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A B S T R A C T

A random periodic two-dimensional spring network us built using a Poisson disk
distribution and computing the Delaunay triangulation of the centers of the disks.
The edges of the network represent springs that obey Hooke’s law with an adjust-
ment on the spring constant. The adjustment allows spring to soften and to break.
The two-dimensional spring network can, in combination with the adjustment, be
used to model fatigue.
The network softens during a cyclic loading. During each cycle the normal strain
is increased until the normal stress equals a specific cyclic stress σcycle. The load-
ing is continued until the network is broken into two pieces, with a number of N
completed cycles. For a range of cyclic stresses the number of cycles before failure
N is calculated and fitted with an exponential relation. The fitting parameters for
networks with #n = 32 are similar to those of a networks with #n = 64.
Throughout the cyclic loading springs will break and as a result the coördination of
the network decreases. The coördination of the network can drop below 4. These
networks are hypostatic, while the initial network was hyperstatic. This claim is
asserted by the stress-strain curve.
The transition from hyperstatic to hypostatic leads to a conceptual question: ”Is the
spring network broken if it has teared into two pieces or when it is hypostatic?”.
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1 I N T R O D U C T I O N

This report is the final project for the Double Bachelor Applied Physics and Applied
Mathematics given by the Technical University in Delft. The bachelor contains both
analytical as numerical mathematics as well as a variety of physics ranging from
thermodynamics to quantum mechanics. An algorithm for the field of continuum
mechanics will be built and analysed. The research is done in the Engineering
Thermodynamics Group of the Faculty of Mechanical, Maritime and Materials En-
gineering.

Context

Materials are the basis of the mechanical world. The buildings people live in use
a variety of materials such as glass, brick, wood and metals. The cars, bikes and
planes are made of carbon and steel. A house can be destroyed by a natural disaster.
A vehicle can break in an accident. But both houses as vehicles can also break as a
result of repetitive use. If the damage is a result of repetitive use, such as opening
a door many times or driving a lot, then this damage is categorized as fatigue.
Fatigue is of special importance for the aviation branch. The results of a broken part
can be devastating. Consequently all airplanes are checked before every flight. The
engineers working on the plane do not check every single part but only check the
parts that are used intensively [1] or are of utmost importance. Other parts are only
checked weekly, monthly or even only once a year. Empirical research is done to
find the how many times a specific pressure can be applied before a object breaks.
This information is used to determine how frequently a part should be checked.
Fatigue is first studied by Wilhelm Albert in 1837 [2]. Almost two centuries of re-
search have led to empirical grounded theories as Miner’s rule [3] and Paris’ law [4].
Frequently appearing curves are S-N or Wöhler curves which are used to determine
the life expectancy of a material [5].
The empirical laws can be used to built a numeric model that simulates fatigue
in a way that resembles nature. The numeric model in this report uses a two-
dimensional spring network.
Stress analysis can already be done using spring networks [6] but this model can be
extended such that simulates fatigue.
The spring network can resemble foam [7]. Such foams are used in bicycle helmets.
The temperature of the foam increases and decreases throughout the day as a result
of its surroundings. The volume of the foam changes with the temperature. The de-
formations will result in fatigue damage. A spring network can be used to predict
the life expectancy of the foam.
A Voronoi tessellation can be used represent three dimensional structures [8]. The
edges represent the connection between the center of cells with centers located at
the nodesDT. The interaction between cells can also be modelled with a spring net-
work that is constructed with the Delaunay triangulation, the dual of the Voronoi
tesselation. The signs of fatigue simulated with the spring network describe tissue
damage.
The research done is this report can be expanded such that it can be used for the
modelling of fatigue for complex objects. A network for such an object is shown in
figure 1.1

1



introduction 2

Figure 1.1: A three-dimensional mesh of Delaunay tetrahedra. The image was retrieved from
[9]

The mesh can be interpreted as a network of springs with springs replacing the
edges. If the springs are modified such that they can soften then the weak spots
of this object can be predicted by simulating cyclic loading. The answer to the
question: ”Where does the object break if it is used a stand for heavy objects” could
be predicted with a expansion of the method built in this report.

Thesis objective

The methods and research presented in this proposal are a basis for further research.
The objective is to build a two-dimensional spring network that simulates fatigue.
The fatigue is modelled by replacing the spring constant in Hooke’s law by a spring
function. The characteristics of the model are examined for a specific spring func-
tion. The outcome of the measurements gives a framework for further research.

Research questions

In accordance with the thesis objective the following research question is formu-
lated: ”What addition to Hooke’s law is needed to model fatigue in a two-dimensional
spring network.”. The consequences of a specific Hooke’s law is examined. The
main topics that are examined are fatigue life and stiffness.

Method

The method starts with a recipe for generating random spring networks. This is
followed by a function that replaces the constant in Hooke’s law. The implications
that this function has for a single spring and a simple two-dimensional network
are discussed. Finally, the method used to stretch or compress the network is intro-
duced.
The random networks are stretched repetitively and will soften as a result of the
adjusted Hooke’s law. When a spring softens it will eventually break. The whole
spring network is broken into two pieces after a certain number of cycles, determin-
ing the fatigue life for that specific configuration.
This report will commence with the explanation of the main concepts in chapter
2. The algorithm will be discussed in 3. In the same chapter an overview of linear
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regression will be given. The chapter is concluded with a overview of the mea-
surements reviewed in the next chapter. Four properties of the spring network are
shown in chapter 4 accompanied by a discussion of the properties. In the chapter 5

will be a review of the algorithm constructed in chapter 3 along with a discussion of
the results and recommendations for further improvements. After the recommen-
dations there will be several suggestions for further research. Finally, the report is
wrapped up in 6.



2 T H E O R Y

The theory contains an brief introduction in random networks, followed by Hooke’s
law for one-dimensional and two-dimensional springs. The system of equations for
the spring network are formulated and two boundary conditions are introduced
The theory will conclude with three theoretical concepts, namely strain, stress and
fatigue. Two properties that are used in the results are defined in section 2.5.

2.1 random networks
A random network is a random graph [10, 11] consisting of edges and vertices that
hold attributes. Nodes, endpoints are synonyms for vertices. In the context of this
research, an edge represents a spring. The network is random if there is a random
element in generating the network.

Figure 2.1: An example of a random network. The image is retrieved from [12]

The spring network build in 3 is generated with a Poisson disk distribution the
coördinates of each vertex, providing the random element. The Poisson disk distri-
bution is distribution of disks with radius r in a two-dimensional space. The disks
are not allowed to overlap. The coördinates of the vertices is chosen to be initially
in [0, 1]2, but this space can be any rectangular region.

Attributes

The edges and vertices have attributes. The attributes of a vertex v are its Carte-
sian coördinates. For an edge e there are also two attributes, namely the spring
constant and the rest-length. These attributes are initially set to ke = 1 and le =√
(xv1 − xv2)2 + (yv1 − yv2)2, where v1 and v2 are the two vertices that are con-

nected by the edge. The quantity
√
(xv1 − xv2)2 + (yv1 − yv2)2 is the Euclidean

distance between v1 and v2. The rest-length for a single spring remains constant in
this report. The spring constant will be replaced by a function in section 3.3. This
function allows the spring to soften and to break.

4



2.2 hooke’s law 5

Coördination

The coördination of a network is defined as the average number of edges per vertex,
which is twice the number of edges divided by the number of vertices. The factor
of two origins from the two endpoints each edge has. The coördination will be
important for the stiffness of the network.

2.2 hooke’s law
The edges of the random network represent springs. The force that a spring exerts
on its endpoints is described by Hooke’s law. Hooke’s law is a fundamental concept
originating from Robert Hooke in 17th century [13]. Hooke’s law was published as
”ut tensio, sic vis” which translates to ”as the extension, so the force”.
Hooke’s law is an idealization of the potential. Hooke’s law is obtained by truncat-
ing the potential at leading order. In this section the equation, known as Hooke’s
law, is represented in its one-dimension and two-dimensions form. The two-dimensional
form of Hooke’s law will be used to specify a system of equation for the spring net-
work.

Hooke’s law in one-dimension

A one-dimensional spring s with spring constant ks, rest length ls and endpoints xi,
xj will exert the following force on endpoint xi

Fij = −kij(xi − xj − lij) (2.1)

This law is often formulated as Fij = −kiju. A positive spring force corresponds
to the spring pulling or pushing endpoint xi to the right. A negative spring force
imposes a force on endpoint xi that points to the left. For the rest-length in one-
dimension it holds that lij = −lji.

Hooke’s law in two dimensions

Hooke’s law in two-dimensions has two endpoints (xi, yi) and (xj, yj). The spring
force can be written as a vector[

Fijx
Fijy

]
=

−kij(xi − xj − lij
xi−xj

(xi−xj)2+(xi−xj)2 )

−kij(yi − yj − lij
yi−yj

(xi−xj)2+(xi−xj)2

 (2.2)

Where the force is the force on endpoint (xi, yi). The fraction is nothing more then
the projection of the spring length in the x- or y-direction respectively. This can be
seen in figure 2.2
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lij
yi−yj

(xi−xj)2+(yi−yj)2

lji
xj−xi

(xi−xj)2+(yi−yj)2

lij
xi−xj

(xi−xj)2+(yi−yj)2

lji
yj−yi

(xi−xj)2+(yi−yj)2

(xi, yi)

(xi, yj) (xj, yj)

lij

Figure 2.2: A schematic drawing of a two-dimensional spring. The spring is at rest. The
dashed lines are the projections of the spring in the x- and y-direction for end-
point (xi, yi). The dotted lines are the projections for endpoint (xj, yj)

The figure shows five springs. The solid spring is the actual spring. This spring
is at rest. The four other springs are projections of the rest-length in the x- and
y-direction such that they are connected to endpoint (xi, yi) or (xj, yj). The projec-
tions of the rest-length can be negative.
The two-dimensional spring can be seen ass two separate springs with spring con-
stant kij and rest-length lij. It holds that lij = lji, since this follows from

lijx = lij
xj − xi

(xi − xj)2 + (yi − yj)2 = lji
xj − xi

(xi − xj)2 + (yi − yj)2 = ljix

Spring network

The spring network contains many springs. If the system is at rest then for each
node (xi, yi) it must hold that the net force acting on the node is zero. The net force
on each node should therefore be zero. For every node (xi, yi), it must hold that

∑
j∈Si

kij(xi − xj − lijx) = 0

∑
j∈Si

kij(yi − yj − lijy) = 0
(2.3)

The set Si contains the indices j of all endpoints (xj, yj) that are connected to (xi, yi).
Every node has a linear equation for x- and y-direction depending only on the
coördinates of the other nodes. A system of equations can therefore be established
for the spring network.
The projections of the rest-lengths are approximated as constant and values and can
be brought to the right-hand side of the equation. The system of equations can be
formulated using a matrix L, position of the nodes x, y and two vectors containing



2.3 boundary conditions 7

the projections of the rest-length for each node Rx, Ry. The values of the matrix and
the vectors are

Lij = −kij if j ∈ Si

Lii = ∑
j∈Si

kij if j ∈ Si

Rxi = ∑
j∈Si

kijlijx

Ryi = ∑
j∈Si

kijlijy

The matrix L is called a Laplacian matrix [14]. The Laplacian is a singular matrix.
The vector 1 = (1, 1, . . . , 1, 1)T is an eigenvector with eigenvalue 0.

L(x + a1) = Lx

For any a ∈ R. The eigenvector can be interpreted as the tranlational freedom of
the whole network.

2.3 boundary conditions
Two different boundary conditions are used. The first boundary condition is needed
to remove the traslational freedom of the network. The second boundary condition
will provide that the finite system simulates an infinite system [15, 16] and that the
boundary of the network will not have an effect on the system.

Dirichlet boundary condition

The first boundary condition holds that a single vertex is pinned down. This is
called a Dirichlet boundary condition or fixed boundary condition. When this
boundary condition is applied, the translational degree of freedom is lost.
Let vertex m be the vertex that = is pinned down. The coördinates of the vertex are
set to (xm, ym), but this could be any pair of real numbers. The mth row and mth
column of the Laplacian matrix can be removed along with the mth elements of Rx
and Ry. Removing the mth column will have its implications on the vectors Rx and
Ry. If node i is attached to node m via a spring then ith element of Rx and Ry are
replaced by

Rxi = ∑
j∈Si

kijlxij + kimxm

Ryi = ∑
j∈Si

kijlyij + kimym

With this boundary condition applied, the vector 1 is no longer an eigenvalue.

Periodic boundary conditions

The next boundary condition will help simulating infinite [15, 16] systems and in
theory remove any effect of the boundary of the network. For a network with
vertices in [0, 1]2 the periodic boundary conditions will hold that each vertex is has
eight copies placed as in figure 2.3
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original

copy copy

copy

copycopycopy

copy

copy

Figure 2.3: A schematic overview of the periodic boundary conditions for the random net-
work. A vertex with five edges is shown with it’s copies. Some copied edges feed
into the original.

This figure also shows that the edges shows how an edge of the original network
that is near the upper boundary flows into the lower boundary. Similarly an edge
from the left boundary into the right boundary and one from the upper-left corner
into the down-right corner. An example for a periodic graph is shown in figure 2.4

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Figure 2.4: An example of a periodic graph. The figure shows an original graph and its eight
copies.
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2.4 strain and stress
Continuum mechanics is a field of mechanics where materials or substances are as-
sumed to be continuous. With continuous is meant that the substance is described
with continuous fields rather then discretized atoms. Normal strain and stress are
two concepts that are used in continuum mechanics to describe deformations.

Normal strain

When an object is called deformed, it is meant that it is transformed from a refer-
ence configuration into a current configuration [17]. Normal strain εxx captures the
deformation of uni-axial extended isotropic object. With isotropic is meant that it is
uniform in all directions. Glass and metals are materials that are uniform in all di-
rections. The strain for an isotropic object with reference length L0 that is extended
by L′ − L0 is defined as

εxx =
L′ − L0

L0
(2.4)

The normal strain is the relative extension of an isotropic object. The first subscript
x resembles that the extension is done in the direction of the x-axis. The second
subscript x shows that relative extension is measured in the x-direction. εxy displays
the relative change in width as a result of a change in length, with length and height
being oriented in the x-direction and y-direction respectively.
In this report normal strain will be denoted with ε from now on.

Stress

Stress is the intensive physical quantity of a continuum that is a generalization of
the concept force. The stress is uniquely defined by the proportionality of a force ~f
to the surface da it acts on and the orientation of the force in respect to the normal
n̂ of the surface.
The stress is the most compact way to represent the force. The force and stress are
related by fα = ∑β σαβnβ. With σ the Cauchy stress tensor [18]. The Cauchy stress
tensor completely defines the stress of a specific configuration of a continuum. For
a two-dimensional system this tensor consists of four elements, namely σxx, σyy, σxy
and σyx.
The element that is of interest for the normal strain of a isotropic object is the normal
stress σxx. For a spring network the normal stress is calculated using the following
expression [19, 20]

σxx =
1

2V0
∑

i
∑
j∈Si

kij(xi − xj − lij
xi − xj

(xi − xj)2 + (xi − xj)2 )(xi − xj) (2.5)

The first sum iterates over all the different vertices i, while the second sum iterates
over the vertices j that are connected to i. The normal stress is denoted as σ in this
report.

2.5 fatigue
The study of fatigue is about how a continuum weakens as a result of cyclic loading.
The stress-strain curve and the Wöhler curve are introduced in this section. Three
properties are derived from this curve.
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Stress-strain curve

The stress-strain curve is an approach to visualize cyclic loading of a continuum.
One full cycle consists of a part where the stress and strain are increased until a
specific stress σcycle, the cyclic stress, is reached and of a part where the stress and
strain are then decreased until the strain is zero.
If a continuum softens then the maximum strain during each cycle is increased. It
will take a greater strain to achieve the cyclic stress. This can be seen in 2.5

0.5 1 1.5

Strain      

0

0.05

0.1

0.15

0.2

0.25

0.3
S
t
r
e
s
s
 
 
 
 
 
 

c
y
c
l
e

Figure 2.5: A stress-strain curve of a spring network. The network shows signs of fatigue
and eventually breaks.

In this figure fatigue can be observed. The strain that is needed to achieve the
cyclic stress is increased each cycle. The sudden drops in stress are caused by
springs breaking in the network. With a factor dropping out of the sum in equation
2.5. The two properties that are deduced from figure 2.5 are the breaking strain εb
and number of repetitions before failure N.
The breaking strain is the maximum strain of the last completed cycle. The breaking
strain and contains information on the rigidity of a material. The breaking strain of
a rubber band is expected to be high, showing that the rubber band is non rigid. A
rope is rigid and will have a low breaking strain. The example in the figure aboce
has breaking strain εb = 1.24.
The number of repetitions before failure N is defined as the number of completed
cycles. This number plays a key role in the life prediction of materials, components
and structures [21]. The number of cycles equals the number of peaks for the stress-
strain curve. The example in figure 2.5 has N = 9.
The breaking strain and number of repetitions before failure are dependent on the
spring network and the cyclic stress. The cyclic stress can be plotted versus the
number of repetitions, resulting in a Wöhler curve.

Wöhler curve

Wöhler curves, sometimes called S-N curves, graphically show the relation between
cyclic stress and repetitions before failure. An example can be seen in figure 2.6 2.5
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Figure 2.6: A log-log scaled figure showing the three different regions and relations between
the number of cycles and the cyclic stress[22]. The three regions signify from left
to right: deformation and failure, failure, endurance.

The Wöhler curve is plotted on a log-log scale and shows three different slopes.
The rightmost slope is the plastic region. In the plastic region the material is de-
formed in an irreversible process [23]. The ultimate strength is the smallest stress
for which the material breaks in the first cycle. The yield strength is the stress on
the boundary lower boundary of the plastic region. The elastic region is the region
where the deformation of the material is reversible [24], the material still can break
after a specific number of cycles. The endurance limit is the limit where the material
has elastic behavior and in addition never breaks.
The straight lines in figure 2.6 correspond to exponential relations between σcycle
and N. More on this exponential relation can be found in section 3.7. To be con-
sistent with the Basquin’s exponential law, the Wöhler curves will inverted. The
number of repetitions before failure N is shown as a function of the cyclic stress
σcycle. This is the otherway around in the example in figure 2.6.



3 N U M E R I C A L M E T H O D S

The design layout of the algorithm is discussed in this chapter. The spring network
will be created using the Poisson Disc distribution and the Delaunay triangulation.
The method that is used to stretching and compressing the system is explained.
The spring constant is replaced by a function, followed by an analysis of a one-
dimensional spring model and a simple network. The general outline of the method
and compressing is shown. Basquin’s exponential law is further explained with an
example. The equations for linear regression are also shown. The last property
for the results, stiffness, is treated using the concepts hyperstacity, isostacity and
hypostacity. The chapter is concluded with an overview of the measurements that
are made. An implementation is appended in A.

3.1 poisson disc distribution
Generating the random network consists of two parts. The first part is generating
the coördinates of #n vertices. The distribution that is used is called the Poisson
disc distribution. The #n vertices that are generated will be spread out somewhat
evenly throughout [0, 1]2. The algorithm that is used can be found in appendix A.
A variation on the algorithm of [25] can also be used.
The algorithm takes as argument the number #n , a diameter d and returns #n
node points in a box of one by one, distributed by a Poisson disc distribution. Two
separate nodes are at least separated by a distance d.
The distance d is set to a specific value. This value is picked such that it is small
enough that it allows #n circles to be placed in [0, 1]2. The density of #n circles with
radius r in a box of [0, 1]2 is given by

ρ =
nπr2

12 (3.1)

This density is the fraction of the area covered by the disks. The density of best
known circle packings is close too ρ = 0.8 [26]. This number depends on #n. The
diameter that allows the Poisson disk distribution to place #n vertices should be
close to

d = 2r = 2
√

ρ

nπ
≈ 1√

#n
(3.2)

The diameter that is used in practice is however d =
√

.6/
√

n. Diameters with
d >
√

.7/
√

n almost never could generate a set of #n nodes, caused by gaps between
the disks as can be seen in figure 3.1

12
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Figure 3.1: The result from the Poisson disk distribution for #n = 64. The diameter of the
disks seem to be appropriately chosen, since only a few disks can be added. The
disks on or outside the solid line are copied and shown as a result of the periodic
boundary condition 2.3.

The set of disks show only room for several other disks showing that the diameter
is chosen appropriately. Some copies of disks are shown the figure above. A copy
can be recognized by the center of the disk. If the center of a disk lies outside the
box then it is a copy.

3.2 delaunay triangulation
The second step of generating a random network is applying a Delaunay triangula-
tion [27, 28] to the set of vertices. The Delaunay triangulation has the property that
no two edges overlap.
The implementation of [29] is used on the set of nodes generated by the Poisson
disk distribution. The result can be seen in 3.2

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
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Figure 3.2: The network that is the result of applying the Delaunay triangulation the centers
of the disks of figure 3.1.

Figure 3.2 shows an example of a random network that is generated by the Pois-
son disk distribution and the Delaunay triangulation. Before the method of stretch-
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ing and compressing is introduced, the spring function law is presented and the
consequences on the one-dimensional spring and a square lattice are analysed.

3.3 adjustment to the spring constant
The springs in Hooke’s Law do not soften or break. The force for a certain deviation
is not dependent on how many much the spring is used. The value of the extension
is not bounded. The spring can in theory be stretched without limits. To model
fatigue Hooke’s law needs to be adjusted such that it can soften and that it can
break.
The adjustment will simulate damage. This damage is obtained when the spring
is used. The spring constant can be replaced by a spring function. The following
spring function can be used

kij := min
(

kij,
lij√

((xi − xj)2 + (yi − yj)2

)
(3.3)

The spring constant is set to ks = 1 initially. The spring softens as a function of the
maximal length it has ever reached. When a network of springs this spring function
is stretched, then the springs will soften. After the first cycle, the spring functions
have a specific value. In the next cycle the cyclic stress is reached for the second
time but the springs have not weakened. In order to model fatigue, the network
must weaken during each cycle. The stretching or compressing itself should result
in softening of the spring function.
The following spring function of the spring constant softens when it is stretched
and when it is compressed

kij =
lij
dij

H(
lij
dij
− .1) (3.4)

In this function lij is the rest-length of the spring and H the Heaviside step function.
The quantity dij is the absolute sum over the change in deviation, initialized at dij =
lij. This quantity is called the travelled distance of the spring. The travelled distance
is a positive quantity that increases when the spring is stretched or compressed.
This spring function weakens when the single spring is extended or compressed.
The Heaviside step function allows the spring function to snap when dij > 10lij.
The spring function is ten percent of its original value when this happens. T

3.4 one-dimensional model
A single spring that with the spring function of equation 3.4 will show signs of
fatigue. The number of repetitions of failure can be approximated for small cyclic
stress σcycle << 1. Consider a single spring that follows 3.4. The spring has rest-
length 1 and volume 1. Note that volume in one-dimension has units of length. For
a certain deviation u the cyclic stress is given by

σcycle =
1

d(n− 1) + u
u(1 + u) (3.5)

Where d(n− 1) is the travelled distance at the beginning of the cycle. When in the
spring is stretched in cycle n, the travelled distance equals d(n− 1) + u. After the
cyclic stress has been reached the travelled distance is increased by | − u| resulting
in d(n) = d(n− 1) + 2u. Equation 3.5 can be solved for u and substituted giving

d(n) = d(n− 1) + σcycle − 1 +
√
(σcycle + 1)2 + 4d(n− 1)σcycle (3.6)
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As long as the spring has not broken it can be seen that the cyclic stress can always
be reached. For σcycle << 1 it holds that

d(n) ≈ d(n− 1) + 2σcycle + 2d(n− 1)σcycle (3.7)

This recurrence equation, with initial condition d(0) = 1 is solved to

d(n) = 2(2σcycle + 1)n − 1 (3.8)

The spring breaks when k < 0.1 or equivalently d(n) > 10. The spring will therefore
break when

n =
log(5.5)

log(2σcycle + 1)
≈ 0.85

σcycle
(3.9)

The factor 0.85 is only depends on the breaking condition. In general the coefficient
C for which the repetitions before failure can be approximated by n = Cσm

cycle, with

m = −1, is equivalent with a the spring breaking when d(n) > 2e2C − 1. No such
an expression is found for m.

The numerical results for the single spring will be included in results 4. The
repetitions before failure will be calculated by recursively calculating d(n) with
equation 3.6 and extracting the number first n for which d(n) > 10. This is done
for different cyclic stresses σcycle. The breaking strain for each cyclic stress is set to

εb = d(n−1)−d(n−2)
2 .

3.5 fatigue for a simple network
A square grid can be interpreted as a very simple periodic network. This simple
network is shown in figure 3.3

Figure 3.3: A square lattice with. The the four springs are attached in the shape of a cross.
The figure is retrieved from the American Mathematical Society [30].

The square grid can be described as a periodic network where all the original
nodes are in [0, 1]2. If there are n2 points in this network then the stress for a strain
of u is given by

σcycle = n2 1/n
1/n + u/n

(u/n)(1/n + u/n) =
1

1 + u
u(1 + u) (3.10)
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The stress of the square lattice is given by the number of horizontal springs n2 times
the stress of a single spring with rest-length 1/n and deviation u/n. The stress has
the same expression as the single spring 3.5. The the approximation and the results
for the single spring will therefore also hold for the square lattice.

3.6 random network transformation
The method of stretching and compressing uses the copies of the network intro-
duced in section 2.3. Figure 3.4 shows how six copies can be displaced in order to
stretch the network

original

copy copy

copy

copycopycopy

copy

copy

original

copy copy

copy

copycopycopy

copy

copy

Figure 3.4: A schematic overview of the method of stretching for a random network. This
method can be applied to networks similar to those of figure 3.2.

The figure shows how six copies can be displaced creating a gap and how the
network relaxes to fill the gap. The gap between the on both sides of the original
should be sufficiently small. If the gap is too big then the springs that cross feed
into the left three copies or right three copies are stretched significantly more. The
springs on the border will break before the other springs if the gap size is too big.
A sufficiently small gap size is a gap size for which the spring network does not
break at the border of the original network.
Compressing of the network is done by shifting the copies three copies on the left
and right over the middle three, followed by a relaxation of the network.

3.7 basquin’s exponential law
In 1910 Basquin proposed a exponential relationship between the repetitions before
failure and cyclic stress, having used wöhler’s data [31]. He proposed that

N = Cσm
cycle (3.11)

Where C and m are empirically or numerically determined values. In this chapter
only the notation N and σcycle is denoted as N and σ respectively. This relation can
be visualized in Wöhler curves on a log-log scale. The resulting fit will look like a
line when it is plotted on a log-log scale. An example of empirical data fitted with
a Basquin slope is shown in figure 3.5
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Figure 3.5: A log-log scaled Wöhler curve, showing the Basquin slopes of hot isostatic press-
ing (HIP) treated and untreated MAR-M247 [32]. Note that twice the number of
cycles before failure is shown on the x-axis.

The figure shows that Basquin’s exponential is at least a good approximation of
the relation between the number of repetitions and the cyclic stress.
Basquin’s exponential law can be rewritten as yi = axi + b with yi = log(Ni), xi =
log(σi), a = m and b = log(C). The random element in the network will result in an
uncertainty in the number of repetitions and therefore also in yi. A measurement
of yi has a mean µi and a standard deviation αi.

The standard linear regression is replaced with a weighted fit with weights wi =
µ2

i
α2

i
.

The coëffiecients m and C are given by [33]

m =
∑i wi ∑i wixiyi −∑i wixi ∑i wiyi

∑i wi ∑i wix2
i − (∑i wixi)2

(3.12)

αm =

√
∑i wi

∑i wi ∑i wix2
i − (∑i wixi)2

(3.13)

C = exp
∑i wix2

i ∑i wiyi −∑i wixi ∑i wixiyi

∑i wi ∑i wix2
i − (∑i wixi)2

(3.14)

αC = C

√
∑i wix2

i

∑i wi ∑i wix2
i − (∑i wixi)2

(3.15)

These sets of equation are not only used for calculating the coefficients for Basquin’s
exponential law. The equations are also used for The relation between the cyclic
stress and breaking strain, for which a part of the data shows a possible exponential
relation.

The number of repetitions for the single spring can be calculated numerically and
has no uncertainty. The parameters of Basquin’s exponential law for M measure-
ments is given by [33]

m =
M ∑i xiyi −∑i xi ∑i yi

M ∑i x2
i − (∑i xi)2

(3.16)

αm = αCU

√
M

M ∑i x2
i − (∑i xi)2

(3.17)



3.8 stiffness 18

C = exp
∑i x2

i ∑i yi −∑i xi ∑i xiyi

M ∑i x2
i − (∑i xi)2

(3.18)

αC = CαCU

√
∑i x2

i
M ∑i x2

i − (∑i xi)2
(3.19)

αCU =

√
1

M− 2 ∑
i
(yi −mxi − log(C))2 (3.20)

Basquin’s exponential law returns the number of repetitions N as a function of σcycle

3.8 stiffness
The random network starts out as a structure. If for example the network in figure
3.2 is stretched then the springs are also extended. This extension increases the
stress σ of the system. A deformation comes at the cost of work. The network is
categorized as hyperstatic [34].
The opposite of hyperstatic is hypostatic. A hypostatic network can be deformed
without an increase of stress. The network is a mechanism rather then a structure.
Suppose that every node four springs attached to it, like the square lattice. There are
four constraints for each node but the node also shares the springs with four other
nodes. In two-dimensions the nodes have two degrees of freedom. The position
of the vertices has as many constraints as degrees of freedom. For every degree of
freedom there is a constraint. A constraint can only be applied to a single node,
causing the number of springs needed to be double the number of springs.
Maxwell states that if the number of springs e for a network with v vertices follows

e > 2v− 4 (3.21)

that the network is hyperstatic [35]. The network is a structure that can bear stress
if there are two springs per node. This translates to a coördination of at least 4.
Conversely, if the coördination is below four then the network is hypostatic. The
network can be extended as a mechanism. If the strain is increased sufficiently then
stress of the network will increase. The network is connected and for a certain strain
the tension in the springs will increase.
The final coördination Zof a network is the last property that is used in the results.
The final coördination is measured when the stress is increased for the last time.
If the network breaks then the Laplacian becomes singular, resulting in theory to
infinite coordinates of one half of the system. The other half is pinned down using
the Dirichlet boundary condition.

3.9 measurements
The number of repetitions before failure N and the breaking strain εb are calculated
for the single spring. The cyclic stresses σcycle are chosen to be 41 logarithmically
spaced points in [10−2, 101].
The same cyclic stresses are used to simulate fatigue in the spring network model.
The measurement is repeated ten times. Two system size are used, namely #n =
32, 64.
The gap size for measurements for a cyclic stress σcycle < 0.1 is 10−4. For 0.1 <

σcycle < 0.2 is 10−3 and finally 0.2 < σcycle is 2 ∗ 10−3.



4 R E S U LT S

This chapter will contain the results of simulations of the two-dimensional spring
model with a modified Hooke’s law 3.3. The measurements are described in section
3.9. Four different properties are analysed as a function of the cyclic stress, namely
the repetitions before failure, breaking strain and final coördination. The definitions
of these properties can be found in section 2.5.

4.1 basquin’s exponential law
An explicit relation for the repetitions before failure N for the single spring is de-
rived in section 3.4 that holds if σcycle << 1. The numerical results of this spring
follow and are compared with the results of the spring network.

Single spring

The travelled distance for the single spring is calculated with a recursion relation.
The recursion equation is approximated, resulting in N = 0.85

σcycle
for σcycle << 1. The

numerical results are shown in figure 4.1
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m = -0.9959    0.0005
C = 0.887    0.004

Figure 4.1: The numerical results of the repetitions before failure versus cyclic stress for the
single spring model are shown on a log-log scale.The data is separated in two
sets, indicated by the square and circular markers. Each data set is fitted by a
Basquin slope N = Cσm

cycle.

A data set of σcycle ∈ [10−2, 101] is shown with circular markers. The fitted
Basquin slope on the smallest 26 cyclic stresses of this data set. This is to be con-
sistent with the later fit of the spring network. The linear regression resulted in
coefficients C = 1.65± 0.04 and m = −0.850± 0.009.
The square markers show the relation between the cyclic stress and repetitions
before failure for 41 cyclic stresses σcycle ∈ [10−5, 10−2]. The data set if fitted
with N = Cσm

cycle. It is found that m = −0.9959± 0.0005 and C = 0.887± 0.004.

19
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This is consistent with the approximation. For 41 logarithmically spaced cyclic
stresses σcycle ∈ [10−6, 10−4] a coefficient C = 0.85± 8 ∗ 10−6 is found along with
m = −1± 7 ∗ 10−7. The results for this are shown in
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Figure 4.2: The numerical results of the repetitions before failure versus cyclic stress for the
single spring model are shown on a log-log scale.The cyclic stresses are in the
range σcycle ∈ [10−7, 10−5] and if fitted with a Basquin slope N = Cσm

cycle.

Spring network

The network consists of many spring that have varying orientations. The rest-
lengths of the springs vary as well as the number of springs per node. The outcome
of the simulations for the repetitions before failure versus cyclic stress is shown in
figure 4.3 and figure 4.4
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Figure 4.3: The repetitions before failure versus cyclic stress is shown for random networks
with #n = 32 vertices. A part of the data is fitted with a Basquin slope N =
Cσm

cycle.
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Figure 4.4: The repetitions before failure versus cyclic stress is shown for random networks
with #n = 64 vertices. A part of the data is fitted with a Basquin slope N =
Cσm

cycle.

The Basquin slope for a network with #n = 32 nodes is similar to that of a
network with #n = 64 nodes. The downward half of some error bars of seems
stretched, which is due to the log-log scale. For example a cyclic stress that has
number of repetitions N = 0.5 ± 0.5 would have the upper half of the error bar
from 0.5 to 100 and the other stretching to minus infinity. An error bar with infinite
length is not shown in figure 4.4.
For some cyclic stresses all ten instances resulted the same number of repetitions
before failure. This corresponds with a zero variance and an error bar with zero
length. The weights for these specific cyclic stresses are infinite. The data with
infinite weights is left out of the weighted linear regression. The data with a higher
cyclic stress then the data with infinite weights is also left out of the regression. This
leaves the lower 26 cyclic stresses for the weighted fit for both networks.
The fit for the network with 32 nodes resulted in fitting parameters m = −0.851±
0.010 and C = 3.63± 0.10. The parameters for the fit for the network of 64 nodes
are m = −0.853± 0.008 and C = 3.56± 0.08. These results are in accordance with
each other. The small differences are most likely caused by the randomness in the
data.
The parameters m of the single spring and the spring network are comparable. The
Poisson disk distribution has resulted that the expression 3.10for the cyclicstress of
the square lattice holds for the random network

σcycle = n2 1/n
1/n + u/n

(u/n)(1/n + u/n) =
1

1 + u
u(1 + u)

The evenly distributed nodes will have spring lengths close to 1/n and a deviation
u/n.
The difference for the parameter C can be ascribed to the increased number of
springs. With more springs the cyclic stress be achieved at a lower strain, more en-
ergy is needed to deform the system. A lower strain corresponds with less damage
and as a result the Basquin slope will shift to the right.
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4.2 stiffness
The coördination determines the stiffness of the network. The network can be cate-
gorized as hyperstatic or hypostatic by looking at the coördination. The final coördi-
nation for the networks of 32 and 64 nodes are shown in figure 4.5 and figure 4.6

10-2 10-1 100 101

Cyclic stress          
cycle

2.5

3

3.5

4

4.5

5

5.5

6

B
r
e
a
k
i
n
g
 
c
o
ö
r
d
i
n
a
t
i
o
n
 
Z

Figure 4.5: The final coördination versus the cyclic stress is shown for a network with #n =
32 vertices.
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Figure 4.6: The final coördination versus the cyclic stress is shown for a network with #n =
64 vertices.

The uncertainty is relatevily big due to the moment of the measurement.The
moment that the final coördination is measured when the stress was increased for
the last time. With the spring constant is a function of travelled distance, it is
expected that the system breaks half of the time when the strain increases and the
other half when the strain decreases. Half of the results of the final coördination are
measured at the wrong moment. The data from the last two figures is adjusted by
removing the data points of systems that have broken in the part of the cycle where
the strain decreases resulting in figures 4.7, 4.8
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Figure 4.7: The final coördination versus the cyclic stress is shown for a network with #n =
32 vertices. The data of the networks that broke during compression part of the
cycle are left out.
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Figure 4.8: The final coördination versus the cyclic stress is shown for a network with #n =
64 vertices. The data of the networks that broke during compression part of the
cycle are left out.

The length of the error bars is decreased of almost all data points. When the cyclic
stress is bigger most or even all of the ten measurements break on the first cycle, for
these measurements the error bars are similar or equal relative to the earlier figures.
4.5, 4.6. The final coördination for a low cyclic stress is well below 4, corresponding
with hypostatic networks. For a higher cyclic stress the networks are found to be
hyperstatic.
The final coördination can also be visualized with showing the network just before
it breaks. Three networks are shown for cyclic stresses σcycle = 7.0795, 0.0398, 10−4.
The network for a cyclic stress of σcycle = 7.0795 is shown in figure4.9
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Figure 4.9: A network of #n = 64 vertices is shown. T The cyclic stress is σcycle = 7.0795.
The network visualizes how a high cyclic stress corresponds with a high final
coördination of Z = 5.75. The network broke on the first cycle. The breaking
strain is undefined for this case.

he color indicates the amount of softening. The color green is used for no or a
little decrease in the spring function, red for a lot of softening. The color is change
continuously. The color shows that the vertical springs have suffered more damage
then the vertical springs.
This network has a coördination of 5.75 which is recorded as the final cördination.
The vertical crack is distinctive for the the high final coördination.
There are 368 springs left when the coördination is measured. From figure 4.9 it
can be seen that there are eight more springs needed to break before the system is
broken. The real final coördination is therefore 5.625 giving a bias of roughly 0.1.
When the cyclic stress is close to 0.1 or lower, the damage is spread out throughout
the system. Many springs are broken, this can be seen in figure4.10.
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Figure 4.10: A network of #n = 64 vertices is shown. The cyclic stress is σcycle = 3.98 ∗ 10−2.
A lot of the springs have broken. It seems that there are several small and
big cracks resulting in a low final coördination of Z = 3.66. For this network
εb = 1.93.
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The final coördination measured is 3.6563. Only one more spring will break
before the system is broken, resulting in a bias of roughly 0.01. This is very common
when a low breaking coördination is measured.
The cyclic stress used for loading of the next network is σcycle = 10−4

0 0.5 1 1.5 2 2.5
x

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

y

Figure 4.11: A network of #n = 64 vertices is shown. The cyclic stress is σcycle = 10−4. A lot
of the springs have broken. It seems that there are several small and big cracks
resulting in a low final coördination of Z = 2.12. For this network εb = 1.12.

With a final coördination of Z = 2.12, the network is hypostatic. The stress-strain
curve of the last network is shown in figure 4.12

Figure 4.12: The stress-strain curve of the network in figure 4.11.

The strain increases without resulting in an increase of the stress. After a while
the stress begins to increase. The first and the last completed cycle of the stress-
strain curve are plotted on a log-log scale in figures 4.13, 4.14
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Figure 4.13: A log-log plot of the first cycle of the stress-strain curve of figure 4.12.
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Figure 4.14: A log-log plot of the last cycle of the stress-strain curve of figure 4.12.

Figure 4.13 shows the stress-strain curve of a hyperstatic network. The softening
can be seen the stress for a specific strain has two values. The lower value of stress
is measured for the compressing part of the cycle.
The stress-strain curve of the last cycles shows that the strain can be increased
without without resulting in a positive stress.
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4.3 breaking strain
The breaking strain is also analysed for the single spring 4.15
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Figure 4.15: The breaking strain versus cyclic stress for the single spring. A part of the data
is fitted with a power relation εb = Cσm

cycle

The breaking strain has an upper bound of 9, that corresponds to a single spring
that breaks on the first cycle. The number of 9 comes from that the spring breaks if
the travelled distance of the spring is increased by 9.
A lower cyclic stress does not always correspond to a lower breaking strain. The
softening of the spring will as a result have that the breaking strain is increased
every cycle. A lower cyclic stress corresponds with less damage per cycle with as a
result can increase the fatigue life by one cycle. The breaking strain is increased in
this last cycle and greater then the case where the cyclic stress was slightly bigger
and a repetition less. Twenty data points are fitted with the power relation εb =
Cσm

cycle. The fitting parameters resulted in m = 0.75± 0.01 and C = 3.1± 0.1.

Spring network

The results for the breaking strain for networks of sizes #n = 32 and #n = 64 nodes
is shown in the following two figures
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Figure 4.16: Breaking strain versus cyclic stress for a system of #n = 32 nodes. A power fit ,
εb = Cσm

cycle,of the rightmost 20 data points is shown.
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Figure 4.17: Breaking strain versus cyclic stress for a system of #n = 64 nodes. A power fit ,
εb = Cσm

cycle,of the rightmost 20 data points is shown.

The data shown in figure 4.16 and figure 4.17. is not very precise compared to
the data in the Basquin slope. The breaking strain seems to be very dependent on
the initial system.
For low cyclic stress, the breaking strain of the spring network is at least ten times
as big as the breaking strain for the single spring. This can be seen in figure 4.12.
There are a few springs that are connected in a line. The springs have a lower
rest-length and for an equal cyclic stress they will have a lower stress than that of
a single spring. In section 3.5 it is shown that the expression for the stress of the
square lattice with a deviation u is equal to that of a single spring with deviation
u. For a square lattice with #n = m2 points a row will have m node points and
therefore m springs. The stress in a row is given by

σ = n
u/n

d(n− 1) + u/n
(u/n)(1/n + u/n) =

1
n

u
d(n− 1) + u

u(1 + u)
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The line of springs in figure 4.12 will, as a result of their smaller individual rest
length, not bear as much stress as when the line consisted of one long spring. The
network will need a bigger strain to reach the cyclic stress. The breaking strain is
therefore also bigger.
When the network is hypostatic, it can be extended up to a certain strain without
increasing the stress. If the stress is not increased then the springs are not stretched.
This certain strain will also increase the breaking strain.
The slopes fitted to figure 4.16 and 4.17 suggest that the breaking strain will go to
zero if the cyclic stress goes to zero. While the fit itself seems good more data is
needed to see if the exponential relation can be extrapolated. This is discusses at
the end of the next chapter.



5 D I S C U S S I O N

This chapter will begin with several options for improving the C++ algorithm. The
results of Basquin’s exponential law, stiffness and breaking strain are discussed. The
chapter is conluded with some suggestions for further research.

Possible improvements for the C++ algorithm

The data in the results is extracted from a data set generated by the C++ algorithm.
The time needed to generate this data set was over three days.
At the end of section 3.9 the size of the gap is selected. For a strain of 1 and cyclic
stress of σcycle = 10−2, a displacements are needed. The system of equations are
solved a thousand times. This is the most time consuming step of the algorithm.
Ideally an analytical or numerical expression for the gap size will depending on the
number of nodes and stress, can be used to minimize the number of displacements.
Perhaps Cramer’s rule can be used to solve the coördinates [36]. The expression
for the coördinates will only depend. spring functions, rest-lengths and the strain
of the network. These expressions can be used to limit the damage on the border
of the network. Numerical data can otherwise be used to find the relation between
cyclic stress σcycle and maximal gap size. This can be done by finding the minimal
gap size for which the network breaks at the edge.
The projections of the rest-length are approximated as constant. A linear approxi-
mation will alow the gap size to be bigger. The Gaussion elimination can maybe be
replaced by a sparse solver [37].

Basquin’s exponential law

The data of the spring networks seem to follow Basquin’s exponential law. The
exponent of the spring network is similar to that of the single spring and square
lattice. The exponent of the single spring changed when the number of repetitions
was obtained for a different interval of the cyclic stress, this might also be the case
for the spring network.
The fitting parameters for Basquin for the networks of size #n = 32 nodes are
similar to those of #n = 64 nodes. The expression for the stress in the square lattice
suggests that the parameters are independent of #n. For the random network this
needs to be checked for system sizes with very few nodes and with a higher number
of nodes.

Stiffness

The moment for the measurement of the final coördination is not chosen according
to the definition. As a result the data did not represent the true final coördination
of the network. The problem with the disconnect graph can be solved by imple-
menting an algorithm that checks if there is a path from one node to all the nodes.
This path can cross the boundary of the network.
For low cyclic stress the initial hyperstatic networks became hypostatic networks.
As a result the structure of springs transitioned into a mechanism of springs. The
definition of a broken network is under discussion. It can be stated that a stiff object
can be classified as broken when it is sloppy. The answer will dependent on the con-
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text. If the answer holds that the network is broken when it is sloppy, then the data
will be significantly different and better definitions of hyperstatic and hypostatic
are needed.

Breaking strain

The breaking strain for the spring network does not show an obvious similarity
with that of the single spring and square lattice. If definition of a broken network is
that the network is sloppy then the breaking strain for a specific cyclic stress will be
much lower then it is with the used definition of broken. This can be seen in figure
4.12.
It can also be expected that the breaking strain is dependent on the system size but
more measurements for different network sizes is needed. If a network consists of
more nodes then the line of springs connecting the network can be expected to be
replaced by a beam of springs.

The definition of the breaking strain is the greatest strain achieved during the
completed cycles. It could be seen that the variance of high cyclic stresses σcycle ≈ 5
is low.



6 C O N C L U S I O N

The periodic random two-dimensional spring network has been adjusted such that
it models fatigue. The spring function that replaces the spring constant was a func-
tion that decreased when the deviation of the spring is changed. The spring network
weakens when it is extended and when it is compressed. When a spring has soft-
ened by a specific amount it breaks. The coördination of the network decreases
during the cyclic loading. Eventually the spring network breaks into two pieces.
The number of repetitions before failure is determined for random networks with
#n = 32 and #n = 64 nodes for varying cyclic stress. This is fitted with Basquin’s
exponential law and compared to the case of a square lattice. The fitting parameters
for the two network sizes are similar. The exponent of the fit of the square lattice
and the spring network are found to be similar. It is expected that the exponent
depends on the range of the different cyclic stresses that are simulated.
The coördination of the network dropped below 4 for low cyclic stress. These net-
works are hypostatic and therefore sloppy. The initial network is hyperstatic which
corresponds with stiff. As a result the definition of broken is under discussion. Is
the network broken when it is sloppy or when it has teared into two pieces. The
strain of networks in a hypostatic state can be increased without increasing the
stress, after a certain strain the stress of the network will increase.
The results of Basquin’s exponential law will be dependent on the definition of
broken. The dependence on the definition will have a significant impact on the
breaking strain. The maximum strain per cycle increases per cycle. The increase is
the greatest during the last few cycles. With a different definition the cyclic process
would have already been stopped resulting in a significant lower breaking strain.
The results of this research can be further developed. An option is to expand the
model to three dimensions with a Delaunay tetrahedralization. This can then be
used to predict where complex object are likely to break. Using a computer model
the weak points of 3D printed objects can be predicted.
The method can also be further expanded such that it models tissue damage. The
cells can be represented with a Voronoi diagram. The interaction between the cells
can be modelled with a Delaunay triangulation. The transition from stiff network
to a sloppy network as a result of cyclic loading can be of interest for this particular
topic.
The modelling of fatigue can help understanding the fatigue life of materials. The
relation between cyclic loading and repetitions before failure as well as the stiffness
of a material. The spring network model can be analysed numerically and has var-
ious applications. With further expansion, this model can be used to predict the
fatigue life of materials and tissues.
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On the next few pages a full implementation of the algorithm can be found. The
algorithm can also create an OpenGL window tho visualize the stretching of the
system. Some logical operations can be improved, this is discussed in chapter 5.
The parts with the greatest complexity is the Gaussian elimination and the while
loop in the ”Stretch the system” part. Two possible methods to improve the speed
of this part of the algorithm are named and discussed in chapter 5.
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#include <iostream> /* cout */

#include <fstream>

#include <time.h>       /* time */

#include <algorithm> /* min */

#include <math.h>       /* log2 */

#include <vector>

#include <C:\Users\Ruben ter Meulen\source\repos\delaunator -cpp-master

\include\delaunator.hpp> //https://github.com/delfrrr/delaunator-cpp

#include <cstdio>

#include <chrono>

#include <random>

#include <GL/glew.h>

#include <GLFW/glfw3.h>

//parameters

unsigned int n; //it is convention to take a n as a power of 2

double sigma_max; //maximum stress

double deps ; //step size, small enough that the sytem does not break 

at the edge

double scale; //for the spring constant, always set to one

//openGL options

constexpr int SCREEN_WIDTH = 1280;

constexpr int SCREEN_HEIGHT = 720;

const bool graph = 0;

const double Lx_max = .0;

//variables for setting the vertices and for the Delaunay triangulation

double xtest; double ytest; double xadd; double yadd; double min_d;

std::vector<double> coords; 

bool isLeft; bool isRight; bool isUp; bool isDown;

std::vector<int> n_orig; std::vector<double> dx; std::vector<double> dy;

double ninex[9] = { 0,0,1,1, 1, 0,-1,-1,-1 };

double niney[9] = { 0,1,1,0,-1,-1,-1, 0, 1 };

//stretching variables

const double K_crit = 0.1; //if the spring constant is 10 

percent or less of it's original value it breaks

unsigned int kdel; bool suc;

double Lx = 1; bool up = 1; bool down = 0;

unsigned int ncycle = 1; unsigned int jv;

unsigned int kadd; double Kji;

double delta_x; double delta_y;

//variables for using OpenGL

std::vector<GLdouble> eps_sigma; GLdouble sigma_add;

GLdouble* lineVertices = new GLdouble[4];

GLFWwindow *window; 

GLdouble lineVertices2[] = {

0,0,1,0,

0,0,0,1,

1,1,0,1,

1,1,1,0
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};

//variables for pruning of the system

unsigned int imax; unsigned int jmax; double test = 0;

double maxl = 0; double upperl = 1.1;

unsigned int ncon; unsigned int nsprings = 0;

unsigned int imax2; unsigned int jmax2;

FILE *file_read;

double eps_b;

int main() {

auto start = std::chrono::steady_clock::now();

//read input variables

fopen_s(&file_read, "C:\\Users\\Ruben ter Meulen\\source\\repos\

\fasteralg\\fasteralg\\inp.txt","r");

fscanf_s(file_read, "%d" , &n); 

fscanf_s(file_read, "%lf", &sigma_max); 

fscanf_s(file_read, "%lf", &deps); 

fscanf_s(file_read, "%lf", &scale);

fclose(file_read);

double eps = (double) .6 / n; //explained in numerical methods

const double delta = 1; //copy the whole system instead of a 

only some parts

unsigned int ntot = n;

double* y = new double[n]; double* x = new double[n];

double* y_text = new double[n]; double* x_text = new double[n];

std::vector < std::vector<double>> spring_length(n);

double** K = new double*[n];

double** K_text = new double*[n];

double** path_length = new double*[n];

double** old_spring_length = new double*[n];

double* Fx = new double[n]; double* Fy = new double[n];

//create node points with a distance more than eps away from each other

std::mt19937 randomGen((unsigned int) time(NULL));

for (size_t i = 0; i < n; i++){

min_d = 0; //0 < eps

while (min_d < eps){

xadd = (double)randomGen() / (double)randomGen.max();

yadd = (double)randomGen() / (double)randomGen.max();

min_d = 2; //2 > eps

for (size_t j = 0; j < i; j++){

for (size_t k = 0; k < 9; k++){

xtest = xadd + ninex[k];

ytest = yadd + niney[k];

min_d = std::min(min_d, pow(xtest - x[j], 2) + pow(ytest

- y[j], 2));

}

} 

}

x[i] = xadd; y[i] = yadd; 

n_orig.push_back(i); dx.push_back(0); dy.push_back(0);

coords.push_back(x[i]); coords.push_back(y[i]);

}
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//periodic boundary conditions

for (size_t i = 0; i < n; i++){

isDown = 0; isUp = 0; isLeft = 0; isRight = 0;

if (x[i] < delta) {

isLeft = 1; ntot++;

n_orig.push_back(i); dx.push_back(1); dy.push_back(0);

coords.push_back(x[i] + 1); coords.push_back(y[i]);

}

if (x[i] > 1 - delta) {

isRight = 1; ntot++;

n_orig.push_back(i); dx.push_back(-1); dy.push_back(0);

coords.push_back(x[i] - 1); coords.push_back(y[i]);

}

if (y[i] < delta) {

isDown = 1; ntot++;

n_orig.push_back(i); dx.push_back(0); dy.push_back(1);

coords.push_back(x[i]); coords.push_back(y[i] + 1);

}

if (y[i] > 1 - delta) {

isUp = 1; ntot++;

n_orig.push_back(i); dx.push_back(0); dy.push_back( -1);

coords.push_back(x[i]); coords.push_back(y[i] - 1);

}

if (isUp && isRight) {

ntot++;

n_orig.push_back(i); dx.push_back(-1); dy.push_back(-1);

coords.push_back(x[i] - 1); coords.push_back(y[i] - 1);

}

if (isDown && isRight) {

ntot++;

n_orig.push_back(i); dx.push_back(-1); dy.push_back(1);

coords.push_back(x[i] - 1); coords.push_back(y[i] + 1);

}

if (isDown && isLeft) {

ntot++;

n_orig.push_back(i); dx.push_back(1); dy.push_back(1);

coords.push_back(x[i] + 1); coords.push_back(y[i] + 1);

}

if (isUp && isLeft) {

ntot++;

n_orig.push_back(i); dx.push_back(1); dy.push_back( -1);

coords.push_back(x[i] + 1); coords.push_back(y[i] - 1);

}

}

//create adjacency list using the delaunay triangulation O(n log(n)+9*

(6*2)*n)

delaunator::Delaunator dt(coords);

std::vector < std::vector<int>> adj_list(ntot);

for (size_t i = 0; i < dt.triangles.size(); i += 3){

adj_list[dt.triangles[i]].push_back(dt.triangles[i + 1]); adj_list

[dt.triangles[i]].push_back(dt.triangles[i + 2]);

adj_list[dt.triangles[i + 1]].push_back(dt.triangles[i]); adj_list
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[dt.triangles[i + 1]].push_back(dt.triangles[i + 2]);

adj_list[dt.triangles[i + 2]].push_back(dt.triangles[i]); adj_list

[dt.triangles[i + 2]].push_back(dt.triangles[i + 1]);

}

for (size_t i = 0; i < n; i++){

for (size_t j = 0; j < adj_list[i].size(); j++){

suc = false; kdel = j+1;

while (!suc && kdel < adj_list[i].size()){

if (adj_list[i][j] == adj_list[i][kdel] ){

adj_list[i].erase(adj_list[i].begin()+kdel);

suc = true;

}

kdel++;

}

}

}

for (size_t i = 0; i < n; i++) {

old_spring_length[i] = new double[adj_list[i].size()];

path_length[i] = new double[adj_list[i].size()];

for (size_t j = 0; j < adj_list[i].size(); j++) {

spring_length[i].push_back(sqrt(pow(x[i] - x[n_orig[adj_list[i]

[j]]] - dx[adj_list[i][j]], 2) + pow(y[i] - y[n_orig[adj_list

[i][j]]] - dy[adj_list[i][j]], 2)));

nsprings++;

}

}

//create opengl window

if (graph)

{

if (!glfwInit())

{

return -1;

}

window = glfwCreateWindow(SCREEN_WIDTH, SCREEN_HEIGHT, "OpenGL", 

NULL, NULL);

if (!window)

{

glfwTerminate();

return -1;

}

glfwMakeContextCurrent(window);

glViewport((GLint) 0.0f, (GLint) 0.0f, SCREEN_HEIGHT, 

SCREEN_HEIGHT);

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

glOrtho(-.5-Lx_max, 1.5+Lx_max, -.5, 1.5, 0, 1);

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

}

//stretch the system
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for (size_t i = 0; i < n; i++) {

K[i] = new double[n];

K_text[i] = new double[n];

Fx[i] = 0; Fy[i] = 0;

for (size_t j = 0; j < n; j++) 

K[i][j] = 0;

for (size_t j = 0; j < adj_list[i].size(); j++) {

path_length[i][j] = spring_length[i][j];

old_spring_length[i][j] = spring_length [i][j];

jv = adj_list[i][j];

K[i][n_orig[jv]] += -spring_length[i][j] / path_length[i][j];

K[i][i] -= K[i][n_orig[jv]];

Fx[i] += -K[i][n_orig[jv]] * (spring_length[i][j] * ((x[i] - x

[n_orig[jv]] - Lx * dx[jv]) / old_spring_length[i][j]) + Lx * 

dx[jv]);

Fy[i] += -K[i][n_orig[jv]] * (spring_length[i][j] * ((y[i] - y

[n_orig[jv]] - dy[jv]) / old_spring_length[i][j]) + dy[jv]);

}

}

while (true){

//Gaussian elimination O(n^3)

for (size_t i = 0; i < n - 1; i++) {

for (size_t j = i + 1; j < n; j++) {

if (K[j][i] != 0) {

Kji = K[j][i] / K[i][i];

Fx[j] -= Kji * Fx[i] ;

Fy[j] -= Kji * Fy[i] ;

for (size_t k = 0; k < n; k++)

if (k != i && K[i][k] != 0)

K[j][k] -= Kji * K[i][k];

K[j][i] = 0;

}

}

}

for (int i = n - 2; i > -1; i--) {

for (size_t j = i+1; j < n; j++) {

Fx[i] -= K[i][j] * x[j];

Fy[i] -= K[i][j] * y[j];

}

x[i] = Fx[i] / K[i][i];

y[i] = Fy[i] / K[i][i];

}

//update spring constant

sigma_add = 0;

for (size_t i = 0; i < n; i++) {

Fx[i] = 0; Fy[i] = 0;

for (size_t j = 0; j < n; j++)

K[i][j] = 0;

for (size_t j_it = 0; j_it < adj_list[i].size(); j_it++) {

jv = adj_list[i][j_it]; 

delta_x = (x[i] - x[n_orig[jv]] - Lx * dx[jv]);

delta_y = y[i] - y[n_orig[jv]] - dy[jv];
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path_length[i][j_it] += scale * abs(old_spring_length[i]

[j_it] - sqrt(pow(delta_x, 2) + pow(delta_y, 2)));

old_spring_length[i][j_it] = sqrt(pow(delta_x, 2) + pow

(delta_y, 2));

if (spring_length[i][j_it] / path_length[i][j_it] > K_crit) 

{

K[i][n_orig[jv]] += -spring_length[i][j_it] / 

path_length[i][j_it];

K[i][i] -= K[i][n_orig[jv]];

Fx[i] += -K[i][n_orig[jv]] * (spring_length[i][j_it] * 

((delta_x) / old_spring_length[i][j_it]) + Lx * dx [jv]);

Fy[i] += -K[i][n_orig[jv]] * (spring_length[i][j_it] * 

((delta_y) / old_spring_length[i][j_it]) + dy [jv]);

sigma_add += -K[i][n_orig[jv]] * (delta_x) *

(delta_x - spring_length[i][j_it] * (delta_x) / 

old_spring_length[i][j_it]);

}

}

}

sigma_add = sigma_add / 2; //counted all springs twice

eps_sigma.push_back(Lx - 1);

eps_sigma.push_back(sigma_add);

//plot some things

if (graph){

glfwMakeContextCurrent(window);

glClear(GL_COLOR_BUFFER_BIT);

glEnableClientState(GL_VERTEX_ARRAY);

for (size_t i = 0; i < n; i++){

for (size_t j_it = 0; j_it < adj_list[i].size(); j_it++){

if (spring_length[i][j_it] / path_length[i][j_it] > 

K_crit) {

jv = adj_list[i][j_it];

lineVertices[0] = x[n_orig[i]] + Lx * dx[i];

lineVertices[1] = y[n_orig[i]] + dy[i];

lineVertices[2] = x[n_orig[jv]] + Lx * dx[jv];

lineVertices[3] = y[n_orig[jv]] + dy[jv];

glColor3d(1 + K[i][n_orig[jv]], -K[i][n_orig[jv]], 

0);

glVertexPointer(2, GL_DOUBLE, 0, lineVertices);

glDrawArrays(GL_LINES, 0, 4);

}

}

}

glColor3f(1, 1, 1);

glVertexPointer(2, GL_DOUBLE, 0, lineVertices2);

glDrawArrays(GL_LINES, 0, 8);

glDisableClientState(GL_VERTEX_ARRAY);

glfwSwapBuffers(window);

glfwPollEvents();

}

//move the system up and down

if (sigma_add < sigma_max && up){
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Lx += deps;

}

else if(sigma_add > sigma_max && up){

down = 1; up = 0; 

eps_b = Lx - 1;

}

else if (Lx - 1. > 0. && down){

Lx -= deps;

}

else{

up = 1; down = 0; 

ncycle++;

}

if ((Lx > 2. && sigma_add < 0.001) || isnan(sigma_add))

break;

if (eps_sigma.size() > 5)

{

if (eps_sigma[eps_sigma.size() - 1] > eps_sigma[eps_sigma.size()

- 3]) 

{

for (size_t i = 0; i < n; i++)

{

x_text[i] = x[i]; y_text[i] = y[i];

for (size_t j = 0; j < adj_list[i].size(); j++)

K_text[i][n_orig[adj_list[i][j]]] = K[i][n_orig

[adj_list[i][j]]];

}

}

}

}

if(graph)

glfwTerminate();

std::ofstream file_write("C:\\Users\\Ruben ter Meulen\\source\\repos\

\fasteralg\\fasteralg\\outp.txt", std::ofstream::trunc | 

std::fstream::in | std::fstream::out);

file_write << ncycle << '\t' << eps_b << '\t' <<

deps << '\t' << sigma_max << '\t' << nsprings << '\t';

for (size_t i = 0; i < eps_sigma.size(); i++)

file_write << eps_sigma[i] << '\t';

file_write << std::flush;

file_write.close();

std::ofstream file_write2("C:\\Users\\Ruben ter Meulen\\source\\repos\

\fasteralg\\fasteralg\\graph.txt", std::ofstream::trunc | 

std::fstream::in | std::fstream::out);

for (size_t i = 0; i < n; i++) {

for (size_t j_it = 0; j_it < adj_list[i].size(); j_it++) {

jv = adj_list[i][j_it];

if (-K_text[i][n_orig[jv]] > K_crit) {

file_write2 << x_text[n_orig[i]] + Lx*dx[i] << '\t' << 
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y_text[n_orig[i]] + dy[i] << '\t' << x_text[n_orig[jv]] + 

Lx*dx[jv] << '\t' << y_text[n_orig[jv]] + dy[jv] << '\t' 

<<

1 + K_text[i][n_orig[jv]] << '\t' << -K_text[i][n_orig

[jv]] << '\t' << 0 << '\t';

} //all edges are save twice, it is better to replace this

by saving edges instead of the vertices

}

}

file_write2 << std::flush;

file_write2.close();

}
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