)-pure single-
phase substance is determined by two state variables, only two of the generalised isentropic
exponents are independent. Following from Equations (8a)–(8c), the thermal expansion
coefficient and isothermal compressibility factor can be expressed in terms of the exponents
γPv and γPT as

α =
γPT − 1

γPT

cp

Pv
, (9a)

β =
cp

cvγPvP
. (9b)

Moreover, a reciprocity can be observed between the exponents γPv, γTv, and γPT
through their partial derivatives, related by the triple product rule(

∂P
∂v

)
T

(
∂v
∂T

)
P

(
∂T
∂P

)
v
= −1. (10)

The isentropic exponents are thus related by [8]

γPv
γTv − 1

=
γPT

γPT − 1
. (11)
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2.2. Limits of the Generalised Isentropic Exponents for Ideal Gases and Incompressible Liquids

Thus far, no assumptions have been made on the thermodynamic state in the deriva-
tion of the generalised isentropic relations, nor has any equation of state been introduced
to relate pressure, temperature, density, and fluid compressibility. In general, the term real
gas itself is ambiguous to any thermodynamic state and broadly covers the entire range
from dilute gases to dense gases and compressible liquids.

Regardless of the equation of state used, the generalised isentropic relations must agree
with existing isentropic models for liquids and ideal gases. In the case of liquids, that means
that the isentropic relations Equations (8a)–(8c) should adopt the form of the incompressible
fluid model, accounting for negligible changes in density with changing pressure under
constant entropy. Note, for a van der Waals fluid, the incompressible limit is reached as the
specific volume v→ 1/3vcr, with vcr being the volume at the thermodynamic liquid-vapour
critical point [13]. On the other hand, for ideal gases, the generalised isentropic relations
should reduce to the familiar isentropic expressions for ideal gases. The connections to
these models will now be discussed.

Ideal gas region: In the case of ideal gases, it can be shown that the generalised isentropic
exponents reduce to the adiabatic coefficient γ, defined as the ratio of the specific heats
cp/cv. Evaluating the partial derivatives in Equations (8a)–(8c), using the ideal gas model
gives [13], (

∂P
∂v

)
T
= −RT

v2 ,
(

∂P
∂T

)
v
=

R
v

, and
(

∂v
∂T

)
P
=

R
P

, (12)

where the universal gas constant R is related to the specific heat capacities by R = cp − cv
in the ideal gas case. Consequently, the real gas exponents γPv, γTv, and γPT are shown to
be identical to their ideal gas counterparts

γPv = γ, γTv = γ, and γPT = γ, (13)

This is ultimately a mathematical requirement by adopting the ideal gas solution as
the starting point of the derivation for the non-ideal isentropic exponents.

Liquid phase region: At the limit of an incompressible fluid model, the changes in
fluid density with pressure are negligible. Consequently, (∂P/∂v)T → ∞, β = 0, and the
exponent γPv approaches infinity, see Equation (8a). Likewise, from Equation (8b), we
find that (∂P/∂T)v → ∞ as β = 0, and the exponent γTv becomes infinite as well. Note,
the thermal expansion coefficient α 6= 0. Subsequently, eliminating cp using the relation
between the specific heat capacities cp and cv in Equation (8c), gives

cp − cv = T
(

∂P
∂T

)
v

(
∂v
∂T

)
P
= vT

α2

β
. (14)

The right-hand side of Equation (8c) can be shown to go to zero. Consequently, we
find that γPT → 1 for incompressible substances. The incompressible limits can therefore
be summarized as(

∂P
∂v

)
T
→ ∞,

(
∂P
∂T

)
v
→ ∞, and

(
∂v
∂T

)
P
= vα, (15)

for which the generalised isentropic exponents become

γPv → ∞, γTv → ∞, and γPT → 1. (16)

Liquid–vapour coexistence region: As the specific heat capacities cp and cv are undefined
in the two-phase region, neither are the real isentropic exponents γPv, γTv, and γPT . It
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follows from here that the non-ideal isentropic exponents are only generally defined for
single-phase substances.

Real gas region: The conditions for thermal and mechanical stability of a single-phase
substance require that the isochoric specific heat capacity cv ≥ 0 and the isothermal
compressibility κT ≥ 0 [15,16]. The latter condition implies that the partial derivative
(∂P/∂v)T ≤ 0. By reciprocity between the partial derivatives with respect to pressure,
temperature, and density in Equation (10), the conditions for mechanical stability can be
expressed as [15,16](

∂P
∂v

)
T
≤ 0,

(
∂P
∂T

)
v
≥ 0, and

(
∂v
∂T

)
P
≥ 0. (17)

As neither the specific heat capacities, nor the pressure, temperature, and specific vol-
ume can be negative, combining the inequalities in Equation (17) with Equations (8a)–(8c),
it can be shown that

γPv ≥ 0, γTv ≥ 1, and γPT ≥ 1, (18)

for single-phase substances.
A notable consequence of Equation (18), compared to the isentropic exponent γ for

ideal gases, is that values of γPv < 1 are permissible under the conditions for thermal
and mechanical stability for single-phase substances. For instance, pentane shows a re-
gion where γPv ≤ 1, as shown in Figure 1c. This gives new characteristics to isentropic
transformations derived from γPv.

The value of γPv is, in fact, directly related to the fundamental derivative of gas
dynamics Γ, which is a non-dimensional quantity that governs the dynamic behaviour
of gases. The fundamental derivative of gas dynamics is defined as the derivative of the
speed of sound with respect to volume at constant entropy, or alternatively, the second
derivative—or curvature—of the pressure–volume isentrope, expressed as [17,18]

Γ = 1− c
v

(
dc
dv

)
s
=

v3

2c2

(
∂2P
∂v2

)
s
. (19)

The isentropic relations Equations (8a)–(8c) are hyperbolic functions that describe
the isentropes in the pressure–volume, temperature–volume, and pressure–temperature
plane. Their shape—and hence curvature—along any point of the isentrope is governed
by the local value of the isentropic exponents, which are continuously varying functions
along the isentrope. In the case of the fundamental derivative, substitution of Equation (8a)
yields [13,19]

Γ =
γPv + 1

2
− 1

2
v

γPv

(
dγPv

dv

)
s
. (20)

where the derivative (∂γPv/∂v)s is small compared to the first term in Equation (20) and
may be omitted, Equation (20) is approximated by Γ ≈ (γPv + 1)/2 [13], equivalent to the
value of Γ for ideal gases, (γ + 1)/2 [17,18].

As non-classical behaviour is observed in dense gasses for Γ < 0 [17], and γPv cannot
be negative, non-classical behaviour gas behaviour can only occur where the derivative
term in Equation (20) is larger than (γPv + 1)/2.

The theoretical limits of the real isentropic relations are summarized in Table 1.
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Table 1. Limits of the exponents γPv, γTv, and γPT for liquids, ideal gases, and real gases in the
general case. The isentropic exponents are demonstrated to reduce to the incompressible fluid model
for liquids and the ratio of the specific heats cp/cv for ideal gases.

Liquids Real Gases Ideal Gases

Limits of derivatives and isentropic exponents(
∂P
∂v

)
T
→ ∞(

∂P
∂T

)
v
→ ∞(

∂v
∂T

)
P
= vα

γPv → ∞

γTv → ∞

γPT → 1

(
∂P
∂v

)
T
≤ 0(

∂P
∂T

)
v
≥ 0(

∂v
∂T

)
P
≥ 0

γPv ≥ 0

γTv ≥ 1

γPT ≥ 1

(
∂P
∂v

)
T
= −RT

v2(
∂P
∂T

)
v
=

R
v(

∂v
∂T

)
P
=

R
P

γPv =
cp

cv

γTv =
cp

cv

γPT =
cp

cv

2.3. Isentropic Exponents Plotted in the Pv-Plane for Water, Carbon Dioxide, and Pentane

Figure 1 shows the specific heat ratio γ and the three generalised isentropic exponents
for water, carbon dioxide, and pentane in the Pv-plane obtained with RefProp version
10.0 [7]. The corresponding equations of state are given in refs. [20,21]. The three substances
were chosen due to their many practical applications in the field of engineering and due to
their difference in molecular size, complexity, and polarity.

First of all, the value of the ideal gas exponent γ is of a similar order of magnitude
between the gaseous and liquid regions in Figure 1 for all three substances. Only around
the critical point, a rise in the value of γ is seen due to the increase of the isobaric heat
capacity cp around that point.

Comparing the generalised isentropic exponents, γPv demonstrates the highest degree
of variation, steeply increasing in value beyond the critical point for increasingly higher
densities in the liquid region, ultimately approaching infinity. Though γTv also tends to
infinity for high densities, it quickly drops off, showing a milder progression in value
change with decreasing density into the gaseous region. Exponent γPT shows a smaller
variation throughout the Pv-plane, ranging from unity for high densities in the liquid
region to the ratio of the specific heats for ideal gases.

Between the three fluids, it is observed that H2O and CO2—with a lower molecular
complexity—show a stronger variation of all three the isentropic exponents with respect to
pentane, for which variations are fewer.

The most notable difference between the three substances is the presence of a region
where γPv < 1 of pentane round the liquid–vapour coexistence region. Pentane has a dry
liquid–vapour dome, where the concave shape of the vapour line results in dry expansion.
The ratio of the specific heats γ has been found to control the skewness of the liquid–vapour
dome in other research [22]. Whilst evaluating the contours of the isentropic exponents for
various substances with RefProp, fluids with similar dry liquid–vapour domes were also
found to possess a region where γPv < 1.
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1 2 3 4
v/vc

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

P
/P

c

1 2 3 4
v/vc

1 2 3 4
v/vc

1 2 3 4
v/vc

1.00 1.58 2.51 3.98 6.3110.00

γ

1.00 1.08 1.16 1.24 1.32 1.40

γPT

1.00 1.12 1.24 1.36 1.48 1.60

γTv

1.10 1.34 1.64 2.01 2.45 3.00

γPv

(a) Water, H2O

1 2 3 4
v/vc

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

P
/P

c

1 2 3 4
v/vc

1 2 3 4
v/vc

1 2 3 4
v/vc

1.20 1.83 2.80 4.28 6.5410.00

γ

1.00 1.07 1.14 1.21 1.28 1.35

γPT

1.20 1.26 1.32 1.38 1.44 1.50

γTv

1.20 1.44 1.73 2.08 2.50 3.00

γPv

(b) Carbon dioxide, CO2

1 2 3 4
v/vc

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

P
/P

c

1 2 3 4
v/vc

1 2 3 4
v/vc

1 2 3 4
v/vc

γ
P
v =

1

0.90 1.21 1.63 2.20 2.97 4.00

γ

1.00 1.03 1.06 1.08 1.11 1.14

γPT

1.02 1.04 1.05 1.07 1.08 1.10

γTv

0.50 0.62 0.78 0.97 1.20 1.50

γPv

(c) Pentane, C5H12

Figure 1. Contours of specific heat ratio γ and the real gas exponents γPT , γTv, and γPv in the
Pv-plane evaluated for H2O (a), CO2 (b), and pentane (c), using the Span–Wagner equation of
state [23,24] with NIST RefProp [7]. The white solid lines indicate the isentropes. The black dashed
line in (c) indicates γPv = 1.
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3. Generalised Speed of Sound, Isentropic Flows Transformations,
and Isentropic Work

The generalised isentropic exponents are now used to derive generalised isentropic
relations for practical engineering applications, such as the speed of sounds and isentropic
flows through nozzles, compressors, and turbine stages.

3.1. Generalised Speed of Sound in Fluids

The speed of sound is defined as [25]

c2 =

(
∂P
∂ρ

)
s
= −v2

(
∂P
∂v

)
s
, (21)

where ρ is the density of the substance. Using the isentropic pressure–volume relation for
real gases, Equation (8a), an expression for the speed of sound can be derived in terms of
the exponent γPv. The speed of sound is then given as [26,27]

c =
√

γPvPv . (22)

Here, the benefit of adhering to the ideal gas notation for the isentropic relations be-
comes apparent as the departure from ideal gas conditions in Equation (22) is conveniently
included in the exponent γPv without losing the familiarity of the ideal gas notation.

In the case of liquids, the speed of sound is related to the bulk modulus κs—a measure
for the elasticity of the fluid—known as the Newton–Laplace equation [28,29]

c =
√

κs

ρ
, where κs = −v

(
∂P
∂v

)
s
. (23)

The bulk modulus of ideal gases is related to the ratio of the specific heats and the
pressure through κs = γP [25,28]. In its generalised form, the bulk modulus κs is related to
the isentropic exponent γPv through

κs = γPvP. (24)

Between gasses and liquids, the isentropic bulk modulus κs varies several orders of
magnitude, typically ranging from kilopascals to megapascals for gases, to the order of
gigapascals in the case of liquids. We can now relate this to the value of γPv, which between
gases and liquids of equal pressure is demonstrated in Figure 1 and Table 1 to change
several orders of magnitude between gases and liquids as the derivative (∂P/∂v)T becomes
large due to small fluid compressibility.

3.2. Isentropic Transformations for Non-Ideal Compressible Isentropic Flows

The generalised isentropic exponents are now used to derive transformations for non-
ideal isentropic fluid flows from the fundamental conservation laws of mass, momentum,
and energy. Though their derivation is similar to the ideal gas case, a different approach
must be followed as, unlike ideal gases, the total enthalpy can no longer be related to the
temperature using constant specific heats only. We start with the energy equation of a
steady one-dimensional adiabatic flow [25]

dh + udu + gdz = 0, (25)

where u the velocity, g—the gravitational constant, and dz—the change in elevation of the
flow volume. In the case of ideal gases, the change in enthalpy dh may be directly related to
the change in temperature using dh = cpdT. In the general case, the change in enthalpy can
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be expressed in terms of pressure and the specific volume as dh = vdP, or alternatively, as
dh = dP/ρ, where ρ is the fluid density. Substituting the latter in Equation (25), we obtain

dP
ρ

+ udu + gdz = 0. (26)

Although it is possible to use the differential form of the Bernoulli equation to study
isentropic transformations, it is more convenient to integrate Equation (26) for direct calcu-
lations. However, certain assumptions must be made to integrate dP/ρ in Equation (26).
Assuming that γPv is constant and that γPv 6= 1, the integration can be performed using
the pressure–volume isentropic relation, Equation (8a), to give∫ dP

ρ
=

γPv
γPv − 1

P
ρ

. (27)

Note that for certain cases, γPv may be less than 1, e.g., as shown in Figure 1c. There-
fore, it is possible for isentropic transformations to obtain γPv = 1, such that the right-hand
side of (27) becomes singular. It is possible to integrate Equation (26) but this case will not
be considered separately herein.

The generalised form of the Bernoulli equation for non-ideal fluid flows is then

γPv
γPv − 1

P
ρ
+

u2

2
+ gz = const., (28)

which is applicable for the entire single-phase region for stable substances where γPv 6= 1.
The ideal gas form of the Bernoulli equation is easily recognized, for which γPv reduces
to the adiabatic coefficient γ, as demonstrated in Equation (12). In the case of liquids, γPv
becomes large due to fluid incompressibility, and consequently γPv/(γPv − 1)→ 1, such
that Equation (28) reduces to the classic form of the Bernoulli equation for incompressible
fluid flows.

With the generalised Bernoulli equation for gases and liquids, the local flow properties
can be related to the upstream fluid at rest as a reference state of the flow, with P0 and ρ0
denoting the stagnation pressure and density. Ignoring body forces, the downstream flow
can be related to the stagnation conditions by

γPv
γPv − 1

P0

ρ0
=

γPv
γPv − 1

P
ρ
+

u2

2
= const., (29)

where a constant value of γPv is assumed throughout the isentropic flow field.
The velocity can be expressed in terms of local Mach number as Ma = u/c with

c =
√

γPvP/ρ as the local speed of sound Equation (22). Gathering the pressure terms
on the left-hand side, and eliminating the density ratio ρ/ρ0, using the pressure–density
isentropic relation in Equation (8a), gives the familiar expression for the total pressure in
an isentropic flow where departure from ideal behaviour is incorporated in the isentropic
exponent γPv,

P0 = P
[

1 +
γPv − 1

2
Ma2

] γPv
γPv−1

= const.. (30)

Equivalently, the stagnation temperature and stagnation density can be derived from
the stagnation pressure using the isentropic relations Equations (8c) and (8b), yielding

T0

T
=

[
1 +

γPv − 1
2

Ma2
] γTv−1

γPv−1
, and

ρ0

ρ
=

[
1 +

γPv − 1
2

Ma2
] 1

γPv−1
. (31)
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Subsequently, the stagnation speed of sound and the stagnation compressibility factor
are derived using

c2
0

c2 =
P0

P
ρ

ρ0
, and

Z0

Z
=

P0

P
ρ

ρ0

T
T0

, (32)

obtaining

c0

c
=

[
1 +

γPv − 1
2

Ma2
] 1

2
, and

Z0

Z
=

[
1 +

γPv − 1
2

Ma2
] γPv−γTv

γPv−1
. (33)

The generalised form of Equations (30)–(33) should once again be highlighted. The fa-
miliar ideal gas equivalents are easily obtained as the generalised isentropic relations
reduce to the adiabatic coefficient γ for ideal gases.

In the case of liquids, where the generalised isentropic exponents take on the limits
listed in Table 1, note that the speed of sound c becomes large as γPv → ∞ following
Equation (22) and hence, the Mach number Ma2 → 0. Therefore, in the case of incompress-
ible liquids, the term enclosed by the brackets in Equations (30), (31) and (33) become one
and the stagnation properties for an incompressible flow are then demonstrated to reduce
to the trivial statements

P0 = P, T0 = T, ρ0 = ρ, and c0 = c. (34)

Critical property ratios for choked flow conditions can be derived in addition to the
stagnation properties using the choked flow condition, indicated by superscript ∗, as a
reference instead of the upstream stagnant flow condition. These are obtained by setting
Ma to one in Equations (30), (31), and (33).

P∗

P0
=

[
2

γPv + 1

] γPv
γPv−1

,
T∗

T0
=

[
2

γPv + 1

] γTv−1
γPv−1

,

ρ∗

ρ0
=

[
2

γPv + 1

] 1
γPv−1

, and
c∗

c0
=

[
2

γPv + 1

] 1
2
. (35)

Finally, the critical flow area A∗ and critical mass flow rate ṁ∗ can be obtained using
the critical property ratios in Equation (35). The critical flow area ratio A/A∗ is expressed
as [25]

A
A∗

=
ρ∗

ρ

c∗

u
. (36)

Using a combination of the critical property ratios Equation (35) and isentropic trans-
formations Equation (2), the critical flow area ratio can be expressed as

A
A∗

=
1

Ma

[
2 + (γPv − 1)Ma2

γPv + 1

] γPv+1
2(γPv−1)

, (37)

The critical mass flow rate ṁ∗ defined as

ṁ∗ = A∗ρ∗c∗, (38)

can be expressed as

ṁ∗ = A∗
√

γPvρ0P0

(
2

γPv + 1

) γPv+1
2(γPv−1)

. (39)

with a classic textbook on gas dynamics at hand, numerous variations on isentropic
flow relations can be derived using the generalised isentropic relations presented in this
work [13,25]. These equations may be used to model gases and liquids alike regardless of
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the thermodynamic state under the assumption of constant values of γPv, γTv, and γPT
throughout the isentropic flow field. Providing such additional equations is not the aim of
this work and is therefore not further considered herein.

3.3. Isentropic Work in Compression and Expansion

We conclude this section with the theoretical isentropic work during compression
and expression. The theoretical isentropic work for isentropic expansion or compression
between states 1 and 2 is defined as the integral

dh =
∫ 2

1

dP
ρ

, (40)

evaluated in Equation (27) as part of the total energy of a compressible isentropic flow.
Using the previous result, the work for isentropic compression and expansion can be
expressed as

∆h = h2 − h1 = v1P1
γPv

γPv − 1

(P2

P1

) γPv−1
γPv − 1

. (41)

The sign of the change in enthalpy in Equation (41) is positive for compression and
negative for expansion.

Where the similarity between the generalised relation for the isentropic work and
the ideal gas notation is obtained by setting γPv equal to the ratio of the specific heats γ,
in the case of liquids, where γPv becomes large due to fluid incompressibility, the ratio
γPv/(γPv − 1)→ 1 and the exponent (γPv − 1)/γPv → 1. From here, it can be demon-
strated that Equation (41) reduces to the isentropic work relation for fluid compression
or expansion

∆h = h2 − h1 = v1(P2 − P1) = v1∆P. (42)

The generalised isentropic transformations derived in this section are summarized in
Table A1.

4. Considerations for Non-Ideal Isentropic Relations in Practical Applications

The applicability of the generalised relations will now be discussed using three prac-
tical examples of isentropic transformations. Propane is selected as a working fluid, as it
exhibits large variations of γPv and possesses a region where γPv < 1 (see Figure 1) in the
dense vapour region where non-ideal gas effects are at play. In particular, the following
processes will be considered:

• Compression in the liquid region;
• Expansion 1 in the dense vapour region close to the vapour saturation line, starting

from the critical pressure to a low pressure while crossing the γPv = 1 line;
• Expansion 2 in the vapour region, again crossing the γPv = 1 line, but with a lower

pressure ratio.

These processes shown in Figure 2 serve to illustrate the applicability of the isen-
tropic relations.
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Figure 2. Three exemplary isentropic transformations in different single-phase regions of pentane;
(a) T-s diagram of pentane with indicated isentropic transformations. The coloured contour shows
γPv, the white lines indicate the isobars, and the black dashed lines indicate γPv = 1. The dash-dotted
line indicates where the fundamental derivative of gas dynamics is Γ = 1; (b) Expansions 1 and
2 plotted as a function of Mach number. Expansion 1 shows the distributions of the isentropic
exponents and the flow work, while expansion 2 shows the temperature and nozzle area distributions
obtained with RefProp compared to the results obtained with the generalised isentropic relations.
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Compression. As summarized in Table 2, pentane is compressed from an initial tempera-
ture of T1 = 170 ◦C and a pressure of P1 = 34 bar to a final pressure of P2 = 128 bar (values
in bold). RefProp is used to obtain the other thermodynamic states and the values of the
isentropic exponents. Note, γPT shows values close to 1, while γPv shows large values in
the compressed liquid region. Using the inlet values for γPv = γPv,1 and γTv = γTv,1 with
the generalised isentropic relations to evaluate the temperature and density in state 2 shows
the accuracy of this approach, even if γPv changes from 15.35 at state 1 to 11.25 at state 2.
The relative error of temperature and density in state 2 is 0.6% and 1.56%, respectively.

Likewise, the enthalpy change across the isentropic compression can be evaluated
using the generalised isentropic relations and, in addition, also with the incompressible
model. Comparing those estimates with the evaluation of ∆h using RefProp indicates the
low relative error of 0.7% with the generalised isentropic relations, while the incompressible
estimate yields a relative error of 6.1%.

Table 2. Exemplary compression in the compressed liquid region of pentane. Bold values refer to
input reference state.

(a) Thermodynamic states

RefProp
Isentropic transformations Equation (2) with

γPv = γPv,1 and γTv = γTv,1 (rel. error)

State 1 2 2

P [bar] 34 128
T [K] 443.15 453.27 450.60 (0.6%)

ρ [kg/m3] 433.76 480.36 472.89 (1.56%)
γ 1.47 1.28

γPT 1.012 1.023
γTv 1.193 1.250

(b) Enthalpy change

RefProp v1∆P
(rel. error)

Isentropic Work Equation (41)
with γPv = γPv,1 (rel. error)

∆h [kJ/kg] 20.43 21.67 (6.1%) 20.57 (0.69%)

Expansion 1. For this case, pentane is expanded (without internal irreversibilities)
through an adiabatic supersonic nozzle from a total pressure of P01 = 34 bar and a total
temperature of T01 = 483.15 K to a Mach number of Ma = 3.0. The solution of the
expansion is obtained using a conventional root finding algorithm of the total enthalpy, h0,
conservation equation, given as

h0(T01, s01) = h(T, s01) +
1
2
(c(T, s01)Ma)2 = const., (43)

where s01 is the constant entropy along the expansion. Expanding to Ma = 3.0 results in an
outlet pressure of P2 ≈ 0.25 bar.

Figure 2b (Expansion 1) shows the distributions of the isentropic exponents as a
function of Mach number, evaluated using RefProp. The following observations can
be made. First, the isentropic exponents show large differences at the beginning of the
expansion (non-ideal gas behaviour), while they show almost the same values at the end
of the expansion, indicating ideal gas behaviour at the end of the expansion. Second,
γTv remains nearly constant throughout the expansion, indicating that the temperature–
volume isentropic relation will be the most accurate—when assuming a constant value of
γTv—along this expansion in the dense vapour region.

The final and most significant observation is related to γPv, which crosses one at
Ma ≈ 2. In general, during an expansion, the enthalpy is converted into an increase in
kinetic energy. Per definition, the enthalpy is the sum of internal energy e and flow work Pv,
as h = e + Pv. The value of the flow work Pv is displayed in the lower left plot in Figure 2b.
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While for an expansion of an ideal gas with γPv > 1, both the internal energy e and the flow
work Pv decrease. For an expansion in the non-ideal gas region, where γPv < 1, the flow
work increases since PvγPv = const., which is an increasing function for γPv < 1. For an
expansion in a non-ideal thermodynamic region where γPv < 1, the increase of kinetic
energy is thus reduced as the flow work increases due to the strong expansions of the
gas. As such, γPv serves as an insightful parameter to indicate the non-ideal behaviour in
isentropic transformations.

Expansion 2. The second example illustrates the accuracy of the isentropic relations for
an expansion in which γPv also crosses the line where γPv = 1, but with a smaller variation
compared to Expansion 1. Here, pentane is expanded from a pressure of P01 = 8 bar and a
total temperature of T01 = 463.15 K to a Mach number of Ma = 2.5. Again, γPv < 1 at the
inlet and γPv > 1 at the outlet of the nozzle.

Even if assuming a constant value of γPv = γpv,1 during the expansion, it can be seen
that the results with the isentropic relations are in good agreement with the exact solution
obtained with RefProp. This indicates that for engineering design it is possible to choose a
reference value of γPv (in this case, at the inlet of the expansion) and still obtain relatively
accurate results. Alternatively, it is also possible to choose an average value of γPv between
the inlet and outlet or even split the expansion into steps to increase the accuracy.

5. Conclusions

Generalised isentropic relations were presented in this work, based on the work by
Kouremenos et al., where three isentropic exponents γPv, γTv, and γPT are introduced to
replace the ideal gas adiabatic coefficient γ to incorporate departure from non-ideal gas
behaviour. The generalised isentropic exponents were derived from the exact differential
in entropy and expressed in terms of other thermodynamic state variables using Maxwell
relations, without the need for an assumption of an equation of state. Hence, the generalised
isentropic relations, and any derived functions, are generally applicable throughout the
thermodynamic domain of single-phase substances. When the ideal gas or incompressible
liquid model is assumed, it was found that their existing isentropic models can be recovered.
Between the two idealized limits, the generalised isentropic exponents can be used to relate
isentropic states for real gases under the assumption of local constant values of γPv, γTv, and
γPT . The most notable deviation with respect to the isentropic exponent γ for ideal gases is
that values of γPv < 1 are permissible by the conditions for thermal and mechanical stability
of single-phase substances, providing new additional insights to isentropic transformations
derived from it.

The generalised isentropic relations were then used to derive general formulations for
the speed of sound, the Bernoulli equation, compressible isentropic flow transformations,
and isentropic work, where for each case, the connection between the generalised model
and the respective applications for ideal gases and liquids was highlighted. It was shown
that the speed of sound for ideal gases can be obtained from the generalised form, as well
as the Newton–Laplace equation for the speed of sound in liquids. Similarly, the Bernoulli
equation can be derived from the generalised form presented in this paper, as well as
the Bernoulli equation for ideal gases. Likewise, other generalised transformations for
compressible isentropic flows were obtained, under the assumption of constant values of
the isentropic exponents γPv, γTv, and γPT throughout the isentropic flow field. Appli-
cability, and the error resulting from this assumption, were then demonstrated in three
examples concerning isentropic compression and isentropic expansion. Relatively small
errors occurred during highly non-ideal transformations that could not otherwise have
been approached with the ideal gas assumption. Even for the compression in the liquid
region, the generalised model was found to be an improvement over the incompressible
substance model.
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Appendix A

Table A1. An overview of the isentropic relations for non-ideal compressible flows. The generalised
isentropic exponents γPv, γTv, and γPT are introduced to replace their ideal gas counterparts, based
on the model proposed by Kouremenos et al. [9]. The generalised form of the equations corresponds
with opposing theoretical models for ideal gases and incompressible liquids.

Liquids Real Gases Ideal Gas

Limits of the isentropic exponents

γPv → ∞ γPv =
cp

Pcv β γPv →
cp

cv

γTv → ∞ γTv = vα
cv β γTv →

cp

cv

γPT → 1 γPT = Pvα
cp

γPT →
cp

cv

Generalised speed of sound relation

c =
√

Ks/ρ c =
√

γPvPv c =
√

γPv

Generalised Bernoulli equation

P
ρ
+

u2

2
+ gz =

const.

γPv
γPv − 1

P
ρ
+

u2

2
+ gz = const.

γ

γ− 1
P
ρ
+

u2

2
+ gz = const.

Generalised isentropic relations

P0 = P
P0
P =

[
1 + γPv−1

2 Ma2
] γPv

γPv−1 P0
P =

[
1 + γ−1

2 Ma2
] γ

γ−1

T0 = T
T0
T =

[
1 + γPv−1

2 Ma2
] γTv−1

γPv−1 T0
T = 1 + γ−1

2 Ma2

ρ0 = ρ
ρ0
ρ =

[
1 + γPv−1

2 Ma2
] 1

γPv−1 ρ0
ρ =

[
1 + γ−1

2 Ma2
] 1

γ−1

c0 = c
c0
c =

[
1 + γPv−1

2 Ma2
] 1

2 c0
c =

[
1 + γ−1

2 Ma2
] 1

2

Isentropic compression and expansion work

∆h = v1∆P ∆h = v1P1
γPv

γPv − 1

(P2
P1

) γPv−1
γPv − 1

 ∆h = v1P1
γ

γ− 1

[(
P2
P1

) γ−1
γ

− 1

]
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