
SIMULATING LEVEL-SET PERCOLATION ON THE
DISCRETE GAUSSIAN FREE FIELD WITH

ARBITRARY CONDUCTANCES

USING A CONJUGATE GRADIENT SAMPLER

Bachelor’s Thesis

by

Pim KEER

Academic Supervisors:
dr. A. Cipriani, Technische Universiteit Delft,
dr. J.M. Thijssen, Technische Universiteit Delft,
dr. A. Chiarini, Technische Universiteit Eindhoven.

Examination Committee:
dr. A. Cipriani, Technische Universiteit Delft,
dr. J.M. Thijssen, Technische Universiteit Delft,
dr. ir. W.G.M. Groenevelt, Technische Universiteit Delft,
dr. A. Akhmerov, Technische Universiteit Delft.

ABSTRACT

Level-set percolation on the Discrete Gaussian Free Field (DGFF) turned out to be
a hot topic within mathematical physics over the last couple of years. In particular,
the DGFF on Zd , with homogeneously weighted nearest-neighbour interactions,
i.e. all conductances equal to 1, has been studied in detail. These models can
be simulated with great efficiency. In this research, we abandon the homogeneity
requirement and look at three-dimensional DGFFs with arbitrary conductances.
Our goal is to find a quick and reliable method to simulate such DGFFs on a finite
lattice. Since this is, in essence, a high-dimensional Gaussian sampling problem,
we investigated this problem using the Conjugate Gradients (CG) linear solver as
a Gaussian sampler. To see how it performed, we compared our implementation
of the CG sampler with known methods for DGFFs in the unit conductance case.
Finally, as a showcase of our implementation, we studied level-set percolation on
a DGFF with a simple checkerboard conductance pattern.

Our main conclusion is that the CG algorithm is very suitable for simulating
Discrete Gaussian Free Fields. Since it does not make any assumptions on the con-
ductances, it can be used to generate DGFFs with arbitrary conductances. How-
ever, there are still a number of issues with our implementation. The biggest one
is concerning the stopping tolerance of the CG sampler. Once the tolerance is set
smaller than some lattice size-dependent threshold, the percolative behaviour of
the resulting sample changes drastically. We have not been able to explain this.
Moreover, we would recommend making the implementation usable for paral-
lel computing. We have been limited to relatively small lattice sizes during this
project. Consequently, the use of certain finite-size scaling arguments when ana-
lysing level-set percolation might not always have been as justified.

Finally, based on our study of the DGFF on a lattice with checkerboard con-
ductances a and b (a < b), we conjectured that, in its percolative behaviour, this
DGFF resembles a DGFF defined on a lattice with constant conductance c, where
c is a weighted average of a and b. The weight of a is expected to be larger than the
weight of b.

iii

Table of Contents

Abstract iii

1 Introduction 1

2 Prerequisites 5
2.1 The Gaussian Free Field . 6

2.1.1 Construction . 6
2.1.2 The Gaussian Free Field is a Gaussian Field 9

2.2 Level-set Percolation . 15
2.2.1 Behaviour close to the critical value 16

2.3 The DGFF with Random Conductances 22

3 Generating the Discrete Gaussian Free Field 25
3.1 Sampling a standard GFF with eigenfunctions 26

3.1.1 The Periodic Boundary Case . 26
3.1.2 The Zero Boundary Case . 30

3.2 Adding Random Conductances: CG Sampling 32
3.2.1 The CG Linear Solver Algorithm 33
3.2.2 From Solver to Sampler . 40

3.3 Analysing the Percolative Behaviour . 41
3.3.1 Clustering: The Hoshen-Kopelman Algorithm 41
3.3.2 Finding the percolation threshold 43

4 Simulations 47
4.1 Checks of Validity . 48

4.1.1 Checks for Hoshen-Kopelman and RN -computation 48
4.1.2 Comparing the CG sampler with the Fourier-analytic methods 50

4.2 The Checkerboard Pattern . 53

5 Known Issues and Recommendations 57

6 Conclusion 61

References 63

iv

A Some Notions on Real and Complex Gaussian Distributions 65
A.1 Gaussian Random Vectors . 66
A.2 The Complex Normal Distribution . 68

B The Project’s Github Page 73

v

1
INTRODUCTION

The Discrete Gaussian Free Field (DGFF) on the grid Zd is a popular random field
model within mathematical physics, with applications in, amongst others, mag-
netism and quantum field theory. Intuitively, the model assigns to each grid site
i ∈Zd a random value, called the spin. This spin value can be in principle any real
number, but the model favours a value that is close to the spin value of its neigh-
bours. In its most basic form, the DGFF weighs all neighbouring spins equally in
its computation of the spin at i . We say that the conductance is the same for all
pairs of neighbouring sites. This "standard" DGFF is also called the harmonic crys-
tal. For d ≥ 3, it serves as a model for microscopic fluctuations in a homogeneous
crystal lattice at non-zero temperatures [1]. An evident generalisation of the DGFF
is to leave out the assumption that all conductances are equal. Some sites might
have a very high conductance between them, implying that their spins should be
almost equal, while other sites might be linked with a very low conductance, such
that their spins depend very little on each other. From a physical point of view, ar-
bitrary conductances represent impurities in an otherwise homogeneous crystal.

Often, one is interested in the percolative behaviour of a spin model. For the
DGFF, this behaviour is studied by considering level-set percolation. Sites with a
spin greater than a certain threshold are defined as occupied, the others as unoc-
cupied. It is known that there exists a finite, nontrivial percolation threshold in the
case of constant conductances [2]. When we generalise to arbitrary conductances,
many interesting questions come up. To name a few:

• Given a set of arbitrary conductances, is there still a finite, nontrivial perco-
lation threshold?

• If we have a periodically occuring impurity in an otherwise homogeneous
lattice, how large should the impurity be in order to have any influence on
the percolative behaviour of the lattice?

1

We will most certainly not give an answer to any of these questions. However, we
might be of help in the process of finding an answer. An important part of studying
Discrete Gaussian Free Fields – especially studying level-set percolation on DGFFs
– is computer simulation. There are already a number of methods to efficiently
generate a DGFF [3][4]. However, they only work for the DGFF with constant con-
ductances. These methods exploit the fact that it can be shown that the DGFF is
a Gaussian field, fully described by a mean and covariance matrix [5]. Due to the
symmetry in constant conductance DGFFs, it is possible to find an eigendecom-
position of the covariance matrix which makes simulation a very efficient task. For
arbitrary conductances, such eigendecomposition are no longer possible, so the
methods in [3] and [4] fail. It is therefore the goal of this research to find a method
that is able to simulate a DGFF, with any given set of conductances. We will con-
sider the three-dimensional case in particular. In our search for a suitable simu-
lation technique, we encountered several methods; from traditional factorisation
methods such as the Cholesky decomposition, to Monte Carlo methods like the
Gibbs sampler [6]. However, one method in particular quickly caught our atten-
tion. This project investigated a Conjugate Gradient-based Gaussian sampler. The
Conjugate Gradient (CG) method is predominantly known as a linear solver, first
introduced by Hestenes and Stiefel [7] in 1952. However, Parker and Fox showed
that it can be turned into a Gaussian sampler with the addition of just one extra
vector operation per iteration [8]. We looked at the inner workings of CG, imple-
mented it in Python and then applied it to the Gaussian sampling problem of sim-
ulating a DGFF. Also, we tested the method’s performance in the constant conduc-
tance case by comparing the percolative behaviour from the samples it creates to
samples created by the methods described in [3] and [4]. Finally, we used the CG
sampler on a nonhomogeneous set of conductances, called the checkerboard pat-
tern.

Let us finish this introduction by giving an idea of what the reader may expect
from this dissertation. Chapter 2 gives an introduction to the Gaussian Free Field
with unit conductances. In particular, we first construct the model by defining its
Hamiltonian and the corresponding Gibbs distribution. Then we show that this
definition is equivalent to that of a Gaussian field with the inverse of the graph
Laplacian as covariance matrix. After this introduction, we cover the notion of
level-set percolation and mention some important results from general percola-
tion theory. At the end of Chapter 2, we introduce the arbitrary conductance DGFF,
and also define the checkerboard pattern. Chapter 3 is all about simulating Dis-
crete Gaussian Free Fields. To start off, we cover the methods from [3] and [4] in
detail. Thereafter, we present the CG linear solver and the extra step needed to turn
it into a Gaussian sampler. Once we know how to sample a DGFF, we talk about the
methods needed to analyse its percolative behaviour. In particular, we look at the
Hoshen-Kopelman cluster-finding algorithm and a procedure described in [9] to
determine the percolation threshold. In Chapter 4, the actual simulations we have

2

run are stated, and their results are given. We immediately discuss a number of
these results, and continue this discussion in Chapter 5. In the latter, we try to list
all the issues we have encountered with the code, and make a number of recom-
mendations for further research.

3

2
PREREQUISITES

In this Chapter, the reader can find all the necessary background theory to fully un-
derstand this thesis. First of all, the Gaussian Free Field, in particular the discrete
form, is introduced. Secondly, the notion of percolation on this Gaussian Free Field
is discussed. Along with that, we mention a few important results from percolation
theory. We conclude by formulating a Gaussian Free Field with arbitrary conduc-
tances. Eventually, this will be the object we would like to simulate.

5

2.1. THE GAUSSIAN FREE FIELD

T HROUGHOUT this dissertation, everything we do will be in the setting of ei-
ther the standard or a modified version of the Discrete Gaussian Free Field on

Zd . Therefore, it is a good idea to first get acquainted with the standard (Discrete)
Gaussian Free Field, abbreviated by (D)GFF. The GFF is a well-known model in sta-
tistical physics. In the vaguest sense possible, it models a lattice of particles where
each particle carries an abstract value called the spin of the particle. This value
is dependent on the spins of neighbouring particles. This explanation deserves a
formalisation.

2.1.1. CONSTRUCTION

To construct the GFF, we mainly follow the reasoning of Friedli and Velenik [5]
and Borga [10]. First, consider the d-dimensional lattice Zd . At each lattice point
i = (i1, i2, . . . , id)T ∈ Zd (i.e. particle), we define a variable ωi ∈ R, which is called
the spin at i . We say that the single-spin space Ω0 of this model is R, as ωi can be
any real number. Combining all these single spins yields a so-called spin config-
uration of the model, ω := (ωi)i∈Zd . The set of all possible spin configurations on

Zd is denoted by Ω := {
(ωi)i∈Zd |∀i ∈Zd :ωi ∈Ω0

}
. This is also written as Ω=ΩZd

0 ,

so in the case of the GFF, Ω = RZ
d

. Similarly, we can define a configuration on
a subset S ⊂ Zd . The set of all spin configurations then becomes: ΩS = ΩS

0 =
{(ωi)i∈S |∀i ∈ S :ωi ∈Ω0}.

The spin model will have a certain configuration. However, not every configu-
ration is equally likely to occur. To find out with which probability we will observe
a specific configuration, we use the notion of energy for that configuration. Note
that we only define the energy for a configuration in a finite subset Λ⊂ Zd . As we
will see in a bit, the energy is fully determined by the Hamiltonian HΛ :Ω→R.

Different spin models are distinguished from each other by their single-spin
spaceΩ0 and their Hamiltonian HΛ. For the Gaussian Free Field, we already men-
tioned thatΩ0 =R. It remains to define the Hamiltonian for the GFF, which is done
in Definition 2.1.3. Before we do that however, we introduce the notions of nearest-
neighbours and edge-sets in Definitions 2.1.1 and 2.1.2.

Definition 2.1.1 (Nearest-neighbours). We say that two lattice points/lattice sites
i , j ∈ Zd are nearest-neighbours, denoted by i ∼ j , whenever ||i − j ||1 = 1. Here
the 1-norm of a lattice point i = (i1, i2, . . . , id)T ∈Zd is defined as ||i ||1 := ∑d

n=1 |in |.
Thus, two lattice points are nearest-neighbours whenever they are "just next to
each other".

Definition 2.1.2 (Edge-set). Given Λ ⊂ Zd , we define the edge-set of Λ, denoted
by EΛ, as the set containing all nearest-neighbour pairs within Λ. That is, EΛ ={
(i , j) : ||i − j ||1 = 1; i , j ∈Λ}

. These nearest-neighbour pairs are also called edges
in the context of graphs; they link two nearest-neighbour vertices.

6

Definition 2.1.3 (Hamiltonian of the GFF). For a finite subset Λ ⊂ Zd , the Hamil-
tonian of the Gaussian Free Field inΛ, for any ω ∈Ω, is given by:

HΛ(ω) := β

4d

∑
(i , j)∈EΛ

(ωi −ω j)2 + m2

2

∑
i∈Λ

ω2
i , (2.1)

where β ≥ 0 can be recognised from statistical physics as the inverse temperature
β = 1

kB T and m ≥ 0 is the mass. We speak of a massive GFF if m > 0, and of a
massless GFF if m = 0.

In this dissertation, we only consider the massless variant of the Gaussian Free
Field, but mention the massive case here for completeness. Thus for the remainder
of this text, m = 0.

With the Hamiltonian now explicitly formulated, we can find out with which
probability a specific configuration may occur. The first step in doing that, is re-
alising that the Hamiltonian is defined only on finite subsets Λ ⊂ Zd . Therefore,
we only allow configurations to differ from each other inside this Λ. Outside of
this region, every configuration is fixed and equal to the others. We can use a
boundary condition η ∈ Ω to fix all configurations outside of Λ. That is, every
configuration ω ∈ Ω must be equal to η in Λc . Notice that we call the whole of
η ∈ Ω the boundary condition. However, as the Hamiltonian (2.1) only includes
nearest-neighbour interactions, η can only affect what happens inside Λ through
the outer boundary of Λ. The latter is denoted by ∂oΛ and defined as ∂oΛ :={
i ∈Zd : i ∉Λ∧ i ∼ j , for some j ∈Λ}

.
With that said, we can now define a probability measureµη

Λ
(A) on (Ω,F), given

the region Λ⊂Zd and a boundary condition η ∈Ω. Here A is some arbitrary event
in the event space F . We will elaborate on the structure of this event space after
we define the measure in equation (2.2).

µ
η

Λ
(A) =

∫
e−HΛ(ωΛηΛc)

Z
η

Λ

1A(ωΛηΛc)
∏
i∈Λ

dωi , (2.2)

where dωi is the Lebesgue measure corresponding to location i ∈ Zd and HΛ(·)
the Hamiltonian defined earlier. The notation ωΛ represents the restriction of ω
to Λ, so ωΛ := (ωi)i∈Λ. With this in mind, ωΛηΛc stands for the spin configuration
in Ω that coincides with ω in the region Λ, and with the boundary condition η in
the region Λc . Important to keep in mind is that η is fixed, so everything that is
random happens only inside of Λ. The reader familiar with statistical mechanics
may recognise a Gibbs (or Boltzmann) distribution here. The quantity Z

η

Λ
is the

so-called partition function, defined by equation (2.3). One can see Z
η

Λ
as the nor-

malising constant for the probability distribution, making sure that µη
Λ

(Ω) = 1.

Z
η

Λ
:=

∫
e−HΛ(ωΛηΛc)

∏
i∈Λ

dωi . (2.3)

7

We may set β = 1. Indeed, the change of variables ω′
i =

√
βωi for all i ∈Λ implies

Z
η

Λ
= β

|Λ|
2 Z

η′
Λ

, with η′ := √
βη. In a similar fashion, µη

Λ
(A) = µ

η′
Λ

(√
βA

)
for all A ∈

F . Setting β = 1 can therefore be done without any problem; it only changes the
distribution by a scaling factor.

As promised, let us now take a closer, measure-theoretic look at F . This event
space is the natural choice for the collection of events on Ω, but to find out why,
we first need to introduce the notion of a cylinder. Consider a configuration ω ∈Ω
and our finite region Λ ⊂ Zd from earlier. The restriction ωΛ can be linked to the
original configuration via a projection map ΠΛ : Ω→ ΩΛ such that ΠΛ(ω) = ωΛ.
With this mapping, given A in the productσ-algebra BΛ :=⊗

i∈ΛB0, we can easily
write the event that A happens in Λ as Π−1

Λ (A) = {ω ∈Ω :ωΛ ∈ A}. Observe that
BΛ is nothing else then the smallest σ-algebra generated by the sets of the form
×i∈ΛAi , where Ai ∈B0. Keep in mind that B0 is the Borel σ-algebra onΩ0. For the
GFF,Ω0 =R and so B0 =B(R).

We can now define the collection of events C (Λ) := {
Π−1
Λ (A) : A ∈BΛ

}
. This is

the collection of all events that only depend on what is happening inside of Λ, i.e.
only on the spinsωi with i ∈Λ. Any event in C (Λ) is called a cylinder (with baseΛ).
Consequently, the collection of all events that depend on a finite amount of ωi ’s is
given by C :=⋃

Λ⊂Zd finite C (Λ). It is the σ-algebra generated by this collection that
we call F , i.e. F = σ(C). In this σ-algebra, we can find all events that depend
on the spins inside Zd . Notice that F is generated by collections of events which
depend only on a finite amount of spins, but contains also events which depend
on the whole of Zd . This is exactly what we would expect from our event space. It
does not contain all events, but it does contain all the events that are relevant to
this project.

All of the above is a lot of measure theory, which is certainly important for the
rigour of this text. However, it is also important to keep track of what is going on
an intuitive level. Let us therefore return to Definition 2.1.3. This one may seem
to come out of the blue at first. Why does one define the Hamiltonian for the GFF
in such a way? It turns out that this formulation reflects the manner in which we
want our Gaussian Free Field to behave really well.

To see this, let us first recall the probability measure given by equation (2.2).
In particular, note that the probability of some event, say A = {ω′} with ω′ some
arbitrary configuration, scales with e−HΛ(ω′). We disregard Λ for a moment as we
look only at the effect of one nearest-neighbour pair on HΛ. In other words, the
larger the Hamiltonian becomes for a certain spin configuration, the more negative
the exponent becomes and so the less likely it will be for this configuration to occur.
This is analog to physics, where in general the states of a system with the lowest
energy are the most stable and so the most likely to occur.

We can now investigate both sums in equation (2.1) separately. Observe that
the first sum goes over all the nearest-neighbour pairs in Λ. This implies that we
only consider interactions between spins at nearest-neighbour points. To learn

8

more about what kind of interactions we are considering, we must look at what
is actually inside this sum. One can see the squared difference of the spins at the
two neighbouring points. This difference is small for a spin configuration where
the spins are close to each other, i.e. ωi ≈ω j . In that case, a small contribution to
the Hamiltonian will be made, enlarging the probability of this configuration oc-
curring. One could say that the Gaussian Free Field favours configurations where
neighbouring spins are similar in value. In fact, the GFF strives having each spin
equal to the average of its neighbouring spin. This is because, for any lattice site i ,
the average minimises the sum

∑
j : j∼i (ωi −ω j)2 in the Hamiltonian (2.1):

∂

∂ωi

(∑
j : j∼i

(ωi −ω j)2

)
= 0 ⇒ωi = 1

2d

∑
j : j∼i

ω j

This is why the GFF is also called the harmonic crystal; it wants to be a harmonic
function onZd . This interpretation is the key to why we can use the GFF as a model
for microscopic fluctuations on a lattice at nonzero temperature. In the zero tem-
perature limit β→∞, the Hamiltonian (2.1) will blow up to infinity for almost all
spin configurations. The only configurations for which this blowing up does not
happen are those where (ωi −ω j)2 → 0 for each i ∼ j . These are exactly the config-
urations with constant spin everywhere. As a result, only these configurations are
likely to occur. We may see them as ‘zero-energy’, or ground state, configurations.
Once the temperature starts rising however, random fluctuations will happen with
nonzero probability and will perturb the constant spin configurations. The higher
the temperature, the more severe the random fluctuations and the farther away the
DGFF gets distorted from its desired harmonic configuration.

Notice that only the wish for harmonicity of the Gaussian Free Field on an in-
finite lattice does not say anything about the magnitude of the spin itself. It could
be that two neighbouring spins are both very large, but comparable in magnitude.
This would be allowed if the Hamiltonian only consisted of the first sum, i.e. in the
massless case. However, for the massive case, we see two sums in equation (2.1).
This second sum becomes large for large magnitudes of ωi . Consequently, the
probability for a configuration with large ωi ’s decreases. The massive GFF thus
favours spins that lie close to zero.

2.1.2. THE GAUSSIAN FREE FIELD IS A GAUSSIAN FIELD
Until now, we have defined the Gaussian Free Field purely by a certain Hamiltonian
and probability measure. At first sight, there is not much Gaussian about the GFF.
However, we will show in this section that the Gaussian Free Field is in fact a Gaus-
sian field. To show that we define the random variables ϕi :Ω→ R by ϕi (ω) :=ωi ,
for all i ∈Zd . It turns out that under µη

Λ
, ϕΛ := (ϕi)i∈Λ is a Gaussian vector, for any

finite Λ ⊂ Zd . In this section, we will see how to come to this observation. Let us
first recall what a Gaussian vector is in Definition 2.1.4.

9

Definition 2.1.4 (Gaussian vector). Let ϕΛ = (ϕi)i∈Λ ∈ ΩΛ be an arbitrary ran-
dom vector. This random vector is called Gaussian if the inner product cΛ ·ϕΛ :=∑

i∈Λ ciϕi is a Gaussian random variable, for all constant vectors cΛ = (ci)i∈Λ.

If ϕΛ is Gaussian, its distribution is fully determined by its mean mΛ = (mi)i∈Λ =(
EΛ[ϕi]

)
i∈Λ and its covariance matrix ΣΛ, where the matrix elements are given by

ΣΛ(i , j) = CovΛ(ϕi ,ϕ j) for i , j ∈Λ. By Theorem A.1.2, ΣΛ is symmetric and positive
semidefinite. The Λ-subscript in EΛ, CovΛ and VarΛ indicates that we are taking
expectations and (co)variances with respect to the distribution µΛ of the random
vector ϕΛ. We denote ϕΛ being Gaussian by ϕΛ ' N (mΛ,ΣΛ). If ΣΛ is positive
definite, it is regular, i.e. detΣΛ 6= 0. In that case, we can define the density fϕΛ (xΛ) :
ΩΛ→ [0,∞), given by (2.4), using Theorem A.1.3 .

fϕΛ (xΛ) = 1

(2π)
|Λ|
2

√
|detΣΛ|

e−
1
2 (xΛ−mΛ)·Σ−1

Λ (xΛ−mΛ), for xΛ ∈ΩΛ. (2.4)

Very important for us however is a more general, converse statement.

Theorem 2.1.5. Consider a random vectorϕΛ ∈ΩΛ. If its measure µΛ is absolutely
continuous with respect to the Lebesgue measure d xΛ on ΩΛ, and if the density
function with respect to d xΛ of ϕΛ is given by (2.4), then ϕΛ 'N (mΛ,ΣΛ).

A measure µ is absolutely continuous with respect to another measure νwhen-
ever ν(A) = 0 implies that µ(A) = 0, for any A ∈F . This relationship between mea-
sures is denoted by µ¿ ν [11]. Furthermore, let us state one intermediate result
we will need to prove Theorem 2.1.5.

Lemma 2.1.6 (Radon-Nikodym). Let µ be probability measure on (Ω,F) and let ν
be a measure on Ω. Furthermore, assume that µ is absolutely continuous with
respect to ν. Then there exists an integrable function f : Ω → [0,∞) such that
µ(A) = ∫

A f dν for all A ∈F . That is, µ has a density function with respect to ν.

Proof. This is a very well-known result from measure theory. For a proof, see for
example the proof of Theorem 4.3 in Stein and Shakarchi [12].

Proof of Theorem 2.1.5. Suppose ϕΛ ∈ΩΛ is random vector with measure µΛ, with
µΛ¿ d xΛ. By Lemma 2.1.6, it makes sense to define a density function for ϕΛ. By
assumption, this density function is given by (2.4). This is the density of a Gaussian
random vector, which implies thatϕΛ must be a Gaussian random vector, i.e. ϕΛ '
N (mΛ,ΣΛ).

Now that we know a bit more about Gaussian vectors, we can finally define a
Gaussian field.

Definition 2.1.7 (Gaussian field). A Gaussian field is an infinitely large collection of
random variables ϕ= (ϕi)i∈Zd such that for each finite Λ⊂Zd , the random vector
ϕΛ = (ϕi)i∈Λ is a Gaussian vector.

10

Remember that we are trying to show that the GFF is such a Gaussian field.
In the remainder of this section, we will consider a Gaussian Free Field ϕΛ in an
arbitrary, connected finite region Λ⊂Zd . This GFF obeys the measure µη

Λ
defined

by equation (2.2). Moreover, on ΩΛ, µη
Λ

is absolutely continuous with respect to

the Lebesgue measure, as µη
Λ

is defined in terms of the Lebesgue measures dωi

with i ∈Λ. This means that if we can write µη
Λ

as a density given by (2.4), we have
shown thatϕΛ is a Gaussian vector, using Theorem 2.1.5. As this holds for any finite
Λ⊂Zd , Definition 2.1.7 tells us that our GFF is indeed a Gaussian Field.

We will rewrite the Hamiltonian from (2.1) into a desired form using the dis-
crete Laplacian.

Definition 2.1.8 (Discrete Laplacian). Let x = (xi)i∈Zd ∈RZd
be a collection of real

numbers. For each pair (i , j) ∈ EZd , define the discrete gradient (∇x)i j := x j − xi .
Then, for all i ∈Zd , the discrete Laplacian is given by (∆x)i :=∑

j : j∼i (∇x)i j .

It is easy to see that we can write (∆x)i = ∑
j∈Zd ∆i j x j for all i ∈ Zd , where we

define the discrete Laplacian matrix (∆i j)i , j∈Zd by:

∆i j =

−2d , i = j ,

1, ||i − j ||1 = 1,

0, otherwise.

(2.5)

The main idea here is to let this Laplacian matrix play the role of the inverse covari-
ance matrixΣ−1

Λ in (2.4). This holds for general x; so we may switch toϕ later on. As
this is all happening within Λ, we restrict ourselves to work with ∆Λ := (∆i j)i , j∈Λ.
Before proceeding, let us state a discrete version of Green’s first identity.

Theorem 2.1.9 (Discrete Green’s identity). For all x = (xi)i∈Zd , y = (yi)i∈Zd ∈ RZd
,

we have

∑
(i , j)∈EΛ

(∇x)i j (∇y)i j =− ∑
i∈Λ

yi (∆x)i +
∑

i∈Λ, j∈Λc

i∼ j

y j (∇x)i j . (2.6)

11

Proof. Recall that EΛ is the edge-set ofΛ, as defined in Definition 2.1.2. Note that,

∑
(i , j)∈EΛ

(∇x)i j (∇y)i j =
∑

(i , j)∈EΛ

y j (x j −xi)− ∑
(i , j)∈EΛ

yi (x j −xi)

(1)= ∑
(i , j)∈EΛ

yi (xi −x j)− ∑
(i , j)∈EΛ

yi (x j −xi)

=−2
∑

(i , j)∈EΛ

yi (x j −xi)

(2)= − ∑
i∈Λ

yi
∑

j∈Λ: j∼i
(x j −xi)

(3)= − ∑
i∈Λ

yi
∑
j∼i

(x j −xi)+ ∑
i∈Λ

yi
∑

j∈Λc
(x j −xi)

=− ∑
i∈Λ

yi (∆x)i +
∑
i∈Λ

yi
∑

j∈Λc
(∇x)i j

At (1), we have interchanged the i and the j for the first sum. This does not change
the value of the sum and allows us to add the two sums up, as is done at the next
equality. Observe that at the equality (2), we have rewritten the sum such that we in
fact count all neighbour pairs twice. Indeed, we sum over all i ∈Λ, but in the sec-
ond sum we go over all j ∈Λ with j ∼ i . That is why the 2 is left out. We recognise
that the inner sum is in fact the discrete Laplacian for the point i . However, for the
values of i ∈Λwhich have one or more neighbours outside ofΛ, we cannot replace∑

j∈Λ: j∼i (x j − xi) by (∆x)i . We therefore add and substract
∑

i∈Λ yi
∑

j∈Λc (x j − xi),
as is done in equality (3).

The statement we want to show is now quite easily found:

∑
(i , j)∈EΛ

(∇x)i j (∇y)i j =
∑

(i , j)∈EΛ

(∇x)i j (∇y)i j +
∑

i∈Λ, j∈Λc

i∼ j

(∇x)i j (∇y)i j

(∗)= − ∑
i∈Λ

yi (∆x)i +
∑
i∈Λ

yi
∑

j∈Λc
(∇x)i j +

∑
i∈Λ, j∈Λc

i∼ j

(y j − yi)(∇x)i j

=− ∑
i∈Λ

yi (∆x)i +
∑

i∈Λ, j∈Λc

i∼ j

y j (∇x)i j ,

where at (∗) we used our earlier observation.

We can start rewriting the Hamiltonian HΛ by applying Theorem 2.1.9 with y = x

12

on the term
∑

(i , j)∈EΛ (xi −x j)2, in the following way:∑
(i , j)∈EΛ

(xi −x j)2 = ∑
(i , j)∈EΛ

(∇x)i j (∇x)i j

=− ∑
i∈Λ

xi (∆x)i +
∑

i∈Λ, j∈Λc

i∼ j

x j (∇x)i j

(1)= − ∑
i∈Λ

xi (∆Λx)i −
∑

i∈Λ, j∈Λc

i∼ j

xi x j +
∑

i∈Λ, j∈Λc

i∼ j

x2
j −xi x j

(2)= −x ·∆Λx −2
∑

i∈Λ, j∈Λc

i∼ j

xi x j +BΛ. (2.7)

At (1), we used that for any i ∈Λ, (∆x)i = (∆Λx)i +∑
j∈Λc x j to split up the first sum.

Also at (1), we used that x j (∇x)i j = x2
j − xi x j for all i ∈Λ, j ∈Λc with i ∼ j . At (2),

we introduced the term BΛ = ∑
i∈Λ, j∈Λc :i∼ j x2

j . This term only depends on the j ’s

outside of Λ. Since the region Λc was fixed by the boundary condition η, we have
x j = η j for all j ∈Λc and so we replace the sum by BΛ, which we call the boundary
term.

In the expression given at (2), we can already recognise the x ·∆Λx term as the
form we would like to have, but not quite yet. Up to boundary terms, we want to
rewrite this expression such that it contains a term of the form −(x −u) ·∆Λ(x −u).
Here u = (ui)i∈Zd acts as the mean of x. What it is exactly will be determined later
on. Observe that:

−(x −u) ·∆Λ(x −u) = x ·∆Λx −2x ·∆Λu +u ·∆Λu

(3)= x ·∆Λx −2
∑
i∈Λ

xi (∆u)i +2
∑

i∈Λ, j∈Λc

i∼ j

xi u j +BΛ, (2.8)

where at (3) we again use that for any i ∈ Λ, (∆u)i = (∆Λu)i +∑
j∈Λc u j . We also

included everything that was only a function of u inside the boundary term BΛ.
With (2.7) and (2.8), we now have two expressions for x ·∆Λx. Combining these

two, we find that,∑
(i , j)∈EΛ

(xi −x j)2 =−(x −u) ·∆Λ(x −u)−2
∑
i∈Λ

xi (∆u)i +2
∑

i∈Λ, j∈Λc

i∼ j

xi (u j −x j)+BΛ

(2.9)

This is a very nice result. For a specific u, it allows us to replace
∑

(i , j)∈EΛ (xi − x j)2

in the form found in the Gaussian density (2.4), up to a constant boundary term
BΛ. Indeed, as the BΛ only depends on η, which is given, the boundary term does
not alter the distribution (2.2). This specific u is of course the one such that the

13

two sums in (2.9) are zero. That is, (i) for all i ∈ Λ, (∆u)i = 0 (u is harmonic in Λ)
and (ii) u j = x j = η j for j ∈Λc . If we now apply this argument to the massless GFF,
with x = ϕ such that ϕi = ηi for i ∈ Λc , we find that for u satisfying conditions (i)
and (ii), up to the boundary term,

H
η

Λ
(ϕ) =− β

4d
(ϕ−u) ·∆Λ(ϕ−u) = 1

2
(ϕ−u) ·

(
− 1

2d
∆Λ

)
(ϕ−u) (2.10)

As the density of the GFF scales with e−H
η
Λ , we can conclude that ϕΛ is a Gaussian

vector with mean u and covariance matrix
(− 1

2d∆Λ
)−1

. We also say that ϕΛ is a

Gaussian vector with mean u and precision matrix − 1
2d∆Λ. This precision matrix

will be especially helpful when we try to generate a (modified) Gaussian Free Field
in Chapter 3.

The question now is, of course, how to determine u. Recall that u must satisfy
the two conditions (i) and (ii) as defined earlier. In other words, u is a solution to
the following Dirichlet problem inΛwith boundary condition η:{

(∆u)i = 0, ∀i ∈Λ,

u j = η j , ∀ j ∈Λc .
(2.11)

We will do this by inverting the precision matrix − 1
2d∆Λ. Apart from leading to a

solution for (2.11), the inverse will immediately give the covariance matrix of the
Gaussian vector ϕΛ.

First of all, remark that − 1
2d∆Λ = IΛ−PΛ, with IΛ the identity matrix on Λ and

PΛ = (
P (i , j)

)
i , j∈Λ with:

P (i , j) =
{

1
2d , i ∼ j ,

0, otherwise.
(2.12)

One should recognise that the
(
P (i , j)

)
i , j∈Zd are in fact transition probabilities of a

symmetric simple random walk X = (Xn)n≥0 on Zd . That is, Pi
(
Xn+1 = k|Xn = j

)=
P (j ,k), where Pi (and similarly Ei and Vari) indicate the distribution for the ran-
dom walk starting in i , i.e. Pi (X0 = i) = 1. Indeed, at each time step k the random
walk jumps with equal probability to one of its 2d nearest neighbours.

Let us now state an important result regarding the first exit time τΛc of the ran-
dom walk from a finiteΛ⊂Zd . This is the first time the random walk takes a value
which does not lie inΛ, i.e. τΛc := inf

{
n ≥ 0 : Xn ∈Λc

}
.

Theorem 2.1.10. For Λ a finite subset of Zd , we have Pi (τΛc <∞). More precisely,
there exists a c = c(Λ) > 0 such that for all i ∈Λ, we have Pi (τΛc > n) ≤ e−cn .

Proof. See Friedli and Velenik, Proof of Lemma 8.12 [5].

Theorem 2.1.10 is necessary to give an expression for the inverse of IΛ−PΛ.

14

Theorem 2.1.11. The matrix IΛ−PΛ is invertible and the inverse matrix (IΛ−PΛ)−1

is given by the Green’s function GΛ = (
GΛ(i , j)

)
i , j∈Λ in Λ of a simple random walk

onZd . That is, the matrix elements of GΛ are given by GΛ(i , j) := Ei

[∑τΛc −1
n=0 1{Xn= j }

]
.

Proof. See Friedli and Velenik, Proof of Lemma 8.13 [5].

Note that the Green’s function GΛ(i , j) is the expected number of visits that the
random walk makes at j before leaving Λ, if the walk started at i . Using Theo-
rem 2.1.11, one can show that the solution to the Dirichlet problem (2.11) is given

by u = (ui)i∈Zd where ui := Ei

[
ηXτΛc

]
. Consequently, under µη

Λ
, ϕΛ ' N (uΛ,GΛ).

In other words, we have found the distribution of the Discrete Gaussian Free Field.
Important to remark is that the covariance matrix depends only on how we choose
Λ. The boundary condition η can thus only affect the distribution of ϕΛ via its
mean [5].

2.2. LEVEL-SET PERCOLATION

N OW that we have a better idea of what the Gaussian Free Field is, let us take
a look at what we will actually do with it. Consider a DGFF (ϕi)i∈Zd . What

follows also holds for other random fields, but we will solely be working with Dis-
crete Gaussian Free Fields for the moment. For each h ∈ R, we define the set
E≥h := {

i ∈Zd :ϕi ≥ h
} ⊂ Zd . This set is called the level-set above h, or the ex-

cursion set. It contains all the lattice points for which the associated spin is large
than some threshold value h.

In short, level-set percolation revolves around the question whether E≥h con-
tains infinite connected components. We speak of a connected component be-
tween two lattice points K ,K ′ ∈ Zd whenever there exists a path along nearest-
neighbours (i)K ′

i=K such that ϕi ≥ h for all i on the path [10]. A group C of nearest-
neighbour lattice sites with ϕi ≥ h for all i ∈C is called a cluster. We can therefore
say that K and K ′ belong to the same cluster. We have an infinite connected com-
ponent whenever a cluster contains infinitely many lattice sites. The existence of
such infinite connected components, also called infinite clusters, is a main topic
in percolation theory. In fact, the word percolation comes from the Latin perco-
lare, which is a contraction of per (meaning "through") and colare (meaning "to
sieve")[13]. Intuitively, one could see the lattice Zd as some porous material. If an
infinite cluster exists then a fluid may "sieve through" the lattice.

It may be clear that the existence of an infinite cluster depends on how "high"
our threshold value h is. The higher h becomes, the less spins will be larger than
h, so it will be more likely that there are no infinite clusters. However, one can ask
themselves where the transition lies between there being or not being an infinite
cluster. This transition happens at the so-called critical value.

15

Definition 2.2.1. Given a DGFF (ϕi)i∈Zd , we define the critical value by:

h∗ := inf
{

h ∈R :P
(
E≥hcontains an infinite cluster

)
= 0

}
∈ [−∞,∞]. (2.13)

The critical value can be seen as the lowest possible value of h for which we do
not have an infinite cluster [1]. The probability inside this definition is often called
the percolation probability. If |h∗| < ∞, one says that there is a percolation tran-
sition [2]. In the context of physics, a percolation transition is a phase transition.
The most obvious example of a phase transition in general would be the sudden
transition from ice to water. Just below the critical temperature of 0°C, we have
ice and just above the critical temperature, we have water. Phase transitions also
occur in other spin models. Probably the most well-known of these models is the
Ising model. This model can also be built onZd , just as the DGFF. In contrast to the
DGFF however, the single-spin space of the Ising model is {−1,+1}. The Hamilto-
nian of the model favours nearest-neighbours with the same spin (both +1 or both
−1). This is again similar to the DGFF. The Ising model on Z 2 is one of the most
basic models that exhibits a phase transition.

2.2.1. BEHAVIOUR CLOSE TO THE CRITICAL VALUE

It is very insightful to spend some time on studying the behaviour of a cluster in the
lattice near the critical value. This section works towards a result which will allow
us to give an estimate of the critical value h∗ based on finite approximations of a
DGFF. Let us start however with a simpler percolation model. We follow the texts
of Christensen and of Stauffer and Aharony here [14][15].

Consider the integer line Z. Each integer is a lattice site and is either occupied,
with probability p or unoccupied, with probability 1−p. This happens indepen-
dently from all the other lattice sites. We speak of a Bernoulli percolation model, as
the occupation variable for each site i is a Bernoulli random variable with parame-
ter p. Notice the similarity here with the earlier level-set percolation model on the
DGFF. One could say that a lattice site i withϕi ≥ h is occupied. This happens with
a certain probability p, which depends on the threshold value h. One should be
careful however, as for the level-set percolation model on the DGFF a site i being
occupied or not depends on the valuesϕ j of the neighbouring sites j ∼ i . Although
this is a fundamental difference, many of the results will hold for both models.

Consider the one-dimensional Bernoulli percolation model on Z. We are par-
ticularly interested in clusters in this model, and how to describe them quantita-
tively. A cluster is a collection of nearest-neighbour occupied sites. A first quantity
we define is the cluster number ns (p). This is the amount of clusters with s sites
divided by the total amount of lattice sites. In other words, ns (p) the number of
clusters containing s lattice sites, per lattice site. This number is of course a func-
tion of p; intuitively a larger p will lead to more clusters. Due to the definition per
lattice site, ns is independent of the lattice size N . For example, if we would have a

16

d-dimensional hypercubic lattice with side-length N , the average number of clus-
ters would be N d ns (p). Second, we define the percolation threshold pc . This is the
probability p at which a cluster containing infinitely many sites appears for the first
time. This quantity corresponds to the critical value h∗ defined in Definition 2.2.1.
However, keep in mind that h∗ ∈ R is a threshold height for spins, while pc ∈ [0,1]
is an occupation probability. In Section 3.3.2 we will see how to go from pc to h∗
and vice versa.

In the one-dimensional case, we have percolation whenever a cluster spans
from −∞ to +∞. This will only happen whenever all the sites on the integer line
are occupied, as just one unoccupied site would ‘break’ the cluster. Therefore,
pc = 1. Indeed, the probability Π(p, N) that a finite lattice with size N contains
a spanning cluster at occupation probability p is pN . Also, note that by definition,
limN→∞Π(p, N) =1{p≥pc }. But limN→∞ pN =1{p=1}, so pc = 1.

Remember that the goal of this section was to study the behaviour of clusters
around the percolation threshold pc . Therefore, let us take a closer look at the
quantity ns (p). In the 1D case, we have a cluster of size s whenever s occupied
sites have one unoccupied site to the left and one unoccupied site to the right. We
could say that the probability of an arbitrary site being the left unoccupied site is

ns (p) = (1−p)p s (1−p) = (1−p)2p s = (pc −p)2e
− s

sξ ,

where we defined the cutoff cluster size sξ as

sξ =− 1

ln
(
p

) =− 1

ln
(
pc − (pc −p)

) .

As p ↑ pc , the latter goes to (pc −p)−1 due to the Taylor expansion ln(1−x) ≈−x for
x → 0. Intuitively, one can see the cutoff cluster size as a maximal size for cluster
at a given p. It is very unlikely for a cluster to have size larger than sξ, due to the
exponential decay in the expression for ns (p). As p ↑ pc , we see that sξ diverges as
a power law.

Definition 2.2.2. For p → pc , we define the critical exponent σ for the cutoff clus-
ter size sξ by

sξ ∼ |pc −p|− 1
σ . (2.14)

We have stated this power law behaviour as a definition, because it is very typi-
cal for percolation models close to pc . Different models may have a different value
for σ. For our 1D percolation, we see that σ = 1. One important remark is that
other models might have pc < 1. Most of the time, the power law behaviour holds
for both limits p ↑ pc and p ↓ pc . In the remainder of this text, we will assume this
is always the case, unless explicitly said otherwise.

17

Not only the cutoff cluster size shows this power law behaviour. Several other
quantities related to clusters do so as well, albeit with a different exponent. Note
that we may not be able to analytically derive the exponents for more complicated
models. In any case, we will present a few others which are needed to under-
stand the method to find the percolation threshold from finite-size simulations,
described in Section 3.3.2.

The first of such quantities is the average cluster size S(p) = ∑∞
s=1 sws . Here

ws is the probability that the cluster to which an occupied site belongs contains s
sites, so:

ws =P
(
arbitrary site belongs to s-cluster | site is occupied

)
= P

(
arbitrary site belongs to s-cluster and is occupied

)
P
(
site is occupied

) = sns (p)

p

By realising that the probability that an arbitrary site belongs to any cluster, which
is given by

∑∞
i=1 sns (p), is in fact just the probability p, Christensen shows that

S(p) = 1+p
1−p . Thus for p ↑ pc = 1, we have S(p) ∼ (pc −p)−1. Again, we recognise a

power law, but now with the exponent γ = 1. This exponent is defined in general
by Definition 2.2.3.

Definition 2.2.3. For p → pc , we define the critical exponent γ for the average
cluster size S(p) by

S(p) ∼ |pc −p|−γ. (2.15)

If pc < 1, there exists an infinite cluster whenever p > pc . This cluster is not
taken into account when computing S(p).

Moving on, we define the strength (also order parameter) P (p). This is the
probability that an arbitrary site belongs to the infinite cluster. For p < pc , we have
trivially P (p) = 0 as there is no infinite cluster yet. For models where pc < 1, just as
the Bethe lattice described in Christensen, we can let p ↓ pc . It can be shown that
P (p) exhibits power law behaviour whenever p > pc .

Definition 2.2.4. For p ↓ pc , we define the critical exponent β for the strength P (p)
by

P (p) ∼ |pc −p|β. (2.16)

It is when P (p) becomes larger than zero, for p > pc that we speak of a phase
transition with critical point p = pc . We transition from a phase where there are
only finite clusters, to a phase where a large, percolating cluster is formed.

Finally, we define the correlation function g (r) as the probability that a site at
position r from an occupied site belongs to the same finite cluster. In one dimen-
sion, we clearly have g (r) = pr , as all sites in between should be occupied as well.

18

We can rewrite this as g (r) = e ln pr = e−
r
ξ . Here we introduced the correlation length

ξ = − 1
ln p , which again goes to (pc −p)−1 for p → pc in one dimension. This ana-

lytic computation to retrieve the correlation length from the correlation function
works out nicely for the 1D case. However, in higher dimensions the clusters be-
come more complex and so g (r) becomes very difficult to calculate. We therefore
give a explicit expression, or rather a new definition, for the correlation length in
Definition 2.2.5.

Definition 2.2.5. The correlation length ξ is defined as

ξ2 =
∑

r r 2g (r)∑
r g (r)

. (2.17)

We have essentially defined the correlation length as the root-mean-square fi-
nite cluster size. We can show that this definition yields the same scaling behaviour
for ξ in one dimension as we found earlier.

ξ2 =
∑

r r 2g (r)∑
r g (r)

=
∑∞

r=0 r 2pr∑∞
r=0 pr =

(
p d

dp

)2 ∑∞
r=0 pr

(1−p)−1 = p(1+p)(1−p)−3

(1−p)−1 = 1+p

(1−p)2 .

Indeed, ξ2 ∼ (1−p)−2 so ξ∼ (1−p)−1 = (pc−p)−1 for p → pc . Again, we may capture
this behaviour as a general power law.

Definition 2.2.6. For p → pc , we define the critical exponent ν for the correlation
length ξ by

ξ∼ |pc −p|−ν. (2.18)

In one dimension, ν= 1. Looking at the formulation g (r) = e−
r
ξ , one can inter-

pret the correlation length as a cutoff length. The probability that a site a distance
r > ξ away from an occupied site belongs to the same cluster becomes very small
due to the exponential decay. This is the same as saying that ξ gives the typical
linear size of the largest finite cluster in the lattice [16]. Because of this, the cor-
relation length can be used as a physical length scale; it is a ‘measuring stick’ for
cluster size. We can however only do this when p 6= pc . Indeed, by (2.18), ξ diverges
at p = pc . In that case, our measuring stick has an infinite length and is thus com-
pletely useless; everything is shorter than the measuring stick. This absence of a
length scale, unique to p = pc , is called scale invariance. It does not matter how far
we zoom in or zoom out when looking at percolation on a lattice, it will always look
the same. In other words, it is self-similar. We see this behaviour in the context of
fractals. For example, consider Figure 2.1. This is a so-called Koch curve. It can be
created by iteratively replacing one line segment by four smaller line segments, as
depicted in Figure 2.2. If we zoom in on one of the coloured segment, we will see

19

Figure 2.1: The Koch curve. If we zoom in on one of the coloured segment, we see exactly the
same curve as before [17].

Figure 2.2: Sketch of the iterative procedure to obtain a Koch curve. If we repeat this transfor-
mation infinitely many times on each newly formed line segment, we end up with Figure 2.1.

exactly the same curve as before. This can be infinitely repeated. The Koch curve
is therefore a self-similar (fractal) object.

We have said earlier that this scale-invariance only occurs at p = pc , however
this is not entirely true. When we consider a percolation system with p 6= pc on a
length scale far less than ξ, it seems for us just as if ξ is infinite. In the words of
Hunt, Ewing and Ghanbarian: “if one examines the system at length scales smaller
than the largest self-similar structure [viz. the largest finite cluster], the medium
appears to be self-similar". When working on length scales larger than ξ, this frac-
tal geometry disappears and we are left with a lot of small patches of occupied sites
in an otherwise unoccupied lattice for p < pc , and vice versa for p > pc . We con-
clude that there is only one relevant length scale when studying percolation, and
that is ξ. Depending on whether we are looking at a percolation system on a scale
smaller than ξ or larger than ξ, we will observe different behaviour.

This is a very powerful idea, which is at the basis of the finite-size scaling rela-
tion at the end of this Section. Before we get there however, let us treat one example
where it becomes really clear how a percolation system behaves depending on its
size relative to the correlation length.

We denote by M(N) the mass (number of occupied sites) of the percolating
cluster in some region with linear distance N . If this cluster were to be densely
packed within the region, we would expect that M(N) ∼ N d , with d the Euclidean
dimension we are working in. However, the percolating cluster is not densely packed
and is accompanied by large unoccupied regions when p = pc . It is a fractal ob-
ject. This is illustrated in Figure 2.3. There, one can see three realisations of the
Bernoulli site percolation model on a 30×30 lattice, each with a different occupa-
tion probability p. The value of p is not determined analytically, however it has
been determined by simulation that pc ≈ 0.593 [18]. In Figure 2.3a, we have set
p = 0.25. One can see that most sites are unoccupied, and the clusters that are

20

present are still relatively small. Figure 2.3c shows the model for p = 0.75, far above
the critical probability. In that case we observe that most sites are occupied. If we
would consider small N ×N squares with increasing values of N within the larger
30×30 lattice, we would expect that M(N) grows linearly with the area N 2 of the
small square. This is indeed what happens for p = 0.75 > pc . However, for p → pc ,
we see something different. In Figure 2.3b, we have p = 0.6. This is close to, but
greater than, the critical probability. Notice that the largest cluster contains a lot of
holes, i.e. groups of neighbouring unoccupied cells. Moreover, some holes contain
smaller clusters of their own. As Stauffer and Aharony put it, there are holes on
many length scales [15]. There exists an ‘infinite’ cluster at p = 0.6, but this cluster
contains a lot of holes. It is not as packed as the infinite cluster at larger p such as
p = 0.75.

(a) p = 0.25. (b) p = 0.6. (c) p = 0.75.

Figure 2.3: Bernoulli percolation with occupation probability p on a 30×30 lattice. The black squares
are occupied sites, the white squares are unoccupied sites. Underneath each figure, the used value of p
is specified.

This also implies that we no longer have M(N) ∼ N 2. It is shown in [15] that at
p = pc , M(N) ∼ N D , with D = 91

48 ≈ 1.9. We call D the fractal dimension. This di-
mension captures the fractal behaviour observed around criticality, and depends
on the percolation model under consideration. For example, in the case of three
dimensional Bernoulli site percolation, D = 2.5.

As stated earlier, the only relevant length when investigating critical behaviour
is the correlation length ξ. Let us make this idea concrete for the mass M(N). When
N ¿ ξ, the percolating cluster is a fractal object, so M(N) ∼ N D . If N À ξ, the clus-
ter seems to be homogeneous in shape. We can therefore divide the lattice into
(N /ξ)d boxes of linear size ξ. For each of these boxes, Mbox ∼ ξD , as the linear lat-
tice size is now comparable to ξ. Thus the total mass of the percolating cluster is
M(N ,ξ) = (N /ξ)dξ. We can combine the results for N ¿ ξ and N À ξ into equa-
tion (2.19).

M(N ,ξ) ∼
N D , N ¿ ξ,

ξD
(

N
ξ

)d
, N À ξ.

=: N D m

(
N

ξ

)
. (2.19)

In the second equality we defined the function m(x), which equals 1 for x ¿ 1 and
xd−D for x À 1.

21

FINITE-SIZE SCALING

Finally, we can introduce the important relation we will need in the next chapter.
This is in fact the generalisation of (2.19), for arbitrary cluster quantities. We would
like to know how an arbitrary cluster quantity behaves on a finite lattice with linear
size N . As before, the only relevant scale in this problem is the correlation length
ξ. For N À ξ, nothing changes compared to the infinite lattice case. If N ¿ ξ, the

smallest length scale is N . In general, if we have some quantity X ∼ |p −pc |−χ ∼ ξ
χ
ν

whenever N À ξ, then we find:

X (N ,ξ) ∼
{

N
χ
ν , N ¿ ξ,

ξ
χ
ν , N À ξ.

= ξ χ
ν f1

(
N

ξ

)
(2.20)

Alternatively, we can write X (N , p) ∼ |p − pc |−χ f2

(
N

1
ν (p −pc)

)
. The functions f1

and f2 are explicitly given by:

f1(x) =
{

x, x ¿ 1,

1, x À 1.
, f2(x) =

{
xχ, xν¿ 1,

1, xνÀ 1.
.

Keep in mind that these relations are all asymptotically valid, and will work better
and better for larger and larger N .

2.3. THE DGFF WITH RANDOM CONDUCTANCES

I T has been said before, the goal of this research is to simulate a modified version
of the Discrete Gaussian Free Field. This modified DGFF has arbitrary conduc-

tances between the lattice points. Let us define what we mean by that.
Again, we consider a Discrete Gaussian Free Field (ϕi)i∈Zd . Recall from Sec-

tion 2.1.2 that for any finite Λ ⊂ Zd , the restriction ϕΛ = (ϕi)i∈Λ is normally dis-

tributed with mean u and covariance matrix
(− 1

2d∆Λ
)−1

, where u = (ui)i∈Λ satis-
fies the Dirichlet problem (2.11).

We assign a conductance to each edge in Zd . That is, for all i , j ∈ Zd with i ∼
j , we introduce a constant κi , j ∈ [λ,1], where λ ∈ (0,1]. Now define a new graph
Laplacian ∆κΛ onΛ, similar to (2.5), but with one key difference.

∆κi j =

−∑

k∼i κi ,k , i = j ,

κi , j , ||i − j ||1 = 1,

0, otherwise.

(2.21)

Notice that in the original graph Laplacian, each nearest-neighbour edge had a
contribution of 1 to the Laplacian. Now, this contribution can vary between λ

and 1. In other words, the original graph Laplacian is a special case of 2.21 with
κi , j = 1 for all i , j ∈ Λ. The DGFF with random conductances is then given by

22

ϕκ = (ϕκi)i∈Zd . Here ϕκΛ = (ϕκi)i∈Λ is normally distributed with the same mean u

as ϕΛ, but now with covariance matrix
(− 1

2d∆
κ
Λ

)−1
. This modified GFF is associ-

ated with the Hamiltonian (2.22) [1]. Note that this is all happening in the massless
setting.

H κ
Λ(ω) := β

4d

∑
(i , j)∈EΛ

κi , j (ωi −ω j)2 (2.22)

Intuitively, the conductances determine how strongly two lattice points are "con-
nected" to each other. A smaller conductance allows for the squared difference of
spins in the Hamiltonian (2.22) to be slightly larger. In other words, a larger con-
ductance between two lattice points makes that the corresponding spins lie closer
to each other.

As long as the κi , j are chosen between λ and 1 with λ ∈ (0,1] for all nearest-
neighbours i and j , we may choose any conductance pattern we fancy and con-
struct a DGFF with it. For example, we could consider a constant conductance
pattern, where every now and then a small group of edges with a different con-
ductance appear. Physically, this could model some kind of impurity within an
otherwise homogeneous crystal lattice. In Chapter 3, we present a method that
allows us to simulate such a DGFF. Although most of the simulations carried out
in this project are with standard DGFFs, we will look at one non-constant conduc-
tance pattern, which we call the checkerboard pattern. A lattice with side-length
N is built up by smaller cubes with side-length n. Within each separate cube the
conductances are the same, but two different cubes may have a different conduc-
tance. In the checkerboard lattice, there are two types of cubes; one type with con-
ductance a and the other type with conductance b. These cubes alternate each
other such that no two cubes share a common side. This is illustrated in two di-
mensions in Figure 2.4. One can imagine how this checkerboard scales into three
dimensions, yielding an alternating pattern of cubes instead of squares. Note that
squares (cubes) that share an edge with the boundary of the lattice itself, are linked
to that boundary with the conductances as within the square (cube).

23

Figure 2.4: Checkerboard pattern on a 20×20 lattice, where the squares building up the pat-
tern are 5×5. The lattice is surrounded by a boundary layer. All light grey edges have con-
ductance a, while every red edge has conductance b.

24

3
GENERATING THE DISCRETE

GAUSSIAN FREE FIELD

Now that we have seen the theoretical framework around the Gaussian Free Field,
we can take a look at how to construct approximations of this field on a finite lattice
with a computer. This will be done for the standard DGFF, as well as for the DGFF
with arbitrary conductances.

25

3.1. SAMPLING A STANDARD GFF WITH EIGENFUNCTIONS

F IRST, let us investigate how one can generate a standard Discrete Gaussian Free
Field, as defined in section 2.1 using the unaltered graph Laplacian∆Λ. Keep in

mind that this is a special case of (2.21), with all conductances set to 1. This inves-
tigation will make us understand what goes wrong when we want to generate the
modified DGFF, as defined in section 2.3. We will take a look at two methods. The
first one is proposed by Sheffield to generate a DGFF on an d-dimensional rect-
angle in Zd with periodic boundary conditions (so a d-dimensional torus) [3]. The
second method has been described by Chafaï and may be used on a d-dimensional
cube in Zd with zero boundary conditions (also called Dirichlet boundary condi-
tions) [4]. In essence, both methods apply the same idea. Because all the con-
ductances are equal, we can come up with eigenfunctions for the graph Laplacian,
allowing us to diagonalise the covariance matrix corresponding to the DGFF ϕ.

3.1.1. THE PERIODIC BOUNDARY CASE

In his paper, Sheffield considers a two-dimensional m×n grid as his regionΛ. This
research focuses on three-dimensional boxes; we will work with the region Λ =
{0,1, . . . , N −1}3. The boundaries of this N × N × N cube are periodic. From the
perspective of the lattice point, it seems as if it lies within a lattice surrounded
by six copies of itself, one at each face of the cube. Each lattice point has 2d = 6
nearest-neighbours; two for each dimension. In this section though, we will keep
everything one-dimensional for simplicity. However, the idea is easily generalised
to higher dimensions.

The method of Sheffield gives an elegant solution to the problem of generat-
ing a DGFF, using Discrete Fourier Transforms. Using the Fast Fourier Transform,
one can generate instances of a DGFF with great efficiency. Now, recall from Sec-
tion 2.1.2 that a DGFF is nothing else than a Gaussian field with covariance matrix

ΣΛ = (− 1
2d∆Λ

)−1
. The mean of the DGFF depends on the specified boundary con-

ditions, and can be found via (2.11). We will return to the mean of the DGFF pro-
duced by Sheffield in a bit, but suppose for now that it is just equal to 0 everywhere.
This does not alter the idea for finding the covariance matrix, which is our main
goal for now. Let us take a closer look to the graph Laplacian ∆Λ. As said earlier,
we will restrict ourselves to the one-dimensional case now. The key intuition here
is that, for all k ∈ {0, . . . , N −1}, the discrete complex exponentials ek

N : Z/NZ→ C

defined by ek
N (j) = e

2πιk j
N are eigenfunctions of the graph Laplacian in the periodic

boundary case. We denote the imaginary unit here by ι, to avoid confusion with our
use of i for an arbitrary lattice site in Zd . The formulation with Z/NZ is very natu-
ral for these periodic boundaries. For example, consider the lattice site j = N −1,
i.e. j ≡ N−1 mod N , at the right end of the lattice. Note that in 1D the lattice is just
a chain of N points. The site to the right of j is the site (N −1)+1 = N = 0, which is
the leftmost site of the chain. This is just as we would expect from periodic bound-

26

ary conditions. Let us now show our claim by observing that for all j ∈ Z/NZ and
k ∈Λ:

∆Λek
N (j) =−2ek

N (j)+ek
N (j +1)+ek

N (j −1)

=
(
−2+e

2πιk
N +e−

2πιk
N

)
e

2πιk j
N

=
(
e
πιk
N −e−

πιk
N

)2
e

2πιk j
N

=−4sin2
(
πk

N

)
ek

N (j).

Because of our definition on Z/NZ, the above expressions are well-defined, even
for j on the boundary ofΛ. As k was left arbitrary, we conclude that ek

N is an eigen-

function of ∆Λ for every k ∈ {0,1, . . . , N −1}, with eigenvalues λk
N := −4sin2

(
πk
N

)
.

Remark that in the general d-dimensional case, the regionΛ is the Cartesian prod-
uct of d lines Z/nZ, i.e. (Z/nZ)d . The eigenfunctions on (Z/NZ)d will just be the

products of the respective eigenfunctions on Z/NZ. That is, if ek1...kd
N is an eigen-

function on (Z/NZ)d , it can be written as the product
∏d

m=1 ekm
N , where the ekm

N are
the eigenfunction on Z/NZ we have defined earlier. This assures that everything
works out nicely when going from 1 to multiple dimensions, as we claimed earlier.

The eigenfunctions (i.e. eigenvectors) and eigenvalues of ∆Λ are now known,
so we can write ∆Λ =WN DW −1

N , with:

WN = N−1/2

e0

N (0) e1
N (0) · · · eN−1

N (0)
e0

N (1) e1
N (1) · · · eN−1

N (1)
...

...
. . .

...
e0

N (N −1) e1
N (N −1) · · · eN−1

N (N −1)

 , (3.1)

and D the diagonal matrix D = diag
(
λ0

N , . . . ,λN−1
N

)= 4 ·diag
(1

4λ
0
N , . . . , 1

4λ
N−1
N

)=: 4D̃ .
The factor N−1/2 in (3.1) and the rewriting of D as 4D̃ will be explained later on. As

ΣΛ = (− 1
2d∆Λ

)−1
, we can write for d = 1 that ΣΛ = 2WN (−D)−1W −1

N . This decom-
position will help us to find an easy-to-compute expression for the DGFF ϕΛ. The
attentive reader has probably already remarked that sinceλ0

N = 0, D is singular and
we can in fact not compute the inverse of D . Therefore, we use the following con-
vention. From now on, with a slight abuse of notation, we denote by (−D)−1 the

diagonal matrix diag

(
0, 1

λ1
N

, . . . , 1
λN−1

N

)
. Also, (−D̃)−1 = 1

4 (−D)−1. The consequence

of this convention is that we exclude the zero mode e0
N from further calculations.

Intuitively, this can be understood as follows. The eigenfunction e0
N is a constant

function, as e0
N (j) = e

2πι·0· j
N = 1 for all j ∈Λ. When we consider periodic boundary

conditions, we can add any constant value to an already periodic DGFF; this does
not affect the periodicity. By excluding the zero mode, we actually fix the DGFF to

27

have a zero average on Λ, as the remaining modes (e1
N , . . . ,eN−1

N) which build up
the DGFF all have zero average. For this reason, the method of Sheffield generates
a so-called zero average Gaussian Free Field. This is a zero-mean GFF ϕ= (ϕi)i∈Λ
with covariance matrix ΣΛ that satisfies

∑
i∈Λϕi = 0 almost surely [19]. In the rest

of this Section, we will treat the zero-average DGFF as if it is a Gaussian Field with
distribution N (0,ΣΛ), just as we have done so far. As we are predominantly inter-
ested in the covariance matrix, this treatment does not alter the computations.

We first give a rough idea of where we are going with this. In general, to sample
a Gaussian with covariance matrix C , we define the square root of the matrix X as
A := C 1/2 such that A AT = C . By Theorem A.1.4, if x has the identity I as covari-
ance matrix, then the vector Ax has covariance matrix AI AT = C . We want to do
the same thing for C = ΣΛ to find a DGFF ϕΛ, making use of the decomposition
we have just found. However, this decomposition makes use of complex matrices,
which requires some care; A might become complex as well, meaning that Ax be-
comes a complex vector. This does not make sense as ϕΛ is real. To circumvent
this issue, we will let ϕΛ = Re(Az), where z is a complex Gaussian vector. Like this,
Az will be a complex Gaussian vector, from which we take the real part to get a real
ϕΛ.

Let us now make this idea a bit more rigorous. We define z = x + ιy , where
x, y ∼N

(
0, 1

2 IN
)

are independent, Gaussian vectors. In other words, z 'Nc (0, IN)
is a complex Gaussian vector. Working with such complex vectors requires a bit of
care. The reader is referred to Appendix A.2 for a small discussion on this topic.
We know, by Theorem A.2.7, that Az ' Nc (0, A A∗) for any N × N (possibly com-
plex) matrix A. Here A∗ denotes the conjugate transpose (or Hermitian conju-
gate) of A. Thus, if we can find some A such that A A∗ = 2ΣΛ, we will have Az '
Nc (0,2ΣΛ). By Corollary A.2.9 this results in ϕΛ = Re(Az) ' N (0,ΣΛ). We claim
that A =WN (−D̃)1/2 does the job. This claim is stated in Theorem 3.1.1.

Theorem 3.1.1. Define the matrix A := WN (−D̃)−1/2 and let z ' Nc (0, IN). Then
the random vector ϕΛ := Re(Az) is a DGFF onΛ= {0, . . . , N −1}.

Before we get to the proof however, we need to look at the eigenfunctions ek
N

of ∆Λ in a bit more detail. It is because of these eigenfunctions that we are able
to use Discrete Fourier Transform, as indicated at the beginning of this section.
Lemma 3.1.2 is at the basis of that.

Lemma 3.1.2. The functions
{

N−1/2ek
N

}
k∈Z/NZ form an orthonormal basis for the

vector space `2(Z/NZ).

The vector space `2(Z/NZ) contains all f : Z/NZ→ C with || f ||`2(Z/NZ) < ∞,

where || f ||`2(Z/NZ) := (∑
j∈Z/NZ | f (j)|2) 1

2 is the norm of this space. Furthermore,

`2(Z/NZ) is a Hilbert space, with inner product 〈 f , g 〉 := ∑
j∈Z/NZ f (j)g (j) for all

f , g ∈ `2(Z/NZ).

28

Proof of Lemma 3.1.2. First of all, `2(Z/NZ) is an N -dimensional vector space and{
N−1/2ek

N

}
k∈Z/NZ is a collection of N functions, so it remains to show that this col-

lection
{

N−1/2ek
N

}
k∈Z/NZ is an orthonormal set. However, the functions

{
ek

N

}
k∈Z/NZ

are all eigenfunctions, corresponding to distinct eigenvalues, of ∆Λ. For symmet-
ric matrices with distinct eigenvalues, it is known that the eigenfunctions are or-
thogonal. The factor N−1/2 turns the collection of complex exponentials into an
orthonormal set, since:

〈
ek

N ,ek
N

〉= ∑
j∈Z/NZ

N−1/2ek
N (j)N−1/2ek

N (j) = 1

N

∑
j∈Z/NZ

e
2πιk j

N e−
2πιk j

N = N

N
= 1,

for any k ∈Z/NZ. We conclude that
{

N−1/2ek
N

}
k∈Z/NZ forms an orthonormal basis

for `2(Z/NZ).

Consequently, Theorem 7.4 in [20] tells us that for any function f ∈ `2(Z/NZ),
we can write f = ∑

k∈Z/NZN−1/2
〈

f , N−1/2ek
N

〉
ek

N =: 1p
N

∑
k∈Z/NZ f̂ (k)ek

N . Here we

defined the Discrete Fourier Transform of the function f as f̂ : Z/NZ → C with

f̂ (k) = 〈
f , N−1/2ek

N

〉 = 1p
N

∑
j∈Z/NZ f (j)e−

2πιk j
N . At the same time, we define the

inverse Discrete Fourier Transform of f̂ (k) as the function f : Z/NZ → C with

f (j) = 1p
N

∑
k∈Z/NZ f̂ (k)e

2πι j k
N = 〈

f̂ , N−1/2e−k
N

〉
. We use a factor 1p

N
up front while

[20] uses a factor 1
N . This is just a question of definition. With this convention, it

is easy to check that we can rewrite the DFT as f̂ = W ∗
N f = (〈

f , N−1/2ek
N

〉)
k∈Z/NZ,

where WN is as in (3.1). Similarly, the inverse DFT can be written as f =WN f̂ .
The matrix WN has one very important property. It is unitary, since the columns

of the matrix are the functions N−1/2ek
N . The latter were orthonormal according to

Lemma 3.1.2. Note that this is why we defined WN with the N−1/2 in front. A direct
consequence of WN being unitary is that W ∗

N = W −1
N . It is trivially seen that W ∗

N
must also be unitary. We are now capable of proving Theorem 3.1.1.

Proof of Theorem 3.1.1. First of all, we show that A A∗ is equal to 2ΣΛ:

A A∗ =WN (−D̃)−1/2(WN (−D̃)−1/2)∗
=WN (−D̃)−1/2(−D̃−1/2)T

W ∗
N

=WN (−D̃)−1W −1
N

= 4WN (−4D̃)−1W ∗
N = 2ΣΛ,

Here we used that (−D)1/2 is real at the second equality and that WN is unitary at
the third equality. In the last equality we use that D = 4D̃ and the diagonalisation
ΣΛ = 2WN (−D)−1W −1

N . Theorem A.2.7 implies that Az ' Nc (0,2ΣΛ). By Corol-
lary A.2.9, ϕΛ := Re(Az) = x 'N (0,ΣΛ) so we are done.

29

Theorem 3.1.1 gives us a very elegant manner to generate a DGFF with periodic
boundary conditions. Using the Fast Fourier Transform, it is very fast to work out
the inverse DFT of (−D)1/2z. Performing some basic arithmetic and taking the real
part then immediately gives a DGFF onΛ. The implementation of this method can
be found on the Github page of this project. A link to the repository can be found
in Appendix B.

3.1.2. THE ZERO BOUNDARY CASE

The method of Chafaï is similar to the method of Sheffield described in the pre-
vious section. However, Chafaï works with a slightly different region, namely Λ =
{1, . . . , N −1}d . Once again, we take d = 1 for simplicity. This choice of region is
made such that for the fieldϕwe have the zero boundary conditionsϕ(0) =ϕ(N) =
0. This will give more elegant expressions later on.

For this region, the discrete Laplacian ∆Λ has eigenfunctions sk
N (·) :=

√
2
N sin

(
πk·
N

)
with eigenvalues νk

N := −4sin2
(
πk
2N

)
. Indeed, for all j ∈ Λ and k ∈ {1, . . . , N −1} we

find that:

∆Λsk
N (j) =−2sk

N (j)+ sk
N (j +1)+ sk

N (j −1)

=
√

2

N

[
−2

e
πi k j

N −e−
πιk j

N

2ι
+ e

πιk(j+1)
N −e−

πιk(j+1)
N

2ι
+ e

πιk(j−1)
N −e−

πιk(j−1)
N

2ι

]

=
√

2

N

[
e
πιk j

N

2ι

(
−2+e

πιk
N +e−

πιk
N

)
− e

−πιk j
N

2ι

(
−2+e

πιk
N +e−

πιk
N

)]

=
√

2

N

e
πιk j

N −e−
πιk j

N

2ι

(
e
πιk
2N −e−

πιk
2N

)2

=
√

2

N
sin

(
πk j

N

)(
−4sin2

(
πk

2N

))
= νk

N sk
N .

Notice as well that the eigenfunctions are zero for j = 0 and j = N , in compliance

with the zero boundary conditions. Furthermore, the factor
√

2
N in the definition

of sk
N assures that the eigenfunctions have norm 1.

30

Indeed, for k ∈ {1, . . . , N −1} we have:

〈sk
N , sk

N 〉 = 2

N

N−1∑
j=1

sin2
(
πk j

N

)

= 2

N

N−1∑
j=1

1−cos
(

2πk j
N

)
2

= 2

N

[
N −1

2
− 1

4

N−1∑
j=1

(
e

2πιk
N

) j
− 1

4

N−1∑
j=1

(
e−

2πιk
N

) j
]

= 2

N

[
N −1

2
− 1

4

(
1−e

2πιkN
N

1−e
2πιk

N

−1

)
− 1

4

(
1−e−

2πιkN
N

1−e−
2πιk

N

)
−1

]
= 1.

Now, we claim that we may write the (m,n)-th entry of the Laplacian, i.e. (∆Λ)mn

as:
(∆Λ)mn = ∑

k∈Λ
νk

N sk
N (m)sk

N (n) (3.2)

Let us quickly show this claim. With the eigenfunctions (viz. eigenvectors) and
eigenvalues known, we can write ∆Λ as PDP−1, where

P =

s1

N (1) s2
N (1) · · · sN−1

N (1)
s1

N (2) s2
N (2) · · · sN−1

N (2)
...

...
. . .

...
s1

N (N −1) s2
N (N −1) · · · sN−1

N (N −1)

 , D =

ν1

N 0 · · · 0
0 ν2

N · · · 0
...

...
. . .

...
0 0 · · · νN−1

N

 .

Notice that P is real and unitary, as its columns are the eigenvectors sk
N of∆Λ. Since

the sk
N are the eigenvectors of a symmetric matrix, they are orthogonal. We have

already shown these eigenvectors have norm 1. Therefore, P−1 = P∗ = P T . Now,
denote by 1m

N the vector that is everywhere 0, except at the m-th entry. Then the

matrix 1m
N

(
1

n
N

)T is everywhere zero, except at the (m,n)-th entry. Consequently,

we can write the matrix D as
∑

k∈Λνk
N1

k
N

(
1

k
N

)T
. This in turn means that:

∆Λ = PDP T

= P

(∑
k∈Λ

νk
N1

k
N

(
1

k
N

)T
)

P T

= ∑
k∈Λ

νk
N P1k

N

(
1

k
N

)T
P T

= ∑
k∈Λ

νk
N

(
P1k

N

)(
P1k

N

)T

= ∑
k∈Λ

νk
N sk

N

(
sk

N

)T
,

31

where in the last equality we used that P1k
N is just the k-th column of P , i.e. sk

N .
Finally, we have an expression that resembles (3.2), except that the former is for

the entire matrix. To retrieve the (m,n)-th element, we can compute
(
1

m
N

)T
∆Λ1

n
N ,

which equals
(
1

m
N

)T
(∑

k∈Λνk
N sk

N

(
sk

N

)T
)
1

n
N = ∑

k∈Λνk
N

((
1

m
N

)T sk
N

)((
1

n
N

)T sk
N

)T
. The

latter is equal to 3.2.
With this claim now proven, we are able to give an explicit expression for a Dis-

crete Gaussian Free Field on Λ. Recall that a DGFF is a Gaussian field determined
by the covariance matrix ΣΛ = (− 1

2d∆Λ
)−1

. Because of the zero boundary condi-
tion, we know that the mean of this Gaussian field is also zero. Just as we did for
Sheffield, we can create a Gaussian vector distributed with mean 0 and covariance
matrix ΣΛ from a standard normal random vector z = (zk)k∈Λ ' N (0, I). Indeed,

Σ1/2
Λ

z ' N
(
0,Σ1/2

Λ
I
(
Σ1/2
Λ

)T
)
, so Σ1/2

Λ
z ' N (0,ΣΛ). Using (3.2), we can find an ex-

plicit expression for Σ1/2
Λ

= (− 1
2d∆Λ

)−1/2
. Realise that

(− 1
2d∆Λ

)−1/2
has the same

eigenvectors as∆Λ, but with eigenvalues
(− 1

2d ν
k
N

)−1/2
. Thus, for arbitrary m,n ∈Λ:

(
Σ1/2
Λ

)
mn = ∑

k∈Λ

(
− 1

2d
νk

N

)−1/2

sk
N (m)sk

N (n). (3.3)

Consequently, the random vector ϕ := Σ1/2
Λ

z is a Gaussian Free Field on Λ and is
given by Equation (3.4):

ϕ=
(∑

n∈Λ

(
Σ1/2
Λ

)
mn zn

)
m∈Λ

=
(∑

n∈Λ

∑
k∈Λ

(
− 1

2d
νk

N

)−1/2

sk
N (m)sk

N (n)zn

)
m∈Λ

. (3.4)

This is a very useful expression; once the matrix elements
(
Σ1/2
Λ

)
mn have been com-

puted for all m,n ∈Λ, we can generate as many realisations of a DGFF on Λ as we
want by performing the matrix-vector multiplication in Equation (3.4) with every
time a newly sampled z 'N (0, I).

3.2. ADDING RANDOM CONDUCTANCES: CG SAMPLING

B Y adding randomness to the conductances, the method described in the pre-
vious section will fail; we do not have a ‘nice’ eigenfunction decomposition

anymore. Therefore, we resort to another method, the Conjugate Gradient (CG)
sampler, to generate a realisation of the modified DGFF. Due to the method’s flexi-
bility, we can try out every set of conductances we could think of.

The method of Conjugate Gradients (CG) is a well-known method for solving
large linear systems. However, with a small addition, it can be turned into an
efficient way to generate approximate samples from high-dimensional Gaussian
distributions [8]. This can be seen in the following way. Consider a multivariate
Gaussian distribution N

(
µ,Σ

)=N
(

A−1c, A−1
)
. Here we introduced the precision

32

matrix A :=Σ−1 and the so-called potential vector c := Aµ. Since A−1 is the covari-
ance matrix, it must be symmetric and positive definite. One can easily see this
must also be the case for A. The corresponding density function scales with e−φ(x),
where we define φ(x) := 1

2 xT Ax − cT x. Indeed, as A is symmetric:

1

2
(x − A−1c)T A(x − A−1c) = 1

2

[
xT Ax −xT A(A−1c)− (A−1c)T Ax + (A−1c)T A(A−1c)

]
= 1

2
xT Ax − 1

2
xT c − 1

2
cT x + 1

2
cT A−1c

= 1

2
xT Ax − cT x + (term independent of x).

Taking the exponent of the opposite of both sides, e−
1
2 (x−A−1c)T A(x−A−1c) becomes

the Gaussian density and the final expression becomes K e−φ(x), with K a scaling
constant.

The values of x that lead to a small φ(x), lead to a larger e−φ(x) and so are more
likely to be drawn as a sample from N

(
A−1c, A−1

)
. In other words, sampling from

N
(

A−1c, A−1
)

is equivalent to minimising φ(x) = 1
2 xT Ax − cT x. Recall that φ(x)

has a critical point at x = x ′ whenever ∇φ(x ′) = 0. As A is symmetric, one can easily
show that ∇φ(x) = 1

2 AT x + 1
2 Ax − c = Ax − c. Note that A is equal to the Hessian

matrix Hφ(x) of φ(x). Since A is positive definite, we know that the critical point
x ′ for which Ax ′− c = 0, is a unique minimum. In conclusion, minimising φ(x) is
equivalent to solving the linear system Ax = c.

The question now is how to solve Ax = c. Bear in mind that this is a very large
system. Methods such as inverting A to compute x = A−1c are infeasible. On one
hand the computation time will be too large, on the other hand a huge amount
of memory will be needed to store the non-sparse inverse matrix A−1. However,
working out the matrix-vector products Av is possible, as A itself is sparse. We will
exploit this observation with the CG method.

3.2.1. THE CG LINEAR SOLVER ALGORITHM
Let us dive deeper into the CG method itself. We will first state the algorithm, as
proposed in [8], to sample from N (0, A−1) in Algorithm 1. Then we will go over
each step separately, partially following [21]. As input, the algorithm needs a vector
x0, that acts as an initial guess for the solution x of Ax = b with b 'N (0, In). Also
a routine is needed to work out the matrix-vector products Av for any vector v ,
where A is the precision matrix of the distribution we want to sample from. Finally,
one gives a stopping tolerance, which will be explained later on.

The standard CG algorithm will approximate the solution x of the system Ax =
b. In the initialisation step, the residual r 0 = b − Ax0 is computed. The residuals
in this algorithm can be interpreted as some kind of error. Intuitively, if an approx-
imation xk is close in some sense to x, then Axk should be close to Ax. Thus, a
good approximation yields a small residual Ax − Axk = b − Axk =: r k . When ini-

33

Algorithm 1: Conjugate Gradient Sampler from N (0, A−1).

Input: an n×1 vector x0, an n×n symmetric positive definite matrix A and
a stopping tolerance ε.

Output: a(n approximate) solution xk to Ax = b with b a standard
Gaussian vector b 'N (0, In) and a(n approximate) sample yk

from N (0, A−1).
let b 'N (0, In), r 0 = b − Ax0, p0 = r 0, d0 =

(
p0

)T
Ap0, y0 = x0 and k := 1;

while ||r k ||2 ≥ ε do
1. compute the 1-D minimiser of φ in the direction xk−1 +γpk−1, i.e.

γk−1 =
(
r k−1)T

r k−1

dk−1
;

2. let xk = xk−1 +γk−1pk−1;

3. sample z 'N (0,1), and set yk = yk−1 + zp
dk−1

pk−1;

4. compute the residual r k =−∇φ(xk) = r k−1 −γk−1 Apk−1;

5. let βk =−
(
r k)T

r k

(r k−1)T
r k−1

, the new conjugate search direction is then given

by pk = r k −βk pk−1;

6. compute dk = (
pk

)T
Apk ;

7. set k := k +1;
end

tialising, we also compute p0. The vector pk is the so-called search direction in the
k-th iteration. The CG method is an iterative method; at the k-th iteration a new
approximation xk is found. This xk is found from the previous approximation,
xk−1, by starting at xk−1 and ‘walking’ a certain distance in the direction of pk−1.
In other words, we are searching a better approximation for x in the direction of
pk−1. Determining the search direction for the next iteration depends on the it-
erative method chosen. As we will see, CG makes use of the already used search
directions to find the newest one. However, to find p0, there are no such previ-
ous search direction. Our initial guess is therefore the direction of steepest decent.
Thus, p0 =−∇φ(x0) =−(Ax0 −b) = b − Ax0 = r 0. Finally, we also set an intermedi-

ate quantity d0 =
(
p0

)T
Ap0, our first approximate sample from N (0, A−1) equal to

y0 = x0 and the iteration counter k = 1.
Now let us move on to part of the algorithm that is repeated until we have

reached, in some sense, a certain level of precision. We finish the algorithm at
some iteration k once the norm of the residual at that iteration, ||r k ||2, dives under
the given stopping threshold ε. As the residual indicates in a way that we are close
to the exact solution x, it lends itself very well to be used in a stopping criterion.

Every time we enter the loop, we have an approximation xk−1 and a search
direction pk−1. First thing to do is to find out how far we must go in the direction

34

of pk−1 to find a new, better approximation xk = xk−1 +γpk−1. Here γ can be seen
as the distance we need to go along xk−1. To determine this γ this, recall that the
CG method minimises φ(x). Thus we want to find γ such that φ(xk) is as small
as possible, i.e. minimise φ

(
xk−1 +γpk−1

)
. We claim that this γ equals γk−1 :=(

pk−1)T
r k−1

(pk−1)T
Apk−1

. To show this claim, notice that:

φ(xk) =φ(xk−1 +γk−1pk−1)

= 1

2

(
xk−1 +γk−1pk−1

)T
A

(
xk−1 +γk−1pk−1

)
−bT

(
xk−1 +γk−1pk−1

)
= 1

2
γ2

k−1

(
pk−1

)T
Apk−1 +γk−1

(
pk−1

)T (
Axk−1 −b

)
+ (terms independent of γk−1)

We may now differentiate the above expression with respect to γk−1 and set that
expression equal to zero to find the γk−1 minimising φ(xk).

γk−1 =−
(
pk−1

)T (
Axk−1 −b

)(
pk−1

)T Apk−1
=

(
pk−1

)T
r k−1(

pk−1
)T Apk−1

(3.5)

Note that this is indeed a minimum, as d2φ(xk)

d(γk−1)2 < 0. This is not yet the expression

for γk−1 given in Algorithm 1. At the end of this discussion on the CG method, we
will be able to rewrite γk−1 to the expression used in the algorithm.

Apart from that, we have covered steps 1 and 2 of the algorithm. Let us skip
step 3 for now. This step is added by Parker and Fox to turn the classic CG linear
solver into a CG normal sampler. We will first cover the rest of the linear solver part
of the algorithm and come back to Step 3 later.

Step 4 of the method computes the residual of the new approximation xk we
found in step 2. Notice that:

r k = b−Axk = b−A
(
xk−1 +γk−1pk−1

)
= b−Axk−1−γk−1 Apk−1 = r k−1−γk−1 Apk−1

With this new residual, we may now determine the search direction for the next
iteration. This is where the CG solver differs from other iterative methods, such as
the method of Steepest Decent. The latter takes pk = r k =−∇φ(xk), i.e. the direc-
tion of maximal descent. CG requires that different search directions are conjugate

(also called A-conjugate or A-orthogonal). That is,
(
p j

)T
Apk = 0 for j 6= k. One can

look at conjugate vectors as orthogonal vectors, not with respect to the standard in-
ner product 〈u, v〉 := uT v , but with respect to the inner product 〈u, v〉A := uT Av .
To achieve this requirement, we can perform a Gram-Schmidt inspired calculation:

pk = r k − ∑
j<k

(
p j

)T
Ar k(

p j
)T Ap j

p j . (3.6)

35

In a way, we adjust r k to make it conjugate to the previous search directions by re-
moving the components of r k linked to these previous search directions. Observe
that the expression (3.6) indeed yields a new search direction pk , conjugate to all
the previous ones (pm)m<k . This is shown below, under the inductive assumption
that the (pm)m<k are already mutually conjugate.

(
pm)T Apk (3.6)= (

pm)T A

(
r k − ∑

j<k

(
p j

)T
Ar k(

p j
)T Ap j

p j

)

= (
pm)T Ar k − ∑

j<k

(
p j

)T
Ar k(

p j
)T Ap j

(
pm)T Ap j

= (
pm)T Ar k −

(
pm

)T Ar k(
pm

)T Apm

(
pm)T Apm

= (
pm)T Ar k − (

pm)T Ar k = 0

However, we now have a slight problem. In order to compute pk , we need to store
all the previous search directions. This may quickly become infeasible when work-
ing in large dimensions. There is, however, another way to write down pk . To this
end, let us introduce the concept of a Krylov subspace.

Definition 3.2.1. Let A ∈ Rn×n and y ∈ Rn . We define the Krylov subspace of di-
mension k (also called k-th Krylov subspace) by

Kk (A; y) := span
{

y, Ay, . . . , Ak−1 y
}

(3.7)

When applied in the context of Conjugate Gradients, where A is symmetric and
positive definite, this Krylov subspace has several nice properties.

Lemma 3.2.2. Let k ≥ 0. Then the following are true:
(i) The residual r k is in the Krylov subspace Kk+1(A;r 0).

(ii) If r k 6= 0,
{

p0, . . . , pk
}

is a basis for Kk+1(A;r 0).
(iii) We have xk −x0 ∈Kk (A;r 0).

Proof of Lemma 3.2.2. (i) Observe that A ·Kk (A;r 0) = span
{

Ar 0, A2r 0, . . . , Ak r 0
} ⊂

span
{
r 0, Ar 0, A2r 0, . . . , Ak r 0

} = Kk+1(A;r 0). Let us prove r k ∈ Kk+1(A;r 0) by in-
duction. Clearly, r 0 ∈K1(A;r 0) := span

{
r 0

}
, so now suppose that r n ∈Kn+1(A;r 0).

Then r n ∈ Kn+2(A;r 0) too. By step 4 of Algorithm 1, r n+1 = r n − γn Apn . We
claim that as r n ∈ Kn+1(A;r 0), pn ∈ Kn+1(A;r 0). Then by our first observation,
Apn ∈Kn+2(A;r 0) and so r n+1 is a linear combination of elements of Kn+2(A;r 0).
Thus r n+1 ∈ Kn+2(A;r 0). We finish the first part of this proof by justifying our
claim. This is in fact done with a strong induction argument. Recall from Algo-
rithm 1 that p0 = r 0, so clearly p0 ∈ K1(A;r 0). Now suppose p j ∈ K j+1(A;r 0) for

36

all 1 ≤ j ≤ m and r m+1 ∈ Km+2(A;r 0). We want to show pm+1 ∈ Km+2(A;r 0). Us-
ing (3.6), we may rewrite pm+1 as a linear combination of r m+1 and all the p j with
1 ≤ j < m +1. Consequently, pm+1 ∈Km+2(A;r 0). By strong induction, this proves
our claim.

(ii) Let us now show that
{

p0, . . . , pk
}

is a basis for Kk+1(A;r 0), whenever r k 6= 0.
By (i), and by our earlier claim, we know that

{
p0, . . . , pk

} ⊂ Kk+1(A;r 0). Since
Kk+1(A;r 0) is spanned by k+1 vectors and since

{
p0, . . . , pk

}
is a collection of k+1

vectors, it suffices to show that
{

p0, . . . , pk
}

is a linearly independent set of vectors.

This can be shown by contradiction. Recall that the
{

p i
}n−1

i=0 are A-conjugate, i.e.(
p i

)T
Ap j = 0 for i 6= j . Also realise that since A is positive definite,

(
p i

)T
Ap j > 0

for i = j . Since r k 6= 0, we have by (3.6) that pk is not, already by definition, a

linear combination of
{

p i
}k−1

i=0 . However, suppose that there does exist some m ∈
{0, . . . ,k} such that pm can be written as a linear combination

∑n−1
i=0,i 6=mαi p i of the

remaining search directions. We assume here, without loss of generality, that the
αi ’s are all nonzero. Then we find, for any j ∈ {0, . . . ,k −1} unequal to m, that:

(
p j

)T
Apm =

(
p j

)T
A

(
n−1∑

i=0,i 6=m
αi p i

)
=

(
p j

)T
A

(
α j p j

)
6= 0.

This would imply however that p j and pm are not A-conjugate; a contradiction.
Therefore

{
p0, . . . , pk

}
is a set of k +1 linearly independent vectors in Kk+1(A;r 0).

We conclude that if r k 6= 0,
{

p0, . . . , pk
}

is a basis of Kk+1(A;r 0).
(iii) Finally, we show that xk − x0 ∈Kk (A;r 0). It turns out this follows immedi-

ately from (i). By Step 2 of Algorithm 1, we can rewrite:

xk −x0 = xk−1 +γk−1pk−1 −x0

= xk−2 +γk−2pk−2 +γk−1pk−1 −x0

= . . . = x0 +
k−1∑
j=0

γ j p j −x0 =
k−1∑
j=0

γ j p j

The latter is a linear combination of
{

p j
}

0≤ j≤k−1 and so xk − x0 ∈ Kk (A;r 0). This
finishes the proof.

Part (iii) of Lemma 3.2.2 allows us to look at the CG method in a new way. At
each iteration k, we find a new approximation xk for x. This approximation sat-
isfies φ(xk) ≤ φ(y) for all y ∈ x0 +Kk (A;r 0) := {

y ∈Rn |∃z ∈Kk (A;r 0) : y = x0 + z
}
.

That is, at iteration k we minimise φ(x) over x0+Kk (A;r 0). This realisation has an
important consequence, which is stated in Lemma 3.2.3.

Lemma 3.2.3. If r k 6= 0, then r k is (i) orthogonal to Kk (A;r 0) and (ii) A-orthogonal
to Kk−1(A;r 0).

37

Proof of Lemma 3.2.3. (i) As we pointed out earlier, at iteration k we find the min-
imiser xk of φ(x) over x0 +Kk (A;r 0). We claim that because of this, ∇φ(xk) is or-
thogonal to Kk (A;r 0). That is,

〈∇φ(xk), z
〉= 0 for all z ∈Kk (A;r 0). Intuitively, one

can see xk as the best approximation of x in the subspace Kk (A;r 0). The claim
says that this best approximation satisfies the ‘orthogonality condition’ ∇φ(xk) ⊥
Kk (A;r 0).

To show our claim, note that as Kk (A;r 0) = span
{

p0, . . . , pk−1
}

according to
Lemma 3.2.2(ii), it suffices to show that for all i ∈ {0, . . . ,k −1},

〈∇φ(xk), p i
〉 = 0.

First of all, we perform a similar calculation to the one in the proof of part (iii) of
Lemma 3.2.2:

xk = xk−1 +γk−1pk−1 = . . . = xm +
k−1∑
j=m

γ j p j ,

where m ∈ {0, . . . ,k −1}. We can use this with m = i to compute
〈∇φ(xk), p i

〉
:〈∇φ(xk), p i 〉= 〈

Axk −b, p i 〉
=

〈
Axi +

k−1∑
j=i

γ j Ap j −b, p i
〉

= 〈
Axi −b, p i 〉+ k−1∑

j=i
γ j

〈
Ap j , p i 〉

(a)= −〈r i , p i 〉+γi
〈

p i , Ap i 〉
(3.5)= −〈r i , p i 〉+

〈
r i , p i

〉〈
p i , Ap i

〉〈
p i , Ap i 〉= 0.

We used that the p j ’s are A-conjugate at (a). We conclude that ∇φ(xk) is orthog-
onal to Kk (A;r 0). Note however that r k = −∇φ(xk), so we have shown that r k is
orthogonal to Kk (A;r 0), finishing the first part of this proof.

(ii) If we consider an arbitrary z ∈ Kk−1(A;r 0), then it is easily seen that Az ∈
Kk (A;r 0). By part (i), r k is orthogonal to Kk (A;r 0), in particular, r k is orthogonal

to Az. In other words, 〈r k , z〉A := (
r k

)T
Az = 0, so r k is A-orthogonal to Kk−1(A;r 0).

Lemma 3.2.3 tells us a lot. First of all, part (i) shows that the residual r k is or-
thogonal to all previous search directions p0, . . . , pk−1. Not only that, r k is also or-
thogonal to all the previous residuals r 0, . . . ,r k−1. This is because of (3.6). With this
relation, we can reduce each p j with j < k to a linear combination of r 0, . . . ,r k−1. In
other words, span

{
r 0, . . . ,r k−1

}= span
{

p0, . . . , pk−1
}=Kk (A;r 0). Similarly, as r k is

A-orthogonal to Kk (A;r 0), we can conclude that r k is A-orthogonal to p0, . . . , pk−2

and r 0, . . . ,r k−2. The observation that r k is A-conjugate to p0, . . . , pk−2 is the key to

38

rewrite (3.6).

pk = r k − ∑
j<k

(
p j

)T
Ar k(

p j
)T Ap j

p j = r k −
(
pk−1

)T
Ar k(

pk−1
)T Apk−1

pk−1 = r k −
(
r k

)T
Apk−1(

pk−1
)T Apk−1

pk−1

(3.8)

This already looks a bit like the expression for pk given in Step 5 of Algorithm 1.
That is, pk = r k −βk pk−1. However, we do not have the same βk yet. Therefore,
we rewrite equation (3.8) using Step 4 of the CG algorithm, which tells us that r k =
r k−1 −γk−1 Apk−1 and so Apk−1 = 1

γk−1
(rk − rk−1).

pk = r k −
(
r k

)T
Apk−1(

pk−1
)T Apk−1

pk−1

= r k −
(
r k

)T 1
γk−1

(rk − rk−1)(
r k−1 −βk−1pk−2

)T Apk−1
pk−1

(1)= r k −
1

γk−1

(
r k

)T
(rk − rk−1)

1
γk−1

(
r k−1

)T
(rk − rk−1)

pk−1

(2)= r k +
(
r k

)T
rk(

r k−1
)T rk−1

pk−1

= r k −βk pk−1.

This is exactly what we see in Step 5 of the CG algorithm. In equality (1), we used

that
(
pk−2

)T
Apk−1 = 0, as the search directions are conjugate. At (2), we used that(

r k−1
)T

r k = 0.
Finally, we can also give the expression for γk−1 which is given in Algorithm 1.

Recall that we had already derived γk =
(
pk)T

r k

(pk)T
Apk

in (3.5). We can now rewrite pk

and apply orthogonality of r k and pk−1 to find γk =
(
r k−βk pk−1)T

r k

(pk)T
Apk

=
(
r k)T

r k

(pk)T
Apk

. This

is written more compactly as γk =
(
r k)T

r k

dk
, where dk := (

pk
)T

Apk . With this, we
have covered Step 5 and 6 of Algorithm 1. Step 7 is just there to update the iteration
counter. After that, we start a new iteration and go through Steps 1 to 7 all over
again, or we stop the algorithm if ||r k ||2 < ε [21].

Notice that the algorithm cannot perform more than n iterations. Indeed, at
iteration k = n, we will have minimised φ(x) over x0 +Kn(A;r 0), which equals
x0+span

{
p0, . . . , pn−1

}
by Lemma 3.2.2(ii). The vectors p0, . . . , pn−1 span the whole

of Rn . Thus, the CG algorithm terminates automatically after n iterations.

39

3.2.2. FROM SOLVER TO SAMPLER
We have now covered the entirety of Algorithm 1, except Step 3. As promised, let

us now go over this step. We denote by Pk the n ×k matrix with columns
{

p j
}k−1

j=0 .

Furthermore, denote by P̃k the n × (n −k) matrix with columns
{

p j
}n−1

j=k . As all the
search directions are A-orthogonal, they are linearly independent. This is shown
in the proof of Lemma 3.2.2. Therefore, the matrix Pn = (

Pk P̃k
)

is invertible and
the matrix

Dn :=
(
Dk 0
0 D̃k

)
=

(
P T

k APk 0
0 P̃ T

k AP̃k

)
= P T

n APn

is invertible and diagonal. The latter can easily be seen as (Dn)i j = (
p i

)T
Ap j ,

which is zero unless i = j . We can restate the above as

A−1 = PnD−1
n P T

n = Pk D−1
k P T

k + P̃k D̃−1
n P̃ T

n

Now, Step 3 of Algorithm 1 tells us to pick yk = yk−1 + zp
dk−1

pk−1, with z 'N (0,1).

This recursive formula can be written in terms of y0 by substituting yk−1 = yk−2 +
z ′p
dk−2

pk−2 and so on, i.e. yk = y0 +Pk D−1/2
k zk , with zk 'N (0, Ik). But then, if we

denote by E[yk |y0,b] and Var(yk |y0,b) the expectation and variance of the random
vector yk , found after k iterations of the CG sampler initialised with y0 and b, we
find:

E
[

yk ∣∣y0,b
]
= E[y0] (3.9)

Var
(

yk ∣∣y0,b
)
= Var

(
y0)+Var

(
Pk D−1/2

k zk
)
= Var

(
y0)+Pk D−1

k P T
k . (3.10)

Thus, after k = n iterations, we have that PnD−1
n P T

n = A−1 and so yn ' N (0, A−1).
Note that we assumed that y0 = 0 here, such that E

[
y0

] = Var
(
y0

) = 0 does not
contribute to the expectation and variance of the final sample.

The conclusion that we have a sample yn 'N (0, A−1) after n iterations is very
useful for the theoretical treatment of the CG method. However, when working
with the finite precision of a computer, a number of things change. The biggest is-
sue with the CG algorithm is the so-called loss of conjugacy. Due to floating point
rounding errors, the CG method will ultimately generate new search directions pk

that are no longer A-conjugate to the previous ones, hence the term ‘loss of con-
jugacy’. When this occurs, the algorithm will no longer follow the theory we have
described in this Section. For a detailed account on this interesting topic, we re-
fer the reader to Meurant and Strako [22]. If loss of conjugacy occurs at iteration
k, the sample yk will be the best we will ever get from the CG sampler. By (3.10),
Var

(
yk

∣∣y0,b
)

will be the best approximation of A−1 we can make using vectors from
the Krylov subspace Kk (A;r 0). If we continue iterating after loss of conjugacy oc-
curred, we will neither increase nor decrease the quality of the approximation [8].

40

3.3. ANALYSING THE PERCOLATIVE BEHAVIOUR

N OW that we have a finite approximation of a Discrete Gaussian Free Field, we
can start investigating the percolative behaviour on the lattice. In particular,

we are interested in determining the critical value h∗ defined in Definition 2.2.1.

3.3.1. CLUSTERING: THE HOSHEN-KOPELMAN ALGORITHM

Given a realisation of a DGFF on a finite region, and a threshold value h which de-
termines which lattice points are in the level-set above h, we want to find out how
many clusters there are. Also, we would like to say how many sites each cluster
contains. This can be achieved using the Hoshen-Kopelman algorithm. This algo-
rithm gives every occupied site (a site withϕi ≥ h) a label, indicating that it belongs
to a certain cluster.

The Hoshen-Kopelman algorithm is a so-called union-find algorithm. Given a
collection of elements, in our case lattice sites, the Union-Find algorithm helps us
to determine equivalence classes, in our case clusters. We are speaking of equiv-
alence classes because the relation ‘i and j are in the same cluster’, denoted by
i ↔ j , is an equivalence relation. Indeed, i ↔ i (reflexive), i ↔ j implies that
j ↔ i (symmetric) and i ↔ k whenever (i ↔ j ∧ j ↔ k) (transitive). We define
two functions for this union-find method; union(i,j) and find(i). The func-
tion find(i) helps us identify the equivalence class of which i is an element.
It returns a representative element of this equivalence class. The union(i,j)
function ‘unifies’ the equivalence classes that i and j are respectively elements
of. It tells us that from this moment onward, i and j are in the same equivalence
class by setting the representative elements of both classes equal to each other, i.e.
find(i)=find(j).

Let us make this general union-find toolset more concrete by applying it to the
cluster-finding problem on the N × N × N region Λ = {0, . . . , N −1}3. Each lattice
point in Λ is identified by an index. This is a number between 0 and N 3 −1. The
index 0 is given to i = (0,0,0). From there we index sites going along the positive
x-direction. Once we cannot go further in the x-direction, we move up one site in
the y-direction and resume. Once we have filled up an entire x y-plane, we move
up one site in the z-direction. This is repeated until the entire region is indexed.
The procedure is illustrated in Figure 3.1.
In Algorithm 2, one can find the main idea of the Hoshen-Kopelman (H-K) algo-
rithm, tailored to our three-dimensional setting. This algorithm assigns a label to
each lattice point, which tells us the cluster that specific lattice point is a part of.

Initially, we set the label of each site equal to its index. Now, the algorithm goes
through every lattice site and checks whether or not it is occupied, i.e. if it is in the
level-set or not. It does that by starting at site 0, and then going up incrementally
towards site N 3 −1. Each unoccupied site receives a special label: ‘unoccupied’. At
each occupied site, Hoshen-Kopelman looks for nearest-neighbour sites ‘behind
the site’. With the latter we mean the first three sites in the negative x-, y- and z-

41

Figure 3.1: Illustration of the procedure for indexing lattice sites used in the Hoshen-
Kopelman algorithm.

direction. Thus, if H-K is currently at site i , it checks if the sites i − 1, i − N and
i − N 2 are occupied. If i is at some boundary, some of these three points might
not exist. In that case we look at the remaining ones that do exist. We are inter-
ested in how many of these three nearest-neighbours are occupied. If none of the
neighbours are occupied, this means that, at least for now, site i is part of an undis-
covered cluster. This cluster is labelled with i . Therefore also site i gets to keep its
index as its label. It is also possible that one of the three nearest-neighbours was
occupied. In that case, site i belongs to the cluster of that occupied neighbour. We
give i the label of the occupied cell. Note that what we are executing a find()-
command to look for a representative element of this cluster and give the site i the
same label as that element. Finally, it is also possible for a site i to have multiple
(2 or 3) occupied neighbours. When this is the case, we possibly have neighbours
with different cluster labels. For example, we have three occupied points. All these
points have a label indicating to which cluster they belong, say k, l and m respec-
tively (k > l > m without loss of generality). The first thing to do is to perform a
union()-operation on the occupied neighbouring sites. This will set the represen-
tative elements of the three cluster to the same element. This element is chosen
to be min{k, l ,m} = m. The site i itself will receive that same label. Notice how-
ever that we are not done yet. There might have been other sites in the lattice with
the label k or l . We have only updated the label of the representative elements
k and l themselves. The other sites still have their old label. Fortunately, the so-
lution for this issue is very simple. After we have run through all the sites, we go
through them once again. This time however, we set the label of every node equal
to find(i). Two things can happen now. If i had already the most updated label,
find(i) will just return the same label. If i had an outdated label though, which
could happen in the scenario we sketched earlier, something more happens. The

42

find(i) function will first go to the site corresponding to i ’s old label, but then it
will realise that this site is in fact part of a bigger cluster with another representa-
tive element as its label. Then find(i) will return that representative element and
this will be the new label for i .

Ultimately, we will have gone through all the lattice sites. Each occupied lattice
site i will have a label. This label will be the index of the representative element of
the cluster i belongs to. By construction, this element will be the lattice site in the
cluster with the smallest index. We are now able to distinguish different clusters,
as each cluster label is unique. Consequently, by counting all sites with a certain
label, we can determine the size of the cluster with that label. This paves the way to
the computation of all sorts of cluster-related quantities, which will turn out very
helpful in the next section [23].

3.3.2. FINDING THE PERCOLATION THRESHOLD
To find the percolation threshold, we make use of a method described in Marinov
and Lebowitz [9]. In their paper, they consider a zero-average Discrete Gaussian
Free Field on a lattice with periodic boundary conditions. That is, they consider a
DGFF which is generated by the method from Sheffield [3]. To find the percolation
threshold, Marinov and Lebowitz look at the the empirical second moment of the
cluster size, ΓL := 〈∑

s s2Ns
〉

. This quantity is an average over multiple samples of a
DGFF, with s the cluster size and Ns is the amount of cluster with that size s. Notice
that Ns = N d ns , with ns the cluster number. We may therefore write N−dΓN =
pS(p), with S(p) the average cluster size. Recall that for p > pc , we neglect the
infinite cluster when determining S(p). We will compute ΓN for different values of
N and p. Note that p now has a slightly different meaning than in Section 2.2.1. In
the latter, each site of the lattice had a probability p to be occupied. Now, whether
or not a site is occupied depends on the threshold value h. How can we link this
to an occupation probability p? Say that we have some instance of a DGFF on Λ.
Then we may define for each lattice site i ∈Λ the occupation variable

ρh(i) =
{

1, ϕi ≥ h,

0, ϕi ≤ h.
(3.11)

In this context, we define p = 〈ρh(i)〉i∈Λ. Thus p is the average of all occupation
variables in Λ. We can interpret it as the (lattice size independent) concentration
of occupied sites. With this definition, pc corresponds to the critical value h∗. In
practice, if we want to find the level-set corresponding to some concentration p,
we look for the (1−p)-quantile of the set

{
ϕi : i ∈Λ}

. Choosing this quantile as our
h makes sure that a fraction p of the spins ϕi are in the level-set.

For large N and p close to pc , we can say that N−dΓN = pS(N , p) ∼ p|p −pc |−γ,
as in Definition 2.2.3. In that case, we may apply a finite-size scaling argument as
described at the end of Section 2.2.1:

N−dΓN ∼ p|p −pc |−γ f2

(
N

1
ν (p −pc)

)
∼ pN

γ
ν F

(
N

1
ν (p −pc)

)
(3.12)

43

Here we defined

F (x) =
{

1, xν¿ 1,

x−γ, xνÀ 1

to match the form of Equation (5) in [9]. However, in this equation (5) the careful
reader may note that the p is left out. We are only interested in the behaviour
around the percolation threshold. The quantity (p−pc)−γ is the only one that may
diverge around this threshold. It is therefore the only p-dependent quantity that
plays a role in the scaling behaviour. This is why Marinov and Lebowitz left it out.

Equation (3.12) implies that the ratio RN := Γ2N
ΓN

will become independent of N
when p = pc as N grows very large. Indeed,

RN = Γ2N

ΓN
∼

(2N)d p(2N)
γ
ν F

(
(2N)

1
ν (p −pc)

)
N d pN

γ
ν F

(
N

1
ν (p −pc)

) = 2d+ γ
ν (3.13)

Thus, if we plot RN as a function of p, for different values of N , the resulting curves
should intersect at p = pc . This is how we will find the percolation threshold! More-

over, the value of RN at this intersection point is 2d+ γ
ν , yields the radio γ

ν as d is
known. In our case, we are working with a three-dimensional Discrete Gaussian
Free Field, so d = 3. Notice that the extra factor p that we have in (3.12) compared
to [9] cancels anyway.

44

Algorithm 2: Hoshen-Kopelman algorithm

Input: a set of N ×N ×N lattice points; each lattice point has an index
between 0 and N 3 −1 and can be either occupied (part of the
level-set) or unoccupied (not part of the level-set)

Output: a label for each lattice point, indicating which cluster that lattice
point belongs to

set the label of each lattice site equal to its index;
for i ∈ {

0, . . . , N 3 −1
}

do
if site i is occupied then

if sites i −1, i −N and i −N 2 are all unoccupied then
the label of i remains its index;

end
else if exactly one of the sites i −1, i −N and i −N 2 is occupied then

i takes the same label as the occupied cell;
end
else if exactly two of the sites i −1, i −N and i −N 2 are occupied then

unify the clusters of the two occupied neighbours into one
cluster;

i takes the same label as the occupied cell with the smallest label;
end
else if all of the sites i −1, i −N and i −N 2 are occupied then

unify the clusters of all the occupied neighbours into one cluster;
i takes the same label as the occupied cell with the smallest label;

end
end
else

site i will receive a label ‘unoccupied’.
end

end
for i ∈ {

0, . . . , N 3 −1
}

do
if site i is occupied then

denote the label of site i by li , then find the representative element
the site li itself is a part of, this element is the new label of i ;

end
end

45

4
SIMULATIONS

In this fourth chapter, we will present a number of checks we executed to make sure
our implementations of, amongst others, Hoshen-Kopelman and the CG sampling
method were valid. We will discuss the results from these checks. After that we study
the DGFF on a lattice with checkerboard conductances, and state a conjecture re-
garding this object.

47

4.1. CHECKS OF VALIDITY

I N order to be sure that the code is working properly, we may perform a num-
ber of checks. Each check will go over a different part of the code. The idea is

that if each check yields a positive result, we will have a completely working pro-
gram, from DGFF simulation to computation of RN . We go over two checks in this
Section:

• We convince ourselves that the Hoshen-Kopelman algorithm and computa-
tion of RN work correctly. To this end, we run a level-set percolation model
on the DGFF with periodic boundary conditions and try to retrieve the per-
colation threshold that Marinov and Lebowitz found [9]. If this goes well, we
have a working implementation of Hoshen-Kopelman and RN is correctly
calculated. Moreover, our implementation of the method described in 3.1.1
also works out.

• Examine the behaviour of the DGFF samples we retrieve from the CG sam-
pler. In particular, compute RN for samples with different linear sizes N and
concentrations p. If the CG sampler works correctly, we would expect that
samples from the CG method yield comparable results as samples from the
Fourier-analytic methods described in Section 3.1.

4.1.1. CHECKS FOR HOSHEN-KOPELMAN AND RN -COMPUTATION

To see whether the Hoshen-Kopelman cluster-finding algorithm and the subse-
quent calculations to find ΓN are correct, we will try to reproduce the results from
Marinov and Lebowitz [9]. With the Fourier-analytic method from Section 3.1.1,
we generate instances of a DGFF with periodic boundary conditions. We should
retrieve similar results as in Figure 1 of [9]. If this test gives correct results, we can
conclude, with a high degree of confidence, that our implementation of Hoshen-
Kopelman, as well as the computation of RN , are correct. Not only that, the DGFF
sampler using the method from Sheffield [3] matches the results of Marinov and
Lebowitz.

The experiment has been carried out as follows. For each p between 0.13 and
0.16 (with increments of 0.005), we computed RN for N = 10, N = 20 and N = 40,
where the respective ΓN and Γ2N were the average of

∑
s s2Ns over 5000 DGFF in-

stances. To get a sense for the uncertainty in the final result, we employ the method
proposed in [9]. We split up the found ΓN and Γ2N in 10 groups. For each group
we computed the average. Assuming that the averages were normally distributed,
we computed the standard deviation of this population of 10 values and used it to
quantify the uncertainty in the found values. The results of this procedure can be
found in Figure 4.1. If we compare this plot to Figure 1 in Marinov and Lebowitz,
we identify an issue. The intersection point indicates a percolation threshold of
pc = 0.14±0.01, smaller than the pc = 0.16±0.01 expected from [9]. Also, the val-
ues found for RN are also a bit higher than expected. Note that our value for the
uncertainty in pc is visually estimated from Figure 4.1.

48

Figure 4.1: RN as a function of p, for N = 10, N = 20 and N = 40 for the Discrete Gaussian Free
Field with periodic boundary conditions. The intersection points of two subsequent curves
N and 2N at p ≈ 0.145 indicates the critical probability for this model.

Towards the end of the project, the idea came up that this odd behaviour is
caused by the way we count clusters. The way it was done in the above simulations
was by assuming ‘zero boundary conditions’ for clustering. That is, if we consider
the simplified example Figure 4.2, where occupied sites are indicated in black, we
would count two clusters: 1 and 2. However, Marinov and Lebowitz count clusters
assuming periodic boundary conditions. This makes sense as their DGFF is also
considered on a lattice with periodic boundary conditions. In that case, clusters 1
and 2 in Figure 4.2 would in fact be the same cluster.

Figure 4.2: The two ways to count a clusters. In the case of zero boundary conditions, we
would count two different clusters, 1 and 2. In the case of periodic boundary conditions, we
would count just one cluster, as 1 and 2 are connected to each other via the boundary.

Because this insight came up in the final stages of the project, we were unable
to test out this hypothesis. Our implementation of Hoshen-Kopelman described in
Section 3.3.1 breaks down when counting clusters using periodic boundary condi-

49

tions. This is because our H-K algorithm goes through all occupied sites only look-
ing back at those sites that have already been considered. With periodic boundary
conditions however, boundary sites that have already been considered might have
an influence at the other side of the lattice. As H-K only looks at sites that have
passed, it will miss the influence of these boundary sites. The algorithm sees them
as ‘not yet considered’. We could not adjust our implementation in time to account
for this issue. Despite this, we may still give an explanation for why this is most
likely the cause of our troubles, albeit not as satisfying as a working simulation.

In our simulations, we plot RN = Γ2N
ΓN

. Let us focus on ΓN for now. As we do not
consider periodic boundary conditions, clusters which would otherwise be linked
via a boundary are now counted as two, small clusters instead of as one, larger
cluster. Recall that ΓN is the average over multiple samples of the second moment
of the cluster size,

∑
s s2Ns . Since we square the cluster size, one large cluster has

a higher contribution to the second moment than two small clusters. Consider for
example two clusters of size 2 that would be one cluster of 4 in the case of periodic
boundary conditions. The contribution to the second moment from the two small
clusters is 22 ·2 = 8, while the contribution from one large cluster is 42 ·1 = 16. We
can thus conclude that zero boundary conditions yield a smaller ΓN than periodic
boundary conditions. Note that this effect is relatively stronger for smaller lattices.
The larger the lattice, the more clusters we have and the more contributions to
ΓN . This discrepancy between zero and periodic boundary conditions becomes
less and less relevant for growing N . Therefore, the ratio ΓZBC

N /ΓPBC
N will be smaller

than the ratio ΓZBC
2N /ΓPBC

2N . Thus,

RZBC
N = Γ

ZBC
2N

ΓZBC
N

> Γ
PBC
2N

ΓPBC
N

= RPBC
N .

This would explain why the values of RN from Figure 4.1 are higher than those in
Marinov and Lebowitz.

4.1.2. COMPARING THE CG SAMPLER WITH THE FOURIER-ANALYTIC

METHODS
Let us move on to checking that the CG sampler yields similar results as the Fourier-
analytic methods. The latter are used here as a benchmark. We will repeat the
experiment from Section 4.1.1, but now compare the results obtained with the CG
sampler to those obtained with the method described in Section 3.1.2. We have run
simulations for N = 5 and N = 10, with p going from 0.07 to 0.13 with increments
of 0.01. The averages ΓN and Γ2N were taken over 5000 samples and the errors have
been computed as before. The CG sampler was initialised with y0 'N (0, IN 3) and
had a stopping tolerance of 10−70 for the N = 5 run and a tolerance of 10−80 for the
N = 10 run. One can find the outcome of the simulation for N = 5 in Figure 4.3a
and for N = 10 in Figure 4.3b. Within the error margin, the results from both meth-
ods seem to coincide. We can also check whether both methods yield about the

50

same percolation threshold. This is done in Figures 4.4a for Chafaï and 4.4a for CG.

(a) N = 5. (b) N = 10.

Figure 4.3: Comparison of RN (p)-values found from DGFF samples produced by the CG sampler and
method from Chafaï for (a) N = 5 and (b) N = 5.

(a) Chafaï’s method. (b) CG Sampler.

Figure 4.4: RN as a function of p for N = 5 and N = 10, computed with samples from (a) the method
from Chafaï and (b) the CG sampler.

From Figures 4.4a and 4.4b we would estimate pChafaï
c = 0.10 ± 0.01 and pCG

c =
0.09± 0.01. These results certainly do not contradict each other. Again, the un-
certainties in critical probability are visually estimated from the plots.

It should be noted that many error bars from the N = 10 run with the CG method
are relatively wide. Apparently, averaging over 5000 samples is not enough. For
future simulations, one might consider computing averages over more samples.
Clearly, the computing power in this project was limited. This could have been
seen already by looking at the lattice sizes considered here (N = 5 and N = 10).
These are rather small, compared to say the N = 20 and N = 40 used in Section 4.1.1.

51

The limiting factor here was the sampler using the method from Chafaï. As dis-
cussed in Section 3.1.2, this method relies on the computation of the matrix Σ1/2

Λ
defined as in (3.3). Once the matrix was computed, we could generate zero-boundary
DGFF samples using (3.4) relatively quickly. However, for a linear lattice size N ,
Σ1/2
Λ

is an N 3 ×N 3 matrix, where each entry is a sum over N 3 terms. This becomes
quickly infeasible to compute without the use of parallel computing. We will return
to this observation in Chapter 5.

Another observation we made during the simulations with the CG sampler, is
that the chosen stopping tolerance had a significant effect on the sample the CG
method produced. This is illustrated in Figure 4.5. There, one can see RN as a func-
tion of p, found by simulating DGFFs with the CG method with different stopping
tolerances. In particular, we tested the tolerances 10−70, 10−90 and 10−110 for both
N = 5 and N = 10, again with p running from 0.07 to 0.13 with steps of 0.01 and
averaged over 5000 samples.

(a) N = 5. (b) N = 10.

Figure 4.5: Comparison of RN (p)-values found from DGFF samples produced by the CG sampler with
different stopping tolerances (a) N = 5 and (b) N = 5.

To quantify which stopping tolerance yielded the best results, we defined a squared
difference between two sequences of RN values. That is, given rN := (

RN (p)
)

p∈P

and r ′
N := (

R ′
N (p)

)
p∈P

, with P the set of values p runs through, we define:

d
(
rN ,r ′

N

)
:= ∑

p∈P

∣∣RN (p)−R ′
N (p)

∣∣2 (4.1)

as the distance between rN and r ′
N . If we have computed such sequences of RN

values for different stopping tolerances (or more general for two different simula-
tion methods), we can use this quantity as a measure of similarity between the two
methods. The idea is that the smaller the corresponding d

(
rN ,r ′

N

)
, the more alike

the samples coming from the two methods are. When comparing the runs with
different stopping tolerances, we found the values in Table 4.1.

52

Table 4.1: Distances between the run with Chafaï’s method and the run with CG sampler for the given
stopping tolerance ε. Distances have been computed for both N = 5 and N = 10.

ε 10−70 10−90 10−110

N = 5 2.839 23.603 100.900
N = 10 42.706 2.293 28.266

We decided to use the stopping tolerance which yielded the RN -sequence closest
to that of the run with the method from Chafaï in the sense of (4.1). That is, we
picked ε= 10−70 for the N = 5 run and ε= 10−9 for the N = 10 run.

4.2. THE CHECKERBOARD PATTERN

T O finish off this Chapter, we move away from the standard DGFF and study
a more complex conductance pattern: the checkerboard pattern described

in Section 2.3. Using the CG sampler, we want to generate DGFF samples with
checkerboard conductances a and b. Thereafter, we will repeat the computation
of RN with these samples, as described in Section 3.3.2. We are curious whether
we can summarise the behaviour of such a checkerboard DGFF (with two conduc-
tances) by only one "effective" conductance. We studied the problem for a = 0.5,
b = 1, N = 10, for p going from 0.05 to 0.20 in increments of 0.025 and for ΓN , Γ2N

taken as averages over 500 samples. For these values we performed two sets of
simulations:

1. First, we simulated instances of a checkerboard DGFF with the given a and
b to compute RN .

2. Second, we computed RN for instances of a DGFF with every conductance
equal to c, where we let c run from 0.5 to 1 with increments of 0.1.

For these simulations, the uncertainty was determined just as before. We want
to find out for which c the constant conductance DGFF comes closest to the

checkerboard DGFF. Here we define "close" in the same mean-squared sense we
introduced in (4.1). The found values of RN are plotted as a function of p in Fig-
ure 4.6. Furthermore, we can find the distance between the RN -sequence from the
checkerboard run and the RN -sequence from the constant conductance model for
each c in Table 4.2.

Table 4.2: Distances between RN -sequence from the DGFF with checkerboard conductances and RN -
sequences from constant conductance DGFFs with conductances equal to c = 0.5,0.6, . . . ,1.

c 0.5 0.6 0.7 0.8 0.9 1
Distance 142.476 40.208 21.017 103.215 156.876 349.101

Looking at Table 4.2, it seems that the DGFFs with constant conductance c = 0.6
and c = 0.7 are the closest to the checkerboard DGFF. Therefore, we repeated our

53

Figure 4.6: RN as a function of p for the DGFF with checkerboard conductance pattern with
a = 0.5 and b = 1 and for the different constant conductance DGFFs (c = 0.5,0.6, . . . ,1).

experiment with a DGFF that had constant conductance c = 0.65. However now
we averaged over 1000 samples. This DGFF had a distance 9.774 from the checker-
board DGFF. In Figure 4.7, we compare the RN (p) from the checkerboard pattern to
only the RN (p) of the DGFF with c = 0.65. The two models seem to agree really well
regarding their RN (p)-values. We can try to give a – not at all rigorous – explanation
of this result. Consider the checkerboard conductance pattern. We can interpret
a DGFF on a lattice with this pattern as a group of smaller, constant conductance
DGFFs defined on 5×5 sub-lattices, with either conductance a = 0.5 or b = 1. These
small sub-DGFFs are patched together in an alternating fashion, such that no two
DGFFs defined with the same conductance are next to each other. Lattice sites in
a sub-lattice with a conductance of 1, will be more connected to each other than
lattice sites in a sub-lattice with a conductance of 0.5. That is, the spins in a DGFF
with conductance 1 will likely be closer to each other than spins in a DGFF with
conductance 0.5. Because of this, it is reasonable to assume that large clusters will
form earlier in a DGFF with conductance 1 than in a DGFF with conductance 0.5.
Eventually, we will have a percolating cluster in a DGFF with conductance 1 before
the we will have a percolating cluster in a DGFF with conductance 0.5.

Let us now zoom back out and wonder when we will have a percolating cluster
that spans over the whole lattice. When we let p gradually increase, we expect that
for a certain p = pb all the sub-DGFFs with conductance b = 1 will percolate. How-
ever, at this point, the sub-DGFFs with conductances a = 0.5 will not yet percolate.
Because the sub-DGFFs are arranged in the checkerboard pattern, the sub-DGFFs
with conductance 0.5 will block percolation of the whole lattice. It is not until p is

54

Figure 4.7: RN as a function of p for the DGFF with checkerboard conductance pattern with
a = 0.5 and b = 1 and for the constant conductance DGFF with c = 0.65.

large enough, say p = pa that the sub-DGFFs with conductance a = 0.5 will per-
colate as well. Only then will there be percolation through the entire lattice. In
other words, the percolative behaviour of the DGFF in the entire lattice is dictated
by the percolative behaviour of the sub-DGFFs on the sub-lattice with the lowest
conductance.

This reasoning alone tells us that a checkerboard conductance DGFF with con-
ductances a and b (a < b) shows the same percolative behaviour as a constant con-
ductance DGFF with conductance c = a. This is not what Table 4.2 and Figure 4.7
tell us however. The checkerboard conductance DGFF behaves more like a con-
stant conductance DGFF with conductance c > a. In the case of a = 0.5 and b = 1,
we have found c = 0.65. This could be attributed to the realisation that we do not
need to wait for percolation in the sub-DGFFs with conductance a. It suffices that
a small number of sites at the corners of the sub-lattices with conductance a are
occupied. This is illustrated in Figure 4.8 for the two-dimensional case. The same
idea holds for the three-dimensional situation. Except there we need at least two
occupied sites in the sub-lattice with conductance a to create a bridge between the
two percolating sub-lattices.

Based on this – again, not at all rigorous – argument to explain what we saw for
just one set of values (a = 0.5, b = 1 and c = 0.65), we have formulated a conjecture
in Conjecture 4.2.1.

55

Figure 4.8: The level-set for p ∈ (pb , pa). The red edges represent conductances b, the light-
grey edges conductances a with a < b. In the red sub-lattice we already have percolation,
but not yet in the light-grey sub-lattice. However, there just has to be one occupied site in
the light-grey sub-lattice positioned correctly, that creates the green bridge, and we have a
percolating cluster over the entire lattice.

Conjecture 4.2.1 (Checkerboard Conductances-Constant Conductances Equiva-
lence). Consider a three-dimensional lattice embedded with a checkerboard con-
ductance pattern as described in Section 2.3, with conductances a and b such that
a < b. The percolative behaviour of a Discrete Gaussian Free Field defined on this
lattice is the same as the behaviour of a Discrete Gaussian Free Field defined on
the same lattice but now with constant conductances with value c. This value is a
weighted average of a and b, i.e.

c = fa a + fbb

fa + fb
, (4.2)

where fa > fb .

56

5
KNOWN ISSUES AND

RECOMMENDATIONS

In Chapter 4, we already came across a number of problems with the code. We have
not been able to find a solution or sound explanation for some of these problems.
Let us list all these issues here. Apart from that, we will discuss a number of features
which could be helpful to incorporate in the case of further research.

As already observed in Section 4.1.2, computing the matrix Σ1/2
Λ

was a really
time-intensive task. Because of this we did not manage to sample DGFFs using
the method from Section 3.1.2 for a linear lattice size larger than N = 10. Indeed,
computing RN as defined in (3.13) already requires Σ1/2

Λ
for Λ a 20× 20× 20 box.

This task however, is perfect to perform in parallel. The big matrix Σ1/2
Λ

can be
divided into smaller submatrices, that can then be computed simultaneously. We
have not yet been able to make our code compatible with the HPC cluster of the
TU Delft. For further research using the method, we would recommend making
the necessary adjustments to the code in order to run it on a HPC cluster. This
would not only be advantageous for computing Σ1/2

Λ
, but also for the general RN -

computation. This computation was made up of calculating ΓN and Γ2N , averages
of the empirical second cluster moment over a large number of samples. Evidently,
the more samples we average over, the smaller the uncertainty in our final value
for RN . With parallel computing, we would be able to generate a large number of
samples simultaneously. The time it takes to find a value for RN with a reasonably
small uncertainty would be drastically shortened. This in turn makes simulations
with larger linear lattice sizes N more feasible.

Let us mention another point of interest. Every time we generated a DGFF us-
ing the CG sampler, the CG algorithm was initialised with a random vector y0 '
N (0, IN 3). According to (3.10), the resulting sample yk has variance IN 3+Pk D−1

k P T
k .

57

For the best approximation of A−1 after k iterations, we would expect that a yk with
variance Pk D−1

k P T
k gives the results the most similar to that of a real DGFF. Such a

yk could be found by initialising the CG algorithm with y0 = 0. However, we found
out during our simulations that initialising CG with y0 ' N

(
0, IN 3

)
yielded more

desirable results than initialising with y0 = 0. It seems as if the starting sample y0

has a significant influence on the shape of the sample yk CG comes up with after k
iterations. This is best explained by an image. In Figure 5.1, we can see two cross-
sections from samples yk returned by the CG algorithm. Figure 5.1a represents a
sample yk which is the result of a CG run with y0 'N

(
0, IN 3

)
and Figure 5.1b rep-

resents a sample yk returned by a CG run with y0 = 0. Both runs have stopping
tolerance 10−90 and N = 20.

(a) y0 'N (0, IN 3). (b) y0 = 0.

Figure 5.1: Cross-section of sample yk returned by the CG algorithm, initialised with (a) y0 'N
(
0, IN 3

)
and (b) y0 = 0.

One should notice two things. First of all, the height scale of both DGFFs. When
y0 ' N

(
0, IN 3

)
, the spin heights are spread out between -4 and 3. If y0 = 0, the

spin heights remain between -0.8 and 0.4. Second, the DGFF in Figure 5.1a has a
more noisy character; with several spins just having a completely different value
than their surroundings. This is in contrast with the DGFF in Figure 5.1b, where
we see little to no single spins standing out. As we said earlier, it seems as if the
starting sample is still explicitly present. This is strange, as we would expect that
after enough iterations, different starting values for y0 would yield the same kind
of result.

Let us conclude this Chapter with a number of recommendations. We already
mentioned that making the code compatible for parallel computing on a HPC clus-
ter would greatly enlarge the possibilities of the CG sampler. Apart from that, it
would be beneficial for the rigour of this paper if the experiment from Section 4.1.1
was repeated with an implementation of Hoshen-Kopelman that takes periodic
boundary conditions into account. Finally, Conjecture 4.2.1 has been formulated

58

based on an experiment which took only one pair of checkerboard conductances
a and b into account. It would be wise to repeat the experiment for different (a,b)-
pairs. Also looking at larger lattice sizes N and averaging over more samples for the
RN -computation is advisable. If with all these measures in place, Conjecture 4.2.1
still holds, an interesting question would be to find out whether the weights fa and
fb from (4.2) are constant, or perhaps dependent on N .

59

6
CONCLUSION

A very insightful part of studying level-set percolation on the Discrete Gaussian
Free Field (DGFF) is simulating such DGFFs. Various techniques already exist for
generating DGFFs on lattices with unit conductances between the lattice points.
However, for arbitrary conductances, there is no good alternative. In this project,
we studied and implemented a Gaussian sampler based on the Conjugate Gradi-
ents (CG) method, and asked ourselves the question if it could be that good alter-
native. Finally, to show the CG sampler’s flexibility concerning conductances, we
studied level-set percolation on a DGFF with a checkerboard conductance pattern.

We conclude that the CG sampler is a promising, efficient method, cut out for
approximately sampling high-dimensional Gaussian fields for which the inverse of
the covariance matrix is known and is sparse. This is certainly the case for DGFFs.
With the CG sampler, we were able to produce an approximation to a DGFF on a
small lattice with zero boundary conditions and constant conductances that co-
incided with a known method from the literature. Apart from that, the simula-
tions of the DGFF with checkerboard conductances allowed us to conjecture that a
checkerboard conductance DGFF with conductances a and b with a < b shows ap-
proximately the same percolative behaviour as a constant conductance DGFF with
conductance c. This conductance c is some weighted average of a and b, where we
expect the weight of a to be larger than the weight of b.

Important to mention however is that our program to generate a DGFF on a lat-
tice with given conductances in order to study level-set percolation on this DGFF,
does not come without problems. One issue we encountered was that whenever
the stopping threshold of the CG sampler was below a certain level, which de-
pended on the lattice size, the percolative behaviour drastically changed. Whereas
stopping tolerances above this level yielded better and better approximations of
a DGFF, once the tolerance became too small the approximations became worse

61

again. The only explanation we could give for this was that for these small enough
stopping tolerance, some kind of floating point error would start affecting the re-
sults. Finally, for further research we would recommend to make the code com-
patible with High Performance Computing clusters as soon as possible. This al-
lows consideration of larger lattices and smaller uncertainties due to larger sample
sizes.

62

REFERENCES

[1] Alberto Chiarini and Maximilian Nitzschner. “Disconnection and entropic
repulsion for the harmonic crystal with random conductances”. In: (2020).
arXiv: 2012.05230 [math.PR].

[2] Jean Bricmont, Joel L. Lebowitz, and Christian Maes. “Percolation in strongly
correlated systems: The massless Gaussian field”. In: Journal of Statistical
Physics 48.5-6 (Sept. 1987), pp. 1249–1268. DOI: 10.1007/BF01009544.

[3] S. Sheffield. “Gaussian free fields for mathematicians”. In: Probability Theory
and Related Fields 139 (2003), pp. 521–541.

[4] Djalil Chafaï. Random walk, Dirichlet problem, and Gaussian free field. Ac-
cessed: 2021-05-25.

[5] Sacha Friedli and Yvan Velenik. Statistical Mechanics of Lattice Systems: A
Concrete Mathematical Introduction. Cambridge University Press, 2017. ISBN:
978-1-107-18482-4. DOI: 10.1017/9781316882603.

[6] Maxime Vono, Nicolas Dobigeon, and Pierre Chainais. “High-dimensional
Gaussian sampling: a review and a unifying approach based on a stochastic
proximal point algorithm”. In: (Oct. 2020).

[7] M. Hestenes and E. Stiefel. “Methods of conjugate gradients for solving lin-
ear systems”. In: Journal of research of the National Bureau of Standards 49
(1952), pp. 409–435.

[8] Albert Parker and Colin Fox. “Sampling Gaussian Distributions in Krylov Spaces
with Conjugate Gradients”. In: SIAM Journal on Scientific Computing 34 (Jan.
2012). DOI: 10.1137/110831404.

[9] Vesselin Marinov and Joel Lebowitz. “Percolation in the Harmonic Crystal
and Voter Model in three dimensions”. In: Physical review. E, Statistical, non-
linear, and soft matter physics 74 (Sept. 2006), pp. 031–120. DOI: 10.1103/
PhysRevE.74.031120.

[10] Jacopo Borga. “Percolazione per insiemi di livello del Gaussian free field”. In:
(2018). URL: http://tesi.cab.unipd.it/57602/.

[11] Jean Jacod and Philip Protter. Probability Essentials. Springer, 2004. ISBN:
978-3-540-43871-7. DOI: 10.1007/978-3-642-55682-1.

[12] Elias M. Stein and Rami Shakarchi. Real Analysis: Measure Theory, Integra-
tion, and Hilbert Spaces. Princeton University Press, 2005. ISBN: 978-0-691-
11386-9.

63

https://arxiv.org/abs/2012.05230
https://doi.org/10.1007/BF01009544
https://doi.org/10.1017/9781316882603
https://doi.org/10.1137/110831404
https://doi.org/10.1103/PhysRevE.74.031120
https://doi.org/10.1103/PhysRevE.74.031120
http://tesi.cab.unipd.it/57602/
https://doi.org/10.1007/978-3-642-55682-1

[13] percolate. https://www.merriam-webster.com/dictionary/percolate.
Accessed: 2021-04-28.

[14] Kim Christensen. “Percolation Theory”. In: (2002).

[15] D. Stauffer and A. Aharony. Introduction To Percolation Theory: Second Edi-
tion. CRC Press, 1994. ISBN: 978-0748402533.

[16] Allen Hunt, Robert Ewing, and Behzad Ghanbarian. Percolation Theory for
Flow in Porous Media. Springer, 2014. ISBN: 978-3-319-03771-4. DOI: https:
//doi.org/10.1007/978-3-319-03771-4.

[17] Larry Riddle. Koch Curve. Accessed: 2021-07-06.

[18] H. Saleur and B. Derrida. “A combination of Monte Carlo and transfer ma-
trix methods to study 2D and 3D percolation”. In: Journal de Physique 46.7
(1985), pp. 1043–1057. DOI: 10.1051/jphys:019850046070104300. URL:
https://doi.org/10.1051%5C%2Fjphys%5C%3A019850046070104300.

[19] Alessandra Cipriani and Bart van Ginkel. “The discrete Gaussian free field
on a compact manifold”. In: Stochastic Processes and their Applications 130.7
(2020), pp. 3943–3966. ISSN: 0304-4149. DOI: https://doi.org/10.1016/
j.spa.2019.11.005. URL: https://www.sciencedirect.com/science/
article/pii/S0304414919301310.

[20] Alex Amenta. “Lecture Notes: Fourier Analysis”. In: (2019).

[21] Holden Lee. “Conjugate Gradient”. In: (2020).

[22] Gérard Meurant and Zdenek Strakoš. “The Lanczos and conjugate gradient
algorithms in finite precision arithmetic”. In: Acta Numerica 15 (Jan. 2006),
pp. 471–542. DOI: 10.1017/S096249290626001X.

[23] Tobin Fricke. The Hoshen-Kopelman Algorithm. Accessed: 2021-06-16.

[24] Heide H. Andersen et al. Linear and Graphical Models. Springer, 1995. ISBN:
978-1-4612-4240-6. DOI: 10.1007/978-1-4612-4240-6.

64

https://www.merriam-webster.com/dictionary/percolate
https://doi.org/https://doi.org/10.1007/978-3-319-03771-4
https://doi.org/https://doi.org/10.1007/978-3-319-03771-4
https://doi.org/10.1051/jphys:019850046070104300
https://doi.org/10.1051%5C%2Fjphys%5C%3A019850046070104300
https://doi.org/https://doi.org/10.1016/j.spa.2019.11.005
https://doi.org/https://doi.org/10.1016/j.spa.2019.11.005
https://www.sciencedirect.com/science/article/pii/S0304414919301310
https://www.sciencedirect.com/science/article/pii/S0304414919301310
https://doi.org/10.1017/S096249290626001X
https://doi.org/10.1007/978-1-4612-4240-6

A
SOME NOTIONS ON REAL AND

COMPLEX GAUSSIAN

DISTRIBUTIONS

In Chapters 2 and 3, we more than often use Gaussian random vectors. Section 3.1.1
also deals with complex Gaussian vectors. Because we constantly work with them in
this paper, several important properties of both real and complex Gaussian vectors
are listed in this Appendix.

65

A.1. GAUSSIAN RANDOM VECTORS

A LTHOUGH this has already been done in Definition 2.1.4 in the context of a
Gaussian Free Field, let us again define when an N -dimensional Gaussian vec-

tor x = (xi)N
i=0 is Gaussian.

Definition A.1.1. Let x = (xi)N
i=0 be an N -dimensional random vector. We call x a

Gaussian vector if for all vectors c = (ci)N
i=0, c · x :=∑N

i=1 ci xi is a Gaussian variable.
Note that c · x could have zero variance.

Recall that a random variable X is Gaussian with mean m ∈ R and variance
σ2 ∈R≥0 if it has the probability density function

fX (u) = 1p
2πσ2

e−
(u−m)2

2σ2 , u ∈R, σ2 > 0. (A.1)

If σ = 0, we speak of a degenerate Gaussian random variable, which is just the
constant random variable X = m.

If x is a Gaussian vector, we denote this by x ' N (µ,Σ). Here µ := E[x] =
(E[xi])N

i=1 is the mean of x and Σ is the covariance matrix of x. This N ×N matrix is
defined by its matrix elements Σ(i , j) = Cov(xi , x j) := E

[
(xi −E[xi])(x j −E[x j])

]
for

i , j ∈ {1, . . . , N }. The covariance matrix is symmetric and positive semi-definite, as
is shown in Theorem A.1.2.

Theorem A.1.2 (Properties of the covariance matrix). The covariance matrixΣ, de-
fined by Σ(i , j) = Cov(xi , x j) for i , j ∈ {1, . . . , N }, is symmetric and positive semi-
definite.

Proof. First note thatΣ(i , j) = Cov(xi , x j) = E[(xi −E[xi])
(
x j −E[x j]

)]= Cov(x j , xi) =
Σ(j , i), so Σ is indeed symmetric.

To show positive semi-definiteness, recall that the variance is a non-negative
quantity. In particular, for any constant vector c, Var(c · x) ≥ 0. It is however also
true that

Var(c · x) = E[(c · x −E[c · x])2]
= E

[(
N∑

i=1
ci xi −E

[
N∑

i=1
ci xi

])2]

= E
[(

N∑
i=1

ci (xi −E[xi])

)2]

= E
[

N∑
i=1

N∑
j=1

ci c j (xi −E[xi])(x j −E[x j])

]

=
N∑

i=1

N∑
j=1

ci c j Cov(xi , x j) = c ·Σc.

Thus c ·Σc ≥ 0 for any c. This means that Σ is positive semi-definite.

66

Just as for the Gaussian random variable X , we would like to define a density
function for the Gaussian random vector x. This is not always possible however, as
can be seen from Theorem A.1.3.

Theorem A.1.3. The Gaussian random vector x ' N (µ,Σ) has a density on Rn ,
given by (A.2), if and only if its covariance matrix Σ is regular, i.e. detΣ 6= 0.

fx (u) = 1

(2πdetΣ)N /2
e−

1
2 (u−µ)·Σ−1(u−µ). (A.2)

Proof. See Jacod and Protter, Proof of Corollary 16.2 [11].

Throughout this project, we often wish to sample a Gaussian vector with a cer-
tain covariance matrix C . To do that, we first sample a Gaussian x ' N (0, IN) and
then multiply it with some matrix A. This matrix A satisfied A AT =C . The random
vector Ax then turns out to have a normal distribution N (0,C). The reason this
works is Theorem A.1.4.

Theorem A.1.4. Let x ' N (µ,Σ) be a Gaussian vector. Then the random vector
y := Ax + b is again a Gaussian vector with mean Aµ+ b and covariance matrix
AΣAT , i.e. y 'N (Aµ+b, AΣAT).

We will prove this theorem using characteristic functions. Lemma A.1.5 will be
of help.

Lemma A.1.5. The random vector x is Gaussian with mean µ and covariance ma-
trix Σ if and only if its characteristic function is given by:

φx (u) := E[e ιu·x
]= e ιu·µ−

1
2 u·Σu (A.3)

Proof. See Jacod and Protter, Proof of Theorem 16.1 [11].

Proof of Theorem A.1.4. Suppose x 'N (µ,Σ) and let y = Ax+b. The characteristic
function of y is found to be:

φy (u) = E
[

e ιu·(Ax+b)
]

= e ιu·bE
[

e ι(AT u)·x
]

= e ιu·bφx (AT u)

(A.3)= e ιu·be ι(AT u)·µ− 1
2 (AT u)·Σ(AT u)

= e ιu·be ιu·Aµ−
1
2 u·AΣAT u

= e ιu·(Aµ+b)− 1
2 u·(AΣAT)u

By uniqueness of characteristic functions (Theorem 14.1 in [11]), we conclude that
y 'N (Aµ+b, AΣAT).

67

A.2. THE COMPLEX NORMAL DISTRIBUTION
In Section 3.1.1, we introduced the complex Gaussian vector z = x + ιy , where x
and y were independent and identically N

(
0, 1

2 IN
)
-distributed Gaussian vectors.

Such complex random variables (and vectors) are similar to real random variables
in many ways, however they do deserve a small discussion. Therefore, we first for-
mally introduce complex random variables and complex random vectors. After
that we will take a closter look at complex Gaussian vectors, to finish off with The-
orems A.2.7 and A.2.8. These are the main results that we use in Section 3.1.1. Our
discussion is based on the book of Andersen, Hojbjerre, Sorensen and Eriksen [24].

First of all, note that we again use the symbol ι to denote the imaginary unit.
In this discussion we work on the space CN of complex N -dimensional vectors. If
c ∈ CN , then we can write c = a + ιb, where a,b ∈ RN . It can easily be seen that

this yields an isomorphism [·] : CN → R2N , defined by: [c] = (
a b

)T
. We may also

write a complex matrix C ∈CN×N as C = A+ιB , where A,B ∈Rn×n are real matrices.
Furthermore, we define the partitioned matrix {C } ∈R2N×2N as:

{C } = {A+ i B} =
(

A −B
B A

)
It is easy to see that [C c] = {C } [c]. Finally, we work with the standard inner product
on CN . That is, for a = (ai)N

i=1, b = (bi)N
i=1 in CN we define a ·b := ∑N

i=1 ai bi = b∗a
as the inner product.

With this small toolset, we are able to now define complex random variables.

Definition A.2.1 (Complex random variable). Let X ,Y be real random variables.
Then the random variable given by Z = X + ιY is a complex random variable.

We will only consider complex random variables in L 2(C), i.e. complex ran-
dom variables with E[Z Z] = E[|Z |2] <∞, where E is of course the expectation oper-
ator of a real random variable. For complex random variables, we introduce three
important operators.

Definition A.2.2 (Operators of complex random variables). Let Z = X + ιY be a
complex random variable. Then we define the expectation operator, E : L 2(C) →C,
of Z by E[Z] = E[X]+ ιE[Y]. Now also let W be a complex random variable. We de-
fine the covariance operator, Cov : L 2(C)×L 2(C) →C, of Z and W by Cov(Z ,W) =
E
[

(Z −E[Z])(W −E[W])
]

. Finally, we denote by Var : L 2(C) → R≥0 the variance of

Z , defined by Var(Z) = Cov(Z , Z).

We can generalise the previous notions to multidimensional objects, called
complex random vectors.

Definition A.2.3 (Complex random vector). We call the N -dimensional vector x =
(xi)N

i=1 an N -dimensional complex random vector whenever xi is a complex ran-
dom variable for 1 ≤ i ≤ N .

68

For these complex random vectors, we can again define expectation, covari-
ance and variance operators, just as is done for real random vectors. Moreover,
we can define a so-called complex covariance structure. Immediately after that we
can finally define univariate complex normal distributions.

Definition A.2.4 (Complex covariance structure). Let z be an N -dimensional com-
plex random vector. The 2N -dimensional random vector [z] has a complex covari-
ance structure if there exist matrices Σ, A ∈RN×N such that

Var([z]) =
(
Σ −A
A Σ

)
.

Definition A.2.5 (Univariate complex normal distribution). Consider a complex
random variable Z = X + ιY . Then Z has a univariate standard complex normal
distribution if and only if

(i) [Z] has a bivariate normal distribution on R2.
(ii) [Z] has a complex covariance structure.

(iii) E[Z] = 0 and Var(Z) = 1.
That is, [Z] ' N

(
0, 1

2 I2
)
. We write that Z ' Nc (0,1). Now, if W = µ+σZ is a com-

plex random variable, with µ ∈C and σ ∈R≥0, we say that W has a univariate com-
plex normal distribution. We denote this by W 'Nc (µ,σ2).

It can be shown that W 'Nc (µ,σ2) if and only if [W] 'N
(
[µ], σ

2

2 I2

)
. Using this

and Lemma A.1.5 we can first write down the characteristic function for [W] and
then for W itself:

φ[W]([u]) := E[e ι[u]·[W]]= e ι[u]·[µ]− 1
2 [u]· σ2

2 I2[u] = e i [u]·[µ]− σ2
4 [u]·I2[u], for [u] ∈R2.

The reader can convince him- or herself that this is equivalent to:

φW (u) := E
[

e ιRe(uW)
]
= e ιRe(uµ)− σ2

4 uu , for u ∈C. (A.4)

We can now define complex normal vectors, in a similar fashion to Definition A.1.1.

Definition A.2.6 (Complex Gaussian vector). An N -dimensional complex random
vector z = (zi)N

i=1 has a complex normal distribution if for all c = (ci)N
i=1 ∈ CN , c · z

has a univariate complex normal/Gaussian distribution.

From Definition A.2.6 it follows that each zi is a complex normal random vari-
able. Consequently, E[zi] and Var(Zi) exist and are finite, such that µ := E[z] ∈ CN

and Σ := Var(z) ∈CN×N exist. We write z 'Nc (µ,Σ).
We are ready to prove our two main results, Theorem A.2.7 and Theorem A.2.8.

Similar to the proof of Theorem A.1.4, we will make use of characteristic functions
for the first of the two. We can generalise (A.3) to the multidimensional case to find
that for a complex Gaussian vector z with mean µ and covariance matrix Σ:

φz (u) := E
[

e ιRe(u∗z)
]
= e ιRe(u∗µ)− 1

4 u∗Σu , for u ∈CN . (A.5)

69

Theorem A.2.7. Let z ' Nc (µ,Σ), let b ∈ CN and let A ∈ CN×N . Then the random
vector w := Az +b has distribution Nc (Aµ+b, AΣA∗).

Proof. Again, we make use of characteristic functions. Suppose that z ' Nc (µ,Σ)
and let w = Az +b. We compute φw (u) for u ∈CN , just as before:

φw (u) = E
[

e ιRe(u∗(Az+b))
]

= e ιRe(u∗b)E
[

e ιRe((A∗u)∗z)
]

= e ιRe(u∗b)φx (A∗u)

(A.5)= e ιRe(u∗b)e ιRe(u∗Aµ)− 1
4 u∗AΣA∗u

= e ιRe(u∗(Aµ+b))− 1
4 u∗(AΣA∗)u

Also for complex random vectors, we have uniqueness of characteristic functions
(Theorem 1.9 in [24]), so w 'Nc (Aµ+b, AΣA∗), as required.

At a certain point in Section 3.1.1, we take the real part of some complex Gaus-
sian vector w . We only know that w 'Nc (µ,Σ). Can we retrieve the distribution of
Re(w) from this? Theorem A.2.8 will help us answer this question.

Theorem A.2.8. An N -dimensional complex random vector w has a normal dis-
tribution Nc (µ,Σ) if and only if [w] has distribution N

(
[µ], 1

2 {Σ}
)
.

Proof. Suppose that w 'Nc (µ,Σ). Then we can find a matrix A such that A A∗ =Σ.
If we let z ' Nc (0, IN), then Theorem A.2.7 tells us that w and Az +µ have the
same distribution. Consequently, [w] and [Az+µ] = {A} [z]+[µ] also have the same
distribution. Now, if we generalise our earlier remark right under Definition A.2.5
to the multidimensional case, we can easily see that:

z 'Nc (0, IN) if and only if [z] 'N

(
0,

1

2
I2N

)
.

By Theorem A.1.4, we know that {A} [z]+ [µ] and so [w] as well have distribution
N

(
[µ], {A} 1

2 I2N {A}T
) = N

(
[µ], 1

2 {A}{A}T
)
. We claim however that {A}{A}T = {Σ} as

Σ = A A∗. But then [w] ' N
(
[µ], 1

2 {Σ}
)
. Since the converse is analogous, this is

the result we wanted. It only remains to show our claim. To this end, we write
A = B + ιC . This implies that Σ = A A∗ = (B + ιC)(B − ιC) = (B 2 +C 2)+ ι(C B −BC).
Now observe that:

{A}{A}T =
(

B −C
C B

)(
B C
−C B

)
=

(
B 2 +C 2 BC −C B

C B −BC B 2 +C 2

)
=Σ,

which finishes the proof.

70

Determining the distribution of the real part of some zero-mean complex Gaus-
sian vector with a real covariance matrix is now really just a special case of Theo-
rem A.2.8.

Corollary A.2.9. Let z ' Nc (0,Σ) be an N -dimensional complex Gaussian vector,
with Σ a real covariance matrix. Then Re(z) 'N

(
0, 1

2Σ
)
.

Proof. Note that Re(z) are the first N entries of [z]. By Theorem A.2.8, and since Σ
is real, we know that: (

Re(z)
Im(z)

)
= [z] 'N

(
0,

1

2

(
Σ 0
0 Σ

))
.

This implies that Re(z) 'N
(
0, 1

2Σ
)
, as required.

71

B
THE PROJECT ’S GITHUB PAGE

This Appendix contains a reference to the Github repository of this project. Moreover,
some explanation of the most important scripts and functions can be found here.

73

S EVERAL lines of code have been written during the course of this project. In this
Appendix, we will briefly cover the most relevant scripts and commands. The

interested reader can find all of the Python code in the Github repository modGFF.
This repository can be accessed via the link

https://github.com/PimKeer/modGFF.

conductances.py
In order to generate the checkerboard pattern as in Figure 2.4 for the conductances
on an arbitrary 3D lattice with linear size N (with N a multiple of 10), we created
the function wxyz(N, a, b). Here N is the linear size of the lattice, and a,b are the
respective values of the two types of conductances. Each lattice point i is linked
with three conductances. These conductances correspond to the edges contain-
ing i in the positive x-, y- and z- directions. The function returns three arrays,
wx, wy and wz. These arrays all have length (N +2)3. At index i , each array holds
the conductance in either the x-, y- or z-direction associated with lattice point i .
This is illustrated in Figure B.1. Note that the boundary points are also included
in these arrays (explaining the +2). Also note that we are using the same indexing
convention as described in Section 3.3.1, but now including the boundary points.

Figure B.1: The lattice site i and its nearest-neighbours, with corresponding conductances.
The indices are in black, the conductances are in red. Notice that we are working in an (N +
2)× (N +2)× (N +2) lattice, i.e. the (zero) boundary is included.

matrices.py
This script contained all functions that perform matrix-vector multiplications. They
all work out the product Ax, where x is the input vector and A the matrix of inter-
est. The advantage of working with a function specifying the matrix-vector mul-
tiplication instead of the whole matrix is that we only need one vector. In a lat-
tice of linear size N , the precision matrices have dimensions N 3 × N 3. For large
N this is almost impossible to store. It is also a waste, as most matrix entries are

74

https://github.com/PimKeer/modGFF

often zero. This is certainly the case in this project, as we are only considering
nearest-neighbour interactions. The most important matrix-vector product func-
tion is C(u, wx, wy, wz, N). It takes as input an (N +2)3-dimensional vector u,
three (N+2)3-dimensional conductance vectors wx, wy and wz and the linear lattice
size N . The vector x is zero on the boundary. The function C() returns the matrix-
vector product of C x, with C = 1

2d∆Λ the precision matrix for the DGFF found in
Section 2.1.2. This is written down in Algorithm 3. The same indexing is used as in
Figure B.1.

Algorithm 3: Matrix vector multiplication with C = 1
2d∆Λ.

Input: a linear lattice size N , an (N +2)3 ×1 vector u that is zero on the
boundary and (N +2)3 ×1 vectors w x , w y and w z .

Output: (N +2)3 ×1 vector v =Cu with zero boundary.
for i ∈ {

0,1, . . . , (N +2)3
}

do
if i is the index of a boundary point then

set vi = ui = 0;
end
else

set vi equal to:

vi =1

6
ui

(
w x

i +w x
i−1 +w y

i +w y
i−(N+2) +w z

i +w z
i−(N+2)2

)
− 1

6
ui+1w x

i − 1

6
ui−1w x

i−1 −
1

6
ui+(N+2)w y

i − 1

6
ui−(N+2)w y

i−(N+2)

− 1

6
ui+(N+2)2 w z

i −
1

6
ui−(N+2)2 w z

i−(N+2)2 ;

end
end

cluster.py
The cluster.py script contains our implementation of the Hoshen-Kopelman al-
gorithm, as discussed in Section 3.3.1. The function cluster(x, N) needs a vec-
tor x of size N 3 consisting of zeros and ones. This vector represents a lattice of
linear size N . If site i in this lattice is occupied, then the i -th entry of x equals 1,
and 0 otherwise. As output, cluster() gives an array of size N 3, containing the
cluster labels for each lattice site.

genGFFSheffield.py
The validity checks of the Hoshen-Kopelman algorithm and the RN -computation
were performed by generating DGFFs with periodic boundary conditions. This was

75

done using the script genGFFSheffield.py, which contains functions for creating
2D and 3D samples of a DGFF on an arbitrary m×n or m×n×o lattice respectively.
These samples are based on the methods from Section 3.1.1.

genGFFChafai.py
This is a very similar script to genGFFSheffield.py, except that one can create
DGFF samples with zero boundary conditions here. This is done using the method
treated in Section 3.1.2. With the function savesqrtG(N), the script allows to com-
pute the matrix Σ1/2

Λ
for Λ= {1, . . . , N −1}3. This matrix can be stored and accessed

later on. We can then generate as many samples as we want by employing (3.4).
This is done with the command genGFFChafai2(N,sG), where N is the linear lat-
tice size and sG is the matrix Σ1/2

Λ
, computed beforehand.

cg.py
The cg.py script is the heart of this project. In here, one can find the function
cgpf0(C, wx, wy, wz, N, epsilon, kmax). It returns an (N +2)3 array con-
taining an approximate sample of a N

(
0,C−1

)
-distribution on an N×N×N lattice,

with zero boundary conditions. To do this, cgpf0() follows Algorithm 1. The func-
tion has a number of arguments. First of all, C is the routine working out matrix-
vector products, where the matrix is the precision matrix from which we should
sample. In the setting of this project, C was set to 1

2d∆Λ most of the time. The arrays
wx, wy and wz again contain all the conductances in the lattice. N is the linear lat-
tice size. The function cgpf0() accommodates two types of stopping criteria. The
first one is the stopping tolerance epsilon. Once ||r k ||2 < epsilon, the algorithm
stops and returns the latest approximation. The second one, kmax, specifies a max-
imum amount of iterations. Once the algorithm has executed this many iterations,
it stops as well. Important to note is that the output of cgpf0() also contains the
zero boundary. We are often only interested in the inner N ×N ×N region of the
lattice. To this end, cg.py also contains the function cut(x, N, n). This routine
removes the outer n layers from an N×N×N array x.

THE main_.py SCRIPTS

Finally, there are a number of scripts to run specific simulations. Most of these
perform the computation of RN to find the percolation threshold. These scripts
contain some variant of the function gamma(x, h, N). Given some N × N × N
random vector x (in our case a realisation of a DGFF), this function performs two
tasks. First, it determines the level-set with threshold h, as defined in Section 2.2.
Second, it computes the empirical second moment of the cluster size N 3 ∑

s s2ns .
This is in fact the quantity ΓN defined in Section 3.3.2, but as an average over one
sample. The name of these scripts is given by main_ followed by the name of the
simulation (such as checkerboard for the runs with checkerboard conductances,
or cgbenchmark to compare the CG sampler with Chafaï’s method.

76

	Abstract
	Introduction
	Prerequisites
	The Gaussian Free Field
	Construction
	The Gaussian Free Field is a Gaussian Field

	Level-set Percolation
	Behaviour close to the critical value

	The DGFF with Random Conductances

	Generating the Discrete Gaussian Free Field
	Sampling a standard GFF with eigenfunctions
	The Periodic Boundary Case
	The Zero Boundary Case

	Adding Random Conductances: CG Sampling
	The CG Linear Solver Algorithm
	From Solver to Sampler

	Analysing the Percolative Behaviour
	Clustering: The Hoshen-Kopelman Algorithm
	Finding the percolation threshold

	Simulations
	Checks of Validity
	Checks for Hoshen-Kopelman and RN-computation
	Comparing the CG sampler with the Fourier-analytic methods

	The Checkerboard Pattern

	Known Issues and Recommendations
	Conclusion
	References
	Some Notions on Real and Complex Gaussian Distributions
	Gaussian Random Vectors
	The Complex Normal Distribution

	The Project's Github Page

