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Abstract

Thousands of exoplanets have been discovered; however, the detection of exomoons remains elusive. Tidally
heated exomoons have been proposed as candidate targets for observation; vigorous tidal dissipation can raise the
moon’s surface temperature, making direct imaging possible, and cause widespread volcanism that can have a
signature in transits. We assess whether the required amounts of tidal dissipation can be attained and how long it
can be sustained. In a first step, we look at the thermal state of a super-Io for different orbital configurations. We
show that close-in exomoons with moderate ( ~e eIo) to high ( ~e 0.1) orbital eccentricities can feature surface
heat fluxes 1–3 orders of magnitude higher than that of Io if heat transfer is dominated by heat piping or the moon
has a magma ocean. In a second step, we investigate the longevity of a super-Io. The free eccentricity of an isolated
close-in exomoon is quickly dampened due to tides; high orbital eccentricities can be maintained if the moon is in a
mean-motion resonance with another moon and the planet is highly dissipative. However, this scenario leads to fast
orbital migration. For a Mars-sized exomoon, we find that tides alone can raise the surface temperatures to more
than 400 K for 10 million yr, and surface heat fluxes higher than that of Io can be maintained for billions of years.
Such tidally active bodies are expected to feature more vigorous volcanic activity than Io. The material outgassed
via volcanism might be detected in transits.

Unified Astronomy Thesaurus concepts: Natural satellites (Extrasolar) (483); Natural satellites (Solar system)
(1089); Galilean satellites (627); Tides (1702); Tidal friction (1698); Orbital resonances (1181); Volcanoes (1780);
Infrared astronomy (786); Planetary interior (1248)

1. Introduction

With the list of confirmed exoplanets continually growing, it
is no surprise that the search for exomoons has started to gain
momentum. The small size of the satellites with respect to their
host planets makes their detection challenging. However, with
improvements in observation capabilities and novel detection
methods, the observation of exomoons is now within reach.
Several techniques have been proposed for the detection of
exomoons (e.g., Heller 2017). These methods include transits
(Kipping 2009; Ben-Jaffel & Ballester 2014; Hippke 2015;
Kipping et al. 2015; Teachey et al. 2017; Teachey & Kipping
2018), microlensing (Han & Han 2002; Bennett et al. 2014),
cyclotron radio emissions (Noyola et al. 2014, 2016), pulsar
timing variations (Lewis et al. 2008), and direct imaging
(Cabrera & Schneider 2007; Peters & Turner 2013; Heller
2016).

Tidally heated exomoons are promising targets in the
exomoon hunt (e.g., Peters & Turner 2013; Ben-Jaffel &
Ballester 2014; Heller 2017; Oza et al. 2019). Tidal dissipation
within an exomoon can heat its interior and result in vigorous
observable geologic activity. Io, the innermost Galilean
satellite, is a good archetype. Although it has a radius four
times smaller than that of Earth, tides raised by Jupiter result in
an intrinsic surface heat flux roughly 30 times higher than that
of Earth (Lainey et al. 2009; Turcotte & Schubert 2014). Tidal
dissipation drives widespread volcanism, which in turn is
responsible for the formation of a secondary atmosphere that
extends over more than 400 Jupiter radii (Mendillo et al. 1990).

Among the outgassed material, there is sodium and potassium,
which have not been detected in the gaseous envelopes of gas
giants and thus can be used as a proxy for volcanic activity
within a planetary system (Johnson & Huggins 2006; Oza et al.
2019). Moreover, the interaction of the outgassed secondary
atmosphere with Jupiter’s magnetosphere produces Io’s plasma
torus. While Io is unique in the solar system, objects with
similar or higher levels of internal heating, super-Ios, might be
common. In fact, it is possible that these kinds of objects have
already been detected. Ben-Jaffel & Ballester (2014) suggested
that the early ingress of close-in exoplanets WASP-12b and
HD 189733b observed in the UV can be explained by the
presence of a plasma torus, and Oza et al. (2019) proposed that
Na signatures in the spectra of the hot Jupiter WASP-49b are
evidence of a tidally heated exomoon. If confirmed, these
exomoons are likely very different from Io, though; due to the
close proximity of the planet to the star, surface temperatures
are between 1000and3000 K, and tidal dissipation is the result
of stellar tides. Transits of temperate/cold gas giants are less
likely than transits of close-in giant planets, as they orbit further
away from the star and thus have smaller transit probabilities
(Dalba et al. 2015). However, cold gas giants suited for transit
spectroscopy have already been identified, for example, HIP
41378 f (Becker et al. 2018).
In extreme cases, tidal heating can become the dominant heat

source exceeding solar irradiation and have an observable
footprint in the surface temperature. Peters & Turner (2013)
proposed that a super-Io orbiting a cold gas giant could be
directly imaged using current and planned telescopes. For this
to happen, the moon should have a highly eccentric and/or
short-period orbit around a cold planet. Peters & Turner (2013)
concluded that Earth-sized exomoons with surface tempera-
tures over 600 and 300 K could be detected with the Spitzer
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Space Telescope and future telescopes such as the James Webb
Space Telescope or SPICA, respectively. The high surface
temperatures needed to observe tidally heated exomoons
require surface heat fluxes on the order of 500Wm−2, 2
orders of magnitude higher than current values of Io. It remains
uncertain if such extreme cases of super-Ios can exist.
Furthermore, to be observable, they would have to persist for
a long time, while close-in exomoons rapidly migrate, and their
orbits are quickly circularized. Motivated by the prospects of
detecting a super-Io around a cold gas giant, we ask the
question of under which conditions can a super-Io persist. The
question can be further split into (1) what is the possible
thermal state of a super-Io, and (2) how long can a super-Io
persist in an observable state?

In Section 2, we tackle the first question. We investigate
thermal equilibrium states of exomoons of different sizes.
While bigger exomoons are more prone to becoming super-Ios,
current formation models limits the permissible size of
exomoons around gas giants to approximately the size of Mars
(Heller & Pudritz 2015a, 2015b). We push this limit and
consider exomoons ranging from Io to Earth sizes and identify
thermal states for which the amount of generated internal heat
equals the amount of heat removed from the interior. We
consider rocky exomoons with Io-like structure and composi-
tion. To account for the high temperatures reached within the
mantle of a super-Io, our model allows for the formation of a
sublayer of melt (Section 2.1). We compute tidal dissipation
using the viscoelastic theory for self-gravitating bodies (e.g.,
Peltier 1974; Wu & Peltier 1982) using Andrade rheology
(Section 2.2) and compare it with estimates of heat removed
from the mantle (Section 2.3) via convection or melt advection
(heat piping) to find thermal equilibria states. We first apply the
model to Io and find that it can successfully explain its thermal
state. Equipped with this model, we compute surface
temperatures and heat fluxes for a range of fixed eccentricities

and orbital periods to assess whether these bodies could be
directly imaged or could exhibit vigorous tidal activity and
have substantial exospheres.
In Section 3, we tackle the second question: how long can a

super-Io live? Instead of considering fixed values for orbital
period and eccentricity, we take into account the feedback
between tidal dissipation, internal structure, and orbital
parameters. We consider two scenarios: an isolated moon–
planet system and a system with two exomoons where orbital
resonances can occur. Orbital resonances are common in the
solar system (e.g., Peale 1976) and responsible for the high
geological activity featured on some of the outer planet moons.
Classic examples of resonances in the solar system include
Janus–Epimetheus, Mimas–Tethys, and Enceladus–Dione in
the Saturnian system and the Laplace resonance involving the
three inner Galilean moons. We consider the 2:1 mean-motion
resonance (MMR) and study the thermal–orbital evolution of a
Mars-sized exomoon in more detail.

2. Thermal States of a Super-Io

2.1. Interior Structure and Rheology

We consider three different moons with radii equal to
( ) · R1, 2, 4 Io, which represent Io and roughly Mars- and Earth-
sized exomoons. The moons are assumed to be spherically
symmetric and made of concentric layers with uniform
mechanical and thermal properties (Figure 1). Each moon is
assumed to have a metallic core of density rc and radius Rc and
a silicate rocky layer with density rs, which is a standard
composition for bodies in this size range. The ratio of the
surface (R) and core (Rc) radii is assumed to be the same for the
three exomoons and equal to the value estimated for a sulfur-
rich Io core, 0.52 (Anderson et al. 1996). We note that the core
ratio could be different for other exomoons; however, the core
size has a small effect on our conclusions (see Section 2.2).

Figure 1. Interior structure of the moons. (a) A metallic core is surrounded by a silicate layer. The silicate layer is further subdivided into a conductive and a
convective layer. For high mantle temperatures, a sublayer of melt is formed beneath the lithosphere (red pattern). (b) Solidus and liquidus temperature profiles for a
Mars-sized exomoon and a characteristic temperature profile. The average solidus, liquidus, and mantle temperatures are shown by dashed lines.
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The outer rocky layer consists of an elastic lithosphere where
heat is transferred via conduction and heat piping and a
convective mantle (see Section 2.3). In the elastic lithosphere,
the temperature decreases linearly to the surface temperature
Tsurf. Inside the convective mantle, the temperature follows an
adiabat (Turcotte & Schubert 2014):

( )a
r

=
dT

dP

T

C
. 1

c

Here α and Cc are the thermal expansivity and heat capacity,
respectively (see Table 1). As an example, for a characteristic
mantle temperature of 1800 K, the adiabatic temperature
gradient is ≈9 KGPa−1.

For sufficiently high mantle temperatures, the local mantle
temperature can exceed the local solidus temperature at a given
depth. When this occurs, a partially molten sublayer is formed
(see Figure 1). The average melt fraction (f) of the layer is
computed as

( )f =
-
-

T T

T T
, 2s

l s

with T being the average temperature of the layer. Ts and Tl are
the averages of the pressure-dependent solidus and liquidus
temperatures (Takahashi 1990),

( )= + - +T P P P1409.15 134.2 6.581 0.1054 , 3s
2 3

( )= + - +T P P P2035 57.46 3.487 0.00769 , 4l
2 3

with the pressure in gigapascals. When a slope of
=dT dP 10s l, KGPa−1 is reached, we assume that the solidus

and liquidus temperatures increase linearly with pressure
(Reese et al. 1999).
The lithosphere is assumed to behave elastically, and the

viscosity of the mantle depends on the temperature following
an Arrhenius relation,

⎜ ⎟⎜ ⎟
⎛

⎝
⎛
⎝

⎞
⎠

⎞

⎠
( )h h= -

E

R T

T

T
exp 1 , 5s

a

g s

s

where hs is the viscosity at the solidus temperature, Ea is the
activation energy, and Rg is the ideal gas constant. We do not
consider the change of activation energy with pressure, which
leads to an increase of activation energy with depth (Karato &
Wu 1993), and we assume a constant viscosity for the layer.
This can result in an underestimation of the activation energy of
the mantle. For example, the activation pressure at Mars’
mantle varies between 300 KJ mol−1 close to the surface to
540 KJ mol−1 in the mid-mantle (Nimmo & Stevenson 2000).
We expect this variation to have a small effect in our first-order
modeling.
The presence of melt weakens the mantle and results in a

decrease of viscosity. For the sublayer of melt, we parameterize
the decrease of viscosity with melt fraction (f) following
Moore (2003) and Henning et al. (2009) and the change of
shear modulus with melt fraction using the fit of Fischer &
Spohn (1990) and Shoji & Kurita (2014) to laboratory
experiments made by Berckhemer et al. (1982):

⎜ ⎟⎜ ⎟
⎛

⎝
⎛
⎝

⎞
⎠

⎞

⎠
( ) ( )h h f= - -

E

R T

T

T
Bexp 1 exp , 6s

a

g s

s

( )m = m-m
- +10 . 7T Ts

1
1600 2

The value of B can range from 10 to 40 for a strong or weak
mantle, respectively (Henning et al. 2009). We adopt an
intermediate value B=25 consistent with laboratory experi-
ments (Mei et al. 2002). For the layers without melt, we assume
a constant shear modulus m0. m1 is an empirical constant, and
m2 is adjusted so that the shear modulus is continuous at the
solidus temperature.
The melt fraction increases with temperature until the

disaggregation point is reached. When this occurs, the
asthenosphere does not behave as a viscoelastic solid anymore,
and it should be modeled as a magma ocean. We assume that
this occurs when f > 0.45 (e.g., Moore 2003). Although we do
not model heat transport and tidal dissipation in this regime, we
discuss this aspect further in Sections 2.2 and 2.3.

2.2. Internal Heat

We consider two mechanisms of internal heat generation:
radiogenic heating and tidal dissipation. Radiogenic heating is
computed assuming chondritic composition of the mantle
(Schubert et al. 1986) and that the age of the body is the same
as the age of the solar system.
Due to tidal interactions with the planet, regular moons

evolve into a 1:1 spin–orbit resonance (become tidally locked)
soon after formation (e.g., Peale 1999). If the orbit is eccentric
or the moon has a nonzero obliquity, tidal forces result in

Table 1
Model Parameters

Parameter Units
Formula/
Value Definition

Rg J mol−1 K 8.3144 Universal gas constant
RIo km 1821 Radius Io
rm kg m−3 3542 Mantle density

rc kg m−3 5150 Core density1
R

R
c L 0.5206 Surface core radius ratio1

α K−1 2·10−5 Thermal expansivity
modulus2

k W m−1 K−1 4 Thermal conductivity2

κ m3 s−1 10−6 Thermal diffusivity3

Cc J kg−1 K−1 1142 Heat capacity
Ea kJ mol−1 300 Activation energy4

hs Pa s ·1 1016 Mantle solidus viscosity

m0 G Pa 65 Mantle shear modulus5

m1 K ·8.2 104 Melt shear modulus coeffi-
cient 16

m2 L 40.44 Melt shear modulus coeffi-
cient 2

α L 0.3 Andrade coefficient 1
ζ L 1 Andrade coefficient 2
B L 25 Melt fraction coefficient
n L 2–3 Permeability exponent7

γ L r
th
Db g

l

2
Melt scale velocity

S♃ W m−2 50.26 Solar irradiation at Jupiter’s
orbit

AIo L 0.52 Io’s bond albedo8

References. (1) Anderson et al. (1996); (2) Sohl & Spohn (1997); (3)
Hussmann & Spohn (2004); (4) Karato & Wu (1993); (5) Segatz et al. (1988);
(6) Fischer & Spohn (1990); (7) Moore (2003); (8) Simonelli et al. (2001).
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periodic deformations of the moon. As the moon is not
perfectly elastic, energy is dissipated in the interior. The total
amount of tidal dissipation is (e.g., Cassen et al. 1980; Segatz
et al. 1988; Makarov & Efroimsky 2014)

⎛
⎝

⎞
⎠

( ) ( ) ( )I q= - +E k
nR

G
e

21

2

3

2
sin , 82

5
2 2

where R is the radius of the body, n is the orbital frequency, G is
the universal gravitational constant, e and θ are the moons’
eccentricity and obliquity, and ( )I k2 is the imaginary component
of the k2 Love number, which is related to the quality factor (Q) as
∣ ( )∣ ∣ ∣I =k k Q2 2 . We assume that the moon is in a Cassini state
with small obliquity, as is the case for Io (Baland et al. 2012), and
neglect the contribution of obliquity to the thermal budget. We
note that the previous equation is accurate to second order in
eccentricity. For high orbital eccentricities, terms of order ( )O e4

should be added. High-order terms start to have a noticeable effect
for >e 0.1, and orders-of-magnitude differences can arise for
very high eccentricities ( >e 0.6; Renaud et al. 2021). Addition-
ally, for >e 0.1, higher-order spin–orbit resonances might occur
(Makarov 2012; Walterová & Běhounková 2020; Renaud et al.
2021), which results in nonsynchronous rotation and increased
tidal dissipation before the moon’s orbit is circularized.

The value of ( )I k2 depends on the internal structure of the
body and the tidal frequency. It can be computed using the
viscoelastic theory for self-gravitating bodies (Peltier 1974; Wu &
Peltier 1982; Sabadini et al. 2016). By using the correspondence
principle (Peltier 1974), the equations of motion governing the
deformation of each layer can be transformed to the Fourier
domain and written as a set of differential equations of the form

˜ ˜ ( )=
Y

Y
d

dr
A . 9

Ỹ is a vector containing the Fourier-transformed radial and
tangential displacements (ỹ1, ỹ2), the radial and shear stress (ỹ3,
ỹ4), the gravitational potential (ỹ5), and the potential stress (ỹ6),
and A is a matrix given in Appendix A. We use the matrix
propagator method of Jara-Orué & Vermeersen (2011) and
Sabadini et al. (2016) to solve Equation (9) under appropriate
boundary conditions (Appendix A).

To use the correspondence principle, a rheological law
relating stress and strain is needed. Different rheological
models have been developed for the study of tidally active
bodies (e.g., Renaud & Henning 2018); the viscoelastic
behavior of the material depends on its shear modulus μ and
viscosity η. The simplest and most commonly used is the
Maxwell model. The response is characterized by the so-called
Maxwell time (h m). When the tidal period is close to the
Maxwell time, tidal dissipation is enhanced. For much shorter
forcing periods, the body behaves as an elastic body, while for
much longer forcing periods, the body responds as viscous
fluid. While the Maxwell model has been widely used for the
study of tidally active bodies (e.g., Segatz et al. 1988; Fischer
& Spohn 1990; Moore 2003; Henning et al. 2009), it does not
properly capture the complex behavior of olivine observed in
laboratory experiments (Jackson & Faul 2010; McCarthy &
Castillo-Rogez 2013). In particular, the Maxwell model does
not incorporate the anelastic transient creep deformation
mechanism that describes the viscoelastic behavior of the
material over timescales shorter than the Maxwell time, which

are relevant for tidal dissipation. The Andrade rheology model
(Andrade & Trouton 1910) has been particularly successful in
capturing this behavior and adopted in recent studies of tidally
active bodies of the solar system (e.g., Castillo-Rogez et al.
2011; Bierson & Nimmo 2016) and other planetary systems
(e.g., Walterová & Běhounková 2017; Renaud & Henning
2018). These studies have shown the dramatic influence that
changing the rheology from Maxwell to Andrade can have on
tidal dissipation models. We use the more realistic Andrade
rheology as a baseline for this study and briefly compare it with
the classic Maxwell model to illustrate the differences between
the two and the implications they have for the thermal–orbital
evolution of a moon (Section 2.4.1 and Appendix D).
The Fourier-transformed shear modulus can be defined in

terms of the creep function J̃ :

˜ ˜ ( )m = -J . 101

For the Andrade rheology, the Fourier transform of the creep
function (J̃ ) is (Efroimsky 2012)

˜
( )

! ( )
m h

m
zh

a= - +
a

a

-
J

i

n i n

1
. 11

1

The first two terms of Equation (11) correspond to the elastic and
steady-state creep response characteristic of the Maxwell model,
and the last term accounts for the transient creep response
included in the Andrade model. Here ζ and α are two empirical
parameters that characterize the transient creep response. The
value of α for olivine is constrained to vary from 0.1 to 0.5 (e.g.,
Gribb & Cooper 1998; Jackson et al. 2004). We use an
intermediate value of 0.3. The value of ζ depends on the ratio
between the anelastic and Maxwell timescales. It can have a
dependence on forcing frequency, as the dominant anelastic
deformation mechanism might change depending on the forcing
period. However, accurate characterization of the deformation
mechanisms in this regime is not available, and we make the
assumption that diffusion dominates the anelastic response (e.g.,
Shoji & Kurita 2014; Renaud & Henning 2018; Walterová &
Běhounková 2020). In that case, both timescales are equal and
z » 1 (Efroimsky 2012). We caution that for high frequencies or
high-stress situations, other deformation mechanisms, such as
boundary sliding and dislocation unpinning, might become
dominant, resulting in an underestimation of tidal dissipation.
The value of ( )I k2 depends on the core size, which can differ

for different exomoons. However, its effect is small. For an Io-
sized exomoon, dissipation can vary by a factor of 2 for a core
size range of 0.1–0.5 if a constant-viscosity mantle is assumed.
If a low-viscosity asthenosphere is present, the core size has a
smaller effect and changes the dissipation by less than 5%.
When the disaggregation point is reached, the viscoelastic

theory for tides cannot be applied. Previous studies of tidal
dissipation (e.g Fischer & Spohn 1990; Moore 2003; Renaud &
Henning 2018) assumed that when the disaggregation point is
reached, viscosity is reduced to that of the liquidus, and
dissipation drops dramatically. However, dynamic tides in
magma oceans can produce dissipation rates equal to or higher
than those observed on Io (Tyler et al. 2015). Tidal dissipation
in a magma ocean depends on weakly constrained parameters,
such as the magma-ocean dissipation timescale. Instead of
explicitly modeling tidal dissipation in the magma ocean, we
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assume that once the disaggregation point is attained, tidal
dissipation remains constant.

2.3. Heat Transport

The heat generated in the interior of the body via radiogenic
heating and tidal dissipation is transported through the mantle
of the moon to the surface and radiated to space. While most
studies on tidally heated moons and planets consider heat
transport via convection only (e.g., Fischer & Spohn 1990;
Hussmann & Spohn 2004; Henning et al. 2009; Renaud &
Henning 2018), heat transport via heat piping has been
proposed to be the heat transport mechanism prevalent in Io
(O’Reilly & Davies 1981; Moore 2001, 2003) and Earth’s early
history (Moore & Webb 2013). Here we consider both
convection (Section 2.3.1) and heat piping (Section 2.3.2) as
possible heat transfer mechanisms. We do not model heat
transfer in the magma-ocean regime but briefly discuss it in
Section 2.3.3.

2.3.1. Mantle Convection

Due to the strong dependence of viscosity on temperature,
most terrestrial planets in the solar system are in the stagnant-
lid convection regime. The only notable exception is Earth,
where plate tectonics provide a more efficient way to remove
internal heat (Schubert et al. 2001; Korenaga 2013). To
estimate the heat transport due to mantle convection, we
assume that the exomoon is in the stagnant-lid regime. Tidal
heating might trigger plate tectonics (Zanazzi & Triaud 2019).
In such a case, the cold near-surface material is recycled,
making heat transfer between 20 and 100 times more efficient
than heat transport in the stagnant-lid regime and resulting in
lower mantle temperatures (Nimmo & Stevenson 2000).

In the stagnant-lid regime, the body’s interior is divided into
a well-mixed adiabatic convective layer beneath a much stiffer
conductive layer (Schubert et al. 1979; Morris & Canright 1984;
Solomatov 1995; Reese et al. 1999). The conductive layer is
subdivided into a thermal boundary layer, where viscosity
decreases by around 3 orders of magnitude, and an immobile
stagnant lid. We assume the conductive layer (thermal
boundary layer+lid) to behave elastically (see Section 2.1).
The amount of heat transported via convection in the mantle
can be parameterized as

( )=
D

q k
T

D
Nu, 12

m

where k is the thermal conductivity of the mantle, DT is the
temperature increase within the convective layer, Dm is the
thickness of the convective layer, and Nu is the Nusselt
number. In the stagnant-lid regime, the Nusselt number
depends on the Rayleigh number (Ra) and the Frank–
Kamenetskii parameter θ:

( )
( )ar

kh
=

D
Ra

g D T

T
, 13m

m

3

( )q =
DTE

R T
. 14a

g m
2

For Newtonian viscosity, scaling arguments lead to (Solomatov
1995; Reese et al. 1999)

( )q» -Nu a Ra , 154 3 1 3

with »a 0.5 being a nondimensional parameter (Reese et al.
1999). Inserting Equations (14)–(15) into Equation (12), the
heat flux transported via convection can be obtained (Nimmo &
Stevenson 2000; Shoji & Kurita 2014):

⎜ ⎟
⎛
⎝

⎞
⎠

( )r a
kh

g» -q
k g

2
, 16m c

1 3
4 3

with

( )g =
E

R T
. 17c

a

g m
2

For typical mantle conditions, gc is of the order of »0.01
(Nimmo & Stevenson 2000). The thickness of the elastic
lithosphere (Dl) is computed as

( )=
-

D k
T T

q
, 18l

m

m

surf

where Tsurf is the surface temperature. In the heat-pipe regime,
the thickness of the lithosphere and its thermal structure differs
from that of the stagnant-lid regime (Kankanamge &
Moore 2019; Spencer et al. 2020); the effect on the total tidal
dissipation is expected to be negligible.

2.3.2. Heat Piping

As the mantle temperature increases and melt starts to form
(Section 2.1), heat piping becomes a more efficient heat transport
mechanism than convection. Melt is segregated from the solid
mantle and advected upward due to its positive buoyancy. An
equilibrium can be reached in which the amount of melt
advected upward is compensated for by the melt generated by
tidal heating. Moore (2001) developed a model to study heat
piping in Io that can be used to compute how much heat can be
transported via heat piping inside a rocky body. We follow the
approach of Moore (2001) and Bierson & Nimmo (2016) and
compute heat transport via heat piping by solving mass
conservation and using Darcy’s law for porous media (see
Appendix B) in the sublayer of melt. The amount of heat
transport via heat piping depends on two parameters: the
permeability exponent n and the scale velocity γ. Here γ depends
on the grain size (b), the density contrast between melt and solid
matrix ( rD ), the surface gravity (g), the melt’s viscosity (hl), and
a constant (τ) closely linked to the permeability exponent:

( )g
r

th
=

Db g
. 19

l

2

Heat transport efficiency increases with increasing γ and
decreasing n. The value of n is typically taken to be between 2
and 3 (Katz 2008). For Io, Moore (2001) estimated γ to range
between 10–5 and 10–6. We consider both a low- and a high-
efficiency melt transport scenario with n=3 and g =g

- g10 6
Io and n=2 and g = -g g10 5

Io, respectively. By
doing so, we are assuming that grain sizes, melt viscosity, and
density contrasts are similar for the range of body sizes
considered in this study.

2.3.3. Convection in a Magma Ocean

When the disaggregation point is reached, the sublayer of
melt behaves as a magma ocean. The viscosity of a magma
ocean is very low (∼0.1 Pa s), rendering heat transport via
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convection very efficient (Solomatov 2007). As for the tidal
response, we do not model heat transport in this regime. We
assume that heat transport in a magma ocean is sufficiently
efficient to remove all of the internal heat.

2.4. Thermal Equilibrium States

2.4.1. Stable and Unstable Equilibrium States

The thermal state of an exomoon depends on the balance
between heat generated in the interior of the body and removed
through the lithosphere. The evolution of the mantle temper-
ature can be modeled via a simple equation:

( ) ( ) r + = -V C St
dT

dt
Q Q1 . 20m c sint

Vm is the mantle’s volume, St is the Stefan number, Qs is the
surface heat flow, and Qint is the internal heat production which
includes radiogenic and tidal heating. The surface heat flow is
the sum of the heat flow transported via convection and heat
piping; coupling between the two mechanisms is neglected. We
neglect other energy sources, such as primordial heat and heat
due to the cooling of the core. Neglecting the feedback between
interior and orbital evolution for now, we can say that when the
total heat production equals the total heat lost, an equilibrium
state is reached. A thermal equilibrium state is stable if, for a
deviation in mantle temperature, the system tends to restore its
equilibrium:  >dQ dT dQ dTs int . If the amount of internally

generated heat stays constant, the object can remain in this
equilibrium state for a long period of time. The number of
equilibrium points depends on the rheological model, as well as
the prevalent heat transport mechanism (e.g., Ojakangas &
Stevenson 1986; Renaud & Henning 2018). As mentioned
before, we use the Andrade model as a baseline and compare it
with the classic Maxwell model to underline the differences
with previous studies of thermal–orbital evolution of rocky
moons (e.g., Fischer & Spohn 1990; Hussmann & Spohn 2004;
Moore 2003).
Figure 2 illustrates the location and stability of equilibrium

points for an Io-like exomoon for two different mantle rheology
(Maxwell and Andrade) and heat transport (convection and
heat piping) mechanisms. For the Maxwell model, tidal
dissipation is negligible for low mantle temperatures; as the
mantle temperature increases and approaches the melting
temperature, tidal dissipation sharply increases. A further
increase of mantle temperature leads to the formation of a
sublayer of melt. Viscosity further decreases within this layer
and therein causes a further increase of tidal dissipation. Tidal
dissipation peaks at Tres when the Maxwell time of the
asthenosphere equals the forcing period. Finally, additional
warming of the mantle induces a decrease of viscosity and
shear modulus and detunes the asthenosphere from the forcing
period. For the Andrade rheology, a similar behavior is
observed at high mantle temperatures, but for low mantle
temperatures, the transient creep mechanism results in higher
heat generation.

Figure 2. Tidal dissipation and transported heat as a function of mantle temperature for an Io-like exomoon. Panel (a) corresponds to a body with Maxwell rheology,
while panel (b) corresponds to a body with Andrade rheology. Stable and unstable equilibrium points are indicated in red and blue, respectively. Tidal dissipation is
displayed for Io’s present eccentricity and orbital frequency; a decrease in eccentricity or orbital frequency changes the amount of tidal dissipation (gray line) and
drives the system evolution, as indicated by the blue line.
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Equilibrium points for both models are also indicated in
Figure 2. In both cases, there is a stable equilibrium point.
Moreover, the Maxwell plus convection model has an
additional unstable point at <T Tres. A change in the moon’s
orbital parameters that reduces the amount of tidal dissipation
has very different consequences depending on whether the
system is at a stable or an unstable point. In the first case, the
moon evolves smoothly from one equilibrium point to the
other; in the second, the moon enters a runaway cooling phase.
As mentioned earlier, the previous analysis holds if the
evolution of the orbit is not considered. When the feedback
between interior properties and orbital dynamics is considered,
a more complex picture arises. As we will show in
Appendix D, the differences in the location and stability of
the equilibrium points discussed above for the two models have
important consequences for the orbital evolution of a moon/
exomoon.

In the following subsections, we adopt the more realistic
Andrade model and apply it first to Io and then to exomoons to
obtain the range of orbital parameters for which hot states can
be attained.

2.4.2. The Case of Io

Before applying our model to the more general case of an
exomoon, we explore its implications for Io and assess whether
it can successfully explain its thermal state.

Figure 3(a) shows Io’s heat flux and tidal dissipation as a
function of mantle temperature. Depending on melt fraction
and the prevalent heat transport mechanism, we distinguish
three regimes: the stagnant-lid regime, which corresponds to a
mantle without a sublayer of melt; the heat-pipe regime, where
melt advection dominates heat transfer; and the magma-ocean
regime. Tidal dissipation is computed at Io’s current orbital
period and different eccentricities. When the eccentricity is
low, radiogenic heat is the only significant heat source, and
thermal equilibrium is reached for a low mantle temperature,
»1200 K. As eccentricity increases, the equilibrium state
moves to higher mantle temperatures. For moderate eccentri-
cities (~e 2Io ), the dislocation creep mechanism can lead to
situations where  »dQ dT dQ dTs int . In such cases, a quasi-
equilibrium state can be attained in which temperature varies
slowly and the thermal evolution of the system stagnates
(Renaud & Henning 2018). For higher eccentricities, new
equilibrium configurations appear at higher mantle tempera-
tures. The mantle temperature and stability of such points
depend on the considered heat transfer mechanism (see
Figure 3).

If we consider Io’s current eccentricity, we find that heat
transported via mantle convection in the stagnant-lid regime is
insufficient to remove Io’s present heat flux, as also found in
Moore (2003). In contrast, the equilibrium points obtained for
the heat-pipe regime are much closer to Io’s observed heat flux.
For the high-efficient heat transport scenario, we obtain that an
equilibrium point is attained for a model with a 40 km thick
asthenosphere with a melt fraction of 0.02. The equilibrium
heat flux in this configuration is roughly half of Io’s. In the
low-efficiency heat-piping model, the equilibrium point is
reached at roughly two times Io’s observed heat flux for a
model with a 330 km asthenosphere with a 0.2 melt fraction.
The truth probably lies in between, but the second scenario
is more consistent with the interpretation of Galileo’s

magnetometer observations as evidence of a near-surface
partially molten layer with a 0.2 melt fraction (Khurana et al.
2011). However, this claim has recently been challenged (Roth
et al. 2017; Blöcker et al. 2018). For this model, tidal
dissipation is mainly focused in the asthenosphere (»90%) and
is higher in equatorial regions (Figure 4). Assuming that all of
the molten rock travels to the surface through channels in the
lithosphere, we can estimate the resurfacing rate, which is on
the order of 1 cm yr−1. This rate is higher than the minimum
0.02 cm yr−1 required by the lack of impact craters and
consistent with the 0.4–14 cm yr−1 resurfacing rate estimated
from surface changes observed during Galileo’s mission
(Phillips 2000).

2.4.3. Volcanic Exomoons and Tidally Boosted Surface Temperatures

We apply the approach used to obtain thermal equilibrium
states for Io to the more general case of exomoons of different
sizes and orbital parameters. We are primarily interested in
estimating the surface heat flux and temperature. The average
surface temperature can be estimated by considering that the
moon is a blackbody with surface temperature Tsurf,

⎛
⎝

⎞
⎠

( ) ( )
s

=
-

+T
A S

q
1 1

4
, 21ssurf

4

where σ is the Stefan–Boltzmann constant, S is the stellar
irradiation, and A is the moon’s bond albedo. As we are
considering volcanic rocky worlds around cold exoplanets, we
use Io’s albedo AIo and the solar flux at Jupiter’s orbit S♃.
Localized volcanic activity can result in spatial and temporal
variations of surface temperature; our estimations of surface
temperature should be understood as the total thermal output of
a rocky exomoon but keeping in mind that how and when this
energy is released will depend on the thermal regime of the
moon. Moreover, the outgassing of material and formation of a
substantial atmosphere would alter the heat balance of the
moon and thus the surface temperature (e.g., Noack &
Rivoldini 2017).
We can also estimate the amount of outgassed material ( Mo)

and resulting column density. This quantity is closely related to
the surface heat flux. A proxy for the outgassing rate can be
obtained by considering Io’s outgassing rate, Mo,Io, and a tidal
efficiency, hT ,

⎜ ⎟
⎛
⎝

⎞
⎠

( )h =
R

R

q

q
, 22T

Io

2

Io

as  h~M Mo T o,Io (Oza et al. 2019; Quick et al. 2020). The
previous expression gives an order-of-magnitude estimate;
other factors, such as the style of heat transport and volcanism
and the mantle composition, are likely to affect the out-
gassing rate.
We start by considering exomoons of sizes R2 Io and R4 Io

orbiting at Io’s orbital frequency (Figures 3(b) and (c)). Some
differences with Io (Figure 3(a)) are apparent. For bigger
exomoons, higher values of tidal dissipation are attained for the
same orbital eccentricity. This should not come as a surprise, as
tidal dissipation has a strong dependence on body size
(  µE R5). In contrast, the heat transported via mantle
convection has a smaller dependence on body size
(Equation (12)). Heat transport via melt advection quickly
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becomes the dominant heat transport mechanism as orbital
eccentricity increases.

If we consider Io’s orbital eccentricity, we find surface heat
fluxes more than 1 and 2 orders of magnitude higher than Io for
Mars- and Earth-sized exomoons (i.e., R2 Io and R4 Io),
respectively. By using the previous proxies, we can infer that
these exomoons would likely feature more volcanic activity
than Io and produce a plasma torus with column densities 2–3
orders of magnitude higher than those observed in the Jovian

system for a R2 Io and R4 Io moon, respectively. Additionally, for
=R R4 Io, we observe that thermal equilibrium is reached for a

surface heat flux above solar irradiation. In such circumstances,
the second term in Equation (21) becomes important, and tides
have a signature in the surface temperature that increases
to ∼300 K.
Figure 5 shows the surface heat flux and temperature for

different combinations of orbital eccentricity and distance. The
orbital distance is shown as a function of the Roche limit,

Figure 3. Internal and transported heat in terms of surface heat flux as a function of the average mantle temperature for exomoons of different radii. The internal heat
includes both radiogenic and tidal heating. Tidal heating is computed at Io’s orbital frequency and shown for a range of orbital eccentricities. The thickest line
corresponds to Io’s present eccentricity. Three different heat transport regimes are indicated with different shading: the stagnant-lid regime, the heat-pipe regime, and
the magma-ocean regime. Heat transported via convection (black lines) and heat piping (blue lines) are indicated. For comparison, surface heat fluxes for Mars, Earth,
and Io, as well as the solar irradiation at Jupiter’s orbit, are also shown.
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( ) ( )pr=a a G n2 3R m
1 3 2 1 3, which does not depend on the

mass of the orbiting planet. The equilibrium states are obtained
considering the high-efficiency heat-piping transport scenario.
If the low-efficiency scenario is considered, similar results
follow, but the magma-ocean regime is attained for lower
eccentricities and orbital frequencies. As expected, surface heat
flux and temperature increase with increasing eccentricity and
decreasing orbital distance (Equation (12)). For instance, Io
would have a surface temperature of 400 K provided it orbited
with its current eccentricity at / »a a 2R or at its current orbital
distance with an eccentricity of »0.1. The subspace of orbital
parameters for which surface heat fluxes are higher than those
of Io and tides have an effect on surface temperatures reflects
that tidal dissipation increases with body size.

From Figure 5, it is clear that, provided an exomoon has a
high enough eccentricity and/or orbits close to the planet,
super-Ios with intense volcanism and even tidally boosted
surface temperatures arise. A question immediately follows: do
we expect exomoons to orbit within these regions, and for
how long?

3. Longevity of a Super-Io

As we have shown in the previous section, for tidally active
exomoons to be observable, vigorous tidal dissipation linked to
a high orbital eccentricity and/or low orbital period is needed.
However, it remains to be seen if these orbital states are
attainable, let alone long-lived, so that they provide opportu-
nities for observation. Instead of taking orbital period and
eccentricity as constant parameters, as we did in the first part of
the paper, in this section, we explore the coupling between the
interior thermal state of a moon and its orbital parameters.
Clearly, we cannot tackle all possible orbital evolution
scenarios; we pick two representative cases. We start by
considering tidal interactions between a gas giant and an
orbiting exomoon in an isolated moon–planet system. After-
ward, we consider how orbital resonances can excite the orbital

eccentricity of an exomoon; we focus on the simplest orbital
resonance: a 2:1 MMR.

3.1. Isolated Moon–Planet System

As we are considering cold gas giants that, in contrast to
close-in exoplanets, are far from their star, we neglect the effect
of stellar tides in both the planet and the moon. In an isolated
moon–planet system, tidal dissipation within the moon
removes energy from the moon orbit and circularizes it.
Additionally, tidal dissipation within the planet produces a
phase lag in the planets’ response to the tide raised by the
moon. As a consequence, the moon exerts a torque on the
planet that changes the planet’s spin rate, and the planet exerts
a torque of the same magnitude to the moon that drives orbital
migration. The direction of moon migration depends on
whether the orbital period of the moon is higher or lower than
the rotational period of the planet. We consider that the planet’s
rotation period is lower than the moon’s orbital period. This is
justified by the fast rotation rates of the solar system gas giants
and those measured for extrasolar gas giants (Snellen et al.
2014; Bryan et al. 2018). Under the previous assumptions, the
change of orbital frequency (n), orbital eccentricity (e), and the
planet’s spin rate (q) are given by (Appendix C)

( )
t t

= +
n

dn

dt

p e1 1
, 23a

n

e

e

2
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Figure 4. Surface heat flux (a) and internal heat distribution along a meridional cut going through the subjovian point (b) for an Io in thermal equilibrium.
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with =p 57 7e and where tn and te are the orbital migration
and circularization timescales and are given by
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m and p stand for moon and planet, respectively.
Tidal dissipation within the moon results in orbit circular-

ization and inward orbital migration. The rate at which this

Figure 5. Equilibrium surface heat flux and temperature for an Io-sized (a), Mars-sized (b), and Earth-sized (c) exomoon as a function of orbital eccentricity and
distance. The orbital parameters of the Galilean moons and the surface heat flux of Io, Mars, and Earth are indicated. The amount of outgassed material compared to Io
can be estimated using the heat flux with Equation (22).
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occurs depends on the internal structure of the moon via the
second-degree Love number ( )I k m2, . On the other hand, under
the aforementioned assumptions, tidal dissipation within the
planet results in outward orbital expansion and despinning of
the planet. Combining Equations (23a) and (23c), the change in
planet spin rate produced as the moon migrates can be
obtained. Unless the moon is very massive and formed very
close to the planet, the effects of the moon on the planet’s
rotation are small. A Mars-like exomoon around Jupiter would
slow down Jupiter less than 1% as it migrates from 2aR to 20aR.
In what follows, we assume q »d dt 0, the planet is treated as
an infinite source of energy that drives orbit migration. The
migration rate depends on how energy is dissipated within the
planet, as given by the imaginary component of the planet’s
second-degree Love number, ( )I k p2, . In classical tidal theory, it
is considered to be independent of the forcing frequency; we
make this assumption and consider a range of frequency-
independent ( )I k p2, . However, new observations indicate a
strong dependence of ( )I k p2, on forcing frequency (Lainey
et al. 2017, 2020), which has been linked with the excitation of
internal waves in the planet’s gaseous envelope (e.g., Ogilvie &
Lin 2004). The ( )I k p2, spectrum depends on weakly con-
strained parameters such as the structure and composition of
the planet, which in turn can undergo significant changes as the
planet evolves. Implicitly, our model assumes that the exomoon
does not excite any of the resonant modes in the planet’s
dissipation spectrum. The incorporation of such effects would
require the analysis of a broad range of properties of the giant
planet’s dissipation spectrum, as no robust bottom-up model of
this spectrum can be set up for poorly constrained exoplanet
interiors.

Figure 6 shows the circularization timescales as a function of
orbital distance for a hot exomoon with a ( )I k m2, similar to that of
Io (Lainey et al. 2009). te strongly depends on orbital distance
( ( )t µ a ae R

13 2); if the moon is far from the planet ( ⪆a a 20R ),
the circularization timescale is more than 1Gyr. At such orbital
distances, tidal dissipation is quite low. However, a highly
eccentric ( >e 0.1) Earth-like exomoon would still experience
high levels of tidal dissipation that could even increase the surface
temperature to around 500K (Figure 5). Can we imagine a
plausible scenario where this could occur? A possible candidate is
the capture of a terrestrial-sized planet by a gas giant via the

binary-exchange capture process (Williams 2013). The capture
process results in highly eccentric orbits compatible with high
values of tidal dissipation.
For close-in exomoons, the eccentricities required for high

tidal activity are lower (Figure 5). However, the circularization
timescales are much shorter, less than a million years for a
moon orbiting closer to the planet than Io (Figure 5). A
sporadic boost in eccentricity could result in high values of
tidal dissipation and boost the surface temperature, but such a
boost would inevitably be short-lived, giving little chance for
observation. For these moons to exhibit vigorous geological
activity, it is necessary that the eccentricity be continuously
forced. This can occur via MMRs.

3.2. 2:1 Mean-motion Resonance

MMRs occur when two moons consistently apply a periodic
gravitational perturbation to each other. This happens when the
orbital frequencies of the two objects (n1, n2) are related via
( ) ẇ+ - - »p q n pn q 02 1 1 , where w1 is the longitude of
pericenter, and p and q are two integers. The periodic
gravitational forcing alters the orbit of both objects and excites
the eccentricity of the moons. As already mentioned, we cannot
explore all possible orbital resonances. Thus, we focus on the
2: 1 orbital resonance ( = =p q1, 1).

In a 2:1 orbital resonance, the resonant variable = -v n n21 2
is close to zero. Using the perturbing potential up to first order in
eccentricity, the equations governing the orbital evolution of the
two moons can be obtained (Yoder & Peale 1981):
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Here C1 and C2 are two constants with values of −1.19 and
0.428, respectively; α is the ratio between the inner and outer
moon semimajor axes, which, close to the 2:1 resonance,
equals 0.63; and ( )K e e,1 2 is a positive number,
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which is small provided the eccentricities are also small.
Different orbital migration timescales (t t¹n n1 2) can lead to

the convergence of a pair of moons and the assembly of an
MMR (Equation (25a), Figure 7). This can occur either in the

Figure 6. te as a function of orbital distance and moon-to-planet mass ratio for
a body with ∣ ( )∣I = -k 10m2,

2, similar to Io’s present value. The Galilean
moons are indicated.
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protoplanetary disk via differential orbital decay (Figure 7(a))
or, once the protoplanetary disk has dissipated, via differential
tidal expansion of the orbit (Figures 7(b) and (c)). In the second
case, tn and te are given by Equation (24). In the first case, the
orbital evolution is driven by the interactions of the
protoplanetary disk with the recently formed moons (Peale &
Lee 2002; Canup & Ward 2002). The satellites excite density
waves in the protoplanetary disk that cause a torque on the
moons and result in inward migration. The protoplanetary disk
also dampens the satellite eccentricity. Equation (23) can still
be used to model the effects of moon protoplanetary disk
interactions in the orbital evolution, provided we use pe = 3

and define tn and te as (Goldreich & Schlichting 2014)
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where h/a is the aspect ratio of the disk, and Md is the
disk mass.
As the moons move deeper into the orbital resonance, the

orbital eccentricity increases (Equation (25b)). Depending on the

Figure 7. Semimajor axis and orbital eccentricity of two moons in a 2:1 MMR for different scenarios. In the first scenario, panel (a), t t>n n1 2, and the moons go
through the resonance but do not get trapped, while in the second scenario, panels (b) and (c), the moons can remain in resonance for a long time. For panel (b), the
resonance is assembled in the protoplanetary disk, while in panel (c), it is via tidal expansion once the protoplanetary disk dissipates. Note that once the protoplanetary
disk dissipates, the system can relax to the equilibrium eccentricity of panel (c), or the orbit is circularized in a timescale te, as shown in panel (a).
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ratio of the migration timescales of the two moons (t tn n1 2), two
scenarios are possible: the moons (1) cross the orbital resonance
or (2) get trapped in it. The first scenario results in a boost of
orbital eccentricity that is later circularized in a timescale te
(Figure 7(a)). In the second scenario (Figures 7(b) and (c)), an
equilibrium eccentricity is reached that can persist for a
long time.

For MMR assembled via tidal expansion of the orbit once
the protoplanetary disk is dissipated, the first scenario can
occur provided the outer moon migrates faster than the inner
moon. Given the strong dependence of tn with orbital distance
(Equation (24b)), this requires that ∣ ( ( ))∣ ∣ ( ( ))∣I I>k n k np p2, 1 2, 2 ,
which can occur under the resonance-locking scenario (e.g.,
Fuller et al. 2016; Lainey et al. 2020). The boost in orbital
eccentricity due to the crossing of the 2: 1 MMR can be
estimated as (Dermott et al. 1988)
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We note that similar expressions can be obtained for different
values of p and q; thus, Equation (28) gives an order-of-
magnitude estimation of the orbital eccentricity boost for other
MMRs. Using the previous equation, we can obtain the boost
in orbital eccentricity for different values of M M1 2 and M Mp1 .
As shown in Figure 8, the boost of orbital eccentricity due to
the crossing of a resonance can be close to 0.1. For example,
for =M M 11 2 and = -M M 10p1

4, »e 0.05. Such an
increase in orbital eccentricity could result in vigorous and
tidally boosted surface temperatures if resonance crossing
occurs when the moon is close to the planet. As an example, a
Mars-sized exomoon orbiting between Io and Europa’s orbit
would experience surface temperatures up to 400 K (Figure 5),
but the eccentricity would be dampened in less than 10Myr
(Figure 6).

As mentioned before, in the second scenario, the two moons
remain caught in an orbital resonance for a long period of time.
As the moons move deeper into the orbital resonance, the
orbital eccentricity increases (Equation (25a)). The increase of
orbital eccentricity results in a phase lag between both moons,

which prompts a transfer of angular momentum from one moon
to another. As we will see, under certain conditions, this
transfer of angular momentum ensures that both moons migrate
at the same rate (  =v 0), and an equilibrium eccentricity is
reached. The value of the equilibrium eccentricity can be
computed as (Equation (29))
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The value of the equilibrium eccentricity is proportional to t
t

e

n
,

while the prefactor multiplying this ratio differs depending on p
and q. The proportionality of the equilibrium eccentricity to
this ratio remains for different values of p and q (Dermott et al.
1988, Equation (39)).
For the assembly of a 2: 1 MMR in the protoplanetary disk,

the existence of such equilibrium eccentricity requires that
>M M22 1. The value of the equilibrium eccentricity is

~e h a. For a disk aspect ratio of the order of ∼0.1 (Peale
& Lee 2002; Canup & Ward 2002), orbital eccentricities of
∼0.1 can be attained (Figure 9). Once the protoplanetary disk
dissipates, the eccentricity is dampened on a timescale te, or the
system relaxes to the equilibrium configuration of the tidally
driven scenario.
In case orbital migration is driven by tidal forces, the

existence of an equilibrium eccentricity requires that the inner
moon migrates faster than the outer moon, t t<n n1 2, which, for
a frequency-independent ( )I k p2, , implies <M M202 1. The
forced eccentricity is (Equations (24) and (29))

⎜ ⎟ ⎜ ⎟
⎛

⎝

⎞

⎠
⎛
⎝

⎞
⎠

( )
( )

( )
I

I
~e

M

M

R

R

k

k
. 30m

p

p

m

p

m

2

2 5
2,

2,

Figure 9(a) shows the forced eccentricity for an Io-like moon in
a 2:1 orbital resonance with a second moon. We consider that
tidal dissipation is negligible in the outer moon and use ( )I k p2,

and ( )I k m2, compatible with those estimated for Jupiter and Io
(Lainey et al. 2009). For the planet radius, we use the empirical
mass–radius relation of Bashi et al. (2017). If the inner-to-outer
moon mass ratio is too low, the outer moon migrates too fast,
and the moons do not get caught in the MMR. On the other
hand, if the ratio is high, the forced eccentricity of the inner
moon is small. For a mass ratio equal to that of Io and Europa,
we obtain a forced eccentricity of approximately half of Io’s
present eccentricity. This discrepancy is because Io is part of a
more complex resonance chain, the Laplace resonance, which
can excite higher eccentricities (Yoder & Peale 1981). By
considering the simple 2:1 MMR, we obtain an order-of-
magnitude estimation of the forced eccentricity that can
be attained if the moon is part of a more complex resonance
chain. We further consider the case where both moons have
equal mass and obtain the forced eccentricity for different
moon and planet masses and different values of ( )I k p2, using
Equation (29) (Figure 9(b)). Moderate-to-high orbital eccentri-
cities ( -- -10 103 1) that result in high surface heat fluxes are
attained, provided that (1) the moon-to-planet mass ratio is high

Figure 8. Boost in orbital eccentricity due to the crossing of a 2:1 MMR for
different ratios of M Mp1 and M M1 2. The locations of the Galilean moons are
indicated.
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and/or (2) the planet is highly dissipative. Configurations with
> -M M 10m p

4 should be regarded with caution, as satellite
formation models for giant planets predict ~ -M M 10m p

4

(Canup & Ward 2006; Heller & Pudritz 2015a, 2015b). This
makes Mars-sized exomoons plausible around super-Jovian
(1–12 M♃) planets, but the ratio for Earth-sized is only attained
well inside the brown dwarf regime (>12 M♃).

The value of ( )I k p2, is uncertain and a matter of intense
research. Equilibrium tidal theory suggests ∣ ( )∣I ~ -k 10p2,

13

(Goldreich & Nicholson 1977); however, astrometric observa-
tions of the Jovian and Saturnian systems indicate ∣ ( )∣♃I ~k2,

-10 5 and as high as ∣ ( )∣♄I ~ -k 102,
3. High values of ∣ ( )∣I k p2,

lead to a high equilibrium eccentricity. However, high ∣ ( )∣I k p2,

implies fast orbital migration (Equation (24)). As the moon
migrates outward, tidal dissipation rapidly decreases (Equation (8)),
limiting the longevity of a super-Io.

This becomes evident if we study the coupled thermal–
orbital evolution of a close-in exomoon. As the formation of a
pair of Earth-sized exomoons seems unlikely from moon
formation theory, and high values of tidal dissipation are more
easily attained for Mars-sized than Io-sized exomoons, we
focus on the case of a pair of close-in ( =a a2 R) Mars-sized
exomoons orbiting a super-Jovian planet (5 M♃). As shown
before, the orbital and thermal evolution of the moon are
coupled via the imaginary component of the second-degree
Love number ( ( )I k m2, ), which in turn depends on the interior
structure. We compute tidal dissipation and heat transfer as
explained in Section 2.1 and evolve the interior using
Equation (20). The orbital evolution is computed using
Equation (25). The system is integrated forward in time using
a two-step Euler method with an adaptive step size. We assume
∣ ( )∣I k p2, is frequency-independent, and we vary its value from
10−3 to 10−6 and study the thermal–orbital evolution of the
exomoons. In all cases, we assume that the moons start deep
into the resonance with an eccentricity of 0.01.

The evolution of the exomoons for different values of
∣ ( )∣I k p2, is depicted in Figure 10. At the start of the simulation,
the high eccentricity combined with the close proximity of the
exomoon to the planet results in high tidal dissipation and
tidally boosted surface temperatures. At this time, the moon is
in the magma-ocean regime. The moon’s eccentricity changes
until the equilibrium eccentricity is reached. The value of the
equilibrium eccentricity depends on the value of ∣ ( )∣I k p2, , with
higher values leading to higher values of orbital eccentricity.
Meanwhile, the moon migrates at a rate dependent on ( )I k p2, ,
tidal dissipation decreases, and the moon cools down enough to
enter the heat-pipe regime. Upon cooling, the value of ( )I k m2,
changes, and, in a range of 1–10Myr, a new equilibrium orbital
eccentricity is attained.
The close proximity of the moon to the planet combined with

high orbital eccentricity results in high surface heat fluxes, as
well as tidally boosted surface temperatures. For instance, for
∣ ( )∣I = -k 10p2,

4, surface heat fluxes of more than 1000Wm−2

are attained. Surface temperatures are higher than 400 K for the
first 10 Myr. This phase is, however, short-lived due to the fast
orbital migration of the moon. Tidal dissipation quickly
decreases, the melt fraction in the asthenosphere diminishes,
and the moon shifts from the magma-ocean regime to the heat-
pipe regime. After 100Myr, surface temperatures are down to
200 K, and after 500Myr, the contribution of tides to surface
temperature is negligible. As the semimajor axis increases, the
migration timescale (tn; Equation (24)) decreases, but the
eccentricity remains nearly constant. A surface heat flux
10–100 times higher than Io is maintained during the first
billion years and then decreases to values similar to Io while the
moon stays in the heat-pipe regime.
If the planet is less dissipative, the equilibrium eccentricity is

lower, but the orbital migration timescale is reduced. These two
factors partly compensate for each other; while the eccentricity
attained for ∣ ( )∣I = - -k 10p2,

5, 6 is lower than that for
∣ ( )∣I = - -k 10p2,

3, 4, the moon stays closer to the planet for a
longer time. As in the more dissipative cases, high surface

Figure 9. (a) Equilibrium eccentricity of the inner moon in a 2:1 orbital resonance as a function of the ratio of the inner and outer moon mass (x-axis). Both resonance
assembly in the protoplanetary disk (black line) and via tidal interactions with planets of different sizes are shown. An Io-sized moon with ∣ ( )∣I k m2, compatible with Io
and a planet with ∣ ( )∣I k p2, similar to Jupiter are assumed (10−2 and 10−5). Tidal dissipation in the outer moon is neglected. For the case in which both moons have the
same mass, panel (b) shows the orbital eccentricity for different combinations of planet and moon mass assuming Io- and Jupiter-like values for ( )I k m2, and ( )I k p2, .

For a different ( )I k p2, , the equilibrium eccentricity can be recovered by multiplying the value given in the plot by ∣ ( )∣I -k 10p2,
5 . Different ratios of Mm/Mp are

indicated, with = -M M 10m p
4 consistent with moon formation theory indicated in bold. The vertical lines correspond to the three sizes of bodies considered in this

study.
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temperatures are attained during the first million years, but the
contribution of tides to surface temperature is negligible after
500Myr. The surface heat flux stays above that of Io for more
than 2 billion yr, giving ample time for the outgassing of
material and the formation of a secondary atmosphere and
plasma torus.

While we observe small-amplitude fast oscillations of the
eccentricity at the beginning of our simulation, our models do
not feature the pronounced periodic oscillations characteristic
of the models of Hussmann & Spohn (2004) and Fischer &
Spohn (1990) for Io. As we show in Appendix D, this is a
consequence of the very efficient transfer mechanism included
in our model (heat piping) and the use of Andrade rheology,
which implies that Io could be in thermal equilibrium instead of
an oscillatory state, as proposed in Fischer & Spohn (1990).

4. Conclusions

We started this paper with a clear question—what are the
prospects of detecting a super-Io?—and we addressed two
important sides of it: where and in which thermal state we can
expect to find super-Ios and for how long we expect a super-Io
to be tidally active.

To do so, we presented a thermal model of an exomoon.
Based on our current knowledge of Io, we considered a
multilayered model that allows for the formation of a sublayer
of melt in which heat can be transported via melt advection.
Our model confirms the findings of Moore (2001, 2003) and
Moore & Webb (2013) that this mechanism plays a crucial role
in the heat budget of a tidally heated (exo)moon. We applied
our model to Io and found that it can successfully explain its

thermal state and is consistent with Galileo’s observation
hinting at a partially melted asthenosphere (Khurana et al.
2011).
In order to simplify our model, we made some assumptions.

As is commonly done (e.g., Fischer & Spohn 1990; Hussmann
& Spohn 2004; Henning et al. 2009; Shoji & Kurita 2014;
Renaud & Henning 2018), we used the viscoelastic tidal theory
to model tidal dissipation. However, when tidal dissipation is
very high, the melt fraction increases and can reach high
values. The body is better described either as a highly porous
material consisting of a matrix of rock filled with magma or, for
higher melt fractions, as a magma ocean with rocky particles in
suspension. Our treatment of tidal dissipation and heat transport
in the high-melt fraction regime was highly simplified. In such
circumstances, the classical theory of tides in solid viscoelastic
does not adequately describe the behavior of the body.
Advances have been made in understanding the role of
porosity (Liao et al. 2020) and tides in a liquid reservoir
(e.g., Tyler et al. 2015; Matsuyama et al. 2018; Rovira-Navarro
et al. 2019; Hay et al. 2020) in tidal dissipation, yet our
knowledge remains limited. Further study of these regimes will
be key to understanding Io and ultimately super-Ios. Addition-
ally, we considered that material properties only vary radially
and not laterally. While this assumption allows a first-order
understanding of Io and super-Ios, unveiling their complex
dynamics might require taking into account the complex
feedback between tidal dissipation, internal properties, and
resulting heterogeneities (Steinke et al. 2020). In the case of Io,
the availability of high-resolution observations justifies this
kind of modeling, but we are still very far from this point for
exomoons.

Figure 10. Thermal–orbital evolution of a Mars-sized exomoon orbiting around a 5 M♃ planet in a 2:1 orbital resonance with an exomoon of the same size. Panel (a)
shows the semimajor axis in terms of the Roche limit (y-axis) as a function of time (x-axis). The trajectories are colored according to surface heat flux and temperature.
Panel (b) shows the detail of the evolution of the eccentricity (solid lines) and semimajor axis (dashed lines), and panel (c) shows the surface temperature using a
logarithm timescale.
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We applied our model to exomoons ranging from Io to
Earth-sized and found that exomoons orbiting within a few
Roche radii of their planet experience high levels of tidal
dissipation if they have moderate eccentricities (similar to Io).
Thermal equilibrium states with surface heat fluxes higher than
those of Io are obtained for a wide range of orbital parameters.
For some of these cases, tidal dissipation is very high, and the
thermal budget of the moon is dominated by tidal dissipation,
resulting in a high surface temperature that could make direct
imaging by future telescopes possible (Peters & Turner 2013).

While our analysis of thermal equilibrium states as a
function of orbital parameters showed that super-Ios can result
for different orbital configurations, one key question remained:
do we expect a population of exomoons to fill this space, and
for how long? This question should be tackled from a moon
formation and evolution point of view. We addressed the
second aspect by considering the coupling between interior
structure and orbit evolution of a close-in exomoon.

We showed that an Earth-sized exomoon orbiting far away
from the planet ( / >a a 20R ) with a high eccentricity can remain
tidally active for billions of years and speculated that this might
happen if such an exomoon is captured via a mechanism known
as the binary-exchange capture process (Williams 2013). How-
ever, under these circumstances, our assumption of the moon
being tidally locked and having a small obliquity could break.
Moreover, higher-order eccentricity terms will be become relevant
for the orbital evolution of the moon (Renaud et al. 2021). The
more general problem of capture and tides for a nonsynchronous
rotating moon should be addressed. This opens the door to higher-
order spin–orbit resonances, such as a Mercury-type 3: 2
resonance (e.g., Dobrovolskis 2007; Makarov 2012; Walterová
& Běhounková 2020), as well as obliquity tides that can be
investigated in future work.

For closer exomoons, circularization timescales are on the
order of million of years, which implies that long-lived super-
Ios require active forcing of the eccentricity, for example, via
MMRs (e.g., Peale 1976). We considered a super-Io in a 2: 1
orbital resonance and found a trade-off between high orbital
eccentricity and fast orbital migration. We obtained that in

order for the forced eccentricity to be high enough for surface
temperatures to be dominated by tidal heating, the orbited

exoplanet should be highly dissipative (i.e., have a low quality
factor). Low quality factors are not compatible with the
equilibrium tide theory of Goldreich & Nicholson (1977) but
are in agreement with the low values measured for Jupiter and
Saturn (Lainey et al. 2009, 2020). However, we showed that
highly dissipative planets lead to fast orbital migration, which
limits the amount of time the moon spends near the planet,
where tidal dissipation is high. We studied in more detail the
case of a Mars-sized exomoon orbiting a super-Jovian planet.
We found that tidal dissipation decreases below solar
irradiation »500 million yr after the establishing of the
MMR, limiting the window for direct imaging. However, the
moon can remain tidally active for billion of years with heat
fluxes exceeding those of Io. This implies that a plasma torus
denser than that of Jupiter can be expected in the system, which
provides an opportunity for detection in transmission spectra
(Johnson & Huggins 2006; Oza et al. 2019). Finding a tidally
heated exomoon via transit spectroscopy or direct imaging
would provide an important constraint on the planet’s interior
structure due to the relation between the moon’s eccentricity
and dissipation within the planet.
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Efroimsky for the helpful discussion on orbital evolution and
tides. M.R.-N. has been financially supported by the Space
Research User Support program of the Netherlands Organiza-
tion for Scientific Research (NWO) under contract No. ALW-
GO/16-19.

Appendix A
Propagator Matrix Technique

A detailed description of the propagator matrix technique for
the viscous gravitation problem can be found in Sabadini et al.
(2016). Here we give a brief summary of the method. For each
layer ( )i (1 for the uppermost layer and N for the core),
Equation (9) needs to be solved. Matrix A is given by

l is the spherical degree harmonic, which equals 2 for tidal
forcing.
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The solution to the previous set of differential equations can
be written as

˜ ( ) ˜ ( ) ( )w w=y Cr Y r, , , A2i ii

where ɷ is the forcing frequency, and Y is the so-called
fundamental matrix, which equals

and Ci is a vector of integration constants.
The solution at the surface of the moon ( ˜ ( )y R ) can be

computed by propagating the solution from the core–mantle
boundary (Rc) to the surface (R) by imposing continuity at the
layers’ boundaries:
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Ic is a matrix that follows from the boundary conditions at the
core–mantle boundary and is given by

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟( )

( )

p r

p r

p r

=

-

-

-

-

I

R

G

G R

R

l R G

3

4
0 1

0 1 0

0 0
4

3
0 0 0

0 0

2 1 0 4

, A5c

c
l

c

c c

c
l

c
l

c

1

2

1

and Cc is a vector of three integration constants that we obtain
by applying the surface boundary conditions:

˜ ( ) ( )w =y R, 0, A63

˜ ( ) ( )w =y R, 0, A74
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The second-degree tidal Love number is

˜ ( ) ( )w= -k y R, 1. A92 5

Appendix B
Heat Piping

The advection of melt in a partially molten asthenosphere
can be described using conservation of mass and Darcy’s law
for porous media (Moore 2001):

· ( ) ( )f =v s, B1l

· (( ) ) ( )f - = -v s1 , B2s
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r
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Df
v v

k g
. B3l s
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Here vs and vl are, respectively, the ascend velocities of the solid
and liquid phases; f is the melt fraction; and kf is the permeability,
which depends on the geometry of the porous matrix
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f
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where b is the grain size, n and τ two constants related to the
geometry of the matrix, and s is the melt production rate and
related to the volumetric heat rate qvol as
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Although heat is not uniformly distributed within the astheno-
sphere, we assume qvol to be constant within the layer. vs can be
eliminated from Equation (B3) to obtain two equations for vl
and f:

⎜ ⎟
⎛
⎝

⎞
⎠

( )
fr f

f
= - +

dv

dr

q

L
v

r

d

dr

2 1
, B6l

l
vol

[ ](( ( ) )

( ) ( )

f
g f f

r
f f

+ - +

= - -

d

dr
v n n

q

L

v

r

1

2 1 . B7

l
n

lvol

For different values of volumetric heat (qvol), we integrate
the previous set of equations from the bottom of the
asthenosphere to the top. The average melt fraction f is then
computed, and a curve relating the average melt fraction (f)
and qvol is obtained.
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Appendix C
Tidal Effects on Orbit Evolution

The effects of planet and moon tides on the evolution of a
moon–planet system have been widely studied (e.g.,
Kaula 1964; Boué & Efroimsky 2019). Here we follow
Efroimsky & Williams (2009) and Boué & Efroimsky (2019)
to obtain the tidal effects on the orbit of a synchronously
rotating satellite with low inclination orbiting around a planet
spinning at angular rate q. The evolution of the satellite’s
orbital frequency and eccentricity are given by Boué &
Efroimsky (2019, Equations (143) and (156)), and the change
of the planet’s spin rate due to the moon is given by Efroimsky
& Williams (2009, Equation (34)):
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where m and p stand for moon and planet, respectively; Ip is the
planet’s moment of inertia ( k=I M Rp p

2, with k = 2 5 for a
homogeneous planet); and  and  are two constants that
depend on the physical properties of the planet and moon,
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K2 are second-degree quality functions at frequency ω, which
are given by
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where k2 is the second-degree Love number, and Q is the
quality factor. By looking at Equations (C1a)–(C1c), it is
evident that the leading term is due to semidiurnal tides raised
in the planet by the satellite. Moreover, > 1 and, in general,
∣ ∣Kp is several orders of magnitude lower than ∣ ∣Km . In such

circumstances, and assuming that the spin rate of the planet (q)

is higher than the orbital frequency of the moon (n),
Equation (C1) can be written as
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with =p 57 7e . te and tn are the damping timescale for the
eccentricity and orbital frequency,
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with the moon and planet Love numbers evaluated at n and
q - n2 2 , respectively. We note that the previous assumption

can break in the resonance-locking scenario, where
( )q-K n2 2p2, might be similar in magnitude to ( )K nm2, .

Finally, it is important to note that higher-order terms can
become important for high orbital eccentricities ( >e 0.1;
Renaud et al. 2021).
Comparing Equation (C4) with the equations used in

previous studies (e.g., Yoder 1979; Malhotra 1991; Fischer &
Spohn 1990; Shoji & Kurita 2014), we note that those studies
use pe = 3 instead of the value obtained above. This
discrepancy arises from the incorrect assumption in some past
publications that eccentricity damping occurs at constant
angular momentum.
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Appendix D
Implications of Andrade Rheology and Heat Piping for the

Thermal–Orbital Evolution of Rocky Moons

The thermal–orbital evolution scenarios presented in
Section 3 are markedly different from those obtained by
Fischer & Spohn (1990) and Hussmann & Spohn (2004) for Io.
In Fischer & Spohn (1990) and Hussmann & Spohn (2004), the
thermal–orbital evolution is characterized by a nearly equili-
brium phase followed by an oscillatory phase of alternating
cold and warm phases and finally a runaway cooling of the
body. In contrast, in our model, the body evolves following a
series of near-equilibrium thermal–orbital states. The difference
is due to the use of Andrade rheology instead of Maxwell
rheology, as well as the introduction of a more efficient heat
transport mechanism: heat piping. Here we briefly explore how
these two factors affect the thermal–orbital evolution of a rocky
exomoon.

The difference can be explained in terms of the location and
stability of thermal equilibrium points. To illustrate this point,
we consider the thermal–orbital evolution of an Io-sized moon
using the two different models presented in Section 2.4: (a)
Maxwell rheology and heat transport via mantle convection and
(b) Andrade rheology and heat transport via heat piping. In
both cases, we consider that the moon starts its evolution at

=a a 2R with an initial orbital eccentricity of 10−3 in an
orbital resonance with a moon of the same size. Due to the
close proximity of the moon to the planet, tidal dissipation is
high, and a stable equilibrium point with >T Tres is reached in
both cases. As the moon migrates outward and tidal dissipation
decreases, the equilibrium mantle temperature decreases
accordingly until the point =T Tres. This point is unstable for
model (a) but stable for model (b). For model (a), further orbital
migration starts a runaway cooling phase. As the moon cools
downs, ( )I k m2 sharply decreases, which leads to an increase of
the orbital eccentricity (Equation (29)) and thus tidal dissipa-
tion, causing the body to heat up again (Figure 11). This
process is repeated several times, resulting in thermal–orbital
oscillations. In contrast, when Andrade rheology and heat
piping are included, the equilibrium point is stable and the
moon evolves following thermal equilibrium states, no
oscillatory phase occurs.
This result can also be interpreted in the context of the linear

stability analysis presented in Ojakangas & Stevenson (1986).
Ojakangas & Stevenson (1986) showed that the stability and
subsequent orbit evolution depends on the exponents of the
power dependence of tidal dissipation and heat transport with
temperature ( =n d Q dTln int and =m d Q dTln s ). The
Andrade rheology and heat piping reduce n and increase m,
which brings the system to the stable regime.

Figure 11. Thermal–orbital evolution of an Io-sized exomoon in a 2:1 orbital resonance around a Jovian planet. The solid line corresponds to a model with Maxwell
rheology and heat transport dominated by convection, and the dashed line corresponds to Andrade rheology and heat transport dominated by heat piping. In both
cases, ∣ ( ) ∣I = -k 10p2

5 is assumed.
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