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1. Introduction
In this paper we consider the numerical solution of the steady, laminar and incompressible Navier-Stokes equations as
follows
—VAu+ (u-Vyu+Vp=f on¢g,
V.-u=0 ong.

(1)

Here u is the velocity, p is the pressure, the positive coefficient v is the kinematic viscosity and f is a given force field.
Q is a 2D or 3D bounded and connected domain with the boundary 2. On the boundaries of the computational domain,
either the Dirichlet boundary condition u =g or Neumann boundary condition vg—l‘; —np =0 is imposed, where n denotes
the outward-pointing unit normal to the boundary.

After the Picard linearization and FEM discretization [1], the incompressible Navier-Stokes equations convert to the fol-

lowing linear system in saddle-point form
A B"][u f] . A BT
[ ] [3)-La] v = [3 2] @
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where the matrices B and BT correspond to the divergence and gradient operators, respectively. Picard linearization leads to
the matrix A in block diagonal structure, and each diagonal block corresponds to the convection-diffusion operator. Due to
the presence of the convective term, A is not symmetric. For the finite element discretization satisfying the LBB (‘inf-sup’)
stability condition [1], no pressure stabilization is required and C = 0 is taken. When LBB unstable finite elements are
applied, the nonzero matrix C corresponds to a stabilization operator.

Block structured preconditioners [1-3] are often utilized to accelerate the convergence of the Krylov subspace solvers for
saddle point systems as (2). They are based on the block LDU decomposition of the coefficient matrix given by

A BT L Ol[A o][IL A'BT
ﬂ_uﬂ’_[s —C}_[BA‘] 12}[0 s][o L | 3)
where S = —(C + BA~'BT) is the so-called Schur complement. A combination of this block factorization with a suitable

approximation of the Schur complement is utilized to successfully design the block structured preconditioners, which are
given as follows

_[A o[ A-'BT
PF_[B s} [o I } (4)

T
nels 8] 4 %]
Multiplying the £D and DU factors of (3) results in the block lower- and upper-triangular preconditioners £, and Py,
respectively. Preconditioner P is based on the multiplication of the £DU factors. The term A~! denotes some approxi-
mation of the inverse action of A, which is given either in an explicit form or implicitly defined via an iterative solution
method with a proper stopping tolerance.

It is not practical to explicitly form the exact Schur complement due to the action of A~!, typically when the size is
large. This implies that the most challenging task is to find the spectrally equivalent and numerically cheap approximation
of the Schur complement, which is denoted by S in (4) and (5). There exist several state-of-the-art approximations of the
Schur complement, e.g. the least-square commutator (LSC) [4,5], pressure convection-diffusion (PCD) operator [6,7] and the
approximations from the SIMPLE(R) [8-10] and augmented Lagrangian (AL) preconditioner [11,12] etc. Among them, the
AL preconditioner exhibits attractive features with stable finite element methods (FEM) used for the discretization, e.g. the
purely algebraic and simple construction of the Schur complement approximation and robustness with respect to the mesh
refinement and Reynolds number, at least for academic benchmarks. Motivated by these advantages, the further extension to
the context of finite volume method (FVM) [13] and the modified variant [14] with reduced computational complexities are
promoted. Recently, the authors of this paper propose a new variant of the AL preconditioner [15] for the Reynolds-Averaged
Navier-Stokes (RANS) equations discretized by a stabilized FVM, which are widely used to model turbulent flows in industrial
computational fluid dynamic (CFD) applications.

The role of the AL term for preconditioning is very simple: by varying parameter y it puts more weight on either the
(1,1) or the (2,2) block of the AL preconditioner. If one cannot afford larger values of y, then finding a suitable (more compli-
cated) preconditioner for S, becomes important again, where S;, denotes the Schur complement for the augmented system.
More discussions on S, and the involved parameter y are given in Section 3 of this paper. Known representations for S,
[11,14] suggest ways to utilize earlier developed preconditioners for the non-augmented problem. The paper is built on this
simple observation and the original idea as given in [11]. This observation is already exploited, for example, in [14,16]. The
challenges encountered in the turbulent calculations [17-19] are inevitable factors which could cause the breakdown of the
AL preconditioner, including the high Reynolds number, high-aspect ratio cells near the very thin boundary layer and the
significant variation in the value of viscosity due to the presence of the eddy-viscosity. To overcome these challenges, an
alternative method to approximate the Schur complement for the AL preconditioner is introduced in [15], which leads to
a new variant of the AL preconditioner. This new method approximates the Schur complement through its inverse form
and facilitates the utilization of the existing Schur complement approximations. Among the available candidates, the Schur
complement approximation from the SIMPLE preconditioner [8,20] is chosen and substituted into the inverse Schur comple-
ment approximation for the AL preconditioner. This choice is motivated from the notion that it reduces to a scaled Laplacian
matrix [8,20] with the considered FVM and its promising efficiency on the turbulent applications of the maritime industry
[8,21]. Consequently, the so-arising new variant of the AL preconditioner reduces the number of Krylov subspace iterations
by a factor up to 36 compared to the original one [15].

Since the new method to approximate the Schur complement for the AL preconditioner use the existing Schur com-
plement approximations, the following questions straightforwardly raise. Does the utilization of other existing Schur
complement approximations deliver a better performance than that from the SIMPLE preconditioner? If so, which Schur
complement approximation is the most efficient one? Does the optimal choice depend on the test problem and parameters
arising from the physics and discretization, e.g. the Reynolds number and grid size? To answer these questions, in this
paper we utilize the existing Schur complement approximations not only from the SIMPLE preconditioner but also from
the LSC and PCD operators to construct the new Schur complement approximation in the AL preconditioner. Moreover,
extensive comparisons between the considered Schur complement approximations are carried out on a wide range of nu-
merical experiments to evaluate the effect of the Reynolds number, mesh anisotropy and refinement on the optimal choice.
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These numerical evaluations are considered in the context of laminar flows, which is motivated by the expectation that the
obtained results can provide a fundamental guideline for the more complicated turbulent flow calculations.

The structure of this paper is given as follows. The utilized stabilization method and a brief survey of the existing
approximations of the Schur complement are introduced in Section 2. Section 3 illustrates the method using these existing
Schur complement approximations to construct the new approximation of the Schur complement in the AL preconditioner.
Section 4 includes numerical results on varying laminar benchmarks. Conclusions and future work are outlined in Section 5.

2. Stabilization method and survey of Schur complement approximations
2.1. Stabilization

In this paper we use the mixed FEM which does not uniformly satisfy a discrete inf-sup condition [1] to discretize the
Navier-Stokes equations governing laminar flows, which is chosen by the following considerations. Firstly, the existing Schur
complement approximations are originally designed with finite element methods used for discretization. Therefore, it is
expected to apply the new Schur complement approximation for the AL preconditioner in the FEM context. In addition, this
closes a gap in the application of the new Schur complement approximation. Secondly, both the stabilized FEM [1] and FVM
[17] lead to saddle point system with a nonzero (2,2) block which arises from the pressure stabilization. Thanks to this
similarity, a minor adaption is required to extend the new variant of the AL preconditioner from the stabilized FVM to the
stabilized FEM. Finally, the utilization of stabilized FVM degrades the generality to some extent since the Schur complement
approximation in the SIMPLE preconditioner reduces to a special formation [8,20]. However, this special formation can not
be obtained with other stabilization and discretization methods. Using stabilized FEM, all Schur complement approximations
considered in this paper are expressed in their defined manners, including that from the SIMPLE preconditioner. In this way,
a convincing evaluation of the novel Schur complement approximation for the AL preconditioner can be expected.

Based on the above motivations, in this paper we use the Q1-Q; mixed finite element approximation where the equal
first-order discrete velocities and pressure are specified on a common set of nodes. Among the available stabilization meth-
ods [22-27] specified for the Q1-Q1 discretization, we choose the approach introduced in [25]. The main motivation is that
there are few stabilization parameters required in the following operator

. 1
CPro (py, qp) = ;(Ph — Ioph, qn — Mogqs), (®)

where Iy is the L? projection from the pressure approximation space into the space Py of the piecewise constant basis
function. This projection is defined locally: ITopp is a constant function in each element Oy € Tj. It is determined simply by
the following local averaging

1
Mophlg, = H/Phs forall Oy € Tp, (7)
K

Ok

where |O| is the area of element k. Due to the locality as illustrated by equation (7), the stabilization matrix C can be
assembled from the contribution matrices on macroelements in the same way as assembling a standard finite element mass
matrix. Taking the 2D rectangular grid as an example, the 4 x 4 macroelement contribution matrix €™ is given by

1
C(macro) — ;(M(macro) _ qu||:|k|)’ (8)

where M9 is the 4 x 4 macroelement mass matrix for the bilinear discretization and q = [1/4,1/4,1/4,1/4]7 is the
local averaging operator. The null space of the macroelement matrix €% and assembled stabilization matrix C consist
of constant vector, see [1,25] for more details.

Contrary to other pressure stabilization methods [27,28] which utilize the viscosity and velocity fields to derive the
scaling parameter in front of the stabilization matrix, the alternative employed in this paper only involves the viscosity co-
efficient. Results in numerical experiment section demonstrate that the utilized stabilization method results in a reasonable
and smooth calculation of the velocity and pressure unknowns ranging from the moderate to large Reynolds numbers. The
assessment of other pressure stabilization methods and their effects on the proposed preconditioning techniques by this
paper is included in future research plan.

2.2. Survey of Schur complement approximations

As follows we briefly introduce several state-of-the-art Schur complement approximations which are utilized to con-
struct the new approximation of the Schur complement for the AL preconditioner. We refer for more details of the Schur
complement approximation to the surveys [2,3,29,30] and the books [1,31].

In the following illustration, we use the notation p to indicate the operators defined on the pressure space and the
notation u for the operators defined on the velocity space.
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(1) The pressure convection-diffusign operator s PCD-
This approximation, denoted by Spcp, is proposed by Kay et al. [6] and defined as

Spcp = —LpA, My, 9)

where M), is the pressure mass matrix, and A, and L, are the discrete pressure convection-diffusion and Laplacian
operators, respectively. Although the PCD Schur complement approximation (9) is originally proposed for stable finite
element methods, it is straightforwardly applicable for the discretizations needing a stabilization term, e.g. the Q1-Q1
pair. For more details about this extension we refer to [1]. On the other hand, this approximation requires users to pro-
vide the discrete operators A, and L, and preset some artificial pressure boundary conditions on them. The boundary
conditions could strongly effect the performance so appropriate ones should be carefully selected based on the problem
characteristic [32,33]. Applying the PCD Schur complement approximation involves the action of a Poisson solve, a mass
matrix solve and a matrix-vector product with the matrix Ap.
(2) The least-square commutator S;sc.

Elman et al. [4] originally propose this method for stable finite element discretizations and then extend it to alterna-
tives [5] that require stabilization. For system (2) with a nonzero stabilization operator C, the LSC Schur complement
approximation §Lsc is defined as

Sisc = —(BMy'BT 4 C1)(BM; 'AM; 'BT 4 C2) "' (BM; 'BT + (1), (10)

where 1\71u denotes the diagonal approximation of the velocity mass matrix M,, i.e. 1VIu = diag(My). Given the stabi-
lization matrix C assembled from the macroelement contribution matrix C(™" (8), the contribution matrices C{"™*"*

and Cémacm) for the associated stabilization matrices C; and C, are introduced by

(macroy __V . ¢ (macro)
1 =
Okl

)

V2
C(macro) — . C(macro)’ (11)
2 |0k |2

where v denotes the viscosity parameter. For the derivation of C{™*® and C{""® we refer to [5]. The implemen-
tation of the LSC Schur complement approximation does not require any artificial boundary condition and consists of
one matrix-vector product with the middle term in (10) and two solves with the other term. When the LSC Schur
complement approximation is applied to stable finite element discretizations, the matrices C; and C; are set to zero in
(10).
(3) The approximation S simpLe from the SIMPLE preconditioner.

SIMPLE (Semi-Implicit Pressure Linked Equation) is used by Patanker [18] as an iterative method to solve the Navier-
Stokes problem. The scheme belongs to the class of basic iterative methods and exhibits slow convergence. Vuik et al.
[9,10] use SIMPLE as a preconditioner in a Krylov subspace method, achieving in this way, a much faster convergence.
Regarding the Schur complement S = —(C + BA~1BT) of system (2), the SIMPLE preconditioner approximates A by its
diagonal, i.e. diag(A), and obtains the approximation §5,MPLE as

SsimpLe = —(C + Bdiag(A)~1BT). (12)

Substituting ESIMPLE and A~ = diag(A)~! into (4) leads to the so-called SIMPLE preconditioner. For stable finite el-
ement discretizations, C = 0 is set in system (2) and correspondingly in the Schur complement approximation (12).
The easy implementation and promising performance on the complicated maritime problems [8,21] make the SIMPLE
preconditioner and its variants attractive in real world applications.

The main goal of this paper is to utilize the above mentioned Schur complement approximations to construct a new ap-
proximation of the Schur complement in the AL preconditioner, with more details presented in the next section. Theoretical
analysis and numerical evaluation of the above Schur complement approximations fall out of the scope of this work and
we refer to [1,3,34] for more results. Here we summarize the key differences. Spcp requires the construction of additional
matrices on the pressure space while S;sc and Ss;ypre rely on matrices which could be easily generated or are readily
available. As seen from S;sc, the stabilization terms Cgma" ) and Cémacm) are easily obtained by substituting the available
term €(macro) into (11). On the other hand, Spen easily extends to the stabilized elements and a minor adaption is required
by Ssimpie for this extension. However, S;sc does not immediately apply and needs appropriate stabilization terms C; and
C,. We further note that boundary conditions for the pressure unknowns, which have few physical meanings, have to be
considered for L, and A, in Spcp. What boundary conditions work best with a specific type of problem is usually based
on experimental knowledge [32,33].

3. Augmented Lagrangian preconditioner
The focus of this section is the new method to approximate the Schur complement in the augmented Lagrangian (AL)

preconditioner. In the following, we first briefly recall the AL preconditioner and then introduce the new method followed
by a comparison with the old one.
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The motivation of applying the AL preconditioner is to circumvent the challenge on finding the efficient approximation
of the Schur complement S for the original system (2), cf., [11,14]. To apply the AL preconditioner, the original system (2)
is transformed into an equivalent one with the same solution [13,14], which is of the form

Ay BI7[u f . A, BI
5 ZeB)- L] e[ 2] o
where A, =A+yB"W~'B, B, =B" —yB"W~!C and f, =f+yB"W~'g. This transformation is obtained by multiplying
yBTW~1 on both sides of the second row of system (2) and adding the resulting equation to the first one. Clearly, the
transformed system (13) has the same solution as system (2) for any value of y and any non-singular matrix W. The Schur
complement of the transformed system (13) is S, = —(C 4+ BA,'B]).
The AL preconditioner is applied for the equivalent system (13), which is to be solved. Using the block DU decomposition
of Ay, the ideal AL preconditioner P4, and its variant, i.e. the modified AL preconditioner 4., are given by
A, BT A, BT
Piar=|"7 =V| and Puar=|"7 = |, 14
1AL [O Syi| MAL [O 5 (14)
where §y and ZV denote the approximations of S;, and A, respectively.
A1 O
0 A
B=[Bi B:] in the 2D case, the transformed pivot matrix A, = A+ yBTW !B can be written as

First we consider the approximation Ky. Given the original pivot matrix A = |: ] and the divergence matrix

A, _[Ar+yBIW By yBIW !By
4 yBIw=1By Ay +yBIw-1B, |

Contrary to PjaL, Pmar approximates A, by its block upper-triangular part, i.e. Zy with a zero (2,1) block, such that the
difficulty of solving the systems with A, is avoided [14]. When applying Pna. one needs to solve the sub-systems with
the diagonal blocks of Ay, ie. A; +yB]W~1By and Ay + yBIW~1B;, which do not contain the coupling between two
components of the velocity so that standard algebraic multigrid methods can be applied [34]. This advantage motivates us
to choose Py 41 in this paper despite the observation that the performance of Py 4; is dependent of the values of y, which
is seen in the numerical experiments of this paper and other related references [14]. The above advantage also motives to
approximate A, by its block lower-triangular part with a zero (1,2) block. Numerical experiments demonstrate that different
approximations of A, slightly effect the performance of the modified AL preconditioner for the considered benchmarks. For
this reason, in this paper we only illustrate the results by applying the block upper-triangular approximation of A, in the
modified AL preconditioner. Regarding the ideal AL preconditioner #;4;, standard multigrid methods are ineffective to solve
the systems with A, . A specialized multigrid algorithm for A, is built in [11] and the extension to the three dimensional
applications is recently proposed in [35]. Alternatively, previous work [12] suggests to solve the systems with A, by the
Krylov subspace methods, which are accelerated by the approximate inverse preconditioner based on the Shermon-Morrison
formula. In the related work [34], the comparison between the modified and ideal AL preconditioners is realized by applying
the direct solution method for the involved sub-systems. Although fewer Krylov iterations are needed by the ideal AL
preconditioner, removing the difficulty to solve the sub-systems with A, makes the modified AL preconditioner attractive
in practice.

3.1. New Schur approximation in the AL preconditioner
Finding an effective approximation of the Schur complement Sy, is the key for the ideal and modified AL preconditioners.

This paper is meant to use the available Schur approximations for the original system (2), as introduced in Section 2, to
construct a new approximation of S,,. The new Schur complement approximation is realized by using the following lemma.

Lemma 3.1. Assuming that all the relevant matrices are invertible, then the inverse of Sy, is given by
s,t=sT'd—ycw h—yw, (15)
where § = —(C + BA~'BT) denotes the Schur complement of the original system (2).

Proof. For the proof we refer to [13,14]. O

Lemma 3.1 is originally revealed by [14] and used to derive the old approximation of S,, which is discussed in the
next section. Here, Lemma 3.1 is viewed from another side. Since Lemma 3.1 builds the connection between the Schur
complements Sy, and S, the natural and simple method to approximaNte S, is substituting the approximation of S into
expression (15). In this way, the new approximation of S,, denoted by Sy new, is derived in the inverse form as
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Sl =Slu—ycw H—yw 1, (16)

y new

where S denotes the approximation of S. N

The novel approach provides a framework to use the known Schur complement approximation S for the original system
(2) to construct Ey new in the AL preconditioner, which is applied to the transformed system (13). Substituting the Schur
complement approximations demonstrated in Section 2, i.e. §pCD, ELSC and §5,MPLE into expression (16), three variants of
§y new are derived as

yPCD_SI:CD(I_yCW H—yw,
yLSC_SL_SC(I_yCW H—yw
‘5; simpLe = Ssimpre(I —yCW ™) — VWq-

o5
oS

Following other related references [11,14], in this paper we choose the matrix parameter W to the diagonal approxima-
tion of the pressure mass matrix, i.e. W = 1VIP = diag(Myp). It is trivial to obtain the action of W1 in the transformation
(13) and the new Schur complement approximation (16). Applying the new Schur complement approximation Sy pew con-
verts to solve a system with it and the choice of W = IVIP focuses the complexity mainly on the solve of S. This implies a
limited increase of the complexity when implementing the new Schur complement approximation S, npew compared to S.
In addition, the considerable efforts to optimize the approximation S can straightforwardly reduce the computational time
of Sy new-

When applying stabilized FVM, the inverse of S;, is expressed in a similar manner [15] as Lemma 3.1 and this similarity
facilitates the extension of the new Schur complement approximation from the stabilized FVM to the stabilized FEM. Re-
garding the new Schur complement approximation, there are two main differences between [15] and this work. Firstly, only
§y simpLe is considered in [15] and in this paper we introduce three variants, i.e. §y PCD> §y rsc and §y simpLE- In this
way, the comparison between them is expected to answer the questions raised in the introduction section and find out the
optimal choice. Secondly, in [15] finite volume discretization stabilized by the pressure-weighted interpolation method [36]
is applied, which leads to Ss;ypre in a reduced form. The generality is degraded since this special form of ESIMPLE can
not be obtained by using other stabilization and discretization methods in general. In this paper, the approximations Spcp,
Sisc and Sspyprp are expressed in their defined manners so that a convincing assessment of the new Schur complement
approximation can be expected.

Based on the above approach, it is easy to see that there is no extra requirement on the value of the parameter y.
This advantage of the new Schur complement approximation can be more clearly seen in the next section, where the
contradictory requirements on the values of y in the old approach are presented.

3.2. Original Schur approximation in the AL preconditioner

The starting point to construct the original approximation of the Schur complement in the AL preconditioner is also
Lemma 3.1. However, the strategy is totally different. Choosing W1 = yC 4+ M, and substituting W1 into expression (15) we
have

S,1 =S — (¥C+Mp—Mp)(yC+Mp) ™) —y(yC+Mp)~!
=ST"Mp(yC+Mp) ' —y(yC+Mp)™!
=@ ISTIM, —D(C+y M)

For large values of y such that || y~'S™'M, ||« 1, the term y~'S~'M), can be neglected so that we have S, orig as follows

Ey origz_(c+)/_1Mp)- (17)

As shown above, the choice of Wy =y C 4 M, is used to derive the original Schur complement approximation EV orig-
However, the choice of Wi =y C+ M, is not practical since the action of Wfl is needed in the transformed system (13).
One practical choice is to omit the term yC in W1 and replace M, by its diagonal approximation, which leads to W = 1\71p
This modification is only applied to simplify the matrix parameter W and the original Schur complement approximation
SV orig femains the same as given in (17). In summary, the choice of W = Mp and Sy orig 1S used in this paper and other
related work, for instance [13,14] where stabilized discretizations are employed. _

The contradictory requirements in the above approximation are shown as follows. The approximation Sy, ojg is obtained
if and only if W1 = )/C + M), and large values of y are chosen. However, W = M,J is spectrally equivalent to Wy =yC +Mp
only when y is small. This means that it is contradictory to tune the value of y so that W = Mp and Sy orig could be si-
multaneously obtained. By contrast, this contradictory requirements are avoided by applying the new Schur complement
approximation as given in Section 3.1. This disadvantage of the original Schur complement approximation reflects in the
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Table 1
Summary of the linear systems to be solved, applied preconditioners and approximations of
the Schur complement utilized therein.

Linear system Preconditioner Schur complement approximations
Transformed system with A, PMAL SV PCD, §y LSC, §y SIMPLE, §y orig
Original system with A Pu Spcpy Stscy SSIMPLE

Table 2 ~ _

Pressure sub-system ‘mass-p’ with Sy, in Pya; and S in Py, and the systems involved therein.
‘mass-p’ with §V new ‘mass-p’ with s Systems involved in s
Sy PCD EPCD Ly and M,
Sy Lsc Sisc (BM; BT + Cy) twice
Sy SIMPLE SSIMPLE C + Bdiag(A)~'BT
‘mass-p’ with §y orig - Systems involved in §V orig
gy orig - C+y71Mp

slower convergence rate of the Krylov subspace solvers compared to the new Schur complement approximation. This con-
clusion is made based on the fact that the performance of the modified AL preconditioner is evaluated by varying the Schur
complement approximations. See more results in the numerical section.

The application of the original Schur complement approximation S, ojg involves the solution of the system with C +
¥ ~M,. Since the contribution stabilization matrix €™ on macroelements consists of the macroelement pressure mass
matrix as illustrated in (8), the presence of the assembled pressure mass matrix M, does not introduce more non-zero
fill-in in the stabilization matrix C.

3.3. Summary of the Schur complement approximations

At each Picard iteration, we solve either the transformed system (13) with the coefficient matrix A, or the original sys-
tem (2) with the coefficient matrix A. We apply the modified AL preconditioner Py a; (14) and the block upper-triangular
preconditioner Py (5) to the transformed and original systems, respectively. The Schur complement approximations applied
in Pyar and Py are summarized in Table 1.

Due to the small size of test problems and the lack of code optimization, the complexity comparison of preconditioners
Pmar and Py is done based on the following costs analysis in this paper, instead of reporting the computational time.
Firstly, we consider the costs of using the modified AL preconditioner Py4; for a Krylov subspace method that solves the
system with A, . The preconditioner is applied at each Krylov iteration and the modified AL preconditioner involves the
solution of the momentum sub-system ‘mom-u’ with Zy and the pressure sub-system ‘mass-p’ with §y. Furthermore, at
each Krylov iteration additional costs are expressed in the product of the coefficient matrix A, with a Krylov residual vector
bres. Thus, the total costs at each Krylov iteration are

o PpaL: mom-u with Zy + mass-p with E,, + Ay X bres.

Clearly, the difference of costs by applying Puyar arises from solving the pressure sub-system ‘mass-p’ with different
Schur complement approximations. If we ignore the multiplications in the definition of the new Schur complement ap-
prox1mat10n Sy news ﬁndmg the solution of the pressure sub-system in Ppa; with three variants derived from Sy news
ie., Sy PCD>» Sy Lsc and Sy SIMPLE is reduced to solve the pressure sub-system in Py with SpCD, 5Lsc and Sg,MpLE, re-
spectively. Systems mvolved in SpcD, 5Lsc and Sg,MpLE are shown in Table 2. The costs of applying the original Schur
complement approximation Sy orig are also included in Table 2 for a comparison with the new Schur complement approxi-
mation §y new- Note that all involved systems are of the same size. If we assume a comparable complexity to solve different
involved systems, the analysis in Table 2 shows that the costs of using Ppa; with §y pcp and §y tsc are roughly the same
and two times of that with §y simpLE and §y orig-

Secondly, we consider the costs of applying the upper block-triangular preconditioner Py with different Schur comple-
ment approximations, which are used for the original system. Similar to the analysis of #p a1, we obtain the total costs at
every Krylov iteration as

e Py: mom-u with A + mass-p with S+ Ax bres.
Also, varying Schur complement approximations S results in the difference of costs by applying #y. Based on the analysis

in Table 2 and the assumption of a comparable solution complexity for all involved systems, we find out that the costs of
applying Py with Spcp and Spsc are roughly the same and two times of that with Ss;yprE.
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Lastly, we compare the costs between P41 and Py. As mentioned before, solving the pressure sub-system with the new
Schur complement approximation §y new in Pprar can be reduced to calculate the solution of the pressure sub-system with
E, which is the Schur complement approximation used in Py. Thus, the difference of costs between Py and Py focuses
on the solution of the momentum sub-system and the product of the coefficient matrix with the Krylov residual vector.
More non-zero fill-in in A, and A, [13], compared to A and A, results in a heavier matrix-vector product when applying
PuaL at each Krylov iteration. However, the heavier complexity of #y4; could be paid off by a reduced number of Krylov
iterations. In this paper we obtain a faster convergence rate preconditioned by Ppya; with the new Schur complement
approximations, compared to Py used for the original system. The time advantage of Pp4; needs a further assessment
which is included in future research plan.

4. Numerical experiments
In this section, we carry out numerical experiments on the following 2D laminar benchmarks:

(1) Flow over a finite flat plate (FP)

This example, known as Blasius flow, models a boundary layer flow over a flat plate on the domain 2 = (—1,5) x
(—1, 1). To model this flow, the Dirichlet boundary condition uy =1, u, =0 is imposed at the inflow boundary (x = —1;
—1<y<1)and also on the top and bottom of the channel (—1 <x <5; y = 41), representing walls moving from left
to right with speed unity. The plate is modeled by imposing a no-flow condition on the internal boundary (0 <x <5;
y =0), and the Neumann condition is applied at the outflow boundary (x=5; -1 <y < 1), ie, vg—l‘: —np =0. The
Reynolds number is defined by Re = UL/v and the reference velocity and length are chosen as U =1 and L = 5. On the
FP flow, we consider four Reynolds numbers as Re = {102, 103, 104, 10°}, which correspond to the viscosity parameters
v={5-102,5-10"3,5.1074,5. 1073}, respectively.

Since stretched grid is typically needed to compute the flow accurately at large Reynolds numbers, stretched grid
is generated based on the uniform Cartesian grid with 12 x 2™ . 2" cells. The stretching function is applied in the
y-direction with the parameter b =1.01 [cf. [8]]:

_btDH—-Gb-Dc _ b+t145 o _

Flow over backward facing step (BFS)

The L-shaped domain is known as the backward facing step. A Poisseuille flow profile is imposed on the inflow (x =
—1;0 < y <1). No-slip boundary conditions are imposed on the walls. The Neumann condition is applied at the outflow
(x=5; —1 < y < 1) which automatically sets the outflow pressure to zero. Using the reference velocity and length U =1
andzL =32 and the viscosity parameters v = {2-1072,2- 1073}, the corresponding Reynolds numbers are Re = UL/v =
{10<,10°}.

The BFS flow is more complicated than the flat-plate flow as it features separation, a free shear-layer and reattachment.
On the BFS flow we do not consider the Reynolds number Re > 10 since the increase of the Reynolds number by an
order of magnitude will transfer the flow to be turbulent. On this case we only consider uniform Cartesian grid with
11 x 2™ 2" cells.

Lid driven cavity (LDC)

This problem simulates the flow in a square cavity (—1, 1)> with enclosed boundary conditions. A lid moving from left
to right with a horizontal velocity as:

—
N
—

—
w
~—

ux=1—x4 for —1<x<1 y=1.

In order to accurately resolve the small recirculations, we consider stretched grid around the four corners. Stretched grid
is generated based on the uniform Cartesian grid with 2" - 2" cells. The stretching function is applied in both directions
with parameters a =0.5 and b = 1.01 [8]

b+ 2a)c—b +2a b+1 za _

_ ! ) = ( yt=a,%x=0,1/n,2/n, ..., 1. (19)

a+1)(1+0) b-1
The reference velocity and length U =1 and L = 2 and the viscosity parameters v ={2-1072,2-1073,2-10~%} result in
the following Reynolds numbers Re = {102,103, 10%}. For the same reason as BFS, a larger Reynolds number Re > 10%
is not considered on this case.

In order to explore the performance of Py4; and Py with varying Schur complement approximations as summarized in
Table 1 and Table 2, numerical evaluations are classified into four categories as follows.

(C1) On small Reynolds number and uniform grid
In this category we consider the FP, BFS and LDC cases on the small Reynolds number Re = 102 and uniform Cartesian
grid.
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(C2) On moderate Reynolds number and uniform grid
In this category we apply the moderate Reynolds number Re = 103 on the FP, BFS and LDC cases. Similar to the first
class of experiments, uniform Cartesian grid is used here to check the variation of performance when increasing the
Reynolds number by an order of magnitude.

(C3) On moderate Reynolds numbers and stretched grid
This category contains the tests carried out on the FP and LDC cases with stretched grid. The stretching functions for
the FP and LDC cases are (18) and (19), respectively. Still, the moderate Reynolds number Re = 10 is employed for
the two tests. Comparing with the second class of experiments, this category is meant to investigate the effect of mesh
anisotropy.

(C4) On large Reynolds numbers and stretched grid
The LDC case with Re = 10% and FP case with Re = {10%, 10} are included in this class of tests to assess how the
Krylov subspace solver behaves at relatively large Reynolds numbers. Here stretched grid is employed to accurately
resolve the problem characteristics.

In this paper all experiments are carried out based on the blocks A, B, C, Cq, C2, Ap, My, Ly and My, and the right-hand
side vector rhs, which are obtained at the middle step of the whole nonlinear iterations. Numerical experiments in [13]
show that the number of linear iterations varies during the nonlinear procedure. The motivation of choosing the middle
step of the nonlinear iterations to export the blocks and vector is that a representative number of linear iteration can
be obtained, compared to the averaged number of linear iterations through the whole nonlinear procedure. The relative
stopping tolerance to solve the linear system by GMRES is chosen equal to 108, The restart functionality of GMRES is
not used in this paper. Since the preconditioners Ppa; and Py involve various momentum and pressure sub-systems, all
these sub-systems are directly solved in this paper to avoid the sensitiveness of iterative solvers on the varying solution
complexities.

As pointed out in Section 2, the application of the Schur complement approximation §y pcp heeds to preset boundary
conditions for the pressure Laplacian L, and convection-diffusion A, operators. In this paper, we follow the suggestions
of [32,33] to use Dirichlet boundary conditions along inflow boundaries to define L, and Ap. This means that the rows
and columns of L, and A, corresponding to the pressure nodes on an inflow boundary are treated as though they are
associated with Dirichlet boundary conditions. For the enclosed flow, we algebraically add h?I to L, and A, to make them
non-singular, where h denotes the grid size and I is the identity matrix of proper size. Such artificial pressure boundary
conditions are only imposed on the preconditioner. The coefficient matrix and right-hand side vector are not affected by
these boundary node modifications.

4.1. On small Reynolds number and uniform grid

In this subsection we carry out experiments on the FP, BFS and LDC cases with uniform Cartesian grid and small Reynolds
number Re = 102. The number of Krylov iterations to solve the transformed system preconditioned by the modified AL
preconditioner Ppa; is given in Table 3. The Schur complement approx1mat10ns Sy PCD> Sy LSC» Sy SIMPLE in PyaL are
derived from the new method Sy new (16) and the approximation Sy orig corresponds to the original Schur complement
approximation (17). In this paper, the reported number of Krylov iterations preconditioned by $j4; is obtained by using the
optimal value of y, which results in the fastest convergence rate of the Krylov subspace solver. The following observations
are made from Table 3.

Except §y SsIMPLE, We see that the other Schur complement approximations result in the independence of Krylov itera-
tions on the mesh refinement at the three test cases. In terms of the number of Krylov iterations, §y Lsc is superior to the
other Schur complement approximations on the FP and BFS cases by the reduced number of iterations and equally efficient
as S, pcp and EV orig On the LDC case. To understand this advantage, we take the FP case as an example and plot the
eigenvalues of the preconditioned Schur complement matrix §;1Sy in Fig. 1. As can be seen, §y tsc leads to more clus-
tered eigenvalues and the smallest eigenvalue further away from zero. Such a distribution of eigenvalues is favorable for the
Krylov subspace solver and a faster convergence rate can be expected. We know that there can be matrices where there is
no relation between the spectrum and the convergence of GMRES [37], especially if the matrix is strongly non normal. We
include the spectrum because in our examples the properties of the spectrum are in line with the convergence properties
of GMRES. In addition, the field-of-values type estimates for the augmented Lagrangian preconditioned matrix are provided
by [38]. _

As analyzed in Section 3.3, at each Krylov iteration the costs of applying Pmar with Sy, [sc are roughly the same as
EV pcp and two times of that using §y simpLE and EV orig- If we assume the computational expense of applying Puar
with §y orig to be unit at each iteration, the total costs by using all Schur complement approximations on the finest grid
are presented in Table 4 and calculated by multiplying the expense per iteration by the number of iterations. In the other
classes of evaluations we also use this method to calculate the total computational costs.

Results in Table 4 show that the minimal computational costs are achieved by using S, orig in Pumar. Although fewer
Krylov iterations are needed by using EV Lsc in Ppar seen from Table 3, the reduced number of iterations does not pay off
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Table 3
Re =102 and uniform grid: the number of GMRES iterations to solve the transformed system with Ay, precon-
ditioned by Pna; with different Schur complement approximations and the optimal value of y in parentheses.

EV PCD gy LSC §V SIMPLE Ey orig

FP case:

n=>5 26(1.e-1) 17(8.e-2) 43(2.e-1) 38(2.e-1)
n=6 25(1.e-1) 25(8.e-2) 67(2.e-1) 38(2.e-1)
n=7 25(1.e-1) 26(8.e-2) 100(2.e-1) 38(2.e-1)
BFS case:

n=>5 34(2.e-2) 17(2.e-2) 42(1.e-1) 36(1.e-1)
n==6 42(3.e-2) 21(2.e-2) 60(1.e-1) 36(1.e-1)
n=7 45(3.e-2) 22(2.e-2) 87(1.e-1) 36(1.e-1)
LDC case:

n==6 17(2.e-2) 17(2.e-2) 34(1.e-1) 19(1.e-1)
n=7 18(2.e-2) 20(2.e-2) 48(1.e-1) 19(1.e-1)
n=38 18(2.e-2) 22(2.e-2) 63(1.e-1) 19(1.e-1)

Table 4

Re =102 and uniform grid: the total costs of applying Pya; with different Schur complement approximations
on the finest uniform Cartesian grid.

gy PCD EV LSC Ey SIMPLE 3'y orig
FP case: 50 52 100 38
BFS case: 90 44 87 36
LDC case: 36 44 63 19

the heavier costs of §y Lsc. In this class of experiments, it seems that the original Schur complement approximation §y orig
is more efficient than the other approximations due to the fewer computational costs in total.

4.2. On moderate Reynolds number and uniform grid

In this subsection we choose the moderate Reynolds number Re = 10% to evaluate the performance of the Schur com-
plement approximations used in the modified AL preconditioner P4, and compare with the evaluations at Re = 10% in
Section 4.1. Based on the number of Krylov iterations presented in Table 5, we see that the independence of Krylov iterations
on the mesh refinement is achieved by using the Schur complement approximations Sy, pcp and S, rsc in Pymar, which
is also observed in Section 4.1. Contrary to the observations in Section 4.1, the original Schur complement approximation
Sy orig does not result in the mesh independence of Krylov iterations at Re = 103. With the utilization of Sy simpLE the
number of Krylov iterations is dependent of the grid size at both Re = 10% and 103. B

Results in Table 5 show that the smallest number of Krylov iterations is obtained by using S, rsc in PmaL, which also
results in the minimal total costs in Table 6. The total costs are calculated by using the same method as Section 4.2. Taking
the mesh independence into account, the utilization of S, ;sc will lead to a further reduction of total costs on finer grids
over §y simpLe and §y orig» Which require more iterations with mesh refinement. Compared to §y pcp Which also results
in the mesh independence of Krylov iterations, the application of §y rsc reduces the total computational costs at least two
times on the FP and BFS cases, and this reduction factor can also be expected on finer grids. On the LDC case EV Lsc is
equally efficient as Ey PCD-

For the tests at Re = 103 it shows that EV Lsc is superior to the other Schur complement approximations by the re-
duction of Krylov iterations and total computational costs. In the previous tests with Re = 102, the superiority of §y orig 1S
seen. This implies that the optimal Schur complement approximation depends on the Reynolds number.

4.3. On moderate Reynolds number and stretched grid

This subsection is meant to investigate the influence of mesh anisotropy on the performance of the modified AL pre-
conditioner Pp4;. To compare with Section 4.2, we apply the stretched grid and moderate Reynolds number Re = 103 on
the FP and LDC cases. The number of Krylov iterations and total computational costs are presented in Table 7 and Table 8,
respectively. From Table 7 we note that only §y pcp Tesults in the mesh independence and the minimal number of Krylov
iterations. Although the total costs of applying ?V pcp are more than that by using ?V simpLE and §y orig ON the considered
finest grid, as seen from Table 8, fewer costs in total by using §,, pcp can be expected on finer grids due to the mesh in-
dependence. Therefore, we think that E,, pcp is superior to the other Schur complement approximations on the tests with
Re =103 and stretched grid.

Note that on the FP and LDC cases with stretched grid, Ppar with §y rsc is not mesh independent any more and
performs the worst. This is contrary to the observations with uniform Cartesian grid seen in Section 4.2. Considering the
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Fig. 1. FP and Re = 102: plot of eigenvalues of the preconditioned matrices E;lsV at the uniform Cartesian grid with 12 x 2 - 2° cells.

Table 5
Re =10° and uniform grid: the number of GMRES iterations to solve the transformed system with A, precon-
ditioned by Pnar with different Schur complement approximations and the optimal value of y in parentheses.

gy PCD gy LSC gy SIMPLE Ey orig

FP case:

n=>5 54(8.e-3) 29(8.e-3) 34(2.e-2) 76(6.e-2)
n==6 55(8.e-3) 18(8.e-3) 51(2.e-2) 90(6.e-2)
n=7 56(8.e-3) 17(8.e-3) 99(2.e-2) 95(6.e-2)
BFS case:

n=>5 66(4.e-3) 45(3.e-3) 49(1.e-2) 71(3.e-2)
n==6 63(4.e-3) 27(3.e-3) 77(1.e-2) 76(3.e-2)
n=7 65(3.e-3) 29(3.e-3) 142(1.e-2) 84(3.e-2)
LDC case:

n==6 30(4.e-3) 54(1.e-3) 66(7.e-3) 36(2.e-2)
n=7 28(4.e-3) 29(4.e-3) 52(1.e-2) 42(2.e-2)
n=8 29(4.e-3) 29(4.e-3) 85(1.e-2) 48(2.e-2)

FP case as an example, on the finest stretched grid of n =7 the number of Krylov iterations preconditioned by Pp;a; with
EV Lsc increases by a factor about 7 compared to the finest uniform grid. This can be seen by comparing the corresponding
results in Table 5 and Table 7. The less efficiency of Py ar with EV rsc arising from the mesh anisotropy is also seen on the
LDC case. On the other hand, the number of Krylov iterations preconditioned by #pa; with the other Schur complement
approximations seems robust with respect to mesh anisotropy on the FP and LDC cases.
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Table 6
Re = 10% and uniform grid: the total costs of applying Py, with different Schur complement approximations
on the finest uniform Cartesian grid.

§y PCD EV LSC §y SIMPLE §y orig
FP case: 112 34 99 95
BFS case: 130 58 142 84
LDC case: 58 58 85 48

Table 7
Re =103 and stretched grid: the number of GMRES iterations to solve the transformed system with A, precon-
ditioned by Py with different Schur complement approximations and the optimal value of y in parentheses.

§y PCD §y LSC Ey SIMPLE §y orig

FP case:

n=>5 59(8.e-3) 90(7.e-3) 37(2.e-2) 69(6.e-2)
n==6 66(8.e-3) 89(7.e-3) 63(2.e-2) 85(6.e-2)
n=7 62(8.e-3) 117(6.e-3) 119(2.e-2) 92(6.e-2)
LDC case:

n==6 65(2.e-3) 98(2.e-3) 57(7.e-3) 69(1.e-2)
n=7 41(2.e-3) 58(2.e-3) 46(7.e-3) 40(1.e-2)
n=8§ 38(2.e-3) 84(2.e-3) 75(7.e-3) 54(1.e-2)

Table 8

Re = 10> and stretched grid: the total costs of applying Ppa; with different Schur complement approximations
on the finest stretched grid.

§y PCD §V LsC §y SIMPLE Ey orig

FP case: 124 234 119 92
LDC case: 76 168 75 54
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Fig. 2. FP and Re = 103: plot of eigenvalues of the preconditioned matrices E;ILSCSV at the uniform and stretched grids with 12 x 2> .23 cells.

The less efficiency of §y Lsc on the stretched grid can be explained by the results in Fig. 2, where we consider the FP
case at Re = 10% and plot the eigenvalues of the preconditioned matrix §;1L5C5y for both uniform and stretched grids. As
seen from Fig. 2, stretching the grid considerably spreads the distribution of the eigenvalues of the preconditioned Schur
complement §;1L5CSV, which makes the convergence of the Krylov subspace solver more difficult.

4.4. On large Reynolds number and stretched grid

In this subsection we apply large Reynolds numbers Re > 10* and stretched grids on the LDC and FP cases. Results in
Table 9 and Table 10 illustrate that the fastest convergence rate of the Krylov subspace solver and the minimal computational
costs in total are achieved by using Sy, simpre in Pmar on the two tests. Taking the FP case at Re = 10% as an example,
from Table 10 we see that the utilization of §y simpLE reduces the total costs at least two times with respect to the other
Schur approximations. The reduction factor turns to five at least when applying an even larger Reynolds number Re = 10°
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Table 9
Re =10* and stretched grid: the number of GMRES iterations to solve the transformed system with A, precon-
ditioned by Pna; with different Schur complement approximations and the optimal value of y in parentheses.

§y PCD '§y LSC EV SIMPLE gy orig

FP case:

n=>5 363(8.e-4) 369(6.e-4) 35(2.e-3) 93(1.e-2)

n==6 334(8.e-4) 336(6.e-4) 53(3.e-3) 128(2.e-2)

n=7 346(8.e-4) 374(6.e-4) 83(4.e-3) 192(2.e-2)

LDC case:

n==6 113(3.e-4) 97(2.e-4) 34(1.e-3) 46(5.e-3)

n=7 143(3.e-4) 235(2.e-4) 45(1.e-3) 65(5.e-3)

n=_§8 159(4.e-4) 309(2.e-4) 80(2.e-3) 106(5.e-3)
Table 10

Re =10% and stretched grid: the total costs of applying P4, with different Schur complement approximations
on the finest stretched grid.

§y PCcD gy Lsc §y SIMPLE §y orig
FP case: 692 748 83 192
LDC case: 318 618 80 106

Table 11

FP and Re=10°: the number of GMRES iterations and total costs to solve the transformed system with A,
preconditioned by Ppa; with different Schur complement approximations and the optimal value of y in paren-
theses. The stretched grid is applied.

§y PCD §y Lsc §y SIMPLE Ey orig
iterations:
n=>5 1000+ 1000+ 26(1.e-4) 136(1.e-3)
n=6 1000+ 1000+ 35(2.e-4) 192(2.e-3)
n=7 1000+ 1000+ 58(3.e-4) 310(2.e-3)
total costs:
n=7 2000+ 2000+ 58 310

on the FP case, which is seen from Table 11. In the context of large Reynolds numbers, it appears that EV siMPLE iS the
optimal Schur complement approximation in the modified AL preconditioner P 4;. In contrast to the previous tests, at large
Reynolds numbers none of the considered Schur complement approximations lead to the mesh independence of Pp4r. The
advantage of EV simpLe on finer grids needs a further assessment, which is included in future research.

To investigate the effect of the Reynolds number, we take the FP case as an example and in Fig. 3 plot the number
of Krylov iterations preconditioned by #pa; at varying Reynolds numbers. It appears that only '§y simpLE Tesults in the
robustness of Ppa; with respect to the Reynolds number. To understand the reasons, we compute the extremal eigenvalues
of the preconditioned Schur complement matrix 3;15}, and present them in Table 12. Ry and Ry denote the smallest
and largest real parts of the eigenvalues and Ipgy corresponds the largest imaginary part. These extremal values correspond
to the boundaries of the rectangular domain containing all eigenvalues. Regarding 3;]5,MPLESV, the values of Rp, slightly
decrease and remain the same order of magnitude. Together with the decrease of Rpax/Rmin and Ingy, the eigenvalues are
further clustered. However, fewer clustered eigenvalues are yielded by using the other Schur complement approximations.
This explains the robustness of Ppa; with Sy simpLe With respect to the Reynolds number.

To investigate the computed solutions at large Reynolds numbers, we choose the FP case. In the inviscid limit Re — oo
the solution is simply uy =1, uy, =0 and p = constant. Since the shear boundary layer is of width proportional to /v and
within the layer the horizontal velocity increases rapidly from zero to unity, the plate seems “invisible” as Re — oo [1].
To check this feature, in Fig. 4 we illustrate the calculated pressure and equally spaced contours of the horizontal velocity
between 0 and 0.95 at different Reynolds numbers. The stretched grid with 12 x 26 . 26 cells is utilized. At Re = 103, the
counters of the horizontal velocity show the evolution of the boundary layer as the fluid passing from the leading edge of
the plate to the outflow. The parabolic shape of the velocity contours seems consistent with asymptotic theory [39] and
the reported results in [1]. When increasing the Reynolds numbers to Re = 10°, we see that the plate “disappears” and the
difference between the pressure values decreases by one order of magnitude compared to the case of Re = 103. Results in
Fig. 4 demonstrate that the computed solutions, ranging from the moderate to large Reynolds numbers, seem reasonable.

4.5. Summary of the Schur complement approximations in Ppar
Based on the above four classes of numerical evaluations, in Table 13 we summarize the optimal Schur complement

approximation in the modified AL preconditioner $ps4;. It shows that the optimal Schur complement approximation, which
leads to the fastest convergence rate of the Krylov subspace solver, depends on the Reynolds number and mesh anisotropy.
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Fig. 3. FP and stretched grid: plot of the number of GMRES iterations preconditioned by P4, at varying Reynolds numbers.

At every class of evaluations, the optimal Schur complement approximation is problem independent. Numerical evaluations
in this paper show that S, og is suitable for the calculations with small Reynolds numbers and S, s;mpLe delivers a better
performance for large Reynolds numbers due to its Reynolds robustness. In the context of moderate Reynolds numbers,
Sy rsc is more efficient with uniform grids but sensitive to mesh anisotropy. When stretched grids are employed, Sy PCD
turns out to be the optimal choice in the moderate Reynolds number context. Except the calculations at small Reynolds
numbers and uniform grids, the optimal Schur complement approximations on other classes of tests are derived from the
new method Sy, new proposed in this paper. This demonstrates the advantage of the new approach over the traditional one
§y orig- The mesh independence of Krylov iterations is not achieved by using the optimal Schur complement approximation
only for the class of tests with large Reynolds numbers. The reason and possible improvement on this issue are to be
considered in future research.

4.6. Comparison between Py ar and Py.

To apply the modified AL preconditioner Pyar, one needs to transform the original system (2) to an equivalent one
(13) with the coefficient matrix A, . This transformation consumes additional costs. Furthermore, at each Krylov iteration
extra costs arise from the product of A;, with a Krylov residual vector due to more fill-in in A, [13]. In this sense, the
heavier complexities of Py4; could be payed off only by a reduced number of Krylov iterations, compared to the block
upper-triangular preconditioner $y applied to the original system. In this section, we consider the comparisons between
Pmar and Py on the LDC and FP cases at the large Reynolds number Re = 10* and stretched grid which represent stiff
tests on the considered preconditioners.

It is revealed in Section 4.4 that §y simpLE turns out to be the most efficient Schur complement approximation for the
modified AL preconditioner Py 4. in this class of evaluations. Therefore, the comparison is carried out between Py4; with
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Fig. 4. FP and stretched grid: plot of the calculated pressure unknown (left) and contours of the horizontal velocity between 0 and 0.95 (right) at different
Reynolds numbers.
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Table 12

FP and stretched grid: the extremal eigenvalues of the preconditioned Schur complement 5;151, at varying
Reynolds numbers. The stretched grid with 12 x 25 - 2> cells is used. Ryi; and Ry denote the smallest and
largest real parts of the eigenvalues and Ine corresponds the largest imaginary part.

Re =102 Re=10% Re=10* Re =10°
T-1
Sy pcpSy
Rinin 0.2062 0.1283 0.1129 0.1992
Rinax 2.3315 4.2868e+1 4.1574e+2 1.3059e+3
Rimax/Rmin 1.1621e+1 3.3412e+2 3.6824e+3 6.5557e+3
Tmax 0.2567 1.2106 1.1109e+1 1.2598e+2
Sy 1scSy
Rmin 0.2537 0.2530 0.8865 0.5652
Rinax 2.1509e+1 1.0623e+1 1.0973e+1 1.1309e+2
Rinax/Rmin 8.4782e+1 4.1991e+1 1.2378e+1 2.0009e+2
Tinax 2.2301e+1 4.6429 4.6264e+1 8.8363e+2
T
Sy siMpLESY
Rinin 0.6714 0.4075 0.1949 0.1541
Rinax 2.9729e+1 9.8786 3.1976 1.4942
Rinax/Rmin 4.4280e+1 2.4241e+1 1.6406e+1 9.6963
Tmax 5.3308 1.0578 0.1630 0.1755
-1
Sy origsV
Rinin 0.161e-1 0.167e-1 0.3423e-2 0.1315e-3
Rinax 0.8000 0.9231 0.9524 0.9524
Rinax/Rmin 4.9689%e+1 5.5275e+1 2.8011e+2 7.2382e+3
Tmax 0.1081 0.2458 0.3078 0.3404
Table 13 _
The optimal Schur complement approximation S, opt in the modified AL preconditioner on varying classes of
evaluations.
Class of evaluations EV opt Mesh independence Problem independence
Re =102 and uniform grid SV orig Yes Yes
Re =103 and uniform grid Sy Lsc Yes Yes
Re =10° and stretched grid Sy PcD Yes Yes
Re > 10* and stretched grid Sy SIMPLE No Yes
Table 14

Re = 10* and stretched grid: the number of GMRES iterations to solve the transformed system with A, precon-
ditioned by Pumar and the number of GMRES iterations to solve the original system with A preconditioned by

Py.

PMAL for ‘7{1’ PU for A

gy SIMPLE Spep Sisc SsimpLe
LDC case:
n==6 34(1.e-3) 130 147 83
n=7 45(1.e-3) 246 307 119
n=8 80(2.e-3) 364 560 182
FP case:
n=>5 35(2.e-3) 879 661 62
n==6 53(3.e-3) 1000+ 599 122
n=7 83(4.e-3) 1000+ 809 229

§y simpLe and Py and presented in Table 14. As seen, fewer iterations are needed when applying Py ar with §y SIMPLE-
Considering the LDC case on the finest grid, the application of Pp4; with Ey simpLE reduces the number of Krylov iterations
by a factor about four, seven and two, compared to that by using Py with gpgp, §Lsc and ESIMPLE' respectively. On the FP
case, a further reduction of Krylov iterations is obtained by using Pmar with Sy, s;mprg. One direction of future research is
to verify whether the reduced number of Krylov iterations could convert to the advantage of Pya; with §y SIMPLE in terms
of the total computational costs.

5. Conclusion and future work
In this paper we introduce three variants based on the new method to approximate the Schur complement for the AL

preconditioner. To evaluate their performance, we classify the numerical experiments to four categories according to the
Reynolds number and mesh anisotropy. At every class of evaluations we consider different test problems. The optimal Schur
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complement approximation for every class of tests is determined and given in Table 13. It is seen that the most efficient
Schur complement approximation is dependent of the Reynolds number and mesh anisotropy, but problem independent.
Furthermore, we find out that, except the experiments at Re = 102 and uniform grid, the optimal Schur complement ap-
proximations on the other three classes of tests are the variants derived from the new method to approximate the Schur
complement in the modified AL preconditioner. This demonstrates the advantage of the new approach over the traditional
Schur complement approximation.

In this paper we observe that for large Reynolds numbers Re > 104 none of the considered Schur complement approx-
imations can make the modified AL preconditioner independent of the grid size. One planned future research is on the
improvement which allows the mesh independence. Another direction of future work is to evaluate whether the advantage
of the modified AL preconditioner by the reduced number of Krylov iterations, which is shown in this paper, can convert to
the wall-clock time benefit with respect to the preconditioner applied to the original system.
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