
A Domain-Specific Language for
Internal Site Search

Master’s Thesis

Elmer van Chastelet

A Domain-Specific Language for
Internal Site Search

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Elmer van Chastelet
born in Dordrecht, the Netherlands

Software Engineering Research Group
Department of Software Technology

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

www.ewi.tudelft.nl

c© 2013 Elmer van Chastelet

A Domain-Specific Language for
Internal Site Search

Author: Elmer van Chastelet
Student id: 1213539
Email: evanchastelet@gmail.com

Abstract

The importance of search facilities on a website grows with the size of the con-
tent being served. User expectations for internal site search are greatly influenced
by global web search engines, requiring developers of web applications to go beyond
basic search functionality. In this thesis, a domain-specific language (DSL) for in-
ternal site search is designed and integrated as a sublanguage of WebDSL (the base
language). WebDSL is an existing DSL for web development. Through an explo-
ration of the problem and solution space, the facets related to internal site search are
explained. Furthermore, an iterative approach applied at the development of the DSL
is presented. This approach is based on the use of existing base language constructs
as core language. The core languages provide access to implemented search features.
Linguistic abstractions are added on top of the core languages, constituting the even-
tual interface of the language. Evaluation by means of enriching two web applications
with search features show that the DSL has substantial coverage of the internal site
search domain.

Thesis Committee:

Chair: Prof. Dr. E. Visser, dept. SERG, Faculty EEMCS, TU Delft
University supervisor: Prof. Dr. E. Visser, dept. SERG, Faculty EEMCS, TU Delft
Daily supervisor: Ir. D.M. Groenewegen, dept. SERG, Faculty EEMCS, TU Delft
External Committee Member: Dr. C. Hauff, Dept. WIS at Faculty EEMCS, TU Delft
Committee Member: Dr. Ir. F.F.J. Hermans, dept. SERG, Faculty EEMCS, TU Delft

evanchastelet@gmail.com

Preface

This thesis concludes my Master’s degree in Computer Science at Delft University of Tech-
nology. I would like to take this opportunity to express my gratitude to my supervisor Eelco
Visser for giving me the chance to work on this project, and for his supportive feedback dur-
ing the project. I enjoyed working on a deliverable (the domain-specific language) which is
now actually used in production. I gained a lot of experience and knowledge in the field of
language design, information retrieval and web development, which undoubtedly will help
me during my future career. Special thanks go to my daily supervisor Danny Groenewe-
gen for his continuous support and ideas during language development and for his valuable
guidance and feedback during thesis writing. I also want to thank fellow graduating stu-
dents who worked on WebDSL (André Vieira, Chris Melman, and Christoffer Gersen) and
all fellow students from "the lab" for their help and for providing me a pleasant and fun
place to work. Last but not least, big thanks go out to my family for their continuous trust
and for motivating me throughout my study program.

Elmer van Chastelet
Delft, the Netherlands

August 17, 2013

iii

Contents

Preface iii

Contents v

List of Figures vii

List of Tables x

1 Introduction 1
1.1 Contributions . 2
1.2 Thesis Structure . 3

2 An Introduction to WebDSL 5
2.1 Data Model Language . 5
2.2 Pages, Templates and Actions . 7
2.3 Sub-languages for Various Concerns . 8
2.4 Limited Search Support . 8

3 Problem Domain: Internal Site Search 11
3.1 Requirements for Basic Search Capabilities 11
3.2 More Advanced Search User Interfaces 17
3.3 Scalability . 23
3.4 Maintainance of Indexes . 24
3.5 Towards a Solution . 24

4 Solution Domain 27
4.1 Answers to Internal Site Search . 27
4.2 A Comparison of Search Engines . 29
4.3 Choosing a Solution Suitable for WebDSL 39

v

CONTENTS

5 Extending WebDSL with Search 43
5.1 DSL Development Process . 43
5.2 Previous WebDSL Development . 45
5.3 A Similar Approach for this DSL Extension 46
5.4 Search and Retrieval: Introducing the Searcher Type 51
5.5 Configuration: Support All Property Types 56
5.6 Towards a DSL for Internal Site Search 57

6 A DSL for Search 61
6.1 Design of the Language . 61
6.2 Searchable Data Specification . 63
6.3 Specification of Analyzers . 67
6.4 Specification of Constraints . 69
6.5 Data and Meta-data Retrieval . 79
6.6 Index Maintenance Tasks . 86

7 Evaluation 89
7.1 Case Study: Reposearch . 89
7.2 Case Study: Researchr.org . 101
7.3 Comparison to an Ordinary Java Web Application 111

8 Other Search DSLs and Future Work 115
8.1 Internal Search DSLs . 115
8.2 Future work . 118

9 Conclusions 123

Bibliography 125

vi

List of Figures

2.1 WebDSL entity declaration . 6
2.2 WebDSL entity declaration with function . 6
2.3 WebDSL Template definition ’showInfo’ . 7
2.4 Browser displaying ’showInfo’-template (Listing 2.3) 7
2.5 Using HQL to perform textual search . 8
2.6 Using HQL for textual search, ranking results with more hits higher 9
2.7 WebDSL declaration of a searchable Entity 9

3.1 Search index creation: the process of transforming browsable data into search-
able documents to be added to a search index 13

3.2 Typical flow of processing a search page request 16
3.3 Example of faceted search on CNET’s shopper.com 17
3.4 Example of advanced search form on Mendeley.com 19
3.5 Example of navigation breadcrumb on NewEgg.com, showing browsed cate-

gory and search term . 21
3.6 Example of spell checking in action on Amazon.co.uk 22
3.7 Example of autocompletion on Youtube which also corrects misspelled words

while typing . 23

4.1 Example of Lucene/SOLR analyzer consisting of a character filter, tokenizer
and 2 token filters . 30

4.2 Example of a SOLR data config specification 32
4.3 Posting a document to Elasticsearch server . 33
4.4 Elasticsearch automatically redistributes its shards and replicas on node addition 39

5.1 Basic flow of the WebDSL compiler, generating java code from DSL code . . . 46
5.3 Iterative process applied during (core) language development 49
5.4 WebLib: data model . 50
5.5 WebLib: publication view . 50
5.6 WebLib: Using a searcher instance to perform search 51
5.7 WebLib: result page with pagination and data about the search 51

vii

LIST OF FIGURES

5.8 WebLib: Field selection and boosting . 52
5.9 Constructing type-ahead suggestions . 54
5.10 Stratego rule invoked during desugaring: it transforms a field-boost as part of a

search expression into a core language construct (WebDSL native Java) 58
5.11 Code generation by transforming a core language ATerm (left hand side) to a

Java ATerm expressed in concrete syntax (right hand side) 58
5.12 Examples of errors reported when using Eclipse IDE. Compilation also breaks

when these errors occur and will be reported in the compiler output. 59

6.1 Meta-syntax we use to express the syntax of the language. All non-terminals
start with uppercase letter; all terminals start with lowercase letter. 62

6.2 Data model of WebLib with all properties being searchable using property an-
notations . 64

6.3 Specification of multiple search fields on a single entity property using property
annotations . 64

6.4 Search mapping for entity Author . 65
6.5 Syntax for search mapping specification . 65
6.7 Syntax for analyzer definition . 67
6.8 Analyzer definitions for a soundex (phonetic matching) and spell check analyzer 68
6.9 A default analyzer for a Dutch web application 69
6.12 Examples of combining queries . 72
6.14 Wild card query defined in Lucene query syntax while disallowing it to end-

users (by escaping the query) . 74
6.21 Search page with faceting . 78
6.23 Available retrieval expressions . 79
6.27 Definition of the built-in highlight templates 83
6.30 Re-indexing . 87

7.1 Reposearch: data model . 91
7.2 Reposearch: search mapping . 92
7.7 Reposearch: project selection . 95
7.8 Reposearch: search form for first query formulation 95
7.9 Reposearch: project-scoped suggestions while typing 95
7.10 Reposearch: retrieval of suggestions . 95
7.11 Reposearch: Construction of searcher . 96
7.12 Reposearch: definition of language constructs 96
7.13 Reposearch: result pane with selectable facets, highlighted fragments and pag-

ination controls. Location facets are shown after clicking expand button. 97
7.14 Reposearch: highlighting code fragments . 98
7.15 Reposearch: presentation of facets . 99
7.16 Reposearch: Project management (left), log console (right) 100
7.17 Reposearch: schedule control on the management page 100
7.18 Researchr: publication entity definition (snippet) in data model 102
7.19 Researchr: search mapping for Publication and AbstractAuthor entities 104

viii

7.21 Searchers are retrieved using the ‘pubSearcher‘ property of the entity type de-
noting the context of a publication collection to be shown 106

7.22 Researchr: viewing a collection of publications (a bibliography in this case)
with facet clouds in a sidebar . 106

7.23 Researchr: template definition for displaying facet clouds 107
7.24 Researchr: new search page with hit highlighting, result size, pagination (not

visible), faceting, and did-you-mean functionality (not visible) 108
7.25 Researchr: pagination buttons only show browsable result pages 109
7.26 Researchr: presenting search results using highlighting component of WebDSL 109
7.27 Researchr: suggesting corrections in case of small or no result set. In this case,

the ’small’ result set contains a publication with an erroneous title 110
7.29 Mapping to search fields in the Person entity class using Hibernate annotations 112
7.30 Implementation of the analyzer that is used for text searches in Eureka Streams 112
7.31 Specification of search fields in WebDSL corresponding to the Java specifica-

tion of Person . 112
7.32 Code responsible for searching Person entities by a prefix of their name 114
7.33 Searching for persons by prefix in WebDSL 114

8.1 Query construction using Hibernate Search Query DSL 117

ix

List of Tables

4.5 Comparison of feature support in search solutions: Lucene, SOLR, Hibernate
Search, Elasticsearch and Sphinx . 40

5.2 Core languages . 48

6.6 Search mapping semantics . 66
6.10 Syntax: Searcher interaction language . 70
6.11 Syntax: Specifications of query constraints . 71
6.13 Syntax: Specification of queries (various types) 73
6.15 Syntax: Searcher attributes . 74
6.16 Syntax: Sorting search results . 75
6.17 Syntax: Adding constraint filters . 75
6.18 Syntax: Adding namespace constraint . 76
6.19 Syntax: Pagination over the result set . 76
6.20 Methods available in the Facet type . 77
6.22 Syntax: Enabling, retrieving and selection of facets 79
6.24 Syntax: Retrieval of searched data . 80
6.25 Highlight methods . 81
6.26 Syntax: Result highlighting . 82
6.28 Syntax: Retrieval of spell and type-ahead suggestions 83
6.29 Overview of Searcher methods . 85
6.31 Overview of IndexManager methods . 88

7.3 Reposearch: analyzer for preserving all characters except white spaces 92
7.4 Reposearch: analyzer for extracting (chains of) identifiers for type-ahead sug-

gestions . 93
7.5 Reposearch: analyzer for extracting file extensions to be used for faceting . . . 94
7.6 Reposearch: analyzer for constructing location tokens for faceting 94
7.20 Wordsearch: comparison stemming algorithms for the word ’animate’ 105
7.28 Researchr: Comparison on code size of the complete code base before and after

case study. 111

x

Chapter 1

Introduction

Domain-specific languages (DSLs) are programming languages tailored toward a specific
domain by adopting domain concepts into the language. Compared to general purpose
programming languages, they trade generality for expressiveness in a limited domain [21].
By offering notations and constructs suitable in the targeted domain, a DSL is easier to
use when compared to a general purpose language. Applied properly, a DSL results in
increased productivity and lower maintenance costs of the systems created with the DSL.
Well known examples of DSLs include HTML for Hypertext web pages, SQL for database
queries, Make for managing software build processes and LATEXas typesetting language.

In the field of web application development, developers need to be familiar with a range
of programming languages. Each of these languages is chosen or designed to deal with
a specific aspect of web applications. E.g., the backend which constructs (dynamic) web
pages may be implemented using PHP, Ruby, Scala, Python or Java. Data to be used for
construction of the web pages may be represented in various formats (JSON, XML, POJO)
and be retrieved from a database using a database query language (like SQL) or from other
data sources. The constructed pages in turn consist of HTML for markup, JavaScript for
interaction and Cascade Style Sheets (CSS) to define the style of the web page’s elements.
Also, a web-developer needs to take in consideration the web application’s access control
for controlling who may access which parts of the website’s content. Data validation should
assure that data delivered to the system is processible and checked to comply with format-
ting rules and value boundaries. A website’s navigation structure should allow any content
to be browsed and explored efficiently. Then, the design of the website determines how
content is actually presented on the range of canvas sizes in use today. A web page may
also be optimized for searchability by web search engines. And finally, website’s search
facilities should make browsable content easy to find by its visitors.

This results in an implementation platform being an amalgam of concern-centric lan-
guages and frameworks, adopting the separation of concerns design principle at a language
and framework level. However, these do not integrate well, leading to verbose definitions
across the languages/frameworks and a lack of static checks between cross-language rela-
tions. For example, a web application’s data model may primarily be specified using Java
classes. The Java Persistence API is used to specify how the data is to be persisted by

1

1. INTRODUCTION

object-relational mapping software (using Java annotations which are not checked to be
consistent with the Java class definitions). The retrieval of data objects is done using SQL
statements embedded as Strings in Java, which are only checked for consistency at runtime.
Then, the search engine may require an XML-schema representation of the data to specify
how to construct searchable documents from the data. This schema may contain SQL state-
ments for the retrieval of data in order to synchronize the search index with the actual data.
Again, these statements are not checked statically to comply with the SQL syntax and to be
consistent with the data model specified in Java.

WebDSL, the language to be extended, is a DSL that tries to integrate the mixture of
aspects into a language that is able to statically verify cross-concern specifications, while
preserving the separation of concerns paradigm. This is achieved by having sublanguages
for different concerns that share a single type system and expression language. As will
be explained in Chapter 2, WebDSL currently has sublanguages for an application’s data
model, access control, data validation, user interface and application logic. In this master’s
thesis, we explain how WebDSL is extended with a range of information retrieval features
to enable more feature rich web applications.

We will denote the range of features to be covered by the DSL extension as the domain
of internal site search. It is an overarching term for techniques enabling search functionality
on a single website and is sometimes referred as local (web)site search [6, 19]. It is different
from web(site) search [3, 1, 15] (sometimes referred as internet search), where web pages
are crawled and the content presented on accessible web pages become searchable. It is
different from enterprise search [22, 13], where heterogeneous collections of (often propri-
etary) digital information within an organization, stored anywhere in whatever format, are
crawled and arranged in a way that it can be searched effectively by a targeted audience
(both within and outside an organization). Internal site search is similar to enterprise search
in a sense that the information retrieval system is designed to use (meta-)data, which is
not exclusively accessible though an unified resource link (URL), as is the case with web
search. Also, the information retrieval system may be designed with knowledge about the
structure of data and data interrelationships (in case of structured data) such that the system
is able to find more relevant results and to present results and/or browsable collections more
suitably to the context. However, the practice of obtaining data from a diversity of data
sources represented in various formats (considered part of enterprise search [13]) is out of
the scope of the internal site search domain. We assume data to be modeled conform a
single structured representation. In our case, the data model of WebDSL.

1.1 Contributions

Aside from being a case study in domain-specific language engineering, the main contribu-
tions of this master’s thesis are (1) an analysis of the domain of internal site search, (2) the
design of an external domain-specific language for internal site search, and (3) an approach
in integrating this DSL into an existing DSL. The developed DSL covers semantics for in-
dexing configuration, query formulation and refinement, and the retrieval and presentation
of searched data. The set of language features is extended iteratively in such a way that

2

Thesis Structure

each intermediate state of the extended base language supports the use of new language fea-
tures directly. By means of a WebDSL application developed in parallel with the language
extension, the state of the DSL extension is evaluated to drive the future iterations in the
development of the DSL extension. In later phases, the applicability of the developed DSL
is evaluated by means of integrating search features in production web applications: a web-
based source code search engine is developed and an existing digital library application is
extended to adopt new search features.

1.2 Thesis Structure

Following this introduction, we give a brief introduction of the base language to be ex-
tended with a sublanguage for internal site search: WebDSL (Chapter 2). We then discuss
the typical features related to internal site search and difficulties encountered setting up
these facilities (Chapter 3). The solution domain is explored in Chapter 4 by means of
a comparison on the relevant search capabilities of a selected set of popular open source
search engine libraries. In Chapter 5, we explain DSL development in general and previous
WebDSL development, followed by a detailed overview of the development process applied
for extending WebDSL with a DSL for search. The syntax of the actual language is pre-
sented in Chapter 6. Then, in Chapter 7, we put the language into practice by means of 2
case studies and a brief comparison with an ordinary, real world, Java application. The first
case study comprises the creation of a web application for searching source code repos-
itories. In the second one, we take an existing digital library created with WebDSL and
update it with newly added search features. A brief comparison then shows the boilerplate
code normally encountered when implementing search in a Java web application. Other
examples of search DSL’s and a discussion of future work is given in Chapter 8. Finally,
conclusions are drawn in Chapter 9.

3

Chapter 2

An Introduction to WebDSL

WebDSL is a domain-specific language (DSL) allowing its users to develop dynamic web
applications with rich data models. Typical for DSLs, WebDSL abstracts from low level
boilerplate code which one usually encounters when using general purpose languages like
Java. Web developers would normally use a combination of languages and frameworks to
deal with different aspects of web programming, e.g. (X)HTML and CSS for presentation,
SQL for data persistence, Javascript for user interaction and a language to generate web
pages dynamically like PHP or Java. The WebDSL language handles this complexity and
consists of a collection of sublanguages for different aspects that are used interchangeably
within one source file. This has the additional advantage that code can be statically checked
for errors at edit- and compile time where, in ordinary web development, checking at run-
time is often the only way to find errors.

2.1 Data Model Language

The core of a data intensive web application is its data model. WebDSL uses the Java Per-
sistence API (JPA) to enable storage of so-called entities into a database. JPA is a standard
for object-relational mapping (ORM). Entities are instances of a Java class that is annotated
with the @Entity annotation. ORM frameworks, like JBoss Hibernate, use these annota-
tions to store Java objects into a database, making Java objects persistent. At the moment of
writing, Hibernate version 3.6.2 is used in WebDSL. JPA prescribes that each entity should
have a unique identifier. The @Id annotation can be added to a field indicating that this
value should act as identifier. Additional annotations are needed on properties that refer to
other entities, or collections of them, the cardinality between the entity owning the property,
and the type of property should be specified using cardinality annotations. While the use
of JPA is conceptually simple, it leads to redundant code for getters/setters and annotations
might become quite complex.

The data modeling language of WebDSL relieves the developer from this complexity by
having an expressive entity language that entails the essential aspects of JPA. Entities can
be declared by defining an entity name and a list of properties. Each property has a name
and type, and optionally one or more annotations. Current WebDSL built-in types include

5

2. AN INTRODUCTION TO WEBDSL

numeric types like Integer, Long and Float and String-based types like: String, WikiText,
Secret, URL and Email. Properties might also be a reference to another Entity type, or even
a collection of these. Listing 2.1 and 2.2 show examples of entity definitions.

1 entity Publication {

2 title :: String (name)

3 authors -> Set<Author>

4 description :: WikiText

5 creationDate :: Date

6 }

Listing 2.1: WebDSL entity declaration

The entity keyword is followed by the name of the entity and a body between curly
braces. Within this body, the properties, functions and validation rules can be declared.
In the example, we define the Publication entity with 4 properties. Properties may be of
simple type indicated by ::, reference type for collections or other entities indicated by ->,
or composition type indicated by <>. The latter one triggers a cascade deletion when the
entity owning this property is deleted. The property title has the type String and has a
property annotation ‘name‘ . This indicates that the value of the title property serves as
textual representation of a Publication entity. This name is shown when an entity is used in
an output element. Another special property is a derived property, like nofPubs in the entity
definition for Author (Listing 2.2). The value of this property is not explicitly persisted in
the database, but evaluated at runtime.

1 entity Author {

2 name :: String (id, name)

3 publications -> Set<Publication> (inverse = Publication.authors)

4 nofPubs :: Int := publications.length

5
6 function showInfo() : String {

7 return name + " has contributions in " + nofPubs + " publications" ;

8 }

9 }

Listing 2.2: WebDSL entity declaration with function

Functions in WebDSL can be declared globally or bound to an entity type. In the latter
form, entity properties of the instance on which the function is invoked are accessible like
class fields are accessible in Java methods. The showInfo() function in Listing 2.2 is such
an example.

Additionally, WebDSL supports entity inheritance and entity definitions can be ex-
tended at different places in the source code, allowing partial entity definitions. Last but
not least, validation rules can be added to an entity definition. These rules set constraints
on the property values, for example to guarantee value well-formedness. A validation rule
consists of an (e, s)-pair, where e is a boolean expression that checks a condition and s is
a String that describes the error message. In case of an input form, the error message will
be displayed when data entered by the user does not meet the constraints (i.e. the boolean
expression e evaluates to false).

6

Pages, Templates and Actions

2.2 Pages, Templates and Actions

Pages and user interaction are expressed using page, template, and action definitions. Page
definitions are used to describe the web pages to be viewed by the users. A page may display
data (entities, entity properties) and input elements for adding, removing or updating data.
A page definition consists of a name, a list of parameters to be passed and a page body.
Within the page body, additional variables can be declared. Data is decorated and presented
on pages using built-in or user-defined templates. Some examples commonly used built-
in templates include forms, tables, lists, sections, headings, links and buttons. WebDSL
templates can best be described as reusable page elements that can be invoked from within
a page or other template definition. Similar to pages, a template definition consists of a name
and list of formal parameters. By preceding the template signature with the ajax keyword, it
can be used to replace parts of a currently viewed web page using asynchronous JavaScript
and XML. The explicit distinction between normal and ajax templates is currently required
to handle access control to these templates properly. Listing 2.3 shows a template for
viewing information of a Publication entity in a table. The corresponding browser view is
shown in Figure 2.4.

1 define showInfo(Publication pub) {

2 table{

3 row{

4 column{ "Title" }

5 column{ output(pub.title) }

6 }

7 row{

8 column{ "Authors" }

9 column{ output(pub.authors) }

10 }

11 row{

12 column{ "Creation date" }

13 column{ output(pub.creationDate) }

14 }

15 }

16 }

Listing 2.3: WebDSL Template definition ’showInfo’

Figure 2.4: Browser displaying ’showInfo’-template (Listing 2.3)

7

2. AN INTRODUCTION TO WEBDSL

While pages and templates use a declarative language to describe how content is shown,
action code uses an imperative sub language to describe modifications to the content. Within
an action, entities can be added, deleted or updated with new information. Also, it may
redirect to another page or replace one or more parts of the current page using ajax. Actions
belong to a form, in which the user can enter data or click elements. Typically the user
enters the data and clicks on a link or button. The action code is attached to this link or
button, and gets executed on the server after clicking. Changes are propagated when the
entered values are correct (validation succeeds), or an error message is displayed otherwise.

2.3 Sub-languages for Various Concerns

The WebDSL language is designed following an inductive approach, where a base lan-
guage is extended with other sub-languages for different concerns over time. The core of
WebDSL consists of the data modeling language (entity definitions), user interface language
(pages/templates) and the action language to model the web application’s logic. Later,
WebDSL was extended with a sub-language for modeling access control to web pages and
data elements; a data validation language for guaranteeing data consistency; and a workflow
language to model business workflows in a WebDSL application. In this thesis we study a
new sub-language for internal site search.

2.4 Limited Search Support

At the start of this master’s project, WebDSL basically offered two ways for the retrieval of
data (entity instances). (1) The data store can be queried using a database query language.
Additionally, some shortcut functions are generated for each entity that wrap around com-
monly used queries such as findEntityByProperty and findEntityByPropertyLike. (2) A
search engine was later integrated to perform basic search on textual entity properties.

2.4.1 Using a Structured Query Language

WebDSL incorporates a database query language which is a subset of the Hibernate Query
Language (HQL) featured by the Hibernate framework. It facilitates querying the under-
lying database to find the desired entity instances. This will work for simple cases where
a property is known to exactly match some value. However, if one or multiple terms may
match anywhere in the text of a property (i.e. perform full-text search on a single property),
queries become more complex. The example in Listing 2.5 shows a statement where vari-
able result is assigned a list of Publications that satisfy the constraint to contain ’retrieval’
or ’Web’ somewhere in its description property value.

1 result := from Publication as p

2 where (p.description like ’%retrieval%’

3 or p.description like ’%Web%’);

Listing 2.5: Using HQL to perform textual search

8

Limited Search Support

Depending on the needs, this approach might work as expected. However, what if case
sensitivity is important? Will the lowercased term ’web’ match the capitalized form? And
what if that’s not the desired behavior? The problem is that most default SQL collations are
set to be case insensitive, so ’web’ will be matched. To deviate from this, SQL features the
COLLATE clause in which one can deviate from the column collation. It is unfortunately not
possible to deviate from the collation settings using HQL.

Another issue using this approach is the order in which the results are retrieved. Will
entities with more query matches appear higher in this list, or are other heuristics in effect
for relevance sorting? Using HQL, relevance sorting can be achieved using the ORDER BY

clause in a way that it counts the number of matching terms. Listing 2.6 shows the extended
version of the previous example. Since CASE clauses are not (yet) included in WebDSL’s
subset of HQL, the example would not parse. The example is solely used to give you an
impression of the kind of queries that arise when using SQL/HQL for information retrieval.

1 result := from Publication as p

2 where description like ’%retrieval%’

3 and description like ’%Web%’

4 order by

5 (case when description like ’%retrieval%’ then 1 else 0 end

6 + case when description like ’%Web%’ then 1 else 0 end)

7 desc ;

Listing 2.6: Using HQL for textual search, ranking results with more hits higher

Using a database query language to perform searches will quickly result in large and
complex queries. Furthermore, it supports limited types of queries and built-in functionality
to order the results by relevance are missing. It is therefore not the desired approach when
integrating full text search in a web application.

2.4.2 Using Basic Search Functions

For this reason, WebDSL was later extended with basic full text search capabilities. A
developer using WebDSL specifies the entities that must become searchable by annotating
the properties of an entity that should be added to the search index. Listing 2.7 shows
an example where the Publication entity is made searchable with the values of title and
description to be added to the search index.

1 entity Publication {

2 title :: String (name, searchable)

3 authors -> Set<Author>

4 description :: WikiText (searchable)

5 creationDate :: Date

6 }

Listing 2.7: WebDSL declaration of a searchable Entity

If at least one property of an entity is marked searchable, a set of search functions are
generated. These functions return a list of entities matching a query. An offset and number

9

2. AN INTRODUCTION TO WEBDSL

of entities to be returned can be passed as argument to enable pagination of results. The
returned list is ordered by relevance using the search backend’s default ranking, where the
backend is Apache Lucene in this case.

function searchPublication(query : String) : List<Publication>

function searchPublication(query : String, limit : Int) : List<Publication>

function searchPublication(query : String, limit : Int, offset : Int) : List<Publication>

Search, at that moment, only supported String type properties. Properties’ content was
indexed using one and the same analyzer, that splits the content into tokens based on whites-
paces and interpunction. Tokens were lowercased and English stop words (common words
like: the, to, be, is , . . .) were ignored. At query time, all searchable properties of an entity
were used to find matches. Integration of basic search functionality was powered by Hiber-
nate Search from JBoss, offering seamless integration with Hibernate Core which WebDSL
uses for ORM mapping. Hibernate Search uses Apache Lucene for indexing and searching.

10

Chapter 3

Problem Domain: Internal Site
Search

Internal site search is the practice of enabling the content served by a web application to
be indexed, searched and displayed. Different from web search, where users are seeking
over the world wide web or subset of it, internal site search is concerned with search fa-
cilities within a single website. Although these 2 concepts are different, user expectations
of internal site search are greatly influenced by the standards set by web search engines
like Google. One example is the ability of web search engines to supply spell corrections
and auto complete suggestions. Search terms are suggested when someone makes a type or
spelling mistake, and while entering the query. Web search engines also own a great amount
of usage data which they can use to improve their search facilities. In this chapter, we take a
look at typical facilities related to internal site search and the issues one encounters setting
up such facilities.

3.1 Requirements for Basic Search Capabilities

To meet users’ expectations in a web application serving content, having a basic search
facility is a minimum requirement. A simple search user interface encompasses at least
an input form where visitors may enter a search query and hit search, and an area where
search results are presented. Depending on the type and amount of content, a basic search
facility might suffice in satisfying the targeted audience. However, apart from questions like
how to present search results, more advanced search features are often preferred in order to
make a website its content accessible easily. In this section, we will discuss basic tasks and
concepts that relate to integrating site search to a web application. Then, more advanced
search features are discussed in Section 3.2.

3.1.1 External Web Search Service

First of all, a web developer needs to decide which parts of the website’s content to become
searchable. Let’s imagine a developer that created his own blogging website, build from

11

3. PROBLEM DOMAIN: INTERNAL SITE SEARCH

scratch, i.e. no pre-built solution or online blog service is used. Regarding search func-
tionality, he wants blog posts to become searchable. In this case, each blog post might be
considered a searchable unit. A different option is to treat the pages (accessible through an
URL) that serve the blog posts and comments to become the searchable units. In that case
a simple solution is to go for an external search service. External search services will index
the content by regularly crawling the website (i.e. start at some URL and follow any link
from the same domain until no unvisited link is left, indexing each page). Most external
search services can be embedded on a website using a relatively small code snippet and
may also offer features beyond simple keyword search. For instance, Google Site Search
1 has the ability to view results that were updated or added within a specific time frame.
However, the downside of using external site search services is their limited access to the
data and their lack of knowledge and therefore utilization of the website’s data model and
business logic. If, for example, some blog posts are exclusively accessible by logged-in
members, these won’t get crawled and indexed. (Except if the crawler can be authenticated
as special user, but then the hidden content may appear in results for searches performed by
non-members, which is not desirable). Other problems arise when searches involve data-
model relations. An external site search service cannot deal with constraints like: ’find blog
posts posted by user ’Tim’, where user ’Jessica’ left a comment. An external search service
would only be able to search for web pages in which both the terms ’Tim’ and ’Jessica’
appear, no matter in which context these terms appear. In general, if required search func-
tionality involves dealing with data model relations, search has to be integrated into the web
application.

3.1.2 Building a Search Index

Luckily there are a variety of libraries/engines that can be used to drive site search. A
selection of these will be discussed in chapter 4. These all follow the same principle to use
an inverted index where documents represent searchable units (like a blog post), and terms
are linked to a list of documents that match that particular term. The index may contain
additional information, like term frequencies (both within a single document and within all
documents), positional information of terms, and other data which might for example be
used by the ranking engine of a search framework. Terms in a search index are, in general,
textual tokens extracted from the original data that is served by a system. Searchable data
must therefore become available in textual form, if this is not yet the case. This means that
a system serving articles in binary format (like pdf files or text files packed in a container
format) must first preprocess this data by transforming it into a textual representation. After
this optional process, the data is ready to be processed for indexing. Figure 3.1 shows the
typical workflow of processing data for index addition.

Not all browsable data will be candidate for index addition. After deciding which data
entities to represent by documents (i.e. to become searchable), the next step is to make
a selection of the data and metadata that will become part of a document’s content. This
depends on the type of constraints a search facility should support. Looking at the blogging
website example, a blog post’s [title] and [content] should be searchable. Additionally, there

1http://google.com/sitesearch

12

http://google.com/sitesearch

Requirements for Basic Search Capabilities

might be [tags] assigned to blogs that can be searched. One might also like to search blogs
by the [name of the poster], or visitors might click a username to view blogs where this user
left a comment (read: search blogs by a [commenter’s name]). And finally, the presentation
of search results can also be adapted to be viewed in order of [post-date] and even be filtered
for a particular time span (i.e. range of post-dates). The mentioned [data properties] are a
possible selection to be used as document’s content for the blog search index. The collection
of selected data properties should be mapped to search fields in each document. The notion
of search fields within documents makes it possible to perform searches with constraints
related to a subset of these fields. Also, tokenization and normalization (often referred as
analysis) can be different for each search field. Text analysis is of great importance when it
comes to relevance and recall of results of a search engine.

Figure 3.1: Search index creation: the process of transforming browsable data into searchable documents to be
added to a search index

3.1.3 Tokenization and normalization

As can be observed in Figure 3.1, textual data coming out of the searchable data selection
can be analyzed before document addition. Text analysis encompasses tokenization, in
which textual data is split into tokens (words), often followed by some sort of normalization
of the tokens. These tokens will become members of a document’s search field and are
eventually represented by terms in the search index.

In general, token normalization is applied to associate multiple tokens to the same term.
When applied appropriately, this may improve recall (i.e. returning more potentially rele-
vant documents) and precision (i.e. a greater portion of the returned documents are rele-
vant) of the search system. For example, you don’t want a capitalized token ‘Retrieval’ to
be missed when a user searches for the non-capitalized form ‘retrieval’. Similarly, more
(potentially) relevant document will be matched if different forms of the words are matched
against each other, e.g. searching for ‘repository’ should match documents with ‘reposi-
tory’ or ‘repositories’ in it. Common transformations during analysis include: lowercas-
ing, removal of punctuation, splitting compound words, and stemming. Stemming removes

13

3. PROBLEM DOMAIN: INTERNAL SITE SEARCH

commoner morphological and inflectional endings from words such that all inflections of a
word will be transformed to the same root term. For example, the words ‘carry’, ‘carried’,
‘carrying’ and ‘carries’ all reduce to the same root form ‘carri’.

Another transformation that is often applied during analysis prior to index addition is
stop word removal. Stop words are words that are used quite often, but not add any meaning
in the context for which they are used. Stop word removal will increase search performance,
because a search engine can skip processing the large document-sets linked to these words.
For English text, a stop word set is likely to include the words the, is, to, be, at, a, and
(,) an. However, stop word removal is not always desirable: in a music library, the title
‘let it be’ should be searchable. Another form of token removal which is not uncommon
is stripping off metadata tags such as HTML-tags. This is useful in case the data itself
contains such markup tags and these are not removed by any preprocessing prior to the
analysis phase. Removal of tokens that don’t contribute to the content will hinder such
tokens to get matched at query time, which would distort the relevance of documents during
retrieval.

To get a better picture of what tokenization and token filtering/normalization does, take
a look at the following example:

<emph>On a good website, search functionality is reachable from within any web page.</emph>

In this example, the data to become searchable contains HTML-tags which should not
get indexed. These meta tags should therefore be removed first. The next step in analysis
might then be to apply a simple tokenizer that splits a stream of text on punctuation and
whitespaces, followed by lowercasing the tokens. The tokens may then be filtered to remove
stopwords and apply stemming in the end. Applying this analysis, the example will be
transformed into the following tokens:

[good, websit, search, function, reachabl, from, within, ani, web, page]

As a general rule, the same analysis as applied at indexing time is used at query time.
This way, tokens that appear in a searchable resource will never mismatch against the same
token at query time. However, there are some exceptions to this rule, for example when
applying query expansion. Query expansion is a useful trick to increase recall by expanding
tokens from user queries (or from searchable data at indexing time) with multiple synonyms
and/or derivations if available. For example, a search engine set up to include term expan-
sions for ’computer’ may try to match this term also against ’notebook’, ’pc’ and ’laptop’
in the index. Expanding terms is mostly done on queries, because a change in the expan-
sion algorithm won’t require the search index to be rebuilt and index size won’t increase
by adding synonyms or word derivations. For this reason, it is generally known as query
expansion, and implies a different analysis at query time compared to index-time analysis.
Again, the applicability of query expansion depends on the context. Words semantics may
differ for different contexts, and therefore expanding terms with synonyms may not always
be a good idea. Query expansion may also be limited to only expand specific terms, such as
expanding names of chemicals (with their acronyms and other forms used in literature) in
a digital library for chemists. While this is a simple example, query expansion can quickly

14

Requirements for Basic Search Capabilities

become complex when terms are to be expanded dynamically. That is, by taking into ac-
count the context of terms (surrounding words and/or other metadata) in order to construct
a list of term expansions that are meaningful in current context.

3.1.4 Searching the Data

Shneiderman et al. [28] formalized the search for information into 4 phases: formulation,
action, review of results and refinement. Formulation is regarded as complex task, done
mostly by the user in search for some piece of information. It includes the selection of
information source (where to search), selection of which parts to search for (which fields
of documents), the text to use for searching, and what variants of texts to accept. Action
relates to initiation of actual searching, often done by clicking a search button, but also
sometimes implicitely while typing. Review of results is tightly bound to the presentation of
results. This includes the number of results displayed at once, the order in which the results
appear and the way how these results are shown. This should all help to give the information
seeking user a clear overview in a way that he can quickly decide whether a result is relevant
or not. This may lead to a refinement of his search, by changing constraints specified during
the formulation, or by narrowing down the result set by adding additional constraints. We
will now discuss the technical aspects that are related to the user interface of an application’s
search facility.

A simple search page constitutes at least an input form where the user can enter his
query and a search button that will load the search results. When the user hits the search
button, a request including the query will be sent to the web server. The server will then
use the search engine to search for results. Most search engines/libraries are able to handle
parsing and analysis of a user query. This will transform a user provided query String into
a data structure processible by the index searcher component.

When the query is processed, most search engines (servers)/libraries will return a ranked
list of documents. Often, these documents first need to be translated back to the actual data
objects from the data store (the primary information objects) which the document represents
in order to present the results on a web page. Therefore, indexed documents will own a field
with a unique identifier that is associated with the primary information object. So after
retrieval of the document list from the search engine, the actual data can be retrieved using
the identifier. The actual data can then be used to present them as search results. Depending
on the search engine, documents may also hold the original (unanalyzed) textual data for
a selection of search fields. In that case, retrieving the primary data objects may not be
necessary. A basic view of the typical process of serving a search result page after the user
clicks a search button is shown in 3.2.

3.1.5 Presenting Search Results

The presentation of search results is an important concern regarding the effectiveness and
usability of an application’s information retrieval functionality. In order to help end users of
an application’s search functionality, search results are often represented differently than the
primary information object itself, by limiting the amount of information that is displayed.

15

3. PROBLEM DOMAIN: INTERNAL SITE SEARCH

Figure 3.2: Typical flow of processing a search page request

Simply viewing only the top N results will already cut the information shown on a single
page. This requires a page index to allow navigation between result pages. To create such an
index, the size of the results need to be known (without retrieving the actual documents), and
the constraints set in the current search session must be memorized somewhere (probably
as request parameters in links or buttons) in order to view another result page for the same
constraints.

It’s also a good idea to limit the information shown for each result. This is often done
by presenting previews and/or overviews. These previews/overviews serve as surrogates of
the primary information objects. When used accordingly, it helps the end user to quickly
discriminate interesting results from non-interesting ones [11]. A simple start is to only
show the title and maybe some descriptive text, being an example of a static fragment
(or summary) independent of the query context. Better would be to present dynamically
constructed fragments that relate to the user’s query terms. These are called query-biased
fragments (or summaries). Tombros and Sanderson [31] showed that using query-biased
summaries significantly decreases the number of times users need to browse to the full text
in order to judge a result to be relevant or not. Moreover, their subjects were able to better
judge the relevance of results.

Another commonly applied technique for improving user satisfaction during the review
of results is the highlighting of query terms [14]. By emphasizing or coloring query terms
in the presented surrogate documents, users can quickly observe why results are considered
relevant by the application.

The time spent by a user on reviewing the results can be diminished further if the order
of results reflects the relevance in the currently browsed context. Default relevance ranking
applied by search engines is not always desirable. Sometimes it is better to base the order of
results on (meta) data properties of a document. When browsing for products in a web shop
for example, one might prefer ordering the results by ascending price, or best user rating.

16

More Advanced Search User Interfaces

Or when searching for new releases in literature, one would like to view results ordered
by date. Allowing control by the user over the order of results, or just deviating from the
default ranking applied by a search engine can greatly reduce the time span of reviewing
results.

3.2 More Advanced Search User Interfaces

There are many ways to improve user satisfaction with respect to a website’s navigation and
its search user interface. We already discussed some techniques such as hit highlighting and
selection of interesting fragments (biased to a search query) on a search result page. The
implementation of such features mostly comes with the search framework in use, because it
requires interaction with parts of the search engine in order to determine which fragments
are interesting and which terms need to be highlighted. Just using regular expressions won’t
work in most cases, because query terms are first analyzed and will probably match more
than the exact term. More useful features can be implemented by reusing the information
available in search indexes. An example of this that is increasingly used is faceted search.

Figure 3.3: Example of faceted search on CNET’s shopper.com

3.2.1 Faceted Search

Faceting is a dynamic way of presenting navigation and search filter options when browsing
a collection of items. Figure 3.3 shows the e-commerce web page CNet shopper when
browsing for the category tablets. The lists of navigational subsets offer the user an overview
of the available sets of products by some criteria. In this example, we see faceting on price,

17

3. PROBLEM DOMAIN: INTERNAL SITE SEARCH

manufacturer and features and links to other criteria (like storage size). Compacting the set
of information presented to the user is also in effect for faceting. For the price facet, ranges
are limited up to 300 USD, and for the manufacturer and feature facets, the top 5 values
within that constraint are shown. If a user wants to see more values within a facet criteria,
the link at the bottom of the list can be clicked.

The context where facets are presented is not limited to the search page of a (web)
application. Actually, the CNet shopper example demonstrates the use of faceted search
as an organized way of exploring a website’s content. Still, faceting and search go hand
in hand. Facet values are mostly retrieved from a search index, and when a user selects
(i.e. clicks) a facet, the search engine is probably the resource used to filter the content
that matches the selected facet. This way, faceting constraints can easily be applied in the
context of other search constraints.

Prerequisites regarding the search index

The use of search indexes for faceting requires some preparation regarding the data that is
stored in the indexes. Most search solutions use inverted indexes where terms are linked
to a list of documents that contain such terms. When used for faceting, these terms will
act as constraint values which get presented to the users as facet values. Facets should
basically be seen as pair of constraint value and hitcount, where the hitcount is the number
of documents that will match when selecting this facet, i.e. filtering on the constraint value.
In order to retrieve facets, each facet criteria (like ’manufacturer’) needs to be represented
by a field (say ’manufacturerfld’) in targeted documents (i.e. documents that represents
products and match the criteria to be part of the category ’tablet’ in the above example).
While, or after, performing a search request, documents that are added to the result set are
scanned on the specified facet fields to constitute a list of unique terms with their hit counts
which is the list of facets. However, fields used for searching are mostly configured to hold
normalized tokens. The manufacturer name ‘Coby Electronics’ may be normalized and split
into the tokens [coby, electronic], making it unusable for faceting. In general: if the terms in
existing search fields are not the desired terms for faceting, it will be required to introduce
additional search fields for faceting. In case of manufacturer names, indexing them without
performing any tokenization or normalization during analysis could provide the terms useful
for faceting. For this to work, one must assure that there is only a single typographic form
for each entity or value to be used for faceting. When this is not the case (e.g. ‘Samsung
Electronics’, ‘Samsung’ and ‘samsung’ represent the same entity), some preprocessing is
required to assure that these values share the same unique term in the search index. If not
done properly, navigation through faceting will become unusable because of unpredictable
and incomplete results on facet selections.

The same negative effect can be experienced when data is missing for the search fields
used for faceting. In the CNet shopper example, filtering on a the feature facet will only give
complete results when all features are set for all tablet (or other products) appropriately.

18

More Advanced Search User Interfaces

Upon facet selection

The purpose of faceting is to present an organized overview of a collection and to provide
navigation options for narrowing down a browsable collection. A collection that is currently
browsed can be seen as a context in which faceting is applied. This context can be a simple
constraint like the collection of all Products (e.g. class=Product), or a collection of results
for a more advanced search query. Whenever a facet is selected (or removed from selection),
the context needs to be updated with additional constraints (or removed constraints) for
which a facet selection stands. In most cases, the constraints that constitute the context are
translated to a search query. Whenever there is an update in the selection of facets, the
constraints encoded as search query need to be updated, and the web application elements
that relate to the context need to be updated. These include: 1) any element that may control
the context, for example the panes that show selectable facets. These must be updated to
only show available facets in the updated context and depends on how facets are combined
(OR, AND, NOT). The presented hit counts for each facet should reflect the number of
results when selecting this facet for the updated context; 2) the elements that represent the
currently selected facets (might be within the list of presented facets itself); 3) the result
pane must be updated with the new result collection.

3.2.2 Advanced full text search

Figure 3.4: Example of advanced search form on Mendeley.com

Search functionality available on a website should by default be easy to use by any
visitor. Often, websites offer a simple search input form with a search button, but allow more
advanced users to use additional search features through an advanced search form (Figure
3.4). Advanced search forms often allow users to define which keywords must all match,
which keywords are optional and which keywords should be excluded. Additionally, other
types of queries may be allowed and different queries may be combined. The following
enumeration discusses a variety of popular query types used on the web.

19

3. PROBLEM DOMAIN: INTERNAL SITE SEARCH

Text and Term queries are the most basic type of queries. Term queries are basically a
tuple of 1 or more search fields and a term. The term is matched against the search
index as-is, thus without any normalization. For simple keyword searches, the query
words entered by the user must first be tokenized and normalized, as is done with
data at indexing time. Then, each token is transformed into a term query. In case of
multiple term queries, the queries are wrapped into a boolean query. It depends on
the application context how the queries are combined (or/and/not). A query taking
as input the text as typed by a user, followed by tokenization, normalization and
construction of a single (boolean) query is often denoted as text query.

Boolean queries allow to combine multiple, possibly mixed types of queries. They consist
of one or more clauses. Each clause is accompanied with an occurrence specification,
describing the behavior of the clause with respect to matching: for a document to
match, it should, must or must not match the specified clause. These occurrence
operators are analogue to the logical or, and and not operators. Often, (advanced)
search user interfaces allow users to specify which terms must all appear, which terms
are optional and which terms may not appear. This will be translated into a boolean
query when processed. In general boolean queries enable one to specify queries with
multiple constraints with a variety of conditions.

Range queries enable one to find documents matching a specific range of values. These
queries are often used in the context of dates, prices and ratings.

Wildcard queries add flexibility to search. Some search systems allow users to specify
a query with wildcard terms. Wildcard characters (like ’*’ and ’?’) can be used
when there are different written forms of a term (like ’color’ and ’colour’) or just to
workaround possibly misspelled words (’advi?e’ will match both ’advice’ and ’ad-
vise’). Similarly it can be used to match multiple inflections of a word (’limit*’ will
match ’limiting’, ’limits’, . . .).

Fuzzy queries are close to wild card queries. A term in the index matches a fuzzy query
if the query and index term are similar to some extent. String metrics like the Leven-
shtein Distance [20], in which the number of single character edits needed to trans-
form one word into another are counted, are used to determine to which extent terms
are similar. A minimum value of similarity will control whether terms do match or
not. Fuzzy and wildcard queries differ from each other in their kind of similarity
restrictions. Wildcard queries state that the non-wildcard characters must be equal
and in order and the wildcard characters are bound to the location of adjacent non-
wildcard characters, where fuzzy queries only require terms to be similar to some
extent based on a textual similarity algorithm.

Proximity queries are used to put a positional restriction on multi-term queries. Multiple
terms should appear within a specified distance (number of terms) from each other.
Additionally a constraint can be set on the order of terms. A prerequisite for proximity
queries is that the search index maintains positional information about the tokens.

20

More Advanced Search User Interfaces

Geospatial queries adopt the notion of location. For users of web applications, location
information can be of essential value, and the level of relevance/interest of served
content is possibly bound to spatial constraints (e.g. on auction websites or a web
application sharing points of interests like restaurants). Geospatial queries make it
possible to restrict the result set to some area (mostly a geometrical figure like circle
or square) around a centric location.

Filtering Recurring Constraints

Sometimes constraints are to be applied repeatedly, such as matching documents in a par-
ticular language. This can be modeled by adding an additional must-clause next to the user
query, e.g. ’content:userQuery AND language:EN’. This will indeed remove non-English
results. However, when the sophisticated relevance scoring performed by search engines
treat the additional constraint as ordinary user query, it may contribute to the scores dif-
ferently for each document of the result set. This is not the desired behavior, because the
additional constraint should only filter the result set, not contributing to the relevance score
of the individual documents. For this reason and for increased performance, most search
engines offer the possibility to specify recurring constraints using filters. These do not dis-
rupt the result ranking and their result sets can often be cached, relieving the search engine
from recalculating the result sets every time the same filter is applied.

3.2.3 Presenting (Navigation) Context

An important aspect of a good user interface is to minimize the (short term) memorization
effort needed by its users [28]. It is therefore important to clearly present the context in
which a user is currently browsing a collection of data. The panes that present such naviga-
tion history are often referred to as breadcrumbs. A good breadcrumb shows the constraints
on a browsable collection that are set by the user and allows easy undoing of previously
added constraints. In figure 3.5 an example is shown where a collection of hard drives is
browsed with an additional search term as constraint. The X in the upright corner of each
constraint allowing to undo previously set refinements.

Figure 3.5: Example of navigation breadcrumb on NewEgg.com, showing browsed category and search term

In order to present the browse history, the web application must keep track of previously
added constraints during a browse session. Removal or addition of constraints often require
the complete query, which might be a search, database, xpath or any other retrieval query,
to be rebuild. So in order to have adjustable browse history elements, all constraints (search

21

3. PROBLEM DOMAIN: INTERNAL SITE SEARCH

query, filters, facet selections) need to be shared among browse requests such that a new
context can be constructed when the user decides to add/remove a constraint.

3.2.4 Assist Your Users: Spell Checking

Figure 3.6: Example of spell checking in action on Amazon.co.uk

Offered by most web search engines, and nowadays by an increasing number of web
applications, is a spell checking facility which suggests terms in case a user makes a typo-
graphic or spelling mistake in his search query. This is often referred as did you mean?-
functionality. Sometimes queries are automatically corrected and results are displayed for
the updated query in case some condition evaluates to true (for example when there is no or
very few results compared to a corrected term).

In order to give meaningful suggestions terms in a search query need to be compared
to terms from some dictionary. If a term is ’similar enough’ (e.g. by measuring the Leven-
shtein distance between terms), but not equal to the original term, it will be candidate for
suggestions. In order to serve spell check suggestions, one needs to decide which collection
to use as a dictionary. It can be a list of words (e.g. from WordNet2 or another dictionary).
Another option is to reuse the terms from the search index. The advantage of the latter
approach is that the suggested terms are part of the website’s content and is therefore useful
as search query term, where this is less likely when using an external dictionary. This will
work well for single term suggestions, but suggesting meaningful multi-term suggestions
will add some difficulties. The problem is that terms used in a search query are used in
context of each other.

3.2.5 Assist Your Users: Meaningful Type-ahead Suggestions

Part of most modern browsers is support for search suggestions returned by web search en-
gines. Web search engines and websites with a large user base may choose to reuse queries
previously entered by users which are approved to be meaningful (e.g. when entered my
multiple users, or when a minimum number of search hits are reached). For smaller websites
without such usage data, type-ahead suggestions (or autocompletion) can be established
similar to ’did you mean?’-functionality. An index can be constructed from a dictionary
resource or an existing search index can be reused. The latter would provide more mean-

2http://wordnet.princeton.edu/

22

http://wordnet.princeton.edu/

Scalability

ingful auto complete suggestions in the context of the website for the same reason as for
spell checking: it is able to serve terms or phrases that are part of website’s content.

Instead of comparing similarity during spell checking, a prefix query would retrieve
type-ahead suggestions from a search index. For multi-term (or phrase) suggestions, the
index should contain phrases or positional information about terms such that useful sugges-
tion phrases can be constructed. This can be taken one step further, namely by also recov-
ering misspellings when suggesting completions. Figure 3.7 shows a example of Youtube
in which the suggestion engine also performs some sort of spell checking making it able to
serve suggestions even when a misspelling is made.

Figure 3.7: Example of autocompletion on Youtube which also corrects misspelled words while typing

3.2.6 Search Namespaces

Some websites can be served in different languages. Those websites often also offer search
targeted to the language that is currently viewed. In that case, only part of the documents
that is available in the viewed language need to be searched. In general, content might be
divided into namespaces based on some (metadata) property. Other examples of names-
pace distinctions are: departments within a company, different product categories on an
e-commerce website, different access levels to content served on the website. Also, multi-
tenant applications where a single instance of software serves multiple customers, will have
similar distinctions.

With respect to search, namespace division can be achieved by keeping different in-
dexes for each namespace or by keeping all documents in a single (or distributed) index
and by filtering documents in the targeted namespace. When deciding to do so during the
development of a web application, other facilities that elaborate on the search index must
support this way of namespace division, otherwise these facilities become unusable when
used in a namespace-aware context or even in totality. In general, division into namespaces
will add complexity to the implementation when the search engine in use has no notion of
namespaces or when using various software artifacts that share the same index.

3.3 Scalability

When the size of search indexes grow and the number of searches increases, a single ma-
chine might become too slow to handle all this. In the scope of search, scaling means
replicating search indexes to several machines, or by sharding (splitting) indexes and dis-
tributing them over multiple machines.

23

3. PROBLEM DOMAIN: INTERNAL SITE SEARCH

Index replication is used when a single machine cannot handle the amount of queries.
A master machine keeps track of the index and slave machines create and maintain a copy
of the master index. Instead of a single machine executing all search queries, the queries
can be assigned to multiple machines, lowering the system load.

Another problem is when a search index becomes too large such that a single machine
is unable to execute a single query within an acceptable amount of time. This is where index
sharding comes into play. By distributing parts of the index over multiple machines, these
machines can execute searches faster for a part of the index, and thus return partial results.
The partial result must be merged together into a single list of results.

3.4 Maintainance of Indexes

When browsable data is changed, added or deleted, this changed data must be propagated
to the search indexes in order to keep these usable for search. It would therefore be ideal
to have a central place where these changes are processed in the implementation of the web
application. This implementation can then be extended to further process these changes
for indexing. A different approach is to fully or partially reindex data periodically. If an
application has no fast changing data, and changed data is not required to become searchable
quickly, this approach will work. However, when (near) realtime search is required, where
data must become searchable (almost) immediately after change/addition, the first approach
will be more appropriate. Other search features such as suggestional services and faceting
might need similar treatment regarding changes to the browsable data.

Besides keeping a search index synchronized, continuous development of a web appli-
cation may include changes that require data to be fully reindexed. For example, when the
analysis for textual data (applied at both indexing and query time) is improved, or when
additional data properties become searchable. The way how full reindexing is setup will
control the duration of and the limitations on available functionality in a running web ap-
plication. A special maintenance mode might be required during reindexing, but should be
avoided if possible. One solution might be to reindex data using a separate process running
in parallel with the online web application, creating a new index but leaving the current one
as is. When the reindexation process is finished, the index in use by the online web applica-
tion can then be replaced by the newly created one. The newly (improved) web application
can now be deployed.

3.5 Towards a Solution

Many aspects can be considered when integrating internal site search. There is no single
solution that fits all contexts of web applications. The retrieval and selection of searchable
data, and the way how this data should become searchable (i.e. the way this data is analyzed
before index addition) is specific to the context and domain of the web application. This also
applies to the design and implementation of the search user interface. Here, the variability is
in the design of the document surrogates presented on a search results page and the ability
to navigate to browsable sub-collections (and the presentation of these). Furthermore, a

24

Towards a Solution

developer of the search user interface must decide to which extent a user is able to control
the search and if the interface should feature suggestion services like autocompletion and
spell checking.

The DSL extension that is to be integrated in WebDSL should allow a WebDSL user to
express the variable elements of search, without the need to dig into underlying implemen-
tation details. The DSL should do this by translating expressive constructs into executable
code. Existing open source search solutions (engines and libraries) can be used to power
search functionality in the backend of WebDSL. In the next chapter, we will look at a range
of software solutions to power search. A comparison will expose which solution to be the
most suitable for use in WebDSL’s backend.

25

Chapter 4

Solution Domain

Search engine technology can be considered mature in the sense that a range of libraries and
frameworks are available for many programming languages. Studying a program family is
an excellent source for inspiration during language design. A program family is a set of
programs that share common properties, making it advantageous to study these common
properties before analyzing individual programs of that family [23]. It helps understanding
the concepts and best practices adopted by these programs. Analyzing members of a pro-
gram family for repetitive program patterns may yield to candidate domain abstractions to
be supported syntactically by the DSL [4]. In our case, we will study a program family for
enabling search functionality.

4.1 Answers to Internal Site Search

In this chapter we take a look at the software solutions that try to offer the functionality
and techniques discussed in Chapter 3. Additional software artifacts may be needed to fully
cover search functionality commonly used on the web. We will focus on search libraries
and engines that can be used in the scope of extending the WebDSL language.
This requires the software to:

• allow interaction from within Java code (WebDSL’s target language)

• be freely available and open source

Software solutions respecting these requirements include Apache Lucene (being an open
source search library) and a range of search libraries and engines based on this library. We
made a selection of frameworks that have an active community, and compared them on a
number of aspects related to site search. Additionally, we take into account the integration
into the WebDSL framework with respect to its implementation as it was at the start of this
thesis project.

27

4. SOLUTION DOMAIN

4.1.1 Apache Lucene

Apache Lucene1 is a well established search library. Its first open source released version
(0.1) was in 2000 on source forge and it became part of the Jakarta family of Apache Soft-
ware Foundation in 2001.In 2005 it became a top-level project of Apache. Apache Lucene is
a simple search library and a range of information retrieval engines
are build around Lucene (like search engine SOLR, web search
engine/crawler Nutch and recommender system Mahout also from
the Apache Software Foundation). Lucene offers basic indexing
and search functionality and additional modules (like spell check-
ing and hit highlighting) are contributed and packaged with the binary package available for
download. During the exploration in the solution domain, Lucene was at version 3.1.0.

4.1.2 Apache SOLR

SOLR2 (pronounced ’solar’) is a sister project from Apache
Lucene and adds a search server with a range of search com-
ponents making it a complete search server for most applica-
tions. SOLR adds integrated support for search functionality like
faceting, hit highlighting and geospatial search. It comes with a
framework of analyzer components covering most text analysis
requirements during document construction and querying. Dur-
ing the exploration in the solution domain, SOLR was at version
1.4.1.

4.1.3 Elastic Search

Similar to Apache SOLR, Elastic search3 offers a search engine
which is based on Apache Lucene. Elastic search’ predecessor is
Compass, being an open source search engine with its focus on
seamlessly integrating search into Java applications. Later, sup-
port was added for easy distributed setup and better integration
with object-relational mapping (ORM) frameworks, like Hibernate
ORM.

A newer version of Compass would support easy use of advanced features like faceting
and flexible, seamlessly scaling from a single to multiple machines. It would also have
support for other languages than Java. An update to Lucene (2.9) also required code to be
rewritten, and because of these changes and feature additions, main developer Shay Banon
decided to write a new search engine from scratch, named Elasticsearch. It has a RESTful
interface using JSON over HTTP and has a Java library to be used from within Java. The
most recent version at the time of analysis of the solution domain was 0.15.0.

1http://lucene.apache.org
2http://lucene.apache.org/solr
3http://www.elasticsearch.org

28

http://lucene.apache.org
http://lucene.apache.org/solr
http://www.elasticsearch.org

A Comparison of Search Engines

4.1.4 Hibernate Search

Jboss offers a collection of tools under the Hibernate umbrella that
enable persistence of data using POJO domain models. Hibernate
Search4 falls under this umbrella and has the great advantage of
seamless integration with Hibernate ORM, which is used in the
back end of WebDSL for mapping POJOs (plain old java objects)
to a relational database. Hibernate Search uses Lucene as search
library and provides an interface for accessing its Lucene indexes. The most recent version
at the time of analysis of the solution domain was 3.3.0.

4.1.5 Sphinx

Sphinx5 is a search engine that was built to integrate well with
MySQL. Setup is easy by using SQL queries to select the data for
index addition, with database rows as documents and columns as
the search fields. The engine offers basic search functionality.

The last stable released version of Sphinx is dated December
2009 (version 0.99). Because of its low release frequency of stable
versions, we decided to look at the latest released beta version,
which is numbered 1.10 beta (released July 2010),

4.2 A Comparison of Search Engines

In this section, a comparison is made between the search engine solutions just discussed.
We compare feature support for most important aspects related to the internal site search
domain and their suitability for integration in the backend of WebDSL.

4.2.1 Document Construction Features

One task during index construction is the creation of documents from the content (data) that
can be browsed in a (web) application. A developer needs to decide which data entities
should become represented by documents, and which data to become fields for each such
document. Most search solutions incorporate the notion of field types, where a field can be
assigned a type that describes how data must be tokenized and normalized. These types can
be referenced during the creation of a document, such that the indexer (part of the search
engine or library) knows how to put that data into the search index. At query time, the
search engine uses this information to perform appropriate tokenization/normalization on a
query (probably the same as at indexing time). SOLR and Elasticsearch adopt the notion of
types and allow specification of an analyzer for each type with an optional distinction be-
tween indexing and query time analyzer (e.g. for query-time term expansion). An analyzer

4http://www.hibernate.org/subprojects/search
5http://www.sphinxsearch.com

29

http://www.hibernate.org/subprojects/search
http://www.sphinxsearch.com

4. SOLUTION DOMAIN

describes how textual data must to be tokenized and normalized. SORL provides an ana-
lyzer framework in which three types of building blocks can be used to create an analyzer
that performs tokenization and text transformations as specified. An analyzer consists of a
tokenizer and optionally one or more filters:

• character filters: These filters are applied before the tokenization of text. Character
filters might be useful to strip off text (HTML tags for example) before the text gets
tokenized.

• tokenizer: A tokenizer transforms the input stream of text into seperate tokens. A
simple tokenizer might split tokens on white spaces and interpunction symbols. More
advanced tokenizers are able to distinguish acronyms, names, phone numbers and
(web and email) addresses from other words and treat them as single tokens. Regular
expressions can also be used to filter tokens from a stream of text.

• token filters: Applied after tokenization, to further transform the tokens delivered by
the tokenizer. SOLR includes a range of token filters. Commonly used filters are the
lowercase, stop word, synonym and stemming filters. The synonym filter is used to
expand a single token into multiple tokens that share the same meaning (in the context
of the application) and uses a synonym mapping file to specify this expansion. Re-
garding stemming (transforming words to a root form), multiple filters are available
for various languages using different algorithms. A set of filters to perform phonetic
matching is also included. These filters transform tokens into their phonetic encod-
ings and are most useful for matching misspelled, but phonetically similar names or
words.

In figure 4.1 a visual representation is shown of an analyzer consisting of a character
filter that strips off HTML tags, followed by a tokenizer and normalization by a lower case
filter and stop word remover.

Figure 4.1: Example of Lucene/SOLR analyzer consisting of a character filter, tokenizer and 2 token filters

A set of useful filters and tokenizers is supplied with Lucene and SOLR, which can
be accessed from within SOLR. In case these analyzer components do not suffice, one can
implement their own which can be used in conjunction with the supplied tokenizers/filters
by implementing the corresponding interface. Elastic search and Hibernate search reuse the
analyzer components provided by the Lucene analyzers library and SOLR. Elastic search

30

A Comparison of Search Engines

is limited to the analyzer components that come with the Lucene/SOLR packages, i.e. no
custom implementations are supported.

The core Lucene library let index addition and mapping of types up to the users of
the library: there is no mapping of which analyzer to be applied on which field. Each
time a document object is created, the fields with data and reference to a built-in or user
constructed analyzer must be passed. Analyzers are supplied with Lucene itself, but the
analysis package of SOLR can be used to build analyzers from the filters and tokenizers.

Analysis in Sphinx is different. First, Sphinx is focused on seamless integration with
SQL databases. Searching data is similar to querying your database using tables and columns.
There is no notion of types, but fields are the columns as they appear in a database table.
Each field can be configured with options to enable normalizations and token filtering (like
stemming, stop word lists, query expansion). This could be sufficient for needs in a web
application but as soon as different normalization is required, like for example the tokeniza-
tion of camelcased words (e.g. a mobile app name like ‘SoundCloud’ could be tokenized
and normalized into [sound, cloud]), Sphinx would require to normalize the data before-
hand and store this normalized data in a separate database table for indexing. This makes
Sphinx Search less flexible regarding text analysis.

LUCENE SOLR HIBERNATE SEARCH ELASTICSEARCH SPHINX

Text analysis +/- ++ ++ +/++ +/-

4.2.2 Database Integration

Content to be served in web applications can be stored in various ways like relational
databases or XML documents. Typically, data retrieved from a search engine are docu-
ments, each carrying a subset or derivation of the original data. The presentation of search
results, or more general browse results, often includes data that is not stored in the search
index’ documents. The missing data needs to be retrieved from the primary data store where
an application’s content is stored. For this reason, it is often required to map a document
to the original data, by maintaining a document field with a unique identifier that maps to a
unique data entity in the primary data store. In the core Lucene library there is no built-in
facility to specify such mappings, neither do Elasticsearch, SOLR and Sphinx have such
facilities. So, in order to retrieve the original data entities represented by search results, a
mapping module must be implemented that takes documents as input and returns the data
entities from the primary data store represented by these documents.

SOLR Data Import Handlers

While there is lack of mapping support at retrieval time, SOLR provides so called data im-
port handlers to ease the indexation of data. These handlers (part of SOLR contrib module)
allow a configuration driven way of importing data into SOLR’s search index. Common
data sources like relational databases, XML and HTTP based data sources are supported,
and one specifies which data (using queries or xpath expressions) to get indexed in which

31

4. SOLUTION DOMAIN

field, optionally first applying a so-called data transformer (which should be seen as data
preprocessor). Specification of which data to be indexed and how is done in a data source,
of which Figure 4.2 shows an example. SOLR’s data import handlers allow both full and
incremental indexations, so it is possible to only add new data to the index without the need
rebuild the whole index. However, in order to process deleted searchable data, some trace
must be left in the primary data store in order to let the data import handlers delete the asso-
ciated documents from the index. The application might need adaptation in order to ignore
deleted documents that are still in the primary data store just for the sake of index deletion.

Figure 4.2: Example of a SOLR data config specification

Data import handlers are used periodically to process changed data. This exposes an-
other potential problem, namely the asynchronicity between the search index and the actual
data available for browsing in an application. In case changes to data need (near) real-time
propagation to the search index, using a data import handler for incremental backup is not
the way to go. It would then be better to extend the process of data modification with
propagation to the search index by instructing the SOLR search server to add or remove a
document. This is similar to the workflow of indexing in Elasticsearch.

Elasticsearch

Elasticsearch has no notion of data import handlers and the best way to initially index ex-
isting data is to launch multiple threads that retrieve data from an application’s data source,
construct JSON documents and post these to the server (Figure 4.3) which will distribute
this index change to other nodes if configured this way.

Compass, the discontinued predecessor of Elasticsearch, supported seamless integration
with ORM software like Hibernate ORM, for automatic retrieval and index propagation of
objects (data entities) in case there was a change in data. Unfortunately, such integration
is not supported (yet) in Elasticsearch, and the translation and synchronization between
documents and the actual data is carried out to the developer who uses Elasticsearch.

Seamless Integration with Hibernate Search

Hibernate Search, part of the JBoss Hibernate framework, integrates seamlessly with their
object relational mapping software Hibernate ORM. The search index is kept in sync with
the data source. One only needs to specify the desired data properties to become search
fields by using Java annotations or through their programmatic API. A component called

32

A Comparison of Search Engines

$ curl -XPUT ’http://localhost:9200/twitter/tweet/1’ -d ’{

"user" : "kimchy",

"post_date" : "2009-11-15T14:12:12",

"message" : "trying out Elastic Search"

}

Figure 4.3: Posting a document to Elasticsearch server

mass indexer can be used to initially index or reindex all instances of an entity type. Index
configurations can be setup for each entity class and searches are scoped to these entity
types. Upon retrieval of search results, a list of the desired entities (as they would be re-
trieved using their ORM framework, i.e. Java objects) is returned. Entity inheritance is also
dealt with transparently: when targeting a particular entity class, it returns all entities that
inherit from this class.

Sphinx Data Sources

Regarding index configuration, Sphinx let us specify searchable data through SQL queries.
So-called data sources represent a source to be used for an index, and its specifications in-
cludes an SQL query that selects the rows and columns to be used as documents and search
fields respectively. Additionally, attributes can be specified, which are values that will be
stored in the index enabling sorting and additional filtering using these values. Multiple
index specifications may refer to one and the same data source. This enables the indexa-
tion of the same data in various forms (i.e. applying different analysis). Specification of
analysis components to be applied during index construction is bound and part of an index
specification. Changes to data in a data source are not automatically synchronized to the
index. Reindexing of the data is a common task when using Sphinx in an application with
fast changing content. Sphinx can also be configured to use delta indexes. Delta indexes are
actually normal indexes used in combination with a main index, and are configured to only
index new documents that do not yet appear in the main index. New data is distinguished
from ‘data already in the main index’ by keeping track of a counter (like an incrementing
primary key). A delta index can be merged with a main index, or the main index can be
rebuilt from scratch to keep the delta index small. A small delta index can be reindexed
periodically such that changes to an application’s content are quickly reflected in the in-
dex. As of version 1.10beta, there is also support for real-time indexes. These indexes
are not using a data source anymore, but documents are added to these indexes using SQL
queries. It is similar to document addition in Elasticsearch or SOLR, where the data to put
in a document’s field are specified, and the document is added. However, real-time indexes
are added in version 1.10beta and is labeled work-in-progress. Some features are not yet
supported, like wild-card queries and multi-valued attributes (a multi-valued attribute may
hold a collection of values instead of one, e.g. for product categories or tags).

Search results retrieved from Sphinx are the indexed documents. So, just like in SOLR,
Elasticsearch and Lucene, additional data must be retrieved from the primary data store
using an identifier which is part of the indexed documents.

33

4. SOLUTION DOMAIN

LUCENE SOLR HIBERNATE SEARCH ELASTICSEARCH SPHINX

DB handling/synchronization - +/- ++ - +/-

4.2.3 Query Type Support

In our exploration of the solution domain, we looked at the types of queries that are sup-
ported by the selected frameworks. All observed frameworks support the commonly used
query types: term, phrase, range, wildcard and boolean queries. Sphinx has no support
for fuzzy queries, so it won’t be able to fuzzy match a query term ‘definately’ against an
indexed term ‘definitely’.

Query syntax

Besides building query objects programmatically, Lucene offers a query syntax to specify a
range of queries, including the above mentioned query types. This syntax is available in all
Lucene based search frameworks. SOLR offers additional modes with syntax for queries,
with disjunction max (DisMax) being the most popular syntax, because it allows to search
multiple fields at once and it is designed to never throw an exception during parsing. It
recovers from erroneous input by treating problematic parts as string literals. The scoring of
documents is also different. A should-clause is generated for each queried field. Where the
default parser scores clauses equally, SOLR’s DisMax query mode will only use the score
of the field clause with maximum score for a term. This makes query-time field boosting
more effective. The disjunction max query is also supported by Lucene and Elasticsearch.
The DisMax query syntax is only available in SOLR.

Sphinx also comes with various matching modes with different query syntaxes. Its
extended query syntax supports most query types.

Filters

For constraints that are to be applied repeatedly, most search frameworks offer a filtering
mechanism. In Lucene, SOLR, Elasticsearch and Hibernate Search, filters are bit sets,
where each bit represents a document in the index. Only documents with value 1 (or 0 in
case of a negated query) in the bit set are considered as possible hit when processing the
query. The filters can be constructed from any query result. When a filter is applied the first
time, there is some overhead for constructing the bit set, but these bit sets are cached and
reused when applied a second time. Thus only for recurring constraints it is advised to use
filters for better efficiency.

Sphinx also supports filters. Filtering (and sorting) is limited to the data that is modeled
as attributes in the data sources. Sphinx attributes are stored as integer values. This limits
the kind of constraints that can be modeled as filters. Also, more work is needed to filter
on string values, because these are translated to integer attributes by Sphinx. In order to
filter on string values, we must first convert the strings to (for example) their CRC32 value
at indexing time, and repeat this for the constraint values at query time.

34

A Comparison of Search Engines

Geospatial search

Sphinx supports filtering on geographic distance by letting you set a targeted location (the
center location). It can then serve results that are within a specific range and/or order the
results by distance from the center location. This is also supported in Elasticsearch and
it even has faceting support for it, which allows retrieval of distance ranges (like results
within 10 km, or between 50 and 100 km from a targeted location). For Lucene, there
exists a contrib module for geospatial search, but in version 3.0.3 of lucene, this version
was limited and was known to have some bugs. SOLR did not yet support this module.
An external SOLR plugin was available that added spatial search features. Like Lucene,
Hibernate Search 3.3.0 is limited to the geo-spatial module from Lucene contrib.

LUCENE SOLR HIBERNATE SEARCH ELASTICSEARCH SPHINX

Query type support + ++ + + +/-
Geospatial search +/- - +/- ++ +

4.2.4 Serving Spell and Type Ahead Suggestions

A good search user interface supports the user by suggesting corrections on mis-spelled/typed
words, or better: suggest completions while a query is being entered. Regarding spell check-
ing, Apache Lucene provides a spell checker component in the contrib package. This spell
checker extracts terms from an existing Lucene index or text file, and builds a separate in-
dex for spell check purposes. After creation of the spell index, the spell checker module
can be used to suggest terms that are similar to some extend. It uses a similarity algorithm
(Levenshtein Distance by default) to compare a query term against the terms in the index.
The threshold of similarity for (not) returning a term can be configured. The spell checker
also offers functionality to return suggestions on query terms that do exist in the spell check
index (i.e. it are valid terms), by only suggesting terms that are more popular. A term is
more popular if the term frequency (tf) of a correction is higher than the tf of the original
query term (it obtains the tf information from the search index). The downside of using this
module is that it needs to create an additional index in order to work, and this index might
need to be renewed periodically.

Besides Lucene, this spell check module is available for use in SOLR. It can be used
separately to retrieve suggestions for a query through the spell checker request handler, or
by applying it as part of an ordinary query request, where SOLR tries to correct a query
directly instead of using multiple request (one for spell checking, one for querying). While
there is no built-in support in Hibernate Search for spell checking, the spell checker module
from Lucene’s contrib package can be used on the indexes that are maintained by Hibernate
Search. This module is not yet exposed in Elasticsearch, because of the required mainte-
nance of an additional spell index. Elasticsearch therefore lacks support for spell checking.
The same holds for Sphinx, there is no notion of a spell checker or suggestion module.

The lack of spell checkers can be overcome by using external libraries like Aspell
(LGPL license). Most spell checking software comes with bundled dictionaries for vari-
ous languages. However, such dictionaries often overlap only partly with the actual terms

35

4. SOLUTION DOMAIN

in the searchable content (i.e. terms for which the search engine can return results). So if a
dictionary lacks terms that are common in the application’s content, it might mistakenly cor-
rect terms that are meaningful within the application or return terms that make no sense in
the context of the application. In order to return meaningful suggestions by the spell check-
ing component, it will in most cases be required to build a custom dictionary, preferably
based on searchable content. This means that the searchable data from a data store/search
index first needs to be converted into the dictionary format the spell check component ac-
cepts. If it is also desired to serve suggestions on correctly spelled terms, in case there are
more popular terms, interaction with the search index or another data store that contains
information about term frequencies and/or term order is required.

Type Ahead Suggestions

Although completing queries while users are typing is a common way for supporting the
user in his search for information, there is no explicit notion of an auto completion module in
any of the discussed frameworks. This does not imply that it cannot be achieved using built-
in facilities of the search engines/libraries. One way to setup such functionality is to reuse
the terms that are in a search index and treat these as documents itself in an additional index.
Auto completion suggestions can now be retrieved using prefix queries. Additional search
fields might be used to order the completions in a way that makes sense to the application,
for example the term frequency such that terms that appear more frequently are ranked
higher than others with that share a common prefix.

Another way to get auto completion within an application is to search instantly on every
keypress, using prefix queries again. This will increase the performance requirements due
to the retrieval of results on every keypress, but the user can be served more information
than a set of strings.

Multi-term Suggestions

When a user is typing a query ‘computer mon...’, the system should suggest ‘computer
monitor’, and not ‘computer monkey’, while ‘monkey’ might be a good completion when
completing a single termed query. The same holds for spell suggestions. In order to provide
multi-term suggestions, information must be available about the appearance of terms next
to each other. A possible solution to accomplish this is by storing each n adjacent tokens (n
>1) in the index, such that a set of n-length shingles can be used to construct type-ahead or
spell suggestions.

LUCENE SOLR HIBERNATE SEARCH ELASTICSEARCH SPHINX

Spellcheck suggestions +/- ++ +/- - -
Autocomplete suggestions - - - - -

36

A Comparison of Search Engines

4.2.5 Hit Highlighting, Fragment Selection

Instead of presenting a list of result identifiers (like book titles or product names), a user is
better assisted when each result is accompanied with one or more fragments that emphasize
why a result is considered relevant. This eliminates the effort of browsing into each result
(probably by clicking on it), followed by scanning the browsed result in order to find rele-
vant fragments and, in case this result does not contain the desired information, browsing
back to the result page to review other results.

The compared solutions do all provide functionality to extract relevant fragments from
a text (based on a query or query words) and are able to highlight tokens within a fragment
that match a query after normalization (Lucene and Hibernate Search through the use of
Lucene contrib module). SOLR has a little more highlight options than Elasticsearch (e.g.
specify boundaries for a fragment such that the fragments returned are complete sentences).

LUCENE SOLR HIBERNATE SEARCH ELASTICSEARCH SPHINX

Hit highlighting +/- ++ +/- + +

4.2.6 Faceted Search

Faceting, the presentation of a taxonomy within a currently browsed collection, is supported
by SOLR and Elasticsearch out-of-the-box. The observed versions of Lucene and Hibernate
Search had no built-in support for faceting at that time (as of version 3.4 Hibernate Search
added partial support for faceting, Lucene added faceting module in its contrib package in
version 3.4).

Sphinx supports faceting implicitly. Besides constructing a main query, one may con-
struct additional queries for faceting. Sphinx features group-by functionality natively (where
Lucene does not), which means that it is capable to return groups of results, where each
group of results has a value (or range of values) in common. Each group’s value can be
used as browsable facet category and the the size of a group will match the number of ele-
ments within the targeted facet category. So in order to have faceting using Sphinx, besides
having a main query, additional queries must be specified for each facet. Each such query
is a possibly extended main query (with additional clauses for already filtered facets) and
should be set to retrieve results grouped by the column values for the targeted facet (col-
umn values are similar to field values in Lucene, as Sphinx reuses concepts of relational
databases). The additional query clauses in the extended main query may vary for each
facet to be retrieved. This is because some facets may be expandable (a user may select
multiple values within the same facet category) where others only allow a single value to be
selected.

SOLR and Elasticsearch both have support for faceting. These make explicit notion of
the facet concept in their API. The faceting APIs allow to set parameters like:

• the targeted search field of a facet

• the number of facets to return

37

4. SOLUTION DOMAIN

• the order of facets (number of hits, alphabetic, ascending/descending)

• whether or not to retrieve the number of documents that have no value set for the facet
field

• the minimum number of hits a facet value should have in order to retrieve it

SOLR and Elasticsearch have support for discrete faceting (single value per facet, e.g.
for tags) and range facets (range of values per facet, e.g. for price range facets), although
range facets in SOLR were limited to date ranges in version 1.4.1. Hierarchical faceting,
where a facet has multiple levels (e.g. on a retailers website the facet ‘electronics’ has
multiple browsable sublevels like ‘electronics/computers’ ‘electronics/audio/headphones’),
is not supported by Elasticsearch. SOLR has no explicit support for this, but it can be
managed using its facet prefix filter. The idea of this approach is that search fields used for
hierarchical faceting hold one or more values for each level a document belongs to, with
the level information encoded in the search field’s value. If done properly, this encoding,
which is performed at indexing time, allows one to retrieve facets for a specific level using
a facet prefix filter. Exclusive in Elasticsearch are histogram and statistical facets. They let
you retrieve counts over a range of intervals (histrogram) and statistical data including (not
limited to) mean, minimum and maximum. Moreover, Elasticsearch provides geo distance
faceting which provides information for ranges of distances from a provided center location.

The compared versions of Lucene and Hibernate Search had no built-in option to per-
form faceting. Luckily, there is a partial solution for this job. An open source software
package called Bobo-Browse6 can retrieve facets from and perform searches on Lucene
indexes. It also features hierarchical faceting.

LUCENE SOLR HIBERNATE SEARCH ELASTICSEARCH SPHINX

Faceting - + - +/++ -

4.2.7 Scalability

Elasticsearch is the most powerful when it comes to scalability. You can set up a cluster of
multiple Elasticsearch nodes (machines), which are able to discover each other. Each node
will also be informed when another node goes down, and a cluster is able to manage dis-
tribution of its indexes (or index shards) automatically. Multiple indexes can be configured
on each (possibly single node) cluster and each index can be set to have a number of shards
and number of replicas. The number of shards is only configurable at index creation, while
the number of replicas can be increased at runtime (changing the number of shards requires
a rebuild of an index, which is expensive). The idea of Elasticsearch is to use the number of
shards as a scaling factor. A shard can easily be replicated or moved to another node with-
out the need of reindexing, because the whole shard is copied/moved. So if an index is set
to have 4 shards, which are currently maintained by a single node cluster, adding a second

6https://github.com/javasoze/bobo

38

https://github.com/javasoze/bobo

Choosing a Solution Suitable for WebDSL

node to that cluster would cause Elasticsearch to automatically distribute half of the shards
to the second node. This is similar for the number of replicas of an index. If the number
of replicas is changed at runtime, Elasticsearch will replicate indexes (possibly distributed
over multiple shards) to the available nodes. A shard will never be replicated within the
same node. Figure 4.4 illustrates how shards and replications are distributed on adding a
node to a cluster.

Figure 4.4: Elasticsearch automatically redistributes its shards and replicas on node addition

SOLR also supports sharding and replication, but distribution and management of shards
and replicas must be managed outside SOLR. This is similar for Hibernate Search. A shard-
ing strategy can be configured (e.g. to use different shards for content of different language)
and servers can be configured as master or slave for replication of search indexes/shards.
Replication is absent in Sphinx, although index sharding can be configured. Multiple Sphinx
instances may maintain different index shards and one instance will be configured with a
distributed index configuration. By querying this instance, it combines the results from all
shards. The core Apache Lucene library has no replication or sharding functionality built
in. It must completely be managed within the application code itself.

LUCENE SOLR Hibernate Search Elasticsearch Sphinx
Scalability +/- + + ++ +/-

4.3 Choosing a Solution Suitable for WebDSL

All results of our comparison are summarized in table 4.5, showing the strengths and weak-
nesses of each search solution. An important conclusion we may draw is that there is no
single solution that covers all features out-of-the-box. Regarding search features, Elas-
ticsearch and SOLR are the most rich search engines. However, compared to Hibernate
Search, these search engines require more effort to get data synchronized between the pri-
mary data store and search index. For that to work, a mapping must be maintained that
keeps track of which field type and/or field properties are bound to which POJO proper-
ties. At runtime, this mapper should be used when propagating data changes to the search
index. So we need to keep track of which data is changed, added or removed. Moreover,
a document in the search index might also need to be updated even when this document is

39

4. SOLUTION DOMAIN

not representing a changed entity. This is the case when the document contains data that
resides in a different POJO than the one it represent. For example when a Product object
p has a searchable property referring to a Category object c. At some time the property
c.name changes from ‘notebooks’ to ‘laptops’. This should not only trigger an update to
the document that represents c, but also for p and any other document that uses data from
c. Then, a mapper is also needed that can convert documents retrieved as search results to
objects as they are used in the application code.

Other issues arise when looking at the integration in WebDSL. SOLR and Elasticsearch
normally run as separate servlet and separate java process respectively. In order to use
SOLR, there are some servlet container specific settings which need to be set. Additional
difficulties come to light when we want to run multiple WebDSL applications on a single
machine: Are we going to use a single instance of SOLR/Elasticsearch server and keep
track of the running applications, or are we going to use multiple instances of SOLR, one
for each deployed WebDSL application? For both cases it means that a person deploying
a WebDSL application, or each instance of a deployed WebDSL application itself, needs
to keep track of the search engine(s) that are running, and start/stop them whenever this
is needed. Luckily both SOLR and Elasticsearch provide Java APIs that allow to run the
servers embedded within an application.

The latter is not the case for Sphinx, being implemented in C++. Different binaries are
required on different platforms. For *nix platforms, a source code tar archive is distributed,
which needs to be compiled. Together with the fact that it misses opportunities to have
spellcheck and autocompletion, Sphinx is a less attractive solution for integrating search in
WebDSL.

LUCENE SOLR HIBERNATE SEARCH ELASTICSEARCH SPHINX

3.0.3 1.4.1 3.3.0 0.15.0 1.10 beta
Text analysis +/- ++ ++ +/++ +/-

Query type support + ++ + + +/-
Geospatial search +/- - +/- ++ +

DB handling/synchronization - +/- ++ - +/-
Spellcheck suggestions +/- ++ +/- - -

Autocomplete suggestions - - - - -
Faceting - + - +/++ -

Hit highlighting +/- ++ +/- + +
Scalability +/- + + ++ +/-

License Apache License v2 Apache License v2 LGPLv2.1 Apache License v2 GPLv2

Table 4.5: Comparison of feature support in search solutions: Lucene, SOLR, Hibernate Search, Elasticsearch
and Sphinx

Out of the box, Hibernate Search is not as complete as Elasticsearch or SOLR are. How-
ever, it completely handles data store/search index synchronization when using Hibernate
ORM. Being based on Lucene and because of the ability to access its underlying Lucene
indexes, Hibernate Search’ functionality is extensible by using contributed modules or ex-
ternal libraries that work with Lucene. This way, absent features like hit highlighting and
spell check services can be realized using Lucene’s contrib modules. Faceting can be real-
ized using an external library like Bobo-Browse. Only some auto completion module must

40

Choosing a Solution Suitable for WebDSL

be implemented in order to return suggestions based on searchable content.
Because of the little setup effort that is needed for integration into WebDSL and the

ability to have most search features accessible without implementing this functionality our-
selves, we decided to use Hibernate Search as our search backend. This means that the Java
code that is generated from WebDSL application code will interact with Hibernate Search.
The process of integrating search features into WebDSL itself is done incrementally, where
we started with basic search functionality and minimal document construction options. The
approach is explained in the next chapter.

41

Chapter 5

Extending WebDSL with Search

In this chapter, we will describe the approach applied in integrating search into WebDSL.
This process comprises the extension of an existing language (WebDSL), which already
covers a large range of concerns in the field of web development. Being a DSL extension,
the search language should be compatible with the grammar and concepts of the base lan-
guage WebDSL. For instance, the index configuration in which one specifies which data ob-
ject must become searchable relates to the data model of WebDSL. Search expressions may
be embedded at various places, such as WebDSL functions, action code or variable decla-
rations. Regarding the development process of the language, some restrictions are inherited
from previous WebDSL development. These include the implementation platform and com-
piler architecture that is being used. We will first discuss the process of DSL Development
in general, followed by a description of the process of previous WebDSL development. We
then describe development process of the search DSL.

5.1 DSL Development Process

DSL development is mostly a creative and iterative process of various tasks. In [21], Mar-
jan Mernik et al identify 5 key phases during DSL Development: decision, analysis, design,
implementation and deployment. The development of a DSL is not a sequential process
of these phases. Different phases can alternatively and repeatedly be dealt with during the
process: in order to decide whether or not to develop a DSL, a preliminary analysis may
be performed. Further analysis of existing software artifacts, like software families used
in the targeted domain, may then give a better understanding of domain concepts and their
reusability in the implementation of the DSL. This may in turn be related to the design of the
DSL, which can be based on an existing DSL (language exploitation through extension, spe-
cialization or selectively picking of language features). Or the DSL is created from scratch
(language invention) and does not reuse language features from an existing language.

Then, the implementation of a DSL determines how a DSL-program eventually gets
translated into executable code. One approach is to rely completely on an existing language
(the host language) by implementing the DSL conform the syntax of the host language.
We call this an internal DSL. This often results in a language with noise inherited from the

43

5. EXTENDING WEBDSL WITH SEARCH

notation of the host language. Static error checking and reporting is also limited to that
done by the host language, making it less tailored to the domain in question. Better analysis
and reporting can be achieved when implemented as interpreter or compiler. In case of an
interpreter, DSL constructs will be processed and executed at runtime (by fetch-decode-
execute cycles) without analyzing the complete program beforehand. The latter is the case
when a language is implemented as compiler. For this reason, compilers are in general
better in performing optimizations and reporting errors, because they can access/analyze the
whole program. Interpreters will be limited to analyzing statements (or sentences) which it
then translates (decodes) to machine code to be executed. Advantages of interpretation over
compilation are simpler implementation, easier extensibility and greater control over the
execution environment. However, it requires more processing power at runtime. Another
approach is to implement the DSL as preprocessor. In this approach, the DSL-code is
translated to a base language by one or more, possibly pipelined, language processors. Static
analysis is limited to what is performed by the compiler/interpreter of the base language.

5.1.1 Extending a DSL

In this thesis, the design pattern we deal with is language extension, where an existing
language (WebDSL) is extended within its syntactic and semantic framework [29]. In our
case, a more complete DSL for development of web applications with rich data models.
When developing a DSL extension, previous decisions during the development of the base
language to be extended will put restrictions on the design and implementation of the DSL
extension. WebDSL is implemented as source-to-source compiler (an application genera-
tor) by transforming DSL language constructs into Java classes using model-to-model and
model-to-source transformations. Generated java classes and configuration files are then
compiled and packed into a deployable web application archive (WAR-file).

The implementation platform that has been used is the language workbench Spoofax
[17], offering features to implement DSL’s with plugin support for the integrated develop-
ment environment (IDE) Eclipse. The grammar of the DSL is specified using the syntax
definition formalism [33] (SDF), integrating lexical and context-free syntax into a single
formalism. Spoofax creates a parser from the SDF-definition, which is used to create an
abstract syntax tree representation from program code written in the DSL. This tree repre-
sentation of the program is then used to further process the DSL program. Spoofax uses
the transformation language and toolkit Stratego/XT [2] to specify rewrite rules in order to
perform model-to-model transformations.

Other dependencies in the development of a language extension are the existing con-
cepts and related language constructs of the base language. For instance, a data model in
WebDSL consists of entity definitions with properties, each property having a name and
type. WebDSL also allows entity definitions to be partly defined at multiple places. Fur-
thermore, an entity definition may inherit the definition of a parent entity (inheritance). An
index configuration for search will have relations to WebDSL’s data model concepts in order
to make the data searchable. Similarly, expressions for actual searching must be introduced
in a way that these can be used like other WebDSL expressions in pages, templates and
functions. The creation of a syntax for search is therefore (partly) restricted due to the re-

44

Previous WebDSL Development

quired interaction with language constructs from the base language. Keywords used within
the syntax are still free to choose.

Although we are restricted in the implementation by a predefined compiler architecture
and grammar of the base language, we are still free in choosing the approach for develop-
ment of the DSL extension. We will now look at the development process applied during
previous development of WebDSL.

5.2 Previous WebDSL Development

Several methodologies and patterns for domain-specific language development are dis-
cussed in literature [30, 21], which often include a thorough domain analysis phase with
domain abstractions being described formally [5, 27]. Because most approaches do not
consider implementation details during domain analysis and language design, there might
be lack of existing software artifacts (like libraries and frameworks) that are suitable for
the designed language, adding up the effort required for implementation of the language.
WebDSL has been developed differently, more in a bottom-up fashion where domain analy-
sis and implementation go hand-in-hand. Analysis of the domain elaborates on the maturity
of a solution domain: when mature software artifacts exist in the solution domain (libraries
and frameworks with a great user base and community), these artifacts are assumed to have
a well established interface adopting objects and operations from the targeted domain. The
advantage of predicating upon existing implementations is a more efficient DSL implemen-
tation process. However, one must be careful that the syntax and structure of libraries/tools
in the solution domain should not drive the design of the DSL grammar, as this may not
necessarily reflect the actual needs in the targeted domain.

5.2.1 Iterative Incremental Design

Studying the development process so far, WebDSL is developed iteratively, where basic
language features were first designed and integrated, and domain coverage is then itera-
tively extended by integrating more features [34]. Instead of building a complete system
in the end, the development iterations deliver intermediate states of the system which can
be verified on correctness and completeness. This offers quick feedback on newly added
abstractions, and insight in the priority of future abstractions. Reasoning at this level, the
development of the search extension can be considered such an iteration: we increase the
coverage of the web application domain by introducing search functionality. As will be
explained in the following sections, the iterative approach is also applied during the devel-
opment of the search extension itself.

5.2.2 Programming Patterns, Core Language and Syntactic Abstractions

As is explained in the WebDSL case study [34], the approach applied during the past devel-
opment of WebDSL started by studying existing technology in order to find programming
patterns. The available technology within the domain is explored to find code fragments that
occur frequently, being it with slight variations. Commonalities are then captured and put

45

5. EXTENDING WEBDSL WITH SEARCH

into code templates with ‘gaps’ for variable elements or, if suitable, into a library of com-
mon components to be used by the code generator. The idea is to develop a core language
which is internally used by the compiler. This core language must have enough expres-
sive power such that it supports the needed variabilities in the targeted domain. Without
such a core language, variabilities that are adopted in the eventual syntax of the DSL would
lead to many versions of the same code templates used by the generator leading to lots of
code duplication within the compiler. The core language must be seen as an intermediate
language used by the compiler which has the required expressiveness to adopt the domain
abstractions, while not exposing lower level code and additional complexity which usually
come with expressive code templates.

Syntactic abstractions (also known as syntactic sugar) are then introduced to form the
actual DSL. These abstractions will be desugared in the compiler to the core language. A
DSL program is thus being transformed into its core language equivalent. The core language
representation can then be used to efficiently generate code in the target language (which is
Java in case of WebDSL).

WebDSL
code

DSL
ATerms

Core Language
ATerms

Java
ATerms Java codeparse desugar model-to-model

transformations
pretty
print

Figure 5.1: Basic flow of the WebDSL compiler, generating java code from DSL code

A basic overview of the compilation process of WebDSL is shown in figure 5.1. A
WebDSL program is taken as input. This code gets parsed by a parser generated from the
WebDSL syntax definition in SDF. When parsed, the program is represented as abstract
syntax tree in annotated term (ATerm) format [32]. Using the Stratego/XT program trans-
formation language and toolset [2], the tree of ATerms is then traversed applying various
rewrite rules. Rewrite rules transform one ATerm into another. By applying these rules to
a whole tree, a program can be transformed into another model, which is what happens at
the desugar stage: the WebDSL ATerms are transformed into ATerms complying to the core
language. Now, other rewrite rules take care of the core language ATerms, transforming
them to the desired Java code blocks (Stratego/XT supports the use of concrete syntax in
its rewrite rules, which are automatically transformed into their ATerm equivalent). The
resulting java classes (represented by the Java ATerms) are then pretty printed into plain
Java files ready for compilation by a Java compiler.

5.3 A Similar Approach for this DSL Extension

This section discusses the development process we applied for the search DSL extension.
This approach is similar to that from past WebDSL development. The set of features to
become part of the language were obtained by studying the solution space for programming
patterns and common practices. The language is directly put into practice by development
of a web application that heavily relies on search features, broadening our perspective of
features to be supported and their priorities. Implementation of the language relies on using
core languages on which we later put syntactic abstractions (the interface of the language).

46

A Similar Approach for this DSL Extension

With respect to core language development, a distinction is made between the configuration
aspects of site search and the specification of constraints, retrieval and presentation of search
results.

5.3.1 Imperative Searching

Having studied the problem and solution space of internal site search, the semantics of the
domain can be grouped into roughly 4 types. The first type covers configuration aspects,
which deal with the selection of searchable data and the transformation of this data into
searchable documents in a search index. The second type of semantics deal with the spec-
ification of search constraints for restricting the set of data being searched. Then, the third
type of semantics relate to the actual retrieval of data. These include the projection of results
(i.e., in what representation should the searched data be retrieved), and the retrieval of data
about the search itself. And finally, there are semantics dealing with the user interface in
which search constraints can be specified and search results are presented.

Concerning the latter, WebDSL’s template and action language with built-in building
blocks for forms, input controls and the rendering of data should fulfill these needs. The
data to be presented and facilities used within such user interfaces will be retrieved using
aspects from the second and third type of semantics. There is no need to add new linguistic
abstractions for the presentation of search user interface elements.

Language features are to be introduced for the other types of semantics. Instead of
inventing new core languages, we tried to reuse existing components from the WebDSL
language, when suitable. We found WebDSL’s native Java interface to be a good candi-
date to start development of the core language for the semantics dealing with searching
and retrieval. This language feature adds support to embed Java code within WebDSL ap-
plication code. This can be useful to interface with existing Java libraries or classes that
offer functionality which is not (yet) offered by WebDSL. We will use this language feature
to develop an interface of classes and methods, to be used for the implementation of the
search/retrieval semantics of site search. By developing an efficient and expressive library
of classes and methods, its interface will become the core language on which we can later
put syntactic sugar. With Java being an imperative programming language, it will match
the stateful characterics of search: the set of search constraints within a search session, or
more generally a browse session, should be seen as the state of that session. This state might
change incrementally by user actions such as changing the query terms, selecting a category
from presented facets or changing the sorting of currently viewed collection.

Another advantage of using native Java is a gain in the implementation cycle for each
newly added abstraction. New features become usable by adding Java classes and/or meth-
ods to the search library. In order to expose this functionality in WebDSL app code, we
only needed to add the signature of the relevant class or method to the native Java defi-
nitions. WebDSL uses this to support type checking on embedded Java code. By using
Java directly from within WebDSL code, we could create the implementation of the DSL’s
features, without the need to extend the compiler with syntax definitions and rewrite rules
beforehand, which we usually would do when adding new language features. Also, there is
no need to rebuild the WebDSL compiler, which is mostly a time consuming job.

47

5. EXTENDING WEBDSL WITH SEARCH

5.3.2 Declarative Configuration

Regarding the configurational semantics, the applicability of WebDSL’s native Java inter-
face is limited and in fact not suitable. The implementation framework, Hibernate Search,
offers two ways for definition of the mapping between POJ objects and index documents
(we will refer to this as the search mapping). One way is by adding annotations to the Java
classes, fields and/or properties. Various types of annotations and parameters make it possi-
ble to specify which data should become searchable and how the data should be normalized
for searching. As WebDSL abstracts away from the Java classes generated from entity defi-
nitions, its native Java interface does not support the use of Java annotations. Besides using
these, Hibernate Search also provides a programmatic API to specify the search mapping.
However, specification of search configuration is pre-eminently declarative and we would
not expose an imperative language in the eventual search DSL.

Instead, we choose to reuse another existing WebDSL language component, namely
property annotations. These annotations are bound to entity properties and are used to cus-
tomize a property, for example to assign a default value on initialization of an entity or to
treat a property as unique identifier (which are used in URLs) or name to be displayed when
the entity is viewed. Property annotations seem to be an ideal place to mark data as being
searchable. This is because data units in WebDSL are expressed as entities, which will
therefore be the primary units to be retrieved at search time. A document within the search
index will therefore represent a WebDSL entity. The data within an entity is represented by
entity properties, which in turn can be used as search constraints, i.e. entity properties are
the input for search fields in a document. As we will learn, annotations may become large
when more options become available for setting up the searchable data, degrading the read-
ability of entity definitions. This makes them less attractive for use as the eventual ‘syntactic
sugar’ for search configuration. However, they are a reusable component already supported
by the compiler, suitable for use as core language for searchable data specfication. Table
5.2 summarizes the core languages used for the various concerns of internal site search.

Concern Core language
Searchable data configuration Entity property annotations
Searching/Retrieval WebDSL Native Java + API to be developed
User interface and presentation Existing WebDSL template/action language

Table 5.2: Core languages

5.3.3 WebLib: A Demo Application Built Side-by-side

A demo application, named WebLib, was developed to test newly added abstractions during
the development of the core languages. WebLib is a simple digital library in which we
integrate site search features. Working with a demo application allows quick feedback on
the interface of the library. Furthermore, the demo application is a great tool to acquire

48

A Similar Approach for this DSL Extension

Figure 5.3: Iterative process applied during (core) language development

insight in the coverage of the domain, because it partly reflects typical needs regarding the
targeted domain. This will help to prioritize future feature(s) to be implemented.

Applying this pattern in an iterative fashion, the interface of our core language library
(i.e. the framework of classes, methods and their parameters to be used as core language for
searching/retrieval) evolves over time. Changes to the interface and implementation of this
library may be required during later development cycles in order to better match domain
concepts and relations between them, or to improve conciseness of the library by minimiz-
ing the number of method calls and arguments needed to perform some task. Similarly,
newly added features for searchable data configuration are evaluated using WebLib. Fig-
ure 5.3 shows an overview of the development process, with core language development
magnified.

Data Model

The data model of WebLib is fairly simple. It mainly consists of two entities: Publication
and Author. A publication may have one or more authors, and an author may have zero or
more publications. Besides this relational data, both entities own relevant data properties.

49

5. EXTENDING WEBDSL WITH SEARCH

These include a title, description, release date and number of citations for the Publication
entity and a name for the Author entity. While, of course, the number of citations might be
derived by introducing a ’cites‘-relation between Publication entities, we choose to model it
as ‘dumb‘ data property for the sake of simplicity. Listing 5.4 shows the WebDSL app-code
of this data model.

1 entity Publication {

2 title :: String (id, name)

3 authors -> Set<Author>

4 description :: WikiText

5 releaseDate :: Date

6 nOfCitations :: Int

7 }

8
9 entity Author {

10 name :: String (id, name)

11 publications -> Set<Publication> (inverse = Publication.authors)

12 }

Listing 5.4: WebLib: data model

An initial data set was created by importing publications and authors from a snapshot
of DBLP XML records, yielding about 1.3M publications and 0.9M authors in WebLib.
Not all modeled data was available in the provided DBLP XML records, we therefore gen-
erated random data for release date, number of citations and we gave some publications a
description. A basic interface allowed us to view, add and edit publication and author data.
As search features were added during the development of the core languages, WebLib was
extended to adopt these features in order to evaluate the core language. An impression of
WebLib is shown in Figure 5.5.

Figure 5.5: WebLib: publication view

The next two sections give an overview of the features that were implemented during
the core language development iterations. In Section 5.4, we discuss implemented features
concerning searching and retrieval. Section 5.5 discusses features that relate to configura-
tion aspects of search. The order in which the features are discussed within each section
reflect the order of the implementation iterations.

50

Search and Retrieval: Introducing the Searcher Type

5.4 Search and Retrieval: Introducing the Searcher Type

As discussed in Section 2.4.2, WebDSL already offered limited search features. Only string
compatible properties were supported for search and searching was done using one of the
three search methods by providing a query and optionally a result starting offset and limit
on the result size. These methods return a list of entities matching the query, but did not
allow to obtain other information such as the number of results a search query matches.
This information is needed in order to provide pagination elements to browse over result
pages. It is also not uncommon to display the execution time of a search. Also, when more
types of constraints will become available in the eventual search language, these constraints
are likely to be presented to the user during browsing. Together with the fact that multiple
refinements may be performed after an initial search query, having an object that keeps track
of all constraints and provides access to data about a search would be ideal.

It is therefore one of the first additions we introduced in WebDSL: the notion of a
searcher type. Each entity being searchable in WebDSL gets accompanied with a searcher
specific to that entity. That is, a searcher for entity X will have a list of instances of X as
results and holds information relevant for search associated with entity X (for example the
configured search fields). Generic search functionality, not bound to entity specifics, was
later moved to a super class from which all entity searchers inherit. The searcher class
was optimized to allow method chaining by returning the searcher instance itself on setter-
methods. By using the searcher type in WebLib (through native Java), we were able to show
information like the search execution time and pagination controls on the search result page
(see Listing 5.6 and Figure 5.7).

1 define template searchResults(query : String, page : Int){

2 var searcher := PublicationSearcher().query(query).setOffset((page-1) * 10).setLimit(10);

3 var results := searcher.results();

4 var size := searcher.count();

5 var exectime := searcher.searchTime();

6 }

Listing 5.6: WebLib: Using a searcher instance to perform search

Figure 5.7: WebLib: result page with pagination and data about the search

51

5. EXTENDING WEBDSL WITH SEARCH

5.4.1 Serializability

One purpose of a searcher is to keep track of the search constraints, without the need to re-
construct the searcher in the app-code for each page, template, action or function. Normally,
a web developer should come up with some encoding in order to share the search constraints
between page requests. Now that we introduced the searcher abstraction, it was important
to have support for using a searcher as page argument, without requiring a WebDSL user to
encode the constraints: he should just be able to use a searcher as page/template argument
like any other data element. There was no support yet for passing native Java objects as
page arguments, because it requires an interface to encode and decode the object from/to
an URI-compatible string representation. For this reason we created such an interface. It
requires a class to implement 2 methods: toParamMap and fromParamMap, which are used
to serialize and deserialize an instance of that class respectively. These method should re-
turn/accept a map of key-value pairs (both Strings) making it able to reconstruct an instance
of the implementing class. WebDSL takes care of proper transformation between these
maps and URI-strings. The Searcher class was extended with these methods which enables
use of searcher instances in template and page parameters.

5.4.2 Field Selection and Query Types

At this stage all search queries were processed by Lucene’s query parser, producing a
Lucene query from a given string. It searched all fields of an entity by default using a
text query. Field selection and query type could be adapted according to the Lucene query
syntax. On the one hand, this allowed the developer of a WebDSL application to modify
a user entered query in such a way that it would be parsed as the desired query type on
possibly a subset of search fields, while it also exposed this ability to the users of the web
application. The downside is that queries containing a syntax error would not be processed.
Ordinary users of a web application, unaware of this syntax, could accidentally break the
search process. Other users being aware of this syntax could abuse this feature to perform
unwanted searches (for example resource intensive fuzzy searches).

To deal with this problem, we extended the searcher class to have more flexibility in the
specification of constraints, without the need to use Lucene’s query syntax. We first added
methods to set the targeted search fields. We later also added the ability to boost fields on
query time. Using a float number (default 1.0), fields can be assigned a weight to prioritize
their importance during result ranking. In WebLib, we boosted the title field to gain more
weight compared to the description (Listing 5.8).

1 var searcher := PublicationSearcher()

2 .fields(["title","description"])

3 .boost("title", 10.0)

4 .query(query)

5 .setOffset((page-1) * 10)

6 .setLimit(10);

Listing 5.8: WebLib: Field selection and boosting

52

Search and Retrieval: Introducing the Searcher Type

We also added control to disallow Lucene’s query syntax (default: allowed). However,
if the query syntax is disallowed, we (as developer of a web application) would be unable
to differ from the default text query type, since we cannot use the Lucene syntax. For that
to work, we needed to add new query methods to the searcher interface supporting other
types of queries like range and phrase queries. We also added a static method that escapes
Lucene syntax symbols such that they are treated as ordinary characters as part of the query.
Furthermore, it should be possible to combine multiple queries. For example, we might
want to search publications in WebLib matching some keyword (query 1) within a specific
date range (query 2) from a specific author (query 3). As will be shown in Chapter 6, we
extended the searcher class to support this by having additional methods for grouping and
combining queries into boolean queries.

5.4.3 Faceting

As we developed our search extension, a newer version of Hibernate Search was released
that added support for faceting. Faceting could be performed on any search field in the
index, returning the top n terms of a search field that appear in the result set of the current
search. By selecting a facet, existing search constraints are expanded with an additional
facet constraint. Unfortunately, it turned out that faceting did not work well on fields holding
multiple values1 2 (which is the case for collection properties, like Publication.authors in
WebLib). This required a new implementation of Hibernate Search’ faceting in order to fix
these issues. We therefore decided to partially move to another library for faceting which
works on Lucene indexes: Bobo Browse3. This library had no issues handling fields with
multiple values. We kept range faceting performed by Hibernate Search, because of its
integrated support for date and numeric types (single valued fields by definition).

5.4.4 Suggestion Facilities

Suggestion services like spell checking and serving type-ahead suggestions will help a user
during his search for information. Although Hibernate Search did not offer suggestional
functionality, Lucene provided a contributed spell check module that can take an existing
search index or plain text file as input for its suggestions. To make this functionality avail-
able in WebDSL, we extended our search library with a SearchSuggester class that provides
methods for retrieving spell suggestions. Providing one or more search fields and the num-
ber of suggestions to be retrieved, the search suggester uses the associated suggestion-index
to find the targeted suggestions. Type-ahead support was introduced later as there was no
such implementation available for Lucene.

Type-ahead Suggestions Implementation

In order to support type-ahead suggestions, we base our implementation on the spell check
class as provided with the Lucene library. The AutoCompleter-class takes the terms from

1https://hibernate.onjira.com/browse/HSEARCH-726
2https://hibernate.onjira.com/browse/HSEARCH-776
3https://github.com/javasoze/bobo

53

https://hibernate.onjira.com/browse/HSEARCH-726
https://hibernate.onjira.com/browse/HSEARCH-776
https://github.com/javasoze/bobo

5. EXTENDING WEBDSL WITH SEARCH

a source index as input for suggestion index creation, similar to the spell check class. It
creates a document for each term that appears in a given search field of a source index (a
single term may contain whitespaces, depending on the analysis bound to the field). The
original term is stored in a search field (not tokenized, letter casing preserved), such that
it can be retrieved at the actual moment of suggesting. In case the original term contains
whitespaces, the term is splitted into tokens. This enables multi-token terms to be suggested
when only a single token within the term matches the prefix entered by a user. In order to
search the suggestion index, prefix-fields are created and added to each document. It does so
by constructing prefixes of length 1 to 10 (controllable with a constant MAX_PREFIX_LENGTH)
for each token in the original term. The prefixes are indexed in lower case. Lastly, it adds
a field that stores the frequency of the term in the original source index. The frequency is
used as simple heuristic for popularity. By sorting the suggestions on their frequency in the
source index, more popular terms appear higher in the suggestions list. When requesting
suggestions (see Figure 5.9) for an input i of length l, the AutoCompleter class searches the
index using the prefix-fields. It does so by searching the prefixes of length l, and in addition
prefixes of length l-1 and l-2 (in case l >2). A suggestion document matches whenever
at least 1 prefix matches. Completion suggestions are thus still provided in case the user
makes one or two mistypings.

origTerm

start1
start2
...
start7
start8

freq

PC Hardware

p , h
p c , h a
. . .
hardwar
hardware

43

Index doc

p c h a r d . . input: "pc hard"
field: cat_compl

[pc hard]

[pc] [hard]

analyze text

searchconf.app
. . .
ca tego ry us ing none as ca t _comp l (au tocomp le te)
. . .

Query:
start1:p start2:(pc ha)
start3:har start4:hard

construct query with prefixes of
length l, l-1 and l-2 for each token

Suggestion index

Results:
[PC Hardware]
[PC Headsets]

[Printers]

search; order by similarity, freq descending;
retrieve origTerm for each result

serve
suggestions

split on whitespace

Figure 5.9: Constructing type-ahead suggestions

5.4.5 Sorting and Highlighted Result Summaries

In later stages, we added support for controlling the order of results. By default, results
are sorted by relevance using Lucene’s scoring algorithm, which is based on the Vector
Space Model [26]. The searcher interface was extended with methods to sort on any search
field available. A mapping between the search fields and their type of data is required in
order to sort the results with Lucene. The WebDSL compiler was extended to include this
information to the entity specific searcher classes that are generated. This way, we can sort
the publication in WebLib on number of citations and creation date.

54

Search and Retrieval: Introducing the Searcher Type

We also tackled the presentation of search results. As mentioned in the solution do-
main chapter, Lucene includes a contributed module for extracting fragments from a text
(tailored to a given query) and highlighting of the matched terms. As a searcher object is
being used to keep track of search constraints, we added highlight methods that return a se-
lection of fragments with the constraint values highlighted. It surrounds the matched terms
with (HTML) tags that can be provided as method arguments. However, the fragments that
are returned will contain these (HTML) tags, which in turn will get filtered (encoded) by
WebDSL if outputted as ordinary text. This problem can be worked around by outputting
the text as-is and by filtering the original text prior to highlighting. Since we don’t want
to expose this flow of actions to the developer, we later added a built-in WebDSL template
that can be wrapped around other elements such that it highlights everything that is put be-
tween the brackets, taking a searcher and search field (to base highlighting on) as arguments
(discussed in section 6.5.2).

5.4.6 Search Filters and Namespace Abstraction

Apache Lucene (and Hibernate Search) adopt the notion of filters. A filter is actually a
search result encoded into a bit-set, one bit for each document. By caching the filters, the
result set does not need to be calculated over and over again. Filters are efficiently applied
as bitmask and do not affect the scoring of documents. This is useful when constraints not
contributing to a document’s relevance are to be applied repeatedly. The notion of filters
was also added to the search DSL.

These filters are also used internally for another abstraction we introduced: search
namespaces. With this feature, the value of an entity property can act as namespace iden-
tifier for search. At search time, the searcher interface allows to set the namespace such
that it only targets entities that hold a specified value in the namespace property. For exam-
ple, if we extend the Publication entity in WebLib to have a property ‘language’, acting as
namespace identifier, we would be able to search for publications in a particular language
using the namespace abstraction. The namespace abstraction also manages the suggestion
indexes such that spell and type-ahead suggestions are returned only for the targeted names-
pace. We did not use this feature in WebLib, as it was later added to fulfill the requirements
of Reposearch, which required suggestion retrieval to be scoped to a single namespace (see
Section 7.1).

However, our first implementation of search namespaces needed to be replaced with
a different implementation. We first created multiple indexes using sharding as provided
by the Hibernate Search library, one for each search namespace. It turned out that the
number of shards could not be adapted at runtime, and therefore there was a hard limit on
the number of namespaces. Unfortunately, we could not just set this number to a very high
number. By profiling a deployed WebDSL application, we saw that the number of threads,
open file descriptors and memory usage grew with the number of unused, but configured
shards. Furthermore, our shift to Bobo-Browse for faceting forced us to reconsider the
implementation of search namespaces using shards. It turned out that code changes to
Bobo-Browse were needed in order to work with sharding in Hibernate Search. For this
reason, we reimplemented search namespaces to use a single search index with filtering at

55

5. EXTENDING WEBDSL WITH SEARCH

search time. If used, suggestional indexes are still created for each namespace. This happens
dynamically, so there is no preconfigured limit on the number of search namespaces.

5.5 Configuration: Support All Property Types

The limited existing implementation of search had shortcomings with respect to the data
types that were supported to become searchable: only String compatible types were al-
lowed. At the beginning of the DSL extension process, existing web applications built with
WebDSL already showed the need for search support on other types. One example is search
in YellowGrass, a tag-based issue tracker build with WebDSL. Issues were only searched
on their title and description (both being string compatible properties for the entity Issue),
but not on comments. Comments are modeled as collection property for Issue. So in or-
der to search issues on texts in comments, the textual properties of entity Comment should
be searchable in the scope of the targeted type Issue. In other words: the search fields of
the embedded property type (Comment) should be embedded in the indexed document of the
embedding entity Issue.

5.5.1 Embedded Property Types

Similarly for WebLib, we wanted to be able to search for Publications using the name of
the author. We therefore extended the WebDSL compiler to allow embedded property types
to become searchable (i.e. all properties of type reference or composition, see Section 2.1).
An optional parameter depth was added to the property annotation to control the level of
embedding. With depth set to 1 (the default value used when depth is not specified), it only
indexes searchable, non-embedded typed properties of the embedded entity type. Increasing
the depth one more level will also include the embedded typed (searchable) properties of
the embedded entity type, and so on.

5.5.2 Text Analysis and Named Search Fields

Adding support for embedded search fields was not sufficient to cover index configuration
related functionality. At this stage, all textual data was analyzed using the default Lucene
analysis, optimized for English. Other recall/precision improving techniques, such as the
stemming of tokens, could not be specified yet. Since SOLR provides a powerful frame-
work of analyzer components, being adopted in Hibernate Search, we also adopted this
framework into the search DSL. The specification of an analyzer is fully declarative. An
analyzer consists of at least one tokenizer and optionally one or more token and/or character
filters that comply with SOLR interface. For this part of the search language, we designed
new language constructs (not elaborating on a core language). The analyzer definitions are
defined at the top level, similar to entity definitions. The searchable annotations were ex-
tended with an optional analyzer argument to differ from standard analysis. The analyzer
definition syntax was later extended to support performing different analysis at query and
indexing-time for a single search field. Also, some analyzer components may use file based

56

Towards a DSL for Internal Site Search

resources like synonym and stop-word files. We dedicated a project directory for including
these files (project-path/search/analyzerfiles).

Sometimes it may be required to index the same data multiple times using different
analyzers for different purposes. In WebLib, we wanted to use publication titles both for
searching and type-ahead suggestions. The default analyzer would suffice for searching,
but not for providing suggestions because we wanted the whole title, not the single tokens
within, to act as suggestion candidate. Where we previously allowed only one searchable
annotation on an entity property, the search field was identified by the name of the entity
property. We extended the WebDSL compiler to allow multiple searchable annotations on a
single entity property. To distinguish one search field from another, an argument name was
added to searchable annotation. If this argument is not used, the name of the entity property
will act as name of the search field.

5.5.3 Numeric and Date Properties

Other data types in WebDSL that need special treatment are Date/DateTime/Time and In-
teger/Float. These types need to be preprocessed in such a way that they are useful for
search. We extended the compiler to instruct Hibernate Search to preprocess the DateTime
types by transforming them to a String representation that can be used for sorting and range
queries. Numeric data is, by default, indexed as numeric field for more efficient sorting and
execution of range queries.

5.5.4 Management of Search Indexes

Changes, additions and deletions of data are automatically propagated to the search index
by Hibernate Search. Changes to the search configuration, like changes to search fields
or analyzers, may require the index to be rebuild. For this reason, we added a module
IndexManager for performing such tasks. It has static methods for rebuilding search indexes
for a single, multiple or all entities. This includes methods for rebuilding suggestion indexes
where the entity, field and namespace can be specified. Renewal of faceting index readers
(used by Bobo-Browse) and optimization of search indexes can also be performed. Except
for rebuilding the search indexes, WebDSL manages the renewal of suggestion indexes,
index optimization and renewal of facet index readers automatically. Usage of the Index-
Manager would typically be used to force early renewal of suggestion indexes and facet
readers, which are normally renewed every 12 hours and every 15 minutes respectively.

5.6 Towards a DSL for Internal Site Search

As the domain coverage of the search-related functionality increased during the develop-
ment iterations, we came to a point where most important search features were implemented
and usable through core language constructs. Next step in the development process (Fig-
ure 5.3) was the design of the DSL syntax. At the configurational aspects of search, we
introduced new top level definitions for specification of searchable data, called search map-
pings. Search mappings describe the selection and mapping of searchable data in a concise,

57

5. EXTENDING WEBDSL WITH SEARCH

declarative way. Property annotations, the core language equivalent of search mappings,
would quickly become large and fragmented over the entity definitions. We designed other
language constructs for the initialization, modification and retrieval of search constraints,
results and search meta-data. The WebDSL compiler is extended to transform the ATerms
that flow out of the newly added syntax. During the desugar stage of the compiler, the
ATerms are transformed into core language equivalents (that is, native Java for search and
retrieval; property annotations for search configuration).

When the compiler finishes desugaring, the desugared program (represented by a tree
of ATerms) is further transformed into a tree representation of the eventual Java program to
be compiled (Figure 5.1). Prior to adding syntactic sugar, the compiler was extended with
transformation rules that weave search aspects into the Java code and configuration files to
be generated. For example, for each mapping of an entity property to a search field, the
compiler will add an Hibernate Search annotation (@Field) to the Java class field which gets
generated for the associated entity property. Analyzer definitions are generated once and are
referred by other generated Hibernate Search field annotations. For each searchable entity,
a Searcher class will be generated, which is an extension of the generic AbstractSearcher

providing search functions and data specific to the entity (such as the default search fields
and a method for the retrieval of results having the appropriate return type). Just to give you
a grasp of how these transformations look like, simple examples of Stratego code responsi-
ble for desugaring and code generation are listed in Listing 5.10 and 5.11 respectively. In
the following chapter we will dive into the concrete syntax of the search language.

1 field-to-boost:

2 (QuerySearchField(fld, Some(QueryBoost(e_boost))), e_done) -> exp|[e_done.boost(e_fld, e_boost)]|

3 with e_fld := <field-to-string> fld

Listing 5.10: Stratego rule invoked during desugaring: it transforms a field-boost as part of a search expression
into a core language construct (WebDSL native Java)

1 to-numeric-field-anno:

2 SearchableAnno(sa-args) -> anno|[@org.hibernate.search.annotations.NumericField(forField = "~field-

name")]|

3 where <fetch(?Numeric-Argument())> sa-args

4 ; <fetch(?SA-Argument("name", field-name))> sa-args

Listing 5.11: Code generation by transforming a core language ATerm (left hand side) to a Java ATerm ex-
pressed in concrete syntax (right hand side)

5.6.1 Editor Services

The Spoofax language workbench allows to add editor-services for reference resolving,
code folding, code completion and error checking. You get code highlighting and code
folding for free as it can be derived from the SDF syntax definition (both can be customized).
Error checking and code completion were mainly implemented during the last stages of the
search DSL extension, after the design of the search DSL syntax. We have added various

58

Towards a DSL for Internal Site Search

checks on search configuration and expressions for searching. The errors reported adopt
language and domain concepts. Figure 5.12 show examples of these when using WebDSL
in the integrated development environment Eclipse. Code completion is currently limited
to analyzer definition templates, and completion for names of the SOLR analyzer building
blocks.

Figure 5.12: Examples of errors reported when using Eclipse IDE. Compilation also breaks when these errors
occur and will be reported in the compiler output.

59

Chapter 6

A DSL for Search

6.1 Design of the Language

The concrete syntax of the designed search language can be partitioned into mainly four
categories. A section is dedicated to each of these categories. These include:

• specification of searchable data

• definition of analyzers

• specification of search constraints

• retrieval of queried data and meta data

Because the search language is mostly designed around core languages that were al-
ready part of the WebDSL language (except for the definition of analyzers), there is a core
language equivalent for each syntactic sugar introduced. By adding syntactic sugar, the lan-
guage becomes more expressive with respect to the site search domain. It is not bound to
symbols and structures of a host language (as is the case for internal DSLs), increasing the
conciseness and readability of the code.

However, introducing new language constructs just for the sake of ‘having syntactic
sugar’ cannot be considered a good idea in general. Green and Petre [10] explain the cog-
nitive implications related to programming language design by introducing the so called
cognitive dimension framework. Adding new language constructs would increase the num-
ber of lexemes and structures a programmer needs to remember. Because the appliance of
particular (including expert) functionality is very limited, we decided to leave this func-
tionality solely covered by core language constructs, in this case, calls to Java methods.
This notation is commonly used in WebDSL applications as method calls and function calls
share the same notation. In other cases, adding new language constructs leads to an increase
in the number of symbols to express a particular task (a method call is shorter), lowering
the terseness of the language. Keeping such functionality solely accessible through the
core language (method calls) relieves a user of the language from remembering additional,
possibly lengthier language constructs. Examples include expressions for retrieval of less

61

6. A DSL FOR SEARCH

common search meta-data, advanced hit highlighting and management and retrieval of lists
of constraints (like search filters and facets).

We tried to raise language consistency by reusing keywords and structures for similar
tasks, such that it becomes easier to guess the notation for different objectives for a novice
user. Examples of such include the keyword ‘matching’ applied at query and facet con-
straints and retrieval of suggestions; the keyword ‘with’ for filtering and enabling faceting;
the structure ‘data from searcher’ to retrieve various data from a searcher; a single notation
for ranges in query and facet specification; and the same symbol for boosting search fields at
indexing and query time. Furthermore, we avoided requiring specific arrangements of lan-
guage constructs, which would otherwise increase the cognitive overhead for a developer
needing to remember specific arrangements of lexemes (a hard mental operation).

Finally, the language is designed to be close to the problem domain, i.e. has a good
closeness of mapping. The notation adopts domain concepts without noise from the base
language, and symbols really describe their purpose (i.e. a high role-expressiveness).

6.1.1 Syntax Notation

In remainder of this Chapter, newly added language constructs are presented with an dis-
cussion of the semantics, accompanied with code examples. The syntax of these constructs
are described using the notation as shown in Figure 6.1. All keywords (terminals) start with
a lowercase letter. Non-terminals start with an uppercase letter. The meta-syntax operator
symbols ([,],(,),{,},=,|,+,*) are printed in bold such that they can be distinguished from
equal non-terminal symbols that are part of the syntax to be described.

Grammar = Rule+

Rule = NonTerminal = Rhs

| NonTerminal |= Rhs //additional Rhs for NonTerminal defined elsewhere

Rhs = NonTerminal [TypeConstraint]

| Terminal

| Rhs Rhs

| Rhs Repetition

| {Rhs Terminal} Repetition //sequence of Rhs’s seperated by Terminal

| [Rhs] //optional

| (Rhs) //grouping

| Rhs | Rhs //alternation

| Comment

Repetition = * //repetition: zero or more

| + //repetition: one ore more

NonTerminal = Letter<uppercase> Char* //always starts with uppercase letter

Terminal = Char<lowercase> Char*
TypeConstraint = < Char+ >

Comment = // Char*
Letter = //any of the characters in range a-z and A-Z

Char = //any single character including letters, numbers and symbols

Figure 6.1: Meta-syntax we use to express the syntax of the language. All non-terminals start with uppercase
letter; all terminals start with lowercase letter.

62

Searchable Data Specification

6.2 Searchable Data Specification

Entities are the main data units to store content in WebDSL. Therefore, we choose to map
WebDSL entities as document unit, and entity properties as search fields. If an entity has at
least 1 searchable property, possibly inherited from a super class, all instances of that entity
type will get indexed. As we explained earlier, we have chosen property annotations as core
language for search field specification. By adding the searchable keyword to a property’s
annotations, a search field will be added to the index document for that entity. If at least
one search field is defined for an entity (or in one of its super entities), documents will be
created and kept up to date for each instance of an entity type. Related searchers and search
methods are automatically generated.

As more search features related to the configuration were added, the searchable property
annotations were extended with additional arguments in order to override default configu-
ration for a search field. Taking a search field as base, a search field can:

• hold a single or multiple values (when a property is a collection of elements) for the
same document.

• be declared on any built-in type, declared entity type or collection of entities.

• be identified by a name which, if not specified, is the name of the entity property and
should be unique in the scope of an entity.

• be declared alongside other search fields for the same property (i.e. support for in-
dexing the same data multiple times)

• optionally be accompanied with an analyzer name, which refers to an analyzer defi-
nition that specifies how data should be tokenized/normalized. If no analyzer name
is specified, it uses the default analyzer, or none depending on the type of property
dealing with, more about this in Section 6.3.2.

• be used as source for spell check and completion suggestions

• be boosted with a float number, to control the importance of search fields in the rank-
ing of search results.

• be marked as default search field. The ability to mark search fields as default ones
(overriding the default set being all search fields of an entity) allows more compact
specifications of search constraints.

Search fields can be referenced by their name which, if not specified, is the name of
the mapped entity property. In case such property holds one or more references to other
declared entities, this name acts as prefix for the embedded search fields. Listing 6.2 shows
a version of the data model of WebLib with all properties being searchable. Each indexed
Publication document will now have the following 5 search fields: title, authors.name,
description, releaseDate and nOfCitations. For the Author entity, the search fields are:
name, pubs.title, pubs.description, pubs.releaseDate and pubs.nOfCitations.

In this example, the reason why property Author.publications is not mapped as search
field for Publication is because of the parameter depth controlling at which level search

63

6. A DSL FOR SEARCH

1 entity Publication {

2 title :: String (id, name, searchable)

3 authors -> Set<Author> (searchable(depth=1))

4 description :: WikiText (searchable)

5 releaseDate :: Date (searchable)

6 nOfCitations :: Int (searchable)

7 }

8
9 entity Author {

10 name :: String (id, name, searchable)

11 publications -> Set<Publication> (inverse = Publication.authors,

12 searchable(depth=1, name="pubs")

13)

14 }

Listing 6.2: Data model of WebLib with all properties being searchable using property annotations

field embedding should stop. By default, this is set to 1, meaning that it only adds search
fields that maps to simple type properties of the associated embedded entity.

While the code in Listing 6.2 might still look clean, adding more search field specifi-
cations through annotations impacts the readability of the code. Let’s say we want author
names to be searchable such that people not knowing the exact spelling of a name are still
able to find authors by typing how it sounds like, i.e. using phonetic analysis. Moreover,
we would like to show author names as auto complete suggestions in search boxes. Now,
the specification of the name property would look like this:

1 name :: String (id, name, searchable(default),

2 searchable(analyzer=soundex, name=name_soundex),

3 searchable(analyzer=none, name=name_untokenized,

4 autocomplete),

5)

Listing 6.3: Specification of multiple search fields on a single entity property using property annotations

The size of the property annotations now take the overhand, and indentation is already
tweaked to let the code look more ’clean’. However, the larger property annotations will
cause the property definitions itself to be more fragmented, making it harder to keep the
data model organized. For this reason, we designed new language constructs for configuring
search fields. As we are dealing with a mapping between an entity and index document, we
identify these constructs with the keywords search mapping. A search mapping definition
is bound to a WebDSL entity and can be embedded within an entity definition, or at the top
level by adding the identifier of the entity associated with this search mapping. This allows
a developer to unite multiple search mappings into a separate module (allowing separation
of concerns) or a developer can keep the search mapping and entity definition together when
he prefers locality of the code. The search mapping for the example Author entity would
become:

64

Searchable Data Specification

1 search mapping Author {

2 + name

3 name using none as name_untokenized (autocomplete)

4 name using soundex as name_soundex

5 publications as pubs with depth 1

6 }

Listing 6.4: Search mapping for entity Author

6.2.1 Searchable Data Specification: Syntax

Figure 6.5 shows the basic syntax for search mapping definitions. A search mapping
specification (SearchMappingSpec) can be placed on each line of a search mapping. Each
SearchMappingSpec maps an entity property identified by its name Pid to a search field
with optional configuration parameters, expressed by MappingParts. Additionally, one can
precede a SearchMappingSpec by a +, indicating that this search field is part of the default
collection of search fields used for searching. The optional index keyword is added solely
for cosmetic reasons. It allows to express mappings in some sort of natural form, e.g.:
index title using trigram_analyzer as title_trigram boosted to 10. Finally, the sys-
tem can be configured to have search namespaces based on a property value. At query time,
a namespace constraint can be added which tells the system to only target data in a spe-
cific namespace, such as requesting English spell suggestions in case a language property
is configured to act as namespace separator.

Eid = Id //identifier of entity

Pid = Id //identifier of property

SearchMappingEmbedded = search mapping { SearchMappingSpec* }

SearchMapping = search mapping Eid { SearchMappingSpec* }

SearchMappingSpec = [+] [index] Pid MappingPart* [;]

| namespace by Pid [;]

MappingPart = as Id

| (boosted to|^) Float

| using Id

| ({Annotation ,}+)

| for subclass Id

| [with] depth Int

Annotation = spellcheck

| autocomplete

Figure 6.5: Syntax for search mapping specification

The syntax and semantics of the possible MappingParts are organized in table 6.6. This
table also shows the property annotation equivalents for each search mapping construct.
Some configuration options are exclusively for simple type properties (like String, Text,
DateTime etc), others for reference type properties, which are (collections of) defined entity
types.

65

6. A DSL FOR SEARCH

Concrete Syntax Semantics
as Id

Equivalent:
searchable(name = Id . . .)

overrides the default search field name, or prefix in case
of an embedded search field
default: pId (identifier of the property to be indexed)

+ Pid MappingPart

Equivalent:
searchable(default . . .)

Using ‘+’ explicitly mark a search field as default search
field.
default: If no other search field is explicitly marked as
being default, all search fields for an entity are default
search fields

boosted to Float

^Float

Equivalent:
searchable(boost = FLOAT . . .)
searchable(. . .)^Float

boosts this field at indexing time to value of Float
default: 1.0

using Id

Equivalent:
searchable(analyzer = Id . . .)

specifies which analyzer (Id) to use for preprocessing.
When Id is none, the data is indexed untokenized.
default: Default built-in analyzer, or an analyzer marked
as default. Temporal/numerical types of data are not ana-
lyzed by default.

({Annotation ,}+)

Equivalent:
searchable({Annotation ,}+ . . .)

Search mapping annotations to set additional flags to
search fields. Possible values are "spellcheck" and "au-
tocomplete", allowing the search field to be used for spell
checking or auto completion.

for subclass Id

Equivalent:
searchable(subclass = Id . . .)

specifies which subclass to index
default: Defined type (or inner type in case of collection
properties) of the data element to be indexed

depth Int

with depth Int

Equivalent:
searchable(depth = Int . . .)

specifies the maximum path length to be traversed for
search field embedding
default: 1

all types simple types only reference types only

Table 6.6: Search mapping semantics

66

Specification of Analyzers

6.3 Specification of Analyzers

An analyzer describes how a stream of textual data should be transformed into tokens to
be added to or queried against a search index. The search language allows one to specify
analyzers and refer to them in specification of search fields, as has been done for the search
field name_soundex in Listings 6.3 and 6.4. An analyzer definition is a top-level definition,
meaning that it can be defined anywhere as long as it is not nested. The SOLR framework
of analyzer building blocks is used for specification of analyzers. An analyzer definition
consists of zero or more character filters, one tokenizer and zero or more token filters. A
collections of these filters and tokenizers are supplied with SOLR and are available for
use in WebDSL. This set of tokenizers, character and token filters will cover most require-
ments for tokenization. To name a few, it supports splitting texts into n-grams (building
tokens of length n from adjacent letters); tokenization and token filtering using regular ex-
pressions; expansion of tokens with their synonyms; stemming for a variety of languages
(transforming words into their root form); phonetic matching; reversal of tokens; lower-
casing and many more1. In case it lacks needed functionality, a customized tokenizer or
character/token filter can be created by implementing the intended interfaces from SOLR.
This tokenizer/character- or token filter can then be referenced by using it’s fully qualified
class name in an analyzer definition.

6.3.1 Specification of Analyzers: Syntax

AnalyzerDef = [default] analyzer Id { AnalyzerBody }

AnalyzerBody = AnalyzerBodyDef

| HybridBodyDef

HybridBodyDef = index { AnalyzerBodyDef } query { AnalyzerBodyDef }

AnalyzerBodyDef = CharFilter* Tokenizer TokenFilter*
CharFilter = char filter = {Id .}+ [Args]

Tokenizer = tokenizer = {Id .}+ [Args]

TokenFilter = token filter = {Id .}+ [Args]

Args = ({Argument ,}*)

Argument = Id = String

Figure 6.7: Syntax for analyzer definition

Figure 6.7 shows the syntax for analyzer definitions. The keyword ‘analyzer’ is fol-
lowed by the name of the analyzer and its body containing the references to the analyzer
components: character filters (optional), a tokenizer and token filters (optional). Each ana-
lyzer component is referenced by its class name if the component is provided with WebDSL,
i.e. being part of the SOLR analyzer package (org.apache.solr.analysis). For simplicity
the suffix ‘Factory’, which all of the provided analyzer component class names share, can
be omitted in analyzer definitions.

If the text to be indexed should be analyzed differently than queries entered by the user,
or more general: constraint values, an analyzer may contain a definition for analysis at

1http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters

67

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters

6. A DSL FOR SEARCH

indexing time and one for analysis at query time. Lastly, an analyzer can be marked as
being the default analyzer for search fields. Search field specifications that lack an analyzer
specification will use the default analyzer.

Listing 6.8 shows the definitions of the analyzers named soundex and spell_check. The
Soundex analyzer tokenizes the text using StandardTokenizer, which uses the Unicode Text
Segmentation algorithm as is specified in Unicode Standard Annex #29 2 for tokenization.
Tokens then get normalized by StandardFilter and LowerCaseFilter. The normalized tokens
then get transformed into their phonetic form as is done by the PhoneticFilter, configured
to use the RefinedSoundex algorithm.

1 analyzer soundex{

2 tokenizer = StandardTokenizer

3 token filter = StandardFilter

4 token filter = LowerCaseFilter

5 token filter = PhoneticFilter(encoder = "RefinedSoundex")

6 }

7
8 analyzer spell_check{

9 index {

10 //put shingles in index for length 1, 2 and 3 (suggestions will return =< 3 terms)

11 tokenizer = StandardTokenizer

12 token filter = StandardFilter

13 token filter = LowerCaseFilter

14 token filter = ShingleFilter(minShingleSize="2", maxShingleSize="3",

15 outputUnigrams="true", tokenSeparator=" ")

16 } query {

17 //interpret user query as a single token (i.e. one shingle)

18 tokenizer = KeywordTokenizer

19 token filter = StandardFilter

20 token filter = LowerCaseFilter

21 }

22 }

Listing 6.8: Analyzer definitions for a soundex (phonetic matching) and spell check analyzer

The other analyzer spell_check is special in the sense that it treats data at indexing
time differently than at query time. It is designed to support meaningful spell checking
suggestions on multi-term queries. Tokens extracted from searchable properties are not
only indexed as single terms (unigrams), but also as shingles of 2 and 3 tokens. At query
time, the input is treated as one single term. The spellchecker component will try to find
similar terms in the indexed collection of uni-, bi- and trigram terms. Using the shingle
filter, the spell checker can return meaningful phrase suggestions, because it compares the
input to single and multi-token terms.

6.3.2 Default analyzer

In search mapping specifications, the analyzer argument is optional. If no analyzer is refer-
enced, the default analyzer is used for properties of textual types. This analyzer is equal to
Lucene’s StandardAnalyzer, which tokenizes text based on the Unicode Text Segmentation

2http://www.unicode.org/reports/tr29

68

http://www.unicode.org/reports/tr29

Specification of Constraints

algorithm. It normalizes tokens by removing apostrophes and dots followed by lowercasing
the tokens and removal of English stop words.

While this analyzer suffices for most textual data containing natural language, it might
not be the optimal analyzer for default use. One can override the built-in default analyzer
with any other analyzer definition by inserting the default keyword in front of an analyzer
definition. Listing 6.9 shows an analyzer to be applied as default one for a Dutch web
application.

1 default analyzer stemmed_dutch{

2 tokenizer = StandardTokenizer

3 token filter = StandardFilter

4 token filter = LowerCaseFilter

5 token filter = SnowballPorterFilter(language="Dutch")

6 }

Listing 6.9: A default analyzer for a Dutch web application

Analysis of Numerical and Temporal Data

The non-textual property types Float, Int, Date, DateTime and Time are, by default, analyzed
differently. Float and Integer type properties are indexed as numeric fields, which are a
special type of search fields in the index. It allows sorting and searching ranges to be
performed more efficiently on these fields. Properties of temporal type are first transformed
into a String representation of the form yyyyMMdd for Date; yyyyMMddHHmm for DateTime and
Time. These values are then indexed untokenized (i.e. without any analysis). Still, an
analyzer can be applied to a temporal property type, for example to only index the year
from a Date property.

6.3.3 Predefined Analyzers Bundled with WebDSL

A selection of illustrative analyzers are supplied with WebDSL. These include the default
analyzer coming in two other flavors: one without stop word filter and one for use with a
custom stop word filter. There is also an analyzer for expanding terms with synonyms; one
that splits words into trigrams (tokens of length 3); one for matching phonetically similar
terms; and an analyzer that performs stemming. The analyzer definitions reside in an app-
file included in any new WebDSL project and can be adapted.

6.4 Specification of Constraints

Search and retrieval is done using the new WebDSL type Searcher, which is generated for
each searchable entity and its child classes. A searcher can be constructed and interacted
with using WebDSL’s native Java interface, as has been done during the development of the
search extension. Native Java is chosen to be the core language on which we put syntac-
tic sugar by designing a searcher interaction language for construction of/interaction with

69

6. A DSL FOR SEARCH

searcher instances. The language is designed keeping in mind that a browse or search ses-
sion may be dispersed over multiple page requests involving multiple user actions. Further-
more, constraints may be added or changed on various places in WebDSL, like functions,
pages, actions and templates. While most common functionality is covered by the searcher
interaction language, some functionality is exclusively accessible through Searcher’s meth-
ods. These include methods for management and retrieval of declared constraints values,
debug functionality and some expert features. The full list of methods available for the
Searcher type is included at the end of this chapter in Table 6.29.

6.4.1 Initialization of and Reference to a Searcher

The language allows to specify constraints on initialization of a searcher or on an already
declared searcher captured in a variable (Table 6.10). Initialization of a searcher will set
the first constraint, namely the class of entities to be targeted. Additional constraints can be
specified directly at initialization or later at other places using a reference of a searcher.

Syntax:

SearcherInit = search Id SearcherPart*
SearcherRefMod = ~ Exp<Searcher> SearcherPart+

SearcherPart = ConstraintFilter

| ConstraintDef

| Offset

| MaxResults

| OrderBy

| FacetDef

| SearcherAttributes

| NamespaceConstraint

Search language example Embedded Java equivalent (core language)

var s := search Entry; var s := EntrySearcher();

var s := search Entry matching "static query"; var s := EntrySearcher().query("static query");

var s := ~getBasicSearcher() matching userQuery; var s := getBasicSearcher().query(userQuery);

~s limit 20 offset 20; s.setLimit(20).setOffset(20);

Table 6.10: Syntax: Searcher interaction language

6.4.2 Query Specification

The most common constraints are queries. A set of query types are currently supported
and query constraints can be grouped and combined into boolean queries. The matching

keyword indicates a query constraint and is followed by one or more match groups. A
match group optionally starts with an enumeration of search fields followed by a colon,
and always consists of a query of supported type. Match groups and queries within match
groups can also be grouped using parentheses to allow searching multiple queries for the
same search fields and for combining match groups using boolean operators. Table 6.11
shows the syntax definition.

70

Specification of Constraints

Syntax:

ConstraintDef = matching MatchGroup+

MatchGroup = [{QueryField ,}+ :] Constraint

| [+|-](MatchGroup)

QueryField = Field [Boost]

Field = Id

| ~ Exp

Boost = ^ Exp<Float>

Constraint = [+|-] Query

| [+|-] (Constraint+)

Search language examples Embedded Java equivalent (core language)

search User matching name, nickname: query; UserSearcher().fields(["name", "nickname"].query(query));

~getMovieSearcher() matching

title^10.0,abstract^100.0: (+mustQuery -notQuery);

getMovieSearcher().fields(["title", "abstract"])

.boost("title", 10.0)

.boost("abstract", 100.0)

.must().query(mustQuery);

.mustNot().query(notQuery);

search Product matching +(title, desc: "tablet")

-(~notField: "Apple");

ProductSearcher().startMustClause()

.fields(["title", "desc"]).query("tablet")

.endClause()

.startMustNotClause()

.field(notField).query("Apple")

.endClause();

Table 6.11: Syntax: Specifications of query constraints

Field Selection

All query constraints are performed on one or more search fields. This set of fields can be
enumerated, or left out when the default search fields are to be used (see Section 6.2.1).
The targeted search fields can be specified statically at development time using the search
field names, or dynamically using a tilde followed by a valid WebDSL expression that is
String-compatible. Setting the search fields dynamically allows definitions of more generic
templates and functions. Multiple search fields are separated by a comma.

Field Boosts

The order of search results should reflect the relevance within a search context. Per default,
the Lucene ranking algorithm based on the Vector Space Model is used for sorting the
results. In order to optimize the result ranking, the importance of search fields (relative to
each other) can be changed on indexing time (Section 6.2.1). However, index-time boosting
has some drawbacks. If the boost value of a field has changed, the search index need to be

71

6. A DSL FOR SEARCH

rebuild. Also, a field boost may not be applicable for all contexts the field will be queried
in.

To overcome this, fields can also be boosted at query time by putting a boost suffix to the
fields in a field enumeration. While index-time boosting is a little more efficient, query-time
boosting enables one to boost fields dynamically. Search fields can be boosted differently
in various contexts and might even be set up as user controllable variable in an (advanced)
search user interface.

More Examples

As can be observed from Table 6.11, the size of the method call chain grows quickly in the
native Java equivalents. The search language abstracts away from the diversity of method
calls and replaces them with symbols for grouping, boosting and assignment of occurrences
to clauses (groups of queries). Listing 6.12 shows examples of more advanced (combined)
queries with explanations of the constraints.

1 //Find Movie entities that match "hello" in title or abstract (with matches in abstract

2 //being less important than in the title), but it should not match "goodbye" in any of

3 //the default search fields

4 var x1 := search Movie matching title^100.0,abstract^10.0: +"hello" -"goodbye";

5
6 //Find Movie entities that match "hello" in title or abstract,

7 //but doesnt match "goodbye" in title or abstract

8 var x2 := search Movie matching title,abstract: (+"hello" -"goodbye");

9
10 //Find Movie entities that match "hello" in the default search fields,

11 //but doesnt match "goodbye" in any of the default search fields

12 var x3 := search Movie matching +"hello" -"goodbye";

13
14 //Find materials with (name "metal peroxide") OR

15 //(’some material that has "metal" in desc AND

16 // "peroxide" in title AND OPTIONALLY

17 // (a name or alias with "mp" but NOT "magnesium"))

18 var x4 := search Material

19 matching (descr:+"metal" name:+"peroxide"

20 name,alias:("mp" -"magnesium")

21) name:"metal peroxide";

22
23 //Searching a negative integer

24 var x5 := search User matching credit: (-200);

25 //Searching all except the given integer

26 var x6 := search User matching credit: -(200);

Listing 6.12: Examples of combining queries

6.4.3 Query Types

In Table 6.13, the query types currently supported by the search language are shown. The
query types that are explicitly supported are text queries, range queries and proximity
queries (also known as phrase queries). More query types are supported implicitly when
Lucene’s query syntax is set to be allowed. In addition to the explicitly supported types, it

72

Specification of Constraints

allows fuzzy and wild card queries. The Lucene query syntax is allowed by default, and can
be disabled through a searcher attribute (see next section). Listing 6.14 shows an example
of how to perform a wild card query using the Lucene query syntax, while not allowing this
syntax to be used by the end user.

Syntax:

Query = TextQuery

| ProximityQuery

| RangeQuery

TextQuery = Exp

ProximityQuery = TextQuery ~ Exp<Int>

RangeQuery = RangeOpen RangeLimit to RangeLimit RangeClose

RangeOpen = [//including

| { //excluding

RangeClose =] //including

| } //excluding

RangeLimit = Exp

| * //no limit

Search language examples Embedded Java equivalent (core language)

~s matching title:"singleTerm";

~s matching title:"multiple terms";

~s matching title:userQuery;

~s matching title:getSearchTerm();

s.field("title").query("singleTerm");

s.field("title").query("multiple terms");

s.field("title").query(userQuery);

s.field("title").query(getSearchTerm());

~s matching "should appear next to each other"~0;

~s matching "should appear within 5 tokens"~5;

~s matching -userQuery~5

s.phraseQuery("should appear next to each other", 0);

s.phraseQuery("should appear within 5 tokens", 5);

s.mustNot().phraseQuery(userQuery, 5);

~s matching amount:[* to 0]; //0 or below

~s matching amount:[* to 0}; //below 0

~s matching rating:{6 to *]; //above 6

//above 0 up to value of uMax (inclusive):

~s matching amount:{0 to uMax];

//"AA" and up to "AB" (exclusive):

~s matching eLabel:["AA" to "AB"};

s.field("amount").rangeQuery(null, 0);

s.field("amount").rangeQuery(null, 0, true, false);

s.field("rating").rangeQuery(6, null, false, true);

s.field("amount").rangeQuery(0, uMax, false, true);

s.field("eLabel").rangeQuery("AA", "AB", true, false);

Table 6.13: Syntax: Specification of queries (various types)

6.4.4 Searcher Attributes

Additional settings related to a searcher can be set using searcher attributes. Currently,
there are 2 settings that can be controlled. With the attributes lucene and no lucene one can
(dis)allow the use of Lucene query syntax (default: allowed). The other attributes strict

matching and loose matching determine if the tokens within a single query must all match
or if at least 1 token should match (default) respectively. This might seem similar to the

73

6. A DSL FOR SEARCH

1 var prefix := "";

2
3 form {

4 "Search brands starting with:"

5 input(prefix)

6
7 submit action{

8 var query := Searcher.escapeQuery(prefix) + "*";

9 var s := search Brand matching name: query;

10 return resultPage(s);

11 } { "search" }

12 }

Listing 6.14: Wild card query defined in Lucene query syntax while disallowing it to end-users (by escaping
the query)

use of boolean operators on MatchGroup or Constraint constructs. The difference lies in
the fact that boolean operators control the occurrence of constraints as a whole, while the
‘matching’ search attribute determines how tokens within a single query are to be combined
by the query parser.

Syntax:

SearcherAttributes = [{SearcherAttribute ,}+]

SearcherAttribute = strict matching

| loose matching

| lucene

| no lucene

Search language examples Embedded Java equivalent (core language)

~s matching query [strict matching];

~s [no lucene]

~s [loose matching, lucene]

s.query(query).strictMatching(true);

s.allowLuceneSyntax(false);

s.allowLuceneSyntax(true).strictMatching(false);

Table 6.15: Syntax: Searcher attributes

6.4.5 Sorting Results

The order of search results retrieved is determined by the ranking algorithm of Lucene.
This behavior can be overridden by sorting on the values of search fields. This is useful for
contexts in which relevance is related to a quantitative or temporal value, such as product
prices and ratings or post-dates of articles. Sorting results using the searcher language
(Table 6.16) is similar to other query languages.

Multiple levels of sorting are allowed, meaning that if a set of documents share the same
values with respect to ordering based on the first sorting field, the second field will then be
used to order the subset, etc. By default the relevance score will always be used as last
sorting field in the chain.

74

Specification of Constraints

Syntax:

OrderBy = order by {SortExp ,}+

SortExp = Field [Direction]

Direction = asc | ascending | desc | descending

Search language examples Embedded Java equivalent (core language)

~s matching userQuery order by price asc;

~s matching userQuery order by rating desc, price asc;

~s order by ~srtFld descending;

s.query(userQuery).sortAsc("price");

s.query(userQuery).sortDesc("rating")

.sortAsc("price");

s.sortDesc(srtFld);

Table 6.16: Syntax: Sorting search results

6.4.6 Filtering

The searcher language has language constructs to setup filters. Filters are different from
queries and become attractive when constraints will repeatedly be applied. Filters are not
taken into account for result ranking. Most search engines that process queries by com-
bining lists of documents each matching some criteria (posting lists). A filter relieves the
search engine from looking up documents in the index and from combining them once a fil-
ter has been initialized. A filter should be seen as a result set (documents) of a query, where
each bit represents a document in the index. Filters are cached in memory and managed by
Hibernate Search which is configured to hold at most 128 megabytes of hard references to
filters. The rest of cached filters will be soft references that may be disposed on garbage
collection performed by the Java virtual machine.

Syntax:

ConstraintFilter = with filter[s] {FieldFilter ,}+

FieldFilter = Field : TextQuery

Search language examples Embedded Java equivalent (core language)

~s with filter isPublished:true;

~s with filters lang:"EN", ~fld:value;

s.addFieldFilter("isPublished", true);

s.addFieldFilter("lang", "EN").addFieldFilter(fld, value);

Table 6.17: Syntax: Adding constraint filters

The applicability of filters is currently limited to simple field-query pairs (syntax in
Table 6.17), where the query is an ordinary text query and thus analyzed using the analyzer
bound to the targeted field. When using a filter, the searcher attributes also apply to the
filtered query.

75

6. A DSL FOR SEARCH

6.4.7 Search Namespaces

As described in section 5.4.6, WebDSL is extended with the notion of search namespaces.
An entity property can be set up to act as namespace identifier meaning that the set of names-
paces for an entity is equal to the set of unique values that exist for the targeted property.
By assigning a namespace to a searcher instance, the set of results will be restricted to only
contain entities with the specified namespace value. Current search namespace implemen-
tation is limited to target a single namespace only, or all namespaces when no namespace
constraint is set.

Syntax:

NamespaceConstraint = in namespace Exp

Search language examples Embedded Java equivalent (core language)

~s in namespace:"EN";

search Article in namespace userSelectedTopic;

s.setNamespace("EN");

ArticleSearcher().setNamespace(userSelectedTopic)

Table 6.18: Syntax: Adding namespace constraint

6.4.8 Pagination

In order to limit the number of results shown on a result page the starting offset (zero-based)
and maximum number of results are controllable. Syntax and examples are shown in Table
6.19.

Syntax:

Offset = offset Exp<Int>

MaxResults = limit Exp<Int>

Search language examples Embedded Java equivalent (core language)

~s limit 10;

~s offset 20 limit 10;

~s limit 10 offset (page-1)*10;

s.setLimit(10);

s.setOffset(20).setLimit(10);

s.setLimit(10).setOffset((page-1)*10);

Table 6.19: Syntax: Pagination over the result set

6.4.9 Faceted Search

Presenting facets will add organization to a browsable data collection such as search results.
We implemented faceting as the presentation of the top n terms for some search field within
the currently browsed context, where the context is a Searcher instance with its set of con-
straints (i.e., queries, filters, search namespace, and already selected facets). Retrieval and

76

Specification of Constraints

selection of facets is done using Facet instances, another new type. A single facet holds: its
value, being the value of the associated term from the search index or a specified range in
case of range faceting; its hit count within the currently browsed collection; and selection
information that describes if a facet is currently selected with its occurrence type (must/must
not/should match).

method description
getFieldName() returns the field name of the facet
getValue() returns the value of the facet
isSelected() returns true when this facet is selected in the searcher
should(), isShould() Set/check the occurrence type. Should makes the facet

constraint optional, but at least one facet for this field
should match. (equal to matching ∼f.getFieldName():
f.getValue())

must(), isMust() Set/check the occurrence type. Must means that a
document will only match if and only if this facet
does match. (equal to matching ∼f.getFieldName():
+f.getValue())

mustNot(), isMustNot() Set/check the occurrence type. Must not means that
a document will only match if and only if this facet
does not match. (equal to matching ∼f.getFieldName():
-f.getValue())

getValueAsFloat()

getValueAsDate()

getValueAsInt()

helper methods for retrieval of value in appropriate type.

Table 6.20: Methods available in the Facet type

How it works

Any search field can be used for faceting. Be aware that the facet values to be presented
in the user interface will be equal to the terms as they appear in the search index. It might
therefore be required to add an additional search field solely for faceting that has no tok-
enizing/normalization applied.

In order to retrieve a list of Facets, faceting must first be enabled on a searcher. This
is done by specifying which field(s) to use for faceting and how many facets to retrieve at
most. In case of range facets, the number of specified ranges denote the number of facets
to be retrieve, i.e., one facet for each range. Next, facets can be retrieved from a searcher
by using the field name on which faceting was enabled. The retrieved facets can then be
used as additional constraints on the facet-enabled searcher, which is similar to adding an
additional query constraint, except that no boolean operators (+/-) are allowed. Listing 6.21
is a minimal example of a search page with faceting for product categories.

77

6. A DSL FOR SEARCH

1 define searchbar(){

2 var query := "";

3 form {

4 input(query)

5 submit doSearch() {"search"}

6
7 action doSearch() {

8 //construct a searcher and enable faceting on categories.name, limited to 20 top categories.

9 //more facets can be enabled by separating field(topN) facet definitions by a comma

10 var searcher := search Product matching query with facets categories.name(20);

11 return search(searcher);

12 }

13 }

14 }

15
16 define page search(searcher : ProductSearcher){

17 var results : List<Product> := results from searcher;

18 var facets : List<Facet> := categories.name facets from searcher;

19
20 header{"Filter by product category:"}

21 for(f : Facet in facets){

22 facetLink(f, searcher)

23 }separated-by{" "}

24
25 showResults(results)

26 }

27
28 define facetLink(facet: Facet, searcher: ProductSearcher){

29 submitlink narrow(facet){

30 if(facet.isSelected()){ "+" }

31
32 output(facet.getValue())

33 "(" output(facet.getCount()) ")"

34 }

35
36 action narrow(facet : Facet){

37 if (facet.isSelected()) {

38 searcher.removeFacetSelection(facet);

39 } else {

40 ~searcher matching facet.must();

41 }

42 goto search(searcher);

43 }

44 }

Listing 6.21: Search page with faceting

Faceting syntax

Table 6.22 illustrates the syntax for faceting and Table 6.20 the available methods for the
Facet type. The reason for not allowing use of boolean operators on facet selection is
mainly transparency. The occurrence operator is maintained in the facet itself. If we would
allow boolean operators in a FacetSelection construct, the effect when using no boolean
operator would become unclear: will it set the facet occurrence to should (similar to query
specification) or will it respect the occurrence as set in a facet?

78

Data and Meta-data Retrieval

Syntax:

FacetDef = with facet[s] {FacetExp ,}+

FacetExp = Field (TopN)

| Field ({RangeQuery ,}+)

TopN = Exp<Int>

RetrieveFacets = Field facets from Exp<Searcher>

MatchGroup |= FacetSelection

FacetSelection = Exp<Facet|List<Facet>|Set<Facet>>

Search language examples Embedded Java equivalent (core language)

~s with facets authors.nameFull(20), year(10);

~s with facets year([* to 2010},[2010 to *]), genre(10);

~s with facet ~facetField(cnt);

s.enableFaceting("authors.nameFull", 20)

.enableFaceting("year", 10);

s.enableFaceting("year", "[* to 2010},[2010 to *]")

.enableFaceting("genre", 10);

s.enableFaceting(facetField, cnt);

nameFull facets from s;

~facetField facets from s;

s.getFacets("nameFull");

s.getFacets(facetField);

~s matching price: [lower to upper], facetList;

//must is default occurrence of a facet

~s matching someFacet.must(); //~s matching someFacet;

~s matching someFacet.mustNot();

~s matching someFacet.should();

s.field("price")

.rangeQuery(lower,upper)

.addFacetSelection(facetList);

s.addFacetSelection(someFacet.must());

s.addFacetSelection(someFacet.mustNot());

s.addFacetSelection(someFacet.should());

Table 6.22: Syntax: Enabling, retrieving and selection of facets

6.5 Data and Meta-data Retrieval

This section describes how and which data can be retrieved from searcher instances and
other facilities. During the design of the search syntax, we decided to add syntactic con-
structs for the most common ‘getters’ of search (meta-)data, namely the search results,
search time, result size and facets. Additionally, we added syntax for retrieval of sugges-
tions and hit highlighting for a given text.

Exp |= RetrievalExp

RetrievalExp = RetrieveResults

| RetrieveFacets

| RetrieveSuggestions

| ResultSize

| SearchTime

| HighlightHits

Figure 6.23: Available retrieval expressions

79

6. A DSL FOR SEARCH

6.5.1 Retrieval of Results, Result Size, Search Time and Facets

The basic syntax format for retrieval of data is by telling what to retrieve from which
searcher. Table 6.24 is self-explanatory.

Syntax:

RetrieveResults = results from Exp<Searcher>

ResultSize = count from Exp<Searcher>

SearchTime = searchtime from Exp<Searcher>

RetrieveFacets = Field facets from Exp<Searcher>

Search language examples Embedded Java equivalent (core language)

searchResults := results from s;

var r : List<Post> := results from search Post matching q;

var c : Int := count from s;

var t : String := searchtime from s;

var f : List<Facet> := category facets from s;

...:= s.results();

...:= PostSearcher().query(q).results();

...:= s.count();

...:= s.searchTime();

...:= s.getFacets("category");

Table 6.24: Syntax: Retrieval of searched data

6.5.2 Presenting Relevant and Highlighted Fragments

The presentation of results can greatly reduce the required effort for an information seeking
user. By presenting document surrogates (see Section 3.1.5) with elements relevant to the
search context, a user can quickly see why a search result is considered relevant by the
system. By providing a text and search field, a searcher can extract the most interesting
fragments from the supplied text. It does so by analyzing the given text for query matches
(for the query constraints as set in the searcher) using Lucene’s Highlighter component. It
won’t highlight constraints set through a filter, namespace or facet selection, as these type
of constraints are valid for all results

When using native Java expressions, the fragment length, number of fragments, frag-
ment separator and surrounding tags for hit highlighting can be adapted using one of the
available highlighter methods as shown in Table 6.25. Different method names control the
behavior regarding HTML-tag preservation and the number of characters to analyze.

Highlighting Syntax

Common highlight methods that are available through native Java are covered by syntactic
equivalents as shown in Table 6.26.

Workaround HTML Filtering

Unfortunately highlighting comes with a caveat. It requires a little trick to workaround
HTML filtering which is performed by WebDSL (a feature that prevents HTML and javascript

80

Data and Meta-data Retrieval

Highlight Method Signatures

$mode$(field : String, toHighLight : String) : String

$mode$(field : String, toHighLight : String, preTag : String, postTag : String) : String

$mode$(field : String, toHighLight : String, preTag : String, postTag : String, fragments : Int,

fragmentLength : Int, separator : String) : String

Mode Description
highlight Highlight all matches for a given text, analyzing at most

50*1024 characters. Might break HTML-tags.
highlightFullText Similar to highlight, except that it analyzes the whole text

(less efficient for texts larger than 50*1024 characters).
highlightHTML Similar to highlight, except that it preserves HTML-tags.
highlightFullHTML Similar to highlightFullText, except that it preserves

HTML-tags.
Parameter Description
field The search field to be used for finding hits.
toHighLight The text to be analyzed for highlighting/fragment selec-

tion.
preTag The tag to be inserted before a hit.

default:

postTag The tag to be inserted after a hit.
default:

fragments The number of fragments to extract from the given text.
default: 3

fragmentLength The maximum fragment length in characters a fragment
should have (last token will be left out if exceeds this
value).
default: 80

separator The text to be put between fragments
default: " ..."

Table 6.25: Highlight methods

injection). The following example shows what happens if we output highlighted text the or-
dinary way.

outputting highlighted text the ordinary way:
output(highlight text: result.text from s)

...will result in highlight tags being escaped at runtime:
a query match

...while this is what we want:
a query match

81

6. A DSL FOR SEARCH

Syntax:

HighlightHits = highlight Field : Exp<String> HighlightPart+

HighlightPart = FromSearcher

| HighlightAttributes

| Tags

FromSearcher = from Exp<Searcher>

Tags = with tags Exp<String> , Exp<String>

HighlightAttributes = [{HighlightAttribute ,}+]

HighlightAttribute = HTML

| full text

Search language examples Embedded Java equivalent (core language)

var hl := highlight title: post.title from s;

var hl := highlight cnt: post.content from s [HTML];

var hl := highlight cnt: post.content from s

with tags "", "";

var hl := highlight cnt: post.content

[full text, HTML] from s;

...:= s.highlight("title", post.title);

...:= s.highlightHTML("cnt", post.content);

...:= s.highlight("cnt", post.content,

"", "");

...:= s.highlightLargeHTML("cnt", post.content);

Table 6.26: Syntax: Result highlighting

In order to workaround the HTML-filtering, the text to be used as input for highlighting
should first be rendered to a String such that HTML-tags within the input text are escaped
properly. The pre-rendered text can then act as input for highlighting. The result of high-
lighting should then be rendered without escaping HTML. This is done using WebDSL’s
rawoutput template.

In order to not expose this caveat to WebDSL users, we added ready-to-use template def-
initions to the built-in templates that capture this work-flow. The template highlight(searcher,

field){ elements } can be put around elements and will only highlight hits in the rendered
elements. Another template with signature highlightedSummary(searcher, field, text)

extracts and outputs at most 3 fragments for the supplied text with the hits highlighted. The
definitions of these built-in templates are shown in Listing 6.27.

6.5.3 Retrieval of Suggestions

Both spell and type-ahead suggestions can be retrieved when search fields are configured
for that purpose using the spellcheck or autocomplete annotations as discussed in Section
6.2.1. Suggestion services use the tokens as they are tokenized by the analyzer specified
for the search field. Controllable variables for suggestion retrieval are the search field(s)
to use as suggestion source, the number of suggestions and, if configured, the targeted
search namespace. For spell corrections the similarity, a measure between 0 an 1 based
on Levenhstein edit distance, can also be provided (default 0.7). Table 6.28 shows the
syntax for retrieving suggestions. The core language equivalents are accessible through
static methods.

82

Data and Meta-data Retrieval

1 //Tries to highlight the elements inside, not touching the html tags inside

2 //(highlighter invoked to ignore html tags). If nothing is highlighted, it

3 //just renders elements

4 define highlight(s : Searcher, fld : String){

5 var rendered := rendertemplate(elements);

6 var renderedHL := if(s != null) //get a single fragment without disposing text

7 s.highlightLargeHTML(fld, rendered, "", "", 1, 10000000, "")

8 else "";

9 if(renderedHL != null && renderedHL.length() > 0) {

10 rawoutput(renderedHL) [all attributes]

11 } else {

12 rawoutput(rendered) [all attributes]

13 }

14 }

15
16 //Outputs a summary surrogate for the given text ’txt’ based on constraints in searcher ’s’

17 //for search field ’fld’. A result surrogate will consist of at most 3 fragments of max 80

18 //characters seperated by ’... ’.

19 //Hits are surrounded by tags HIT

20 define highlightedSummary(s : Searcher, fld : String, txt : String) {

21 var decorated := highlight ~fld: txt from s with tags ("HLOPENTAG","HLCLOSETAG") [HTML];

22 var prerendered := rendertemplate(output(decorated))

23 var tagsfixed := prerendered.replace("HLOPENTAG", "")

24 .replace("HLCLOSETAG","");

25
26 rawoutput(tagsfixed) [all attributes]

27 }

Listing 6.27: Definition of the built-in highlight templates

Syntax:

Eid = Id //Id of entity

RetrieveSuggestions = Eid corrections MatchTerm {SpellPart}*
| Eid completions MatchTerm {AutocompletePart}*

MatchTerm = matching {Field ,}+ : Exp<String>

SpellPart = MaxResults | NamespaceConstraint | Similarity

AutocompletePart = MaxResults | NamespaceConstraint

MaxResults = limit Exp<Int>

NamespaceConstraint = in namespace Exp

Similarity = similarity Exp<Float>

Search language examples Embedded Java equivalent (core language)

var sgs : List<String> := ...

Movie completions matching title_ac: query;

Topic completions matching name_ac, alias_ac: query

limit 20;

Topic corrections matching spell: query

similarity 0.6;

Topic corrections matching spell: query

limit 5 in namespace "sience";

var sgs : List<String> := ...

MovieSearcher().autoCompleteSuggest(query,

"title_ac", 10);

TopicSearcher().autoCompleteSuggest(query,

["name_ac","alias_ac"], 20);

TopicSearcher().spellSuggest(query,

"spell", 0.6, 10);

TopicSearcher().spellSuggest(query,

"sience", "spell", 0.7, 5);

Table 6.28: Syntax: Retrieval of spell and type-ahead suggestions

83

6. A DSL FOR SEARCH

6.5.4 Method Overview for the Searcher Type

Most common functionality of the Searcher type has been discussed during this chapter.
Some additional methods for debugging and management and retrieval of constraint values
are available that have not yet been explained. Table 6.29 shows all available Searcher
methods with explanations of their purpose. The methods are grouped by concern.

Method Description Default

Combining queries (boolean queries):
must() Adds a query definition (empty, to be specified) with occurrence set to must (AND) to

the current clause
mustNot() Adds a query definition (empty, to be specified) with occurrence set to must not (NOT)

to the current clause
should() Adds a query definition (empty, to be specified) with occurrence set to should (OR) to

the current clause
startMustClause() Adds a child clause (must) to the current clause. The new child clause becomes the

current clause
startMustNotClause() Adds a child clause (must not) to the current clause. The new child clause becomes the

current clause
startShouldClause() Adds a child clause (should) to the current clause. The new child clause becomes the

current clause
endClause() The parent of the current clause becomes the current clause again

Field selection:
defaultFields() Sets the search fields for the current query and future queries to the default search fields
field(String fld) Sets the search field for the current query and future queries to fld defaultFields()
fields(List<String> flds) Sets the search fields for the current query and future queries to flds defaultFields()
getFields() Returns the fields set for the current query
boost(String, Float) Sets the boost value for a field in current and future queries 1.0

Note: On initialization of a Searcher, the fields are set to the default search fields as configured in the mapping. Query-time boosts are 1.0 if
not overridden. Changing the fields/boosts with one of these methods will change the search fields/boosts for the current query and subqueries
not yet defined within a searcher instance. Queries already defined are untouched.

Query specification:
phraseQuery(Object q, int s) Sets the current query to a phrase query q with slop s which controls how many tokens

may appear between subsequent query tokens
regexQuery(String q) Experimental feature for querying using a regular expression q
matchAllQuery() Sets the current query to just match all documents (useful for faceting over an unre-

stricted data set)
query(Object) Sets the current query to a text query
rangeQuery(Object min, Object

max)

Sets the current query to a range query from min to max (inclusive)

rangeQuery(Object min, Object

max, boolean inclMin, boolean

inclMax)

Sets the current query to a range query with in- or exclusive bounds

moreLikeThis(String likeText) Calls moreLikeThis(...) with minWordLen = 5, maxWordLen = 30, minDocFreq = 1,
maxDocFreqPct = 100, minTermFreq = 3, maxQueryTerms = 6.

moreLikeThis(String

likeText, int minWordLen, int

maxWordLen, int minDocFreq, int

maxDocFreqPct, int minTermFreq,

int maxQueryTerms)

Will set the current query to an advanced generated query, based on likeText. It does so
by trying to extract interesting terms from likeText. The parameters control this term
extraction. For explanation on these parameters, see 3

getQuery() Returns the main query as String, being the first query set in a searcher
escapeQuery(String) Escapes Lucene syntax symbols for a given String

Search attributes
allowLuceneSyntax(boolean) (Dis)allow lucene syntax. Applies to query and filters true
strictMatching(boolean) All tokens within a query must (true) match or at least one should match (false) false

Filters
addFieldFilter(String fld,

String val)

Adds a field filter

removeFieldFilter(String fld) Removes filter for field fld

3http://lucene.apache.org/core/old_versioned_docs/versions/3_5_0/api/contrib-queries/org/

apache/lucene/search/similar/MoreLikeThis.html

84

http://lucene.apache.org/core/old_versioned_docs/versions/3_5_0/api/contrib-queries/org/apache/lucene/search/similar/MoreLikeThis.html
http://lucene.apache.org/core/old_versioned_docs/versions/3_5_0/api/contrib-queries/org/apache/lucene/search/similar/MoreLikeThis.html

Data and Meta-data Retrieval

clearFieldFilters() Removes all field filters
getFilteredFields() Get all fields used for filtering
getFieldFilterValue(String fld) Retrieve value of field filter

Faceting:
enableFaceting(String fld, int

topN)

Enables faceting on field fld returning the top-n terms for that field

enableFaceting(String fld,

String ranges)

Enables faceting on field fld capturing one or more ranges. Ranges are encoded as
String, separated by commas, using the same syntax as RangeQuery (see Table 6.13)

getFacets(String fld) Retrieves the list of fld Facets (faceting must be enabled first on fld)
getFacetSelection() Retrieves the list of all Facets that have been selected (i.e. filtered)
getFacetSelection(String) Retrieves the list of fld Facets that have been selected (i.e. filtered)
addFacetSelection(Facet) Selects a Facet, i.e. adds the facet as additional constraint
addFacetSelection(List<Facet>) Selects a list of Facets
removeFacetSelection(Facet) Removes a single Facet from the selection
clearFacetSelection() Removes all facets from the facet selection
clearFacetSelection(String fld) Removes only the fld facets from the facet selection

Search namespaces:
setNamespace(Object) Sets the search namespace, i.e. restricting results to a single namespace null
removeNamespace() Removes search namespace constraint
getNamespace() Returns the namespace constraint currently set

Pagination:
setOffset(int) Sets the starting offset of results 0
getOffset() Returns the starting offset
setLimit(int) Sets the (maximum) number of results to retrieve 50
getLimit() Returns the limit

Sorting:
sortAsc(String fld) Specifies an additional/initial sorting field, sorting results using a field’s value in as-

cending order
sortDesc(String fld) Specifies an additional/initial sorting field, sorting results using a field’s value in de-

scending order
clearSorting() Resets the sorting to default Lucene ranking

Result/Search data retrieval:
results() Retrieve the search results as a list of entities of the targeted type
count() Returns the total number of hits (independent of pagination)
searchTime() Returns a String representation of the search execution time
searchTimeMillis() Returns the search execution time in milliseconds (Integer)
searchTimeSeconds() Returns the search execution time in seconds (Float)
getQuery() Returns the main query as String, being the first query set in a searcher

Serialization:
asString() Serializes this searcher to a String
fromString(String) Constructs a searcher from a String
toParamMap() Serializes to a map of key-value pairs (required for serialization between page requests

by WebDSL)
fromParamMap(Map<String,

String>)

Constructs searcher from a parameter map of key-value pairs (used by WebDSL inter-
nally)

Debugging:
scores() Returns a list of floats that represent the score for each result
explanations() Returns a HTML fragment with detailed score information. Usage: rawoutput(

searcher.explanations())
luceneQuery() Returns a String representation in Lucene syntax of the eventual query that is used for

searching

Miscellaneous:
reset() Resets a Searcher instance, removing all constraints
instanceOf(String tp) Checks if a Searcher is instance of a given type (type name as String), for example:

s.instanceOf("MovieSearcher")

Table 6.29: Overview of Searcher methods

85

6. A DSL FOR SEARCH

6.6 Index Maintenance Tasks

While data and search index are kept synchronized by Hibernate ORM and Hibernate
Search, there are situations in which management of the search indexes may be required.
For this reason an index manager is generated that can be used from within the web appli-
cation for search index-related tasks.

6.6.1 What is Automated Regarding Search Indexes

An index document will be created for each searchable entity that is created and persisted.
On creation of such document, all search field values (including embedded ones) are re-
trieved from the data store and evaluated in case of an expression for a derived property.

Synchronization of Data Changes to the Search Index

Entity changes are also tracked for related changes to searchable data. In case there is a
change in the searchable data of an entity, its associated document will be recreated and thus
all search field values are retrieved/evaluated again. Similarly, it does this for all entities for
which the system knows it has searchable properties which depend on this changed data.
However, this means that the system should know about such dependencies. Searchable
entity properties of simple type will work fine, as they are defined by the search mapping.
Searchable properties of reference or composite type (i.e. mapping embedded search fields)
require the embedded entity to have pointers to the owning (embedding) entity, such that
the system can determine which entities have (search) dependencies on a changed entity.
In order to update the search documents automatically on a change of an embedded entity
the current implementation requires to have an inverse relation on one side of the relation
between properties. The relation between Author and Publication in WebLib (Listing 6.2)
is such an example. Using the inverse property annotation, a Publication entity will get
re-indexed if searchable data in one of its author entities changes. If an inverse relation
was missing in this case, a Publication entity would only be re-indexed when a searchable
property value within that entity itself changes. A forced re-indexation from within app-
code can be performed by calling the static method IndexManager.reindex(Entity).

Automatic Renewal for Suggestions and Faceting

Facet, auto-complete and spell check facilities all use the search index as primary data
source. For faceting, special index readers are automatically constructed on runtime with
the appropriate instrumentation for the search fields used for faceting. These readers are
renewed as the set of faceting specifications grow at runtime. Furthermore, they are checked
for index changes every 15 minutes, such that changed data is reflected by the index readers
used for faceting. Faceting data may thus become out-dated at some time if searchable
data has changed. It may take up to 15 minutes at most to see these changes reflected in
faceting contexts. An early renewal of the facet index readers can be forced by calling
IndexManager.renewFacetIndexReaders() from within app-code.

86

Index Maintenance Tasks

Both spell and type ahead suggestion indexes are constructed automatically and get
renewed if the search index changed. It checks for changes every 12 hours by default. In
order to differentiate from this interval, the IndexManager offers methods for renewal of the
suggestion indexes which are shown in table 6.31.

6.6.2 What is not Automated

In case application code is updated with changes made to the search configuration, an the
existing search index that is constructed using older search configuration may become in-
compatible with the new configuration. A rule of thumb is to rebuild search indexes for
an entity when new search fields are added for that entity or when the textual analysis per-
formed at indexing time has changed. WebDSL does not do this automatically, because
it renders the search functionality useless during index rebuild. Furthermore, re-indexing
is likely to be a resource intensive task, as it will fetch all persisted entities and related
data used for searching. It uses the MassIndexer of Hibernate Search 4 internally, spawning
multiple threads for fetching and indexing.

Reindexing can be initiated from within a running web application, sharing the same
servlet container instance (virtual machine). This is done by invoking IndexManager.reindex(),
although it is recommended to perform an index rebuild in a separate VM with sufficient
memory allocated. Initiation of an index rebuild outside a servlet container is done us-
ing the ant build file or the webdsl-reindex script for *nix platforms only which also fixes
file-permissions of the index directory. These files are included in the deployed web ap-
plications and should run on same machine serving the web application. The amount of
Java heap space to be allocated can be set at the beginning of re-indexation and progress
information is printed to the console during this job (Figure 6.30)

Figure 6.30: Re-indexing

4http://docs.jboss.org/hibernate/search/3.4/reference/en-US/html_single/

#search-batchindex-massindexer

87

http://docs.jboss.org/hibernate/search/3.4/reference/en-US/html_single/#search-batchindex-massindexer
http://docs.jboss.org/hibernate/search/3.4/reference/en-US/html_single/#search-batchindex-massindexer

6. A DSL FOR SEARCH

Method Description Invoked
every

Reindexing search index:
reindex() Rebuilds the whole search index for all entities, including suggestion indexes. This is a

memory intensive job for large datasets. Indexing progress is outputted to console
reindex(Entity ent) Forces re-indexation of a single entity instance ent

indexSuggestions() Rebuilds the all suggestion indexes 12 hour
indexSuggestions(List<String>

namespaces)

Rebuilds the suggestion indexes for the given namespaces and the non-namespace aware
suggestion indexes

renewFacetIndexReaders() Forces renewal of facet index readers. useful after data changes to be reflected instantly 15 min
optimizeIndex() Performs optimizations by Lucene to the search index 12 hour

Table 6.31: Overview of IndexManager methods

88

Chapter 7

Evaluation

In order to evaluate the domain-specific language extension on completeness and expres-
siveness we developed a demo project WebLib during development. In later stages, with
syntactic abstractions implemented, two case studies were performed. In one case study
we created a new web application for searching source code repositories. The other case
study comprises extensions to an existing large digital library built with WebDSL. We also
analyze search-related code from a different, non-WebDSL, web application to illustrate the
effectiveness of the search DSL.

7.1 Case Study: Reposearch

During the master’s project presented in this thesis, an idea came to mind to have a web-
based search platform for the code repositories maintained within SERG (TU Delft Software
Engineering Research Group).

Imagine 2 colleague developers Peter and Bob. Bob is currently busy adopting a log-
ging framework into a project. Peter, already familiar with the framework, likes to show
how they set up some of the powerful features of that framework during previous projects.
Unfortunately, they are currently not behind Peter’s desk and there is no easy access to
the desired examples. Moreover, he doesn’t know the exact files to look for. He vaguely
remembers some of the names they used as log profiles.

Now, in order to get the desired code snippets Peter would normally have to download
the source code from the repository, requiring him to remember or look up the repository
URL. In order to search and view the source code easily, a development environment with
search capabilities should be at hand. Depending on the system’s hardware and implemen-
tation of search within the working environment, it might take another significant amount
of time to get the results presented, or no results in case of a typo for which he needs to
rephrase the query and start the search again. The idea of Reposearch1 is to relieve the
developer from these setup troubles and assist its users during query formulation by serving

1http://codefinder.org

89

http://codefinder.org

7. EVALUATION

code identifiers as type-ahead suggestions. We avoid requiring users to use a special query
syntax for project, repository or programming language selection. By typing only a prefix
of the targeted identifier and the selection of filters afterwards should direct a user to the
intended code fragments.

A code search engine (CSE) should provide easy access to code fragments. Looking up
code snippets is useful to developers for a number of reasons. It helps:

• understanding the meaning and working of software artifacts (reverse engineering)

• finding code for reuse (e.g. a previously applied workaround)

• finding usages of particular implementations (e.g. code that is potentially affected by
a bug)

• finding the source of errors

• analyzing the impact of a refactoring

A web-based CSE also adds the capability for sharing code searches or snippets by a
URL, improving code accessibility and collaboration.

7.1.1 Desired and Available Data

Code snippets are the targeted units of information. Data bound to code fragments include:

• The actual source code itself

• The file containing the code fragment, and therefore

– The extension of the file they appear in (inferring the language of the source
code)

– The repository the code fragment belongs to
– Its location within a repository as source code trees are mostly structured

• Repository meta data like the author, revision and creation/modification date

The identifiers of variables, functions, classes or other constructs are terms to be used
for searching. Tokenization should guarantee that all occurrences of identifiers are indexed
correctly.

7.1.2 Code Files to be the Searchable Units

The desired information are code fragments. The type of fragments (e.g. usage of a function
or a method declaration) may be different for each search session. Different programming
languages have different language constructs and the targeted type of code blocks are thus
depending on the language of these snippets. A solution to deal with this variability is to
have parsers for each language and treat each language construct individually as possible
searchable unit. However, this requires a parser for every programming language to be sup-
ported, which implies that the programming language of each element to be indexed should
first be classified. Aside from deciding on the interface for language construct extraction,

90

Case Study: Reposearch

unpopular programming languages are not likely to be supported and if the syntax of a sup-
ported language changes (not uncommon within academic projects), the parser definition
must be updated too. Or even worse, different parsers for different language versions are
needed. Regarding maintenance, this is not a preferred approach.

Luckily, the search terms (code identifiers) are very likely to appear in the desired code
snippets. Consequently, the search highlighting facility can be used to provide interesting
fragments (based on occurrences of the searched terms) from the source code unit in which
they appear, i.e. the data-file containing the source code. For this reason we choose files
to become the searchable entities. Other meta data for each file is also modeled in the data
model to become searchable.

Listing 7.1 shows a slightly stripped down version of Reposearch’s data model defini-
tion with some irrelevant entity properties removed for the sake of clarity. Each file from
a code repository will be represented by an Entry instance, which belongs to a repository
(Repo), being an SvnRepo or GithubRepo. Later we also added a FileRepo for uploading
offline source code using a zip-file. Repo entities are bound to a Project entity, where a
Project may hold references to multiple Repos.

1 entity Project {

2 name :: String (id)

3 repos -> List<Repo>

4 }

5 entity Repo {

6 project -> Project (inverse=Project.repos)

7 }

8 entity SvnRepo : Repo {

9 url :: URL

10 }

11 entity GithubRepo : Repo {

12 user :: String

13 repo :: String

14 }

15 entity Entry {

16 name :: String //file name

17 content :: Text //file content

18 url :: URL //URL to repository location of the file

19 projectname :: String //project the entry belongs to

20 repo -> Repo //reference to the Repo it belongs to

21 }

Listing 7.1: Reposearch: data model

7.1.3 Searchable Data Selection and Analysis

Apart from the Entry’s content, its file name and derived file extension may contribute in
finding the right code snippet. Indexing file names simply improves recall: if a file name
matches a search query it should be included in the results. To improve precision in search
results, user’s may want to focus on, or filter out specific file types based on file extension.
By indexing file extensions in a separate search field, these can be served as selectable
facets when viewing results. This way, an information-seeking user is not required to define

91

7. EVALUATION

such constraints during the first query formulation. Instead, he may click the constraint
during result presentation from an already constrained set of extensions, i.e. the set of file
extensions appearing within the currently viewed result set. Listing 7.2 shows the search
field specification for the Entry entity.

1 search mapping Entry {

2 + content using keep_all_chars as content

3 + content using keep_all_chars_cs as contentCase ^ 50.0

4 content using code_identifiers_cs as codeIdentifiers (autocomplete)

5 + name using filename_analyzer as fileName (autocomplete)

6 name using extension_analyzer as fileExt

7 url using path_analyzer as repoPath

8 namespace by projectname

9 }

Listing 7.2: Reposearch: search mapping

Indexing Source Code

The property Entry.content holds the plain content of the original file from the repository.
Using the default built-in WebDSL text analysis would be a bad idea, since source code is
different from natural language. Tokens (mostly identifiers in this case) may not necessarily
be surrounded by white spaces; there is no list of stop words applicable for all programming
languages; and symbols, including punctuation symbols, may have special meaning. We
therefore decided to use the power of regular expressions for tokenization with preservation
of symbols. Let us first look at the analyzer named keep_all_chars

analyzer keep_all_chars {

tokenizer = PatternTokenizer(

pattern="([a-zA-Z_]\\w*)|\\d+|[!-/:-@\\[-‘\{-~]",
group="0")

token filter = LowerCaseFilter

}

input tokens
This.is_a-n0ns3nse example{return 123.456++;} [this] [.] [is_a] [-] [n0ns3nse]

[example] [{] [return] [123] [.]

[456] [+] [+] [;] [}]

Table 7.3: Reposearch: analyzer for preserving all characters except white spaces

This analyzer uses the PatternTokenizer allowing a regular expression pattern to be
used for tokenization. We constructed a pattern that matches 3 types of tokens. The first type
catches identifiers and words: a sequence starting with a non-numeric character followed
by zero or more word characters. The second pattern in the disjunction matches sequences
of numbers. The last pattern catches single symbols as distinct tokens. After tokenization,
the tokens are lowercased such that a user-entered query is not required to match the casing
of the tokens in the original source code files.

92

Case Study: Reposearch

Depending on the programming language, single tokens produced by this analyzer do
not necessarily match lexical tokens (lexemes) of a programming language in question. This
is especially true for symbols, where a sequence of symbols might represent a single lexeme,
while analyzer keep_all_chars splits it into multiple single-symbol tokens. The search
results for such lexemes, like the assignment operator (:=) in WebDSL which contains two
tokens [:, =] according to our analyzer definition, should not be dominated with results
that have both : and = somewhere but not near each other. So we need an exact match with
respect to term positions as can be done by constructing a phrase query with slop set to 0.

Another analyzer, keep_all_chars_cs, is identical to keep_all_chars except that it re-
spects the casing of characters. Search field contentCase uses this analyzer and the field is
boosted to improve the score in ranking of entries that also match the casing of the query
terms.

Type-ahead Suggestions

Another analyzer code_identifiers_cs is used to index identifiers for autocompletion. This
analyzer is less aggressive regarding the splitting into tokens. It tries to find the longest
sequences of characters that satisfy the character classes: letters; numbers; underscore; dot;
or hyphen. Casing of tokens is preserved, thus type-ahead suggestions will show them in
original casing. Now you may think: why tokenize differently for autocompletion? We
decided to do so because it allows larger sequences, like fully qualified package names
in Java, to be suggested. Also, some programming languages allow hyphens to be part
of identifiers, like strategy/rule names in Stratego/XT. We wanted these to be suggested
completely instead of only partly.

analyzer code_identifiers_cs {

tokenizer = PatternTokenizer(

pattern="[A-Za-z_]([\\-|\\.]?\\w)+",

group="0")

}

input tokens

This.is_a-n0ns3nse example{return 123.456;}

This.is_a-n0ns3nse

example

return

Table 7.4: Reposearch: analyzer for extracting (chains of) identifiers for type-ahead suggestions

Faceting on File Extension and Location

Additional search fields fileExt and repoPath capture a file’s extension and location re-
spectively. Textual analysis of the file name (property Entry.name) and repository URL
(Entry.url) is responsible for extracting this data. For the file names, the analyzer first
normalizes file names without extensions by appending ‘.(no ext)’. Then, the sequence of

93

7. EVALUATION

characters following the last occurrence of a dot are captured as token, followed by normal-
ization by lower-casing.

analyzer extension_analyzer {

char filter = PatternReplaceCharFilter(pattern="^([^\\.]+)$", replacement="/$1\\.(no ext)")

tokenizer = PatternTokenizer(pattern="\\.([^\\.]+)$", group="1")

token filter = LowerCaseFilter

}

input tokens
root.app app

template.build.properties properties

x.JPG jpg

readme (no ext)

Table 7.5: Reposearch: analyzer for extracting file extensions to be used for faceting

Regarding file locations, we first cut off protocol prefixes (e.g. http://) and file names.
PathHierarchyTokenizer is then used which creates multiple tokens from a full path, one
for each (intermediate) directory and each being a full path.

analyzer path_analyzer {

char filter = PatternReplaceCharFilter(

pattern="(^.+://)(.*)/.*",

replacement="$2")

tokenizer = PathHierarchyTokenizer(delimiter="/")

}

input tokens

http://svn.repo.org/repos/proj/trunk/readme.txt

svn.repo.org

svn.repo.org/repos

svn.repo.org/repos/proj

svn.repo.org/repos/proj/trunk

Table 7.6: Reposearch: analyzer for constructing location tokens for faceting

7.1.4 Searching and Result Presentation

As search namespaces are used, one of the first constraints we can set is the targeted project.
This can be a single project or all projects and it is selected by the user clicking the project
on the homepage or from the site’s top menu (Figure 7.7).

Figure 7.8 and 7.9 show the search form during first query formulation. It comprises an
input element that suggests identifiers and file names matching the entered prefix and has
controls for pagination and search modes. The WebDSL app-code related to the retrieval of
suggestions is shown in Listing 7.10. Using JavaScript Object Notation (JSON), an array
of suggestions is fed to a JavaScript function that shows the suggestions on the query input
element. This function adds bold tags around the user-entered prefixes that match.

94

Case Study: Reposearch

Figure 7.7: Reposearch: project selection

Figure 7.8: Reposearch: search form for first query formulation

Figure 7.9: Reposearch: project-scoped suggestions while typing

1 service autocompleteService(namespace : String, q : String) {

2 var jsonArray := JSONArray();

3 var results := Entry completions matching codeIdentifiers, fileName: q in namespace namespace limit 20;

4 for(sug : String in results) {

5 jsonArray.put(sug);

6 }

7 return jsonArray;

8 }

Listing 7.10: Reposearch: retrieval of suggestions

Search preferences are controlled with the check boxes on the search form and a button
group for pagination. These preferences are maintained using a session entity SearchPrefs,
which is a temporary entity bound to a browse-session for storing session related data (it
expires after a time-out of inactivity). The time-out is set to 1 week. The preferences
are retrieved and applied when a search is initiated. Listing 7.11 shows the function for

95

7. EVALUATION

constructing a searcher in Reposearch. The number of results per page are set similarly in
the template for showing results.

1 function toSearcher(q:String, ns:String, langCons:String) : EntrySearcher {

2 var searcher := search Entry

3 in namespace ns

4 with facets fileExt(120), repoPath(200) [no lucene, strict matching];

5
6 var slop := if(SearchPrefs.exactMatch) 0 else 100000;

7 if(SearchPrefs.caseSensitive) { ~searcher matching contentCase, fileName: q~slop; }

8 else { ~searcher matching q~slop; } //use default fields

9 if(langCons.length() >0) { addLangConstructConstraint(searcher, langCons); }

10 return searcher;

11 }

Listing 7.11: Reposearch: Construction of searcher

Results are loaded instantly while entering a query. The search form is extended with
options for restricting currently viewed result set using faceting for file extensions and file
location. We later introduced filters for particular language constructs which are presented
similar to the other facets. This feature is currently in prototype state. Its implementation is
based on regular expressions and requires preprocessing of search results such that the high-
lighter extracts the targeted language construct from a result file and not any other fragment
with matched tokens. Furthermore, the facets are retrieved using a ConstructMatchSearcher

instead of the primary EntrySearcher that is used for searching and the retrieval of the other
facets. Language constructs are defined at the management page of Reposearch by provid-
ing a name, valid file extensions, a regular expression, a matching group (denoting the part
for matching a query against) and the set of projects for which this filter is enabled as shown
in Figure 7.12.

Figure 7.12: Reposearch: definition of language constructs

Extraction and Highlighting of Code Fragment

Results are shown below the search form. Each result consists of a clickable header with
file name on the left and location on the right. By clicking the result header, the full file will
load in a new page which directly jumps to the first code snippet extracted by the search

96

Case Study: Reposearch

Figure 7.13: Reposearch: result pane with selectable facets, highlighted fragments and pagination controls.
Location facets are shown after clicking expand button.

highlighter. Below the result header, code fragments relevant to the search query are shown
with clickable line numbers navigating to that line in the full file page. Code fragment
extraction from the full file is done using the search highlight facility with fragment length
set to 150 characters and number of fragments set to 3.

We needed to take into account that HTML-tags may appear within an indexed file and
such tags may even be the targeted code fragments. We therefore cannot use the highlighter
in HTML mode, which would ignore HTML tags for highlighting. Consequently, the text
we feed to the highlighter component is the unfiltered content of a file (entry.content) as
shown in Listing 7.14. We instruct the highlighter to surround matches with tags OHL and
CHL. The resulting String with fragments of code is then filtered internally by rendering it
to a String variable. Occurrences of the highlight tags are then replaced with HTML tags to
be rendered as-is, i.e. using the rawoutput template from WebDSL which does not perform
filtering.

More fragments within a single result can be loaded by clicking the button at the bottom
of each result. This replaces the result in question with variable noFragments set to 10
instead of 3 (used in Listing 7.14). If the user opens the full file by clicking the result

97

7. EVALUATION

1 var hlField := if(SearchPrefs.caseSensitive) "contentCase" else "content";

2
3 var raw := searcher.highlightLargeText(hlField, entry.content, "OHL","CHL", noFragments,

fragmentLength, "\n%frgmtsep%\n");

4
5 var highlighted := rendertemplate(output(raw))

6 .replace("OHL","")

7 .replace("CHL","");

Listing 7.14: Reposearch: highlighting code fragments

header or a line number, the highlight code is invoked with the number of fragments set to
1 and fragment length set to a million characters at most.

Filtering using Facets

When results are available for an entered query, facets for file extension and file location are
loaded into the search form (see Figure 7.13). A user can restrict the result set in 2 ways,
namely by including or excluding a set of facets. Each facet is presented as combo-button.
Clicking the right button (facet value) will select a facet for inclusion, or re-include a facet
in case it has been excluded previously. Similarly, the left button (a cross) will exclude a
facet or, in case of a selected facet, remove the facet from the selection. Listing 7.15 shows
the related code for displaying the facets. The button state denotes the selection of a facet.

To keep the search user interface clean, the location facets are hidden behind a expand-
button. When viewed, location facets are ordered by name. Intermediate directory locations
without results are not shown. This is implemented by simply comparing the facet count
between each 2 adjacent locations in the list of facets ordered by name.

Some Words About Line Numbering

At the result presentation and when viewing a full file, line numbers are placed left to the
source code. These line numbers also facilitate in-page anchors such that a code line can be
targeted in an URL. Line numbering was a serious issue during the design of Reposearch.
Given the original (textual) content of a file and a fragment contained in this content, we
cannot directly determine the line numbers of a supplied fragment. This problem arises
when we construct the results on the search page: the highlighter component extracts code
fragments from a full file, but does not tell us anything about the positional properties of the
returned snippets.

To workaround this issue, we decided to encode the line number information into the
code that is persisted in the data store. When an Entry is stored, the source code captured in
property Entry.content is instrumented with line number tokens at the beginning of each
line. The added tokens should not be interpreted as searchable tokens by Reposearch. This
would affect the scoring and matching of code entries. We did so by extending the discussed
analyzer definitions to remove such tokens by a token filter. The search highlighter also
ignores these tokens for matching because this uses the analyzer bound to the search field
that is provided to the highlighter. Line number information is thus still available in the

98

Case Study: Reposearch

1 ...

2 formEntry("File extension") {

3 for(f : Facet in fileExt facets from searcher) {

4 pullLeft { showFacet(searcher, f, ext_hasSel, namespace, langCons) }

5 }

6 }

7 ...

8
9 define showFacet(searcher:EntrySearcher, f:Facet, hasSelection:Bool, ns:String, langCons:String) {

10 if(f.isMustNot() || (!f.isSelected() && hasSelection)) { //use disabled button ’btnOff’

11 if(f.isSelected()) {

12 submitlink updateResults(searcher.removeFacetSelection(f)) {

13 buttonGroup {

14 btnOff{ includeFacetSym() }

15 btnOff{ output(f.getValue()) " (" output(f.getCount()) ")" }

16 }

17 }

18 } else {

19 submitlink updateResults(~searcher matching f.should()) {

20 buttonGroup {

21 btnOff{ includeFacetSym() }

22 btnOff{ output(f.getValue()) " (" output(f.getCount()) ")"}

23 }

24 }

25 }

26 } else { //use enabled button ’btn’

27 if(f.isSelected()) {

28 submitlink updateResults(searcher.removeFacetSelection(f)) {

29 buttonGroup {

30 btn{ excludeFacetSym() }

31 btn{ output(f.getValue()) " (" output(f.getCount()) ") " }

32 }

33 }

34 } else {

35 buttonGroup {

36 submitlink updateResults(~searcher matching f.mustNot()) [class="btn"]{

37 excludeFacetSym()

38 }

39 submitlink updateResults(~searcher matching f.should()) [class="btn"]{

40 output(f.getValue()) " (" output(f.getCount()) ")"

41 }

42 }

43 }

44 }

45 action updateResults(searcher : EntrySearcher) {

46 return doSearch(searcher, ns, langCons, 1);

47 }

48 }

Listing 7.15: Reposearch: presentation of facets

code fragments we receive from highlighting, and are distilled from the source code at the
presentation of results. The required extensions to the analyzers were hidden in the listings
we provided during this chapter as it would only add noise, i.e. it was unrelated to the
context in which we discussed them.

99

7. EVALUATION

7.1.5 Management Page

Reposearch is currently designed to have a single administrator account for accessing the
management page. From here, the administrator can manage the projects and repositories
(Figure 7.16), add new projects (possibly requested by a visitor), view log messages, control
the update schedule (Figure 7.17) and change the home page message. We will not discuss
the implementation details of these facilities, nor do we review the retrieval/updating of data
from the repositories, as it is unrelated to the DSL extension.

Figure 7.16: Reposearch: Project management (left), log console (right)

Figure 7.17: Reposearch: schedule control on the management page

100

Case Study: Researchr.org

7.2 Case Study: Researchr.org

In our second case study, our focus was on an existing web application created with WebDSL.
The application, Researchr2, comprises a digital library where users can find, collect, share
and review scientific publications. Being a digital library, search is one of the core fea-
tures of Researchr. Before we empowered Researchr with new search features, search was
purely based on the limited search capabilities of WebDSL. As WebDSL lacked support
for searching embedded entity properties, it was not possible to search for publications by
author names or tags. Textual analysis was done using the default analyzer, not matching
inflections of words, hindering possibly relevant results.

Faceting was not present on the search page, but it was implemented for other contexts.
Its implementation relied on data model extensions with entities for lists of publications,
facet entities for those lists and categories owned by the facet entities. It required a lot
of server-side maintenance done by the web application for updating, initialization and re-
construction of these entities on change/addition/removal of a related value. E.g., adding a
single tag to a publication triggered a lot of database changes.

7.2.1 Researchr: Data Model

Configuration and the use of search facilities is tightly bound to the data model. We will
now review the entities and entity properties most relevant for search in Researchr. These
entities include: Publication, Author, Tag, Bibliography, PublicationList.

Publications are the main data elements in Researchr. There are several subtypes all
inheriting from this entity, such as MasterThesis, JournalArticle, Booklet and TechReport.
Basically, each Publication instance (Listing 7.18) has a title, abstract and year of pub-
lication. Furthermore, each publication has one or more references to Author, Tag and
PublicationList instances. A PublicationList should be seen as intermediate entity used
to group publications that have something in common, for example a TagPublicationList

(inheriting from PublicationList) contains references to publications with the same tag.
Similarly a BibliographyPublicationList is created for each Bibliography. A bibliogra-
phy is a collection of publications maintained by a User or UserGroup.

PublicationList can be considered a redundant entity if its purpose was solely to pro-
vide the collection of Publications. This data can be derived from the existing entities for
example by using the Hibernate Query Language (HQL) with a condition denoting the com-
mon value (e.g. from Publication as p where theTag in p.tags). Another purpose of the
PublicationList entity was for providing facets when viewing lists of publications, as will
be discussed in the next sections.

7.2.2 Previous Search Implementation

The search page on the Researchr website had Lucene syntax enabled. This can be very
powerful for users familiar with the syntax, however it leads to empty result sets when

2http://researchr.org

101

http://researchr.org

7. EVALUATION

1 entity Publication {

2 key :: String (id, index(25), collation(unicode_limited),

3 validate(isUniquePublication(this), "that key is already in use"),

4 validate(isValidKeyForURL(key), "Key should consist of letters, digits, : or -"))

5 title :: Text (name, collation(unicode), searchable)

6 authors <> List<Author> (index())

7 year :: String

8 abstract :: WikiText (searchable)

9 lists -> Set<PublicationList> (inverse=PublicationList.publications)

10 tags -> Set<Tag>

11 aliasOf -> Publication (optional)

12 ...

13 }

14
15 entity Tag {

16 key :: String (id)

17 name :: String (name, searchable,

18 validate(this.name.length() > 2, "Tags should have at least three characters."))

19 ...

20 }

21
22 entity Author : AbstractAuthor {

23 publication -> Publication (inverse=Publication.authors)

24 ...

25 }

26
27 entity AbstractAuthor {

28 name :: String := this.alias.name

29 alias -> Alias (inverse=Alias.authors) // spelling of the name

30 person -> Person (optional) // identity of the author

31 ...

32 }

Listing 7.18: Researchr: publication entity definition (snippet) in data model

there is a syntax error, which most users are unaware of. Search was also not configured to
match inflections of words, e.g. when searching for ‘language‘ it did not match ‘languages‘,
which led to absence of potentially relevant results. Furthermore, publications could only be
searched by their title and abstract, not by author names, tags and publication year. These
properties could not be indexed in the scope of the Publication entity, because indexing
was limited to simple entity properties.

Another problem was that search often delivered duplicate results. This was caused by
publications that have aliases, meaning that multiple publication are considered the same.
This could happen if, for example, the same publication is entered by different users or
by automated import of Researchr. In that case, one publication is considered the root
publication and others aliases of that root.

7.2.3 Previous Faceting Implementation

Entity PublicationList was also used for implementation of a limited faceting interface.
When a list of publications (e.g. a bibliography) was viewed, facet clouds were displayed
alongside the publications. Depending on the context, facets were presented for publica-
tion year, authors, tags, venues and publication type. Faceting was limited in a sense that
it only allowed filtering on a single facet. You could not filter a list of publications on

102

Case Study: Researchr.org

multiple facets of the same type, nor could you combine multiple facet types. This was
due to its implementation in which the list of publications for a facet were preconstructed.
Multiple PublicationListFacets were constructed and persisted for each PublicationList

instance, one for each type of facet: one for tags, one for publication year, etc. In turn,
each PublicationListFacet instance contained a list of Category entities, one for each facet
value. This means that a Category entity was persisted for each possible value of year, au-
thor, tag, etc appearing in a single publication list. The Category entity holds references to
the publications that share the category’s value in the context of the associated Publication-
List. The category entity was used to retrieve and serve the associated publications after
a facet value was clicked. Unfortunately, this implementation required a lot of automated
maintenance. Entities needed to be kept up to date in case of a change in any of the related
data. For instance, publication lists were updated when the set of contained publications
changed. Assigning a tag to a publication triggered updating the TagPublicationList as-
sociated to that tag, and the reconstruction of all the PublicationListFacet and Category

instances related to that TagPublicationList. Moreover, all facet-related entities were up-
dated for all publication lists in which the newly tagged publication appeared. This resulted
in many database updates and queries: not resource friendly.

7.2.4 A New Search Mapping and Flexible Searching

Our focus in this case study was to improve the search interface of Researchr, and to replace
current faceting implementation by a more dynamic implementation using the new faceting
features in WebDSL.

We started by moving the searchable property annotation to top-level search mappings
into a single file searchmapping.app. For the Publication entity, we created additional
search fields in order to support searching publications on more data than just the title and
abstract. We marked the following search fields to become the default ones for searching
publications: title, abstract, authors, tags, year and venues. This makes the search flexible in
a sense that one can search the publications for some author, optionally for a specific year,
or by using the name of a venue. The query ‘berners lee 2009’ searches for publications
by Tim Berners Lee published in 2009, ‘sigir 2011’ for publications in proceedings of the
SIGIR conference 2011 and ‘oopsla steven fraser’ for searching publications in proceedings
of any of the OOPSLA conferences with Steven Fraser as author. The search mapping for
Publication and AbstractAuthor are shown in listing 7.19.

Instead of using the default textual analysis, we extended this analyzer to reduce to-
kens into their root form, i.e. stemming. The library of SOLR token filters bundled with
WebDSL offer various implementations to perform stemming. These include stemming al-
gorithms expressed in the Snowball language designed for this purpose [24], such as the
Porter stemming algorithm for English [25], the less aggressive kStem algorithm [18], a
minimal stemmer implementation (EnglishMinimalStemFilter) and dictionary based stem-
mer using Hunspell3. We compared the behavior of these implementations by creating a

3http://hunspell.sourceforge.net

103

http://hunspell.sourceforge.net

7. EVALUATION

1 extend entity Publication {

2 venue :: String := this.venue()

3 pubType :: String := this.type()

4 includeInResults :: Bool := (aliasOf == null)

5 }

6
7 search mapping Publication {

8 + title using publication_content

9 title using spell_check as spell (spellcheck)

10 + abstract using publication_content

11 + authors with depth 2 //depth 2 in order to match on authors.alias._id

12 + tags with depth 1

13 lists with depth 1 //for restricting to a publication list context

14 + year using year

15 pubType using none

16 + venue using venue_value

17 includeInResults

18 }

19
20 search mapping AbstractAuthor {

21 person

22 alias

23 nameTag using none as name;

24 + nameTag using standard_no_stop

25 }

Listing 7.19: Researchr: search mapping for Publication and AbstractAuthor entities

small WebDSL application4 that has the English dictionary indexed. It shows which terms
are considered equal for the variety of implementations. By evaluating using various words
and derived inflections, it turned out that Porter2 stemming and the dictionary based Hun-
spell implementations were too aggressive for our purpose: they considered terms with
different semantics to be equal. The word ‘animate’ demonstrates this quite well. As can be
observed in Table 7.20 this term gets mixed with semantically different terms like ‘animal’
and ‘reanimate’. We choose to go for kStem as it was capable of matching most important
inflections of words, while not matching completely different words semantically.

In order to remove the duplicates search results for publications having aliases, the
property includeInResults was added to the Publication entity. This boolean value is
indexed and used to filter (not query) the search results, because this constraint will be
applied for almost any search. A base PublicationSearcher applying this filter is obtained
using a function basePubSearcher (Listing 7.21).

7.2.5 Facet Clouds Using New Search Capabilities

Aside from improving the search page of Researchr, another goal was to replace the faceting
implementation with the built-in faceting facility of WebDSL. In order to use this facility,
the requirement is that the currently browsed collection of publications is a collection that
can be retrieved using a (Publication)Searcher. For example, when viewing the publica-
tions of a single author, we should be able to constraint on the author using a search field of
the Publication entity. Similarly, other search fields are used for different constraints like

4https://github.com/Elmervc/wordsearch (links to live application)

104

https://github.com/Elmervc/wordsearch

Case Study: Researchr.org

Porter2 (Snowball) kStem minimalStem hunspell (OpenOffice dictionary)
animalize animaters animates animated
animal animated animate unanimated
animalizes animater reanimates
animals animators reanimated
animated animating animating
animalisms animates animations
animalism animate animation
animality animator animates
anime animate
animally animatedly
animators inanimated
animating
animalized
animations
animation
animates
animism
animate
animes
animatedly
animator

Table 7.20: Wordsearch: comparison stemming algorithms for the word ’animate’

the identifiers of PublicationLists in which a Publication appears (embedded search field
lists in Listing 7.19). We added an entity property to get a PublicationSearcher instance
with the right constraints for each entity that has collections of publications associated to it,
such that this searcher can be used for the retrieval of the publications to be displayed and
for the retrieval of facets. The app-code is shown in Listing 7.21. Using search for faceting,
all instances of PublicationListFacets and PublicationCategory become obsolete and do
not need to be maintained anymore. Furthermore, facet clouds can be retrieved for any set
of constraint, i.e. also for the search page.

Generic Facet Cloud Templates

In Researchr, clouds of facet values are shown on the right of a publication collection, as is
shown in figure 7.22. The original version of Researchr had generic templates for displaying
the facet clouds on pages showing lists of publication. Clouds were collapsed by default,
and could be expanded to view 40 or all facet values, using different templates respectively.
In the search-based version of facet clouds, we reused some of the presentation-related
code, for example to display facet values in different font size depending on their degree
of presence in the currently viewed collection. The facet clouds are now constructed using
a single, more generic template facetCloudDisplay (Listing 7.23). While this template is
used for viewing a single facet cloud, it expects variables for all facet clouds for the reason
that a change in facet selection, facet combinator or facet cloud size will replace all facet
clouds. This is required because each facet cloud shares the same context of constraints,

105

7. EVALUATION

1 function basePubSearcher() : PublicationSearcher {

2 return search Publication with filter includeInResults: true;

3 }

4
5 extend entity Bibliography{

6 pubSearcher -> PublicationSearcher := ~basePubSearcher() matching lists.identifier:list.identifier

7 }

8 extend entity Tag{

9 pubSearcher -> PublicationSearcher := ~basePubSearcher() matching tags.name:name

10 }

11 extend entity ConferenceSeries {

12 pubSearcher -> PublicationSearcher := ~basePubSearcher() matching venue: this.acronym

13 }

14 extend entity Person {

15 pubSearcher -> PublicationSearcher := ~basePubSearcher() matching authors.person._id: this.id.toString()

16 }

17 extend entity Alias {

18 pubSearcher -> PublicationSearcher := ~basePubSearcher() matching authors.alias._id: this.id.toString()

19 }

Listing 7.21: Searchers are retrieved using the ‘pubSearcher‘ property of the entity type denoting the context of
a publication collection to be shown

including selection of other facet clouds. For example, a facet cloud showing the publication
years will be different and should be updated when a user selects a facet from the author
facet cloud, similar to the collection of publications that is shown. The facetCloudDisplay

template expects a searcher instance with faceting enabled, the list of search fields that are
used for faceting in the sidebar, accompanied with a list of occurrences describing how
facets are to be combined for each faceting field, and a position denoting index in the field
and occurrence lists for the current facet cloud.

Figure 7.22: Researchr: viewing a collection of publications (a bibliography in this case) with facet clouds in a
sidebar

106

Case Study: Researchr.org

1 define span facetCloudDisplay(fields : List<String>, occurrences : List<String>, searcher : Searcher, pos

: Int){

2 var field := fields.get(pos);

3 var occur := occurrences.get(pos);

4 var heading := headingFromField(field);

5 var facets := getFacets(searcher, field);

6 var minHits := minHits(facets); //used for varying font sizes

7 var maxHits := maxHits(facets); //used for varying font sizes

8
9 //shows heading of cloud with facet combinator options (AND/OR/NOT/1) and controls for

10 //viewing a bigger[+]/smaller[-] facet cloud

11 facetCloudDisplayHeading(fields, occurrences, searcher, pos, facets.length, heading, occur, field)

12
13 //shows the ‘cloud’ of facet values

14 block[class="cloud"]{

15 for(f : Facet in facets order by facet.value asc) {

16 block[class="cloudTag"]{

17 container[class:= facetFontLimit(f.getCount(), minHits, maxHits)]{

18 if (f.isSelected()){

19 submitlink changeSelection(f)[class="facet-link", title=f.getCount()+" matches"] {

20 output(f.getValue())

21 }

22 } else {

23 submitlink changeSelection(f)[title=f.getCount()+" matches"] {

24 output(f.getValue())

25 }

26 }

27 }

28 }

29 } separated-by { " " }

30 }

31
32 action changeSelection(facet : Facet){

33 if(facet.isSelected()){

34 searcher.removeFacetSelection(facet);

35 } else {

36 addFacetSelection(searcher, facet, occur);

37 }

38 //replace the list of publications (on the left) and facet clouds in sidebar (on the right)

39 replace(publicationList, selectedCategory(searcher, 1));

40 replace(facetClouds, facetClouds(fields, occurrences, searcher));

41 }

42 }

43
44 function addFacetSelection(s : Searcher, f : Facet, oc : String) {

45 case(oc){

46 "should" { ~s matching f.should(); }

47 "must" { ~s matching f.must(); }

48 "one" { s.clearFacetSelection(f.getFieldName()); ~s matching f.should(); }

49 "mustnot"{ ~s matching f.mustNot(); }

50 }

51 }

Listing 7.23: Researchr: template definition for displaying facet clouds

Besides having the ability to select multiple facets, possibly from different clouds, we
also added control over how facets should be selected, which is where the occurrence
variables are used for. Per facet cloud, a user can control if only one (‘1’) or multiple
(‘OR’,‘AND’,‘NOT’) facet values can be selected at a time. This switch is placed on the

107

7. EVALUATION

right of each facet cloud header in Figure 7.22. If set to ‘OR’, at least one of the selected
facet values should match a publication in order to appear in the list; ‘AND’ requires a
publication to match all selected facet values; and ‘NOT’ will exclude all publications that
match at least one of the selected facet values.

7.2.6 Updates to Search Page

As part of this case study we first improved access to the search page by adding the search
input field to the top menu bar of Researchr. Previously, one had to click the top navigation
bar opening a search menu where one could navigate to a search form targeting a specific
type, namely publications, authors, tags, conferences, journals, groups and bibliographies.
Search in the menu bar now directs to the publication search by default. From there one
can target other types for search. Besides the improved analyzer and flexibility in matching
various data bound to publications, further improvements were made to the search result
page.

Figure 7.24: Researchr: new search page with hit highlighting, result size, pagination (not visible), faceting,
and did-you-mean functionality (not visible)

Faceting

Where in previous version Researchr, facet clouds were only presented when viewing pre-
defined publication lists, they are now also shown on the search page for narrowing the
result set further (both when searching publications and conferences).

108

Case Study: Researchr.org

Result Count and Improved Pagination

Using the new type searcher, we are now able to get meta-data about the search, like result
size. We added the number of results on top of the result list and improved pagination at the
bottom to respect this number. That is, only show browsable result pages instead of only
controls for previous and next result page, where the next page could possibly be empty
(prior to this case study).

Figure 7.25: Researchr: pagination buttons only show browsable result pages

Highlighted Search Terms and Summaries

Prior to this case study, publication search results were presented by showing the title, au-
thors, year of publication and, if applicable, the context in which it has been published.
We improved these summaries, or result surrogates, by making them biased to the search
query using the search highlighter component as can be observed from the result page in
Figure 7.24. We added fragments of a publication’s abstract which were not displayed pre-
viously. Listing 7.26 shows the application code related to result highlighting. Using the
built-in highlighting templates discussed in Section 6.5.2, only the abstracts are summarized
(at most 3 fragments of 80 characters maximum), other data is highlighted and displayed
completely.

1 define span searchResult(pub : Publication, searcher : PublicationSearcher) {

2 container[class="title"]{

3 highlight(searcher, "title"){ output(pub) } //webdsl built-in template

4 }

5
6 abstractFragments(pub, searcher)

7
8 highlight(searcher, "authors.nameTag"){ //webdsl built-in template

9 if(pub.authors.length > 0) {

10 container[class="authors"]{ outputAuthorsComma(pub.authors) ". " }

11 }

12 }

13 ...

14 }

15
16 define abstractFragments(pub : Publication, searcher : Searcher){

17 if(searcher != null && pub.abstract != null && pub.abstract.length() > 0){

18 container[class="abstract"]{

19 highlightedSummary(searcher, "abstract", pub.abstract) //webdsl built-in template

20 }

21 }

22 }

Listing 7.26: Researchr: presenting search results using highlighting component of WebDSL

109

7. EVALUATION

Spell Suggestions

In case no or only a small result set matches a search query, chances are that the user made
a typographic or spell mistake. In that case, we offer the user 2 possible spell corrections
using the new spell check facility from WebDSL. Here, we use the publication titles as
source for the spell check facility (see the search mapping in Listing 7.19), which stores
terms containing 1, 2 or 3 adjacent tokens using the analyzer spell_check for which we
already showed the definition in Chapter 6 (Listing 6.8).

Figure 7.27: Researchr: suggesting corrections in case of small or no result set. In this case, the ’small’ result
set contains a publication with an erroneous title

7.2.7 Comparing Code Size

During this case study, we enriched and improved the search features of Researchr. By re-
placing the faceting implementation with the faceting abstractions added to WebDSL, some
entity definitions and functions became obsolete. Search configuration has been moved
from inline entity property annotations to a separate file containing the search mapping and
analyzer definitions.

The expressiveness and conciseness of a programming language are hard to quantify.
Most evaluations of programming languages compare the number of lines of code (LOC),
tokens or statements for a program or algorithm implemented using a variety of program-
ming languages, and use this value to express relative conciseness between programming
languages. In our case, we are talking about a complete web application, where the focus
is on the DSL extension for search in WebDSL. We performed a comparison on code size
before and after the extensions made to Researchr. The comparison illustrate that the DSL
extension requires less code to enable more search-related features. Search is now adapt-
able to the web application’s context and has additional features for which there were no
abstractions previously. With a (slightly) smaller code base we have a more feature rich
application as can be observed in Table 7.28. The numbers represent lines of code and
number of tokens in app-files of the complete code base of Researchr. Measurements are
performed using Source Code Line Counter 5. Blank lines, comment lines and (lines with
only) delimiters are excluded in these measurements.

Currently we are further shrinking the code base by replacing the usage of the PublicationList

entity with search (not reflected in Table 7.28). Source code related to the creation and main-
tenance of these entities will become superfluous. We expect the server load to decrease by
this change, because the modifications/reconstruction of PublicationList entities due to
any related change to a Publication entity is not required any more.

5https://code.google.com/p/sclc/

110

https://code.google.com/p/sclc/

Comparison to an Ordinary Java Web Application

Codelines* Tokens*
Before 15137 107445
After 15099 107042

Table 7.28: Researchr: Comparison on code size of the complete code base before and after case study.

7.3 Comparison to an Ordinary Java Web Application

In this section we compare code snippets from a real life open source web application de-
veloped in Java. We explicitly picked an application that uses Hibernate Search, because
it already abstracts away from data store-search index synchronization and translation be-
tween index documents and Java entities, significantly reducing boilerplate code.

We studied the code base of Eureka Streams6, a free, open source enterprise social net-
working platform developed by Lockheed Martin. Although search functionality in Eureka
Streams is limited (e.g., it lacks hit highlighting, spell correction and faceting), the size of
the program code responsible for search features is significantly larger than what we will
discuss in this brief comparison. The purpose of this section is to illustrate the reduction in
boilerplate code and gain in expressiveness by using the search language in WebDSL.

7.3.1 Mapping Class Fields to Search Fields

Data model entities are implemented as Java classes. Through the use of annotations, Hiber-
nate Search lets one specify the mapping to search fields in the index documents including
options on how to index the data. Listing 7.29 shows a snippet from the Person class. Three
fields (lastName, preferredName and dateAdded) are mapped to equally named search fields.
The highlighted @Field annotations contain parameters for indexing options, the field name
and analyzer. Obviously, an analyzer applying stemming is used for tokenizing the last and
preferred name. The dateAdded field is indexed without tokenization. It has a @DateBridge

annotation on the field, informing Hibernate on how to transform the date into a String
representation that will be added to the search index.

We created a mapping in WebDSL that is equal to this Java specification, shown in
Listing 7.31. The highlighting colors denote the links between equal specifications. It
shows that the notation of the search DSL is visibly more compact and expressive, and that
there is no need to specify the translation from Date to Strings (as the WebDSL compiler is
extended to handle this for us). The WebDSL code also includes the WebDSL counterpart
stemAnalyzer of the analyzer that is used by Eureka Streams for which Listing 7.30 shows
the implementation.

6http://en.wikipedia.org/wiki/Eureka_Streams

111

http://en.wikipedia.org/wiki/Eureka_Streams

7. EVALUATION

/**

* The last name of this Person.

*/

@Basic(optional = false)

@Length(min = 1, max = MAX_FIRST_NAME_LENGTH, message = LAST_NAME_MESSAGE)

@Field(name = "lastName", index = Index.TOKENIZED,

// search is using text stemmer, so we need to index searchable fields with it

analyzer = @Analyzer(impl = TextStemmerAnalyzer.class), store = Store.NO)

private String lastName;

/**

* The preferred name of this Person.

*/

@Basic(optional = false)

@Field(name = "preferredName", index = Index.TOKENIZED, store = Store.NO,

// analyzer

analyzer = @Analyzer(impl = TextStemmerAnalyzer.class))

private String preferredName;

/**

* The date the user was added into the system, defaults to the current time, indexed into search engine.

Note, for

* the date to be sortable, it needs to be either Index.UN_TOKENIZED or Index.NO_NORMS.

*/

@Column(nullable = false)

@Field(name = "dateAdded", index = Index.UN_TOKENIZED, store = Store.NO)

@Temporal(TemporalType.TIMESTAMP)

@DateBridge(resolution = Resolution.SECOND)

private Date dateAdded = new Date();

Listing 7.29: Mapping to search fields in the Person entity class using Hibernate annotations

...

public class TextStemmerAnalyzer extends Analyzer

{

...

public TokenStream tokenStream(final String fieldName, final Reader reader)

{

TokenStream tokenStream = new StandardTokenizer(reader);

TokenStream result = new StandardFilter(tokenStream);

result = new LowerCaseFilter(result);

result = new StopFilter(result, StopAnalyzer.ENGLISH_STOP_WORDS);

result = new EnglishPorterFilterFactory().create(result);

return result;

}

}

Listing 7.30: Implementation of the analyzer that is used for text searches in Eureka Streams

search mapping Person {

lastName using stemAnalyzer

preferredName using stemAnalyzer

dateAdded

}

analyzer stemAnalyzer{

tokenizer = StandardTokenizer

token filter = StandardFilter

token filter = LowerCaseFilter

token filter = StopFilter

token filter = SnowballPorterFilter(language="English")

}

Listing 7.31: Specification of search fields in WebDSL corresponding to the Java specification of Person
112

Comparison to an Ordinary Java Web Application

7.3.2 Specification of Search Constraints

As has been done in the previous mapping example, we will only discuss a minimal frag-
ment of the code that is responsible for searching. Here, we take the backend implementa-
tion for searching persons by a prefix of their name. In this code snippet (Listing 7.32) four
steps can be distinguished:

Escaping the user entered query for special characters meaningful to the query parser

Conditionally adding a constraint for filtering read-only entities

Specification of the actual query

Limiting the number of results to be retrieved

We appended the code associated to the buildQueryFromNativeSearchString call (in
red), as this is part of query specification. This code is responsible for translating the query
constraints into a representation accepted by Hibernate Search and can be considered boil-
erplate code. The method getGroupVisibilityClause is left out for the sake of fragment
size, but it is similar to the conditional constraint, except that it adds a constraint based on
the rights of the user that instantiated the search.

Again, we created a semantically similar WebDSL implementation shown in Listing
7.33. In this specific case, we are constructing a prefix-query for which the search DSL
has no syntactic abstraction yet (see Section 6.4.3). We therefore escape the user query
before we add the asterisk symbol, denoting a wild card query for the Lucene query parser.
Comparing to the String construction in the associated Java code, query constraints in the
search DSL are better readable. We modeled the conditional constraint for retrieval of read-
only streams as a filter, as this constraint should not be taken into account for relevance
ranking (which is the case for the implementation in Eureka Streams).

This example concludes this comparison, and this chapter. In the next chapter, we will
look into other existing DSLs that target the domain of internal site search.

113

7. EVALUATION

...

// build a search string that includes all of the fields for both people

// and groups.

// - people: firstName, lastName, preferredName

// - group: name

// - both: isStreamPostable, isPublic

// Due to text stemming, we need to search with and without the wildcard

String term = escapeSearchTerm(inRequest.getPrefix());

String excludeReadOnlyClause = excludeReadOnlyStreams ? "+isStreamPostable:true" : "";

String searchText = String.format("+(name:(%1$s* %1$s) lastName:(%1$s* %1$s) preferredName:(%1$s* %1$s

)^0.5) " + "%2$s %3$s", term , excludeReadOnlyClause , getGroupVisibilityClause(inRequest));

FullTextQuery query = searchRequestBuilder. buildQueryFromNativeSearchString (searchText);

searchRequestBuilder.setPaging(query, 0, maxResults);

// get the model views (via the injected cache transformer)

List<ModelView> searchResults = query.getResultList();

...

Query luceneQuery;

try

{

luceneQuery = inQueryParser.parse(nativeSearchString);

}

catch (ParseException e)

{

String message = "Unable to parse query: ’" + nativeSearchString + "’";

log.error(message);

throw new RuntimeException(message);

}

// get the FullTextQuery

FullTextEntityManager ftem = getFullTextEntityManager();

// wrap the FullTextQuery so we have more control over the control flow

ProjectionFullTextQuery projectionFullTextQuery = new ProjectionFullTextQuery(ftem.createFullTextQuery(

luceneQuery, resultTypes));

// set the result format to projection

List<String> parameters = buildFieldList();

projectionFullTextQuery.setProjection(parameters.toArray(new String[parameters.size()]));

// set the transformer

projectionFullTextQuery.setResultTransformer(resultTransformer);

return projectionFullTextQuery;

Listing 7.32: Code responsible for searching Person entities by a prefix of their name

var q := escapeQuery(query);

var prefixQ := q + "*";

var searcher := search Person matching name, lastName, preferredName^0.5: (prefixQ q)

limit maxResults;

if (excludeReadOnlyStreams) { ~searcher with filter isStreamPostable: true }

Listing 7.33: Searching for persons by prefix in WebDSL

114

Chapter 8

Other Search DSLs and Future Work

In this master’s thesis, a base language for web development is extended with search features
using existing software artifacts from the solution domain. Similar examples can be found
when studying web-frameworks like Ruby on Rails (Rails for short) and Django, using the
host-languages Ruby and Python respectively. Search functionality provided with these
frameworks is limited and based on the search capabilities of the database systems. More
powerful search solutions are available using additional libraries available for Rails and
Django. These libraries are examples of a domain-specific language embedded into a host
language, called internal DSLs [8] or domain-specific embedded languages (DSELs) [16].
To the best of our knowledge, there are no documented examples of external DSLs for
search like the DSL presented in this thesis. Our focus will therefore be on examples of
embedded DSLs for search and how they differ from our external DSL.

8.1 Internal Search DSLs

Sunspot1 for Rails is a search library, implemented in Ruby, that is build on top of RSolr
(Solr library for Rails). It offers an expressive DSL both for index specification and search-
ing. Sunspot adds abstractions similar to the ones implemented in WebDSL, such as query-
ing (including phrase and range queries), faceting and highlighting. Sunspot also adds
support for grouping of results and supports geospatial search. However it lacks abstrac-
tions for suggestion services (spell check, autocompletion). Haystack2, a popular search
framework for Django, is another example of an internal DSL for search. Haystack does
have abstractions for suggestion services and supports geospatial search, but there is no
abstraction yet for grouping of results. A unique feature of Haystack is the support for
different search backends. Backend support for SOLR, ElasticSearch, Whoosh and simple
SQL-based search is bundled, but one can also define a custom backend.

1http://sunspot.github.io
2http://haystacksearch.org

115

http://sunspot.github.io
http://haystacksearch.org

8. OTHER SEARCH DSLS AND FUTURE WORK

8.1.1 Host Language Dependencies

Abstractions in internal DSLs are implemented conform the notation of the host language
by adding a library of new data types, functions/macros/routines, operators, etc., but without
introducing new syntax. This limits the extent to which the language can be tailored to the
problem domain: it should comply with the existing notation of the host language such as
function calls and symbol usage, leading to a DSL with ‘noise’ from the host language.
Look at the following Haystack code for indexing a Django model (similar to a WebDSL
entity) Note:

1 class NoteIndex(indexes.SearchIndex, indexes.Indexable):

2 text = indexes.CharField(document=True, use_template=True)

3 author = indexes.CharField(model_attr=’user’)

4 pub_date = indexes.DateTimeField(model_attr=’pub_date’)

5
6 def get_model(self):

7 return Note

8
9 def index_queryset(self, using=None):

10 """Used when the entire index for model is updated."""

11 return self.get_model().objects.filter(pub_date__lte=datetime.datetime.now())

Compared to search mappings in WebDSL, Haystack requires quite a lot of code only
to configure the Note model to become searchable for 3 data properties. It requires a class
definition for each model to become searchable with a function that returns the model in
question and another one for returning the collection of model instances to be indexed when
building the index from scratch. The extent of noise exposed by Sunspot with host language
Ruby is significantly lower. This is because of the host language Ruby having extensive
meta-programming facilities allowing the design of a concise internal DSL [9, 7]. Sunspot’s
search configuration can be embedded in a model’s specification by adding a searchable
block (line 7-10):

1 class Blog < ActiveRecord::Base

2 has_many :posts

3 has_many :comments, :through => :posts

4
5 attr_accessible :name, :subdomain

6
7 searchable :include => { :posts => :author } do

8 string :subdomain

9 text :name

10 end

11
12 # Make sure that includes are added to with multiple searchable calls

13 searchable(:include => :comments) {}

14 end

If we compare the specification of search fields with search mappings in WebDSL, we
see that Haystack and Sunspot require to specify a field type for indexing. Index options

116

Internal Search DSLs

and analysis (tokenization) are associated to these field types. In the example code snippets
a CharField type in Haystack is similar to the text type in Sunspot. If data needs to be
indexed differently than what the built-in types provide, one needs to escape to lower level
code. In Sunspot, using SOLR as search backend, the underlying SOLR XML-schema
can be adapted with new types and custom analyzers. In case of Haystack, supporting
different search backends, one is required to define a custom backend. This can be done for
example by adapting the definition of an existing one to fit the non-standard requirements.
In contrast to these internal DSLs, the search DSL for WebDSL has language constructs to
make custom analyzer definitions. Also, the search field attributes are all optional at search
configuration, following the convention over configuration design paradigm more closely.
Only providing a property name in a search mapping, the WebDSL compiler determines the
type of the property and applies the default (conventional) index options for that type (see
Section 6.3.2).

Another example, more related to the interface of the Searcher class we developed
for use as core language, is the query builder DSL in Hibernate Search. This is not a
complete search DSL, but an embedded language for the construction of Lucene queries
and the management of facets in Hibernate Search. It allows method chaining similar to
the interface of the Searcher class we developed for WebDSL, but is more sophisticated.
Its fluent interface is implemented using various interface classes denoting the different
contexts one can encounter during query construction. Each context-interface only has the
allowed methods publicly accessible. Using code completion from an IDE one can easily
obtain the available query construction methods with an interface that is close to natural
language. Listing 8.1 shows how to construct a keyword query (a query without tokenizing
the query) on multiple fields with the name field boosted.

1 QueryBuilder mythQB = searchFactory.buildQueryBuilder().forEntity(Myth.class).get();

2 Query luceneQuery = mythQB.keyword()

3 .onField("history")

4 .andField("name")

5 .boostedTo(5)

6 .andField("description")

7 .matching("storm")

8 .createQuery();

Listing 8.1: Query construction using Hibernate Search Query DSL

8.1.2 Static Error Checking

Internal DSLs take less effort to develop than external DSLs, because an internal DSL elab-
orates on a host language which already offers a notation and tool support (editor, debugger,
compiler/interpreter). Logically, this puts restrictions on the extent to which these facilities
can be tailored to the domain, as we already showed was the case for the notation of the
discussed internal search DSLs. A different issue is the static verification of program con-
sistency: a program may be valid for the host language, compiling successfully, however

117

8. OTHER SEARCH DSLS AND FUTURE WORK

it may be configured incorrectly leading to errors popping up at runtime. Similar to how
search configuration relates to an application’s data model, in general, language aspects of
a DSL or programming language depend on other language aspects that may be provided
in various ways (as part of the language, base/host language or by an application program-
ming interface). This hinders the ability to perform static (edit- and compile time) checks
affecting different language aspects. For this reason, internal DSLs are often limited to the
static verification performed by the host language, such as type checking in statically typed
languages. Checks for consistency between different language aspects would require to
build static verifiers for the framework of components which the DSL interacts with, i.e. a
framework that was never intended to have static verification between its components.

Furthermore, reported errors that relate to internal DSL elements are often in the vocab-
ulary of the host language, containing implementation details which is what the DSL tries
to hide in the first place. Domain tailored error messages adopting domain concepts, like
in our external search DSL (Section 5.6.1), are unlikely to be reported statically by internal
DSLs. In case such language has the ability to report domain-friendly messages, these will
likely be limited to checks performed at runtime and it requires these checks to be part of
the DSL implementation. The range of checks and the details included in reported mes-
sages will further depend on the (meta-)data that is available at the moment of execution, in
contrast to static checks performed at compilation/editing which have access to (meta-)data
of the complete program and without hindering runtime performance if the required data
needs to be retrieved or calculated.

8.2 Future work

Ideally, we would have added all search features we came across during the development
of the DSL. We think that the search DSL in its current state offers most search features
that are common in web applications. The work that we will now present was considered
lower priority during the project. It primarily includes additional domain abstractions and
improvements on existing integrated features.

8.2.1 Additional Domain Abstractions

Distributed setup

The base language WebDSL currently offers no abstractions to configure a distributed setup
for running a web application on multiple machines. This would involve supporting multiple
machine instances with possibly multiple database servers. The same holds for the search
backends. Multiple machines may each run their own search engine and maintain their
search index. Implementation involves synchronization between indexer and search engines
on multiple machines which will depend on the way distribution is set up, i.e. by sharding
or by replicating search indexes.

118

Future work

Named queries

A ‘Searcher‘ instance may be configured to hold multiple constraints of various types:
queries, filters/namespace, selected facets. The latter two can already be managed using
their associated search field names. However, ordinary query constraints are currently
merged into a single query, where only the constraint value of the first configured query
(treated as the main query) is memorized and accessible by calling searcher.query() (read-
only). This hinders the management of multiple query constraints which a searcher may
hold and requires a developer to maintain additional query constraints in additional tem-
plate/page variables. A simple example is a search form that allows users to optionally
enter query words that should not match the search results. In order to present a summary
of the criteria set by the user, or allowing to redefine the entered criteria would require to
store the additional query constraints in separate variables alongside the searcher instance.

In order to support managing multiple query constraints, the ‘Searcher‘ class should
be extended to deal with an (optional) additional parameter, the subquery identifier, in the
query-definition and related getter-methods. Similarly, the search language should allow
binding these identifiers to the Constraint-constructs (Table 6.11). A next step would be
to make fields and boosts manageable through a subquery identifier. Being an illustrative
example, the syntactic sugar could be designed like this, where a main and not-query are
bound to identifiers:

search Publication matching title, description: (userQuery@mainq -notQuery@notq);

Extended namespaces support

The search namespace abstraction is currently limited to target all or one namespace in a
search context. This restriction relates to the implementation of suggestion facilities of the
search language, which maintains separate suggestion search indexes for each namespace.
Targeting multiple namespaces on facilities not depending on these suggestional search in-
dexes can be achieved easily by adding additional filter constraints. More work is needed
for adaptation of the suggestion services. Instead of having one index for each namespace, it
would be better to share a single index for suggestion purposes for all namespaces like how
it is done for ordinary search. Even better would be to have the data required for sugges-
tion retrieval integrated into the main search. This would also replace the snapshot-based
character of current implementation, where suggest indexes get renewed regularly. Newer
versions of Lucene (4.0 and onward) add this support by a DirectSpellChecker component
which constructs suggestions using the primary search index. Unfortunately, Hibernate
Search does not yet support this version of Lucene.

Result grouping

The interface of the search language currently allows to retrieve results in order of relevance,
or by sorting on one or more search field values. Not uncommon is to present results in
groups that share a particular property. An example is the presentation of publications in

119

8. OTHER SEARCH DSLS AND FUTURE WORK

Researchr. Here, publications are grouped by the year of publication. This is achieved
by configuring the searcher to order the results by the year field, additional WebDSL code
then iterates the results and splits them into groups. This feature is not (yet) offered by
Hibernate Search. Simple grouping of results can be implemented in a similar way as is
done in Researchr. A syntactic abstraction (... group by field) can be wrapped around
this implementation. Instead of retrieving a list of entities, a list of groups would then be
retrieved. This implies adding a Group type to WebDSL which supplies access to the list of
member entities and to the value they have in common.

Customized ranking

For some cases the default relevance ranking and the ability to sort results by field values
may not give the intended order of results. This is the case, for example, when importance
of results partly relates to a temporal property, such as a publication date for news articles.
In this case, only sorting by date would give a newer article with only one match a higher
score, while an older, more descriptive article with respect to the query terms would end up
low in the ranking. For this to work, the scoring of documents must be adapted to reflect the
extent to which they are important in the context of applying the search. In this case, a more
recent publication date should give more weight than an older publication date. It should
still be combined with the relevance ranking. A first step to support more advanced ranking
is to look how this can be done using Lucene or Hibernate Search. Further investigation
is needed on how to integrate this feature with the data model and expression language in
WebDSL. Or possibly new language constructs may be required for accessing data held by
search fields in the search documents.

Support more query types natively

In its current state, the range of query types assigned a domain abstraction in the search
language is limited to text, proximity and range queries. Falling back to Lucene query
syntax allows more types of queries. Supporting additional types of queries natively will
reduce the needed effort for using these types. Other commonly used queries are fuzzy and
wild-card queries and regular expressions. The latter is already partly supported using the
Searcher methods.

Spatial Search

Abstractions for spatial search are not yet integrated in the search DSL. Geographic loca-
tions are not (yet) supported by WebDSL. Introduction of new types to support locations in
the WebDSL data model will be one of the first steps in supporting spatial search. Then,
this type of data should get supported in the configuration aspects of the search language
(search mappings). The Hibernate Search version currently used as backend for search
facilities (version 3.4.2) does not support spatial queries. Support is added in Hibernate
Search 4.2.0 which implies upgrading Hibernate Core, the object-relational mapper, from
3.6.2 (current) to 4.1.9 or later. The latter upgrade requires migration work affecting various
parts of the code generation and static source code and configurations in WebDSL. As part

120

Future work

of this master’s project we already made an attempt upgrading to Hibernate Core and search
version 4. Unfortunately it turned out to be more effort to get things working, which made
us decide to postpone this migration. It is recommended to continue this work not only for
easier integration of spatial search, but also for improved performance and continued sup-
port from JBoss and its community. Adding support for spatial search without upgrading
Hibernate would involve instrumenting the indexing process (which is supported by Hiber-
nate Search) to support geographical data. At search time, a contributed Lucene library for
spatial search is to be used to query the spatial data.

Syntactic support for spatial search would involve adding spatial specific constraint
types, like searching for items that match a location within a radius around a given loca-
tion, and ordering results with the nearest items appearing first. When spatial data gets
adopted in WebDSL’s type system, it is likely to support expressing areas around a geo-
graphic location, which in turn can be used to express geographic boundaries for search.

8.2.2 Improve Integration with Access Control

WebDSL has a flexible, integrated language for access control. By means of access control
rules, elaborating on the WebDSL expression language, access to pages and templates can
be controlled [12]. Using these rules, WebDSL handles visibility of page elements and
navigation links automatically. For instance, when access control is set up to deny access
to view particular products (e.g., the Product entities where a property visible property
is set to false), data bound to these entities will not be displayed. This also applies to the
collection of entities retrieved using search, which is also where the integration of access
control and search stops. Other data retrieved from a Searcher, such as result size, facets
and suggestions currently do not respect access restrictions modeled using access control
rules.

In the current implementation, access control rules can be used to assure specific search
filters are set that represent the access control restriction. In the former example, this means
that the property Product.visible should be mapped to a search field which is to be used
as search filter field for a Searcher instance. This way, access restrictions will get applied
during the execution of the search by the system, resulting in correct result sizes, result
collections and facets to be retrieved. However, taking existing access control rules as a
base, this approach requires that these rules can be mapped to search filters at the moment
of searching, implying that the data used by access control rules is mapped to search fields.
Derivation of search field mapping for automatic access control weaving into search would
be complex, if not impossible, due to range of checks and data to be accessed in access
control rules. Determining the feasibility of such integration requires further investigation.
Another problem comes along in the retrieval of suggestions. Current implementation is
limited to query all of the available terms for a field, or a subset of these when search
namespaces are used. One cannot limit these sets further with additional criteria. This would
require a solution, also applicable for targeting multiple search namespaces, which uses the
primary search index for the retrieval of suggestions, allowing additional constraints to be
set for controlling access.

121

Chapter 9

Conclusions

We successfully created a usable domain-specific language for internal site search, inte-
grated as sublanguage in WebDSL. The language offers features to facilitate search func-
tionality based around a web application’s data model (i.e. different from web search which
is based around crawlable web pages). We have identified several concerns, each covering
a range of activities typically encountered when implementing search into a (web) applica-
tion, independent of the engine powering the actual search. We extended the base language
WebDSL to allow expressing a substantial part of the variable elements linked to these
concerns.

Index document construction

This includes the selection of data a document should hold, and the tokenization and nor-
malization of this data. We integrated declarative search mapping and analyzer constructs to
allow the selection of data to become searchable and specification of transforming the (tex-
tual) data into, optionally normalized, tokens. By elaborating on the analyzer framework
supplied with Apache Lucene/SOLR, a wide range of tokenization and normalization re-
quirements can be fulfilled. Search mappings are expressive and adopt the convention over
configuration paradigm by requiring as little as the name of the entity property in order to
map that property to a search field.

Specification of search constraints

A new type Searcher is added that covers actions and administration of data related to a
search session (or generally speaking, browse session). The searcher interaction sublan-
guage allows the formulation of constraints through queries of various types, filters and
faceted search. Searcher instances can be created and adapted at different elements of a
WebDSL application and can easily be exchanged between page requests. This fits the
stateful character of a browse session, where a query formulation phase is often followed
by one or more reformulation or refinement phases.

123

9. CONCLUSIONS

Retrieval of data

The searcher type and sublanguage support pagination, ordering and retrieval of search re-
sults and other search-related data including facet values, result size and search execution
time. It also supports the retrieval of query-biased result summaries with query hits high-
lighted.

User interface

WebDSL templates are to be used for the design of the search user interface. User-aiding
search features have been added to WebDSL allowing a rich user interface during browsing
and searching. I.e., serving type-ahead and spell/typographic suggestions, faceted search
and result summary extraction.

DSL development was driven by programming patterns and common practices in the
solution space of the problem domain, similar to previous WebDSL development. Domain
abstractions were added iteratively, where the DSL was in a usable state after each addition,
allowing evaluation of the DSL by means of an application being developed in parallel.
Implementation differed between aspects of internal site search, but mainly elaborated on
using core languages which were already part of the base language. Existing support for
embedding target language code (Java) in WebDSL enabled efficient implementation for
features covered by the Searcher type. The resulting interface of the Searcher type serves
as core language for the syntactic sugar being designed in a separate phase afterwards.
Similarly, property annotations were already part of the data model specification language
in WebDSL, and serve as core language for the search mapping constructs introduced later.
Editor services were implemented last, resulting in a useful language with tool support.

Evaluation by means of case studies showed that WebDSL is capable in facilitating
search for web applications serving large collections of data. Features such as faceted
search, multi-term did-you-mean-suggestions, auto-completion, and the extraction and high-
lighting of textual fragments from search result could all be established using the extended
WebDSL language. The DSL abstracts away from search engine specific implementation
details which require significantly more (boilerplate) code. Other search DSLs designed
for web frameworks show a similar feature-set as the DSL presented in this thesis. The
main difference is that these search languages are implemented as internal DSLs, using the
notation of a general purpose language. Our external DSL excels in expressiveness, concise-
ness and the ability to check for application consistency statically (involving cross-concern
checks) with errors reported in a dialect that adopts domain concepts.

124

Bibliography

[1] Arvind Arasu, Junghoo Cho, Hector Garcia-Molina, Andreas Paepcke, and Sriram
Raghavan. Searching the web. ACM Trans. Internet Techn., 1(1):2–43, 2001.

[2] Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas, and Eelco Visser. Strate-
go/XT 0.17. A language and toolset for program transformation. Science of Computer
Programming, 72(1-2):52–70, 2008.

[3] Andrei Z. Broder. A taxonomy of web search. SIGIR Forum, 36(2):3–10, 2002.

[4] Charles Consel. From a program family to a domain-specific language. In Chris-
tian Lengauer, Don S. Batory, Charles Consel, and Martin Odersky, editors, Domain-
Specific Program Generation, International Seminar, Dagstuhl Castle, Germany,
March 23-28, 2003, Revised Papers, volume 3016 of Lecture Notes in Computer Sci-
ence, pages 19–29. Springer, 2003.

[5] Charles Consel and Renaud Marlet. Architecture software using a methodology for
language development. In Catuscia Palamidessi, Hugh Glaser, and Karl Meinke, ed-
itors, Principles of Declarative Programming, 10th International Symposium, PLILP
98 Held Jointly with the 7th International Conference, ALP 98, Pisa, Italy, September
16-18, 1998, Proceedings, volume 1490 of Lecture Notes in Computer Science, pages
170–194. Springer, 1998.

[6] Qing Cui and Alex Dekhtyar. On improving local website search using web server
traffic logs: a preliminary report. In Angela Bonifati and Dongwon Lee, editors, Sev-
enth ACM International Workshop on Web Information and Data Management (WIDM
2005), Bremen, Germany, November 4, 2005, pages 59–66. ACM, 2005.

[7] H. Cunningham. A little language for surveys: constructing an internal dsl in ruby. In
ACM-SE 46: Proceedings of the 46th Annual Southeast Regional Conference on XX,
New York, NY, USA, 2008. ACM.

[8] Martin Fowler. Domain-Specific Languages. Addison Wesley, 2010.

125

BIBLIOGRAPHY

[9] J. Freeze. Creating dsls with ruby. http://www.artima.com/rubycs/articles/ruby_as_dsl.html,
March 2006.

[10] Thomas R. G. Green and Marian Petre. Usability analysis of visual programming
environments: A cognitive dimensions framework. J. Vis. Lang. Comput., 7(2):131–
174, 1996.

[11] Stephan Greene, Gary Marchionini, Catherine Plaisant, and Ben Shneiderman. Pre-
views and overviews in digital libraries: Designing surrogates to support visual infor-
mation seeking. JASIS, 51(4):380–393, 2000.

[12] Danny M. Groenewegen and Eelco Visser. Declarative access control for WebDSL:
Combining language integration and separation of concerns. In Daniel Schwabe, Fran-
cisco Curbera, and Paul Dantzig, editors, Proceedings of the Eighth International
Conference on Web Engineering, ICWE 2008, 14-18 July 2008, Yorktown Heights,
New York, USA, pages 175–188. IEEE, 2008.

[13] David Hawking. Challenges in enterprise search. In Klaus-Dieter Schewe and Hugh E.
Williams, editors, Database Technologies 2004, Proceedings of the Fifteenth Aus-
tralasian Database Conference, ADC 2004, Dunedin, New Zealand, 18-22 January
2004, volume 27 of CRPIT, pages 15–24. Australian Computer Society, 2004.

[14] Marti A. Hearst. User interfaces and visualization. In Modern Information Retrieval.
ACM Press / Addison-Wesley, 1999.

[15] Marti A. Hearst, Ame Elliott, Jennifer English, Rashmi R. Sinha, Kirsten Swearingen,
and Ka-Ping Yee. Finding the flow in web site search. Communications of the ACM,
45(9):42–49, 2002.

[16] Paul Hudak. Building domain-specific embedded languages. ACM Computing Sur-
veys, 28(4es):196, 1996.

[17] Lennart C. L. Kats and Eelco Visser. The Spoofax language workbench: rules for
declarative specification of languages and IDEs. In William R. Cook, Siobhán Clarke,
and Martin C. Rinard, editors, Proceedings of the 25th Annual ACM SIGPLAN Confer-
ence on Object-Oriented Programming, Systems, Languages, and Applications, OOP-
SLA 2010, pages 444–463, Reno/Tahoe, Nevada, 2010. ACM.

[18] Robert Krovetz. Viewing morphology as an inference process. In Robert Korfhage,
Edie M. Rasmussen, and Peter Willett 0002, editors, Proceedings of the 16th Annual
International ACM-SIGIR Conference on Research and Development in Information
Retrieval. Pittsburgh, PA, USA, June 27 - July 1, 1993, pages 191–202. ACM, 1993.

[19] Mark Levene. An introduction to search engines and web navigation. Wiley. com,
2011.

[20] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions and rever-
sals. Soviet Physics Doklady, 10:707, feb 1966.

126

[21] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and how to develop
domain-specific languages. ACM Computing Surveys, 37(4):316–344, 2005.

[22] Rajat Mukherjee and Jianchang Mao. Enterprise search: Tough stuff. ACM Queue,
2(2):36–46, 2004.

[23] David Lorge Parnas. On the design and development of program families. IEEE Trans.
Software Eng., 2(1):1–9, 1976.

[24] Martin F. Porter. Snowball: A language for stemming algorithms. Published online,
October 2001. Accessed 9 April 2013 17.00h.

[25] Martin F. Porter. The english (porter2) stemming algorithm. Published online, Septem-
ber 2002. Accessed 9 April 2013 17.15h.

[26] Gerard Salton, A. Wong, and C. S. Yang. A vector space model for automatic indexing.
Communications of the ACM, 18(11):613–620, 1975.

[27] Bran Selic. A systematic approach to domain-specific language design using uml.
In Tenth IEEE International Symposium on Object-Oriented Real-Time Distributed
Computing (ISORC 2007), 7-9 May 2007, Santorini Island, Greece, pages 2–9. IEEE
Computer Society, 2007.

[28] Ben Shneiderman, Don Byrd, and W. Bruce Croft. Clarifying search - a user-interface
framework for text searches. D-Lib Magazine, 3(1):1–15, jan 1997.

[29] Diomidis Spinellis. Notable design patterns for domain-specific languages. Journal
of Systems and Software, 56(1):91–99, 2001.

[30] Mark Strembeck and Uwe Zdun. An approach for the systematic development of
domain-specific languages. Software: Practice and Experience, 39(15):1253–1292,
2009.

[31] Anastasios Tombros and Mark Sanderson. Advantages of query biased summaries in
information retrieval. In SIGIR 98: Proceedings of the 21st Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, August 24-
28 1998, Melbourne, Australia, pages 2–10. ACM, 1998.

[32] Mark G. J. van den Brand, H. A. de Jong, Paul Klint, and Pieter A. Olivier. Efficient
annotated terms. Software: Practice and Experience, 30(3):259–291, 2000.

[33] Eelco Visser. Syntax Definition for Language Prototyping. PhD thesis, University of
Amsterdam, September 1997.

[34] Eelco Visser. WebDSL: A case study in domain-specific language engineering. In
Generative and Transformational Techniques in Software Engineering II, Interna-
tional Summer School, GTTSE 2007, volume 5235 of Lecture Notes in Computer
Science, pages 291–373, Braga, Portugal, 2007. Springer.

127

	Preface
	Contents
	List of Figures
	List of Tables
	Introduction
	Contributions
	Thesis Structure

	An Introduction to WebDSL
	Data Model Language
	Pages, Templates and Actions
	Sub-languages for Various Concerns
	Limited Search Support

	Problem Domain: Internal Site Search
	Requirements for Basic Search Capabilities
	More Advanced Search User Interfaces
	Scalability
	Maintainance of Indexes
	Towards a Solution

	Solution Domain
	Answers to Internal Site Search
	A Comparison of Search Engines
	Choosing a Solution Suitable for WebDSL

	Extending WebDSL with Search
	DSL Development Process
	Previous WebDSL Development
	A Similar Approach for this DSL Extension
	Search and Retrieval: Introducing the Searcher Type
	Configuration: Support All Property Types
	Towards a DSL for Internal Site Search

	A DSL for Search
	Design of the Language
	Searchable Data Specification
	Specification of Analyzers
	Specification of Constraints
	Data and Meta-data Retrieval
	Index Maintenance Tasks

	Evaluation
	Case Study: Reposearch
	Case Study: Researchr.org
	Comparison to an Ordinary Java Web Application

	Other Search DSLs and Future Work
	Internal Search DSLs
	Future work

	Conclusions
	Bibliography

