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A B S T R A C T   

Pressure swing adsorption (PSA) is an energy-efficient technology for gas separation, while the multiobjective 
optimization of PSA is a challenging task. To tackle this, we propose a hybrid optimization framework (TSEMO 
+ DyOS), which integrates two steps. In the first step, a Bayesian stochastic multiobjective optimization algo-
rithm (i.e., TSEMO) searches the entire decision space and identifies an approximated Pareto front within a small 
number of simulations. Within TSEMO, Gaussian process (GP) surrogate models are trained to approximate the 
original full process models. In the second step, a gradient-based deterministic algorithm (i.e., DyOS) is 
initialized at the approximated Pareto front to further refine the solutions until local optimality. Therein, the full 
process model is used in the optimization. The proposed hybrid framework is efficient, because it benefits from 
the coarse-to-fine function evaluations and stochastic-to-deterministic searching strategy. When the result is far 
away from the optima, TSEMO can efficiently approximate a trade-off curve as good as a commonly used evo-
lutional algorithm, i.e., Nondominated Sorting Genetic Algorithm II (NSGA-II), while TSEMO only uses around 1/ 
16th of CPU time of NSGA-II. This is because the GP-based surrogate model is utilized for function evaluations in 
the initial coarse search. When the result is near the optima, the searching efficiency of TSEMO dramatically 
decreases, while DyOS can accelerate the searching efficiency by over 10 times. This is because, in the proximity 
of optima, the exploitation capacity of DyOS is significantly higher than that of TSEMO.   

1. Introduction 

Pressure swing adsorption (PSA) is an energy-efficient gas separation 
technology [1–3] that has been widely used in the industry for drying 
[4], air separation [5,6], and hydrogen production [7,8]. Over the last 
two decades, academia has seen a growing interest in applying PSA for 
CO2 capture [9,10]. PSA possesses significant advantages over the 
conventional amine-based CO2 capture technology with regards to 
emissions to the environment and energy consumption [3,11]. Since no 
amine solvent is involved in the PSA system, no organic waste is 
disposed to the environment. 

The optimal design and operation of PSA processes are challenging 
tasks due to the inherent cyclic and dynamic behavior of the system and 
highly nonlinear process models [12]. Since the column pressure varies 
over time, the PSA process can never reach a steady-state operating 
point. Instead, it eventually comes to a cyclic steady state (CSS), where 
the trajectories of state variables are the same for consecutive cycles. 

From an industrial operation perspective, PSA is required to operate at 
CSS as to achieve a constant process performance. However, it is difficult 
to analytically calculate CSS, which generally requires a numerical 
simulation [13–15]. Additionally, multiple (conflicting) objectives co- 
exist, including product purity, recovery rate, energy consumption, 
and operating cost [11,16,17]. The process design and operation prob-
lems often involve nonconvex functions [18–20], where multiple local 
optimal solutions exist. Further, PSA may be operated in more compli-
cated modes, e.g., multiple columns integrated with recycles 
[3,11,12,17]. Overall, the above-mentioned factors contribute to the 
difficulty for the optimization of PSA processes. 

In the previous literature, stochastic optimization algorithms have 
been used to optimize PSA processes [11,16,21]. Stochastic optimiza-
tion algorithms consider the simulation as a black-box function. They 
vary the values of decision variables and run the PSA simulation until 
CSS. Following this procedure, the values of objectives and constraints 
are returned to the optimizer for evaluations. Haghpanah et al. used a 
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genetic algorithm (GA) to optimize the PSA operation, while the time- 
consuming feature of PSA simulation leads to the slow performance of 
the overall optimization [11]. Capra et al. [16] reported a multi-level 
coordinate search (MCS) algorithm, where the decision space is 
divided for parallel computing on multiple workers to speed up the 
overall optimization. Stochastic algorithms can search the decision 
space globally. However, the optimality cannot be guaranteed in finite 
time [22], and thus the solution found through stochastic optimization 
does not satisfy Karush-Kuhn-Tucker (KKT) optimality conditions [23]. 

Deterministic algorithms belong to another type of method that can 
be used for PSA optimization, where gradient information is used to 
guide the search direction (thus, it is often referred to ‘gradient-based 
optimization’). There are two common approaches for the gradient- 
based optimization of dynamic systems, i.e., the simultaneous and the 
sequential approaches [23]. The simultaneous approach discretizes the 
state and decision variables. Herein, both temporal and spatial domains 
of partial differential equations (PDEs) are discretized, resulting in a 
large set of algebraic equations and eventually large-scale nonlinear 
programming (NLP) problems. Tsay et al. proposed a pseudo-transient 
optimization framework to identify the final cycle of PSA under CSS 
using a ‘tear-recycle’ method, in which the temporal domain is signifi-
cantly reduced [24]. The sequential approach is well-suited to problems 
with a few decision variables and complex dynamic behavior. The 
integrator solves the differential equations and provides the gradient to 
the NLP solver. However, in the case of PSA, a significant amount of 
computational time is required to calculate the sensitivity information 
and its integration over many PSA cycles for the gradient. Additionally, 
the sensitivity integration may fail due to the highly nonlinear PSA 
model [13]. Jiang et al. focused on one PSA cycle [t0, tend] and applied 
the sequential approach to converge the initial conditions (t0) to the 
endpoint (tend) of state variables [13]. This concept can dramatically 
accelerate the simulation to reach CSS. However, the spatial-discretized 
PSA model contains over 1,000 state variables, and thus the conver-
gency of them is still a large optimization problem. 

Besides the extensive work on applying various optimization algo-
rithms to PSA, researchers have exerted effort on developing surrogate 
models to represent the dynamic behavior of PSA. Surrogate models are 
cheap-to-evaluate and can approximate the relationship between inputs 
and outputs of physical models. Jiang et al. employed a Lagrange 
interpolation polynomial to approximate the profiles of state variables, 
as to simplify the convergence problem. Nevertheless, such 

approximation was reported to introduce inaccuracy for the further 
optimal design of PSA process [13]. Agarwal et al. demonstrated that 
proper orthogonal decomposition (POD) can be employed to replace the 
stiff PDEs of PSA. A POD can achieve a significant reduction of state 
variables and thus lead to low-order surrogate models [25]. 

With the recent increasing attention to machine learning, Artificial 
Neural Networks (ANNs) and Gaussian processes (GP) surrogate models 
have become prominent options for replacing computationally expen-
sive models [26–28]. Subraveti et al. applied the ANN-based surrogate 
model to represent the original model, which was coupled with non-
dominated sorting genetic algorithm II (NSGA-II) for multiobjective 
optimization. The CPU time was reported to be 10 times shorter 
compared to NSGA-II coupled with the original PSA model [17]. Leperi 
et al. employed individual ANN-based surrogate models to represent 
typical PSA stages. Then, these surrogate-based PSA stages can synthe-
size different types of cycles (three-stage, four-stage or five-stage cycle) 
[21]. Boukouvala et al. applied a grey-box method to capture both the 
analytical information of the physical models and noise information by a 
GP-based surrogate model [29]. With this method, PSA processes with 
different materials were optimized successfully within acceptable 
computational time [29]. However, surrogate models are often criti-
cized for their inaccuracy and lack of generalization [30]. 

In summary, prior studies on PSA optimization are based on (1) 
stochastic algorithms using expensive full-order models, in which opti-
mality cannot be guaranteed, (2) deterministic algorithms which require 
the expensive-to-obtain gradient information, or (3) surrogate formu-
lations in which accuracy might be compromised. A hybrid method may 
integrate the complementary advantages of the individual methods. The 
concept of hybrid optimization methods – a synthesis of a global solver 
with a local solver – has been proposed initially by computer scientists to 
solve nonconvex problems many years ago [31–33]. Similarly, a concept 
of ‘coarse-to-fine’ search also proposes to transform the original problem 
into a coarse approximation for the initial search and then gradually 
approach the actual problem for refined search [34]. The efficiency of 
these concepts has been proven in the areas of computer vision [34], 
speech signal processing [35], and image processing [36]. Nevertheless, 
these concepts are not frequently used in the chemical industry. 

Therefore, we propose a hybrid strategy: a stochastic algorithm for 
the initial search and then a gradient-based algorithm for the local 
refinement of the solution. This work achieves efficient multiobjective 
optimization of the PSA system by hybrid optimization framework. 

Fig. 1. Four-stage PSA for CO2 capture.  
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The efficiency of the hybrid optimization framework benefits from:  

- the stochastic-to-deterministic search strategy;  
- the coarse-to-fine function evaluations: initially GP-based surrogate 

model for the rough evaluation, then the rigorous process model for 
the refined evaluation. 

The remaining sections are structured as follows. Section 2 briefly 
describes the process model of PSA. Section 3 introduces the state-of- 
the-art algorithms used in the hybrid framework. Section 4 presents 
the optimization formulation of PSA using a hybrid optimization 
framework. Section 5 shows results, followed by the discussion on why 
the overall optimization efficiency of the hybrid framework is compet-
itive in Section 6. The final section presents conclusions and outlook. 

2. Model description of pressure swing adsorption 

PSA is operated in a cyclic mode that alternates between adsorbing 
the desired gas species at a higher pressure and releasing them at a lower 
pressure (Fig. 1). Due to the variations in time and space, the PSA system 
is mathematically described by PDEs, which are based on the mass, 
energy and momentum balances listed in the Supplementary Informa-
tion (SI, equation S1-S19). Notably, discontinuities are introduced by a 
sequence of frequent control actions of pressure levels, thus resulting in 
multiple discrete stages, e.g., adsorption, blowdown, evacuation and 
feed pressurization, while each stage is operated continuously. Hence, 
the overall process belongs to a class of combined discrete/continuous 
systems, which require additional effort in the model formulation and 
numerical solution [37]. 

The process model of PSA is based on the work of Haghpanah et al. 
[11] and implemented in Modelica using Dymola. The weighted essen-
tially nonoscillatory (WENO) method, a finite volume method, is applied 
to discretize the PDEs into DAEs using 30 finite volumes. The combined 
discrete/continuous feature of PSA can first be described by a super-
structure formulation of all PSA stages (SI, equation S.19), and then 
external controls (binary variables, refers to Table S2 in SI) are imposed 
to determine which stage to execute. As such, the combined discrete/ 
continuous PSA is transformed into a set of continuous subsystems. Each 
subsystem is mathematically described by DAEs. The simulation of PSA 
requires the numerical integration of a series of initial value problems 
(IVP). The PSA cycle is repeatedly simulated and eventually reaches CSS. 
The simulation result is listed in the S3 section in the supplementary 
information (SI), because it is not the key finding in this work. Hagh-
panah’s model has been validated experimentally [38,39] and our 
simulation result is in good agreement (SI, Table S2) with those reported 
by Haghpanah et al. [11]. 

3. State-of-the-Art of hybrid optimization framework 

The hybrid optimization framework integrates TSEMO [40] with 
DyOS [41]. The characteristics of the methods are summarized in 
Table 1. TSEMO uses the input–output dataset of simulation results to 
train a GPs-based surrogate model, which is refined iteratively by 
sampling new input data points for more simulation results. Thompson 
sampling is the acquisition function for updating the dataset. In each 
iteration, the surrogate model is used as the evaluation function for 
multiobjective optimization [40]. With these characteristics, TSEMO 
belongs to Bayesian optimization [42]. NSGA-II is the optimizer within 
TSEMO, so the searching strategy of TSEMO is stochastic and the opti-
mality cannot be guaranteed. DyOS contains a local sequential dynamic 
optimization solver, so the searching strategy belongs to gradient-based 
(deterministic) optimization and the optimality can be secured. The 
original dynamic process model is required to calculate the gradient 
information, and thus the function evaluations of DyOS are based on the 
rigorous process model. 

The proposed hybrid optimization framework consists of two steps. 
In Step 1, TSEMO searches the decision space globally to generate an 
approximate trade-off curve, which contains the best points obtained by 
TSEMO. In Step 2, DyOS is initialized at one of the best points obtained 
in Step 1 and improves the solution until local optimality is reached. 

Table 1 
Characteristics of TSEMO, DyOS and hybrid framework.   

Searching strategy Function evaluations Optimality 

TSEMO (Bayesian 
optimization) 

Stochastic (global 
search) 

GP-based surrogate 
model 

NO 

DyOS Gradient-based 
(deterministic) 

Rigorous model YES 

Hybrid framework 
(TSEMO + DyOS) 

Stochastic to 
deterministic 

Surrogate to rigorous 
model (coarse-to- 
fine) 

YES  

Fig. 2. Illustration of the integrated platform for modeling and optimization of PSA. Process models of PSA are programmed using Modelica language in Dymola. The 
Modelica model can be translated and compiled into an executable Dymosim.exe and called directly from Matlab. Alternatively, the Modelica model can be compiled 
as a functional mock-up unit (FMU) [43]. TSEMO runs Dymola through Dymosim.exe for simulation-based stochastic optimization, while DyOS takes an FMU as a 
model input for gradient-based optimization. 
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DyOS can only improve one point per time, so the second step needs to 
be repeated to ‘one-by-one’ improve all of the best points obtained in 
Step 1. Overall, the searching strategy is stochastic-to-deterministic, and 
the function evaluations are ‘coarse-to-fine’ type: initially the GP-based 
surrogate for rough evaluations, then the rigorous model for the refined 
evaluations. The overall optimization framework is implemented in 
MATLAB, as illustrated in Fig. 2. The model in Dymola can be compiled 
into an executable file (Dymosim.exe) and Functional mock-up Unit 
(FMU), which can be seamlessly integrated into the MATLAB environ-
ment. In Step 1, the PSA model is coupled to TSEMO as an executable. In 
Step 2, the model is coupled to DyOS through the FMU, and then 
MATLAB calls DyOS through a mex interface. 

As a reference, we also employ the NSGA-II, a well-established 
evolutionary algorithm, to optimize the original process model of PSA. 

4. Optimization formulation of PSA using the hybrid framework 

One of the challenges in PSA optimization is owed to multiple 
(conflicting) criteria for the final product. In this work, we employ PSA 
for CO2 capture, and two optimization objectives are considered: (i) the 
recovery rate and (ii) the purity of the product gas CO2 are maximized. 

Recovery =
CO2 in product within a CSS cycle

CO2 fed into column within a CSS cycle
× 100% (1)  

Purity =
CO2 in product within a CSS cycle

total gas in product within a CSS cycle
× 100% (2) 

The details of the hybrid approach (1st TSEMO + 2nd DyOS) are 
formulated in this section. 

4.1. First step: optimization formulation using TSEMO 

TSEMO can deal with multiobjective optimization problems directly, 
and two objectives can be inserted in the solver without any further 
reformulation. The formulation is constrained by the process equations 
(cf. SI, S.1-S.19). The evaluation and optimization of PSA are only 
meaningful after the process reaches CSS. As an evaluation method for 
CSS, a small tolerance value, δ, is used to check the difference between 
state variables, x, over one cycle. When 

⃒
⃒x(t) − x(t + tcycle)

⃒
⃒ ≤ δ, PSA is 

deemed to be under CSS. Overall, in the TSEMO optimization frame-
work, the PSA optimization problem is formulated as follows, Eqs. (3)- 
(5): 

max
θ

(Recovery,Purity) (3)   

s.t. Dynamicprocessmodel(SI,S.1− S.19) (4)   

CSS=
⃒
⃒x(t)− x

(
t+tcycle

)⃒
⃒≤δ (5) 

where θ is a vector of six decision variables of four-stage PSA system 
including the duration of the first stage - adsorption (tads), the duration 
of the second stage - blowdown (tbd), the duration of the third stage - 
evacuation (tevac), two pressure setpoints - intermediate pressure (PI), 
low pressure (PL), respectively as well as feed velocity (vfeed). The lower 
and upper bounds of the decision variables are given in Table 2. In this 
work, the highest pressure is fixed at 1 bar. The duration of the pres-
surization stage (the fourth stage) is reported to have a negligible effect 

on the operation of PSA; therefore, it is fixed to 20 s [11]. 

4.2. Second step: optimization formulation of PSA using DyOS 

DyOS is designed to solve single-objective optimization problems. 
Herein, we reformulate our multiobjective optimization problem into a 
series of single-objective optimization problems via the epsilon- 
constrained method [44]. In other words, the recovery remains to be 
the objective, while the purity is reformulated as an inequality 
constraint. Following the results from the first step, the constraint and 
the initial values of decision variables are based on the results obtained 
from TSEMO. In case that the constraint is too tight, a relaxation coef-
ficient (η = 0.99) is given for the purity constraint (Eq. (8)). When 
optimizing PSA using DyOS, the system is assumed to reach CSS at the 
same number of cycles as the optimization using TSEMO (Eq. (9)). The 
set-up of DyOS for PSA optimization is illustrated in Figure S5 (SI). The 
formulation of PSA optimization in DyOS is as follows, Eqs. (6)-(9): 

max
θi

Recovery (6)  

s.t. Dynamic process model (SI, S.1 − S.19) (7)  

purity ≥ purityTSEMO∙η (8)  

N = NTSEMO (9) 

The PSA optimization via DyOS is conducted with respect to three 
decision variables: intermediate pressure, low pressure and inlet flow-
rate, as shown in Table 3. In the initial trials with DyOS we included the 
duration variables, which caused the method not to converge, likely 
because sensitivity integration over time is highly related to duration 
variables. Since the reason for unsuccessful termination is unclear at this 
time, we did not include the duration variables into the optimization. 

5. Results 

5.1. First step: optimization using TSEMO 

To initialize TSEMO, 30 random sets of inputs were sampled using a 
Latin Hypercube Sampling (LHS) method, and then the simulation in-
puts and outputs (i.e., recovery and purity) were used to train the initial 
GPs. Then, random samples were drawn from the GPs and multi-
objective optimization was performed. Following this, new inputs for 
simulations were recommended by the algorithm to improve the ob-
jectives. Then, the new data points were added to the whole dataset for 
GP surrogate training in the next iteration. In this case study, we discuss 
the optimization results after 50, 100, 200, 300, 400, 500, and 600 PSA 
simulations, which were recommended by TSEMO. Fig. 3(a) shows the 
obtained Pareto front, which represents the trade-off between recovery 
and purity through different numbers of simulations. The hypervolume 
can be used as an indicator to quantify the performance of multi-
objective optimization [45,46]. Fig. 3(b) shows that the hypervolume 
improves with the increase in the number of simulations. A significant 
improvement for the estimated Pareto front between 50 and 100 simu-
lations is observed while only moderate change is observed when further 
increasing the number of simulations. The growth in the hypervolume is 
negligible once the number of simulations is above 200 (Fig. 3b). This 
result might be explained in two ways: one explanation is that the 
estimated Pareto front is almost close to the actual Pareto front and 
leaves little space for further improvement; an alternative explanation is 

Table 2 
The ranges of the decision variables in the PSA optimization via TSEMO.  

θ  tads[s]  tbd[s]  tevac[s]  PI[bar]  PL[bar]  vfeed[m/s]  

range 20–100 30–200 30–200 0.07–0.5 0.005–0.05 0.1–2  

Table 3 
The ranges of the decision variables in the PSA optimization via DyOS.  

θi  PI[bar]  PL[bar]  vfeed[m/s]  

Range 0.07–0.5 0.005–0.05 0.1–2  
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that the searching efficiency of TSEMO considerably drops when the 
identified solutions are approaching optimality. This is a known issue of 
any stochastic search algorithm: the convergence is only guaranteed in 
the limit of an infinite number of function evaluations. 

5.2. Second step: optimization using DyOS 

One issue with the stochastic global search is the lack of local 
refinement of the identified solutions. In particular, TSEMO does not use 
gradient information to improve the approximate solutions further. 
Hence, it is desired to perform further gradient-based optimization that 
is initialized from the approximate solution points obtained in the first 
step. Following 600 simulations via TSEMO, we selected 22 non- 
dominated points with purity over 80% and recovery over 75%, which 
are the starting points in the second step. For every individual point, 
DyOS is called to perform gradient-based optimization using the full 
model. As shown in Fig. 4, DyOS slightly improves the estimated Pareto 
front until local optimality is satisfied. When referring to the hyper-
volume in Table 4, the improvement is not significant, which indicates 
that the estimated Pareto front based on the limited number of TSEMO 
simulations is very close to the local refined solution by gradient-based 
optimization. 

Table 4 presents the optimization performance. The hypervolume 
quantification indicates that DyOS does further improve the results from 
TSEMO. Nevertheless, the CPU time of DyOS is almost three times that of 
TSEMO. This is because TSEMO uses cheap-to-evaluate surrogate 
models and parallel computing is possible for surrogate models. By 
contrast, DyOS relies on gradients calculated from the sensitivity inte-
gration over all PSA cycles, and thus a large percentage of time is 
consumed to obtain the gradient information. Notably, the full-order 
physical model is evaluated to ensure the result’s accuracy, which 
further increases the CPU cost in the second step. 

Fig. 3. Multiobjective optimization of PSA via TSEMO. (a) optimization results 
through 100 simulations recommended by TSEMO: to initialize TSEMO, LHS 
generated 30 simulations, shown as the blue points; the algorithm recom-
mended additional 100 simulations, shown as the red crosses. The estimated 
Pareto front was evolved, shown as the black circles. (b) hypervolume quan-
tification (reference point is [0, 0]) varying from 50 to 600 simulations rec-
ommended by TSEMO. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 

Fig. 4. The result of the hybrid approach for the multiobjective optimization 
of PSA. 

Table 4 
Optimization performance via TSEMO and DyOS (reference point of hyper-
volume quantification is [0, 0]).   

First step -TSEMO (600 simulations) Second step - DyOS 

CPU time [h] 29.5 81.7 
Hypervolume [-] 9,896 9,932  

Fig. 5. Comparison between Pareto set of solutions obtained by TSEMO – 100 
simulations and NSGA-II – 2,400 simulations. 
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6. Discussion 

To demonstrate the efficiency of this hybrid framework, we firstly 
compare the performance of TSEMO with that of NSGA-II. As shown in 
Fig. 5, the estimated Pareto front from TSEMO is comparable to that of 
NSGA-II, while NSGA-II requires a significantly larger number of simu-
lations than TSEMO. As shown in Table 5, TSEMO with 100 simulations 
has a hypervolume value almost the same as the NSGA-II with 2,400 
simulations, while TSEMO only uses around 1/16th of the CPU time of 
NSGA-II. This is reasonable because TSEMO trains the GP-surrogate for 
the function evaluations during optimization, so it is not CPU-intensive 
as the rigorous model. NSGA-II is actually the optimizer within the 
TSEMO framework, so TSEMO has a similar exploration capacity as 
NSGA-II. TSEMO also employs Thompson sampling (acquisition func-
tion) to choose new sampling points, thus improving the exploitation 
capability. Therefore, the efficiency of TSEMO is higher than NSGA-II. 

From Table 4, we noticed that the optimization result from TSEMO is 
close to that of DyOS, but DyOS costs significantly more CPU time. 
However, it is important to notice that the deterministic local search also 
offers distinct advantages for the considered case study. Firstly, DyOS 
verifies that the optimization result of TSEMO is ‘good enough’. Without 
the verification, there are no criteria to check the optimality only by 
TSEMO. Secondly, DyOS indeed improves the optimization result. A 
slight improvement of operating condition may only introduce little 
difference in one hour for a laboratory set-up. However, such 
improvement can be significant for an annually operated industrial PSA 
plant. Last but not least, the searching efficiency of DyOS is higher than 
TSEMO when the optimization result is near optima. We introduce a 
value to quantify the searching efficiency: 

searching efficiency =
hypervolume improvement

CPU time
(10) 

As shown in Fig. 6a, the growth of hypervolume slows down with the 
increase of iteration of TSEMO, while the CPU time starts to increase 
gradually. Thus, the search efficiency of TSEMO dramatically decreases 
after 3rd iteration. DyOS is initialized based on the result of the 7th 
iteration of TSEMO. The searching efficiency of DyOS is over 11 times 
that of TSEMO on its 7th iteration (Table 6). This means that TSEMO 
requires much more than 11 times CPU time to achieve the same trade- 
off curve calculated from DyOS, given the searching efficiency of 
TSEMO keeps going down. 

TSEMO belongs to a stochastic search algorithm. Theoretically, 
TSEMO can only converge to optimality in an infinite number of func-
tion evaluations. In other words, the searching efficiency of TSEMO 
declines inevitably and approaches 0 eventually. That is an inherent 
characteristic of any stochastic method – focusing on space-filling, 
rather than the improvement of individual points as gradient-based 
methods. Both TSEMO and DyOS tend to find better results than the 
last iteration, but the improvement on individual points is quite 
different. As shown in Fig. 6b, the average hypervolume improvement 
on an individual point drops significantly with the increase of TSEMO 
iteration, while DyOS can still take advantage of the gradient to further 
optimize the individual point (operating conditions for new simulation). 
As shown in Table 6, the difference can be 553 times when comparing 
between DyOS and the last iteration of TSEMO, regarding the hyper-
volume improvement of an individual point. In other words, in the 
proximity of an optimal solution, DyOS possesses a significantly higher 
exploitation capacity than TSEMO. 

7. Conclusions and outlook 

When solving the multiobjective optimization problem of PSA 
deterministically, the main challenge is the high computational cost. In 
this work, a hybrid (TSEMO + DyOS) optimization framework is 
developed to secure a high searching efficiency and accuracy for a four- 
stage PSA system with an application in CO2 capture. 

In the hybrid optimization framework, the first step employs our 
open-source Bayesian optimization algorithm, TSEMO, to search the full 
decision space efficiently. This step identifies an approximate Pareto 
front of two objectives, CO2 purity and recovery. In the second step, 

Table 5 
Optimization performance between NSGA-II and TSEMO (reference point of 
hypervolume quantification is [0, 0]).   

NSGA-II 2,400 simulations TSEMO 100 simulations 

CPU time [h] 63.2 3.9 
Hypervolume [-] 9,877 9,875  

Fig. 6. (a) Hypervolume and CPU time via TSEMO and DyOS (The reference 
point of hypervolume quantification is [0, 0]). (b) the average hypervolume 
improvement when a new simulation is added. Iterations 1 – 7 refer to the 
influence of TSEMO, which recommends 50, 100, 200, 300, 400, 500, and 600 
simulations, respectively. Iteration 8 refers to the influence of DyOS based on 
22 data points. 

Table 6 
Searching efficiency via TSEMO and DyOS (reference point of hypervolume 
quantification is [0, 0]).   

First step -TSEMO (7th 
iteration) 

Second step - 
DyOS 

CPU time [h] 7.38 81.7 
Hypervolume improvement [-] 0.3 36.5 
Searching efficiency [1/h] 0.04 0.45 
No. of updated data points [-] 100 22 
Hypervolume improvement per 

point [-] 
0.003 1.66  
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DyOS starts from the most promising objective points obtained in the 
first step and further improves the optimization result of PSA until 
optimality. The small improvement in the 2nd step indicates that 
TSEMO can achieve nearly optimal operation conditions of PSA within 
the limited number of simulations. 

The hybrid optimization framework possesses an excellent optimi-
zation efficiency. Such efficiency benefits from the coarse-to-fine func-
tion evaluations and stochastic-to-deterministic searching strategy. 
TSEMO employs GP-surrogates for function evaluations in the initial 
coarse search. Hence, the efficiency of TSEMO is higher than NSGA-II. 
However, the searching efficiency of TSEMO dramatically drops on 
the nearly-optimal condition, where the hybrid framework can use 
DyOS to further improve the searching efficiency by over 10 times. This 
is because TSEMO belongs to stochastic methods, which are weaker in 
exploitation than deterministic methods, when the optimal solution is 
nearly optimal. Therefore, the overall searching efficiency on PSA 
optimization can be ranked as follows, hybrid (TSEMO + DyOS) 
framework > TSEMO > NSGA-II. 

Ideally, the hybrid framework can be implemented iteratively as 
follows, (TSEMO → DyOS) → (TSEMO → DyOS) → (TSEMO → DyOS) … 
An iterative way can help balance the exploration and exploitation 
better, thus leading to fast convergence to the optimal solution. In the 
case study of PSA, the optimization result from TSEMO was thought to 
be ‘good enough’, which can be referred to the result of NSGA-II (2400 
simulations / 63 h in total) and DyOS. Also, the second step on DyOS 
consumed significantly more time. As a result, the iterative way for the 
hybrid framework was set aside. In the future, two factors might make 
the iterative way more appealing and practical: 1) fast evaluation of PSA 
process model: reformulate the PSA model to make the system effi-
ciently converge to cyclic steady state; 2) parallel computing in DyOS: 
initialize the exploitation for all individual points simultaneously. 

This hybrid multiobjective optimization framework can be used to 
explore other competing criteria, such as energy consumption and 
productivity of PSA. Further, this approach can be extended to optimi-
zation of any other complex expensive-to-evaluate dynamic processes. 
TSEMO seems to already deliver a ‘good-enough’ trade-off curve among 
multiple criteria in a relatively low time cost, while the hybrid frame-
work can be used to accelerate the trade-off curve to converge to the real 
‘good-enough’ solution. Pursuing the optimality can be especially 
meaningful to high-value processes because a slight improvement of the 
operating condition can make a significant impact on an annually 
operating industrial plant. 
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nization Projektträger Jülich (PtJ). AAL acknowledges funding from 
National Research Foundation (NRF), Prime Minister’s Office, Singapore 
under its Campus for Research Excellence and Technological Enterprise 
(CREATE) program as a part of the Cambridge Centre for Advanced 
Research and Education in Singapore Ltd (CARES). 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.cej.2021.130248. 

References 

[1] S. Sircar, Pressure swing adsorption, Ind. Eng. Chem. Res. 41 (6) (2002) 
1389–1392. 

[2] R.V. Jasra, N.V. Choudary, S.G.T. Bhat, Separation of gases by pressure swing 
adsorption, Sep. Sci. Technol. 26 (7) (1991) 885–930. 

[3] R. Haghpanah, R. Nilam, A. Rajendran, S. Farooq, I.A. Karimi, Cycle synthesis and 
optimization of a VSA process for postcombustion CO2 capture, AICHE J. 59 (12) 
(2013) 4735–4748. 

[4] J.W. Carter, M.L. Wyszynski, The pressure swing adsorption drying of compressed 
air, Chem Eng Sci 38 (7) (1983) 1093–1099. 

[5] D.M. Ruthven, S. Farooq, Air separation by pressure swing adsorption, Gas Sep. 
Purif. 4 (3) (1990) 141–148. 

[6] J.-G. Jee, J.-S. Lee, C.-H. Lee, Air Separation by a small-scale two-bed medical O2 
pressure swing adsorption, Ind. Eng. Chem. Res. 40 (16) (2001) 3647–3658. 

[7] A. Malek, S. Farooq, Hydrogen purification from refinery fuel gas by pressure swing 
adsorption, AICHE J. 44 (9) (1998) 1985–1992. 

[8] S. Sircar, T.C. Golden, Purification of hydrogen by pressure swing adsorption, Sep. 
Sci. Technol. 35 (5) (2000) 667–687. 

[9] A.L. Chaffee, G.P. Knowles, Z. Liang, J. Zhang, P. Xiao, P.A. Webley, CO2 capture 
by adsorption: Materials and process development, Int. J. Greenh Gas Con. 1 (1) 
(2007) 11–18. 

[10] L.Y. Liu, H. Gong, Z. Wang, G. Li, T. Du, Application of Pressure Swing Adsorption 
Technology to Capture CO2 in Highly Humid Flue Gas, Prog. Chem. 30 (2018) 
872–878. 

[11] R. Haghpanah, A. Majumder, R. Nilam, A. Rajendran, S. Farooq, I.A. Karimi, 
M. Amanullah, Multiobjective optimization of a four-step adsorption process for 
postcombustion CO2 capture via finite volume simulation, Ind. Eng. Chem. Res. 52 
(11) (2013) 4249–4265. 

[12] Y. Tian, S.E. Demirel, M.M.F. Hasan, E.N. Pistikopoulos, An overview of process 
systems engineering approaches for process intensification: State of the art, Chem. 
Eng. Processing - Process Intensif. 133 (2018) 160–210. 

[13] L. Jiang, L.T. Biegler, V.G. Fox, Simulation and optimization of pressure-swing 
adsorption systems for air separation, AICHE J. 49 (5) (2003) 1140–1157. 

[14] Y. Ding, M.D. LeVan, Periodic states of adsorption cycles III Convergence 
acceleration for direct determination, Chem. Eng. Sci. 56 (17) (2001) 5217–5230. 

[15] O.J. Smith, A.W. Westerberg, Acceleration of cyclic steady state convergence for 
pressure swing adsorption models, Ind. Eng. Chem. Res. 31 (6) (1992) 1569–1573. 

[16] F. Capra, M. Gazzani, L. Joss, M. Mazzotti, E. Martelli, MO-MCS, a derivative-free 
algorithm for the multiobjective optimization of adsorption processes, Ind. Eng. 
Chem. Res. 57 (30) (2018) 9977–9993. 

[17] S.G. Subraveti, Z. Li, V. Prasad, A. Rajendran, Machine learning-based 
multiobjective optimization of pressure swing adsorption, Ind. Eng. Chem. Res. 58 
(44) (2019) 20412–20422. 

[18] W.R. Esposito, C.A. Floudas, Deterministic global optimization in nonlinear 
optimal control problems, J. Global Optim. 17 (2000) 97–126. 

[19] S. Lee, I.E. Grossmann, A global optimization algorithm for nonconvex generalized 
disjunctive programming and applications to process systems, Comput. Chem. Eng. 
25 (11-12) (2001) 1675–1697. 

[20] H.S. Ryoo, N.V. Sahinidis, Global optimization of nonconvex NLPs and MINLPs 
with applications in process design, Comput. Chem. Eng. 19 (5) (1995) 551–566. 

[21] K.T. Leperi, D. Yancy-Caballero, R.Q. Snurr, F. You, 110th anniversary: Surrogate 
models based on artificial neural networks to simulate and optimize pressure swing 
adsorption cycles for CO2 capture, Ind. Eng. Chem. Res. 58 (2019) 18241–18252. 

[22] J. Nocedal, S. Wright, Numerical optimization, Springer Science & Business Media, 
2006. 

[23] L.T. Biegler, Nonlinear programming: concepts, algorithms, and applications to 
chemical processes, SIAM2010. 

[24] C. Tsay, R.C. Pattison, M. Baldea, A pseudo-transient optimization framework for 
periodic processes: Pressure swing adsorption and simulated moving bed 
chromatography, AICHE J. 64 (2018) 2982–2996. 

[25] A. Agarwal, L.T. Biegler, S.E. Zitney, Simulation and optimization of pressure 
swing adsorption systems using reduced-order modeling, Ind. Eng. Chem. Res. 48 
(5) (2009) 2327–2343. 

[26] D. Buche, N.N. Schraudolph, P. Koumoutsakos, Accelerating evolutionary 
algorithms with Gaussian process fitness function models, IEEE Trans, Syst. Man 
Cybern. Part C-Appl. Rev. 35 (2) (2005) 183–194. 

[27] A.M. Schweidtmann, A. Mitsos, Deterministic global optimization with artificial 
neural networks embedded, J. Optimiz. Theory Appl. 180 (3) (2019) 925–948. 

[28] D. Duvenaud, Automatic model construction with Gaussian processes, University 
of Cambridge, 2014. 

[29] F. Boukouvala, M.M.F. Hasan, C.A. Floudas, Global optimization of general 
constrained grey-box models: new method and its application to constrained PDEs 
for pressure swing adsorption, J. Global Optim. 67 (2017) 3–42. 

[30] Z.T. Wilson, N.V. Sahinidis, The ALAMO approach to machine learning, Comput. 
Chem. Eng. 106 (2017) 785–795. 

[31] C.K. Chak, G. Feng, Accelerated genetic algorithms: combined with local search 
techniques for fast and accurate global search, Proceedings of the 1995 IEEE 

Z. Hao et al.                                                                                                                                                                                                                                     

https://doi.org/10.1016/j.cej.2021.130248
https://doi.org/10.1016/j.cej.2021.130248
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0005
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0005
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0010
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0010
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0015
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0015
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0015
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0020
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0020
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0025
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0025
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0030
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0030
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0035
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0035
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0040
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0040
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0045
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0045
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0045
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0050
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0050
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0050
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0055
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0055
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0055
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0055
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0060
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0060
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0060
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0065
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0065
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0070
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0070
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0075
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0075
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0080
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0080
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0080
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0085
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0085
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0085
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0090
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0090
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0095
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0095
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0095
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0100
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0100
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0105
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0105
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0105
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0110
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0110
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0120
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0120
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0120
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0125
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0125
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0125
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0130
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0130
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0130
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0135
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0135
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0140
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0140
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0145
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0145
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0145
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0150
http://refhub.elsevier.com/S1385-8947(21)01836-2/h0150


Chemical Engineering Journal 423 (2021) 130248

8

International Conference on Evolutionary Computation. Part 1 (of 2), 1995, pp. 
378-383. 

[32] G. Folino, C. Pizzuti, G. Spezzano, Parallel hybrid method for SAT that couples 
genetic algorithms and local search, IEEE Trans. Evol. Comput. 5 (4) (2001) 
323–334. 

[33] C. Junying, Q. Zheng, L. Yu, L. Jiang, Particle swarm optimization with local 
search, Int. Conf. Neural Netw. Brain 2005 (2005) 481–484. 

[34] H. Mobahi, J.W. Fisher, Coarse-to-Fine Minimization of Some Common 
Nonconvexities, in: E. Bae, T.F. Chan, M. Lysaker (Eds.) Energy Minimization 
Methods in Computer Vision and Pattern Recognition, Emmcvpr 2015, pp. 71-84. 

[35] J. Yao, A. Al-Dahle, Coarse-to-fine Optimization for Speech Enhancement, arXiv 
preprint arXiv: 1908.08044 (2019). 

[36] C. Raphael, Coarse-to-fine dynamic programming, IEEE Trans. Pattern Anal. Mach. 
Intell. 23 (12) (2001) 1379–1390. 

[37] P.I. Barton, C.C. Pantelides, Modeling of combined discrete/continuous processes, 
AICHE J. 40 (6) (1994) 966–979. 
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