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Abstract

This work investigates the feasibility of performing
monocular depth estimation on highly resource-
constrained hardware, specifically the Raspberry
Pi Pico Zero microcontroller. In contrast to
existing approaches that rely on large convolutional
networks and high-performance devices, this study
explores a set of custom lightweight encoder-
decoder architectures, including one inspired by L-
ENet, L-EfficientUNet, yPyD-Net, and an LSTM-
1PyD-Net combination, designed to operate within
strict memory limits. These models were trained on
a preprocessed KITTI dataset, with either LiDAR
depth maps or SGM (Semi-Global Matching)
dense depth maps, and evaluated in terms of
accuracy, model size, and real-time inference
performance. Results demonstrate that meaningful
depth prediction is achievable on microcontrollers,
paving the way for low-cost autonomous navigation
systems and broader applications of TinyML in
embedded robotics, with SGM proving to be
the best preprocessing technique, and the LSTM-
©PyD-Net having the best accuracy when trained
on the full Train split of the KITTI dataset.

1 Introduction

Monocular depth estimation, the process of inferring distance
information from a single image, is critical in automotive
perception systems, especially for autonomous navigation.
Traditionally, this task has been tackled using large, resource-
intensive neural networks or stereo vision setups [1, 2, 3].
However, such approaches are infeasible for microcontroller-
class hardware like the Raspberry Pi Pico Zero, which has
only 264 KB of RAM and lacks floating-point acceleration
hardware.

This project proposes and evaluates several lightweight,
quantized deep learning models tailored for efficient depth
estimation on extremely resource-constrained embedded
systems. The primary objective is to find the best trade-off
between accuracy and efficiency on the Raspberry Pi Pico.

Multiple models were adapted from existing depth
estimation networks, then compressed and quantized using
TinyML techniques. The result is a comparative analysis
of four optimized models and two preprocessing techniques,
which are evaluated for their classification accuracy on
binned depth maps (error of at most 25%, 56.25%,
and 95.3125%), memory footprint, inference latency, and
feasibility of deployment on Cortex-MO microcontrollers.

A full deployment pipeline was also developed to
convert trained TensorFlow models into C arrays compatible
with edge inference engines such as TensorFlow Lite
for Microcontrollers. The research offers an end-to-end
framework for bringing depth-aware computer vision to
severely constrained embedded systems.

The structure of the paper is as follows. First, related
research and previous methods will be presented. Section 3
describes the methodology, featuring implementation details,

architectures, and training. The experimental setup is then
described in section 4, and results are highlighted. Section 5
represents the responsible research part, where the ethics of
the paper are discussed. Then, discussion of the results is in
order in section 6. Finally, section 7 presents the conclusions
taken from this work, and what future works could build
upon.

2 Related Work

Depth estimation from monocular input has received
sustained attention across the fields of computer vision
and robotics. In 2019, Godard et al. demonstrated
the effectiveness of self-supervised learning approaches for
monocular depth estimation, achieving competitive results
while reducing the need for ground truth depth data [1]. Later,
Peluso et al. introduced a method tailored for deployment
on microcontroller units (MCUs), illustrating the potential
for monocular depth inference in constrained environments
[4]. Some of this research will build upon Peluso et al.’s,
treating their results as a baseline for MCU deployment of
depth perception models [4].

More recent models, including Depth Anything v2,
DepthCrafter, MiDaS, Marigold, and Metric3D, have pushed
the limits of depth estimation accuracy by leveraging larger
datasets, transformer-based backbones, and powerful GPUs
during inference [2, 3, 5, 6, 7]. While these approaches
offer high precision, they are generally unsuitable for
microcontroller devices due to their extensive memory and
computation resource demands.

To address this gap, lightweight networks such as L-
EfficientUNet [8] and L-ENet [9] were proposed. These
models strike a balance between inference efficiency and
accuracy, making them suitable for embedded deployment.
Inspired by these designs, this work builds and evaluates
reduced versions of such models, along with original
architectures optimized from the ground up for the constraints
of the Raspberry Pi Pico. Despite the improvements
of pruning and quantization techniques, no recent study
has performed a direct comparison of post compression
monocular depth models on Cortex-MO hardware. This
research addresses that gap, providing a practical solution
for model performance and deployability in ultra-low-
power embedded systems. Moreover, this research shows
the feasibility of using these depth perception systems as
guidance for speed control, pairing the TinyML model with a
PID-based speed controller.

3 Methodology

3.1 Overview

The adaptive speed control task requires two components.
First, a way to control a vehicle’s velocity, which is the
vehicle’s drivetrain, paired with a fine-tuned control loop.
Second, a way to perceive surroundings, or rather, the
distances to its surroundings. For this reason, the monocular
depth perception task is considered most useful. Since
communication between the speed controller and the depth
perception task can be adapted without the use of machine
learning with only the use of inter-frame relative velocity



to obstacles, the depth estimation task is the focus of this
research.

This project explores the design, training, and deployment
of lightweight convolutional neural networks for monocular
depth estimation on the Raspberry Pi Pico, a Cortex-
MO microcontroller with only 264KB of SRAM and no
operating system. Due to this extremely limited memory
and processing environment, several constraints had to be
imposed on both the model architecture and input resolution.
The final models are evaluated not only for accuracy but also
for practical deployability, including conversion into C arrays
and real-time inference on the Pico itself.

Initial experiments explored architectures based on
MobileNetV1 and other lightweight backbones; however,
the memory footprint and intermediate tensor sizes made
these infeasible for deployment. As a result, custom
architectures were developed from scratch, inspired by
efficient segmentation and depth networks such as L-
EfficientUNet and L-ENet, or pyramid architectures such as
pPyD-Net, and designed with embedded deployment in mind
[4, 8,9, 10]. Four models were successfully adapted to run
within the memory limits of the Pico. A fifth model based
on binarized neural networks (BNNs) was implemented and
trained, achieving a test accuracy of 58% in a classification
style depth prediction task [11]. However, due to time
constraints and incompatibility between TensorFlow Lite and
the binary activation functions used, the BNN model was
excluded from final deployment and moved to the future
recommendations section.

3.2 Dataset and Preprocessing

The KITTI dataset was selected as the basis for training due
to its high-quality paired RGB and LiDAR depth data [12].
Each raw image from the dataset is first center-cropped to a
square aspect ratio and then resized to a resolution of 64 x 64
pixels. This intermediate resolution was chosen to balance
between retaining spatial detail and allowing for efficient
further downsampling during deployment. The final model
input resolution is 64 x 64, and images are converted to
grayscale to reduce the input dimensionality and comply with
SRAM constraints on the Raspberry Pi Pico.

For depth maps, two distinct preprocessing strategies were
used. Following the first strategy, depth maps were generated
by projecting LiDAR point clouds into the image plane
using the provided calibration matrices. Points behind the
camera or outside the field of view were filtered out, and
sparse depth maps were formed by assigning projected depth
values to valid image coordinates. To mitigate sparsity
and create dense training targets, morphological dilation and
nearest-neighbor interpolation were applied only in regions
of sufficient point density. The resulting depth maps were
clipped to a maximum range of 80 meters, log-normalized
for training stability, and saved as NumPy arrays. The left
camera input and the associated dense depth map computed
using calibration data can be seen in Figure 1.

The second strategy generated dense depth maps without
needing to use interpolation by leveraging the KITTI dataset’s
use of two distinct cameras simultaneously. As depth is
measured in respect to the vehicle’s left camera within the

Ground Truth Depth Input Ground Truth Depth
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Input
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Figure 1: Dense depth maps computed using interpolation of LIDAR
data.

KITTTI dataset, by applying SGM (Semi-Global Matching)
to the frames obtained by the left and right cameras, a
dense depth map can be obtained without interpolation or
knowledge loss. Defunct pixels, where depth could not be
computed, are marked with an invalid value, in order to be
later ignored by the loss function. The left camera input and
the associated depth map using SGM can be seen in Figure 2.

(a) Pair 1

(b) Pair 2

Figure 2: SGM preprocessing using stereo pairs, where pixels in
dark blue are outliers [13].

On-device preprocessing was also required to adapt the
ArduCam SPI module’s native 320 x 320 resolution to the
model’s expected 64 x 64 input. This resizing is performed in
C using nearest-neighbor interpolation for its computational
simplicity and negligible memory overhead. This design
enables real-time, low-latency adaptation of camera input
without additional hardware or significant processing burden
on the microcontroller.

3.3 Model Architectures

Two of the final models used in this project are compact
encoder-decoder style networks designed for dense prediction
at a resolution of 64 x 64 pixels. The model input was
limited to grayscale images in this resolution due to SRAM
constraints. The other two models rely on a pyramid
architecture, and one also implements an LSTM, relying on
sequential data in batches of 3 frames each instead of one
image at a time. At the end of each model, Sigmoid activation
is used in the case of the preprocessed LiDAR maps, and no
activation is used in the case of SGM preprocessing.

L-EfficientUNet

The first architecture used in this study is based on
L-EfficientUNet [8], a highly compact encoder-decoder
network that achieves a strong trade-off between parameter
efficiency and depth estimation accuracy.

L-EfficientUNet follows a traditional U-Net structure, and
its architecture can be observed in Figure 3. It replaces
standard convolutional layers with depthwise separable
convolutions to drastically reduce the number of parameters



and operations. The encoder consists of a sequence of
blocks, each composed of a depthwise separable convolution
followed by a max-pooling operation.  These blocks
progressively reduce spatial resolution while increasing
feature depth. The decoder mirrors this structure by using
bilinear upsampling and concatenating feature maps with
their corresponding encoder outputs via skip connections,
followed again by depthwise separable convolutions to refine
spatial detail [8].

Figure 3: L-EfficientUNet Architecture [8]

The bottleneck layer, situated at the lowest resolution (4 X
4), processes high-level features with expanded depth before
decoding. The final output is produced via a 1 x 1 convolution
with sigmoid activation to generate a single channel depth
map normalized between 0 and 1. Like the other models, L-
EfficientUNet operates on grayscale 64 x 64 images as input.

Its lightweight design and use of efficient convolutions
make it exceptionally well-suited for inference on
microcontrollers with tight memory limits such as the
Raspberry Pi Pico.

L-ENet Inspired Architecture

The second model explored in this work is a custom
lightweight architecture inspired by L-ENet, originally
proposed as a real-time semantic segmentation network for
resource-constrained devices. While the original L-ENet was
designed for semantic segmentation at higher resolutions,
this adapted version preserves its structural philosophy while
scaling it down to operate within the SRAM and flash
memory constraints of the Raspberry Pi Pico.

This encoder-decoder model features four downsampling
stages, leading to a compact 4 x 4 latent feature
representation, and four corresponding upsampling steps to
restore the resolution to 64 x 64. Skip connections after each
major downsampling stage help retain spatial fidelity during
reconstruction.

The architecture begins with an initial block that combines
a standard convolution and a max-pooling operation to
quickly reduce the spatial resolution while increasing feature
depth. This is followed by a series of bottleneck modules,
which consist of depthwise separable convolutions and
residual connections. These modules can either downsample
or upsample spatial resolution, depending on the position
within the network.

Unlike the original L-ENet, which includes asymmetric
and dilated convolutions, this version simplifies each
bottleneck to a single depthwise separable convolution with
stride control, followed by batch normalization and ReLU6
activation. Furthermore, instead of transposed convolutions
used in L-ENet’s decoder, bilinear upsampling is combined
with residual skip connections, further reducing the memory
footprint. The architecture of this model is showed in
Figure 4.
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Figure 4: L-ENet Architecture [9]

Despite being based on a more complex architecture, this
model fits within the constraints of the Raspberry Pi Pico after
structural pruning, offering a balance between computational
efficiency and prediction accuracy.

uPyD-Net

The third model evaluated in this study is puPyD-Net, a
lightweight, pyramid-based convolutional neural network
introduced by Peluso et al. in 2022 [4]. Designed specifically
for ultra-low-power microcontroller platforms, pPyD-Net
enables monocular depth estimation using extremely low-
resolution grayscale inputs (as small as 32 x 32 or 48 X 48),
making it ideal for edge Al applications with strict memory
and power constraints. In this research, the model was also
tested at a resolution of 64 x 64 pixels.

The architecture follows a shallow encoder-decoder design
structured around a three-level pyramidal representation, as
can be seen in Figure 5. The encoder consists of six
3 x 3 convolutional layers interleaved with leaky ReLU
activations (o = 0.125), gradually reducing the spatial
resolution while increasing feature depth. Each encoder level
feeds into a corresponding decoder block composed of three
convolutional layers and an upsampling operation via 2 x 2
transposed convolutions. The final output is a coarse inverse
depth map produced at the input resolution.

@ ownser @ ceono @ omi (G conconanoe () cnense

Figure 5: pPyd-Net Architecture [4]

This model was trained by Peluso et al. using SGM
pseudo-ground truths instead of LiDAR depth maps [4],
and the same methodology was also used by this research,
adapting other models to the preprocessing technique
also used by Tosi et al., following the algorithm of H.
Hirschmuller [14, 13]. Due to uPyD-Net’s structure, only
this data was suitable for training, as the use of LiDAR depth
maps showed minimal results.

Temporal-uPyD-Net

Building on the efficient design of uPyD-Net, the fourth
model explored in this study is a temporal extension that
integrates a convolutional recurrent layer to enable video-
based depth estimation. This architecture, referred to
as Temporal-uPyD-Net, combines the compact pyramidal
encoder-decoder design of pPyD-Net with a simulated
ConvLSTM2D unit through a Lambda layer, allowing the



network to exploit temporal continuity across short image
sequences. By modeling motion-aware features, it aims to
improve depth prediction stability and accuracy in dynamic
scenes.

Like the base model, the encoder processes grayscale
inputs at low resolutions (64 x 64) using a sequence of
lightweight convolutional blocks. However, in this case,
each input is a short temporal window of consecutive
frames. The encoder processes each frame independently
through time-distributed convolutional layers, preserving
spatial abstraction while maintaining the temporal structure
of the input sequence.

At the bottleneck, the simulated ConvLSTM2D layer
aggregates the temporally encoded features into a single
representation, through a mean operation. This recurrent unit
captures temporal correlations and motion cues across the
sequence, outputting a refined latent feature map suitable for
decoding. The decoder structure remains largely unchanged
from pPyD-Net, consisting of three upsampling stages with
skip connections. However, skip connections are drawn
specifically from the last frame in the sequence, ensuring
consistency with the temporal aggregation step. The reason
why an actual LSTM layer was not used is because of TFLite
Micro’s lack of LSTM support as of today.

The final output is a single-channel inverse depth map,
corresponding to the last frame of the input sequence.
By integrating temporal reasoning into the pPyD-Net
framework without significantly increasing its computational
footprint, this architecture serves as a promising direction for
lightweight, temporally-aware depth estimation on embedded
systems. The architecture of this hybrid model is shown in

Figure 6.

Figure 6: Original LSTM-p:Pyd-Net Architecture

A comparison of the number of parameters and whether
the models fit within the Pico’s SRAM post-quantization is
presented in the Table 1.

Model Params SRAM Fit
L-EfficientUNet 124,328 Yes
L-ENet (full) 504,845 No
L-ENet (adapted) 25,493 Yes

1PyD-Net 130,073 Yes
LSTM-pPyD-Net 203,939 Yes
BNN 240,208 Yes*

Table 1: Summary of model characteristics (* - SRAM fit not
verified due to TensorFlow Lite incompatibilities)

3.4 Training Strategy

Each model was trained using supervised learning with either
mean squared error as the primary loss function, or reverse
Huber loss [15]. The models were evaluated on a held-
out test set using pixel-wise comparison of the predicted
and ground truth depth values. Training proceeded for
up to 100 epochs, with early stopping based on validation
loss to prevent overfitting. Where applicable, quantization-
aware training was applied to simulate the final deployment
conditions. After training, the models were converted to
TensorFlow Lite format, quantized to INTS8, and further
processed into C++ arrays suitable for embedding directly in
microcontroller firmware. The models were then compiled
using a Pico-specific version of TensorFlow Lite Micro [16].

While the binarized neural network achieved acceptable
results during workstation testing, deployment was not
possible due to the presence of unsupported operations in the
TensorFlow Lite runtime. As a result, it is considered as part
of future work.

3.5 Deployment and Inference

Final models were exported as C++ files containing 8 bytes
aligned arrays of quantized weights, using TensorFlow Lite
Micro as the runtime. The firmware implementation on the
Raspberry Pi Pico handled real-time camera input, grayscale
conversion, downsampling, inference, and output logic. The
Pico’s total SRAM usage was kept within the device’s limit
by reducing intermediate feature map sizes and aggressively
limiting the number of filters used in convolutional layers.

To translate model output into control behavior, predicted
depth maps were processed in firmware and passed into
a simple decision-making routine. The objective was to
enable the robot to interpret its environment and respond in
real time, despite severe compute and memory constraints.
This was done by examining the center of each image, and
comparing an expected depth to an actual one. If it differed,
it meant an object was encountered, and action had to be taken
accordingly.

3.6 Control System

A PID (Proportional Integral Derivative) controller was
implemented to convert the predicted depth outputs into
motor control commands. The controller regulates forward
velocity and turning direction based on the presence and
location of nearby obstacles. The proportional term
allows for immediate response to detected obstacles, the
integral term helps correct cumulative drift in trajectory, and
the derivative term dampens oscillations caused by noisy
predictions.

This controller was tuned through empirical testing and
implemented entirely on the Pico to preserve autonomy and
eliminate external computation. By using depth maps as the
control input, the system is able to adapt its speed in real time
using only monocular vision and embedded computation.
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Figure 7: Rescaled Architectures for Raspberry Pi Pico

4 Experimental Setup and Results

4.1 Experimental Setup

The primary objective of the evaluation was to determine
the trade-off between depth estimation accuracy and
computational efficiency of lightweight neural networks
when deployed on ultra-low-power microcontrollers,
particularly the Raspberry Pi Pico. The experiments were
conducted using a GPU-enabled development machine
(NVIDIA RTX4060) for training and validation. Each
model was then converted to TensorFlow Lite format, post-
quantized to 8-bit fixed-point precision, and prepared for
deployment on the Pico using the pico-tflmicro framework
[16].

Input data consisted of paired grayscale and SGM depth
maps derived from the KITTI dataset, preprocessed into
grayscale 32 x 32 images and normalized dense depth targets,
or non-normalized inverse SGM dense depth targets. A total
of 22600 paired samples were used, while another 697 were
used for testing, following the concept of an eigen split, as
defined by Eigen et al. [17, 1]. Ground truth labels were
clipped between 0 and 80 meters and normalized to a [0, 1]
range in the case of depth maps, or had their unknown pixels
masked in the case of SGM, remaining unnormalized. Data
augmentation during training included random horizontal
flips and targeted duplication for class imbalances, as most
frames showed an open road with no other vehicles.

All models were trained using the Adam optimizer with
an initial learning rate of 0.001 or 0.0001, a batch size of 8
or 16, and early stopping after 10 validation epochs with no
improvement. Either Mean Squared Error (MSE) or reverse
Huber (berHu) were used as the primary loss functions
[15, 18], while Mean Absolute Error (MAE) and threshold-
based accuracy (§ < 1.25, § < 1.252, and § < 1.25%) were
tracked as secondary metrics. Threshold-based accuracy is a
standard metric for regression tasks such as the one presented
in this research, where ¢ represents the value obtained after
calculating the maximum of the division between ground
truth value and predicted value, or vice-versa. Therefore, the
value of delta shows a scaled error, and by calculating how
many pixels have a § value under a certain threshold, we can
define an accuracy metric.

4.2 Testing Procedure

Each model’s predictions were evaluated on the reserved test
set. Performance was measured in terms of Delta-accuracy.
The output depths were rescaled to meters and compared to
ground truth. Inference was unachievable on the Raspberry
Pi Pico using a 32x32 resolution, even when using grayscale

images. Therefore, images had to be downscaled to 32x32,
saved to C++ arrays, and used for inference instead. Models
also had to be retrained with this new resolution, using
the same hyperparameters mentioned above, and the same
architectures.

For on-device testing, the robot was placed on a flat table
surface in a controlled indoor environment. Obstacle objects
(books, boxes) were slowly moved into the robot’s path while
a real-time feed from the ArduCam was processed by the
depth estimation model. A hard-coded threshold was used
to classify dangerous proximity and trigger stop maneuvers,
using the outputted SGM maps’ depth bins as reference, as
actual depth predictions would have to be scaled anyway,
given KITTI was captured on a road environment, while the
robot is no more than 15 centimeters (cm) tall. For reference,
the robot used for testing is present in Figure 8.

Figure 8: Robot with ArduCam in front and Raspberry Pi Pico

Given the fact that images had to be downscaled, the
uPyD-Net models’ architecture also changed slightly, to
reflect the smaller data size. These can now be seen in
Figure 7. The change is mostly related to the removal of the
final decoder layer, as to not upsample once again to 64 x 64,
and instead just leaving the resolution at 32 x 32. This also
resulted in a small size decrease, as well as a small speedup.
These are, however, barely visible after quantization, or when



running inference on the Pico.

4.3 Results

The results for the four models, obtained during off-device
testing on the workstation, are shown in Table 2. These are
used as a metric for accuracy, given the fact computation stays
the same. It is also important to mention that these are the
results models get after full int8 quantization, on the entire
KITTI test set [17].

Model §<125 0<125° 5<1.25° Size (PiPico, KB)
L-EfficientUNet _ 54.40%  70.08% _ 80.77% T78KB
L-ENet 55.88%  73.24%  83.35% 49KB
1PyD-Net 7432%  8395%  88.44% 157KB
LSTM-uPyD-Net  74.38%  83.68%  88.40% 170KB

Table 2: Model Evaluation Results (GPU Workstation, 64 x 64
resolution)

One might notice that there are some differences in results
from Peluso et al.’s research, namely a slight difference in
obtained threshold accuracy [4]. Whereas they reported a § <
1.25 accuracy of 73.1% for 48 x 48 images, this paper reports
an accuracy of 74.32% for the new image. As stated, the
difference in the results between the paper of Peluso et al. and
this work comes from the difference of input resolution (64 x
64 versus 48 x 48), and full integer quantization methods.

Results for the 32 x 32 architecture for his model are much
closer in line with those reported by Peluso et al. [4]. Due
to the much higher accuracy and lower memory constraints,
only the ;/PyD-Net and original LSTM-uPyD-Net were used
in the final tests. The accuracies on the Raspberry Pi Pico are
reported in Table 3, as well as the final .tflite file sizes.

Model 0 <125 0<1257 §<1.25%° Size (PiPico, KB)
(PyD-Net 69.91% 80.99% 86.60% 75KB
LSTM-uPyD-Net  69.95% 81.05% 86.69% 74KB

Table 3: Model Evaluation Results (Raspberry Pi Pico, 32 x 32
resolution, full int8-quantization)

For the preprocessing method using dense interpolated
LiDAR depth maps, the models seemed ineffective. They
were unable to pick up on spacial cues, and only overfit
on empty roads, even after solving the class imbalance,
when they started predicting noise. This could be due to
the models getting stuck in a local minimum due to the
nature of MSE, bad weight initialization (randomization-
dependent), or simply interpolated data not being clear
enough. Therefore, the models failed to achieve over 60%
accuracy for § < 1.25, or over 80% for § < 1.252, and
although their accuracies may seem decent at first, they
are overestimated because of the noisy prediction randomly
being in the correct range, by only predicting the bottom of
the image being close and the middle far, the rest being a
gradient between the two.

However, the models were much more effective when
used with the combination of SGM depth maps and reverse
Huber loss (berHu), which provides smoother gradients and
helps avoid local minima. Moreover, SGM depth maps are

not interpolated, masking unavailable pixel depths as invalid
instead of interpolating a depth.

For reference, we showcase some side-by-side predictions
for all models below, in Figures 9.

Finally, for the two models used for Pico inference, two
more metrics were especially important, namely inference
time and SRAM usage out of the allocated tensor arena.
Both models were given access to an arena of around 80kB
of SRAM from the Pico to use, given the other processes
active on the Pico, namely the PID controller and post-
processing. For this to be possible, as mentioned in section
4.2, the inputs had to be lowered to a 32 x 32 resolution.
Moreover, skip connections, that created implicit reshapes,
had to be explicitly mentioned for the tflite micro pico
runtime environment to correctly compute them [16]. Since
the runtime requires static memory allocation, it will try
to allocate enough SRAM to store all intermediate results,
and never frees them. This is a strong limitation of the
environment, and also the reason why inputs had to be
downscaled. The results of running on the Pico can be seen
in Table 4.

It should also be mentioned that the TFLite Micro library
needed to be modified for the Temporal model to run, namely,
the dimension limit for the Strided Slice operation needed to
be changed from 4 to 5. The change had no side-effects since
the rest of the code is generalized to n dimensions, and the
choice for a maximum of 4 seems to be arbitrary.

Model SRAM footprint (kB) Inference time (seconds)
1PyD-Net 55.724 2.6
LSTM-pPyD-Net 90.044 3.8

Table 4: Model Evaluation Results (Raspberry Pi Pico, 32 x 32
resolution, full int§8-quantization)

Given these results when evaluating on the Raspberry Pi
Pico, it may not be an obvious choice whether a temporal
model is still a feasible implementation choice. Both versions
perform well on the Pico, and a minimal change in accuracy
can be observed. The difference comes in SRAM footprint
and inference time, where the normal pPyD-Net outperforms
the new LSTM-based implementation. This is because of
larger tensor sizes and more operations, as well as the triple
size in input, since the LSTM takes three input images at a
time. Seeing as this does not triple memory usage, when
used at scale, the LSTM-based network might outperform the
uPyD-Net at higher resolutions, when the size of the model
itself weighs in more than input size [4]. It is also important
to note the higher quality of results that the temporal model
produces, offering more smooth and less noisy results.

5 Comparison of Results

To evaluate the contribution of different design choices to the
final performance, a comparison was conducted, analyzing
the impact of the supervision signal, the loss function, and
the learning rate.

Supervision Signal: LiDAR vs. SGM
Sparse LiDAR ground truth was compared with dense
depth maps generated via Semi-Global Matching (SGM)



(a) L-EfficientUNet Predictions

(c) uPyD-Net Predictions

(b) L-ENet Predictions

(d) LSTM-p.PyD-Net Predictions

Figure 9: Predictions from four models using SGM preprocessing [13].

as supervisory signals [13]. While LiDAR offers highly
accurate depth values, its sparsity limits the model’s ability
to generalize to dense output. In contrast, SGM provides
a denser signal, although noisier. Empirically, models
trained with SGM supervision consistently outperformed
those trained with LiDAR, confirming the benefit of dense
supervision in this setting, confirming the findings of Peluso
et al. [4].

Loss Function: MSE vs. berHu

The choice of loss function was then evaluated by comparing
the standard Mean Squared Error (MSE) loss with the reverse
Huber (berHu) loss. Training with berHu loss led to faster
convergence and better final performance. This improvement
can be attributed to berHu’s robustness to outliers while
maintaining sensitivity to small errors, an advantageous
property when learning from noisy depth maps such as those
produced by SGM [18].

Learning Rate: 1le—3 vs. le—4

Lastly, two learning rates were compared: le—3 and le—4.
Models trained with a learning rate of le—4 demonstrated
more stable training and better generalization, while le—3
frequently led to oscillations or suboptimal plateaus in
performance.

In summary, these experiments show that using SGM
as supervision, employing the berHu loss, and selecting a
learning rate of le—4 are all critical to achieving optimal
results. The ablation results highlight the importance of
careful configuration in dense depth estimation pipelines.

6 Responsible Research
6.1 Societal Impact

This work contributes to the ongoing advancement of
affordable autonomous systems by demonstrating that
monocular depth estimation can be performed effectively
on extremely resource-constrained devices. By showing

that models under 60KB can still achieve reliable inference
results, the research highlights the feasibility of deploying
computer vision-based navigation systems on widely
available microcontrollers such as the Raspberry Pi Pico.
This could lower the entry barrier for low-cost robotics
and facilitate broader adoption of embedded intelligence in
fields such as smart mobility, warehouse automation, and
education.

The findings are particularly relevant for the automotive
industry, where many existing embedded systems lack the
computational capacity to run modern perception models.
Integrating TinyML models into existing generic nodes,
without the need for additional hardware accelerators, has
the potential to reduce system complexity and cost while still
enabling safe, vision-based obstacle detection and navigation.

6.2 LLM Disclosure

Large Language Models (LLMs), specifically OpenAl’s
ChatGPT, were used throughout the research process for
technical proofreading, refining scientific writing. All final
decisions regarding model design, experimentation, and
evaluation were made independently by me.

7 Discussion

7.1 Interpretation of Results

The objective of this research was to evaluate whether
lightweight depth estimation models can operate effectively
within the memory and computational limits of the Raspberry
Pi Pico, thereby addressing the research question: ”What is
the post-compression efficiency of TinyML depth perception
models when run on the Raspberry Pi Pico?”

The results confirm that meaningful depth predictions are
achievable even with heavily compressed neural network
models operating on 32 x 32 grayscale inputs. Two of the four
selected architectures successfully compiled to TensorFlow
Lite and met strict memory constraints, while maintaining



reasonable test-set accuracy when evaluated on a GPU-
enabled workstation.

Moreover, they prove that the combination of
preprocessing and loss used by Peluso et al., namely
computing SGM depth maps and using reverse Huber loss,
are the ideal combination for maximizing delta accuracy for
multiple models and architectures [4].

Finally, the temporal nature of the recordings enabled the
implementation of an LSTM, that enhanced the smoothness
of predictions over time, but also increasing inference time
and using more of the Pico’s SRAM.

7.2 Limitations

While the results are promising, this study encountered
several limitations. First, due to hardware and environmental
constraints, it was not feasible to collect a custom dataset
tailored specifically for this application. Instead, the KITTI
dataset was used for training and evaluation. Though robust,
KITTI is largely composed of outdoor automotive scenes and
may not generalize perfectly to indoor testing scenarios or
environments with substantially different lighting or scale. In
the future, the use of a simulated dataset such as the CARLA
dataset [19], might prove beneficial.

Second, while a binarized neural network (BNN)
was initially considered and partially implemented, time
constraints and quantization framework limitations prevented
its full integration and on-device deployment. Preliminary
experiments on the workstation showed that the BNN
achieved approximately 58% test accuracy after training with
quantization aware methods using LiDAR interpolated depth
maps as supervision outputs, confirming its feasibility but
highlighting the need for further tuning and integration work.

Finally, given that the Raspberry Pi Pico Zero has limited
multithreading capabilities and misses an FPU (Floating
Point Unit), it fails to fully utilize the capabilities of the
deployed models, given high inference times. Therefore, this
study recommends against using such a device, and rather
upgrading to a faster Cortex-M processor, such as the Cortex-
M4, or the Cortex-M7, given that this research’s applications
are in autonomous driving. However, further fine-tuning and
research may prove that the Raspberry Pi Pico Zero is also
enough to safely perform such a task.

7.3 Broader Implications

Despite the outlined limitations, the findings contribute
meaningfully to the field of embedded machine learning,
particularly in the automotive robotics domain. The study
demonstrates that full-stack monocular depth estimation can
be compressed into a sub-60 KB binary and executed within
kilobytes of SRAM, paving the way for affordable, vision-
only navigation systems. This opens new pathways for
integrating TinyML perception modules into existing generic
microcontroller-based automotive platforms, such as driver-
assistance systems, automated parking modules, or robotic
delivery agents.

By providing a clear comparison of depth models under
Pico constraints, this research serves as a foundation for
further work in model search, hardware-aware compression,
and adaptive depth estimation in edge environments.

8 Conclusions and Future Work

This study explored the viability of deploying lightweight
monocular depth estimation models on the extremely
resource-constrained Raspberry Pi Pico microcontroller.
By leveraging techniques such as depthwise separable
convolutions, bottleneck modules, careful architectural
pruning, and simulated Long-Short Term Memory (LSTM),
four distinct convolutional neural networks were evaluated.
All models adhered to strict memory limitations, using
grayscale inputs at 32 x 32 resolution, and achieved inference-
ready sizes suitable for embedded deployment on the
Raspberry Pi Pico.
In summary, this work contributes:

e A comparative analysis of four compact depth
estimation models tailored for Cortex-MO+ hardware.

* Two complete preprocessing and training pipelines for
KITTI-based monocular depth learning at 64 x 64 and
32 X 32 resolution.

e Evidence that depth perception for autonomous
robotics can be achieved using sub-200 KB models
on microcontrollers without specialized hardware
accelerators.

When it comes to future work, it is strongly recommended
that these models are also tested on a better board, that can
better leverage their architecture. Even just upgrading to a
device such as the Raspberry Pi Pico Two might make the
work more than feasible. The use of pure CMSIS-NN instead
of a library like TFLite Micro may also be beneficial, while
also enabling the use of device-specific optimizations.
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