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Abstract
The study of the environmental transition of the aviation sector calls for prospective traffic scenarios.

Detailed traffic and emissions inventories are often needed to refine the available analyses and to enable

the simulation of regionalised scenarios. In the past studies, these are generally based on commercial,

proprietary traffic data, making their dissemination problematic and reducing the reproducibility of the

science produced. Open-source alternatives do exist, but with limited geographical coverage. This paper

presents a method to aggregate different sources of flight information, in order to obtain an open-source

air traffic dataset for 2019. Then, missing flight information is identified and completed using an airline

route database built fromWikipedia parsing and related socio-economic data. After that, several reference

datasets are used to evaluate the accuracy of the extended open-source dataset. Despite varying accuracy

for different routes, major traffic flows are reasonably well estimated at the country and continental levels.

Finally, the CO2 emissions are obtained using an existing aircraft performance surrogate model, and the

accuracies are examined compared to the results from previous studies.

Keywords: Open-data; Emissions; Air Traffic

Abbreviations: ASK: Available Seat Kilometres, IATA: International Air Transport Association, ICAO: Internation Civil

Aviation Organisation

1. Introduction

In the context of climate change, it is necessary to quickly reduce greenhouse gas emissions to limit

global warming consequences, and it requires the implementation of mitigation strategies across

all business sectors [1]. Although commercial aviation currently contributes to only 2.6% of those

emissions, the trend is for this proportion to increase [2]. This is due to the air traffic expected

growth [3, 4] and the limited technological options to increase aircraft efficiency [5]. Achieving

deeper decarbonisation requires in particular the use of Sustainable Aviation Fuels (SAF) such as

biofuels, electrofuels or hydrogen if produced using low-carbon energies [6, 7]. However, this raises

other issues, such as the consumption of resources like biomass and electricity, which other sectors

are also looking to as means of decarbonisation [8].

Some of these mitigation measures are likely to be more expensive for the air transport industry. For

example, the widespread use of sustainable aviation fuels could increase the operating expenses of
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airlines by around 40% by 2050 [9], meaning that public policies such as taxes or subsidies will be nec-

essary to foster their adoption. Different options exist to allow the implementation of such policies,

such as blending mandates or aircraft efficiency regulations. The various low-carbon energies con-

sidered are not all equivalent, from both a sustainability and an economic point of view [9]. Choosing

the adequate option could lead to substantial improvements in the energy transition efficiency [10].

This highlights the need for a detailed multidisciplinary evaluation of different prospective energy

transition scenarios. Such work is done by both industrial actors [6, 7] and academia [11, 12, 13, 14,

15, 16].

A common requirement for prospective scenarios is to have emissions inventories in a base year

from which trends can be projected to estimate future emissions. Such inventories could be based

on detailed commercial flight schedule databases that are not open-source [17] or on the total fuel

consumption of the sector, for instance from International Energy Agency (IEA) [18]. This solution,

despite being open-source and allowing free dissemination of data, is not detailed enough to capture

the geographical disparities of air transport and the associated different growth perspectives [3,

4]. Similarly, regional analysis capacities could be relevant when it comes to biomass or electricity

characteristics or to better replicate the various coverages of existing legislative measures.

This work presents a methodology for estimating air traffic flows for a given year (2019) with an

acceptable level of accuracy, based exclusively on open-source data. This paper is also part of the

development of AeroMAPS, a dedicated open-source prospective scenario simulator used for in-

stance in [19], because it especially aims at developing its regionalised assessment capacity in the

future.

First, the data sources used are introduced and the data pipeline used is presented step by step in

Section 2. The resulting dataset is then evaluated and validated in Section 3, before concluding

remarks and perspectives are given in Section 4.

2. Method

2.1 Data collection and aggregation methodology

The overall process for obtaining an open-source database is described in this section. 2019 has been

chosen as the reference year for building this database, as the following 3 years are largely disrupted

by the consequences of COVID-19 [20]. The main objective of the process is to obtain, for each

air route, the associated traffic volume, and if possible, the aircraft used to ultimately estimate the

associated CO2 emissions. The traffic metric used is the number of seats available on each route,

rather than the number of passengers because the former is a better proxy of the number of flights.

This section summarises the overall process represented on Figure 1. The different steps are briefly

described in the following paragraphs, and in more detail in dedicated sections.

There are numerous open-source datasets available, but none of them provide global coverage, which

is only available from commercial sources. They are described in Section 2.2. As a first step, the cho-

sen approach is to combine those datasets in order to achieve the greatest possible spatial coverage.

In order to address overlapping sources, a prioritisation logic based on source characteristics is in-

troduced.

Although the completeness of the combined dataset compared to individual sources is improved, it

remains incomplete. To fill this gap, a specific method is proposed in Section 2.3. A comprehensive

but disaggregated data source is used: the collaborative encyclopaedia, Wikipedia. In fact, there is

a recommended design pattern for airport pages which includes a section that lists all the destina-

tions served from the airport, along with the airlines [32]. This information is easily accessible to

the author of an airport’s Wikipedia article, as it is often available on the website of the airport.
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Figure 1. Traffic dataset creation flowchart.

Automated retrieval of these lists is relatively easy, provided that the list of Wikipedia URLs associ-

ated with commercial airports is available. This process provides a much more comprehensive list

of routes than was previously available. This is described in Section 2.3.1. However, there is no

information on the seating capacity associated with each route or the frequency of flights. It must

therefore be estimated. To do this, the open-source data mentioned above is used again, this time

to train a regression model. It uses economic, geographical and statistical data associated with the

airport and/or country of origin and destination of each flight. The sources and models used are

described in Section 2.3.2 and 2.3.3. Once the training is complete, it is possible to determine the

traffic on each route found previously.

Concerning traffic data, the final step is to aggregate this estimation with open-source data, priori-

tising the latter where available. The method is described in Section 2.4.

Lastly, CO2 emissions are computed as explained in Section 2.5. If the aircraft model is known, a

surrogate aircraft performance model [33] is used, and otherwise, the fleet average consumption per

seat at the corresponding distance is used.

2.2 The starting point: available open-source data

Various open-source flight data are available online, as shown in Table 1, but each one has its own

limitations. The estimation of air transport CO2 emissions often do not require detailed trajectory

of individual flights. Instead, a relatively aggregated level of data is usually sufficient.

The first category of sources comes from administrations (Adm.). The format offered by [21] is

particularly adapted, with each data item compiling all the monthly flights of a given airline, with

a given aircraft type, on a given route and with the associated payload. However, the extent of the

database is limited to flights going to and from the United States of America (USA). A relatively

similar dataset is made available by the World Bank [24], and includes all the international flights.

The drawback in this case is that the database does not provide information on the airlines and

aircraft used. It is not a maintained database, with only a single edition, with the most recent data

items corresponding to 2019, which corresponds to the studied year in this paper. Brazilian [25]

and Australian [26] civil aviation authorities also provide such information with various levels of

information as it can be seen in Table 1.
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The other category of sources comes from radar or ADS-B monitoring of flights. This is offered

by [22, 23], the latter being open-access for academia but not fully open-source. The former is com-

pletely open-source and based on a collaborative ADS-B collection network but still lacks coverage
1
.

Those radar sources do not feature payload information but they provide information on the aircraft

used and its operator contrary to most administrative sources. In this case, the payload can be re-

trieved using the average seating capacity of each aircraft type (using an aircraft database made

available for academia
2
) and average load factors.

Table 1. Various characteristics of the open-source references considered.

Source Coverage Collection Route A/C Type Airline Payload Ref.

BTS T-100 To/from USA Adm. ✓ ✓ ✓ ✓ [21]
OpenSky Global (partial) Radar ✓ ✓ ✓ - [22]
Eurocontrol To/from EU Radar ✓ ✓ ✓ - [23]
World Bank International Adm. ✓ - - ✓ [24]
ANAC Brasil Adm. ✓ - ✓ ✓ [25]
AUS Stats Australia Adm. ✓ - - ✓ [26]

2.3 Filling the gaps: estimating traffic on unreferenced routes
2.3.1 Creating a route database

As explained in the introduction of this section, the Wikipedia pages of airports are used as a

source to establish a complete route network, without however knowing the traffic on each route.

The first step is to reference all airports served by commercial airlines available on Wikipedia. A

community-based list of airports served is available for each continent [34]. The related URLs of

airport Wikipedia pages are retrieved by parsing the list using an HTML analysis library
3
. For each

airport found, another Python script opens the URL and analyses the HTML content of the page to

find the "Airline and Destinations" section. This section contains a table with the Wikipedia URLs

of all the airports served by each airline from the explored airport. This data is stored and, after

iterating over all the airports, a complete route database can be established. The associated code and

further explanations on this data parsing step are given in the associated Jupyter Notebooks (see

Reproducibility statement).

Note that an important limitation of the process lies in the dynamic nature of Wikipedia pages,

which are constantly updated by the community. No viable option was found to extract the data at

a given point in the past, and therefore the parsed route database is used as it was in April 2023.

Another important point to note when working with Wikipedia is that, despite the community’s

proofreading efforts, errors may still persist in some airports. Others may be missing from the list

of airports used in the first place, which was subsequently merged with the list of destinations to

reduce errors.

2.3.2 Route database feature enrichment

The previously established list of airports is enriched by adding relevant features to build a regression

model, using routes included in the open-source data to train a model.

The first relevant set of features is directly related to each airport. Besides collecting airport’s des-

tinations in the previous step, the passenger traffic, aircraft movements and airport codes of each

1
The actual coverage can be seen on https://opensky-network.org/network/facts

2
https://www.planespotters.net

3
https://pypi.org/project/beautifulsoup4

https://opensky-network.org/network/facts
https://www.planespotters.net
https://pypi.org/project/beautifulsoup4
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airport are also collected on the Wikipedia pages of the airport. A Wikidata item is also linked to

each airport page
4
. Similar data (for example, annual passenger traffic, ICAO and IATA codes) can

be found, while an advantage of Wikidata is that the fields are dated, compared to Wikipedia "last-

year available" information. Not every airport has all these features and the list is filtered to retain

only airports with an IATA code. Airport geographical coordinates, countries and continental codes

are added by merging an airport database [35] with the airport list. When it comes to estimating

the traffic on a given route, besides the airport traffic itself, the neighbouring population of airports

could be relevant, especially when the airport traffic information is not available from Wikidata or

Wikipedia sources. A global population dataset [30] is used to determine the population in the vicin-

ity of airports at three levels (in hexagons inscribed in 30, 70 and 150 km radius circles). Similarly,

the number of competing airports in the same vicinity regions is calculated.

The second group of features used refers more to the countries themselves. With a correlation

between the number of kilometres flown per inhabitant and the country’s wealth [36], some socio-

economic metrics are used. The Gross Domestic Product (GDP) per capita (Power Purchase Parity)

is used to capture the raw wealth of each country [29]. The inequality structure is captured by the

Gini coefficient of incomes [29] and the Inequality-adjusted Human Development Index (IHDI) [31].

Since tourist countries are more likely to be served by more flights, the number of inbound and

outbound tourists, as well as the share of tourism in the exports of each country is also used as a

feature [29]. Their surface and their insularity are also used because one can think that the size of

the country affects the number of domestic flights [28, 29].

Those airport/country-related features are added to the previous airport dataset. The completed

airport database is merged into the route database and route-related features are added to the dataset.

This final group of features deals with bilateral relations between airports on the different routes.

These include the bilateral trade flows [27], the number of airlines serving each route (established

during the Wikipedia list parsing) and the great circle distance between the two airports.

2.3.3 Traffic estimation model

The route database is completed by a dependent variable: in this case, the number of seats available

on each route. To do so, the open-source datasets described in Section 2.2 are used. They are merged

into the Wikipedia-parsed route database. Note that trying to infer the aircraft type used or its

operator was not achieved for the sake of simplicity.

For the values taken by the dependent variable, it is more suited to use the various administrative

sources. Indeed, using radar sources requires converting a number of flights in a number seats

offered per route with average aircraft capacities and load factors, which reduces the data accuracy.

Moreover, in the case of [22], a general trend towards traffic underestimation was found when the

concerned relation was also included in another dataset. Figure 2 demonstrates this trend comparing

radar data with BTS data, and the same trend is observed when comparing with the World Bank

dataset. It could be explained by the fact that only a partial number of flights on a given route were

detected by the ADS-B collection network. Indeed, either the origin/destination or aircraft could

be unknown (or mismatched) for some flights on a route, resulting in a capacity underestimation

once data is aggregated and compared to an administrative complete source. Note that OpenSky

coverage has surely been improved since 2019. The same phenomenon can be seen for Eurocontrol

data although with a different pattern: either the data is well correlated, or not at all, suggesting

that some individual flights were included in the Eurocontrol dataset without being in its nominal

coverage zone. Note that the joint coverage of BTS and Eurocontrol datasets is limited to only the

Europe-USA flights, explaining the relative scarcity of data points in the comparison of Figure 2.

4
For instance, Toulouse-Blagnac item can be found at: https://www.wikidata.org/wiki/Q372615

https://www.wikidata.org/wiki/Q372615
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Figure 2. Number of seats per route: radar data [22, 23] comparison with BTS [21]. Contains only data in both datasets.

The priority order retained is thus [21, 24, 25, 26, 23, 22], using first the administrative although less

detailed sources and then the radar sources. This is achieved because only the dependent variable is

of interest at this point and not the other details provided by the dataset.

After merging those sources, 41% of theWikipedia-scrapped routes remain traffic-undetermined and

will be estimated. To do so, several regression methods are tested using the 59% traffic-determined

routes and a typical 80%-20% train-test data split.

First, a linear regression is performed using Eq. (1), where SAB are the seats offered between cities

A and B, αi the regression coefficient relative to feature Fi. The results are inadequate despite an

acceptable r2 for the purpose (between 0.3 and 0.5, depending on the train/test split). Indeed, a simple

linear regression induces some negative estimates. It means those values should be forced to zero

afterwards not to include "negative" seats available. Moreover, very highly frequented routes are

highly underestimated as it can be seen in Figure 3. Since no particular cautionwas taken in selecting

non-colinear features, regularisation techniques (lasso regularisation) are tested without improving

the metrics. In fact, without regularisation, many coefficients are already null. The relationship

between the dependent variable and the predictors therefore appears to be non-linear.

SAB,lin = α0 + α1F1 + ... + αnFn (1)

Then, a reduced gravity model, given in Eq. (2) where PK is the population in city K , IK the income

per habitant, DAB the distance between two cities and xP , xI , xD the relative log-linear regression co-

efficients, is tested to simply account for potential non-linearities, but it is also insufficient (Figure 3).

A very low r2=0.05 is found. More features could have been added to improve this, with however

large restrictions on the data entries used (no zeros allowed). This path was not investigated.

SAB,log–lin =
(PA × PB)xP × (IA × IB)xI

DxD
AB

(2)

Instead, more sophisticated machine learning methods are tested, starting with a random forest[37].

This combines several weak random regression trees to produce a reliable estimator of the dependent

variable little prone to overfitting. The r2 is improved to 0.7 (depending on the train-test split).

Compared to the linear regression, there are no more negative estimates. However, the random

forest regressor does not handle missing values (NaN), just like previous regressors. Therefore,
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data entries with missing features must be removed from the dataset, or the missing feature can

be imputed arbitrarily (using for instance a defined quantile: here the first 1000-quantile was used,

following the idea that missing features are more likely to be found on small airports).

Some regression algorithms that also handle missing values could be used to avoid this intervention

on the dataset. It is the case of XGBoost [38], a tree-based gradient-boosted regression method.

XGBoost was tested and provided fast and slightly improved results over the random forest. The

fast training speed allowed testing on several random train-test splits and the r2 is between 0.65 and

0.75 on most tests. A specific loss function (following a Tweedie distribution) was chosen to prevent

negative estimates and to allow large amounts of routes to have low traffic.
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R²: 0.05
RMSE: 413880
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RMSE: 193506

R²: 0.72
RMSE: 190339

Figure 3. Seat capacity estimation: regression techniques test.

Due to its ease of use and to avoid missing feature imputation (not having a feature is information

in itself), the XGBoost regressor is selected to estimate the number of seats on unknown routes. It is

trained a last time on the whole known dataset, before its final usage on traffic-undetermined routes.

The relative importance of each feature used by the regression model is given in Appendix 1.

2.4 Final dataset aggregation

This section presents the final dataset aggregation method which consists of two stages.

In a first step, the open-source databases mentioned in Section 2.2 are used again, but this time as a

way to construct an aggregated database combining the different sources rather than to complete the

Wikipedia-built route database. The aggregation logic differs from the one given in Section 2.3.3. In

this previous case, the accuracy of the dependent variable (number of seats available per route) was

of interest rather than the exact model of aircraft flying each route. However, if one is interested

in CO2 emissions as a primary goal, it is more relevant to have access to the aircraft type, rather

than the exact payload. Indeed, the surrogate fuel burn model used, which is the one preferred

for accurate estimations (see Section 2.5), requires the aircraft type and the flight distance, not the

payload. Moreover, having as much aircraft and airline information as possible could be of interest

in performing airline network analysis for instance. This means that the radar sources should be

favoured over the administrative sources. To avoid the underestimation phenomenon described in

Section 2.3.3 while keeping aircraft information, radar sources are prioritised, but with an adminis-

trative source as a validation backup. This backup is used to decide if the radar data is chosen or not

for each route in the aggregated dataset. If the gap with the backup is too high, the administrative

source is used, losing the aircraft-type information. The priority order is [21, 22, 23, 25, 24, 26].

In a second step, the estimated data from Section 2.3.3 is used to complete the route database with

the additional routes missing in the open-source databases. Since the scope of this work aims at

having a relatively reliable estimate of air traffic at the regional level rather than the route level, an
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extra scaling step is performed on these estimated data. It consists in using once again the passenger

traffic information of each airport PAXAPi parsed on Wikipedia. Once all flights PAXFLAPi–APj of open-

source data going to or from this airport are accounted for, there could be a residual traffic ∆PAXAi
as

shown in Eq. (3). This value should correspond to the estimated data. In this case, γPAX ,APi of Eq. (4)

would be equal to 1. If this is not the case, in an iterative process, each route capacity is multiplied by

its origin and destination airport scaling factor as shown in Eq. (5). Bounds are specified to restrict

this relatively rough process. It converges very quickly (8 rounds) to a minimal residual three times

lower than originally. The effect on airport residuals is shown in Figure 4. Note that the process

could degrade the route-level accuracy by altering the results obtained with the estimator.

∆PAXAPi
= PAXAPi –

∑︁
Open–source,APj

PAXFLAPi–APj (3)

γPAX ,APi = ∆PAXAPi
/

∑︁
Estimated,APj

PAXFLAPi–APj (4)

PAX ∗
FLAPi–APj

= PAXFLAPi–APj · γPAX ,APi · γPAX ,APj (5)
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Figure 4. Estimated flights scaling effect on airport passenger traffic residual.

Finally, the corrected estimated data is aggregated on top of the open-source data. The number of

seats attributed to each source is given in Table 2.

Table 2. Final source distribution in the compiled dataset.

Source BTS OpenSky Eurocontrol W.Bank ANAC AUS. Estimation Total

Mn Seats (%) 1295 (23.2) 207 (3.7) 1346 (24.1) 862 (15.5) 133 (2.4) 69 (1.2) 1657 (16.5) 5570
Bn ASK (%) 3027 (28.4) 551 (5.2) 2738 (25.7) 2338 (21.9) 172 (1.6) 79 (0.7) 1758 (16.5) 10664

It is also interesting to compute the Available Seat Kilometres (ASK), which is a widely used traffic

metric. It is obtained by multiplying the number of seats available on each route by the correspond-

ing great-circle distance.
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2.5 From traffic to fuel burn to CO2 emissions

The previous work focused on estimating traffic data on each route. The process of estimating the

associated fuel burn requires using an aircraft fuel burn model. Several models are available at

different levels of fidelity. For instance, OpenAP [39] is a detailed open-source model, but requires

the real flight path to determine the aircraft fuel burn. This level of information is not available in

the current dataset. Therefore, a very simplified surrogate model, FEAT [33], is used. It requires

only the knowledge of the aircraft type and the distance of the flight to estimate the fuel burn. The

aggregated error at the fleet level is reported to be below 5%.

Two cases are present in the aggregated dataset of this paper. Some of the collected sources have

an aircraft model associated with each data entry: it is the case for [21, 22, 23]. As illustrated in

Table 2, these entries represent 51% of the total seats offered and 59.3% of the ASK. FEAT can be

applied directly to the data items to compute the associated fuel burn. However, in the case of

the other sources and of the estimated data (representing 49 and 40.7% of the seats and ASK), the

aircraft type information is not known. Therefore, a regression is performed on the aforementioned

FEAT-computed data points to derive a fuel burn per seat function of the flight distance (Figure 5).

To account for the fact that the data points represent a variable number of flights, this regression is

weighted according ot this variable. It gives a satisfactory level of fidelity for the use case considered,

with a high weighted r2 of 0.95, but it should be reminded that the regression is based on a surrogate

model and not the actual fuel burn. Some outliers can be seen on Figure 5, and especially at lower

ranges with a group of minor data entries whose fuel burn increases quickly compared to the trend.

They are related to the quality of [21] data, in which the seats offered are specific to each item. It

therefore includes VIP charter flights with very low cabin density for which the fuel burn per seat

increases rapidly. This effect cannot be seen for the other sources, in which an average value per

aircraft type is considered. The fuel burn corresponding to each remaining route is then computed

using this regression. The associated equation is given by Eq. (6).

Figure 5. Fuel burn regression on FEAT-computed data points.

Fseat (d) = 9.07 + 1.65 · 10–2 d + 9.43 · 10–7 d2 – 4.76 · 10–12 d3 (6)

Lastly, the CO2 emissions are immediately computed from the fuel burn using an emission factor of

3.16 kgCO2/kgfuel.
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3. Final dataset accuracy and validation

The quality of the final dataset is evaluated at several aggregation levels and using different compar-

ison references. A dedicated testing notebook is provided (see Reproducibility statement) in order

to explore in detail the accuracy of the final dataset, specifically at the country and airport levels. It

includes interactive figures giving access to details of the analyses mentioned below.

The first solution for evaluating the final dataset is to use the IEAWorld Energy Statistics dataset [18].

It gives the actual kerosene consumption for domestic and international aviation for each country.

However, general aviation, all-cargo and military aircraft consumption is often included in the data.

At the global level, the fuel consumption of the final dataset represents 80.7% of the IEA data. Ac-

cording to [36], general and military aviation accounts for 12% of the inventory and cargo 17%. This

figure includes all freighter flights, not included in the dataset of this work, and those flights account

for approximately half of the cargo emissions [17]. It means the emissions covered by our dataset

would be around 80%, consistent with the ratio found above. On the individual country level, it is

more difficult to reach a conclusion given that the breakdown between the different types of avia-

tion mentioned above is disparate from one country to another. For example, the coverage rate for

kerosene consumption in the USA is 74%, even though the data is of good quality (BTS). Military and

general aviation are very present in the country. In contrast, the coverage of a country like Japan is

97%.

The second solution is to compare the results with air traffic data from the International Air Trans-

port Association (IATA). While IATA reports 4543 million seats sold or 5506 million seats available

with an 82.5% load factor [40], there are 5570 million seats available in the open-source dataset, i.e.

a difference of around 1%.

The third solution is to use OAG data. OAG is a commercial data provider which offers global and

detailed flight schedules, making it a useful dataset to assess the accuracy of the global dataset,

despite using 2018 data instead of 2019 due to cost constraints. Seat capacities are converted to

2019-like values using a uniform growth rate for ASK of 3.4% [40]. It’s a relatively rough method

that ignores geographic disparities, but the differences in ASK growth were relatively limited from

2018 to 2019 [40]. The analysis shows a high correlation between the open-source data and OAG

data despite the estimated data being more dispersed but apparently unbiased. For OpenSky data,

a bias towards underestimation is present and was previously discussed. The r2 between this work

and OAG data is 0.74 for the seating capacity and 0.91 for the ASK. Overall, the seating capacity of

the open-source dataset totals 96% of the one of OAG, while the ASK totals 101.6%. Two types of

error can be distinguished at this global level. The first case is when the route is recorded by both

datasets, but with different volumes: around 387 Mn seats are "lost" in this case. The second case is

when routes are in either dataset but not in the other: 280 Mn seats are on routes not referenced in

OAG data, and 122 Mn in the opposite case.

Airport and regional accuracy levels are also explored with OAG data. The traffic of most major

airports is reasonably well computed, which is not surprising with the scaling process presented in

Section 2.4. There are some notable exceptions, such as Liège airport (LGG) in Belgium, in which the

ASK are overestimated by 2000%. In fact, Liège is a major cargo hub while a minor passenger airport

and some cargo flights are erroneously remaining in the dataset. Thus, some cargo flights were not

correctly referenced as such in the Eurocontrol dataset and considered as passenger flights. There

are also errors probably driven by the estimation itself. For example, the final data set is missing

around 50% of the ASK for Calcutta (CCU) or Surabaya (SUB) airports. It could be linked to two

combined phenomenons: there is a significant domestic traffic in these countries meaning estima-

tion is used a lot, and these countries are less covered by the training dataset (in which Europe and

USA are over-represented, hence a bias). Going beyond these limits would require an airport-by-
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airport investigation, which would be time-consuming and beyond the scope of this work, but it does

show that there is still room for improvement at this level of granularity. To get closer to the dataset

creation objectives (providing a coherent basis for the regionalisation of AeroMAPS), it is more ap-

propriate to focus on accuracy at the country level. The error in terms of ASK is represented in

Figure 6, showing that the open-source dataset quality is variable. However, this map does not allow

visualizing the associated traffic volumes. Indeed, looking at the raw data shows that most poorly

estimated countries have moderate traffic. Most European, North American and Eastern Asian coun-

tries are well accounted for. There is an overestimation in some eastern European countries, while

they are normally well covered by Eurocontrol data. The possibility of an error on the OAG dataset

was not investigated but as mentioned above, the OAG dataset used was a 2018 dataset, converted

to 2019 values using a worldwide growth rate. It could be the reason for country-level errors.

−40

−20
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20

40
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error vs
OAG (%)

N/A

Figure 6. Relative ASK error compared to reference data from OAG.

It is interesting to draw a parallel between the source used and the quality of the estimate in Fig-

ure 6. As mentioned before, the regions for which open-source data is available are relatively well

estimated. For example, we have a 2.9% error in the United States, where most of the data is from

[21]; and errors of less than 3% in the majority of Western European countries, where [23] data is

abundant. Australia and Brazil, for which specific datasets are used, are also very well estimated. In

the rest of the world, the estimate reaches reasonable levels in major countries such as China, with a

+6% error, and India, with a -9% error. The most disappointing major market is Indonesia, with 24%

of the traffic missing, for the same reasons as described before, at the airport level.

This discussion raises awareness of the importance of available open data for reliable projections at

the country level. The process of merging sources presented in this paper makes it possible to meet

the initial objective of creating a baseline for AeroMAPS scenarios, but it would be dangerous to

rely on it to make decarbonisation forecasts for some of the data-poor countries. Similarly, it should

be remembered that merging multiple sources is a long and complex process and that monitoring

emissions in this way year after year is tedious. A greater number of open sources, even at a fairly

high level of granularity, but complete, wouldmake it possible to provide an evenmore solid basis for

decarbonisation forecasts without compromising data confidentiality. It would also make it possible

to improve comparability between different regions of the world, which suffers here from a different

data collection method, with the introduction of potential biases.
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OAG data are finally used for investigating the continental flows (Table 3). Top 15 largest flows are

all within 12% of OAG reference for ASK, with much better results in most of the cases (top 3 flows

are within 1.2%). Minor flows are less accurate and especially Europe/Oceania. Investigation was

done to find error reasons and in this case, it was found to be related to the specific nature of Europe-

Oceania routes. Indeed, the very long distances involved mean that there is most often a technical

stop such as Singapore for London-Sydney or Los Angeles for Paris-Papeete. Some datasets consider

the two legs of the flight as separate (OAG) while some others [22, 24] do not, resulting in this large

error.

Table 3. Continental ASK flows and relative error compared to OAG data.

Bn ASK (error) AF AS EU NA OC SA

AF 99 (-8.0%)
AS 165 (5.4%) 2,826 (-1.2%)
EU 402 (10.9%) 1,215 (7.4%) 1,239 (0.8%)
NA 34 (44.7%) 628 (3.7%) 938 (3.6%) 1,811 (1.2%)
OC 4 (-5.5%) 352 (-6.4%) 14 (627.2%) 179 (12.3%) 148 (-5.2%)
SA 8 (19.2%) 15 (38.9%) 178 (4.6%) 157 (-6.6%) 6 (6.3%) 236 (-6.3%)

The last solution for assessing the dataset accuracy is to use an aviation emissions inventory from

the International Council on Clean Transportation (ICCT) [17], available as open-source at the coun-

try level. Despite the fact that they sourced their flight data at OAG, emissions were computed using

their own model (GACA), making it relevant to assess the CO2 emissions accuracy of the work pre-

sented in this paper. Emissions are allocated to each country according to the country of departure

of each flight. [17] separates cargo and passenger transport emissions, while in the present work,

all passenger flights were accounted for without attributing a share of their emissions to freight

transported in aircraft’s holds (often referenced as "belly cargo"). To correct this perimeter differ-

ence, ICCT passenger emissions were increased homogeneously by 8.8% to cover those emissions.

Table 4 provides ASK and CO2 emission comparison at the continental level. It is interesting to note

that the world level CO2 estimation is highly accurate, although this aggregated value hides a mod-

erate over-estimation on international flights and a more important underestimation on domestic

flights. Although the trend is similar on ASK, the conversion to CO2 emissions increases the error

on domestic flights, suggesting that the fuel burn model might be optimistic on shorter flights. The

accuracy levels on major flows remain however in an acceptable range for the general context of

prospective scenarios. Looking at the country level, once again domestic flights in Indonesia are the

poorest estimated major market (-25% CO2). It is also worth mentioning that US-domestic emissions

are underestimated by 7.5% while the ASK are underestimated by only 1.4%, which could confirm

the trend of the surrogate fuel-burn model to be optimistic on shorter routes.

4. Conclusion

The work presented in this paper aims at providing a customisable fuel burn or CO2 emissions base-

line for AeroMAPS, a prospective scenario simulator for the decarbonisation of air transport. The

target is to be able to generate such scenarios for regional entities or user-defined perimeters. It

requires a bottom-up city pair flight dataset, which was available with a global coverage only from

commercial, non-open-source providers, fiercely restricting AeroMAPS research reproducibility and

diffusion. To overcome this limitation, open-source datasets (with limited coverage) were collected

and compiled. However, it still does not allow to achieve satisfactory geographical coverage, partic-
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Table 4. ASK and CO2 emissions inventory at the continental level and comparison with ICCT values.

Total (error) International (error) Domestic (error)
Bn ASK MtCO2 Bn ASK MtCO2 Bn ASK MtCO2

Asia 3857 (0.86 %) 306 (-0.3 %) 2458 (5.3 %) 189 (4.3 %) 1399 (-6.1 %) 117 (-6.9 %)
N. America 2781 (0.5 %) 224 (-3.5 %) 1176 (3.5 %) 95 (3.0 %) 1604 (-1.5 %) 129 (-7.9 %)

Europe 2729 (0.3 %) 211 (0.0 %) 2355 (0.3 %) 179 (0.8 %) 374 (0.3 %) 32 (-4.1 %)
S. America 411 (-2.1 %) 34 (-2.7 %) 228 (-0.7 %) 18 (3.0 %) 183 (-3.8 %) 16 (-8.5 %)

Oceania 337 (3.2 %) 27 (4.4 %) 236 (3.5 %) 19 (8.2 %) 100 (2.3 %) 8 (-3.9 %)
Africa 281 (15.6 %) 22 (4.6 %) 253 (19.1 %) 19 (10.3 %) 28 (-9 %) 2.7 (-22.9 %)
RoW* 269 (22 %) 21 (3.9 %) 265 (23.1 %) 20 (7.5 %) 4 (-27.3 %) 0.6 (-53.1 %)
World 10664 (1.4 %) 844 (-0.9 %) 6971 (4 %) 538 (3.3 %) 3693 (-3.3 %) 306 (-7 %)

* Generic Rest of the World (RoW) category for unspecified countries in ICCT inventory

ularly for domestic flights outside Europe and North America. Therefore, Wikipedia airport pages,

and in particular the list of destinations associated with each airport, were used to concatenate a

global database of air routes. Using various features related to airports, countries and routes, an

XGBoost regression model was trained on the already known routes and then used to estimate the

available seats on each route of the Wikipedia-based dataset. The resulting estimated dataset was

concatenated with the other open-source datasets to create a global, open-source, air traffic dataset

with a capacity in terms of seats offered associated with each route. The ASK are immediately

obtained, while the associated fuel burn and CO2 emissions are estimated using a surrogate aircraft

performance model. The accuracy of the dataset was evaluated using four external sources. In terms

of seating capacity, it is 4% lower than the OAG total. However, it surpasses the OAG total by 1.6% in

terms of ASK. In terms of CO2 emissions, at constant perimeters (commercial passenger flights and

belly cargo), the value found is only 0.9% below the one of ICCT. The results are more contrasted at

lower aggregation levels. Most continental flows are correctly accounted for, as well as most major

markets, while high estimation errors can remain in small domestic aviation countries. At the route

level, despite a good trend compared to OAG data (r2=0.91 for ASK), there is some dispersion and it

should be remembered that this aggregation level is not the use case the dataset is designed for.

This accuracy could be improved in multiple ways. First, the dataset aggregation logic was designed

to be able to accommodate more open-source data when such are made available. It could be the case

with minor aviation countries whose authorities make this data available and that were not retrieved

during the research part of this work. For instance, including Indian records [41] would improve both

the raw sources and likely the estimation model capacities by reducing its bias towards occidental

countries. Its particular format requires an important preprocessing and was therefore not used

in this work. Besides that, features were selected without exhaustivity. Some could be replaced by

more relevant route-specific features if there are any. The regressor has been used and parameterised

with an approach that favours simplicity of use over a detailed understanding of the logic involved

in regression trees. More investigation on this could improve the estimation accuracy. Classification

techniques could also be used to infer the aircraft types, to improve the fuel burn estimation. The

airlines could also be inferred, refining the estimation by ensuring their network is consistent with

the potential of their fleets. More sophisticated approaches could also be based on the large amount

of data collected for this project. Graph Neural Networks (GNN) could be used for example as a

way to represent the route networks, with airports as nodes and flights as edges. The idea would

be to estimate each unknown edge using both airport capacity and other features as well as known

edges. That is similar to what was achieved in this paper, but using the structure of the data instead
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of estimating each flight independently one from the other.

More broadly, the next step of this work is to adapt AeroMAPS architecture to handle this new

customisable dataset. Besides this main use case of the dataset, this research could serve various

purposes. For instance, one could imagine a sociological study on the relationships between income

and propensity to travel or related topics. Finally, this work was performed for the year 2019 but

extending the database to other historical years would be of interest, for instance, to monitor the

progress of aviation decarbonisation. This could also help towards predictions of traffic evolution in

prospective scenarios.

Appendix 1. Supplementary figures

Figure 7. XGBoost feature importance.

The F-score represents the number of times the feature was selected to split the tree during the training process. The most

prevalent features are the distance between the airports, the passenger traffic of airports (consolidated_pax) and the number

of airlines (Regular but also Seasonal, Seasonal charter). The population surrounding each airport (pop_X_X ) is also important,

although the co-linearity of the various population metrics, in a radius of 30, 70 and 150 km around the airports could reduce

the relative importance of each feature individually. The same remark is true for the total passenger traffic in the area and

the number of concurrent airports (pax_X_X and airport_X_X ). Although the trade flows are an important feature, other

socio-economic features are less used by the training process. This is not surprising, given that metrics such as passenger

traffic at each airport or the number of airlines are much more direct assessments of the number of passengers on each route.
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